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Summary

This thesis is concerned with the issue of extinction of populations composed of different
types of individuals, and their behavior before extinction and in case of a very late extinction.
We approach this question firstly from a strictly probabilistic viewpoint, and secondly from the
standpoint of risk analysis related to the extinction of a particular model of population dynamics.
In this context we propose several statistical tools.

The population size is modeled by a branching process, which is either a continuous-time
multitype Bienaymé-Galton-Watson process (BGWc), or its continuous-state counterpart, the
multitype Feller diffusion process. We are interested in different kinds of conditioning on non-
extinction, and in the associated equilibrium states. These ways of conditioning have been widely
studied in the monotype case. However the literature on multitype processes is much less extensive,
and there is no systematic work establishing connections between the results for BGWc processes
and those for Feller diffusion processes.

In the first part of this thesis, we investigate the behavior of the population before its extinction
by conditioning the associated branching process Xt on non-extinction (Xt 6= 0), or more generally
on non-extinction in a near future 0 6 θ < ∞ (Xt+θ 6= 0), and by letting t tend to infinity. We
prove the result, new in the multitype framework and for θ > 0, that this limit exists and is non-
degenerate. This reflects a stationary behavior for the dynamics of the population conditioned
on non-extinction, and provides a generalization of the so-called Yaglom limit, corresponding to
the case θ = 0. In a second step we study the behavior of the population in case of a very late
extinction, obtained as the limit when θ tends to infinity of the process conditioned by Xt+θ 6= 0.
The resulting conditioned process is a known object in the monotype case (sometimes referred
to as Q-process), and has also been studied when Xt is a multitype Feller diffusion process.
We investigate the not yet considered case where Xt is a multitype BGWc process and prove
the existence of the associated Q-process. In addition, we examine its properties, including the
asymptotic ones, and propose several interpretations of the process. Finally, we are interested in
interchanging the limits in t and θ, as well as in the not yet studied commutativity of these limits
with respect to the high-density-type relationship between BGWc processes and Feller processes.
We prove an original and exhaustive list of all possible exchanges of limit (long-time limit in t,
increasing delay of extinction θ, diffusion limit).

The second part of this work is devoted to the risk analysis related both to the extinction of
a population and to its very late extinction. We consider a branching population model (arising
notably in the epidemiological context) for which a parameter related to the first moments of
the offspring distribution is unknown. We build several estimators adapted to different stages
of evolution of the population (phase growth, decay phase, and decay phase when extinction is
expected very late), and prove moreover their asymptotic properties (consistency, normality). In
particular, we build a least squares estimator adapted to the Q-process, allowing a prediction of the
population development in the case of a very late extinction. This would correspond to the best or
to the worst-case scenario, depending on whether the population is threatened or invasive. These
tools enable us to study the extinction phase of the Bovine Spongiform Encephalopathy epidemic
in Great Britain, for which we estimate the infection parameter corresponding to a possible source
of horizontal infection persisting after the removal in 1988 of the major route of infection (meat
and bone meal). This allows us to predict the evolution of the spread of the disease, including the
year of extinction, the number of future cases and the number of infected animals. In particular,
we produce a very fine analysis of the evolution of the epidemic in the unlikely event of a very late
extinction.
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Zusammenfassung

Diese Arbeit befasst sich mit der Frage des Aussterbens von Populationen verschiedener Typen
von Individuen. Uns interessiert das Verhalten vor dem Aussterben sowie insbesondere im Falle
eines sehr späten Aussterbens. Wir untersuchen diese Fragestellung zum einen von einer rein
wahrscheinlichkeitstheoretischen Sicht und zum anderen vom Standpunkt der Risikoanalyse aus,
welche im Zusammenhang mit dem Aussterben eines bestimmten Modells der Populationsdynamik
steht. In diesem Kontext schlagen wir mehrere statistische Werkzeuge vor.

Die Populationsgröße wird entweder durch einen zeitkontinuierlichen mehrtyp-Bienaymé-Gal-
ton-Watson Verzweigungsprozess (BGWc) oder durch sein Analogon mit kontinuierlichem Zu-
standsraum, den Feller Diffusionsprozess, modelliert. Wir interessieren uns für die unterschiedli-
chen Arten auf Überleben zu bedingen sowie für die hierbei auftretenden Gleichgewichtszustände.
Diese Bedingungen wurden bereits weitreichend im Falle eines einzelnen Typen studiert. Im
Kontext von mehrtyp-Verzweigungsprozessen hingegen ist die Literatur weniger umfangreich und
es gibt keine systematischen Arbeiten, welche die Ergebnisse von BGWc Prozessen mit denen der
Feller Diffusionsprozesse verbinden. Wir versuchen hiermit diese Lücke zu schliessen.

Im ersten Teil dieser Arbeit untersuchen wir das Verhalten von Populationen vor ihrem Ausster-
ben, indem wir das zeitasymptotysche Verhalten des auf Überleben bedingten zugehörigen Verzwei-
gungsprozesses (Xt|Xt 6= 0)t betrachten (oder allgemeiner auf Überleben in naher Zukunft 0 6 θ <
∞, (Xt|Xt+θ 6= 0)t). Wir beweisen das Ergebnis, neuartig im mehrtypen Rahmen und für θ > 0,
dass dieser Grenzwert existiert und nicht-degeneriert ist. Dies spiegelt ein stationäres Verhalten
für auf Überleben bedingte Bevölkerungsdynamiken wider und liefert eine Verallgemeinerung des
sogenannten Yaglom Grenzwertes (welcher dem Fall θ = 0 entspricht). In einem zweiten Schritt
studieren wir das Verhalten der Populationen im Falle eines sehr späten Aussterbens, welches wir
durch den Grenzübergang auf θ →∞ erhalten. Der resultierende Grenzwertprozess ist ein bekan-
ntes Objekt im eintypen Fall (oftmals als Q-Prozess bezeichnet) und wurde ebenfalls im Fall von
mehrtyp-Feller-Diffusionsprozessen studiert. Wir untersuchen den bisher nicht betrachteten Fall,
in dem Xt ein mehrtyp-BGWc Prozess ist und beweisen die Existenz des zugehörigen Q-Prozesses.
Darüber hinaus untersuchen wir seine Eigenschaften einschließlich der asymptotischen und weisen
auf mehrere Auslegungen hin. Schließlich interessieren wir uns für die Austauschbarkeit der Grenz-
werte in t und θ, und die Vertauschbarkeit dieser Grenzwerte in Bezug auf die Beziehung zwischen
BGWc und Feller Prozessen. Wir beweisen die Durchführbarkeit aller möglichen Grenzwertver-
tauschungen (Langzeitverhalten, wachsende Aussterbeverzögerung, Diffusionslimit).

Der zweite Teil dieser Arbeit ist der Risikoanalyse in Bezug auf das Aussterben und das sehr
späte Aussterben von Populationen gewidmet. Wir untersuchen ein Modell einer verzweigten
Bevölkerung (welches vor allem im epidemiologischen Rahmen erscheint), für welche ein Parame-
ter der Reproduktionsverteilung unbekannt ist. Wir konstruieren Schätzer, die an die jeweiligen
Stufen der Evolution adaptiert sind (Wachstumsphase, Verfallphase sowie die Verfallphase, wenn
das Aussterben sehr spät erwartet wird), und beweisen zudem deren asymptotische Eigenschaften
(Konsistenz, Normalverteiltheit). Im Besonderen bauen wir einen für Q-Prozesse adaptierten
kleinste-Quadrate-Schätzer, der eine Vorhersage der Bevölkerungsentwicklung im Fall eines sehr
späten Aussterbens erlaubt. Dies entspricht dem Best- oder Worst-Case-Szenario, abhängig davon,
ob die Bevölkerung bedroht oder invasiv ist. Diese Instrumente ermöglichen uns die Betrachtung
der Aussterbensphase der Bovinen spongiformen Enzephalopathie Epidemie in Großbritannien.
Wir schätzen den Infektionsparameter in Bezug auf mögliche bestehende Quellen der horizon-
talen Infektion nach der Beseitigung des primären Infektionsweges (Tiermehl) im Jahr 1988. Dies
ermöglicht uns eine Vorhersage des Verlaufes der Krankheit inklusive des Jahres des Aussterbens,
der Anzahl von zukünftigen Fällen sowie der Anzahl infizierter Tiere. Insbesondere ermöglicht
es uns die Erstellung einer sehr detaillierten Analyse des Epidemieverlaufs im unwahrscheinlichen
Fall eines sehr späten Aussterbens.
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Résumé

Cette thèse s’articule autour de la problématique de l’extinction de populations comportant
différents types d’individus, et plus particulièrement de leur comportement avant extinction et/ou
en cas d’une extinction très tardive. Nous étudions cette question d’un point de vue strictement
probabiliste, puis du point de vue de l’analyse des risques liés à l’extinction pour un modèle
particulier de dynamique de population, et proposons plusieurs outils statistiques.

La taille de la population est modélisée soit par un processus de branchement de type Bien-
aymé-Galton-Watson à temps continu multitype (BGWc), soit par son équivalent dans un espace
de valeurs continu, le processus de diffusion de Feller multitype. Nous nous intéressons à différents
types de conditionnement à la non-extinction, et aux états d’équilibre associés. Ces condition-
nements ont déjà été largement étudiés dans le cas monotype. Cependant la littérature relative
aux processus multitypes est beaucoup moins riche, et il n’existe pas de travail systématique
établissant des connexions entre les résultats concernant les processus BGWc et ceux concernant
les processus de diffusion de Feller. Nous nous y sommes attelés.

Dans la première partie de cette thèse, nous nous intéressons au comportement de la population
avant son extinction, en conditionnant le processus de branchement Xt à la non-extinction (Xt 6=
0), ou plus généralement à la non-extinction dans un futur proche 0 6 θ < ∞ (Xt+θ 6= 0), et en
faisant tendre t vers l’infini. Nous prouvons le résultat, nouveau dans le cadre multitype et pour
θ > 0, que cette limite existe et est non-dégénérée, traduisant ainsi un comportement stationnaire
pour la dynamique de la population conditionnée à la non-extinction, et offrant une généralisation
de la limite dite de Yaglom (correspondant au cas θ = 0). Nous étudions dans un second temps
le comportement de la population en cas d’une extinction très tardive, obtenu comme limite
lorsque θ tends vers l’infini du processus Xt conditionné par Xt+θ 6= 0. Le processus conditionné
ainsi obtenu est un objet connu dans le cadre monotype (parfois dénommé Q-processus), et a
également été étudié lorsque le processus Xt est un processus de diffusion de Feller multitype.
Nous examinons le cas encore non considéré où Xt est un BGWc multitype, prouvons l’existence
du Q-processus associé, examinons ses propriétés, notamment asymptotiques, et en proposons
plusieurs interprétations. Enfin, nous nous intéressons aux échanges de limites en t et en θ, ainsi
qu’à la commutativité encore non étudiée de ces limites vis-à-vis de la relation de type grande
densité reliant processus BGWc et processus de Feller. Nous prouvons ainsi une liste exhaustive
et originale de tous les échanges de limites possibles (limite en temps t, retard de l’extinction θ,
limite de diffusion).

La deuxième partie de ce travail est consacrée à l’analyse des risques liés à l’extinction d’une
population et à son extinction tardive. Nous considérons un certain modèle de population bran-
chante (apparaissant notamment dans un contexte épidémiologique) pour lequel un paramètre
lié aux premiers moments de la loi de reproduction est inconnu, et construisons plusieurs esti-
mateurs adaptés à différentes phases de l’évolution de la population (phase de croissance, phase
de décroissance, phase de décroissance lorsque l’extinction est supposée tardive), prouvant de
plus leurs propriétés asymptotiques (consistence, normalité). En particulier, nous contruisons
un estimateur des moindres carrés adapté au Q-processus, permettant ainsi une prédiction de
l’évolution de la population dans le meilleur ou le pire des cas (selon que la population est
menacée ou au contraire invasive), à savoir celui d’une extinction tardive. Ces outils nous per-
mettent d’étudier la phase d’extinction de l’épidémie d’Encéphalopathie Spongiforme Bovine en
Grande-Bretagne, pour laquelle nous estimons le paramètre d’infection correspondant à une pos-
sible source d’infection horizontale persistant après la suppression en 1988 de la voie principale
d’infection (farines animales). Cela nous permet de prédire l’évolution de la propagation de la
maladie, notamment l’année d’extinction, le nombre de cas à venir et le nombre d’animaux in-
fectés, et en particulier de produire une analyse très fine de l’évolution de l’épidémie dans le cas
peu probable d’une extinction très tardive.
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Introduction

The evolution of the branching theory is not only imputable to pure mathematical development, it
is also strongly related to the desire of resolving a growing number of biological problems, leading to
a progressive complexification of the original branching process and to new exciting mathematical
inquiries. The history of branching processes finds its origin in the second half of the XIXth century
in a demographic context, from the family extinction problem studied notably by Bienaymé, de
Candolle, Galton and Watson (see historical overviews such as [Ken66, Jag75, Gut95] or more
recently [Jag09]), and famously formulated as follows by Galton in 1873 ([Gal1873]):

“A large nation, of whom we will only concern ourselves with adult males, N in number, and
who each bear separate surnames colonize a district. Their law of population is such that, in each
generation, a0 per cent of the adult males have no male children who reach adult life; a1 have one
such male child; a2 have two; and so on up to a5 who have five. Find (1) what proportion of their
surnames will have become extinct after r generations; and (2) how many instances there will be
of the surname being held by m persons.”

Branching processes certainly remain the most natural means to model the dynamic of a pop-
ulation consisting of individuals (or particles, or cells...) living and giving birth independently of
one another, and as such have encountered various applications in biology ([Hac05]), demography,
genealogy, computer science, physics, chemistry etc. ([Pak03]). The branching theory gradu-
ally left the classical Bienaymé-Galton-Watson process framework to investigate more complex
and more realistic processes, considering, for example, an immigration component ([Hea65]), a
varying or random environment ([AthKar71, SmiWi69]), a time-structure allowing individuals to
have random life spans and give birth during their lives ([CruMod68]), branching populations
evolving according to a random walk ([AthNey73]) etc. Among the various possible directions of
research, we choose to work with branching processes describing populations with several types of
individuals, and to consider their diffusion limit as well, known as the Feller diffusion process.

This PhD thesis deals with the following problematic: the extinction of branching populations,
and more precisely their behavior before extinction and/or in case of a very late extinction. Ex-
tinction obviously plays a major role in the evolution, at different scales, from the global extinction
of species to the local extinction of subpopulations. Whether one strives for the extinction of an
invasive population or for the survival of an endangered species, a first key tool to estimate the
vulnerability of a population is to ascertain its extinction probability. A next natural step, due to
Kolmogorov ([Kolm38]), is to study the probability that the population still exists after a large
but finite number of generations. Kolmogorov’s estimate of the non-extinction probability gradu-
ally led to the study of the Yaglom limit ([Yag47]), which is the limiting conditional distribution
of the branching process under the condition that it is not yet extinct. The Yaglom limit is a
quasi-stationary distribution, in the sense that it is an equilibrium distribution for the dynamics
conditioned on non-extinction. The mathematical and biological interest of such an object, and
more generally of stationary behavior for Markov processes with an absorbing state, conditionally
on non-absorption, was pointed out by Bartlett in his famous paper on competitive and preda-
tory biological systems: “the time to extinction may be so long that it is still of more relevance
to consider the effectively ultimate distribution” ([Bar57, Bar60]). Although a lot of papers have
been devoted to branching processes conditioned on non-extinction, only a few have dealt with the
multitype case and with processes conditioned on not being extinct in the remote future. It ap-
pears that some gaps exist in the literature, especially concerning potential commutativity results

13



INTRODUCTION

between different limits of interest for the conditioned processes (increasing delay of extinction,
long-time behavior, scaling limit). The first part of our work is dedicated to the statement of new
results for conditioned multitype continuous-time Bienaymé-Galton-Watson processes (BGWc)
and conditioned multitype Feller diffusions, and to the connection with well-known results. The
second part is devoted to the study of vanishing populations from an epidemiological point of view.
We present stochastic and statistical tools to predict the evolution of a population, its extinction
time, its total size, and its behavior in case of a very late extinction. This enables us to provide
a fine epidemiological risk analysis for the Bovine Spongiform Encephalopathy in Great-Britain
which is in its extinction phase, studying in particular the worst-case scenario corresponding to a
very late extinction.

Chapter 1 first introduces the notion of multitype BGWc process. The classification of the
individuals into several types is of immediate interest for the modeling of populations, since these
types can correspond, for example, to health states, expressions of a gene, locations etc. It adds to
the original branching mechanism a Markovian dynamics among the different types of individuals,
which brings the original single-type Bienaymé-Galton-Watson process to a higher level of com-
plexity. We next focus on the multitype Feller diffusion process, which can be seen as a limit to
BGWc processes with a large number of individuals with small weights: if the mass and time are
rescaled appropriately alongside the offspring distribution and number of initial individuals, one
indeed obtains as a nontrivial limit a Feller diffusion process ([Fel51]) with continuous-state space
Rd+ (d being the number of types), belonging to the broader category of continuous-state branching
processes ([Jir58]). This approximation offers very useful applications, since it drastically reduces
the degree of complexity of the original BGWc process from the knowledge of the whole offspring
distribution, to the simple knowledge of its first and second-order moments, if these exist. In this
chapter we review some basic results present in the literature for multitype BGWc processes with
finite first and second-order moments (which is the setting of this work) and for multitype Feller
diffusion processes, focusing especially on properties related to the extinction of the processes.

Chapter 2 is dedicated to the conditioning on non-extinction. Conditioning on non-extinction
leads to interesting nondegenerate limits and provides a stationarity property to the process.
As we will see, this last property holds more generally for Markov processes with an absorbing
state conditioned on non-absorption. Moreover, conditioning provides information, crucial from a
theoretical point of view as well as for biological applications, about the behavior of the population
before extinction and its behavior in case of a late extinction. Indeed, even for populations which
are doomed to become extinct, the duration of the extinction phase can be lengthy compared to the
observation time scale, and it is often observed that population sizes fluctuate for a large amount of
time before extinction actually occurs. After presenting different kinds of conditioning existing in
the literature, we focus on two specific conditional limits for multitype BGWc and Feller diffusion
processes, for which we provide a new and systematic study. The first limit consists in conditioning
the process Xt on the event that it is not extinct at time t + θ, but does eventually die out; the
extinction is thus delayed by at least θ. We then consider the limiting behavior of this process as
the time t tends to infinity, which is consequently a generalization of the Yaglom limit mentioned
previously. The second kind of limit investigated in this work corresponds to what is sometimes
referred to in the literature as the Q-process, obtained by letting the delay of extinction θ tend to
infinity. We define this limit process for multitype BGWc processes, and prove that it is a Doob
h-transform of the unconditioned BGWc process. We give an interpretation of this process as a
BGWc with immigration (in the monotype case) and as a process with an “immortal” individual.
Moreover, we show that it has a stationary behavior, and recall similar results already obtained
for multitype Feller diffusion processes ([ChaRoe08]).

Chapter 3 is devoted to the investigation of interchangeability results between the different
limits coming into play. A first natural line of inquiry concerns whether a connection exists
between the generalized Yaglom limit associated with the BGWc process, and the one associated
with the scaling limit of the BGWc process (i.e. the Feller diffusion process); the same question
also holds for the associated Q-processes. We answer in the affirmative by showing that according
to the intuition, the Yaglom-type distribution and the Q-process associated with the scaling limit
process, correspond to the scaling limit of the original Yaglom-type distribution and Q-process.
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We show moreover that, as expected from the classical single-type result, the Q-process associated
with the multitype branching processes admits as a unique stationary probability measure the size-
biased Yaglom distribution. Another question concerns the commutativity between the long-time
limits of the conditioned processes, that is to say between the limits as the time t or the delay of
extinction θ tends to infinity. Our goal is to provide and prove an exhaustive list of commutativity
results between the six possible combinations of limit (time limit, large delay of extinction, and
high-density limit).

Chapter 4 is dedicated to the risk analysis related to the extinction of a (threatened or
harmful) population. The framework is a branching population with Poissonian transitions, which
can be seen either as a Markovian process of order d > 1, or as a discrete-time Bienaymé-Galton-
Watson process (BGW), with d types corresponding to the memory of the process. After justifying
the choice of the model, we provide the distribution of the time of extinction, the total size of
the population until extinction, and the behavior in case of a late extinction, making use of the
associated Q-process. We next consider that a parameter in the Poissonian transition might be
unknown, and provide several estimators for this parameter, corresponding to different phases of
the evolution of the population: growth phase, decay phase, and decay phase in case of a very late
extinction. One of these estimators stems from the literature on the estimation of the Perron’s root
for multitype branching processes, while two others are new conditional least squares estimators
(CLSE) based either on the chosen process or on the process conditioned on non-extinction at each
time step. We prove their strong consistency and asymptotic normality as the initial size of the
population tends to infinity or, alternatively, as time tends to infinity. We compare the precision
and accuracy of these three estimators on the basis of simulations. The last estimator introduced
in this thesis is also original and offers an innovative method for a fine risk analysis of the very
late extinction case. It is a CLSE associated with the process conditioned on very late extinction,
and we prove that is is strongly consistent and asymptotically normal as time tends to infinity.
This estimator enables predictions of the evolution of the population in the best-case scenario (if
one considers an endangered population for which extinction is feared) or worst-case scenario (if
one considers on the contrary a harmful population).

Finally, Chapter 5 concerns the epidemiological study of the Bovine Spongiform Encephalopa-
thy (BSE) in Great-Britain. The previous model provides an adequate epidemic model based on
the yearly incidences of cases, which correspond to the available observations. In this model one
parameter is unknown, quantifying the remaining infection transmission after the first feed ban
law in 1988, which removed the main route of transmission of the disease via meat and bone
meal. We estimate this parameter thanks to a CLSE presented in the previous chapter, and make
use of the obtained estimation to predict the future spread of the disease, including the year of
extinction, the number of cases to come and the evolution of the number of infected cattle. As
a final object of study, we estimate the infection parameter for the associated Q-process, which
leads to a fine analysis of the future behavior of the BSE epidemic in the unlikely case of a very
late extinction.
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Chapter 1

Multitype branching processes

Let d be the number of types. In this work we use the following notation.

N := {0, 1, 2, . . .} , N∗ := {1, 2, . . .} ,

R+ := [0,∞[ , Rd+ := [0,∞[d , Rd+ := [0,∞]d .

If no further indication, any d-dimensional vector x ∈ Rd is considered as a row vector (x1, . . . , xd).
Its transpose is denoted xT , but in order to avoid heavy notation we omit this subscript when
no confusion is possible. 1 and 0 denote the vectors (1, . . . , 1) and (0, . . . , 0) ∈ Rd, and for all
i = 1 . . . d, ei = (0, . . . , 1, . . . , 0) the basis vector of Rd. The vector ∞ denotes the element in Rd+
having all its coordinates equal to ∞. x · y denotes the usual scalar product between x and y in
Rd,

x · y := x1y1 + . . .+ xdyd,

‖x‖ the Euclidean norm, and |x| the L1-norm:

‖x‖ :=
√
x2

1 + . . .+ x2
d,

|x| := |x1|+ . . .+ |xd|.

We define moreover
xy := (x1y1, . . . , xdyd) ,

and
xy := xy1

1 . . . xydd .

We introduce the following partial order on Rd:

x 6 y (resp. x < y) means that for all i = 1 . . . d, xi 6 yi (resp. xi < yi).

We call a matrix positive (resp. non-negative) if all its coefficients are > 0 (resp. > 0). In general,
any d-dimensional vector or d× d matrix is denoted by a bold character. The set of the d× d real
matrices is denoted Md(R).

Throughout Chapter 1, Chapter 2 and Chapter 3 we work on the probability space
(Ω, (Xt)t>0, (Ft)t>0), where Ω := D

(
R+,Rd+

)
is the canonical space of càdlàg functions from

R+ to Rd+. For every t > 0, Xt denotes the canonical projection at time t, and (Ft)t>0 the right-
continuous filtration generated by the canonical process (Xt)t>0. In these chapters, we denote
by a subscript on P or E the initial distribution of a process with law P. If this subscript is an
element of Rd+, then the initial distribution corresponds to the Dirac measure at this point.

Moreover, for a given infinitesimal generator G with domain D(G) and a given subset D0(G) ⊆
D(G), we say that a law P on the probability space (Ω, (Xt)t>0, (Ft)t>0) is a solution to the
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martingale problem MP (G,D0 (G)) (or MP(G) to avoid heavy notation) if for all function f ∈
D0(G), (

f(Xt)− f(X0)−
∫ t

0

(Gf)(Xs−)ds
)
t>0

is a
(
P, (Ft)t>0

)
-martingale.

When imposing the initial condition x0 we write MP (G,D0 (G) ,x0).

1.1 Continuous-time multitype Bienaymé-Galton-Watson pro-
cess

Continuous-time Bienaymé-Galton-Watson processes (BGWc) are Markovian processes describing
the size evolution of a splitting population, where individuals have exponentially distributed life
spans and produce at the end of their life-time a random number of offspring. The number of
offspring is independent of the parent’s life span, and individuals reproduce independently of one
another. In the multitype case considered here, where the individuals are classified into different
types, the reproduction law as well as the life span might depend on the type of the individual.
However, an individual of a given type can possibly give birth to individuals of different types,
according to its reproduction law (see Figure 1.1).

The randomness of the life spans is a real amelioration with respect to the classical discrete-time
Bienaymé-Galton-Watson process (BGW), where individuals only live one deterministic time-unit.
BGWc processes have thus been used a lot in mathematical biology. However one must keep in
mind that these processes are of limited biological relevance: first, the splitting mechanism means
that children are only born at their parent’s death, and second, exponential life spans imply the
absence of aging for the individuals.

Much of the early work on the continuous-time branching processes was initiated by the Russian
school in the middle of the XXth century ([KolDmi47, Sew51]), and later expanded to the multitype
case. On this topic we mostly refer to the monographs [Sew75] and [AthNey72], and might also
quote [Har63] and [Mod71].

In this section, we consider a d-type BGWc process with sample paths in D
(
R+,Nd

)
, and we

denote by P its law on the canonical probability space. After giving some definitions and prelimi-
nary results in Subsection 1.1.1, we recall in Subsection 1.1.2 the usual basic assumptions on
the first-order moments and quote the Perron-Frobenius Theorem, and finally present fundamental
known results on the extinction probability of the process in Subsection 1.1.3.

1.1.1 Preliminaries: generating functions and infinitesimal generator

We denote by (p (j))j∈Nd the offspring distribution (or reproduction law) of the branching process,
where for all j = (j1, . . . , jd) ∈ Nd,

p(j) = (p1(j), . . . , pd(j)) ∈ [0, 1]d.

For every i = 1 . . . d, pi(j) = pi(j1, . . . , jd) ∈ [0, 1] denotes the probability that a type i individual
produces j1 individuals of type 1, j2 individuals of type 2 etc. It satisfies for all i = 1 . . . d,∑

j∈Nd
pi(j) = 1.

Let f(r) = (f1(r), . . . , fd(r)) ∈ [0, 1]d be the generating function of the offspring distribution,
defined as follows. For all r = (r1, . . . , rd) ∈ [0, 1]d,

f(r) :=
∑
j∈Nd

p(j)rj =
∑
j∈Nd

p (j1, . . . , jd) r
j1
1 . . . rjdd , (1.1.1)
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t

0

type 1

type 2

~ Exp(  )α1

~ Exp(  )α2

 = (2,3)X t2
 = (0,3)X t1

Figure 1.1: A 2-type BGWc process.

or component-wise, for all i = 1 . . . d,

fi(r) =
∑
j∈Nd

pi(j)rj =
∑
j∈Nd

pi(j1, . . . , jd)r
j1
1 . . . rjdd .

We denote by α = (α1, . . . , αd) the vector of the branching rates, meaning that every individual
of type i lives an exponentially distributed lifetime of parameter αi > 0 (Figure 1.1), and we
introduce the diagonal matrix

A := diag(α) =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αd

 . (1.1.2)

The generating function of the process at time t is denoted Ft(r) = (Ft,1(r), . . . , Ft,d(r)),
r ∈ [0, 1]d, where for all i = 1 . . . d,

Ft,i(r) := Eei

(
rXt
)

= E
(
rXt |X0 = ei

)
=
∑
j∈Nd

Pei(Xt = j)rj ∈ [0, 1]. (1.1.3)

The transition probabilities of the process Pt(i, j) := P(Xt = j|X0 = i), i, j ∈ Nd, satisfy the
so-called branching property

Pt(i, j) = Pt(e1, j)∗i1 ∗ . . . ∗ Pt(ed, j)∗id , (1.1.4)

where ∗ denotes the convolution product. For example, in the monotype case d = 1, this formula
becomes

Pt(i, j) = Pt(1, j)∗i =
∑

j(1)+...+j(i)=j

Pt(1, j(1)) . . . Pt(1, j(i)). (1.1.5)

The branching property is a fundamental property which is satisfied by every branching process
(see (1.2.3) for the continuous-state branching processes). It reflects the additivity of the transition
probabilities of these processes with respect to the initial condition. In the discrete-state setting,
notably for BGWc processes, this means that a BGWc branching process with i initial individuals
is the sum of i1 independent copies of a BGWc with one type 1 initial individual, i2 independent
copies of a BGWc with one type 2 initial individual etc.
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This implies notably that for all x ∈ Nd

Ex
(
rXt
)

= E
(
rXt |X0 = x

)
= [Ft(r)]x =

d∏
k=1

[ ∑
j∈Nd

Ft,k (r)
]xk

, (1.1.6)

hence the additivity turns into a multiplicativity dependence on the initial condition for the gen-
erating function.

We deduce from (1.1.6) together with the Chapman-Kolmogorov equation the following semi-
group property. For all s, t > 0 and r ∈ [0, 1]d,

Ft+s(r) = Ft (Fs (r)) . (1.1.7)

Finally, the Kolmogorov forward and backward equations applied on x 7→ rx lead to ([AthNey72]
Section 5.7.1): for i = 1 . . . d,

∂

∂t
Ft,i(r) =

d∑
j=1

αj [fj (r)− rj ]
∂

∂rj
Ft,i(r), (1.1.8)

and
∂

∂t
Ft,i(r) = αi [fi (Ft(r))− Ft,i(r)] . (1.1.9)

Written d-dimensionally, (1.1.8) and (1.1.9) become

∂

∂t
Ft(r) =

d∑
j=1

αj [fj (r)− rj ]
∂

∂rj
Ft(r),

∂

∂t
Ft(r) = [f (Ft(r))− Ft(r)] A.

(1.1.10)

If one assumes that for all i, j = 1 . . . d, ∂fi
∂rj

(1) < ∞, then as mentioned later (Proposition
1.1.3) this ensures that there cannot be infinitely many individuals produced in a finite time, and
also guarantees that (1.1.8) and (1.1.9) subject to the boundary condition F0(r) = r admits as a
unique solution the generating function Ft(r) of the BGWc process with law P.

We can explicitly compute its infinitesimal generator L, defined for all smooth function f :
Nd → R and all x ∈ Nd by

(Lf) (x) := lim
h→0

1
h

Ex [f (Xh)− f (x)] .

For every h > 0, i = 1 . . . d and k ∈ Nd we define the events

A0(h) = {no branching event in [0, h]} ,

A
(i)
k (h) = {exactly one branching event in [0, h]: one i individual splits into k offsprings} ,

and the disjoint union of events

A(h) = A0(h)
⋃̇

16i6d
k∈Nd

A
(i)
k (h).

Let f be a real-valued function defined on Nd with compact support. For all h > 0 and x ∈ Nd
we denote

Rhf(x) :=
1
h

Ex
[
(f (Xh)− f (x)) 1A(h)C

]
.
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Then for all x ∈ Nd we have
1
h

Ex [f (Xh)− f (x)]

=
1
h

[f (x)− f (x)] +
1
h

Ex
[

[f (Xh)− f (x)]
∑

16i6d
k∈Nd

1
A

(i)
k (h)

]
+Rhf(x)

=
1
h

[f (x)− f (x)] +
d∑
i=1

∑
k∈Nd

[f (x+ k− ei)− f (x)]
1
h

Px
[
A

(i)
k (h)

]
+Rhf(x). (1.1.11)

But

1
h

Px
[
A

(i)
k (h)

]
=

1
h
pi(k)

∫ h

0

αixie
−αixise−αi(xi−1+ki)(h−s)

∏
j=1..d
j 6=i

e−αjxjse−αj(xj+kj)(h−s)ds

= αixipi(k)e−h
Pd
j=1 αj(xj+kj−δij) 1

h

∫ h

0

es
Pd
j=1 αj(kj−δij)ds

= αixipi(k)e−h
Pd
j=1 αj(xj+kj−δij) e

h
Pd
j=1 αj(kj−δij) − 1

h
∑d
j=1 αj(kj − δij)

.

Using the fact that eh
P
j=1...d αj(kj−δij) − 1 ∼h→0 h

∑
j=1...d αj(kj − δij) we hence obtain that

lim
h→0

1
h

Px
[
A

(i)
k (h)

]
= αixipi(k). (1.1.12)

It now remains to estimate

Rhf(x) =
1
h

Ex
[
(f (Xh)− f (x)) 1A(h)C

]
.

For this we note that

A(h)C = {at least two branching events in [0, h]}

=
⋃

16i,j6d
k∈Nd

{
at least two branching events in [0, h]:

one i individual (splitting into k offsprings), and one j individual

}

=:
⋃

16i,j6d
k∈Nd

B
(i,j)
k (h).

Hence we obtain the following estimate of Rhf(t,x). For all t, h > 0, x ∈ Nd,

Rhf(x) 6
1
h

Ex
[

(f (Xh)− f (x))
∑

16i,j6d
k∈Nd

1
B

(i,j)
k (h)

]

6 2 sup
x∈Nd

|f(x)|
∑

16i,j6d
k∈Nd

1
h

Px
[
B

(i,j)
k (h)

]
,

with supx∈Nd |f(x)| <∞ by assumption. Moreover,

1
h

Px
[
B

(i,j)
k (h)

]
= pi(k)

1
h

∫ h

0

αixie
−αixis

(
1− e−αj(xj+kj−δij)(h−s)

)
ds

= αixipi(k)

[
1
h

∫ h

0

e−αixisds− e−αj(xj+kj−δij)h 1
h

∫ h

0

e[αj(xj+kj−δij)−αixi]sds

]

= αixipi(k)
[

1− e−αixih

αixih
− e−αj(xj+kj−δij)h e[αj(xj+kj−δij)−αixi]h − 1

[αj(xj + kj − δij)− αixi]h

]
,
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which tends to 0 as h → 0. Hence limh→0Rhf(x) = 0, which combined with (1.1.12) in (1.1.11)
implies that for all x ∈ Nd

(Lf) (x) =
d∑
i=1

αixi
∑
k∈Nd

pi(k) [f (x+ k− ei)− f (x)] . (1.1.13)

Remark 1.1.1. In the monotype case d = 1 we obtain the classical result that for all (t, x) ∈ R+×N
([EthKur86]),

(Lf) (x) = αx

∞∑
k=0

pk [f (x+ k − 1)− f (x)] .

1.1.2 Moments and the Perron-Frobenius Theorem

We denote by M = [mij ]16i,j6d the mean matrix of the offspring distribution, where mij stands
for the expected number of type j offsprings produced by an individual of type i, assumed in all
what follows to be finite:

mij :=
∑
k∈Nd

kjpi(k) =
∂fi
∂rj

(1) <∞. (1.1.14)

We next introduce M(t) = [mij(t)]16i,j6d, the mean matrix of the process at time t. For every
i, j = 1 . . . d and every t > 0, mij(t) := Eei [Xt,j ] denotes the expected number of type j individuals
at time t of the process initiated with a single individual of type i. The branching property implies
the linearity of M(t) with respect to the initial number of individuals:

EX0 [Xt] = X0M(t). (1.1.15)

The mean matrix satisfies the semigroup property M(t + s) = M(t)M(s) (s, t > 0) and the
continuity condition limt→0 M(t) = I, hence there exists a matrix C such that

M(t) = eCt =
∞∑
p=0

tpCp

p!
. (1.1.16)

We can identify the matrix C as ([AthNey72] Section 5.7.2)

C := A(M− I). (1.1.17)

Remark 1.1.2. Since A and M are non-negative matrices, all the non-diagonal terms of the matrix
C are non-negative.

The finiteness of the first-order moments of the offspring distribution guarantees the nonex-
plosion in finite time. This is however a sufficient but not necessary condition.

Proposition 1.1.3 ([Sew75] Satz 4.4.1). Assuming that all the entries of M are finite, then for
all i, j = 1 . . . d and all t > 0, mij(t) <∞.

Let us introduce the following definitions and assumptions.

Definition 1.1.4. A branching process is called simple if its generating function f is such that
for all i = 1 . . . d, fi(r) is linear in r1, . . . , rd, with no constant term.

Remark 1.1.5. It means that for all i = 1 . . . d, fi is of the form

fi(r) = pi(e1)r1 + . . .+ pi(ed)rd,

which implies that
∑d
j=1 pi(ej) = 1. In this case each individual has exactly one offspring (possibly

of different type) and the process has a constant number of individuals.
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ρλ1

λ3

λ2

ρλ1

λ3

λ2

ρλ1

λ3

λ2

1. Positive matrix 2. Non-negative irreducible matrix 3. Irreducible matrix with non-negative
non-diagonal entries

Figure 1.2: Graphical representation of the spectrum and Perron’s root ρ for categories of matri-
ces (positive matrix, non-negative irreducible matrix, irreducible matrix with non-negative non-
diagonal entries).

To avoid this trivial case, we work under the following assumption:

(B0) The process is not simple.

Definition 1.1.6. A matrix D is called irreducible if there does not exist any permutation matrix
S (each row and each column has exactly one 1 entry and all others 0) such that S−1DS is block
triangular.

Let us recall a fundamental theorem about non-negative irreducible matrices due to 0. Perron
and G. Frobenius ([Per1907, Frob1908]). This theorem can be found e.g. in [Sen73], Theorem 1.1,
and is illustrated by Figure 1.2.2.

Theorem 1.1.7 (Perron-Frobenius). An irreducible non-negative matrix always has a real positive
eigenvalue ρ, called the Perron’s root, such that the moduli of all the other eigenvalues are smaller
than are equal to ρ. The “maximal” eigenvalue ρ is simple, and its related eigenspace is one-
dimensional. There corresponds a right (resp. left) eigenvector with positive coordinates.

Remark 1.1.8. If the matrix is positive, then the moduli of all the other eigenvalues are smaller
than ρ (see Figure 1.2.1).

In this work we use the following extension of the Perron-Frobenius structure, which con-
cerns irreducible matrices with non-negative non-diagonal entries (see Theorem 2.5 in [Sen73]),
illustrated by Figure 1.2.3.

Theorem 1.1.9. An irreducible matrix with non-negative non-diagonal entries always has a real
eigenvalue ρ, called the Perron’s root, such that the real part of any other eigenvalue is smaller
than ρ. The “maximal” eigenvalue ρ is simple, and its related eigenspace is one-dimensional.
There corresponds a right (resp. left) eigenvector with positive coordinates.

Definition 1.1.10. A process is called irreducible if the mean matrix M is irreducible.

Throughout this work we assume the following.

(B1) The mean matrix M is finite and irreducible.
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Remark 1.1.11. The irreducibility assumption entails that all the types communicate with each
other ([Sew75] Satz 4.6.2). We say that a type i and a type j (i, j = 1 . . . d) communicate (we
write i↔ j) if there exist s, t > 0 such that

Pei (Xs,j > 0) > 0 and Pej (Xt,i > 0) > 0.

The binary relation ↔ is an equivalence relation.

Remark 1.1.12. Obviously, the matrix M is reducible if and only if M− I is reducible. Moreover,
since the diagonal matrix A only multiplies the entries of M − I by some positive scalars, the
reducibility of M− I is equivalent to the one of C = A(M− I). We have in addition the following
equivalences ([Sew75] Kapitel IV §6).

M is irreducible ⇐⇒ C is irreducible
⇐⇒ M(t) is irreducible for all t > 0 ⇐⇒ M(t) > 0 for all t > 0.

Note that the last condition holds for example if there exists one p ∈ N∗ such that Cp > 0.

Let us assume (B1), and apply Theorem 1.1.9 to the irreducible matrix C (with non-negative
non-diagonal entries). We denote by ρ its maximal eigenvalue, and ξ (resp. η) the associated
right (resp. left) eigenvector, with the following normalization convention:

CξT = ρξT , ηC = ρη, η · ξ = 1, ξ · 1 = 1. (1.1.18)

Definition 1.1.13. The process is called supercritical, critical or subcritical according as ρ > 0,
ρ = 0 or ρ < 0.

The following result describing the asymptotic behavior of the mean matrix M(t) as t → ∞
([Sew75] Satz 4.7.5), provides a justification to the classification into three types of criticality
depending on the sign of ρ.

Proposition 1.1.14. Assume (B1). Then the mean matrix M(t) satisfies the following asymp-
totic behavior. For all i, j = 1 . . . d

mij(t) = ξiηje
ρt + o(eρ̃t), t→∞,

with ρ̃ < ρ.

Hence the mean value mij(t) of an irreducible process exponentially decreases (resp. increases)
as t → ∞ in the subcritical (resp. supercritical) case, and tends to a finite positive limit in the
critical case.

1.1.3 Extinction probability

A key tool for the study of the extinction of a BGWc process, and later for the study of the process
conditioned on non-extinction, is its extinction probability vector q := limt→∞ q(t), where

q(t) := (q1(t), . . . , qd(t)) ,
qi(t) := Pei(Xt = 0), i = 1 . . . d.

(1.1.19)

Note that

qi = lim
t→∞

qi(t) = lim
t→∞

Pei(Xs = 0 for some s 6 t)

= Pei(Xs = 0 for some s > 0) = Pei( lim
t→∞

Xt = 0),
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hence the appellation extinction probability. By definition, q(t) = Ft(0), which by the branching
property implies that for all x ∈ Nd, Px (Xt = 0) = q(t)x, and thus

Px
(

lim
t→∞

Xt = 0
)

= qx. (1.1.20)

As in the monotype case, there is a dichotomy between explosion of the process and its ab-
sorption in the only absorbing point 0 (i.e. extinction of the process).

Proposition 1.1.15. Assume (B0) and (B1). Then, for all x ∈ Nd,

Px
(

lim
t→∞

Xt = 0
)

= 1− Px
(

lim
t→∞

Xt = ∞
)

= qx.

Definition 1.1.16. We say that there is almost sure extinction of the process, or that the process
almost surely dies out, if q = 1.

Proposition 1.1.17. The extinction probability vector q satisfies the following equation

f(r) = r. (1.1.21)

Proof. Applying (1.1.7) with r = 0, we obtain that Ft (Fs (0)) = Ft+s(0), i.e. Ft (q (s)) =
q (t+ s). Letting s→∞ and using the continuity of r 7→ Ft(r), we obtain Ft (q) = q. Hence for
all i = 1 . . . d, t 7→ Ft (q) is constant, which by (1.1.9) together with the fact that αi > 0 leads to
f (Ft (q)) = Ft (q), and thus f(q) = q.

By definition, f(1) =
∑

j∈Nd p(j) = 1, hence 1 is also a fixed point of f . The following result
enables to recognize the extinction probability vector q among the fixed points of f in [0, 1]d

([Har63] or [Sew75]).

Proposition 1.1.18. Let us assume (B0) and (B1). The function f admits at most one fixed
point s0 in [0, 1]d other than 1. If it exists, then q = s0, and for all i = 1 . . . d, qi < 1. Otherwise,
q = 1.

The next fundamental result provides a necessary and sufficient condition for the almost sure
extinction of the process, under the assumption of irreducibility.

Proposition 1.1.19. Let us assume (B0) and (B1) . Then the process almost surely dies out if
and only if ρ 6 0.

This result is actually stated in [Sew75] in a more general context than irreducible processes.
We briefly recall his result here. Working with reducible processes requires the introduction of the
notion of subprocesses and final classes ([Sew75] Kapitel IV §6).

Definition 1.1.20. A final class C = {c1, . . . , cp} is a class for the equivalence relation↔ defined
in Remark 1.1.11, non empty, having the property that there exists one t > 0 such that for all
ci ∈ C, the generating function Ft,ci(r) is a linear form with respect to the variables rc1 , . . . , rcp .
This means that we can write Ft,ci(r) in the form

Ft,ci(r) = g
(i,1)
t (r)rc1 + . . .+ g

(i,p)
t (r)rcp , (1.1.22)

where for all j = 1 . . . p, g(i,j)
t (r) depends only on rn, n /∈ C. If (1.1.22) holds for one t0 > 0, then

it holds for all t > 0.

The definition of a final class in the discrete-time case might be more intuitive ([Har63] Section
2.10): a final class C has the property that any individual whose type is in C has probability 1
of producing in the next generation exactly one individual whose type is in C (individuals whose
types are not in C may also be produced).
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Definition 1.1.21. Let C = {c1, . . . , cp} be a class for the equivalence relation ↔. We call
C − subprocess the process defined by

X̃t := (Xt,c1 , . . . , Xt,cp).

Then X̃ is still a branching process ([Sew75] Satz 4.6.3), and is by definition irreducible.

We can now quote the more general result of Sewastjanow ([Sew75] Satz 5.2.7).

Proposition 1.1.22. Let ρ = maxC ρC be the maximal value of the Perron’s roots of all the
possible C-subprocesses. Then the process almost surely dies out if and only if there are no final
classes and ρ 6 0.

We can show that an irreducible process admits a final class only in the trivial case of a simple
process, which thus immediately leads to Proposition 1.1.19. Indeed,

Lemma 1.1.23. Let us assume (B1). Then the process has a final class if and only if the process
is simple.

Proof. If the process is simple, then f(r)T = MrT , and the differential system solved by Ft(r)
becomes the following linear system. For all r ∈ [0, 1]d,

∂

∂t
Ft(r)T = CFt(r)T ,

F0(r) = r.
(1.1.23)

Hence Ft(r)T = eCtrT , which implies that for all t > 0 and r ∈ [0, 1]d, Ft(r) is a linear form with
respect to the variables r1, . . . , rd. The set of all the types {1, . . . , d} consequently builds a final
class.

Conversely, if the irreducible process has a final class, then this class must be the set of all
the types since they all communicate with each other. Hence the generating function of the
process at time t is linear in r and can be written in the form Ft(r)T = G(t)rT , for some matrix
G(t) ∈Md(R). As a consequence of (1.1.7), G(t+ s) = G(t)G(s) for all s, t > 0, which, together
with the fact that G(0)r = r and thus G(0) = I, implies there exists some matrix C ∈ Md(R)
such that for all t > 0, G(t) = eCt. Hence Ft(r)T = eCtrT , and knowing on the other hand that
Ft(r) is solution of 

∂

∂t
Ft,i(r) = αi [fi (Ft(r))− Ft,i(r)] ,

F0,i(r) = ri,
(1.1.24)

this imposes that f is linear in r (namely f(r) = r(A−1C + I) with A := diag(α)). The process
is thus simple.

We now focus on the asymptotic behavior of the extinction probability vector q(t) in the
subcritical and critical cases. Under assumptions (B1) and (B0) we simply know until now that
limt→∞ q(t) = 1. The following proposition gives us the asymptotic behavior of q(t) as t→∞ in
the subcritical case ([Sew75] Satz 6.2.7). We introduce the following assumption

(XlogX) ∀i, j = 1 . . . d,
∑

k∈Nd kj ln(kj)pi(k) <∞.

According to [Ath68], this condition holds if and only if

∀t > 0, ∀i, j = 1 . . . d, Eei [Xt,j lnXt,j ] <∞. (1.1.25)

Proposition 1.1.24. Let us assume (B1) and ρ < 0. Then the extinction probability vector has
the following asymptotic behavior. For all i = 1 . . . d,

� If (XlogX) is satisfied, then there exists K > 0 such that

qi(t) ∼t→∞ 1−Kξieρt, (1.1.26)
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� Otherwise,
qi(t) =t→∞ 1 + o(eρt). (1.1.27)

The next proposition gives us the asymptotic behavior of q(t) in the critical case ([Sew75] Satz
6.4.4). For this purpose we introduce the following notation.

ζ :=
d∑

i,j,k=1

αi
∂2fi
∂rj∂rk

(1)ηiξjξk. (1.1.28)

Proposition 1.1.25. Let us assume (B0), (B1), ρ = 0 and that all the second-order moments
of the offspring distribution are finite. Then the extinction probability vector has the following
asymptotic behavior. For all i = 1 . . . d,

qi(t) ∼t→∞ 1− 2ξi
ζt
. (1.1.29)

Remark 1.1.26. In the monotype case d = 1, if we denote by m and σ2 the mean and the variance
of the offspring distribution, then the matrix C is equal to the scalar α(m−1). Hence its Perron’s
root is ρ = −α(1 − m), and the related right and left normalized eingenvectors are ξ = η = 1.
Moreover, we have ζ = αf ′′(1) = α

[
σ2 −m(1−m)

]
. Hence in the critical case ζ = ασ2, and we

obtain the following asymptotic behavior,

subcritical case q(t) ∼t→∞ 1−Ke−α(1−m)t,

critical case q(t) ∼t→∞ 1− 2
ασ2t

(if σ2 > 0).

Remark 1.1.27. The non-simplicity of the critical process in Proposition 1.1.25 implies that ζ >
0. Indeed, if a branching process is such that all the second-order moments of the offspring
distribution are null (ζ = 0), then its generating function f is fi(r) = pi(0) +

∑
jmijrj , which

implies that for all i = 1 . . . d,
∑
jmij 6 1. Assuming the existence of a i0 such that pi0(0) > 0

would imply moreover that
∑
jmi0j < 1, and the process would be subcritical. Hence ζ = 0 if

and only if the critical process is simple.

1.1.4 Some basic examples

We present here two basic examples in the case d = 2, in order to illustrate the previous results
about the asymptotic behavior of the extinction probability vector. In Example 1.1.28 we explicitly
compute the extinction probability vector at each time t for a 2-dimensional irreducible subcritical
process with a very simple offspring generating function. Example 1.1.29 deals with a reducible
process, stressing the necessity of the irreducibility assumption in order to obtain an asymptotic
behavior as in Proposition 1.1.24 or Proposition 1.1.25.

Example 1.1.28. We consider a process with branching rates α1 = α2 = 1 and generating
function

f1(r) = f2(r) =
1
3

(1 + r1 + r2), r ∈ [0, 1]2.

By (1.1.9), the extinction probability vector q(t) is solution of the following linear system of
differential equations 

d

dt
q1(t) =

1
3

(1− 2q1(t) + q2(t)),

d

dt
q2(t) =

1
3

(1 + q1(t)− 2q2(t)),
(1.1.30)

with initial condition q(0) = 0. Denoting Q(t) := q(t)T we write the system in the canonical form

d

dt
Q(t) = CQ(t) +

(
1
3
1
3

)
, Q(0) =

(
0
0

)
. (1.1.31)
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The general solution of the homogeneous system is Q0(t) = etCQ0(0). Denoting P =
(

1 1
1 −1

)
we get P−1BP =

(
− 1

3 0
0 −1

)
. Then P−1etCP =

(
e−

t
3 0

0 e−t

)
, and

Q0(t) =
1
2

(
e−

t
3 + e−t e−

t
3 − e−t

e−
t
3 − e−t e−

t
3 + e−t

)
Q0(0).

A particular solution of d
dtQ(t) = CQ(t) +

(
1
3
1
3

)
is Qp(t) = 1T . Hence the general solution is

Q(t) =
(

1 + (µ+ ν)e−
t
3 + (µ− ν)e−t

1 + (µ+ ν)e−
t
3 + (−µ+ ν)e−t

)
, µ, ν ∈ R.

The initial condition Q(0) = 0T then implies µ = ν = − 1
2 , and the solution of (1.1.31) is

q1(t) = q2(t) = 1− e− t3 . (1.1.32)

Note that in this example, C =
(
− 2

3
1
3

1
3 − 2

3

)
has eigenvalues − 1

3 and −1 and Perron’s root

ρ = − 1
3 . The process is thus irreducible and subcritical. The related right and left eigenvectors

with the normalization ξ · 1 = 1 and ξ · η = 1 are ξ = ( 1
2 ,

1
2 ) and η = (1, 1), and the expression of

the extinction probability vector (1.1.32) obviously corresponds at each time t to the asymptotic
behavior (1.1.26) obtained in Proposition 1.1.24, as t tends to infinity.

Example 1.1.29. We consider a process with branching rates α1 = α2 = 1 and generating
function  f1(r) = r1r2

f2(r) =
1
2

(1 + r2
2)
, r ∈ [0, 1]2.

The extinction probability vector q(t) is then solution of the following system of differential equa-
tions 

d

dt
q1(t) = q1(t)(q2(t)− 1),

d

dt
q2(t) =

1
2
− q2(t) +

1
2
q2(t)2,

(1.1.33)

with initial condition q(0) = 0. A particular solution of d
dtq2(t) = 1

2 −q2(t)+ 1
2q2(t)2 is q2,p(t) = 1.

Denoting q2(t) = 1 + y(t), then y(t) solves dy(t)
dt = 1

2y(t)2, hence d
dt [

1
y(t) ] = −dy(t)

dt
1

y(t)2 = − 1
2 and

y(t) = 1
k− 1

2 t
, k ∈ R. Then q2(t) = 1− 2

t−2k , and the initial condition q2(0) = 0 leads to

q2(t) = 1− 2
t+ 2

. (1.1.34)

We can now solve d
dtq1(t) = q1(t)(q2(t) − 1), which becomes d

dtq1(t) = −q1(t) 2
t+2 . Hence q1(t) =

ke−2 ln(t+2) = k
(t+2)2 , k ∈ R, and the initial condition imposes

q1(t) = 0. (1.1.35)

In this example, the process almost surely dies out if initiated by one individual of type 2, but
almost surely survives if initiated by one individual of type 1. Obviously, we are not in the

framework of Proposition 1.1.24 or Proposition 1.1.25, since C =
(

0 1
0 0

)
is a reducible matrix.

Note however that initiating the process with one individual of type 2 leads to a single-type binary
critical process (with individuals of type 2), and (1.1.34) leads to the right asymptotic behavior
in the single-type critical case q2(t) ∼t→∞ 1− 2

t .
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1.2 Multitype Feller diffusion process

In this section we consider an other model of population dynamics which is strongly related with
the BGWc process, namely the Feller diffusion process. Quoting Feller from its pioneering paper
[Fel51], “relatively small populations require discrete models, but for large populations it is possible
to apply a continuous approximation, and this leads to processes of the diffusion type”. Feller
showed indeed in this article that when the population under consideration is large and the time
scale is fast, a supercritical monotype BGW process can be approximated by a density v(t, x)
satisfying the diffusion equation

∂

∂t
[v(t, x)] =

σ2

2
∂2

∂x2
[xv(t, x)]− ∂

∂x
[xv(t, x)] , (1.2.1)

for some σ2 > 0, with the boundary condition v(t, 0) = 0. The corresponding stochastic differential
equation is then

dXt = σ
√
XtdBt +Xtdt. (1.2.2)

This approximation was later made more rigorous and complete notably by Jǐrina ([Jir69]) and
Lindvall ([Lin72]). The diffusion approximation is now also known for processes with several types
of individuals and of any class of criticality, and leads to the multitype Feller diffusion process.
We do not give here the details of the approximation, which is the subject of Subsection 3.2.1,
but focus here on basic properties of the diffusion process, mostly related to its extinction.

We consider a d-type Feller diffusion process with sample paths in C(R+,Rd+), the space of
continuous functions from R+ to Rd+. Similarly as for the BGWc process studied in Section 1.1, we
denote by P its law on (Ω,Xt,Ft). Since we never work with the two processes simultaneously, this
should not bring any confusion and rather simplify the notation. After introducing in Subsection
1.2.1 some definitions related to general continuous-state branching processes, and more precisely
Feller diffusion processes, we focus in Subsection 1.2.2 on a fundamental tool for our study
which is the martingale problem, and finally discuss in Subsection 1.2.3 properties related to
the extinction of Feller diffusion processes.

1.2.1 Definitions and preliminaries

Multitype continuous-state branching processes

Multitype Feller diffusion processes belong to the broader class of continuous-state branching
processes (CB) introduced by Jǐrina ([Jir58]). These processes are by definition Markov processes
with right-continuous paths whose transition probabilities satisfy the branching property, which in
the time-homogeneous setting means that

Pt(x+ y, .) = Pt(x, .) ∗ Pt(y, .), (1.2.3)

where Pt(x, A) denotes the transition probability from state x ∈ Rd+ at time 0 to the set A at
time t. A process starting in x+y has such the same law as the sum of two independent processes
starting respectively in x and y. This additive property for the transition probabilities translates
into a multiplicative property for the Laplace transform. Indeed, as a consequence of (1.2.3), the
Laplace transform of a (time-homogeneous) multitype CB process is multiplicative with respect
to the initial condition and can be written in the form, for all λ,x ∈ Rd+,∫

Rd+
e−λ·yPt(x, dy) = e−x·ut(λ). (1.2.4)

By (1.2.3) together with the Chapman-Kolmogorov equation, the so-called cumulant ut(λ) =
(ut,1(λ), . . . , ut,d(λ)) of a CB satisfies for all s, t > 0,

ut+s (λ) = ut (us (λ)) . (1.2.5)
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The law of a d-type CB process is characterized by a function ψ(λ) := (ψ1(λ), . . . , ψd(λ)) called
branching mechanism function, which is such that the cumulant is the unique solution of the
differential equation 

∂

∂t
ut(λ) = ψ(ut(λ)),

u0(λ) = λ.
(1.2.6)

Before describing the function ψ corresponding to Feller diffusions, let us briefly mention a
few facts about the interpretation of the branching mechanism function of general CB processes.
Lamperti first proved a random-time change connection between one-dimensional CB processes and
spectrally positive Lévy processes, i.e. processes with stationary independent increments whose
Lévy measure is concentrated on [0,∞[ ([Lamp67], see also [Bin76]). It was then later observed
in [LeGaJan98] that there is an explicit formula expressing the height process of a subcritical CB
process as a functional of a spectrally positive Lévy process whose Laplace exponent is precisely
the branching mechanism ψ. The height process of a CB process can be seen as the continuous
analogue of the contour process of a BGW process (see e.g. [DuLeGa02]).

In the single-type case, the branching mechanism function ψ of a general CB process is specified
by the Lévy-Khinchin formula

ψ(λ) = aλ− 1
2
bλ2 +

∫
]0,∞[

(
1− e−λr − λr

)
Λ(dr), λ ∈ R+, (1.2.7)

where a ∈ R is the deterministic linear drift, b > 0 is the variance rate of the Brownian component,
and the Lévy measure Λ is a Radon measure on ]0,∞[ such that

∫
]0,∞[

(r∧r2)Λ(dr) <∞. Denoting
ρ := ψ′(0+), the CB process is called subcritical, critical or supercritical according as ρ < 0, ρ = 0
or ρ > 0.

The first important example is when ψ(λ) = − 1
2λ

2. This corresponds to the single-type
critical Feller diffusion process. In this case, the height process is known to be a reflected linear
Brownian motion. More generally, if the branching mechanism is quadratic, ψ(λ) = aλ− 1

2bλ
2, the

corresponding CB process is a Feller diffusion process which is subcritical, critical or supercritical
according as a < 0, a = 0 or a > 0. By (1.2.6), the cumulant ut(λ) is solution of

∂

∂t
ut(λ) = aut(λ)− 1

2
b (ut (λ))2

,

u0(λ) = λ.
(1.2.8)

This yields in the subcritical and supercritical case a 6= 0 the following explicit formula, for every
λ > 0,

ut(λ) =
λeat

1− b
2aλ(1− eat)

, (1.2.9)

while in the critical case a = 0,

ut(λ) =
λ

1 + 1
2bλt

. (1.2.10)

An other important class of CB processes corresponds to α-stable branching mechanism func-
tions of the form ψ(λ) = cλα, α ∈]1, 2[, c ∈ R. If α < 2 the corresponding Lévy process has
(non-negative) jumps, and the sample paths of the CB process are not in C (R+,R+) as in the
diffusion case, but simply in D (R+,R+).

Similarly, in the multitype case, the branching mechanism function ψ of a general CB process
is of the form (see [RySko70])

ψi(λ) =
d∑
j=1

aijλj −
1
2
biλ

2
i +

∫
Rd+

(
1− e−λ·r − λiri

1 + r · r

)
Λi(dr), λ ∈ Rd+, (1.2.11)

where infi bi > 0, and the Lévy measure Λi is such that
∫
|r|<1

(|r| − ri + r2
i )Λi(dr) <∞.
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Multitype Feller diffusion process

Let us consider a d-type Feller diffusion process with law P on the probability space (Ω,Xt,Ft).
Its branching mechanism function ψ(λ) := (ψ1(λ), . . . , ψd(λ)) is of the form, for all λ ∈ Rd+,

ψi(λ) :=
d∑
j=1

cijλj −
1
2
σ2
i λ

2
i , (1.2.12)

where for all i 6= j, cij > 0, and infi σ2
i > 0. The matrix C ∈Md(R) with entries cij is called the

mutation matrix of the process. As shown in Section 3.2.1, this matrix as well as the variance
parameters σ2

1 , . . . , σ
2
d are related to the first and second-order moments of the approximating

BGWc processes. In particular, the mutation matrix C represents the interaction between the
different types.

From what precedes ((1.2.4) and (1.2.6)), the Laplace transform of the Feller diffusion process
is given for all t > 0, λ ∈ Rd+ and x ∈ Rd+ by

Ex(e−λ·Xt) = e−x·ut(λ),

where, for all i = 1 . . . d, 
∂

∂t
ut,i(λ) =

d∑
j=1

cijut,j(λ)− 1
2
σ2
i ut,i(λ)2,

u0,i(λ) = λi.

(1.2.13)

1.2.2 Associated martingale problem and SDE

The infinitesimal generator of the diffusion process is given on D(L) := C2
(
Rd+,R

)
by ([RySko70]),

(Lf) (x) :=
1
2

d∑
i=1

σ2
i xi

∂2f

∂x2
i

(x) +
d∑
i=1

xi

d∑
j=1

cij
∂f

∂xj
(x) . (1.2.14)

We denote by D0(L) := C2
b

(
Rd+,R

)
the set of bounded C2-functions on Rd+. Then P is the unique

solution to the martingale problem MP (L,D0 (L)) (see e.g. [EthKur86], Section 8.1, Theorem
1.7).

In particular, considering for a fixed λ ∈ Rd+ the C2 bounded function f(x) := e−λ·x, we have
for all x ∈ Rd+,

(Lf) (x) =
d∑
i=1

(1
2
σ2
i λ

2
i −

d∑
j=1

cijλj

)
xie
−λ·x = −ψ(λ) · x e−λ·x.

Writing the martingale problem MP (L,D0 (L)) for f , we obtain that for every λ ∈ Rd+,

e−λ·Xt − e−λ·X0 +
∫ t

0

Xs ·ψ(λ) e−λ·Xsds is a (P,Ft)-martingale. (1.2.15)

It might also be of interest to mention that the process is the unique weak solution of the
stochastic differential equation (written here for column vectors)

dXt = Σ(Xt) dBt + CTXt dt, (1.2.16)

where Bt is a standard d-dimensional Brownian motion, and for all x ∈ Rd+,

Σ(x) =

σ1
√
x1 0

. . .
0 σd

√
xd

 . (1.2.17)
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Componentwise, (1.2.16) becomes, for all i = 1 . . . d,

dXt,i = σi
√
Xt,idBt,i +

d∑
j=1

cjiXt,jdt. (1.2.18)

The uniqueness of weak solutions for (1.2.16) can be obtained by applying Yamada-Watanabe’s
criteria ( [YaWat71] p.164).

We recognize in the monotype case the classical “Feller” SDE

dXt = σ
√
XtdBt + cXtdt. (1.2.19)

1.2.3 Extinction of the process

Let us now consider the problem of extinction of a multitype Feller diffusion process. As for all the
CB processes, 0 is an absorbing state. Thanks to the branching property, the information about
the extinction/absorption strongly depends on the cumulant of the process and does not depend
on the initial distribution. For the special case of a Feller diffusion process, this information is
related to the mutation matrix.

Let us introduce the following assumption.

(F1) The mutation matrix C is irreducible.

Since by definition all the non-diagonal entries of C are non-negative, the Perron-Frobenius
Theorem (Theorem 1.1.9) can be applied under (F1). Denoting by ρ the Perron’s root of C, the
Feller diffusion process is called subcritical, critical or supercritical according as ρ < 0, ρ = 0 or
ρ > 0. In the following, we denote by ξ (resp. η) the right (resp. left) eigenvector for ρ with
normalization ξ · 1 = 1, η · ξ = 1. Again, there should not be any confusion with the eigenvalue
and eigenvectors associated with the BGWc studied in Section 1.1 since we never work with the
two processes in the same section.

The probability of extinction at time t of the process is given by, for all x ∈ Rd+,

Px (Xt = 0) = lim
λ→∞

Ex
(
e−λ·Xt

)
= e−x·limλ→∞ ut(λ), (1.2.20)

and the probability of extinction by

Px
(

lim
t→∞

Xt = 0
)

= lim
t→∞

lim
λ→∞

Ex
(
e−λ·Xt

)
= e−x·limt→∞ limλ→∞ ut(λ). (1.2.21)

We thus define the vectors
ut := lim

λ→∞
ut(λ),

u := lim
t→∞

ut > 0,
(1.2.22)

and obtain
Px (Xt = 0) = e−x·ut ,

Px
(

lim
t→∞

Xt = 0
)

= e−x·u.

The following result (see e.g. [Jir64]) states that, just as for the BGWc process, extinction
occurs almost surely in the (sub)critical case.

Proposition 1.2.1. Let us assume (F1). Then u = 0 if and only if ρ 6 0.
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Chapter 2

Multitype branching processes
conditioned on non-extinction

We mentioned in the introduction how much the study of the extinction of populations is of a
great interest in biology. Conditioning on non-extinction can notably lead to a stationary behavior
of the process. We point out that branching processes can also result in populations with stable
sizes if one allows an immigration component or assume an increasing number of ancestors. But
conditioning on extinction or non-extinction provides in addition a lot of information about the
evolution of the population before extinction, right before extinction, or in case of a very late
extinction. We review in Section 2.1 some of the historical results related to this topic, and
from Section 2.3 we focus on two kinds of conditioning for multitype BGWc and Feller diffusion
processes, for which we provide a systematic study (which is new as far as multitype BGWc
processes are concerned). The first conditioning consists in studying the asymptotic behavior of
the process Xt under the condition that it is not extinct at time t + θ, for some θ > 0, but does
eventually die out. This conditional limit distribution is a generalization of the Yaglom limit,
obtained for θ = 0, and is the subject of Section 2.3. The second object of interest, studied
in Section 2.4, is the so-called Q-process associated with the multitype branching processes
(BGWc or Feller diffusion), i.e. the process “conditioned on not being extinct in the distant
future and on being extinct in the even more distant future”, as described in [AthNey72]. We
thus always consider population which are doomed to become extinct. We know from Subsection
1.1.3 and Subsection 1.2.3 that this is the case for subcritical and critical processes, but for the
sake of completeness we chose to extend the study to supercritical processes with a positive risk
of extinction, which is done thanks to Section 2.2.

2.1 Historical introduction: various ways of conditioning

The pioneer historical results on survival chances and conditional population size given non-
extinction are due to Kolmogorov and Yaglom. In 1938 Kolmogorov provided the asymptotical
survival probability of a single-type BGW process. Denoting by m and σ2 the mean value and
variance of the offspring distribution f , and assuming the existence of a third-order moment (later
proved to be unnecessary), he showed that in the subcritical case m < 1, for all x ∈ N ([Kolm38]),

Px (Xn > 0) ∼n→∞ Cxmn, (2.1.1)

where C is some positive constant, while in the critical case m = 1, for 0 < σ2 <∞,

Px (Xn > 0) ∼n→∞
2x
σ2n

. (2.1.2)

In both cases the probability of survival thus decreases to 0 as n tends to infinity, but much slower
in the critical case that in the subcritical case.
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Yaglom limit and quasi-stationary distributions

About ten years later, Yaglom proved under moment restriction the fundamental result that in
the subcritical case, the distribution of (Xn|Xn > 0) converges to a proper distribution ([Yag47]).
His proof was later simplified and the moment restriction removed in [SenVer66] and [Jof67]. The
current usual formulation is the following: if m < 1, then for each x ∈ N∗,

lim
n→∞

Px (Xn = y |Xn > 0) = ν(y), (2.1.3)

where ν is a probability measure on N∗ which is independent of x, now referred to as the Yaglom
distribution associated with the process (Xn)n>0. The generating function H(r) =

∑∞
x=1 ν(x)rx,

r ∈ [0, 1], of this distribution satisfies the non-linear implicit equation

H ◦ f = 1−m+mH. (2.1.4)

In the critical case, Yaglom proved that (again under a third moment assumption, removed
later) for every x ∈ N∗, assuming that 0 < σ2 <∞,

lim
n→∞

Px
(
Xn

n
> y |Xn > 0

)
= e−

2y
σ2 . (2.1.5)

Hence the rescaled process Xn
n converges in distribution conditionally on non-extinction to an

exponential law with parameter 2
σ2 . Corresponding results of (2.1.3) and (2.1.5) for single-type

BGWc processes then followed, first in [Sew51] and later in [Con67], the latter using embedding
arguments. It then extended to the field of multitype branching processes, first for BGW processes
([JofSpit67]) and later on for BGWc processes ([Sew75], see Proposition 2.3.3 in this work).

It can be proved that the Yaglom distribution as defined by (2.1.3) is a quasi-stationary distri-
bution ([SenVer66]), in the sense that it is a stationary distribution for the dynamics conditioned
on non-extinction, i.e.

Pν (X1 = y |X1 > 0) = ν(y). (2.1.6)

Hence ∑∞
x=1 ν(x)P (x, y)

1−
∑∞
x=1 ν(x)P (x, 0)

= ν(y),

or equivalently,
∞∑
x=1

ν(x)P (x, y) = mν(y), (2.1.7)

since by (2.1.4) applied in 0 together with the branching property, one obtains that

1−m = H (f (0)) = H (P (1, 0)) =
∞∑
x=1

ν(x)P (1, 0)x =
∞∑
x=1

ν(x)P (x, 0).

It thus appears that ν is a left eigenvector of the transition matrix for the eingenvalue m. Al-
though the Yaglom limit is uniquely defined by property (2.1.3), it is not the only quasi-stationary
distribution, and consequently not the only conditional limit distribution. It was proved indeed in
[SenVer66] that there exists a continuous range of quasi-stationary distributions {να, 0 < α 6 1}
such that for each 0 < α 6 1, να is a left eigenvector for the eigenvalue mα (the superscript α
denotes here the usual exponentiation):

∞∑
x=1

να(x)P (x, y) = mανα(y). (2.1.8)

Denoting by Hα the generating function of να, it satisfies the nonlinear implicit equation

Hα ◦ f = 1−mα +mαHα. (2.1.9)
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This paper of Seneta and Vere-Jones actually dealt with the problem of quasi-stationarity
for more general absorbing Markov chains, and initiated many other works (see e.g. [Fer95],
and [Gos01] for an application on state-dependent branching processes). The equivalent theory
for diffusion processes started with [Man61] and was then developed by many authors. In our
direction of research, we shall quote the results of Lambert who dedicated his paper [Lamb07]
on CB processes, and proved that in the subcritical case ρ := ψ′(0+) < 0 (see (1.2.7) for a
definition of the branching mechanism ψ), there exists a family of quasi-stationary distributions
{νγ , 0 < γ 6 −ρ}, i.e. satisfying

Pνγ (Xt ∈ A |Xt > 0) = νγ(A). (2.1.10)

The Yaglom distribution then corresponds to ν−ρ. For a recent work on this topic, we refer e.g.
to [Cat09], dealing with the existence, uniqueness and domain of attraction of quasi-stationary
distributions for a large class of diffusion models arising from population dynamics.

Quasiextinction probabilities

There are many possible ways to generalize the study of the Yaglom limit. A first idea is to
condition the population on not being too small, instead of conditioning on non-extinction. Seneta
and Vere-Jones proved for example in [SenVer68] that for a subcritical Jǐrina process (i.e. a
discrete-time continuous-state branching process), for each ε > 0,

lim
n→∞

P (Xn 6 x |Xn > ε) (2.1.11)

exists and is a nondegenerate law on [ε,+∞[. Similar inquiries were done for CB processes,
with a first ecological application in [Gin82], where this distributions are called quasiextinction
probabilities.

Extinction in a close future

Alternatively, instead of conditioning the process on non-extinction at the present time as in
(2.1.3), it might be interesting to condition in addition this process on extinction in a close future,
and look at the asymptotic distribution. It was proved in [Sen67] that for single-type BGW
processes one obtains in the critical case a nondegenerate result: if p1 > 0, for every fixed integer
k > 0,

lim
n→∞

P1 (Xn = y |Xn > 0, Xn+k = 0) = µk(y), (2.1.12)

where
∑∞
y=1 µk(y) = 1. Similarly, one can find in [Pak09] that for a critical CB process, for any

fixed θ > 0,
lim
t→∞

Px(Xt 6 y |Xt > 0, Xt+θ = 0) (2.1.13)

exists and is the distribution function of a gamma law, depending on θ.

Yaglom-type limits

An other natural investigation is to consider as generalization of (2.1.3) and (2.1.5) that the
extinction is delayed by at least k time-units, for some k ∈ N∗. For example (see [AthNey72]
Theorem 1.14.1), for a subcritical BGW process with p1 > 0, one can prove the existence of the
following limit,

lim
n→∞

P1 (Xn = y |Xn+k > 0) = bk(y), (2.1.14)

where
∑∞
y=1 bk(y) = 1. We call in this work this kind of limits the Yaglom-type limits. Indeed

we investigate in Section 2.3, for multitype BGWc and Feller diffusion processes, conditional
distributions of the form

lim
t→∞

Px (Xt ∈ . |Xt+θ 6= 0) , (2.1.15)

for a given θ > 0.
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Q-processes

Instead of looking at the limit as n tends to infinity of (2.1.14), and obtain a limit distribution
depending on k, it might also be interesting to hold n fixed and let k tend to infinity:

lim
k→∞

Px (Xn = y |Xn+k > 0) . (2.1.16)

It was first pointed out by Harris in [Har51] that such a limit always exists for BGW processes,
and was later proved in [LaNey68] by Lamperti and Ney that in the (sub)critical case this defines
a Markov process, referred to as Q-process. Denoting by P (x, y) the transition probabilities of the
original BGW process, the associated Q-process has transition probabilities P ∗(x, y) satisfying

P ∗(x, y) =
1
m

y

x
P (x, y), x, y > 0. (2.1.17)

In the multitype case, this becomes ([DalJof08])

P ∗(x,y) =
1
ρ

y · ξ
x · ξ

P (x,y), x,y 6= 0, (2.1.18)

where ξ denotes the right normalized eigenvector (with positive coordinates) of the mean matrix
for its Perron’s root ρ. By definition, the Q-process associated with a branching process can be
seen as the process conditioned on non-extinction in the remote future, and provides information
about the behavior of the population in case of a very late extinction. The study of such objects has
now extended to the Dawson-Watanabe process (which is a measure-valued branching process).
It was initiated for the single-type case by Rœlly and Rouault ([RoeRou89]), and now covers the
multitype case ([ChaRoe08]). In this thesis (see Section 2.4), we shall focus on the Q-processes
associated with multitype BGWc and Feller diffusion processes.

Limiting diffusion

We have looked at the process (Xn |Xn+k > 0) and considered first its limit as n→∞ and then
as k → ∞. As a complementary result in this direction, we shall mention [LaNey68], where n
and k grow simultaneously, and which is also a generalization of (2.1.5). Consider a critical BGW
process with finite variance. Then, for each fixed t < 1,

lim
n→∞

P1

(
X[nt]

n
= . |Xn > 0

)
= Exp

(
2
tσ2

)
∗ Exp

(
2

t(1− t)σ2

)
. (2.1.19)

Moreover, looking at (X[nt]

n |Xn > 0) for fixed n and variable t ∈ [0, 1] as a stochastic process with
parameter t, say Yn(t), one obtains a sequence of processes Y1(t), Y2(t), . . . which converges (in the
sense of finite dimensional distributions) as n → ∞ to a limiting diffusion process (which is not
time-homogeneous).

Reduced branching processes

An other natural alternative to the Yaglom limit IS to condition the population to be still extant
at some fixed time T , but this yields time-inhomogeneous kernels. However, considering only the
individuals at each time t ∈ [0, T ] having descendants at time T , one can obtain asymptotical
results as T tends to infinity. For this quite different topic we refer to the literature on reduced
branching processes, for example the seminal work of Fleischmann and Prehn in [FlePre74], or
[FleiSieg77].

“On the eve of extinction”

Finally, a last conditional limit distributions of a different kind can be found in a recent paper from
Jagers, Klebaner and Sagitov ([Jag07]), which enables to study a process right before extinction. If
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one considers a single-type subcritical BGWc process Xx
t starting from x individuals and satisfying

the (XlogX) condition, and denotes by Tx := inf {t > 0;Xx
t = 0} the time to extinction, then, as

x→∞,
Xx
Tx−u −→ Yu, (2.1.20)

in distribution for fixed u > 0, and finite-dimensionally. The limit process (Yu)u>0, displaying the
properties of extinct populations on the eve of their disappearance, is Markovian and precisely
described in [Jag07].

As announced, we will from now on focus on the Yaglom-type limits (Section 2.3) and Q-
processes (Section 2.4) associated with multitype BGWc and Feller diffusion processes, after
showing in Section 2.2 how to extend the study to supercritical processes as well.

2.2 Multitype branching processes forced to extinction

As mentioned in the introduction of this chapter, we essentially consider in this work popula-
tions which are doomed to become extinct. This is the case for (sub)critical populations, but it
also makes sense to work with supercritical populations conditioned on extinction. It has indeed
been proved by Jagers and Lager̊as ([JagLag08]) that general multitype discrete-state branching
processes conditioned on extinction remain branching processes, and more specifically that super-
critical general branching processes conditioned on extinction are subcritical. It thus means that,
contrary to what might be intuitively believed, supercritical populations conditioned on extinction
do not first grow exponentially at rate eρt, ρ > 0, and then drop drastically; they instead stabilize
as long-lasting subcritical populations. This means moreover that conditioning on extinction in
the distant future influences the life careers of the individuals, and more precisely modifies the
offspring distribution, but preserves the branching property.

In Subsection 2.2.1 we consider supercritical multitype BGWc processes conditioned on
extinction and provide their explicit parameters as subcritical branching processes, and do the
same for Feller diffusion processes in Subsection 2.2.2.

2.2.1 BGWc process forced to extinction

As in Section 1.1, let P be the law of a multitype BGWc process with branching rates (α1, . . . , αd)
and offspring generating function f . We introduce the law P̃ of the process conditioned on extinc-
tion,

P̃ ( . ) := P
(
. | lim

s→∞
Xs = 0

)
. (2.2.1)

This definition makes sense if for any x ∈ Nd, Px (lims→∞Xs = 0) = qx > 0. We thus work
under the assumption

(B2) The BGWc process has a positive risk of extinction q > 0.

Then P̃ is a well-defined probability measure on (Ω, (Xt)t>0, (Ft)t>0). If the branching process
with law P is supercritical, assumption (B2) excludes the degenerate case for which the process
explodes almost surely (see Proposition 1.1.15). If the process is critical, assumption (B2) avoids
the trivial case of a simple process (see Definition 1.1.4). Note that under (B2), a (sub)critical
process almost surely dies out (Proposition 1.1.19), hence conditioning on extinction in (2.2.1)
does not change the measure and we have P̃ = P.

We already know from [JagLag08] that the conditioned process with law P̃ is a subcritical
branching process if ρ > 0 (and obviously if ρ < 0). We prove again this result in our specific case,
and obtain the explicit parameters of the process with law P̃.
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Proposition 2.2.1. Let us assume (B1) and (B2). Then P̃ is a Doob h-transform of P satisfying
for all t > 0 and all x ∈ Nd,

dP̃x|Ft =
qXt

qx
dPx|Ft . (2.2.2)

Moreover, if ρ 6= 0, P̃ is the law of an irreducible subcritical branching process with branching rates
(α1, . . . , αd) and offspring generating function f̃ defined by

f̃i(r) :=
1
qi
fi(qr). (2.2.3)

Proof. Let t > 0, B ∈ Ft and x ∈ Nd. By definition,

Ẽx (1B) =
Ex [1BPx (lims→∞Xs = 0 | Ft)]

Px (lims→∞Xs = 0)
.

Using (1.1.20) together with the Markov property, we obtain

Ẽx (1B) = Ex
[
1B

qXt

qx

]
.

It ensues (2.2.2), and that
(
qXt

)
t>0

is a (P,Ft)-martingale. Defining for all x ∈ Nd, h̃(x) := qx,

the infinitesimal generator L̃ of the conditioned process with law P̃ is then given for all smooth
function f : Nd → R by

L̃f :=
1

h̃
L(h̃f).

Hence, for all x ∈ Nd,(
L̃f
)

(x) =
d∑
i=1

αixi
∑
k∈Nd

pi(k)
[

1
qi

qkf (x+ k− ei)− f (x)
]
.

As a fixed point of the generating function f (Proposition 1.1.17), the extinction probability vector
q satisfies for all i = 1 . . . d,

∑
k∈Nd pi(k)qk = qi, and it follows(

L̃f
)

(x) =
d∑
i=1

αixi
∑
k∈Nd

p̃i(k) [f (x+ k− ei)− f (x)] , (2.2.4)

where
p̃i(k) :=

1
qi

qkpi(k), i = 1 . . . d, k ∈ Nd. (2.2.5)

P̃ is thus the law of a branching process with branching rates (α1, . . . , αd) and offspring generating
function f̃ given by (2.2.3).

It remains to show that this process is irreducible and subcritical. The irreducibility of the
mean matrix (denoted M̃) comes from the fact that

m̃ij =
∂f̃i
∂rj

(1) =
qj
qi

∂fi
∂rj

(q). (2.2.6)

Hence if m̃ij = 0, then ∂fi
∂rj

(q) = 0, which can be the case if and only if each coefficient in ∂fi
∂rj

(r) is

null, implying a fortiori that mij = ∂fi
∂rj

(1) = 0. Conversely, if mij = 0 then for the same reason

we have m̃ij = 0. The positive entries of M̃ thus coincide with those of M, and M̃ is irreducible
as well. Moreover, for all i, j = 1 . . . d,

Ẽei (Xt,j) =
1
qi

Eei

(
qXtXt,j

)
,

hence in the supercritical case ρ > 0, for which q < 1, we obtain by dominated convergence that
limt→∞ Ẽei (Xt,j) = 0, which proves that the irreducible process with law P̃ is subcritical.
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Remark 2.2.2. Due to the equivalence between extinction of the continuous-time process and
extinction of its embedded generation counting process, we obtain unsurprisingly the same off-
spring generating function f̃ as the one computed in [DalJof08] for supercritical BGW processes
conditioned on extinction.

Definition 2.2.3. We denote by q̃ := limt→∞ q̃(t) the extinction probability vector of the process
with law P̃, where

q̃i(t) := P̃ei(Xt = 0), i = 1 . . . d. (2.2.7)

Moreover, we denote by ρ̃, ξ̃ and η̃ the Perron’s root and associated right and left eigenvectors of
the matrix C̃ := A(M̃− I), with the usual normalization convention.

2.2.2 Feller diffusion process forced to extinction

As in Section 1.2, let P be the law of a multitype Feller diffusion process with mutation matrix
C and variance parameters (σ2

1 , . . . , σ
2
d). We introduce the law P̃ of the process conditioned on

extinction,
P̃ ( . ) := P

(
. | lim

s→∞
Xs = 0

)
. (2.2.8)

Again, this definition makes sense if for any x ∈ Nd, Px (lims→∞Xs = 0) = e−x·u > 0. We thus
introduce the following assumption.

(F2) The Feller diffusion process has a positive risk of extinction, i.e. u < ∞.

We next prove that the conditioned Feller diffusion process with law P̃ is a subcritical diffusion
process, if ρ > 0, while we obviously have P̃ = P if ρ 6 0.

Proposition 2.2.4. Let us assume (F1) and (F2). Then P̃ is a Doob h-transform of P satisfying
for all t > 0 and all x ∈ Rd+,

dP̃x|Ft =
e−Xt·u

e−x·u
dPx|Ft . (2.2.9)

Moreover, if ρ 6= 0, P̃ is the law of a Feller diffusion process with variance parameters σ2
1 , . . . , σ

2
d

and subcritical irreducible mutation matrix C̃ with entries

c̃ij := cij − σ2
i uiδij . (2.2.10)

Proof. Let t > 0, B ∈ Ft and x ∈ Rd+. The branching and Markov properties imply that

Ẽx (1B) =
Ex [1BPx (lims→∞Xs = 0 | Ft)]

Px (lims→∞Xs = 0)
= Ex

[
1B

e−Xt·u

e−x·u

]
.

It ensues (2.2.9), and that
(
e−Xt·u

)
t>0

is a (P,Ft)-martingale. Defining for all x ∈ Nd, h̃(x) :=

e−x·u, the infinitesimal generator L̃ of the conditioned process with law P̃ is then given for all
smooth function f : Rd+ → R by L̃f := 1ehL(h̃f). Hence, for all x ∈ Rd+,

(
L̃f
)

(x) =
1
2

d∑
i=1

σ2
i xi

[
u2
i f(x)− 2ui

∂f

∂xi
(x) +

∂2f

∂x2
i

(x)
]

+
d∑
i=1

xi

d∑
j=1

cij

[
−ujf(x) +

∂f

∂xj
(x)
]

= f(x)
[1

2

d∑
i=1

σ2
i xiu

2
i −

d∑
i=1

xi

d∑
j=1

cijuj

]
+

1
2

d∑
i=1

σ2
i xi

∂2f

∂x2
i

(x) +
d∑
i=1

xi

d∑
j=1

c̃ij
∂f

∂xj
(x)

= f(x)ex·u
(
Lh̃
)

(x) +
1
2

d∑
i=1

σ2
i xi

∂2f

∂x2
i

(x) +
d∑
i=1

xi

d∑
j=1

c̃ij
∂f

∂xj
(x)

=
1
2

d∑
i=1

σ2
i xi

∂2f

∂x2
i

(x) +
d∑
i=1

xi

d∑
j=1

c̃ij
∂f

∂xj
(x) . (2.2.11)
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We have indeed (Lh̃) (x) = 0 since (h̃(Xt))t>0 is a (P,Ft)-martingale. By (2.2.4) it appears
that the process with law P̃ is a Feller diffusion process with a different mutation matrix C̃ and
unchanged variance parameters. Since C̃ only differs from C on the diagonal, it is irreducible as
well. Moreover, by definition,

Ẽx (Xt,j) =
1

e−x·u
Ex
(
e−Xt·uXt,j

)
,

hence in the supercritical case ρ > 0, for which u > 0, we obtain by dominated convergence that
limt→∞ Ẽx (Xt,j) = 0, which proves that the irreducible process with law P̃ is subcritical.

Definition 2.2.5. We denote by ρ̃, ξ̃ and η̃ the Perron’s root and associated right and left
eigenvectors of the mutation matrix C̃, with the usual normalization convention.

Moreover, we denote by ũt(λ) the cumulant at time t of the process with law P̃, and by ũt its
limit as λ→∞.

2.3 Yaglom-type limits

In the following Subsection 2.3.1 (resp. Subsection 2.3.2), we consider the conditional limit
distribution

lim
t→∞

P̃ (Xt ∈ . |Xt+θ 6= 0) , (2.3.1)

for some fixed θ > 0, where P̃ is the law of the multitype BGWc process (resp. Feller diffusion
process) conditioned on extinction, introduced in Subsection 2.2.1 (resp. Subsection 2.2.2).

2.3.1 Yaglom-type limits for the multitype BGWc process

As we have seen in the historical introduction, the asymptotic behavior of a single-type BGW
process differs drastically whether the process is critical or subcritical: in the subcritical case
(see (2.1.3)), the limit (2.3.1) defines a probability distribution when θ = 0, while this limit is
degenerate in the critical case (see (2.1.5)). Indeed, the process Xn explodes conditionally on
Xn > 0 when n→∞, and the suitable normalization in order to obtain a probability distribution
is of the form Xn

n .
In this subsection we generalize these results for multitype BGWc processes, and for any θ > 0.

Noncritical case

Let us first assume that ρ 6= 0. By Proposition 2.2.1, the process with law P̃ is then a subcritical
process. We know from [Sew75] (Satz 6.2.8) that for θ = 0, the limit (2.3.1) defines a distribution
on Nd\{0}, the so-called Yaglom distribution. We denote by F 0 its generating function. We thus
have, for all r ∈ [0, 1]d and all x ∈ Nd, x 6= 0,

F 0(r) = lim
t→∞

Ẽx
[
rXt |Xt 6= 0

]
. (2.3.2)

Let us generalize this result to θ > 0.

Proposition 2.3.1. Let us assume (B1), (B2), ρ 6= 0. If ρ < 0, we assume moreover that for
all i, j = 1 . . . d, ∑

k∈Nd
kj ln(kj)pi(k) <∞. (2.3.3)

Then for any x ∈ Nd\{0} and θ > 0, the limit

lim
t→∞

P̃x (Xt ∈ . |Xt+θ 6= 0) (2.3.4)
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defines a probability distribution independent of x, whose generating function F θ(r) satisfies

F θ(r) = e−eρθ [F 0(r)− F 0 (rq̃ (θ))
]
, r ∈ [0, 1]d, (2.3.5)

where ρ̃ and q̃ are given in Definition 2.2.3. In the following we refer to this distribution as the
θ-Yaglom distribution.

Proof. By means of Theorem 2 in [JofSpit67] and its extension to the continuous-time case via
the embedded process in Theorem 6.1 in [Ogu75], we obtain that there exists a non-negative real
function γ on [0, 1]d such that

lim
t→∞

e−eρt (1− F̃t(r)
)

= γ(r)ξ̃, (2.3.6)

where F̃t is the generating function at time t of the subcritical process with law P̃, F̃t,i(r) :=
Ẽei(r

Xt). In particular, F̃t(0) = q̃(t), and thus

lim
t→∞

e−eρt (1− q̃(t)) = γ(0)ξ̃. (2.3.7)

If ρ > 0, then q < 1 which implies that

Ẽei [Xt,j lnXt,j ] =
1
qi

Eei

[
qXtXt,j lnXt,j

]
<∞.

Thanks to (1.1.25), this means that if ρ > 0, the subcritical process with law P̃ satisfies the
(XlogX) assumption. This is obviously also the case if ρ < 0, by assumption. Considering
(2.3.6), we then immediately see as a consequence of Proposition 1.1.24 that γ(0) > 0.

From the Markov and branching properties of P̃, for all θ > 0, r ∈ [0, 1]d and x ∈ Nd\{0},

Ẽx
[
rXt |Xt+θ 6= 0

]
=

Ẽx
[
rXt
]
− Ẽx

[
rXt P̃Xt [Xθ = 0]

]
1− P̃x [Xt+θ = 0]

=
Ẽx
[
rXt
]
− Ẽx

[
rXtF̃θ(0)Xt

]
1− F̃t+θ(0)x

=
F̃t(r)x − F̃t (rq̃ (θ))x

1− F̃t+θ (0)x
,

from which it ensues together with (2.3.6) that

lim
t→∞

Ẽx
[
rXt |Xt+θ 6= 0

]
=
γ (rq̃ (θ))− γ (r)

eeρθγ(0)
=: F θ(r). (2.3.8)

Now for θ = 0 this relation becomes

F 0(r) = 1− γ(r)
γ(0)

. (2.3.9)

Consequently,

F θ(r) = e−eρθ
[
γ (rq̃ (θ))
γ(0)

− γ (r)
γ(0)

]
= e−eρθ [F 0(r)− F 0 (rq̃ (θ))

]
.

In addition, F 0 is continuous in r = 1, with F 0(1) = 1, hence for each θ > 0, F θ is continuous
in 1 as well, with

F θ(1) =
e−eρθγ(F̃θ(0))

γ(0)
.
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Moreover, thanks to the semi-group property of the generating function we have,

e−eρ(t+θ)(1− F̃t+θ(0)) = e−eρθe−eρt(1− Ft(Fθ(0))),

which by (2.3.6) becomes as t tends to infinity

γ(0)ξ̃ = e−eρθγ (Fθ(0)) ξ̃.

Consequently, F θ(1) = 1, and F θ defines a probability generating function as well.

We thus have obtained an expression of the θ-Yaglom distribution with respect to the original
Yaglom limit (see (2.3.5)). The latter is almost never explicitly known, but has the following
implicit characterization.

Proposition 2.3.2 ([Sew75] Satz 6.2.8). The generating function F 0(r) of the Yaglom distribution
is solution of the following partial differential equation. For all r ∈ [0, 1]d,

d∑
i=1

αi

(
f̃i(r)− ri

) ∂F 0(r)
∂ri

= −ρ̃
(
1− F 0(r)

)
,

F 0(0) = 0.

(2.3.10)

This proposition is a consequence of the following intermediate result. The generating function
F 0(r) of the Yaglom distribution satisfies the following implicit equation: for all r ∈ [0, 1]d and all
t > 0,

F 0
(
F̃t (r)

)
= 1− eeρt (1− F 0(r)

)
. (2.3.11)

Critical case

We now consider the critical case ρ = 0. We recall that in this case we have P = P̃. The equivalent
of the Kolmogorov-Yaglom exponential law (2.1.5) for multitype BGWc processes is given by the
following proposition.

Proposition 2.3.3 ([Sew75] Satz 6.3.5). Let us assume (B1), (B2), ρ = 0 and that all the
second-order moments of the offspring distribution are finite. Then, for all x ∈ Nd\{0}, and all
u > 0,

lim
t→∞

Px
[

2Xt,1

ζη1t
> u1, . . . ,

2Xt,d

ζηdt
> ud |Xt 6= 0

]
= e−maxi ui .

In other words, the random vector
(

2Xt,1
ζη1t

, . . . ,
2Xt,d
ζηdt

)
converges conditionally on Xt 6= 0 to a

random vector Y independent of x, with coordinates Y1 = . . . = Yd almost surely, and such that
each Yi is exponentially distributed with parameter 1.

We provide in the following proposition a generalization of this result to the case θ > 0.
We show that the limit law for t → ∞ of the random vector ( 2Xt,1

ζη1t
, . . . ,

2Xt,d
ζηdt

) conditionally on
Xt+θ 6= 0 is the same for every θ > 0. The limiting vector Y thus depends neither on x nor on θ,
which comes intuitively from the fact that rescaling the process by t or by t+ θ does not make a
difference any more once t tends to ∞.

Proposition 2.3.4. Let us assume (B1), (B2), ρ = 0 and that all the second-order moments of
the offspring distribution are finite. Then, for all θ > 0, all x ∈ Nd\{0}, and all u > 0,

lim
t→∞

Px
[

2Xt,1

ζη1t
> u1, . . . ,

2Xt,d

ζηdt
> ud |Xt+θ 6= 0

]
= e−maxi ui .

In other words, the random vector
(

2Xt,1
ζη1t

, . . . ,
2Xt,d
ζηdt

)
converges conditionally on Xt+θ 6= 0 to

a random vector Y independent of x and of θ, with coordinates Y1 = . . . = Yd almost surely, and
such that each Yi is exponentially distributed with parameter 1.
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Proof. From [Sew75], Satz 6.3.1, we know that under these assumptions, the generating function of
the process satisfies the following asymptotic behavior. For all i = 1 . . . d, uniformly in r ∈ [0, 1]d,
r 6= 1, as t→∞,

Ft,i(r) ∼ 1− ξi η · (1− r)
1 + ζt

2 η · (1− r)
. (2.3.12)

For all λ > 0 and all x ∈ Nd\{0}, denoting by rλ,t the vector with coordinates (e−
2λ1
ζη1t , . . . , e

− 2λd
ζηdt ),

Ex
[
e
−
“
λ1

2Xt,1
ζη1t

+...+λd
2Xt,d
ζηdt

”
|Xt+θ 6= 0

]
= Ex

[
(rλ,t)

Xt |Xt+θ 6= 0
]

=
Ft(rλ,t)x − Ft(rλ,tFθ(0))x

1− Ft+θ(0)x
. (2.3.13)

We have

η · (1− rλ,t) =
d∑
i=1

ηi(1− e−
2λi
ζηit ) ∼t→∞

2
ζt
λ · 1,

hence, by (2.3.12),

Ft(rλ,t)x ∼t→∞ 1− 2x · ξ
ζt

λ · 1
1 + λ · 1

. (2.3.14)

Similarly,

η · (1− rλ,tFθ(0)) ∼t→∞ η · (1− Fθ(0)) +
2
ζt
λ · Fθ(0),

and thus

Ft (rλ,tFθ (0))x ∼t→∞ 1− 2x · ξ
ζt

λ · Fθ(0) + ζt
2 η · (1− Fθ(0))

1 + λ · Fθ(0) + ζt
2 η · (1− Fθ(0))

. (2.3.15)

Finally, by Proposition 1.1.25,

Ft+θ(0)x ∼t→∞ 1− 2x · ξ
ζ(t+ θ)

, (2.3.16)

which, together with (2.3.14) and (2.3.15) used in (2.3.13) leads to

lim
t→∞

Ex
[
e
−
“
λ1

2Xt,1
ζη1t

+...+λd
2Xt,d
ζηdt

”
|Xt+θ 6= 0

]
= lim
t→∞

t+ θ

t

[
λ · Fθ(0) + ζt

2 η · (1− Fθ(0))

1 + λ · Fθ(0) + ζt
2 η · (1− Fθ(0))

− λ · 1
1 + λ · 1

]

=
1

1 + λ · 1
, (2.3.17)

which is the Laplace transform of a random vector with almost surely equal coordinates, each of
them exponentially distributed with parameter 1.

2.3.2 Yaglom-type limits for the multitype Feller diffusion process

Again, we must here separate the noncritical case from the critical case, for which limit (2.3.1) is
degenerate.
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Noncritical case

Proposition 2.3.5. Let us assume (F1), (F2) and ρ 6= 0. Then for any x ∈ Nd\{0} and θ > 0,
the limit

lim
t→∞

P̃x (Xt ∈ . |Xt+θ 6= 0) , (2.3.18)

defines a probability distribution independent of x, whose Laplace transform Φθ(λ) satisfies

Φθ(λ) = e−eρθ [Φ0(λ)− Φ0 (λ+ ũθ)
]
, λ ∈ Rd+, (2.3.19)

where ρ̃ and ũθ are given in Definition 2.2.5. We refer to this distribution as the θ-Yaglom
distribution.

Proof. From the Markov and branching properties of P̃, for all θ > 0, λ ∈ Rd+ and x ∈ Rd+\{0},

Ẽx
[
e−λ·Xt |Xt+θ 6= 0

]
=

Ẽx
[
e−λ·Xt

]
− Ẽx

[
e−λ·Xte−euθ·Xt

]
1− F̃t+θ(0)x

=
e−x·eut(λ) − e−x·eut(λ+euθ)

1− e−x·eut+θ .

Moreover, from the proof of Theorem 3.7 in [ChaRoe08], we know that there exists a positive
function κ(λ) with κ := limλ→∞ κ(λ) > 0 such that

lim
t→∞

e−eρtũt(λ) = κ(λ)ξ̃, (2.3.20)

lim
t→∞

e−eρtũt = κξ̃. (2.3.21)

This means that both vectors e−eρtũt(λ) and e−eρtũt converge as t→∞ to a positive limit which
is proportional to the eigenvector ξ̃. It ensues that

lim
t→∞

Ẽx
[
e−λ·Xt |Xt+θ 6= 0

]
=
κ (λ+ ũθ)− κ (λ)

eeρθκ =: Φθ(λ). (2.3.22)

Now for θ = 0 this relation becomes

lim
t→∞

Ẽx
[
e−λ·Xt |Xt 6= 0

]
= Φ0(λ) = 1− κ(λ)

κ
, (2.3.23)

and thus

Φθ(λ) = e−eρθ
[
κ (λ+ ũθ)

κ
− κ (λ)

κ

]
= e−eρθ [Φ0(λ)− Φ0 (λ+ ũθ)

]
.

Moreover, Φ0(λ) is continuous in 0, with Φ0(0) = 1, hence for each θ > 0, Φθ is continuous in
0 as well, with

Φθ(0) = e−eρθ κ (ũθ)
κ

.

Thanks to the semi-group property of the cumulant,

e−eρ(t+θ)ũt+θ = e−eρθe−eρtũt(ũθ),
hence by (2.3.20) and (2.3.21) one obtains as t→∞ that

κξ̃ = e−eρθκ(ũθ)ξ̃,

and thus Φθ(0) = 1. This ensures that Φθ is the Laplace transform of a probability distribution.
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Remark 2.3.6. One can find in the monotype case for a general CB process a similar result in
[Li00], Theorem 4.3.

We provide in the following proposition a characterization of the Laplace transform Φ0 (λ) as
solution of a partial differential equation.

Proposition 2.3.7. The Laplace transform Φ0 (λ) of the Yaglom distribution satisfies the follow-
ing partial differential equation. For all λ ∈ Rd+,

d∑
i=1

d∑
j=1

(
c̃ijλj −

1
2
σ2
i λ

2
i

)
∂Φ0(λ)
∂λi

= −ρ̃
(
1− Φ0 (λ)

)
,

Φ0(0) = 1.

(2.3.24)

Proof. The semi-group property of the cumulant ũθ(λ) implies that for all s, t > 0 and all λ ∈ Rd+,

e−eρ(s+t)ũs+t(λ) = e−eρte−eρsũs(ũθ(λ)) (2.3.25)

Letting s tends to infinity one deduces from (2.3.20)-(2.3.21) that

κ(λ) = e−eρtκ(ũt(λ)).

We thus have by (2.3.23),

Φ0 (ũt (λ)) = 1− κ (ũt (λ))
κ

= 1− eeρtκ (λ)
κ

.

Together with (2.3.23) this yields the following implicit characterization of the Laplace transform
Φ0 (λ):

Φ0 (ũt (λ)) = 1− eeρt (1− Φ0 (λ)
)
.

We will now deduce from this relation the differential equation (2.3.24). In the neighborhood
of t = 0 we have on the one hand,

Φ0 (ũt (λ)) = Φ0 (λ) +
d∑
i=1

∂Φ0(λ)
∂λi

∂ũt,i(λ)
∂t

|t=0 t+ o(t)

= Φ0 (λ) +
d∑
i=1

∂Φ0(λ)
∂λi

d∑
j=1

(
c̃ijλj −

1
2
σ2
i λ

2
i

)
t+ o(t),

and on the other hand

1− eeρt (1− Φ0 (λ)
)

= 1− (1 + ρ̃t+ o(t))
(
1− Φ0 (λ)

)
.

We then obtain the result by letting t tend to 0.

Remark 2.3.8. In the monotype case d = 1, (2.3.24) becomes
(
ρ̃λ− 1

2
σ2λ2

)
dΦ0(λ)
dλ

= −ρ̃
(
1− Φ0(λ)

)
, λ > 0,

Φ0(0) = 1.
(2.3.26)

Hence

Φ0(λ) = 1− exp
[∫ ∞

λ

−ρ̃
ρ̃u− 1

2σ
2u2

du

]
=

1
1 + σ2

2|eρ|λ, (2.3.27)

and we obtain the well-known result that the Yaglom distribution is the exponential law with
parameter 2|eρ|

σ2 (see for example Theorem 3.1 in [Lamb07]).
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We deduce from (1.2.9) that for all θ > 0

ũθ = lim
λ→∞

ũθ(λ) =
2|ρ̃|eeρθ

σ2(1− eeρθ) . (2.3.28)

Thanks to (2.3.19) we thus obtain that for every θ > 0, the generating function of the θ-Yaglom
distribution is given by

Φθ(λ) = e−eρθ
 1

1 + σ2

2|eρ|λ −
1

1 + σ2

2|eρ|
(
λ+ 2|eρ|eeρθ

σ2(1−eeρθ)

)


= e−eρθ
[

2|ρ̃|
2|ρ̃|+ σ2λ

− 2|ρ̃|(1− eeρθ)
2|ρ̃|+ σ2(1− eeρθ)λ

]
= e−eρθ

[
2|ρ̃|

(
2|ρ̃|+ σ2(1− eeρθ)λ)

2|ρ̃|+ σ2λ
−

2|ρ̃|(1− eeρθ) (2|ρ̃|+ σ2λ
)

2|ρ̃|+ σ2(1− eeρθ)λ
]

=
2|ρ̃|

2|ρ̃|+ σ2λ
× 2|ρ̃|

2|ρ̃|+ σ2(1− eeρθ)λ
=

1
1 + σ2

2|eρ|λ.
1

1 + σ2

2|eρ| (1− eeρθ)λ.
We thus obtain the same result as in [ChaRoe08], Proposition 3.3, which is that the θ-Yaglom dis-
tribution is the sum of two independent exponential random variables with respective parameters
2|eρ|
σ2 and 2|eρ|

σ2 (1− eeρθ).
We point out that the monotype case is the only case where one can obtain such an explicit

expression of the Yaglom or θ-Yaglom distributions.

Critical case

It is known that in the monotype case, the process, conditionally on Xt 6= 0, grows linearly in t
([EvPer90] Lemma 2.1). In fact the same result holds by conditioning the process on any event
Xt+θ 6= 0, for θ > 0. We thus obtain that the conditioned monotype process, once normalized by
t, converges as t→∞ to an exponential distribution independent of the initial state and of θ.

Proposition 2.3.9. Assume ρ = 0 and σ2 > 0. Then for all x > 0, θ > 0 and u > 0,

lim
t→∞

Px
[

2Xt

ασ2t
> u |Xt+θ > 0

]
= e−u.

In other words, the random variable 2Xt
ασ2t converges conditionally on Xt+θ > 0 to a nondegen-

erate limit, independent of x and of θ, which is exponentially distributed with parameter 1.

Proof. We deduce from the explicit form of the cumulant (1.2.10) that

ut = lim
λ→∞

ut(λ) =
2

ασ2t
. (2.3.29)

Then, for all θ > 0 and all λ > 0,

lim
t→∞

Ex
[
e−λ

2Xt
ασ2t |Xt+θ > 0

]
= lim
t→∞

e−xut(
2λ
ασ2t

) − e−xut(
2λ
ασ2t

+uθ)

1− e−xut+θ

= lim
t→∞

ut
(

2λ
ασ2t + 2

ασ2θ

)
− ut( 2λ

ασ2t )
2

ασ2(t+θ)

= lim
t→∞

t+ θ

t

[
λ+ t

θ

1 + λ+ t
θ

− λ

1 + λ

]
=

1
1 + λ

,
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which is the Laplace transform of an exponential distribution with parameter 1.

Remark 2.3.10. In order to obtain a similar result in the multitype case as Proposition 2.3.9, we
would need an expression of the asymptotic of the cumulant ut(λ) as t tends to infinity. Since
this is not explicitly known, we make the following conjecture. Denoting ζ :=

∑d
i=1 αiσ

2
i ηiξ

2
i ,

ut,i(λ) ∼t→∞
ξiη · λ

1 + ζt
2 η · λ

, and thus ut,i ∼t→∞
2ξi
ζt
. (2.3.30)

Then, under this conjecture, we show that the random vector
(

2Xt,1
ζη1t

, . . . ,
2Xt,d
ζηdt

)
converges con-

ditionally on Xt+θ 6= 0 to a random vector Y independent of x and of θ, with coordinates
Y1 = . . . = Yd almost surely, and such that each Yi is exponentially distributed with parameter 1.

Indeed, for all λ > 0 and x ∈ Rd+\{0}, denoting by λ
η the vector with coordinates (λ1

η1
, . . . , λdηd ),

we have, assuming (2.3.30),

lim
t→∞

Ex
[
e
−
“
λ1

2Xt,1
ζη1t

+...+λd
2Xt,d
ζηdt

”
|Xt+θ 6= 0

]
= lim
t→∞

e−x·ut(
2
ζt

λ
η ) − e−x·ut(

2
ζt

λ
η +uθ)

1− e−x·ut+θ

= lim
t→∞

x · ut
(

2
ζt
λ
η + 2ξ

ζθ

)
− x · ut( 2

ζt
λ
η )

2x·ξ
ζ(t+θ)

= lim
t→∞

t+ θ

t

[
λ · 1 + t

θη · 1
1 + λ · 1 + t

θη · 1
− λ · 1

1 + λ · 1

]
=

1
1 + λ · 1

,

which is the Laplace transform of a random vector with almost surely equal coordinates, each of
them exponentially distributed with parameter 1. Hence for all θ > 0, x ∈ Rd+\{0}, and u > 0,

lim
t→∞

Px
[

2Xt,1

ζη1t
> u1, . . . ,

2Xt,d

ζηdt
> ud |Xt+θ 6= 0

]
= e−maxi ui .

2.4 Q-process

In the following Subsection 2.4.1 (resp. Subsection 2.4.2), we consider the following condi-
tional limit

lim
θ→∞

P̃ (Xt ∈ . |Xt+θ 6= 0) , (2.4.1)

where P̃ is the law of the multitype BGWc process (resp. Feller diffusion process) conditioned
on extinction, introduced in Subsection 2.2.1 (resp. Subsection 2.2.2). This means that we first
delay the extinction of at least θ, and then let θ tend to infinity. As shown in the following, this
limit defines a Markov process, called the associated Q-process, which takes its values in Nd\{0}
(resp. Rd+\{0}). To draw a parallel with the Q-process defined in [DalJof08] for a multitype
Bienaymé-Galton-Watson process, we can also write (2.4.1) as follows,

lim
θ→∞

P
(
Xt ∈ . |Xt+θ 6= 0, lim

s→∞
Xs = 0

)
. (2.4.2)

It appears in this way that the law of the Q-process can be roughly thought as the law of the
process conditioned on not being extinct in the distant future and on being extinct in the even
more distant future. We will thus sometimes refer to this process as the process conditioned on
very late extinction, or conditioned on extinction in the remote future.
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2.4.1 Q-process associated with the multitype BGWc process

For all t > 0 and all B ∈ Ft, we define

P∗ (B) := lim
θ→∞

P̃ (B |Xt+θ 6= 0) , (2.4.3)

if this limit exists.

The conditioned BGWc process as h-process

We prove in the following theorem that the limit P∗ written in (2.4.3) does exist and is a well-
defined probability measure on Ft which is absolutely continuous with respect to P|Ft . We show
moreover that P∗ is actually a Doob h-transform of P: the local definitions of P∗ on several Ft are
compatible and thus define a unique probability measure on ∨t>0Ft.

Theorem 2.4.1. Let us assume (B1) and (B2). We assume moreover that

(i) if ρ = 0, all the second order moments of the offspring distribution are finite,

(ii) if ρ < 0, for all i, j = 1 . . . d,
∑

k∈Nd kj ln(kj)pi(k) <∞.

Then P∗ is a Doob h-transform of P satisfying for all t > 0 and all x ∈ Nd, x 6= 0,

dP∗x|Ft = e−eρt qXt

qx
Xt · ξ̃
x · ξ̃

dPx|Ft . (2.4.4)

In particular, if ρ 6 0, P∗ satisfies for all t > 0 and all x ∈ Nd, x 6= 0,

dP∗x|Ft = e−ρt
Xt · ξ
x · ξ

dPx|Ft . (2.4.5)

Proof. The proof relies mostly on the asymptotical properties of the extinction probability vector
q(t) as t tends to infinity, in both critical and subcritical cases. Thanks to Proposition 2.2.1, the
supercritical case is then simply reduced to the subcritical case.

Let t > 0 and B ∈ Ft. By definition, for all θ > 0 and all x ∈ Nd, x 6= 0,

Ẽx [1B | Xt+θ 6= 0] =
Ẽx
[
Ẽx
(
1B1{Xt+θ 6=0}|Ft

)]
P̃x (Xt+θ 6= 0)

=
Ẽx
[
1BP̃x (Xt+θ 6= 0|Ft)

]
P̃x (Xt+θ 6= 0)

.

By virtue of the Markov and branching properties we obtain

Ẽx [1B | Xt+θ 6= 0] =
Ẽx
[
1B
(

1− P̃Xt
(Xθ = 0)

)]
1− P̃x (Xt+θ = 0)

=
Ẽx
[
1B
(
1− q̃(θ)Xt

)]
1− q̃(t+ θ)x

. (2.4.6)

� Critical case ρ = 0. We have P̃ = P, and (2.4.6) becomes

Ex [1B | Xt+θ 6= 0] = Ex
[
1B

1− q(θ)Xt

1− q(t+ θ)x

]
. (2.4.7)
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Using the asymptotic behavior of q(t) given by Proposition 1.1.25 (holding under assumption
(i)), we obtain that for all t > 0 and all x,y ∈ Nd, x 6= 0,

lim
θ→∞

1− q (θ)y

1− q (t+ θ)x
= lim
θ→∞

1−
∏d
i=1

[
1− 2ξi

ζθ

]yi
1−

∏d
i=1

[
1− 2ξi

ζ(t+θ)

]xi
= lim
θ→∞

1−
∏d
i=1

[
1− 2yiξi

ζθ + o( 1
θ )
]

1−
∏d
i=1

[
1− 2xiξi

ζ(t+θ) + o( 1
t+θ )

]
= lim
θ→∞

∑d
i=1

2yiξi
ζθ + o( 1

θ )∑d
i=1

2xiξi
ζ(t+θ) + o( 1

t+θ )

= lim
θ→∞

t+ θ

θ

y · ξ + o(1)
x · ξ + o(1)

=
y · ξ
x · ξ

.

Moreover, for θ large enough, ∣∣∣∣ 1− q (θ)y

1− q (t+ θ)x

∣∣∣∣ 6 2
y · ξ
x · ξ

.

Since by (1.1.15) and Proposition 1.1.3, Ex (Xt · ξ) =
∑d
j=1 ξj

∑d
i=1 ximij(t) <∞, we obtain

by dominated convergence in (2.4.7) that

lim
θ→∞

Ex [1B | Xt+θ 6= 0] = Ex
[
1B

Xt · ξ
x · ξ

]
,

which leads to (2.4.5).

� Subcritical case ρ < 0. We similarly use the known asymptotic behavior of q(t) given by
Proposition 1.1.24, which holds under assumption (ii). For all t > 0 and for all x,y ∈ Nd,
x 6= 0,

lim
θ→∞

1− q (θ)y

1− q (t+ θ)x
= lim
θ→∞

1−
∏d
i=1

[
1−Kξieρθ

]yi
1−

∏d
i=1

[
1−Kξieρ(t+θ)

]xi
= lim
θ→∞

1−
∏d
i=1

[
1−Kyiξieρθ + o(eρθ)

]
1−

∏d
i=1

[
1−Kxiξieρ(t+θ) + o(eρ(t+θ))

]
= lim
θ→∞

Keρθ
∑d
i=1 yiξi + o(eρθ)

Keρ(t+θ)
∑d
i=1 xiξi + o(eρ(t+θ))

= lim
θ→∞

eρθ

eρ(t+θ)
y · ξ + o(1)
x · ξ + o(1)

= e−ρt
y · ξ
x · ξ

.

which by dominated convergence in (2.4.7) leads to (2.4.5).

� Supercritical case ρ > 0. We apply the previous result to the subcritical process with
law P̃, which is allowed since, as detailed in the proof of Propostion (2.3.1), it automatically
satisfies the required (XlogX) condition. Hence, for all t > 0 and all x ∈ Nd, x 6= 0,

dP∗x|Ft = e−eρtXt · ξ̃
x · ξ̃

dP̃x|Ft , (2.4.8)

which combined with Proposition 2.2.1 leads to (2.4.4).
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We finally check that for any class of criticality (e−eρtqXtXt · ξ̃)t>0 is a (P,Ft)-martingale. We
have for all t > s > 0, using (1.1.15) and (1.1.16),

Ẽ
[
e−eρtXt · ξ̃|Fs

]
= e−eρtẼ [Xt|Fs] · ξ̃

= e−eρt (Xse
eC(t−s)

)
· ξ̃ = e−eρtXs ·

(
e
eC(t−s)ξ̃

T
)

= e−eρtXs ·
(
eeρ(t−s)ξ̃T) = e−eρsXs · ξ̃.

Hence (e−eρtXt · ξ̃)t>0, is a (P̃,Ft)- martingale, which together with the fact that (qXt)t>0 is a
(P,Ft)-martingale leads to the result, and implies that P∗ is a Doob h-transform of P.

Let us compute the infinitesimal generator L∗ of the process with law P∗. Applying Theorem
2.4.1, we have for all smooth function f : Nd\{0} → R

L∗f :=
1
h
L̃(hf),

and thus

(L∗f) (x) = −ρ̃f(x)

+
1

x · ξ̃

d∑
i=1

αixi
∑
k∈Nd

p̃i(k)
[
(x+ k− ei) · ξ̃ f(x+ k− ei)− x · ξ̃ f(x)

]
. (2.4.9)

Using the definition of ρ̃ and ξ̃ given in Definition 2.2.3, we obtain that

ρ̃ =
1

x · ξ̃

d∑
i=1

αixi
∑
k∈Nd

p̃i(k) (k− ei) · ξ̃,

hence (2.4.9) becomes

(L∗f) (x) =
d∑
i=1

αixi
∑
k∈Nd

p̃i(k)
(x+ k− ei) · ξ̃

x · ξ̃
[f(x+ k− ei)− f(x)] . (2.4.10)

The conditioned paths and the immortal particle

As already mentioned, Jagers and Lager̊as proved in [JagLag08] that a branching process condi-
tioned to die out remains a branching process, and that in the supercritical case the conditioned
process becomes subcritical. Conditioning on extinction in the remote future thus influences the
life careers of the individuals but preserves the branching property. We will see that the same
does not occur when conditioning on very late extinction, and the purpose of this section is to
describe the structure of the conditioned process obtained in Theorem 2.4.1.

One can easily verify that the branching property is not preserved for the process with law P∗.
For d = 1 and ρ = 0 we have for instance, using the fact that E1(X2

t ) = ασ2t+ 1 (proved e.g. in
[AthNey72] Section 3.4),

E∗x(Xt) =
1
x

Ex(X2
t ) =

1
x

[
xVar1(Xt) + (xE1(Xt))

2
]

=
1
x

[
xασ2t+ x2

]
= x+ ασ2t.

So the linearity with respect to the initial condition is no more satisfied, since

E∗x(Xt) 6= xE∗1(Xt)

for x 6= 1.
Nevertheless we will see that the branching structure is somehow preserved: the conditioned

process with law P∗ behaves like an unconditioned (sub)critical branching process to which an
external force is added, compelling the process to die out very late.
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Monotype case. In the monotype case d = 1, this external input is a standard immigration.
We show here that a single-type BGWc process of any class of criticality conditioned on very late
extinction, and from which one removes one individual, has the same law as a BGWc process with
immigration. This result is already known for critical BGW processes ([KaWat71]).

First, note that the infinitesimal generator L∗ can also be written as a perturbation of L̃:

(L∗f) (x) =
(
L̃f
)

(x) +
1
x · ξ

d∑
i=1

αixi
∑
k∈Nd

p̃i(k)(k− ei) · ξ [f (x+ k− ei)− f(x)] .

We point out that for x = ei and k = 0 the term f (x+ k− ei) is not defined in the last summand,
but is canceled by the same term in

(
L̃f
)

(x).
In the monotype case, this relation reduces to

(L∗f) (x) =
(
L̃f
)

(x) + α

∞∑
k=0

(k − 1)p̃k [f(x+ k − 1)− f(x)] , (2.4.11)

which again only makes sense for the terms k > 0. So we can interpret the additional term as
some constant immigration (“constant” in the sense that it does not depend on x). We define P̂,
the law of the Q-process shifted downwards by 1, as follows: for all x ∈ N,

P̂x (Xt = .) := P∗x+1 (Xt − 1 = .) .

Let us show that P̂ is the law of a BGWc process with constant immigration, i.e. that for all
x ∈ N and r ∈ [0, 1],

Êx(rXt) = [F̃t(r)]x exp[
∫ t

0

h(F̃u(r))du],

where the immigration function h is of the form (see e.g. [Sew75] Kapitel 7.1)

∞∑
k=0

vkr
k, with

∞∑
k=0

vk = 0, v0 < 0 and for all k > 1, vk > 0.

If so, the probability that no individual immigrates (resp. k > 1 individuals immigrate) during a
time-interval ∆t with ∆t→ 0 is given by 1 + v0∆t+ o(∆t) (resp. vk∆t+ o(∆t)).

Note that a single-type BGW process with constant immigration would have the following
generating function at time n (c.f. [KaWat71] p.45),

Ei(rXn) = fn(r)i
n−1∏
k=0

g (fk(r)) ,

where f (resp. g) stands for the generating function of the offspring distribution (resp. of the
immigration distribution). A comparison between the continuous and discrete-time cases then
enables us to draw an analogy between the immigration function h and log g. Indeed, writing
g(r) =

∑∞
k=0 ukr

k with
∑∞
k=0 uk = 1, the analogy h ' log g then explains why h(1) ' log g(1) =

log 1 = 0, and why v0 = h(0) ' log u0 < 0.
Applying Theorem 2.4.1, we have for all x ∈ N and r ∈ [0, 1],

Êx(rXt) = E∗x+1(rXt−1) = e−α(em−1)t 1
x+ 1

Ẽx+1

(
Xtr

Xt−1
)
.

But

Ẽx+1

(
Xtr

Xt−1
)

=
∂

∂r

(
Ẽx+1(rXt)

)
=

∂

∂r

([
F̃t(r)

]x+1
)

= (x+ 1)
[
F̃t(r)

]x ∂F̃t(r)
∂r

,
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and we know from (1.1.8) and (1.1.9) that F̃t(r) satisfies

∂F̃t(r)
∂t

= α
[
f̃
(
F̃t(r)

)
− F̃t(r)

]
= α

[
f̃(r)− r

] ∂F̃t(r)
∂r

,

which implies

∂F̃t(r)
∂r

=
f̃
(
F̃t(r)

)
− F̃t(r)

f̃(r)− r
=
f̃
(
F̃t(r)

)
− F̃t(r)

f̃(F̃0(r))− F̃0(r)
.

Hence

Êx(rXt) =
[
F̃t(r)

]x
exp

(
− α(m̃− 1)t+ ln

[
f̃(F̃t(r))− F̃t(r)]− ln[f̃(F̃0(r))− F̃0(r)

] )
=
[
F̃t(r)

]x
exp

∫ t

0

−α(m̃− 1) +
∂
∂u

[
f̃(F̃u(r))− F̃u(r)

]
f̃(F̃u(r))− F̃u(r)

 du


=
[
F̃t(r)

]x
exp

(∫ t

0

(
−α(m̃− 1) +

∂F̃u(r)
∂u

f̃ ′(F̃u(r))− 1

f̃(F̃u(r))− F̃u(r)

)
du

)

=
[
F̃t(r)

]x
exp

(∫ t

0

(
−α(m̃− 1) + α

(
f̃ ′(F̃u(r))− 1

))
du

)
=
[
F̃t(r)

]x
exp

(∫ t

0

(
α
(
f̃ ′(F̃u(r))− m̃

))
du

)
.

We finally check that h := α(f̃ ′ − m̃) defines an immigration function as described above, which
leads to the following proposition.

Proposition 2.4.2. Let us assume d = 1, m <∞ and (B2). We assume moreover that

(i) if ρ = 0, σ2 <∞,

(ii) if ρ < 0,
∑
k∈N k ln k p(k) <∞.

Then the Q-process shifted downwards by 1 is a BGWc process with constant immigration, where
the branching process has branching rate α and offspring generating function f̃ . The immigration
is described in the following sense by α(f̃ ′ − m̃): the probability that during a time-interval ∆t
with ∆t→ 0

� k > 1 individuals immigrate, is

α(k + 1)p̃k+1∆t+ o(∆t),

� no individual immigrates, is
1− α(m̃− p̃1)∆t+ o(∆t).

Another possible interpretation in the monotype case is to consider this constant 1 as an
immortal individual, and to consider the immigrants as the offspring of this individual, counting
in addition the individual himself as its own descendant (see Figure 2.1). The probability that
the immortal individual produces k > 1 offsprings is thus related to the probability that k − 1
individuals immigrate, i.e. αkp̃k. Since

∑
k>1 αkp̃k = αm̃, we set

s(k) :=
1
m
kp̃k, k > 1. (2.4.12)

Then the Q-process can be described as the independent sum of a non-conditioned BGWc process
and an immortal individual, producing offsprings (including himself) at rate αm, according to the
size-biased distribution (s (k))k>1. Note that since the distribution s is concentrated on N∗, the
immortal individual always produces at least one offspring, hence the appellation “immortal”.
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~ Exp( )α

constant

BGWc

immigration

~ Exp( )α

immortal
particle

BGWc

~ Exp(      )α m

size-biased
distribution

Figure 2.1: Two interpretations of the Q-process in the monotype case.
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t0

~ Exp(  )α1

~ Exp(  )α2

~ Exp(   +  )α2 ρ

size-biased distribution

type 1

type 2

Figure 2.2: The Q-process and the immortal particle.

Multitype case. In the multitype case, an interpretation of the Q-process with a classical
branching process with immigration as in Proposition 2.4.2 is not possible, since the removed
constant should be allowed to change its type.

The second interpretation in the monotype case which involves an immortal individual can
however be extended to the multitype case d > 1, and differs from the monotype case by the fact
that the immortal individual can mutate from one type to another. We prove indeed in Proposition
2.4.3 that the external input which prevents the process from dying out comes from an immortal
individual or immortal particle (so called in reference to [Ev93]). More precisely, the behavior of
the immortal individual is the one of the trunk of a size-biased multitype Galton-Watson tree in
its continuous-time version, introduced in [GeoBa03].

Let us introduce the following size-biased offspring distribution (si(k))k∈Nd with respect to the
offspring distribution (p̃i(k))k∈Nd defined in (2.2.5). For all i = 1 . . . d,

si(k) :=
αi

(αi + ρ̃)ξ̃i
k · ξ̃ p̃i(k), k ∈ Nd. (2.4.13)

We easily check that for all i = 1 . . . d, (si(k))k∈Nd is a probability distribution:

∑
k∈Nd

si(k) =
1

(αi + ρ̃)ξi

d∑
j=1

αim̃ij ξ̃j =
1

(αi + ρ̃)ξ̃i

[ d∑
j=1

c̃ij ξ̃j + αiξ̃i

]
= 1,

and that it is concentrated on Nd\{0}.
Let us now describe in detail the structure of the conditioned process with law P∗ (see Figure

2.2).

Proposition 2.4.3. Let us assume (B1) and (B2). We assume moreover that

(i) if ρ = 0, all the second order moments of the offspring distribution are finite,

(ii) if ρ < 0, for all i, j = 1 . . . d,
∑

k∈Nd kj ln(kj)pi(k) <∞.

Then P∗ is the law of the independent sum of a (sub)critical branching process and of an
“immortal particle” or immortal individual.

The branching process has branching rates α1, . . . , αd and offspring generating function f̃.
Given that the immortal individual is of type i, this individual has an exponential life-time of

parameter αi + ρ̃ and an offspring distribution (si(k))k∈Nd given by (2.4.13). Its initial type is i
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with probability xiξ̃i/x · ξ̃, where x ∈ Nd is the initial number of individuals, and if it produces k

offspring it mutates to type j with probability kj ξ̃j/k · ξ̃.

Proof. Denoting by P the law of the time-homogeneous Markov process described in Proposition
2.4.3, its infinitesimal generator L is by definition

(Lf)(x) := lim
h→0

1
h

Ex [f (Xh)− f (x)] .

Let h > 0. It appears that during the time-interval [0, h], the only nontrivial events whose
probabilities are of order h as h → 0 are the ones consisting of exactly one branching event,
either of the unconditioned branching process or of the immortal individual. The first possibility
is that during [0, h], the immortal individual of type i splits into k offspring, with no other event
occurring. The probability of this event is then

xiξ̃i

x · ξ̃
(αi + ρ̃)si(k)h = αixi

k · ξ̃
x · ξ̃

p̃i(k)h.

The second possible type of event appearing in the computation of L is that one individual of type
i in the unconditioned process splits into k offspring, while the immortal individual is of type j
and no other event occurs. The probability of this event is then

xj ξ̃j

x · ξ̃
αi(xi − δij)p̃i(k).

The infinitesimal generator L is thus given by

(
Lf
)

(x) =
d∑
i=1

∑
k∈Nd

αixi
k · ξ̃
x · ξ̃

p̃i(k) [f (x+ k− ei)− f (x)]

+
d∑
i=1

d∑
j=1

∑
k∈Nd

xj ξ̃j

x · ξ̃
αi(xi − δij)p̃i(k) [f (x+ k− ei)− f (x)] ,

and we observe that L = L∗.

Remark 2.4.4. We see thanks to this proposition in an obvious way that the process conditioned
on very late extinction never reaches the absorbing state 0. Indeed, the so-called immortal particle
is really “immortal” since it always produces at least one descendant according to the size-biased
distribution, and thus indefinitely “regenerates” itself.

Remark 2.4.5. The same result can be proved for a Q-process associated with a BGW process.
We just sketch the proof: assume for simplicity that the considered BGW process is (sub)critical,
with offspring distribution given by pj(k). Then the Q-process has the same law as the sum of a
BGW process and an independent immortal individual which, given that it is of type j, produces
k offsprings according to the size-biased distribution

1
ρξj

k · ξ pj(k).

The type of the immortal individual is determined as follows: if the initial population is i, the
initial type of the individual will be j with probability ijξj

i·ξ . If the immortal individual produces
k offspring, it then mutate to type l with probability klξl

k·ξ .
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An numerical example. We consider a 2-type BGWc process with branching rates α1 = α2 = 1
and generating function

f1(r) =
7
12

+
1
6
r1 +

1
12
r2 +

1
12
r2
2 +

1
12
r2
1r2

f2(r) =
7
8

+
1
8
r1r

2
2

, ∀r ∈ [0, 1]2.

The mean matrix is M =
(

1
3

1
3

1
8

1
4

)
, and thus B =

(
− 2

3
1
3

1
8 − 3

4

)
, which is irreducible. The eigen-

values of B are − 1
2 and − 11

12 , hence ρ = − 1
2 and we are in the subcritical case. The related right

and left eigenvectors with the normalization ξ · 1 = 1 and ξ · η = 1 are ξ = (2
3 ,

1
3 ), η = ( 9

10 ,
6
5 ).

Then, if the process is initiated by one individual of type 1 and one individual of type 2, the
immortal individual will be initially of type 1 with probability 2

3 , and of type 2 with probability
1
3 . Applying (2.4.13), we obtain the following expression of the size-biased offspring distribution
of the immortal individual. For all k ∈ Nd,

s1(k) = (2k1 + k2)p1(k),

s2(k) = (4k1 + 2k2)p2(k).

The following table compares the unbiased and size-biased distributions.

Unbiased distribution Size-biased distribution
k p1(k) s1(k)

(0, 0) 7/12 0
(1, 0) 1/6 1/3
(0, 1) 1/12 1/12
(0, 2) 1/12 1/6
(2, 1) 1/12 5/12

p2(k) s2(k)
(0, 0) 7/8 0
(1, 2) 1/8 1

This numerical example illustrates the fact that the size-biased distribution gives a larger
weight to the non-zero values than the original one, and gives no weight to the 0 value. In
particular, any distribution with a support composed of 0 and of a non-zero element (such as p2,
with support {(0, 0) (1, 2)}) ends up in a constant distribution concentrated on the non-zero value
(in our example, s2(1, 2) = 1).

Analogy with the Q-process associated with a BGW process

In the critical case we can draw an analogy between the (state-dependent) offspring distribution
of the Q-process with law P∗, and the transition probabilities of its discrete-time analog studied
in [DalJof08]. In the critical case the infinitesimal generator L∗ of the Q-process becomes indeed

(L∗f) (x) =
d∑
i=1

αixi
∑
k∈Nd

pi(k)
(x+ k− ei) · ξ

x · ξ
[f(x+ k− ei)− f(x)] ,

Let us define for every i = 1 . . . d and x ∈ Nd, x 6= 0,

p∗i (x,k) :=
(x+ k− ei) · ξ

x · ξ
pi(k). (2.4.14)

Then ∑
k∈Nd

p∗i (x,k) = 1 +
1
x · ξ

∑
k∈Nd

(k− ei) · ξ pi(k) = 1 +
1
x · ξ

d∑
j=1

cijξj = 1.
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Hence for every i = 1 . . . d and x ∈ Nd\{0}, (p∗i (x,k))k∈Nd is a probability distribution, and
the analogy between (2.4.14) and formula (2.1.18), providing the relation between the transition
probabilities of the BGW process and of the associated Q-process, is then obvious.

2.4.2 Q-process associated with the multitype Feller diffusion process

For all t > 0 and all B ∈ Ft, we define

P∗ (B) := lim
θ→∞

P̃ (B |Xt+θ 6= 0) , (2.4.15)

if this limit exists.

The conditioned Feller diffusion process as h-process

We prove in the following theorem that the limit P∗ given by (2.4.15) is a well-defined probability
measure on Ft which is absolutely continuous with respect to P|Ft , and that P∗ as a Doob h-
transform of P defines a probability measure on ∨t>0Ft. Our result is a generalization of a result
from N. Champagnat and S. Rœlly (Theorem 2.2 in [ChaRoe08]), dealing with critical or subcritical
multitype Dawson-Watanabe processes, to Feller diffusion processes of any class of criticality. It
is straightforward by using the fact that by conditioning a supercritical processes on extinction,
one recovers a subcritical process (see Proposition 2.2.4). For this reason we omit the proof of the
following statement.

Theorem 2.4.6. Let us assume (F1) and (F2). Then P∗ is a Doob h-transform of P satisfying
for all t > 0 and all x ∈ Rd+, x 6= 0,

dP∗x|Ft = e−eρt e−Xt·u

e−x·u
Xt · ξ̃
x · ξ̃

dPx|Ft . (2.4.16)

In particular, if ρ 6 0, P∗ satisfies for all t > 0 and all x ∈ Nd, x 6= 0,

dP∗x|Ft = e−ρt
Xt · ξ
x · ξ

dPx|Ft . (2.4.17)

Denoting
h(t,x) := e−eρtx · ξ̃, (2.4.18)

the infinitesimal generator L∗ of the Q-process is then given on D(L∗) := C2
(
Rd+\{0},R

)
by

L∗f :=
1
h
L̃(hf).

Hence, for all x ∈ Rd+\{0},

(L∗f) (x) = −ρf(x)+
1
2

d∑
i=1

σ2
i xi

[
2ξ̃i
x · ξ̃

∂f

∂xi
(x) +

∂2f

∂x2
i

(x)

]
+

d∑
i=1

xi

d∑
j=1

c̃ij

[
ξ̃j

x · ξ̃
f(x) +

∂f

∂xj
(x)

]
.

But
∑d
i=1 xi

∑d
j=1 c̃ij ξ̃j = ρ̃x · ξ̃, hence

(L∗f) (x) =
1
2

d∑
i=1

σ2
i xi

∂2f

∂x2
i

(x) +
d∑
i=1

xi

d∑
j=1

(
c̃ij +

σ2
i ξ̃i

x · ξ̃
δij

)
∂f

∂xj
(x). (2.4.19)

The conditioned Feller diffusion process can thus be considered as a Feller diffusion with variance
parameters σ2

1 , . . . , σ
2
d and state-dependent mutation matrix C(x) defined for x 6= 0 by

cij(x) := c̃ij +
σ2
i ξ̃i

x · ξ̃
δij . (2.4.20)
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Associated martingale problem and SDE

Let us prove that the martingale problem MP
(
L∗, C2

b

(
Rd+\{0},R

)
,x
)

admits as a unique solu-
tion the conditioned law P∗x.

For this purpose we define the following subset of bounded C2-functions on Rd+\{0},

D0 (L∗) :=
{
x 7→ e−λ·x, λ ∈ Rd+

}
.

Let f(x) := e−λ·x, λ ∈ Rd+. Then

(L∗f) (x) =

1
2

d∑
i=1

σ2
i xiλ

2
i −

d∑
i=1

xi

d∑
j=1

(
c̃ij +

σ2
i ξ̃i

x · ξ̃
δij

)
λj

 e−λ·x
= −

 d∑
i=1

xi

 d∑
j=1

c̃ijλj −
1
2
σ2
i λ

2
i

+
1

x · ξ̃

d∑
i=1

xiσ
2
i ξ̃iλi

 e−λ·x
= −

[
x · ψ̃(λ) +

1

x · ξ̃
(
σ2λx

)
· ξ̃
]
e−λ·x,

where σ2 :=
(
σ2

1 , . . . , σ
d
1

)
, and ψ̃ is the branching mechanism of the (sub)critical Feller diffusion

process with law P̃:

ψ̃i(λ) :=
d∑
j=1

c̃ijλj −
1
2
σ2
i λ

2
i , i = 1 . . . d. (2.4.21)

Hence L∗ maps D0 (L∗) into bounded continuous functions on Rd+\{0}, and thus D0 (L∗) is a core
for L∗. As a consequence, in order to obtain the uniqueness of solution to the martingale problem
MP

(
L∗, C2

b

(
Rd+\{0},R

)
,x
)
, it is enough to prove that MP (L∗, D0 (L∗) ,x) admits a unique

solution, i.e. that there exists one and only one P such that for all λ ∈ Rd+,

e−λ·Xt − e−λ·x −
∫ t

0

(L∗f) (Xs) ds (2.4.22)

is a (P,Ft)-martingale, or equivalently, such that

e−λ·Xt − e−λ·x +
∫ t

0

(
Xs · ψ̃(λ) +

(
Xsσ

2λ
)
· ξ̃

Xs · ξ

)
e−λ·Xsds (2.4.23)

is a (P,Ft)-martingale.
Applying the martingale problemMP (L,D0 (L) ,x) to the function f(t,x) := e−eρtx · ξ̃e−λ·x,

λ ∈ Rd+, we know that

e−eρtXt · ξ̃e−λ·Xt − x · ξ̃e−λ·x +
∫ t

0

e−eρsXs · ξ̃

(
Xs · ψ̃(λ) +

(
Xsσ

2λ
)
· ξ̃

Xs · ξ̃

)
e−λ·Xsds (2.4.24)

is a (Px,Ft)-martingale. Denoting h(t,x) := e−eρtx · ξ̃ as previously (see (2.4.18)), this becomes:
for all λ ∈ Rd+,

h(t,Xt)e−λ·Xt − h(0,x)e−λ·x −
∫ t

0

h(s,Xs)

(
Xs · ψ̃(λ) +

(
Xsσ

2λ
)
· ξ̃

Xs · ξ̃

)
e−λ·Xsds

is a (Px,Ft)-martingale, hence for all s 6 t,

Ex
[
h(t,Xt)e−λ·Xt

∣∣∣Fs]− h(s,Xs)e−λ·Xs

−
∫ t

s

Ex

[
h(u,Xu)

(
Xu · ψ̃(λ) +

(
Xuσ

2λ
)
· ξ̃

Xu · ξ̃

)
e−λ·Xu

∣∣∣Fs] du = 0. (2.4.25)
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Furthermore, according to Theorem 2.4.1, P∗x is a Doob h-transform of Px via the space-time
harmonic function h. As a consequence, for all 0 6 s 6 t and any Ft-measurable random variable
Yt, the following relation holds:

E∗x [Yt|Fs] =
1

h(s,Xs)
Ex [h(t,Xt)Yt|Fs] . (2.4.26)

Indeed, for all B ∈ Fs,

E∗x [Yt1B ] =
1

h(0,x)
Ex [h(t,Xt)Yt1B ]

=
1

h(0,x)
Ex [Ex [h(t,Xt)Yt|Fs] 1B ]

=
1

h(0,x)
Ex
[
h(s,Xs)

Ex [h(t,Xt)Yt|Fs]
h(s,Xs)

1B

]
= E∗x

[
Ex [h(t,Xt)Yt|Fs]

h(s,Xs)
1B

]
.

Applying relations (2.4.25) and (2.4.26) it comes that for all 0 6 s 6 t,

E∗x

[
e−λ·Xt − e−λ·Xs −

∫ t

s

(
Xu · ψ̃(λ) +

(
Xuσ

2λ
)
· ξ̃

Xu · ξ̃

)
e−λ·Xudu

∣∣∣Fs]

= E∗x
[
e−λ·Xt

∣∣∣Fs]− e−λ·Xs −
∫ t

s

E∗
[(

Xu · ψ̃(λ) +

(
Xuσ

2λ
)
· ξ̃

Xu · ξ̃

)
e−λ·Xu

∣∣∣Fs] du
=

1
h(s,Xs)

[
Ex
[
h(t,Xt)e−λ·Xt

∣∣∣Fs]− h(s,Xs)e−λ·Xs

−
∫ t

s

Ex
[
h(u,Xu)

(
Xu · ψ̃(λ) +

(
Xuσ

2λ
)
· ξ̃

Xu · ξ̃

)
e−λ·Xu

∣∣∣Fs]du]
= 0,

hence for all λ ∈ Rd+, (2.4.23) is a (P∗x,Ft)-martingale for all λ ∈ Rd+. The law P∗x is thus a
solution to MP (L∗, D0 (L∗) ,x).

Let us now assume that there exists an other distribution P̂∗x such that for all λ ∈ Rd+, (2.4.23)
is a (P̂∗x,Ft)-martingale, and let us define P̂x such that

dP̂x|Ft :=
h(0,x)
h(t,Xt)

dP̂∗x|Ft .

Then, according to the previous computation, for all λ ∈ Rd+, (2.4.24) is a (P̂x,Ft)-martingale.
By uniqueness of the solution to the martingale problem MP(L), this implies P̂x = Px, and thus
P̂∗x = P∗x.

We just proved that P∗ is the unique solution to the martingale problem

MP
(
L∗, C2

b (Rd+\{0},R),x
)
.

As a consequence, the Q-process with law P∗ is the unique weak solution of the stochastic differ-
ential equation

dXt = Σ(Xt) dBt + CTXt dt+
1

Xt · ξ̃
σ2Xtξ̃ dt, (2.4.27)

59



2.4. CHAPTER 2. BRANCHING PROCESSES CONDITIONED ON NON-EXTINCTION

where Σ is defined in (1.2.17). Componentwise, (2.4.27) becomes, for all i = 1 . . . d,

dXt,i = σi
√
Xt,idBt,i +

d∑
j=1

c̃jiXt,jdt+
1

Xt · ξ̃
σ2
i ξ̃iXt,idt. (2.4.28)

The equation solved by the conditioned process thus has an additional non-linear term compared
with the equation solved by the non-conditioned process. We show in the following paragraph
that this term corresponds to a state-dependent immigration.

The conditioned Feller diffusion process as process with state-dependent immigration

Monotype case. If d = 1, the previous SDE becomes

dXt = σ
√
XtdBt + c̃Xtdt+ σ2dt. (2.4.29)

The additional deterministic term σ2dt suggests that the conditioned process can be interpreted
as a process with immigration. Let us prove this result. Applying Theorem 2.4.6, we obtain that

E∗x
(
e−λXt

)
= e−ect 1

x
Ẽx
(
Xte

−λXt
)

= e−ect 1
x

∂

∂λ

[
−e−xeut(λ)

]
= e−ect ∂ũt(λ)

∂λ
e−xeut(λ).

Denoting vt(λ) := ∂eut(λ)
∂λ , we thus have

E∗x
(
e−λXt

)
= e−ectvt(λ)Ẽx

(
e−λXt

)
, (2.4.30)

where vt(λ) is the unique solution of (we use here (1.2.6)),
∂

∂t
vt(λ) = c̃vt(λ)− σ2vt(λ)ũt(λ),

v0(λ) = 1.
(2.4.31)

Then (2.4.30) becomes

E∗x
(
e−λXt

)
= exp [−c̃t+ ln (vt(λ))] Ẽx

(
e−λXt

)
= exp

[∫ t

0

(
−c̃+

∂
∂svs(λ)
vs(λ)

)
du

]
Ẽx
(
e−λXt

)
= exp

[
−
∫ t

0

σ2ũs(λ)ds
]

Ẽx
(
e−λXt

)
. (2.4.32)

We recognize here that the Laplace transform of the Q-process associated with the monotype
Feller diffusion process is the Laplace transform of a Feller diffusion process with immigration.

Indeed, as described by Lambert in [Lamb07], a Feller diffusion process (and more generally a
CB process) with immigration is a strong Markov process with Laplace transform

exp
[
−xut(λ)−

∫ t

0

χ (us(λ)) ds
]
, x, λ ∈ R+ (2.4.33)

where ut(λ) is the cumulant of the original CB process, and χ is the Laplace exponent of the
subordinator describing the immigration. The equivalent of this subordinator for BGW processes
would be the number of immigrants until generation n. The author provides a general result for
monotype CB processes (Theorem 4.1 in [Lamb07]), stating that the Q-process associated with a
(sub)critical CB process with branching mechanism ψ̃ is a CB process with immigration, the latter
being given by χ(λ) = ψ̃′(0)− ψ̃′(λ). Applying this to ψ̃(λ) = c̃λ− 1

2σ
2λ2 we obtain χ(λ) = σ2λ,

and thus our result (2.4.32) coincides with (2.4.33).
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Multitype case. We can find a generalization of (2.4.30) to the multitype case in [ChaRoe08].
It is there proved that the Laplace transform of the Q-process is given by

E∗x
[
e−λ·Xt

]
= e−ρt

x · vt(λ)
x · ξ

Ex
[
e−λ·Xt

]
,

where vt(λ) is the unique solution of the differential system
∂

∂t
vt,i(λ) =

d∑
j=1

c̃ijvt,j(λ)− σ2
i ut,i(λ)vt,i(λ), i = 1 . . . d,

v0,i(λ) = ξi.

(2.4.34)

The multiplicative term e−ρt x·vt(λ)
x·ξ appearing in the Laplace transform corresponds to the immi-

gration in the Q-process, which is confirmed by the form of the martingale problem (2.4.23) solved
by P∗: the Q-process is a multitype Feller diffusion process with immigration whose rate at time
t, if conditioned by Xt, is a random variable with Laplace transform

exp

[
−
(
Xtσ

2λ
)
· ξ̃

Xt · ξ̃

]
.
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Chapter 3

Commutativity results for the
conditioned processes

The whole previous chapter has been dedicated to multitype BGWc and Feller diffusion processes
conditioned on a delayed extinction. We investigated both limits as the time t tends to infinity
(Yaglom-type limits, Section 2.3) and as the delay of extinction θ tends to infinity (Q-process,
Section 2.4). It is very natural to wonder whether one would obtain an interesting mathematical
object by taking first one limit and then the other one, and if these two limit procedures could be
interchanged.

Moreover, in the last chapter we observed a parallel behavior for BGWc processes and their
continuous counterparts, the Feller diffusion processes: compare for example Proposition 2.3.1
with Proposition 2.3.5, or Theorem 2.4.1 with Theorem 2.4.6. Since a Feller diffusion process can
be obtained as a high-density limit of a BGWc process (once rescaled appropriately in time and
space with some scaling parameter n, as detailed in Subsection 3.2.1), we will rigorously justify
these similarities by showing that the random objects associated with the Feller diffusion process
(Yaglom-type limits and Q-process) can also be obtained as a limit of the same objects associated
with the BGWc process.

More generally, the purpose of this section is to show the commutativity between the three
possible limits in n, t and θ of

P (n, t, θ) := Pn1
nx

n

(
Xt ∈ . |Xt+θ 6= 0, lim

s→∞
Xs = 0

)
, (3.0.1)

where Pn denotes the law of the BGWc process rescaled with the scaling parameter n defined in
Subsection 3.2.1, and xn ∈ Nd is such that limn→∞

1
nx

n = x ∈ Rd+\{0}.
In Section 3.1 we first focus on the interchangeability of the limits in t and θ, for both the

BGWc and Feller diffusion process, in order to obtain an equality of the form (BGWc process)

lim
n

lim
θ

lim
t
P (n, t, θ) = lim

n
lim
t

lim
θ
P (n, t, θ), (3.0.2)

and (Feller diffusion process)

lim
θ

lim
t

lim
n
P (n, t, θ) = lim

t
lim
θ

lim
n
P (n, t, θ). (3.0.3)

In Subsection 3.2.3 we prove the following intuitive relation between Yaglom-type limits of a
BGWc and a Feller diffusion process,

lim
θ

lim
n

lim
t
P (n, t, θ) = lim

θ
lim
t

lim
n
P (n, t, θ). (3.0.4)

Next, in Subsection 3.2.4, we prove that the diffusion limit of the Q-process is the Q-process of
the diffusion limit, which means that

lim
t

lim
θ

lim
n
P (n, t, θ) = lim

t
lim
n

lim
θ
P (n, t, θ). (3.0.5)
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Finally we prove in Subsection 3.2.5 that

lim
n

lim
t

lim
θ
P (n, t, θ) = lim

t
lim
n

lim
θ
P (n, t, θ), (3.0.6)

or in other words that the asymptotic behavior of the Q-process associated with the n-rescaled
BGWc process converges as n tends to infinity to the one of the Q-process associated with the
Feller diffusion process.

3.1 Commutativity of the long-time limits

In this section we are interested in the long-time behavior of the Q-process associated with the
BGWc (resp. Feller diffusion process). We show in Proposition 3.1.1 (resp. Proposition 3.1.4)
that the long-time limit is nondegenerate in the subcritical and supercritical cases, and that it
is a probability distribution independent of the initial condition. By definition of the Q-process,
this limit is obtained by letting first θ and then t tend to infinity in the law of Xt conditioned on
extinction delayed by at least θ. We have asked ourselves whether the order of those two limits
in t and θ can be exchanged. Proposition 3.1.1 (resp. Proposition 3.1.4) provides an affirmative
answer: the nondegenerate limit mentioned above can also be obtained by letting first t and then
θ tend to infinity, i.e. as the limit as θ tends to infinity of the so-called θ-Yaglom limit introduced
in Subsection 2.3.1 (resp. Subsection 2.3.2).

3.1.1 Long-time limits of the conditioned BGWc process

Proposition 3.1.1. Let us assume (B1) and (B2). We assume moreover that

(i) if ρ = 0, all the second order moments of the offspring distribution are finite,

(ii) if ρ < 0, for all i, j = 1 . . . d,
∑

k∈Nd kj ln(kj)pi(k) <∞.

Then the following holds.

� In the critical case, the Q-process associated with the BGWc process explodes as t tends to
infinity, i.e. for all x ∈ Nd\{0} and u > 0,

lim
t→∞

lim
θ→∞

Px (Xt 6 u |Xt+θ 6= 0) = 0. (3.1.1)

Furthermore, one can interchange both limits in t and θ:

lim
t→∞

lim
θ→∞

Px (Xt 6 u |Xt+θ 6= 0) = lim
θ→∞

lim
t→∞

Px (Xt 6 u |Xt+θ 6= 0) = 0. (3.1.2)

� In the noncritical case, the Q-process converges as t tends to infinity to a nontrivial limit
which does not depend on the initial condition x ∈ Nd\{0}, and which corresponds to the
size-biased Yaglom distribution (see (3.1.7)). Furthermore, one can interchange both limits
in t and θ:

lim
t→∞

lim
θ→∞

Px
(
Xt ∈ .|Xt+θ 6= 0, lim

s→∞
Xs = 0

)
= lim
θ→∞

lim
t→∞

Px
(
Xt ∈ .|Xt+θ 6= 0, lim

s→∞
Xs = 0

)
. (3.1.3)

Proof. We first assume that ρ 6= 0 and focus on the right term of (3.1.3). By (2.3.6) and (2.3.8)
we have, for all r ∈ [0, 1]d and all x ∈ Nd, x 6= 0,

lim
θ→∞

lim
t→∞

Ẽx
[
rXt |Xt+θ 6= 0

]
= lim
θ→∞

γ
(
r− eeρθγ (0) ξ̃

)
− γ (r)

eeρθγ(0)

= −
d∑
i=1

riξ̃i
∂γ(r)
∂ri

, (3.1.4)
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the differentiability of γ stemming from (2.3.9).
Let us focus on the left term of (3.1.3). Using (2.4.8) we obtain

lim
θ→∞

Ẽx
[
rXt |Xt+θ 6= 0

]
= e−eρt 1

x · ξ̃
Ẽx
[
Xt · ξ̃rXt

]
= e−eρt 1

x · ξ̃

d∑
i=1

riξ̃i
∂

∂ri

[
F̃t(r)x

]
= e−eρt 1

x · ξ̃

d∑
i=1

riξ̃i

d∑
j=1

xj
∂

∂ri

[
ln F̃t,j(r)

]
F̃t(r)x. (3.1.5)

But for all i, j = 1 . . . d and all r ∈ [0, 1]d such that ri > 0 we have (see Lemma 3.1.3 below)

lim
t→∞

e−eρt ∂
∂ri

[
ln F̃t,j(r)

]
= −∂γ(r)

∂ri
ξ̃j ,

which together with (3.1.4) and (3.1.5) leads to the equality

lim
θ→∞

lim
t→∞

Ẽx
[
rXt |Xt+θ 6= 0

]
= lim
t→∞

lim
θ→∞

Ẽx
[
rXt |Xt+θ 6= 0

]
,

for all r ∈ [0, 1]d.
Now from [Sew75] Satz 6.2.8 we know that under assumption (ii) of Theorem 2.4.1, the gen-

erating function F 0 is differentiable in r = 1, and its derivative satisfies, for all i = 1 . . . d,

∂F 0(1)
∂ri

=
η̃i
γ(0)

. (3.1.6)

Using Lebesgue’s dominated convergence theorem together with the fact that (3.1.6) is finite, it
comes that ∂F 0(r)

∂ri
is continuous in 1, which thanks to (2.3.9) implies the continuity in r = 1 of

the right term of (3.1.4). Lévy’s continuity theorem thus ensures the convergence law.
Let us finally show that the probability distribution π obtained in (3.1.3) is not trivially reduced

to the Dirac measure in 0, and corresponds to the size-biased Yaglom distribution. By this we
mean that, denoting by Υ the Yaglom distribution, we have for all k ∈ Nd,

π (k) =
1∑

i∈Nd i · ξ̃Υ (i)
k · ξ̃Υ (k) . (3.1.7)

Indeed, using (2.3.9) and (3.1.4), the generating function of π is given for all r ∈ [0, 1]d by

−
d∑
i=1

riξ̃i
∂γ(r)
∂ri

= γ (0)
d∑
i=1

riξ̃i
∂F0(r)
∂ri

= γ (0)
∑

k∈Nd\{0}

k · ξ̃Υ (k) rk. (3.1.8)

and we know by (3.1.6) that∑
i∈Nd

i · ξ̃Υ (i) =
d∑
j=1

ξ̃j
∂F 0(1)
∂rj

=
η̃ · ξ̃
γ (0)

=
1

γ (0)
.

We now consider the critical case ρ = 0. We deduce from Proposition 2.3.4 that for all θ > 0,
r ∈ Cd, r 6= 1, limt→∞ Ex

[
rXt |Xt+θ 6= 0

]
= 0. On the other hand,

lim
θ→∞

Ex
[
rXt |Xt+θ 6= 0

]
=

1
x · ξ

Ex
[
Xt · ξrXt

]
=

1
x · ξ

d∑
i=1

riξi
∂

∂ri
[Ft(r)x]

=
1
x · ξ

d∑
i=1

riξi

d∑
j=1

xj
1

Ft,j(r)
∂

∂ri
[Ft,j(r)] Ft(r)x. (3.1.9)
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In the critical case, limt→∞ Ft,j(r) = 1, and we deduce from (1.1.8) and (1.1.9) that

lim
t→∞

 d∑
j=1

αj [fj (r)− rj ]
∂

∂rj
Ft,i(r)

 = lim
t→∞

αi [fi (Ft(r))− Ft,i(r)] = αi [fi (1)− 1] = 0.

Since all the terms of the left member are nonnegative, this implies that

lim
t→∞

∂

∂rj
Ft,i(r) = 0.

Using this in (3.1.9), we finally obtain

lim
t→∞

lim
θ→∞

Ex
[
rXt |Xt+θ 6= 0

]
= 0.

Remark 3.1.2. It appears thanks to (3.1.8) that the probability distribution defined by (3.1.3) is
reduced to a Dirac measure on x for some x ∈ Nd, if and only if the Yaglom measure is reduced
to the same Dirac measure. Indeed, if Υ(x) = 1, then, by (3.1.6)

η̃i
γ(0)

=
∂F 0(1)
∂ri

= xi, (3.1.10)

which implies that γ (0)x · ξ̃ = 1, and thus the probability distribution has generating function

γ (0)
d∑
i=1

ξ̃i
∑

k∈Nd\{0}

Υ(k)kirk = γ (0)x · ξ̃ rx = rx. (3.1.11)

Conversely, if γ (0)
∑d
i=1 ξ̃i

∑
k∈Nd\{0}Υ(k)kirk = rx, then we necessarily have Υ(x) = 1.

Let us prove the following technical lemma, needed in the proof of Proposition 3.1.1.

Lemma 3.1.3. For all i, j = 1 . . . d and all r ∈ [0, 1]d, r 6= 1, such that ri > 0,

lim
t→∞

e−eρt ∂
∂ri

[
ln F̃t,j(r)

]
= −∂γ(r)

∂ri
ξ̃j . (3.1.12)

Proof. Deducing from (2.3.6) that limt→∞ e−eρt ln F̃t,j(r) = −γ(r)ξ̃j , we obtain that for all h > 0,

γ(r)ξ̃j − γ(r + hei)ξ̃j = lim
t→∞

∫ h

0

e−eρt ∂
∂ri

[
ln F̃t,j(r + uei)

]
du. (3.1.13)

Moreover,

0 6 e−eρt ∂
∂ri

[
ln F̃t,j(r)

]
6 e−eρt 1

F̃t,j(r)

1
ri

Ẽej [Xt,i] ,

and by Proposition 1.1.14, limt→∞ e−eρtẼej [Xt,i] = ξ̃j η̃i. We then have by the continuity of F̃t,j
in r the existence of a constant C > 0 such that for all t > 0 and all u ∈ [0, h],∣∣∣∣e−ρt ∂∂ri

[
ln F̃t,j(r + uei)

]∣∣∣∣ 6 C

ri + u
.

Using this upper bound integrable on u ∈ [0, h] together with Lebesgue’s dominated convergence
theorem, (3.1.13) leads to

γ(r)ξ̃j − γ(r + hei)ξ̃j =
∫ h

0

lim sup
t→∞

[
e−eρt ∂

∂ri

(
ln F̃t,j(r + uei)

)]
du,

and thus lim supt→∞ e−eρt ∂
∂ri

[
ln F̃t,j (r)

]
= −∂γ(r)

∂ri
ξ̃j . Proving the same way the result for the

limit inferior we finally obtain (3.1.12).
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3.1.2 Long-time limits of the Feller diffusion process

In this section, we generalize a result from Champagnat and Rœlly (Theorem 3.6 and Theorem
3.7, [ChaRoe08]) which is the analog of Proposition 3.1.1 for multitype Feller diffusion processes.
It proves the interchangeability of the long-time limits in t and θ for (sub)critical processes, and
we generalize this result by including the supercritical case as well. The generalization is straight
forward thanks to Proposition 2.2.4, and we thus omit the proof.

Proposition 3.1.4. Let us assume (F1) and (F2). Then the following holds.

� In the critical case, the Q-process associated with the Feller process explodes as t tends to
infinity, i.e. for all x ∈ Rd+\{0} and u > 0,

lim
t→∞

lim
θ→∞

Px (Xt 6 u |Xt+θ 6= 0) = 0. (3.1.14)

Furthermore, one can interchange both limits in t and θ:

lim
t→∞

lim
θ→∞

Px (Xt 6 u |Xt+θ 6= 0) = lim
θ→∞

lim
t→∞

Px (Xt 6 u |Xt+θ 6= 0) = 0. (3.1.15)

� In the noncritical case, the Q-process converges as t tends to infinity to a nontrivial limit
which does not depend on the initial condition x ∈ Rd+\{0}. Furthermore, one can inter-
change both limits in t and θ:

lim
t→∞

lim
θ→∞

Px
(
Xt ∈ .|Xt+θ 6= 0, lim

s→∞
Xs = 0

)
= lim
θ→∞

lim
t→∞

Px
(
Xt ∈ .|Xt+θ 6= 0, lim

s→∞
Xs = 0

)
. (3.1.16)

Remark 3.1.5. In the monotype case, this nontrivial limit is known to be a Gamma distribution
(see e.g. [ChaRoe08] Proposition 3.3), with parameter 2 and 2|eρ|

σ2 .

3.2 Commutativity between rescaling and conditioning

The critical single-type Feller diffusion process was originally introduced in [Fel51] as a continuous
approximation for large branching populations. It is also well-known that a similar approximation
holds for multitype BGWc processes of any class of criticality, as shown for example in [JofMet86],
Theorem 4.4.2. In this section, we shall relate the conditional limit theorems obtained for BGWc
processes with the ones obtained for Feller diffusion processes by using this same approximation,
and deduce from this that rescaling and conditioning commute. After presenting in Subsection
3.2.1 sufficient assumptions on the rescaled BGWc process to obtain a Feller diffusion limit,
we prove the “interchangeability” between rescaling and conditioning on extinction (Subsection
3.2.2), rescaling and the Yaglom-type limits (Subsection 3.2.3 ), rescaling and the Q-process
(Subsection 3.2.4), and finally between rescaling and the long-time behavior of the Q-process
(Subsection 3.2.5).

In the following Subsections 3.2.1-3.2.5, P denotes the law of the multitype Feller diffusion
process introduced in Section 1.2, with mutation matrix C and variance parameters σ2

1 , . . . , σ
2
d.

3.2.1 Rescaled BGWc process

For every n ∈ N∗, we consider Pn the law of a BGWc process with offspring distribution (pn(k))k∈Nd ,
branching rates αi := n, i = 1 . . . d, and rescaled by 1

n . On the one hand, the relation αi = n im-
plies that for n large, the branching dynamics is accelerated (the life expectancy of the individuals
are shorter, hence the branching events occur more often). On the other hand, the rescaling in
space means that each individual is given a small weight 1

n . The process with law Pn consequently
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takes its values in 1
nNd. We denote by mn

ij the first-order moments of the offspring distribution
pn(k),

mn
ij :=

∑
k∈Nd

kjp
n
i (k), (3.2.1)

and introduce the second-order moments: for all i, j, k = 1 . . . d,

σnij(l) :=
∑
k∈Nd

(ki − δli)(kj − δlj)pnl (k). (3.2.2)

We denote by Mn the mean matrix and define Cn := n(Mn − I).
We point out that here and in was follows the superscript n stands for the rescaling param-

eter and not for an exponentiation, except in formula (3.2.5) and more generally for expressions
involving qn.

The infinitesimal generator of the rescaled BGWc with law Pn is then, for all smooth function
f : 1

nNd → R and all x ∈ 1
nNd,

(Lnf) (x) := n2
d∑
i=1

xi
∑
k∈Nd

pni (k)
[
f

(
x+

k− ei
n

)
− f (x)

]
. (3.2.3)

One factor n stems from the branching rates, and the other scalings are a result of describing nx
individuals of mass 1

n .
Under appropriate assumptions on the initial distribution and on the first and second-order

moments, the sequence of BGWc processes with law Pn is a nice approximation of the Feller
diffusion process with law P. We quote here the result of [JofMet86], Theorem 4.4.2.

Proposition 3.2.1. Let us assume that for all i, j = 1 . . . d, as n tends to infinity,

(A1) mn
ij = δij +

1
n
cij + o(

1
n

),

(A2) σnii(i) = σ2
i + o(1),

(A3) lim
N→∞

sup
n∈N∗

∑
k/‖k‖>N

‖k‖2pni (k) = 0.

Then, for any x ∈ Rd+, x 6= 0, and any Nd-valued sequence xn such that limn→∞
1
nx

n = x, the
sequence of probability measures Pn1

nx
n converges weakly to Px as n tends to infinity.

Remark 3.2.2. Assumption (A1) means that limn→∞ n(Mn− I) = C, hence the mutation matrix
C of the Feller diffusion process measures the rescaled discrepancy between the mean matrix Mn

and the identity matrix I, which represents the case of independent types.
Remark 3.2.3. Assumptions (A1)-(A3) imply

lim
n→∞

σnij(l) =

{
σ2
i if (i, j) = (l, l),

0 otherwise.
(3.2.4)

Indeed if (i, j) 6= (l, l), say i 6= l, we have for any N > 0,

σnij(l) =
∑
k∈Nd

kikjp
n
l (k)− δljmn

li

6
∑
‖k‖6N

kikjp
n
l (k) +

∑
‖k‖>N

kikjp
n
l (k)

6 N
∑
‖k‖6N

kip
n
l (k) +

1
2

 ∑
‖k‖>N

k2
i p
n
l (k) +

∑
‖k‖>N

k2
jp
n
l (k)−

∑
‖k‖>N

(ki − kj)2pnl (k)


6 Nmn

li +
1
2

sup
n∈N∗

∑
‖k‖>N

‖k‖2pnl (k).
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Let ε > 0. (A3) implies that there exists N such that supn∈N∗
∑
‖k‖>N ‖k‖2pnl (k) < ε, and from

(A1) there exists N0 ∈ N∗ such that for all n > N0, mn
li <

ε
2N . Then for all n > N0, σnij(l) < ε,

which completed with (A2) leads to (3.2.4).

Whenever Mn is finite and irreducible, we shall denote by ρn the Perron’s root of Cn, and
by ξn and ηn the associated right and left eigenvectors with the usual normalization convention
ξn · 1 = 1 and ηn · ξn = 1.

3.2.2 Scaling limit of the BGWc process conditioned on extinction

The aim of this section is to prove that the sequence of rescaled BGWc processes introduced
in Subsection 3.2.1, once conditioned on extinction, converges to the multitype Feller diffusion
process with law P conditioned on extinction as well. Since the convergence of the unconditioned
processes is known, this result means that the procedures of conditioning on extinction and taking
the scaling limit are interchangeable.

Whenever it is defined, we denote by P̃n the law of the BGWc process with law Pn, conditioned
on extinction (see Proposition 2.2.1). Similar to (2.2.5) we denote by (p̃n(k))k∈Nd the probability
distribution

p̃ni (k) := q
− 1
n

n,i (qn)
k
n pni (k), (3.2.5)

where qn stands for the extinction probability vector of the rescaled BGWc process:

qn,i := lim
t→∞

Pnei (Xt = 0) . (3.2.6)

We introduce the associated first and second-order moments

m̃n
ij :=

∑
k∈Nd

kj p̃
n
i (k), (3.2.7)

σ̃nij(l) :=
∑
k∈Nd

(ki − δli)(kj − δlj)p̃nl (k), (3.2.8)

and define the matrices M̃
n

:=
(
m̃n
ij

)
i,j=1...d

and C̃
n

:= n(M̃
n
− I).

Proposition 3.2.4. Let us assume (A1)-(A3) and (F1)-(F2). Then for any x ∈ Rd+, x 6= 0,
and any Nd-valued sequence xn such that limn→∞

1
nx

n = x, the following diagram is commutative,

Pn1
nx

n  P̃n1
nx

n

⇓ ⇓
Px  P̃x

, (3.2.9)

where  stands for the transform by conditioning on extinction, and ⇒ for the weak convergence
of probability measures as n tends to infinity.

Proof. We already know from Proposition 3.2.1 that the weak convergence

Pn1
nx

n =⇒ Px (3.2.10)

holds as n tends to infinity.
On the other hand, we deduce from Proposition 3.2.1 that for all i = 1 . . . d,

lim
n→∞

qn,i = e−ui , (3.2.11)

which by (F2) implies that for n large enough the rescaled branching process with law Pn has a
positive risk of extinction qn > 0. For n large enough the conditioned law P̃n is thus well defined,
and by Proposition 2.2.1 is the law of a (sub)critical BGWc process. The weak convergence to P̃
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can thus be obtained by showing that assumptions (A1)-(A3) hold for the conditioned BGWc
process as well, this time for the parameters (c̃ij)i,j and (σ2

i )i.
First, we deduce from (3.2.11) that for all i = 1 . . . d,

lim
n→∞

q
1
n
n,i = 1, (3.2.12)

and that for all k ∈ Nd,

lim
n→∞

n
(
q
− 1
n

n,i (qn)
k
n − 1

)
= −(ki − 1)ui.

Since we have on the one hand c̃ij = cij − σ2
i uiδij , and on the other hand

c̃nij = n

 1
qn,i

∑
k∈Nd

(qn)k
kjp

n
i (k)− δij


= cnij +

∑
k∈Nd

n
(
q−1
n,i (qn)k − 1

)
kjp

n
i (k),

it ensues that
lim
n→∞

C̃
n

= C̃. (3.2.13)

Second, we have

lim
n→∞

σ̃nii(i) = lim
n→∞

q
− 1
n

n,i

∑
k∈Nd

(ki − 1)2 (qn)
k
n pni (k) = σ2

i . (3.2.14)

Finally,

lim
N→∞

sup
n∈N∗

∑
k/‖k‖>N

‖k‖2p̃ni (k) = lim
N→∞

sup
n∈N∗

q
− 1
n

n,i

∑
k/‖k‖>N

‖k‖2 (qn)
k
n pni (k) = 0. (3.2.15)

Remark 3.2.5. From the definition of σ̃nij(l) we easily obtain thanks to (3.2.4) and (3.2.12) that

lim
n→∞

σ̃nij(l) =

{
σ2
i if (i, j) = (l, l),

0 otherwise.
(3.2.16)

Assumption (A1) means that limn→∞Cn = C, which implies that for n large enough, every
matrix Cn has at least as many positive non-diagonal entries as C and is thus irreducible. By
Proposition 2.2.1, this implies that the matrices C̃

n
are irreducible as well, and we denote in the

following by ρ̃n, ξ̃
n

and η̃n their Perron’s roots and right and left eigenvectors.

3.2.3 Scaling limit of the Yaglom-type distributions

The purpose of this section is to show that, for any fixed θ > 0, the scaling limit of the θ-Yaglom
distribution associated with the sequence of rescaled BGWc processes, is equal to the θ-Yaglom
limit of the Feller diffusion process. We thus prove that

lim
n

lim
t
P (n, t, θ) = lim

t
lim
n
P (n, t, θ), (3.2.17)

where P (n, t, θ) is the probability distribution introduced in (3.0.1).
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Proposition 3.2.6. Let us assume (A1)-(A3), (F1)-(F2) and ρ 6= 0. Then, for every θ > 0,
x ∈ Rd+\{0} and Nd-valued sequence xn such that limn→∞

1
nx

n = x, the following nondegenerate
probability distributions are equal:

lim
n→∞

lim
t→∞

Pn1
nx

n

(
Xt ∈ . |Xt+θ 6= 0, lim

s→∞
Xs = 0

)
= lim
t→∞

lim
n→∞

Pn1
nx

n

(
Xt ∈ . |Xt+θ 6= 0, lim

s→∞
Xs = 0

)
. (3.2.18)

Proof. We have shown in the proof of Proposition 3.2.4 that, under assumptions (A1)-(A3) and
(F1)-(F2), for n large enough, Cn is irreducible and qn > 0. Moreover, Remark 3.2.3 ensures
finiteness of the second-order moments for the distribution pn(k) from a certain rank, and finally
we deduce from (A1) that limn→∞ ρn = ρ 6= 0, hence that ρn 6= 0 from a certain rank. We can
consequently apply Proposition 2.3.1 for any fixed n large enough satisfying these conditions. We
obtain that the long-time limit

lim
t→∞

Pn1
nx

n

(
Xt ∈ . |Xt+θ 6= 0, lim

s→∞
Xs = 0

)
defines a probability distribution on 1

nNd, with generating function F θ,n given by

F θ,n(r) = e−eρnθ [F 0,n(r)− F 0,n (rq̃n (θ)n)
]
. (3.2.19)

Here q̃n(θ) denotes the extinction probability vector at time θ for the subcritical process with
law P̃n, and F 0,n denotes the generating function of the Yaglom distribution associated with the
subcritical process with law P̃n, F 0,n(r) := limt→∞ Ẽn

[
rXt |Xt 6= 0

]
.

On the other hand, by Proposition 3.2.1, the right side of (3.2.18) equals

lim
t→∞

P̃x (Xt ∈ . |Xt+θ 6= 0) ,

which by Proposition 2.3.5 defines a probability distribution on Rd+ with Laplace transform Φθ

given by
Φθ(λ) = e−eρθ [Φ0(λ)− Φ0 (λ+ ũ (θ))

]
. (3.2.20)

Hence we need to prove that for any λ > 0, denoting e−λ := (e−λ1 , . . . , e−λd),

lim
n→∞

F θ,n(e−λ) = Φθ(λ). (3.2.21)

From Proposition 3.2.4 we have limn→∞ q̃n,i (θ) = e−eui(θ), and since limn→∞ C̃
n

= C̃ we can show
easily that

lim
n→∞

ρ̃n = ρ̃, lim
n→∞

ξ̃
n

= ξ̃. (3.2.22)

As a consequence we see by (3.2.19) and (3.2.20) that the convergence (3.2.21) holds as soon as it
is true for θ = 0, i.e.

lim
n→∞

F 0,n(e−λ) = Φ0(λ). (3.2.23)

On the one hand we have, as seen in (2.3.9),

F 0,n(r) = 1− γn(r)
γn(0)

,

where γn(r) satisfies (see (2.3.6))

lim
t→∞

e−eρntη̃n · (1− F̃
n

t (r)
)

= γn(r). (3.2.24)

Here F̃
n

t denotes the generating function at time t of the rescaled process with law P̃n, defined by
F̃nt,i(r) := Ẽnei

(rXt).
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On the other hand, as seen in Subsection 2.3.2,

Φ0(λ) = 1− κ(λ)
κ

,

where κ(λ) and κ > 0 satisfy

lim
t→∞

e−eρtη̃ · ũt(λ) = κ(λ),

lim
t→∞

e−eρtη̃ ·
(

lim
λ→∞

ũt(λ)
)

= κ.

In order to obtain (3.2.23) we first prove that the convergence (3.2.24) is uniform in n. As
already mentioned, (2.3.6) (and thus (3.2.24)) is obtained as an extension via the embedded process
of a convergence result for BGW processes (Theorem 2 in [JofSpit67]), via a method detailed in the
proof of Theorem 6.1 in [Ogu75]. Analyzing this proof, it appears that the uniform convergence
in n for (3.2.24) would stem from the uniform convergence in n of

lim
k→∞
k∈N

e−eρnkη̃n · (1− F̃
n

k (r)
)

= γn(r). (3.2.25)

Let us prove the uniform convergence of (3.2.25). For this purpose, we consider the embedded
subcritical BGW process with offspring generating function F̃

n

1 , mean matrix exp(C̃
n
), maximal

eigenvalue eeρn , associated eigenvectors ξ̃
n

and η̃n. By the integral form of the remainder term in
the Taylor expansion of F̃

n

1 , there exists a non-negative matrix-valued rest An(r) such that for all
r ∈ [0, 1]d,

1− F̃
n

1 (r) =
(

exp(C̃
n
)−An(r)

)
(1− r) , (3.2.26)

satisfying An(r) = O (‖1− r‖) as r → 1. Moreover, the second-order derivatives of F̃
n

1 being
finite and bounded in n thanks to (3.2.16), we have in the neighborhood of 1,

An(r) = O (‖1− r‖) uniformly in n. (3.2.27)

Let us denote
∆n
k (r) := e−eρnkη̃n · (1− F̃

n

k (r)
)
.

By (3.2.26) we have

∆n
k+1(r)−∆n

k (r) = −e−(k+1)eρn η̃n ·An
(
F̃
n

k (r)
)(

1− F̃
n

k (r)
)
,

hence for every n and r, ∆n
k (r) is decreasing in k. It follows that for every n, k ∈ N and r ∈ [0, 1]d,

∆n
k (r) 6 ∆n

0 (r) = η̃n · (1− r) 6 sup
n∈N

η̃n · 1,

the right term being finite by means of (3.2.13). This ensures that supn∈N γ
n(r) <∞.

Let N ∈ N such that
sup
n>N

ρ̃n < 0.

From (2.3.6) we obtain that for every n,

1− F̃
n

k (r) ∼k→∞ eeρnkγn(r)ξ̃
n
,

from which we deduce thanks to (3.2.22) that

lim
k→∞

F̃
n

k (r) = 1 uniformly in n up to N .
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(Note that the convergence is also uniform in r ∈ [0, 1]d). Together with (3.2.27) this implies the
existence of C1 > 0 and K > 0 such that for all k > K and all n > N ,

An
(
F̃
n

k (r)
)
6 C1‖1− F̃

n

k (r) ‖I. (3.2.28)

Since

e−eρnk (1− F̃nk,i (r)
)
6

1
infn,i η̃ni

e−eρnkη̃n · (1− F̃
n

k (r)
)
,

there exists C2 > 0 such that for all k and all n > N ,

e−eρnk‖1− F̃
n

k (r) ‖ 6 C2. (3.2.29)

Now, for every k > K, p > 0 and every n > N ,

∆n
k (r)−∆n

k+p(r) =
p−1∑
i=0

e−eρn(k+1+i)η̃n ·An
(
F̃
n

k+i(r)
)(

1− F̃
n

k+i(r)
)

6 e(k−1) supn eρnC1(C2)2 sup
n

(η̃n · 1)
1

1− esupn eρn .
We thus obtain by virtue of Cauchy criterion that the convergence (3.2.25) is uniform in n up to
N .

As a consequence, the convergence (3.2.24) is uniform as well, and we obtain that for all
λ ∈ Rd+,

lim
n→∞

γn(e−λ) = lim
n→∞

lim
t→∞

e−eρntη̃n · (1− F̃
n

t

(
e−λ

))
= lim
t→∞

lim
n→∞

e−eρntη̃n · (1− F̃
n

t

(
e−λ

))
= lim
t→∞

e−eρtη̃ · (1− e−eut(λ)
)

= κ(λ).

Similarly
lim
n→∞

γn(0) = κ.

This finally proves (3.2.23), which ensures (3.2.18).

3.2.4 Scaling limit of the Q-process

It has been proved in [LaNey68] that the diffusion limit of branching processes conditioned on
very late extinction was also a Feller diffusion process conditioned on very late extinction. How-
ever, the result only concerns single-type processes and the convergence of the finite-dimensional
distributions. We wish to generalize this result to multitype BGWc processes.

In this section we present the Q-process associated with the Feller diffusion process as the
solution to a martingale problem. As shown in Subsection 2.4.2, this Q-process is the unique
solution to the martingale problem MP( 1

hL(h.)), where h is the space-time harmonic function
for the infinitesimal generator L of the Feller diffusion process given by (2.4.18). Denoting by
Ln the infinitesimal generator of the rescaled BGWc process (as defined in (3.2.3)), we know
from Theorem 2.4.1 that the corresponding Q-process is a solution to the martingale problem
MP( 1

hnL
n(hn.)), where hn is an appropriate space-time harmonic function for Ln. On the other

side it is known that any limit of solutions to the martingale problems MP(Ln) is a solution
to the martingale problem MP(L) (Proposition 3.2.1). Our aim is now to prove that any limit
of solutions to MP( 1

hnL
n(hn.)) is a solution to MP( 1

hL(h.)) . The result is illustrated in the
following commutative diagram, where 99K stands for the transform by conditioning on very late
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extinction, and ⇒ for the weak convergence of probability measures when the scaling parameter
n tends to infinity:

MP(Ln) 99K MP( 1
hnL

n(hn.))
⇓ ⇓

MP(L) 99K MP( 1
hL(h.))

(3.2.30)

Let us approximate the conditioned Feller diffusion process with law P∗ by discrete-state pro-
cesses. According to the intuition, these approximating processes could be BGWc processes con-
ditioned on very late extinction. For every n ∈ N∗, let us denote by Pn,∗ the law of the Q-process
associated with the BGWc process with law Pn, as defined in (2.4.3). The following theorem
then states that under the assumptions of Proposition 3.2.1 and under an additional technical as-
sumption on the third-order moments (assumption (A4)), the sequence of conditioned laws Pn,∗
converges weakly to the conditioned law P∗.

Theorem 3.2.7. Let us assume (A1)-(A3), (F1)-(F2). We assume moreover

(A4) sup
n∈N∗

∑
k∈Nd

k2
jklp

n
i (k) <∞.

Then, for any x ∈ Rd+, x 6= 0, and any Nd-valued sequence xn such that limn→∞
1
nx

n = x, the
following diagram is commutative,

Pn1
nx

n 99K Pn,∗1
nx

n

⇓ ⇓
Px 99K P∗x

, (3.2.31)

where 99K stands for the transform by conditioning on very late extinction, and ⇒ for the weak
convergence of probability measures as n tends to infinity.

Proof. Since Pnn−1xn ⇒ Px is ensured by Proposition 3.2.1, it only remains to prove Pn,∗n−1xn ⇒ P∗x.
As already mentioned in the proof of Proposition 3.2.6, the BGWc with law Pn has for n large
enough a positive risk of extinction, and the second-order moments of the distribution pn(k) are
finite from a certain rank. Hence for n large enough, Pn satisfies the assumptions of Theorem
2.4.1, which will be assumed from now on. From (2.4.10) the infinitesimal generator Ln,∗ of the
Q-process with law Pn,∗ is, for all smooth function f : 1

nNd\{0} → R and all x ∈ 1
nNd, x 6= 0,

(Ln,∗f) (x) := n2
d∑
i=1

xi
∑
k∈Nd

p̃ni (k)
(nx+ k− ei) · ξ̃

n

nx · ξ̃
n

[
f

(
x+

k− ei
n

)
− f (x)

]
. (3.2.32)

Introducing the state-dependent probability distribution (sn(x,k))k∈Nd and branching rates αni (x)
defined for all x ∈ Nd, x 6= 0, by

sni (x,k) :=
(x+ k− ei) · ξ̃

n

x · ξ̃
n

+ ρ̃nξ̃ni
p̃ni (k),

αni (x) :=
x · ξ̃

n
+ ρ̃nξ̃ni

x · ξ̃
n ,

the infinitesimal generator Ln,∗ can be written

(Ln,∗f) (x) = n2
d∑
i=1

αni (nx)xi
∑
k∈Nd

sni (nx,k)
[
f

(
x+

k− ei
n

)
− f (x)

]
. (3.2.33)

The law Pn,∗ is thus the law of a branching process with state-dependent offspring distribution
and branching rates.
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This is also the case for the Q-process associated with the Feller diffusion process (which has
a state-dependant mutation matrix, see (2.4.19)). We can thus apply the convergence criterion
provided in [JofMet86] for multitype state-dependent branching processes. For this purpose, we
introduce the moments associated with the probability distribution (sn(x,k))k∈Nd . For every
x ∈ Nd, x 6= 0,

mn
ij(x) :=

∑
k∈Nd

sni (x,k)kj ,

σnij(l)(x) :=
∑
k∈Nd

snl (x,k)(ki − δli)(kj − δlj),
(3.2.34)

and we define
cnij(x) := nαni (x)

(
mn
ij(x)− δij

)
. (3.2.35)

Then, according to Theorem 4.4.2 in [JofMet86], the weak convergence of Pn,∗n−1xn to P∗x holds
as soon as for all i, j = 1 . . . d and all x ∈ Nd, x 6= 0,

sup
n∈N∗

sup
x∈Nd
x 6=0

αni (nx) <∞, lim
n→∞

αni (nx) = 1, (3.2.36)

sup
n∈N∗

sup
x∈Nd
x6=0

cnij(nx) <∞, lim
n→∞

cnij(nx) = cij(x), (3.2.37)

lim
N→∞

sup
n∈N∗

sup
x∈Nd
x 6=0

∑
k/‖k‖>N

‖k‖2sni (x,k) = 0, (3.2.38)

sup
n∈N∗

sup
x∈Nd
x6=0

σnii(i)(x) <∞, lim
n→∞

αni (nx)σnii(i)(nx) = σ2
i , (3.2.39)

and if the martingale problemMP
(
L∗, C2

b

(
Rd+\{0},R

)
,x
)

has a unique solution, which has been
shown in Subsection 2.4.2.

Criteria (3.2.36)-(3.2.37) mean that the state-dependant branching rates αni (nx) and matrix
entries cnij(nx) converge uniformly in x ∈ Nd\{0}, while criterion (3.2.38) implies the uniform
convergence in n and x of the series of the second-order moments.

Let us prove that (3.2.36)-(3.2.39) are satisfied. (3.2.36) is immediate. Let us show (3.2.37).
For all x ∈ Nd, x 6= 0, we have

cnij(nx) = n

∑
k∈Nd

kj
(nx+ k− ei) · ξ̃

n

nx · ξ̃
n p̃ni (k)− nx · ξ̃

n
+ ρ̃nξ̃ni

nx · ξ̃
n δij


= n

(
m̃n
ij − δij

)
+

1

x · ξ̃
n

∑
k∈Nd

kj (k− ei) · ξ̃
n
p̃ni (k)− ρ̃nξ̃ni δij


= c̃nij +

1

x · ξ̃
n

d∑
l=1

ξ̃nl σ̃
n
jl(i). (3.2.40)

(3.2.16) together with (3.2.13), (3.2.22) and (3.2.40) implies that supn∈N∗ supx∈Nd
x 6=0

cnij(nx) < ∞,

and that

lim
n→∞

cnij(nx) = c̃ij +
σ2
i ξ̃i

x.ξ̃
δij .

Let us next prove (3.2.38). For all N ∈ N∗ and all x ∈ Nd, x 6= 0,

∑
‖k‖>N

‖k‖2sni (x,k) =
1

x · ξ̃
n

+ ρ̃nξ̃ni

x · ξ̃n ∑
‖k‖>N

‖k‖2p̃ni (k) +
∑
‖k‖>N

‖k‖2 (k− ei) · ξ̃
n
p̃ni (k)

 .
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We have on the one hand ∑
‖k‖>N

‖k‖2p̃ni (k) 6
1
qn,i

∑
‖k‖>N

‖k‖2pni (k),

and on the other hand∑
‖k‖>N

‖k‖2 (k− ei) · ξ̃
n
p̃ni (k) 6

1
qn,i

d∑
l=1

ξ̃nl

d∑
j=1

∑
k∈Nd

k2
jklp

n
i (k).

This together with assumptions (A3)-(A4) and the convergence results given by (3.2.12) and
(3.2.22) leads to (3.2.38). It remains to prove (3.2.39). For all x ∈ Nd, x 6= 0,

αni (nx)σnii(i)(nx) =
∑
k∈Nd

(nx+ k− ei) · ξ̃
n

nx · ξ̃
n (ki − 1)2p̃ni (k)

= σ̃nii(i) +
1
n

1

x · ξ̃
n

d∑
l=1

ξ̃nl
∑
k∈Nd

(kl − δil)
(
k2
i − 2ki + 1

)
p̃ni (k)

= σ̃nii(i) +
1
n

1

x · ξ̃
n

d∑
l=1

ξ̃nl

∑
k∈Nd

k2
i klp̃

n
i (k)− 2σ̃nil(i) + m̃n

il − δil

 ,

which thanks to (3.2.13), (3.2.22), (3.2.16) and assumption (A4) converges to σ2
i as n tends to

infinity. Writing

σnii(i)(x) =
x · ξ̃

n

x · ξ̃
n

+ ρ̃nξ̃ni

σ̃nii(i) +
1

x · ξ̃
n

d∑
l=1

ξ̃nl

∑
k∈Nd

k2
i klp̃

n
i (k)− 2σ̃nil(i) + m̃n

il − δil

 ,
we obtain (3.2.39) thanks to the same convergence results.

3.2.5 Scaling limit of the time asymptotic of the Q-process

In this section, we show that the time asymptotic of the Q-process associated with the rescaled
BGWc process converges as n tends to infinity to the one of the Q-process associated with the
Feller diffusion process. We thus prove that

lim
n

lim
t

lim
θ
P (n, t, θ) = lim

t
lim
n

lim
θ
P (n, t, θ), (3.2.41)

where P (n, t, θ) is defined in (3.0.1).

Proposition 3.2.8. Let us assume (A1)-(A3), (F1)-(F2) and ρ 6= 0. Then for every x ∈
Rd+\{0} and Nd-valued sequence xn such that limn→∞

1
nx

n = x, the following nondegenerate
probability distributions are equal:

lim
n→∞

lim
t→∞

lim
θ→∞

Pn1
nx

n

(
Xt ∈ . |Xt+θ 6= 0, lim

s→∞
Xs = 0

)
= lim
t→∞

lim
n→∞

lim
θ→∞

Pn1
nx

n

(
Xt ∈ . |Xt+θ 6= 0, lim

s→∞
Xs = 0

)
. (3.2.42)

Proof. Applying Proposition 3.1.1 to the BGWc process with law Pn, we know that the left term
of (3.2.42) corresponds for every n fixed (before considering the limit in n) to a nondegenerate
probability distribution with generating function given by

lim
t→∞

En,∗1
nx

n

[
rXt
]

= −
d∑
i=1

riξ̃
n
i

∂γn(r)
∂ri

. (3.2.43)
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In order to obtain the interchangeability of limits

lim
n→∞

lim
t→∞

En,∗1
nx

n

[
rXt
]

= lim
t→∞

lim
n→∞

En,∗1
nx

n

[
rXt
]
,

it is enough to prove that the convergence (3.2.43) proved for every n is actually uniform in n. As
seen in the proof of Proposition 3.1.1, it is enough to prove that

lim
t→∞

e−eρnt ∂
∂ri

[
ln F̃nt,j(r)

]
= −∂γ

n(r)
∂ri

ξ̃nj uniformly in n. (3.2.44)

For this purpose we follow the steps of Lemma 3.1.3. First we prove that

lim
t→∞

e−eρnt (1− Fnt (r)) = γn (r) ξ̃
n

uniformly in n, (3.2.45)

which similarly as for (3.2.24) can be deduced from the convergence of the embedded BGW process

lim
k→∞
k∈N

e−eρnk (1− Fnk (r)) = γn (r) ξ̃
n

uniformly in n. (3.2.46)

(3.2.46) will be itself a consequence from (3.2.25) together with

lim
k→∞

1− F̃
n

k (r)

η̃n ·
(
1− F̃

n

k (r)
) = ξ̃

n
uniformly in n. (3.2.47)

Let us prove (3.2.47). We denote by {λnl , l} the eigenvalues of C̃
n

different from ρ̃n, and define
Rn := minl{ρ̃n −< (λnl )} > 0, where < denotes the real part of λnl . We similarly define R for the
matrix C̃. By (3.2.13) we have limn→∞Rn = R. Moreover, for all i, j = 1 . . . d and k ∈ N∗,[

exp(kC̃
n
)
]
ij

= ξ̃ni η̃
n
j e
eρnk +

∑
l

ϕnij,l(k)eλ
n
l k,

where ϕnij,l is a complex-valued polynomial with degree smaller than the algebraic multiplicity of
λnl . Since the ϕnij,l converge as n tends to infinity, we have supn |ϕnij,l(k)| <∞ and we can write∣∣∣∣e−eρnk [exp(kC̃

n
)
]
ij
− ξ̃ni η̃nj

∣∣∣∣ 6∑
l

∣∣ϕnij,l(k)
∣∣ e(<(λnl )−eρn)k

6
∑
l

sup
n

∣∣ϕnij,l(k)
∣∣ e− infn R

nk.

Consequently, denoting by Pn the matrix with entries ξ̃ni η̃
n
j ,

lim
k→∞

e−eρnk exp(kC̃
n
) = Pn uniformly in n, (3.2.48)

and we can find a null sequence uk such that for all k, n > 1,

(1− uk) Pn 6 e−eρnk exp(kC̃
n
) 6 (1 + uk) Pn.

On the other hand, we know by (3.2.28) and (3.2.29) that limk→∞ e−eρnAn(F̃
n

k−1(r)) = 0 uniformly
in n up to N , hence we can choose a null sequence vk such that for all k > 1 and all n > N ,

0 6 e−eρnAn
(
F̃
n

k−1 (r)
)
6 vkPn.

Then, as detailed in the proof of Theorem 1 in [JofSpit67], we have for any k > l > 1 and any
n > N , ∥∥∥∥∥∥ 1− F̃

n

k (r)

η̃n ·
(
1− F̃

n

k (r)
) − ξ̃n

∥∥∥∥∥∥ 6 2ul +
∑k
m=k−l+1 vm

1−
∑k
m=k−l+1 vm − ul

.
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By letting first k tend to infinity, and then l, we obtain (3.2.47) and thus (3.2.45). Now from
(3.2.45) we deduce that the convergence limt→∞ e−eρnt ln F̃nt,j(r) = −γn(r)ξ̃nj is uniform in n too,
and for all h > 0,

γ(r)nξ̃nj − γn(r + hei)ξ̃nj = lim
t→∞

∫ h

0

e−eρnt ∂
∂ri

[
ln F̃nt,j(r + uei)

]
du uniformly in n.

Moreover,

0 6 e−eρnt ∂
∂ri

[
ln F̃nt,j(r)

]
6 e−eρnt 1

F̃nt,j(r)

1
ri

Ẽnej
[Xt,i] ,

and by (3.2.48)
lim
t→∞

e−eρntẼnej
[Xt,i] = ξ̃nj η̃

n
i uniformly in n.

Since limt→∞ F̃nt,j(r) = 1 uniformly in n and r, there exists a constant C > 0 such that for all
n ∈ N, t > 0 and all u ∈ [0, h],∣∣∣∣e−ρnt ∂∂ri

[
ln F̃nt,j(r + uei)

]∣∣∣∣ 6 C

ri + u
,

which is integrable in u. By Lebesgue’s dominated convergence theorem we thus have

γn(r)ξ̃nj − γn(r + hei)ξ̃nj =
∫ h

0

lim
t→∞

[
e−eρnt ∂

∂ri

(
ln F̃nt,j(r + uei)

)]
du uniformly in n,

which leads to (3.2.44).

3.3 Overview of the commutativity results

Summing up the results of this chapter we consequently obtain the following statement.

Theorem 3.3.1. Let us assume (A1)-(A4), (F1)-(F2) and ρ 6= 0. Then the three limits
interchange

lim
n, t, θ

Pn1
nx

n

(
Xt ∈ . |Xt+θ 6= 0, lim

s→∞
Xs = 0

)
. (3.3.1)

Furthermore, the obtained limit is non-degenerate, and defines a non-trivial probability distribution
on Rd+ which does not depend on x := limn→∞

1
nx

n.

We illustrate Proposition 3.3.1 in the commutative diagram presented in Figure 3.1.

78



CHAPTER 3. COMMUTATIVITY RESULTS 3.3.

rescaled BGWc X   
conditioned on X     >0

(n)
t

(n)
t+θ

θ   ∞n   ∞ t   ∞

θ   ∞ θ   ∞ n   ∞n   ∞ t   ∞t   ∞

Feller
Q-process

θ-Yaglom limit 
of the Feller process

long-time behavior of
the BGWc Q-process

      -valued random variableR +
d

BGWc
Q-process

θ-Yaglom limit 
of the BGWc

θ-Yaglom limit 
of the BGWc

Feller process X
conditioned on X    >0t+θ

t

n   ∞ t   ∞t   ∞ θ   ∞

Figure 3.1: Interchangeability of limits.
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Chapter 4

Risk analysis for vanishing
branching populations

This chapter is devoted to the risk analysis related to the extinction of a population, namely the
estimation of the time to extinction, of the total size of the population until extinction (tree size),
and more generally the prediction of the behavior of the population until extinction. We provide
notably an innovative statistical tool which enables to predict the evolution of the population in
case of a very late extinction, corresponding either to the best-case scenario or to the worst-case
scenario, depending on whether the extinction of the population is desirable or not.

We consider a branching population with Poissonian transitions, which can be seen either
as a Markovian process of order d > 1, or as a discrete-time Bienaymé-Galton-Watson process
(BGW), with d types corresponding to the memory of the process. As we will see in Chapter
5, this kind of model arises notably in the epidemiological context. We assume moreover that a
certain parameter in the Poissonian transition, corresponding to the infection parameter in the
latter context, is unknown. The estimation of a key parameter such as the Perron’s root, which
determines whether extinction is certain or not, is of very large interest and has been studied
a lot in the literature. Since the unknown parameter is, in our model, an explicit function of
the Perron’s root, it is very natural either to build a new estimator specifically designed for the
model, or to investigate the existing results in the estimation theory. As detailed in Section
4.2, estimators of the Perron’s root for general multitype branching processes usually require the
knowledge of the whole or partial genealogy of the process (for example individual offspring sizes,
or parent-offspring type combination counts). Such data are mostly non available, which is what we
assume in our work. S. Asmussen and N. Keiding, however, introduced in [AsmKei78] an explicit
estimator based only on the total generation sizes, which is of direct practical applicability for
our model. We deduce from this estimator a first estimator of the infection parameter. Despite
the potentially large order of the Markovian process that we consider, its Poissonian character
ensures many properties which make it easy to derive estimators with interesting characteristics.
We thus build two conditional least squares estimators (CLSE) based either on the chosen process
or on the process conditioned on non-extinction at each time step. In addition, we build an
estimator corresponding to the Q-process associated with the model, which enables predictions of
the evolution of the population in the best-case or worst-case scenario.

After presenting the model in Section 4.1, we provide in Section 4.2 three estimators of the
unknown parameter, which are all only based on the available observations (i.e. the size of the
generations). We aim at asymptotic results, either as the size of the initial population tends to
infinity, or as time tends to infinity. It could be of a great mathematical interest to study the
asymptotic behavior when both the number of ancestors and the number of generations of the
branching process simultaneously tend to infinity, as it is done in [DioYa97] for the single-type
case, but we choose to focus on asymptotic properties of an immediate practical interest. We first
build in Subsection 4.2.1 a CLSE which is consistent and asymptotically normal, as the initial
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population size grows to infinity. This estimator is thus appropriate either in the growth phase
of the population or in its decay phase, provided that the initial time of the model corresponds
to a large number of individuals. In Subsection 4.2.2 we focus on the subcritical case that is
particularly designed for the decay phase, and build a CLSE based on the process conditioned
on its non-extinction at each time step. We prove its consistency and asymptotic normality, as
time tends to infinity. We finally provide in Subsection 4.2.3 an explicit estimator derived
from the estimator of the Perron’s root introduced in [AsmKei78], and we deduce the consistency
and asymptotic normality of our estimator in the supercritical case, on the set of non-extinction,
as time tends to infinity. This last estimator is especially suitable in the growth phase of the
population. In Subsection 4.2.4 we compare these three estimators for several values of initial
population size and time, and illustrate by means of simulations their asymptotic distributions.
The final Section 4.3 is dedicated to the very late extinction case. For this purpose, we study
in Subsection 4.3.1 the Q-process associated with the model, i.e. the process conditioned on
very late extinction, and we prove that this process can be described very easily, with recognizable
transition laws. In order to make long-term predictions for this conditioned process, we build in
Subsection 4.3.2 a CLSE of the unknown parameter designed for the Q-process, and prove its
consistency and asymptotic normality, as time tends to infinity.

4.1 Stochastic branching model

In this section we introduce a stochastic process, which can arise notably as a model for the
propagation of a rare SEIR disease in a large branching population. This will be detailed in
Chapter 5, while we focus here on the theoretical aspect of the process (statistical properties,
and stochastic properties of the associated Q-process).

Throughout this chapter we consider the following Markovian process of order d > 1 (see
Figure 4.1),

Xn =
d∑
k=1

Xn−k∑
i=1

ζn−k,n,i, (4.1.1)

where the {ζn−k,n,i}i are i.i.d. given Fn−1 := σ
(
{Xn−k}k>1

)
, and follow a Poisson distribution

with some parameter Ψk independent of n (time-homogeneous setting). Moreover, the {ζn−k,n,i}i,k
are assumed to be independent given Fn−1.

The quantity k represents the maturation period needed to produce the “mathematical off-
springs” ζn−k,n,i. Note that the ζn−k,n,i are not offsprings of individual i in the usual sense, since
the latter is only counted in the population at time n− k.

We point out that in the simple case d = 1, the process is a single-type BGW branching process
with a Poisson offspring distribution.

We easily derive from (4.1.1) the conditional law of Xn,

Xn|(Xn−1, . . . , Xn−d) ∼ Poisson

(
d∑
k=1

Xn−kΨk

)
. (4.1.2)

It appears moreover thanks to (4.1.1) that Xn can be written as a multitype BGW process.
We do not introduce in this work the definition and properties of multitype BGW processes, since
there are many similarities with the multitype BGWc processes introduced in Section 1.1. We
refer instead to [AthNey72].

Let us define the d-dimensional process Xn := (Xn,1, . . . , Xn,d) such that

Xn,i := Xn−i+1, i = 1 . . . d. (4.1.3)

We thus have
Xn = (Xn, Xn−1, . . . , Xn−d+1) . (4.1.4)
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Note that in particular the first coordinate Xn,1 corresponds to the value of the single-type process
at time n. Then (Xn)n>0 is a d-type BGW process with offspring generating function

fi(r) :=
∞∑
k=0

(Ψi)
k

k!
e−Ψirk1ri+1 = e−Ψi(1−r1)ri+1, i = 1 . . . d− 1,

fd(r) :=
∞∑
k=0

(Ψd)
k

k!
e−Ψdrk1 = e−Ψd(1−r1),

(4.1.5)

and mean matrix

M :=


Ψ1 1 0 . . . 0
Ψ2 0 1 . . . 0
...

...
. . .

...
Ψd−1 0 . . . . . . 1
Ψd 0 . . . . . . 0

 . (4.1.6)

The process (Xn)n>0 is obviously non simple (the definition is the same as for BGWc processes,
see Definition 1.1.4). We assume throughout this paper that Ψd > 0, and that there exists some
i = 1 . . . d−1 with Ψi > 0. Under this assumption, there exists some p ∈ N such that Mp has all its
entries positive, and the process is called positive regular (see [AthNey72] Section 5.2). Moreover,
the process satisfies the (XlogX) assumption: for all i, j = 1 . . . d,

E [X1,j lnX1,j |X0 = ei] <∞. (4.1.7)

Indeed, for all i = 1 . . . d,

pi(k) =

{
(Ψi)

k

k! e−Ψi if k = (k, δ2,i+1, . . . , δd,i+1)
0 otherwise.

Hence the following holds. If j = 1, then∑
k∈Nd
k6=0

kj ln kj pi(k) =
∑
k>1

k ln k
(Ψi)

k

k!
e−Ψi .

Denoting uk = k ln k (Ψi)
k
/k!, the series

∑
k>1 uk converges because (uk)k>1 satisfies d’Alembert’s

criterion limk→∞ uk+1u
−1
k = limk→∞ ln(k + 1)Ψi(k ln k)−1 = 0 < 1. If j 6= 1, we have∑

k∈Nd
k6=0

kj ln kj pi(k) = 0.

The theory of multitype positive regular and non simple BGW processes implies that the
extinction of the process (Xn)n>0 occurs almost surely if and only if the Perron’s root ρ of the
mean matrix M is smaller than or equal to 1 ([AthNey72] Theorem 5.3.2). By definition, any
eigenvalue λ of the matrix M is solution of det (M− λI) = 0. Let us define Dd(λ) := det (M− λI).
By induction on d > 1, we prove that

Dd(λ) = (−1)d+1

[
d∑
k=1

Ψkλ
d−k − λd

]
.

We have indeed D1(λ) = Ψ1 − λ, and for all d > 1, by expanding the determinant Dd+1(λ) along
the last row, we obtain that

Dd+1(λ) = (−1)d+2 Ψd − λDd(λ) = (−1)d+2

[
d+1∑
k=1

Ψkλ
d+1−k − λd+1

]
.
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Hence

det (M− λI) = 0 ⇐⇒
d∑
k=1

Ψkλ
d−k − λd = 0 ⇐⇒

d∑
k=1

Ψkλ
−k = 1.

The Perron’s root ρ of the matrix M is thus the largest real solution of the equation

d∑
k=1

Ψkρ
−k = 1. (4.1.8)

But

ρ 6 1 ⇐⇒ ρ−1, . . . , ρ−d > 1 ⇐⇒ 1 =
d∑
k=1

Ψkρ
−k >

d∑
k=1

Ψk,

hence we have the following result ([Jac10A, JacPe10]):

Proposition 4.1.1. Let us define

R :=
d∑
k=1

Ψk. (4.1.9)

Then the process (Xn)n>0 defined by (4.1.1) and (4.1.4) is

� subcritical (ρ < 1) if R < 1,

� critical (ρ = 1) if R = 1,

� supercritical (ρ > 1) if R > 1.

4.2 Estimation of the unknown parameter

Throughout this section we consider the BGW branching process (Xn)n>0 introduced in Section
4.1, with generating function (4.1.5) and mean matrix (4.1.6).

We assume that the Ψk’s affinely depend on some unknown parameter θ0:

Ψk(θ0) = akθ0 + bk, k = 1 . . . d, (4.2.1)

where ak and bk are known. The purpose of this section is to provide estimators for θ0. We will see
in Chapter 5 that in the epidemiological context of rare SEIR diseases in large populations, θ0

could correspond either to the horizontal or to the vertical infection parameter. In the following,
we denote by a, b and Ψ(θ0) the d-dimensional vectors with coordinates ak, bk and Ψk(θ0)
respectively.

In what follows, we shall adopt a notation more suitable for parametric statistical studies, and
denote with a subscript on P and E the parameter of the distribution. The initial distribution
which was indicated by a subscript in the previous chapters, will from now on be written explicitly.
For example,

Pθ0 [Xn = j|X0 = i] .

Our aim is to provide estimators of θ0 based on the observations (X0, . . . ,Xn), with asymptotic
properties corresponding to interesting characteristics, notably in the epidemiological context. We
are thus looking for estimators suitable in the subcritical and/or supercritical cases, with asymp-
totic properties, as the initial population size grows to infinity, or as the number of observations n
tends to infinity. We would thus entirely cover the problem of estimating the infection parameter
in the growth and decay phases of the population, offering moreover several alternatives depending
on which asymptotic is suitable regarding the available data.
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time
nn-1

...

n-d

X     =1n-d

n-2

X     =1n-2 X     =2n-1 X  =6+...n

...

...

...

ζ        ~ Poiss ( Ψ  )1n-1,n,1

ζ        ~ Poiss ( Ψ  )1n-1,n,2

ζ        ~ Poiss ( Ψ  )2n-2,n,1

ζ        ~ Poiss ( Ψ  )dn-d,n,1

Figure 4.1: An illustration of the model (4.1.1).
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We first point out that, as an immediate consequence of Proposition 4.1.1 and (4.2.1) , the
criticality of the process depends on the sign of θ0 − θcrit., where

θcrit. :=
1−

∑d
k=1 bk∑d

k=1 ak
. (4.2.2)

More precisely,

if


θ0 < θcrit.

θ0 = θcrit.

θ0 > θcrit.

the process is


subcritical
critical.
supercritical

(4.2.3)

As mentioned in the introduction, we first investigate the numerous results in the literature
dedicated to the estimation theory for general branching processes, in order to find an appropriate
estimator for our model. In its early paper [Har48] in 1948, T. E. Harris provided an estimator
for the mean value m0 of a single-type BGW process X0, . . . , Xn. It is a maximum likelihood
estimator, now referred to as the Harris estimator, based on observed values of the individual
offspring size for each individual in each generation. The estimator is

m̂MLE
n :=

X1 + . . .+Xn

X0 + . . .+Xn−1
, (4.2.4)

and Harris proved the consistency of m̂MLE
n as n → ∞ in the supercritical case, on the set of

non-extinction. Note that the estimator m̂MLE
n only involves X0, . . . , Xn. It is actually proved in

[Dion72] that m̂MLE
n is also the maximum likelihood estimator of m0 based on the observed values

of X0, . . . , Xn only. It is straightforward to show that m̂MLE
n is also the weighted conditional least

squares estimator (CLSE) based on the process Xk/
√
Xk−1, defined as follows

m̂CLSE
n := arg min

m>0

n∑
k=1

(Xk −mXk−1)2

Xk−1
. (4.2.5)

Similar estimation problems have been considered in the multitype case. In [AsmKei78], S.
Asmussen and N. Keiding proposed a maximum likelihood estimator of the Perron’s root ρ0 based
on the observations of the whole genealogy of the population (i.e. each offspring vector produced
by every individual). It is proved in [KeiLau78] that this estimator is also the maximum likelihood
estimator solely based on the observations at each generation of the total number of individuals
of type j whose parents were of type i, for every i, j = 1 . . . d. However in epidemiology this kind
of variables are generally not observable. For our model this would imply indeed that, considering
the number of individuals at a given time, we could say how many of them are stemming from
an individual alive k time-units earlier. We are thus more interested in estimations based on
the generations, or on the total size of the generations, such as the other estimator presented in
[AsmKei78],

ρ̃n =
|X1|+ . . .+ |Xn|
|X0|+ . . .+ |Xn−1|

. (4.2.6)

For d = 1, ρ̃n clearly reduces to the Harris estimator defined in (4.2.4). Note that the relation
(4.1.8) implies under assumption (4.2.1) that

θ0 =
1−

∑d
k=1 bkρ

−k
0∑d

k=1 akρ
−k
0

. (4.2.7)

Hence an estimation of ρ0 would provide an estimation of θ0. However, the opposite is not true
since ρ0 cannot in general be expressed as an explicit function of θ0. In the supercritical case, the
estimator ρ̃n was shown to be consistent, as n→∞, on the set of non-extinction, with an explicit
asymptotic distribution ([AsmKei78]).

Due to the Poissonian character of the transitions of the process (Xn)n>0, it is possible, in our
setting, to express the joint probability function of the observations X0, . . . , Xn, without involving
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the whole or partial genealogy of the process. The likelihood function is indeed given by two
factors, one of which is independent of θ0, the logarithm of the other being

L (θ0) := −θ0

n∑
k=1

a ·Xk−1 +
n∑
k=1

Xk ln (Ψ(θ0) ·Xk−1) ,

The MLE of θ0 based on the observations X0, . . . , Xn is thus a solution of L′ (θ) = 0, where

L′ (θ) = −
n∑
k=1

a ·Xk−1 +
n∑
k=1

Xk
a ·Xk−1

Ψ(θ) ·Xk−1
.

This equation has in general no explicit solution, except for simple cases such as the one-dimensional
case d = 1, or the linear case b = 0. The MLE is then, respectively,

θ̂MLE
n

d=1=
∑n
k=1 (Xk − bXk−1)∑n

k=1 aXk−1
,

θ̂MLE
n

b=0=
∑n
k=1Xk∑n

k=1 a ·Xk−1
.

(4.2.8)

As shown later (see (4.2.13)), it corresponds in these cases to the CLSE of θ0. It is however in
general not the case, and we choose to focus on the CLSE.

In Subsection 4.2.1 we first study the weighted CLSE

θ̂X|X0| := arg min
θ∈Θ

n∑
k=1

[Xk − Eθ (Xk|Xk−1)]2

a ·Xk−1
, (4.2.9)

and its asymptotic properties, as |X0| → ∞, for any class of criticality. Since we are only interested
in the asymptotic in |X0|, we omit for the sake of clarity the subscript n in the estimator.

In a second instance, since we aim at finding an estimator with asymptotic properties, as
n → ∞, holding in the subcritical case, we consider in Subsection 4.2.2 the homogeneous
Markov chain (Zk)k>0 defined by

P (Zk = j|Zk−1 = i) = P (Xk = j|Xk−1 = i,Xk 6= 0) ,

and study the associated weighted CLSE

θ̂Zn := arg min
θ∈Θ

n∑
k=1

[Zk − Eθ (Zk|Zk−1)]2

a · Zk−1
. (4.2.10)

Finally, thanks to relation (4.2.7), we derive from the estimator (4.2.6) a third estimator of θ0,

θ̃Xn :=
1−

∑d
k=1 bkρ̃

−k
n∑d

k=1 akρ̃
−k
n

, (4.2.11)

and deduce in Subsection 4.2.3 from [AsmKei78] asymptotic properties of θ̃Xn , as n→∞, in the
supercritical case on the set of non-extinction.

In the following, we denote Θ := ]θmin, θmax[ with θmax > θmin > 0.

4.2.1 A CLSE with asymptotic properties, as |X0| → ∞
In this section, we provide an estimator with asymptotic properties, as the initial population size
|X0| tends to infinity, holding for any class of criticality. We consider the weighted CLSE based
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on the process Yk := Xk/
√
a ·Xk−1,

θ̂X|X0| := arg min
θ∈Θ

n∑
k=1

(Yk − Eθ (Yk|Xk−1))2

= arg min
θ∈Θ

n∑
k=1

(Xk −Ψ(θ) ·Xk−1)2

a ·Xk−1
. (4.2.12)

We easily derive the following explicit form

θ̂X|X0| =
∑n
k=1 (Xk − b ·Xk−1)∑n

k=1 a ·Xk−1
. (4.2.13)

The normalization of the process Xk by
√
a ·Xk−1 appears to be the most natural and suitable

for the following reasons. First, this normalization generalizes the normalization Xk/
√
aXk−1 in

the monotype case, which is the one leading to the Harris estimator of m0 = aθ0 + b. We have
indeed, for d = 1,

aθ̂XX0
+ b = m̂MLE

n .

As mentioned in (4.2.8), it also corresponds, in the linear case, to the MLE of θ0. In addition,
defining for any vector u, u := mini ui and u := maxi ui, we have

θ0 +
b

a
6 Eθ0

(
(Yk − Eθ0 (Yk|Xk−1))2 |Xk−1

)
= θ0 +

b ·Xk−1

a ·Xk−1
6 θ0 +

b

a
, (4.2.14)

hence the conditional variance of the error term Yk − Eθ0 (Yk|Xk−1) in the stochastic regression
equation

Yk = Eθ0 (Yk|Xk−1) + Yk − Eθ0 (Yk|Xk−1)

is invariant under multiplication of the whole process, and bounded respectively to (Xk)k>0.
We provide asymptotical results for the estimator θ̂X|X0| defined by (4.2.13), as the initial

population size tends to infinity. We introduce the following notation. For every i, j = 1 . . . d and
k > 1, m(k)

ij (θ) denotes the (i, j)-th entry in the k-th power of the matrix M(θ) given by (4.1.6).
We define

σ2 (θ) := θ +

∑n
k=1

∑d
j=1

∑d
i=1 αjbim

(k−1)
ji (θ)∑n

k=1

∑d
j=1

∑d
i=1 αjaim

(k−1)
ji (θ)

. (4.2.15)

We can now express the main result of this section.

Theorem 4.2.1. Let us assume that there exist some αi ∈ [0, 1], i = 1 . . . d, such that, for all
i = 1 . . . d,

lim
|X0|→∞

X0,i

|X0|
a.s.= αi. (4.2.16)

Then θ̂X|X0| is strongly consistent:

lim
|X0|→∞

θ̂X|X0|
a.s.= θ0, (4.2.17)

and is asymptotically normally distributed:

lim
|X0|→∞

√√√√∑n
k=1 a ·Xk−1

σ2(θ̂X|X0|)

(
θ̂X|X0| − θ0

)
D= N (0, 1) . (4.2.18)

Note that assumption (4.2.16) allows several coordinates (at most d − 1) of the initial vector
X0 to be null. If for all i = 1 . . . d, αi = 1

d , then all the coordinates of X0 grow proportionally to
infinity.

In order to prove Theorem 4.2.1, we first show the following lemma, which takes advantage of
the branching property of the process (Xk)k>0, and uses the strong law of large numbers.
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Lemma 4.2.2. Assuming (4.2.16), the following holds for all k = 1 . . . n and all i = 1 . . . d,

lim
|X0|→∞

Xk,i

|X0|
a.s.=

d∑
j=1

αjm
(k)
ji (θ0). (4.2.19)

Proof of Lemma 4.2.2. Using the branching property of the process (Xk)k>0, we write

Xk,i =
X0,1∑
j=1

X
(1)
k,i,j + . . .+

X0,d∑
j=1

X
(d)
k,i,j ,

where for all l = 1 . . . d and j = 1 . . . X0,l, X
(l)
k,i,j is the i-th coordinate of a d-type branching

process at time k initiated by a single individual of type l. For k, i and l fixed, the random
variables {X(l)

k,i,j}j are i.i.d. with mean value m
(k)
li (θ0). According to the strong law of large

numbers and under (4.2.16), we have, for every l = 1 . . . d such that X0,l 6= 0,

lim
|X0|→∞

∑X0,l
j=1 X

(l)
k,i,j

X0,l

a.s.= m
(k)
li (θ0),

which together with (4.2.16) leads to (4.2.19).

Proof of Theorem 4.2.1. To prove the consistency of θ̂X|X0| we apply Lemma 4.2.2 to (4.2.13), using
the fact that Xk = Xk,1 and Xk−i = Xk−1,i, and obtain

lim
|X0|→∞

θ̂X|X0|
a.s.=

∑n
k=1

∑d
j=1 αj

(
m

(k)
j1 (θ0)−

∑d
i=1 bim

(k−1)
ji (θ0)

)
∑n
k=1

∑d
i=1

∑d
j=1 aiαjm

(k−1)
ji (θ0)

. (4.2.20)

By definition,

m
(k)
j1 (θ0) =

d∑
i=1

m
(k−1)
ji (θ0)mi1(θ0) =

d∑
i=1

m
(k−1)
ji (θ0) (aiθ0 + bi) ,

hence (4.2.20) immediately leads to (4.2.17).
We are now interested in the asymptotic distribution of θ̂X|X0| − θ0. We derive from (4.2.13)

that √√√√ n∑
k=1

a ·Xk−1

(
θ̂X|X0| − θ0

)
=
∑n
k=1 (Xk −Ψ(θ0) ·Xk−1)√∑n

k=1 a ·Xk−1

. (4.2.21)

By (4.1.1),

Xk −Ψ(θ0) ·Xk−1 =
d∑
i=1

Xk−i∑
j=1

(ζk−i,k,j −Ψi (θ0)) =:
d∑
i=1

Xk−i∑
j=1

ζ̊k−i,k,j , (4.2.22)

where the {ζk−i,k,j}j are i.i.d.given Fk−1, following a Poisson distribution with parameter Ψi(θ0),

and the {ζk−i,k,j}i,j are independent given Fk−1. Renumbering the ζ̊k−i,k,j we then obtain

n∑
k=1

(Xk −Ψ(θ0) ·Xk−1) =
d∑
i=1

Pn
k=1 Xk−i∑
j=1

ζ̊k−i,k,j . (4.2.23)

Applying a central limit theorem for the sum of a random number of independent random variables
(see e.g. [Blum63]), we obtain that for all i = 1 . . . d,

lim
|X0|→∞

∑Pn
k=1 Xk−i

j=1 ζ̊k−i,k,j√∑n
k=1Xk−i

D= N (0, aiθ0 + bi) . (4.2.24)
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We have used the fact that |X0| is a real positive sequence growing to infinity, and
∑n
k=1Xk−i a

sequence of integered-valued random variables such that
∑n
k=1Xk−i/ |X0| converges in probability

to a finite random variable. In our case this last limit is actually deterministic, since we have shown
in Lemma 4.2.2 that

lim
|X0|→∞

∑n
k=1Xk−i

|X0|
a.s.=

n∑
k=1

d∑
j=1

αjm
(k−1)
ji (θ0).

Using (4.2.23) in (4.2.21), we write√√√√ n∑
k=1

a ·Xk−1

(
θ̂X|X0| − θ0

)
=

d∑
i=1

∑Pn
k=1 Xk−i

j=1 ζ̊k−i,k,j√∑n
k=1Xk−i

√∑n
k=1Xk−i√∑n

k=1 a ·Xk−1

. (4.2.25)

Using again Lemma 4.2.2,

lim
|X0|→∞

√∑n
k=1Xk−i√∑n

k=1 a ·Xk−1

a.s.=

√√√√ ∑n
k=1

∑d
j=1 αjm

(k−1)
ji (θ0)∑n

k=1

∑d
j=1

∑d
l=1 αjalm

(k−1)
jl (θ0)

,

which, combined to (4.2.24) and (4.2.25), implies by Slutsky’s Lemma that

lim
|X0|→∞

√√√√ n∑
k=1

a ·Xk−1

(
θ̂X|X0| − θ0

)
D= N

(
0, σ2 (θ0)

)
. (4.2.26)

By (4.2.15) and (4.2.17),

lim
|X0|

√
σ2(θ0)√
σ2(θ̂X|X0|)

a.s.= 1,

from which we deduce (4.2.18).

Remark 4.2.3. We point out that we do not use the Poissonian character of the transitions of
the process (4.1.1) to derive the properties of θ̂X|X0|, but we simply need its first and second
order moments. This estimator can thus be applied to any process of the form (4.1.1), where
the {ζn−k,n,i}i do not necessarily follow a Poisson distribution, but satisfy Eθ0 (ζn−k,n,i|Fn−1) =
Ψk(θ0). The variance should be either known, or previously estimated, and the process should
be normalized accordingly such that the error term in the stochastic regression equation remains
bounded.

4.2.2 A CLSE with asymptotic properties, as n→∞
In this section we are interested in building an estimator of θ0 suitable for populations modeled
by (4.1.1), in the subcritical case, hence for vanishing populations, or populations in their decay
phase. The estimator θ̂X|X0| introduced in Subsection 4.2.1 might be suitable, since its asymptotic
properties are valid for any class of criticality. However, we might not be in the case where |X0| is
large enough to assume that these asymptotic properties are applicable. We thus whish to build
an estimator with asymptotic properties as the number of observations n tends to infinity.

For this purpose, and because of the almost sure extinction of the process (Xk)k>0 in the sub-
critical case, we consider instead of (Xk)k>0, the associated process conditioned on non-extinction
at each time-step. By this we mean the homogeneous Markov chain (Zk)k>0 defined by the fol-
lowing transition probabilities: for all i, j ∈ Nd\{0},

Q(i, j) :=Pθ0 (Zk = j|Zk−1 = i)
=Pθ0 (Xk = j|Xk−1 = i,Xk 6= 0) .

(4.2.27)
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We thus take into account the information that at each time-step k, the population does not
become extinct 0, which is the case for every k 6 n if the population is still extant at time n (by
this we mean the population with its memory, i.e. Xn 6= 0). Denoting by P (i, j) the transition
probabilities of the process (Xk)k>0, we thus have,

Q(i, j) =
P (i, j)

1− P (i,0)
, i, j ∈ Nd\{0}. (4.2.28)

By definition of (Xk)k>0, P (i, j) = 0 as soon as (j2, . . . , jd) 6= (i1, . . . , id−1). Hence the same
holds for Q(i, j), and the process (Zk)k>0 consequently satisfies for all i = 2 . . . d and k > 0,

Zk,i
a.s.= Zk−1,i−1.

We define the one-dimensional d-Markovian process (Zk)k>0 corresponding to the first coordinate,
for all k > 0,

Zk := Zk,1. (4.2.29)

Let us compute explicitly its transition probabilities. For all d-dimensional vector u, we define
the truncated sum

due := u1 + . . .+ ud−1. (4.2.30)

By definition,

Pθ0 (Zk = j|Zk−1) = Q (Zk−1, (j, Zk−1, Zk−2, . . . , Zk−d+1))

=
P (Zk−1, (j, Zk−1, Zk−2, . . . , Zk−d+1))

1− P (Zk−1,0)
,

with

P (Zk−1,0) =

{
e−Ψd(θ0)Zk−d if Zk−1 = . . . = Zk−d+1 = 0,
0 otherwise.

Hence

Pθ0 (Zk = j|Zk−1) =
(Ψ(θ0) · Zk−1)j e−Ψ(θ0)·Zk−1

j!
(
1− 1{dZk−1e=0}e−Ψd(θ0)Zk−d

) . (4.2.31)

In this section we study a CLSE associated with the process (Zk)k>0, and obtain asymptotic
properties as the number of observations n tends to infinity, in the subcritical case. Hence this
estimator is particularly adapted for the study of the decay phase of the population, even if the
number of individuals at the beginning of this phase is not very large.

We consider the CLSE corresponding to the normalized process Zk/
√
a · Zk−1,

θ̂Zn := arg min
θ∈Θ

Sn(θ),

Sn(θ) :=
n∑
k=1

(
Zk√
a · Zk−1

− f(θ,Zk−1)

)2

,
(4.2.32)

where

f(θ0,Zk−1) := Eθ0

(
Zk√
a · Zk−1

∣∣∣Zk−1

)

=
Ψ(θ0) · Zk−1√

a · Zk−1

(
1− 1{dZk−1e=0}e−Ψd(θ0)Zk−d

) . (4.2.33)

Denoting by f ′ the derivative of f with respect to θ, we thus have, for all θ ∈ Θ and all j ∈ Nd,
j 6= 0,

f ′(θ, j) =


√
adjd

1−(1+Ψd(θ)jd)e−Ψd(θ)jd

(1−e−Ψd(θ)jd)2 if dje = 0,
√
a · j otherwise.

(4.2.34)
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We finally define

εk :=
Zk√
a · Zk−1

− f(θ0,Zk−1), (4.2.35)

which implies that

Eθ0
(
ε2
k|Zk−1

)
=

Ψ(θ0) · Zk−1

a · Zk−1

(
1− 1{dZk−1e=0}e−Ψd(θ0)Zk−d

) , (4.2.36)

and the conditional variance of the error term εk in the stochastic regression equation is conse-
quently bounded:

θ0 +
b

a
6 Eθ0

(
ε2
k|Zk−1

)
6
(

1− e−Ψd(θ0)
)−1

(
θ0 +

b

a

)
. (4.2.37)

Theorem 4.2.4. The estimator θ̂Zn is strongly consistent:

lim
n→∞

θ̂Zn
a.s.= θ0. (4.2.38)

Proof. According to Proposition 3.1 in [Jac10B], sufficient conditions for the strong consistency of
θ̂Zn are that f(.,Zk−1) is Lipschitz, in the sense that there exists a nonnegative σ(Z0, . . . ,Zk−1)-

measurable function Ck satisfying for all θ1, θ2 ∈ Θ, |f(θ1,Zk−1)− f(θ2,Zk−1)|
a.s.
6 Ck |θ1 − θ2|,

that limk→∞Eθ0
(
ε2
k|Zk−1

) a.s.
< ∞, and that

lim
n→∞

inf
|θ−θ0|>δ

n∑
k=1

(f(θ0,Zk−1)− f(θ,Zk−1))2 a.s.= ∞. (4.2.39)

The Lipschitz condition is satisfied thanks to (4.2.34), which shows that f ′(.,Zk−1) is bounded
on Θ.

The second condition follows from (4.2.37).
Let δ > 0 and θ ∈ Θ such that |θ − θ0| > δ. We assume for convenience that θ0 > θ. In order

to prove (4.2.39), we apply the mean value theorem to the function f(.,Zk−1), and obtain that
there exists some θ̃k ∈]θ, θ0[ such that

f ′(θ̃k,Zk−1) =
f(θ0,Zk−1)− f(θ,Zk−1)

θ0 − θ
.

Consequently,
n∑
k=1

(f(θ0,Zk−1)− f(θ,Zk−1))2 = (θ0 − θ)2
n∑
k=1

(
f ′(θ̃k,Zk−1)

)2

= (θ0 − θ)2
n∑
k=1

a · Zk−1

(
1− 1{dZk−1e=0}

(
1 + Ψd(θ̃k)Zk−d

)
e−Ψd(θ̃k)Zk−d

)2

(
1− 1{dZk−1e=0}e−Ψd(θ̃k)Zk−d

)4

> (θ0 − θ)2
(

1− (1 + Ψd (θ1)) e−Ψd(θ1)
)2 n∑

k=1

a · Zk−1

> δ2
(

1− (1 + Ψd (θ1)) e−Ψd(θ1)
)2

an,

which implies (4.2.39).

In order to study the asymptotic distribution of θ̂Zn , we shall prove the positive recurrence of the
Markov chain (Zk)k>0, and the finiteness of the first and second-order moments of its stationary
distribution.

92



CHAPTER 4. RISK ANALYSIS FOR VANISHING BRANCHING POPULATIONS 4.2.

Remark 4.2.5. We point out that the Yaglom distribution νθ0 associated with the subcritical
process (Xk)k>0, defined as follows (see e.g. [AthNey72], Theorem 5.4.2),

lim
n→∞

Pθ0 (Xn = i|X0 = j, Xn 6= 0) = νθ0(i), i, j ∈ Nd\{0}, (4.2.40)

and which is a quasi-stationary distribution for the Markov chain (Xk)k>0, is not a stationary
distribution for (Zk)k>0. In other words (denoting just for the purpose of this remark the initial
distribution as a subscript), we have

Pθ0,νθ0 (X1 = j |X1 6= 0) = νθ0 (j) , (4.2.41)

which does not imply in general that

Pθ0,νθ0 (Z1 = j) = νθ0 (j) . (4.2.42)

Indeed, (4.2.41) means that ∑
i∈Nd\{0} νθ0(i)P (i, j)

1−
∑

i∈Nd\{0} νθ0 (i)P (i,0)
= νθ0 (j) , (4.2.43)

while (4.2.42) would mean ∑
i∈Nd\{0}

νθ0(i)Q (i, j) = νθ0 (j) ,

i.e. ∑
i∈Nd\{0}

νθ0(i)
P (i, j)

1− P (i,0)
= νθ0 (j) . (4.2.44)

In general, (4.2.43) does not imply (4.2.44), except if the Yaglom distribution is reduced to a Dirac
measure.

However, we can prove that the Markov chain (Zk)k>0 has a unique stationary probability
measure, a priori distinct from the Yaglom distribution.

Proposition 4.2.6. Let us assume that the process (Xk)k>0 is subcritical. Then the homogeneous
Markov chain (Zk)k>0 is irreducible positive recurrent, and its stationary distribution λθ0 satisfies
for all i, j = 1 . . . d, ∑

k∈Nd
kiλθ0(k) <∞, (4.2.45)

∑
k∈Nd

kikjλθ0(k) <∞. (4.2.46)

Proof. Clearly, the chain is irreducible: due to the Poisson random variables coming in play, any
nonzero state is attainable from any other nonzero state in a finite time.

The positive recurrence then follows from a criterion given e.g. in [Twe75], Theorem 3.1:
positive recurrence is implied if there exists a finite set A ⊂ Nd\{0} and a non-negative function
g on Nd\{0} such that ∑

j∈Nd\{0}

Q(i, j)g(j) 6 g(i)− 1, i /∈ A. (4.2.47)

We define g(j) :=
∑d
k=1 akjk, where a1 = 1, and for all k = 2 . . . d,

0 < ak < min (ak−1 −Ψk−1 (θ0) ,Ψk (θ0)) . (4.2.48)
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The existence of such ak is ensured by the fact that in the subcritical case,
∑d
k=1 Ψk(θ0) < 1 (see

Proposition 4.1.1), and in particular 1−Ψ1(θ0) > 0. We then have (see (4.2.33)) for all i 6= 0

g(i)− 1−
∑

j∈Nd\{0}

Q(i, j)g(j) = g(i)− 1− Eθ0 (Z1|Z0 = i)−
d∑
k=2

akik−1

= g(i)− 1− Ψ(θ0) · i
1− 1{die=0}e−Ψd(θ0)id

−
d∑
k=2

akik−1

∼|i|→∞ g(i)− 1−Ψ(θ0) · i−
d∑
k=2

akik−1

=
d−1∑
k=1

(ak −Ψk (θ0)− ak+1) ik + (ad −Ψd (θ0)) id − 1.

Hence
lim
|i|→∞

(
g(i)− 1−

∑
j∈Nd\{0}

Q(i, j)g(j)
)

= +∞.

Consequently there exists some finite set A satisfying (4.2.47), and the chain (Zk)k>0 is positive
recurrent.

Let us now prove that its stationary measure λθ0 admits finite first-order moments. First, we
point out that by definition of Zn, we have for all i = 1 . . . d,∑

k∈Nd
kiλθ0(k) = Eθ0

(
lim
n→∞

Zn,i

)
= Eθ0

(
lim
n→∞

Zn−i+1,1

)
=
∑
k∈Nd

k1λθ0(k) =: mλθ0 . (4.2.49)

It is thus enough to demonstrate (4.2.45) for i = 1. According to [Twe83], Theorem 1, in order
that

∑
j∈Nd\{0} ϕ(j)λθ0(j) < ∞ for some given non-negative function ϕ, it suffices that for some

non-empty finite set B and some function h with h(j) > ϕ(j), j /∈ B,∑
j∈Nd\{0}

Q(i, j)h(j) 6 h(i)− ϕ(i), i /∈ B. (4.2.50)

Taking ϕ(j) := j1 and h(j) :=
∑
k=1 bkjk with

b1 =
2

1− (Ψ1(θ0) + . . .+ Ψd(θ0))
, bk = b1 (Ψk(θ0) + . . .+ Ψd(θ0)) , k = 2 . . . d, (4.2.51)

we have for all i 6= 0, h(j) > ϕ(j), and

h(i)− ϕ(i)−
∑

j∈Nd\{0}

Q(i, j)h(j) ∼|i|→∞
d∑
k=1

bkik − i1 − b1Ψ(θ0) · i−
d∑
k=2

bkik−1

=
d−1∑
k=1

(bk − b1Ψk (θ0)− bk+1) ik − i1 − (bd − b1Ψd (θ0)) id

= (b1 − b1Ψ1 (θ0)− b2 − 1) i1

=
1

1− (Ψ1(θ0) + . . .+ Ψd(θ0))
i1.

Hence
lim
|i|→∞

(
h(i)− f(i)−

∑
j∈Nd\{0}

Q(i, j)h(j)
)

= +∞,

and there exists some finite set B satisfying (4.2.50). Consequently,
∑

j∈Nd\{0} j1λθ0(j) <∞, and
the quantity mλθ0 defined in (4.2.49) is finite.
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Due to the specific properties of the process (Zk)k>0, it is possible to deduce from this that the
second-order moments of the stationary measure λθ0 are finite as well. Indeed, for all i = 1 . . . d−1,
using the inequality x (1− e−x)−1 6 1 + x, x > 0,

Eθ0 (ZnZn−i) = Eθ0
[
Zn−i

Ψ(θ0) · Zn−1

1− 1{dZn−1e=0}e−Ψd(θ0)Zn−d

]
6 Eθ0

[
Zn−i

(
1 + Ψ(θ0) · Zn−1

)]
,

hence

lim
n→∞

Eθ0 (ZnZn−i) 6 mλθ0 + max
k=0...d−1

lim
n→∞

Eθ0 (ZnZn−k)
d∑
j=1

Ψj(θ0). (4.2.52)

Similarly,

Eθ0
(
Z2
n

)
= Eθ0

[
Ψ(θ0) · Zn−1

1− 1{dZn−1e=0}e−Ψd(θ0)Zn−d

(
1 +

Ψ(θ0) · Zn−1

1− 1{dZn−1e=0}e−Ψd(θ0)Zn−d

)]
6 Eθ0

[(
2 + Ψ(θ0) · Zn−1

)2
]

= 4 + 4
d∑
j=1

Ψj(θ0)Eθ0 (Zn−j) +
d∑
j=1

d∑
l=1

Ψj(θ0)Ψl(θ0)Eθ0 (Zn−jZn−l) ,

which by Fatou’s lemma and (4.2.49) leads to (using the fact that
∑d
j=1 Ψj(θ0) < 1)

lim
n→∞

Eθ0
(
Z2
n

)
6 4 + 4mλθ0 + max

k=0...d−1
lim
n→∞

Eθ0 (ZnZn−k)
d∑
j=1

Ψj(θ0).

Together with (4.2.52) this implies that

max
k=0...d−1

lim
n→∞

Eθ0 (ZnZn−k) 6 4 + 4mλθ0 + max
k=0...d−1

lim
n→∞

Eθ0 (ZnZn−k)
d∑
j=1

Ψj(θ0),

and thus

max
k=0...d−1

lim
n→∞

Eθ0 (ZnZn−k) 6
4 + 4mλθ0

1−
∑d
j=1 Ψj(θ0)

<∞.

We then obtain by means of Fatou’s lemma that for every i, j = 1 . . . d,∑
k∈Nd

kikjλθ0(k) = Eθ0
(

lim
n→∞

Zn,iZn,j

)
= Eθ0

(
lim
n→∞

ZnZn−|i−j|

)
6 lim
n→∞

Eθ0
(
ZnZn−|i−j|

)
6 max
k=0...d−1

lim
n→∞

Eθ0 (ZnZn−k) <∞.

Let us finally quote from [Bil61], Theorem 1.1 and 1.3, the following strong law of large numbers
for homogeneous irreducible positive recurrent Markov chains, which can be applied here. For
every λθ0 -integrable function g : Nd\{0} → R,

lim
n→∞

1
n

n−1∑
k=0

g(Zk) a.s.=
∑
j∈Nd

g(j)λθ0(j). (4.2.53)

We can now prove the following theorem, which states the asymptotic normality of the esti-
mator θ̂Zn as n→∞.
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Theorem 4.2.7. Let us assume that the process (Xk)k>0 is subcritical. Then the estimator θ̂Zn is
asymptotically normally distributed:

lim
n→∞

√√√√√n

(∑
j∈Nd (f ′(θ0, j))

2
λθ0(j)

)2

∑
j∈Nd (f ′(θ0, j))

2
f(θ0, j) (a · j)−1/2

λθ0(j)

(
θ̂Zn − θ0

)
D= N (0, 1) , (4.2.54)

where f is given by (4.2.33).

Proof. We follow the steps of the proof of Proposition 6.1 in [Jac10B], which provides sufficient
conditions to obtain the asymptotic behavior of a general conditional least squares estimator.

Writing the Taylor expansion of S′n(θ) in the neighborhood of θ0, we obtain that

θ̂Zn − θ0 = −S
′
n(θ0)

S′′n(θ̃n)
, (4.2.55)

for some θ̃n = θ0 + tn

(
θ̂Zn − θ0

)
, with tn ∈ ]0, 1[. Since S′n(θ0) = −2

∑n
k=1 εkf

′(θ0,Zk−1), we can
write

√
n
(
θ̂Zn − θ0

)
=
∑n
k=1 εkf

′(θ0,Zk−1)√
n

(
Fn
n

)−1
(

1
2
S′′n(θ̃n)
Fn

)−1

, (4.2.56)

where

Fn :=
n∑
k=1

(f ′(θ0,Zk−1))2
.

By (4.2.34), for all j ∈ Nd, j 6= 0,

0 6 f ′(θ0, j) 6
√
a · j

(1− e−Ψd(θ0))2
,

hence we deduce by means of (4.2.53) and (4.2.45) that

lim
n→∞

Fn
n

a.s.=
∑
j∈Nd

(f ′(θ0, j))
2
λθ0(j). (4.2.57)

In view of (4.2.56), we now prove that

lim
n→∞

S′′n(θ̃n)
Fn

a.s.= 2. (4.2.58)

Computing S′′n thanks to the formula Sn(θ) =
∑n
k=1 (εk + f(θ0,Zk−1)− f(θ,Zk−1))2, it appears

that (4.2.58) is true, as soon as the following holds:

lim
n→∞

sup
θ∈Θ

∣∣∣∑n
k=1 εk f

′′(θ,Zk−1)
∣∣∣

Fn

a.s.= 0, (4.2.59)

lim
n→∞

∑n
k=1

(
f ′(θ̃n,Zk−1)

)2

Fn

a.s.= 1, (4.2.60)

and

lim
n→∞

∑n
k=1

(
f(θ0,Zk−1)− f(θ̃n,Zk−1)

)
f ′′(θ̃n,Zk−1)

Fn

a.s.= 0. (4.2.61)
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Let us prove (4.2.59)-(4.2.61). Note that, for every j 6= 0, f ′′(θ, j) = 0 if dje 6= 0, and

f ′′(θ, j) =
(adjd)

3/2
e−Ψd(θ)jd

[
e−Ψd(θ)jd (Ψd (θ) jd + 2) + Ψd (θ) jd − 2

](
1− e−Ψd(θ)jd

)3
otherwise.

First, (4.2.59) is given by a strong law of large numbers proved in [Jac10B], Proposition 5.1.
The latter can be indeed applied since f ′′(.,Zk−1) fulfills the required Lipschitz condition, and
limn Fn

a.s.= ∞ (as an immediate consequence of the stronger result (4.2.57)).
In view of (4.2.60) we consider the function (f ′(θ, j))2 and its derivative 2f ′(θ, j)f ′′(θ, j). For

all θ ∈ Θ and all j 6= 0 with dje = 0,

|2f ′(θ, j)f ′′(θ, j)| 6 4
(adjd)

2
e−Ψd(θ)jd (Ψd (θ) jd + 2)(
1− e−Ψd(θ)jd

)5
6

4 maxx>0 (x+ 2)3
e−x(

1− e−Ψd(θmin)
)5 =: c1. (4.2.62)

Consequently, ∣∣∣∑n
k=1 f

′(θ̃n,Zk−1)2 − f ′(θ0,Zk−1)2
∣∣∣

Fn
6 c1

∣∣∣θ̂Zn − θ0

∣∣∣ (Fn
n

)−1

, (4.2.63)

which by (4.2.57) and the strong consistency of θ̂Zn almost surely tends to 0. Writing

∑n
k=1 f

′(θ̃n,Zk−1)2

Fn
= 1 +

∑n
k=1

(
f ′(θ̃n,Zk−1)2 − f ′(θ0,Zk−1)2

)
Fn

,

this implies (4.2.60).
It now remains to prove (4.2.61). With similar computations as above, one shows that there

exists a deterministic constant c2 > 0 such that∣∣∣∑n
k=1

(
f(θ0,Zk−1)− f(θ̃n,Zk−1)

)
f ′′(θ̃n,Zk−1)

∣∣∣
Fn

6 c2|θ̂Zn − θ0|
(
Fn
n

)−1

,

which thanks to (4.2.57) and the strong consistency of θ̂Zn implies (4.2.61).

Finally, in order to prove (4.2.56), we want to show that
∑n
k=1 εkf

′(θ0,Zk−1)/
√
n converges in

distribution, and for this purpose we make use of the following central limit theorem for sequences
of martingales (see e.g. [Reb80] or [PraRao99]).

Proposition 4.2.8. Let {M (n)
k , F (n)

k , 1 6 k 6 n}, n > 1 be a sequence of square integrable
martingales. For each n > 1, we denote by 〈M〉(n) = (〈M〉(n)

k )16k6n the associated Meyer process.

We assume that there exists a constant c such that limn→∞ 〈Mn〉(n) P= c2, and assume moreover
that for all ε > 0,

lim
n→∞

n∑
k=1

E
[∣∣∣M (n)

k −M (n)
k−1

∣∣∣2 1n˛̨̨
M

(n)
k −M

(n)
k−1

˛̨̨
>ε
o∣∣∣∣F (n)

k−1

]
P= 0.

Then limn→∞M
(n)
n

D= N (0, c2).
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We will apply this Proposition to {M (n)
k , F (n)

k , 1 6 k 6 n}, defined as follows: for every k 6 n,

M
(n)
k :=

1√
n

k∑
l=1

εlf
′(θ0,Zl−1).

First, for every k 6 n, Eθ0 (εkf ′(θ0,Zk−1)/
√
n|Zk−1) = 0. Second,

Eθ0

((
εkf
′(θ0,Zk−1)√

n

)2 ∣∣∣Zk−1

)
=

(f ′(θ0,Zk−1))2
f (θ0,Zk−1)

n
√
a · Zk−1

,

hence M (n)
k is a sequence of square integrable martingales. Moreover, by (4.2.45),

∑
j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j
λθ0(j) 6

1(
1− e−Ψd(θ0)

)5 ∑
j∈Nd

Ψ(θ0) · jλθ0(j) <∞, (4.2.64)

so by means of (4.2.53),

lim
n→∞

〈Mn〉(n) = lim
n→∞

n∑
k=1

Eθ0

((
εkf
′(θ0,Zk−1)√

n

)2 ∣∣∣Zk−1

)
a.s.=

∑
j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j
λθ0(j).

Third, using Cauchy-Schwarz and Bienaymé-Chebyshev inequalities,

n∑
k=1

Eθ0

[∣∣∣∣εkf ′(θ0,Zk−1)√
n

∣∣∣∣2 1˛̨̨̨ εkf′(θ0,Zk−1)
√
n

˛̨̨̨
>ε
ff∣∣∣Zk−1

]

6
n∑
k=1

(
Eθ0

[∣∣∣∣εkf ′(θ0,Zk−1)√
n

∣∣∣∣4 ∣∣∣Zk−1

]) 1
2 (

Pθ0
[∣∣∣∣εkf ′(θ0,Zk−1)√

n

∣∣∣∣ > ε∣∣∣Zk−1

]) 1
2

6
1
n

3
2 ε

n∑
k=1

|f ′(θ0,Zk−1)|3
(
Eθ0

[
ε4
k|Zk−1

]) 1
2
(
Eθ0

[
ε2
k|Zk−1

]) 1
2 . (4.2.65)

We have

|f ′(θ0,Zk−1)| 6
√
a · Zk−1(

1− e−Ψd(θ0)
)2 , Eθ0

(
ε2
k|Zk−1

)
6

Ψ(θ0) · Zk−1

a · Zk−1

(
1− e−Ψd(θ0)

) ,
and

Eθ0
(
ε4
k|Zk−1

)
=

Ψ(θ0) · Zk−1 (1 + 3Ψ(θ0) · Zk−1)
(a · Zk−1)2 (1− e−Ψd(θ0)

) ,

hence

|f ′(θ0,Zk−1)|3
(
Eθ0

[
ε4
k|Zk−1

]) 1
2
(
Eθ0

[
ε2
k|Zk−1

]) 1
2

6
Ψ(θ0) · Zk−1 (1 + 3Ψ(θ0) · Zk−1)

1
2(

1− e−Ψd(θ0)
)7

6
Ψ(θ0) · Zk−1 +

√
3 (Ψ(θ0) · Zk−1)

3
2(

1− e−Ψd(θ0)
)7 . (4.2.66)
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Since the stationary distribution λθ0 has finite second-order moments (see Proposition 4.2.6), we
deduce from (4.2.65) and (4.2.66) by virtue of (4.2.53) that

lim
n→∞

n∑
k=1

Eθ0

[∣∣∣∣εkf ′(θ0,Zk−1)√
n

∣∣∣∣2 1˛̨̨̨ εkf′(θ0,Zk−1)
√
n

˛̨̨̨
>ε
ff∣∣∣∣Zk−1

]
a.s.= 0.

It then ensues from Proposition 4.2.8 that

lim
n→∞

∑n
k=1 εkf

′(θ0,Zk−1)√
n

D= N

0,
∑
j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j
λθ0(j)

 . (4.2.67)

Finally, (4.2.56) together with (4.2.57), (4.2.58), (4.2.67) and Slutsky’s Lemma imply that

lim
n→∞

√
n
(
θ̂Zn − θ0

)
D= N

0,

∑
j∈Nd (f ′ (θ0, j))

2
f (θ0, j) (a · j)−1/2

λθ0(j)(∑
j∈Nd (f ′ (θ0, j))

2
λθ0(j)

)2

 . (4.2.68)

Since the stationary distribution λθ0 is not explicitly known, Theorem 4.2.7 is not directly
applicable. We can however deduce the following more practical result:

Corollary 4.2.9. Let us assume that the process (Xk)k>0 is subcritical. Then the estimator θ̂Zn
has the following asymptotic distribution

lim
n→∞

∑n
k=0

(
f ′
(
θ̂Zn ,Zk

))2

√∑n
k=0

(
f ′
(
θ̂Zn ,Zk

))2

f
(
θ̂Zn ,Zk

)
(a · Zk)−1/2

(
θ̂Zn − θ0

)
D= N (0, 1) . (4.2.69)

Proof. The result is immediate as soon as we prove that

lim
n→∞

1
n+ 1

n∑
k=0

(
f ′
(
θ̂Zn ,Zk

))2

f
(
θ̂Zn ,Zk

)
√
a · Zk

a.s.=
∑
j∈Nd

(f ′ (θ0, j))
2
f (θ0, j)√

a · j
λθ0 (j) , (4.2.70)

as well as the equivalent result for the numerator. For this purpose, we write

n∑
k=0

(
f ′
(
θ̂Zn ,Zk

))2

f
(
θ̂Zn ,Zk

)
√
a · Zk

=
n∑
k=0

(f ′ (θ0,Zk))2
f (θ0,Zk)√

a · Zk

+
n∑
k=0


(
f ′
(
θ̂Zn ,Zk

))2

f
(
θ̂Zn ,Zk

)
√
a · Zk

− (f ′ (θ0,Zk))2
f (θ0,Zk)√

a · Zk

 , (4.2.71)

and show that (f ′ (., j))2
f (., j) (a · j)−1/2 has a bounded derivative and is thus Lipschitz:∣∣∣∣2f ′′(θ, j)f ′(θ, j)f(θ, j) + (f ′(θ, j))3

√
a · j

∣∣∣∣ 6 2c1
Ψ(θmax) · j(

1− e−Ψd(θmin)
)3 .

This enables us to write

1
n+ 1

n∑
k=0

∣∣∣∣∣∣∣
(
f ′
(
θ̂Zn ,Zk

))2

f
(
θ̂Zn ,Zk

)
√
a · Zk

− (f ′ (θ0,Zk))2
f (θ0,Zk)√

a · Zk

∣∣∣∣∣∣∣
6
∣∣∣θ̂Zn − θ0

∣∣∣ 2c1(
1− e−Ψd(θmin)

)3 1
n+ 1

n∑
k=0

Ψ(θmax) · Zk. (4.2.72)
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By the strong consistency of θ̂Zn together with (4.2.53) and (4.2.45), (4.2.72) almost surely tends
to zero. Combined with (4.2.53) and (4.2.64) in (4.2.71), this implies (4.2.70).

Remark 4.2.10. Let us define the subset of Nd

S := {(0, . . . , 0, x) , x ∈ N∗} .

Then, by construction of the estimators θ̂X|X0| and θ̂Zn , we have for any Nd-valued sequence
(x0, . . . ,xn) such that for all k 6 n, xk,i = xk−1,i−1 and such that xk /∈ S (i.e. such that
there is no sequence of d− 1 successive zeros),

θ̂X|X0| (x0, . . . ,xn) = θ̂Zn (x0, . . . ,xn) . (4.2.73)

Using this together with the fact that, defining

TX := inf {k > 1,Xk ∈ S} , and TZ := inf {k > 1,Zk ∈ S} ,

we have
lim
|x0|→∞
x0 /∈S

P
(
TZ 6 n|Z0 = x0

)
= lim
|x0|→∞
x0 /∈S

P
(
TX 6 n|X0 = x0

)
= 0,

we can deduce from Proposition 4.2.1 (but omit here the detailed proof) that, for n ∈ N fixed,

lim
|Z0|→∞

θ̂Zn
a.s.= θ0, (4.2.74)

and

lim
|Z0|→∞

√∑n
k=1 a · Zk−1

σ2(θ̂Zn )

(
θ̂Zn − θ0

)
D= N (0, 1) . (4.2.75)

4.2.3 An explicit estimator with asymptotic properties, as n→∞
The aim of this section is to provide an estimator with asymptotic properties, as time n tends to
infinity, in the supercritical case, which thus corresponds to the growth phase of the population.

For this purpose, we use the following estimator of the Perron’s root introduced in [AsmKei78],

ρ̃n :=
|X1|+ . . .+ |Xn|
|X0|+ . . .+ |Xn−1|

, (4.2.76)

which has asymptotic properties as n tends to infinity in the supercritical case, on the set of
nonextinction. In order to estimate θ0, we use relation (4.2.7) and deduce the following explicit
estimator of θ0:

θ̃Xn :=
1−

∑d
k=1 bkρ̃

−k
n∑d

k=1 akρ̃
−k
n

. (4.2.77)

All what follows can be applied to any process of the form (4.1.1), where the {ζn−k,n,i}i do not
necessarily follow a Poisson distribution, but satisfy Eθ0 (ζn−k,n,i|Fn−1) = Ψk(θ0).

For each i = 1 . . . d and n ∈ N, we define the covariance matrix Vi
n (to avoid heavy notation

we do not explicitly write the dependence in θ0 of Vi
n and of the next introduced objects) with

entries [
Vi
n

]
jk

:= Eθ0 (Xn,jXn,k|X0 = ei)− Eθ0 (Xn,j |X0 = ei) Eθ0 (Xn,k|X0 = ei) .

In particular,
[
Vi

1

]
jk

= Ψi(θ0) if j = k = i, and is null otherwise.
Let ξ(θ0) and η(θ0) be the right and left eigenvector of M(θ0) for its Perron’s root ρ0, with

normalization ξ(θ0) · 1 = ξ(θ0) · η(θ0) = 1. The equality M(θ0)ξ(θ0)T = ρ0ξ(θ0)T implies that

ρ0ξj(θ0) = Ψ1(θ0)ξ1(θ0) + ξj+1(θ0), j = 1 . . . d− 1,
ρ0ξd(θ0) = Ψd(θ0)ξ1(θ0),
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hence, for all j = 1 . . . d,

ξj(θ0) = ρj−1
0

d∑
i=j

Ψi(θ0)ρ−i0 ξ1.

Finally, ξ(θ0) · 1 = 1 leads to

ξ1(θ0) =
1∑d

k=1 ρ
k−1
0

∑d
i=k Ψi(θ0)ρ−i0

.

Consequently, for each j = 1 . . . d,

ξj(θ0) =
ρj0
∑d
l=j ρ

−l
0 Ψl(θ0)∑d

k=1 ρ
k
0

∑d
i=k ρ

−i
0 Ψi(θ0)

. (4.2.78)

Similarly, we prove that η(θ0) is given by

ηk(θ0) = ρ
−(k−1)
0

∑d
k=1 ρ

k−1
0

∑d
i=k Ψi(θ0)ρ−i0∑d

k=1

∑d
i=k Ψi(θ0)ρ−i0

. (4.2.79)

The basic limit theorem in the supercritical case states that there exists a random variable W0

such that (see e.g. Theorem 5.6.1 in [AthNey72])

lim
n→∞

ρ−n0 Xn
a.s.= η(θ0)W0. (4.2.80)

Let us recall the results obtained by S. Asmussen and N. Keiding in [AsmKei78], Theorem 6.1.
First, as pointed out by N. Becker in [Beck77], the estimator ρ̃n is strongly consistent on the set
of non-extinction {W0 > 0}.

Second, once adequately normalized, ρ̃n−ρ0 is asymptotically normal. However, the asymptotic
behavior of ρ̃n − ρ0 depends qualitatively on the relative sizes of ρ(θ0) and λ2, where λ is the
absolute value of a certain eigenvalue of M(θ0). More precisely, let {λi}i=1...s be the spectrum
of M(θ0), and for each i = 1 . . . s, let ri be the algebraic multiplicity of λi. We denote by
B = {ui,j , i = 1 . . . s, j = 1 . . . ri} the base of the Jordan canonical decomposition of M(θ0), i.e.
such that for all i = 1 . . . s,

M(θ0)ui,1 = λiui,1, M(θ0)ui,j = ui,j−1 + λiui,j , j = 2 . . . ri.

Let us define the vector ς := 1− ξ(θ0) and denote (ςi,j) i=1...s,
j=1...ri

its coordinates in B:

ς =
s∑
i=1

ri∑
j=1

ςi,jui,j .

Then λ is defined as follows,

λ = λ(ς) := max
i=1...s

{|λi| : ∃j = 1 . . . ri such that ςi,j 6= 0} , (4.2.81)

and
γ = γ(ς) := max

i=1...s:
|λi|=λ

{j = 1 . . . ri : ςi,j 6= 0} . (4.2.82)

We similarly define λ(x) and γ(x) for any complex vector x ∈ Cd. As detailed in [AsmKei78],

ρ̃n − ρ0 =
Sn + Tn

|X0|+ . . .+ |Xn−1|
,

101



4.2. CHAPTER 4. RISK ANALYSIS FOR VANISHING BRANCHING POPULATIONS

where (to avoid heavy notation, when no confusion is possible, we do not write differently column
and row vectors when multiplied by a matrix)

Sn :=
n−1∑
k=0

(Xk+1 −XkM(θ0)) · 1,

Tn :=
n−1∑
k=0

Xk · κ,

κ := (M(θ0)− ρ0I) 1.

It appears that Sn and Tn are of the same order of magnitude when λ2 < ρ0, while Tn dominates
Sn if λ2 > ρ0. In order to deal with the case λ2 < ρ0, we define for all n ∈ N,

νn := 1 +
n−1∑
k=0

[M(θ0)]k κ,

and

C1 := (ρ0 − 1)
∞∑
n=1

ρ−n0

d∑
i=1

ηi(θ0)νnVi
1νn

= (ρ0 − 1)
∞∑
n=1

ρ−n0

d∑
i=1

ηi(θ0)Ψi(θ0)ν2
n,1. (4.2.83)

If λ2 > ρ0, then there exist vectors ς1 and ς2 such that (M(θ0)− ρ0I) ς = (M(θ0)− I) ς1 + ς2,
with λ(ς1) = λ, γ(ς1) = γ and λ(ς2) 6 1. If λ2 = ρ0, we set moreover

C2 :=
(

1− 1
ρ0

)
lim
n→∞

∑d
i=1 ηi(θ0)ς1Vi

nς
1

ρn0n
2γ−1

. (4.2.84)

We can now quote Theorem 6.1 of [AsmKei78]. Note that the (XlogX) assumption implies
that (see e.g. [AthNey72], Theorem 5.6.1)

P(W0 > 0) > 0.

For notational convenience, it is assumed in this section just as in [AsmKei78] that P(W0 = 0) = 0.
The results stated here are thus valid on the set of non-extinction.

Theorem 4.2.11 ([AsmKei78] Thm 6.1-6.3). Let us assume that the process (Xk)k>0 is super-
critical. Then, on the set of non-extinction, the estimator ρ̃n is consistent:

lim
n→∞

ρ̃n
a.s.= ρ0, (4.2.85)

and has the following asymptotic distribution.
If λ2 < ρ0,

lim
n→∞

√
W0

(
1 + . . .+ ρn−1

0

)
(ρ̃n − ρ0) D= N (0, C1) . (4.2.86)

If λ2 = ρ0 and C2 > 0,

lim
n→∞

√
W0

(
1 + . . .+ ρn−1

0

)
n2γ−1

(ρ̃n − ρ0) D= N (0, C2) . (4.2.87)

If λ2 > ρ0, there exist random variables Hn with lim |Hn| <∞, such that

lim
n→∞

[
W0

(
1 + . . .+ ρn−1

0

)
λn−1(n− 1)γ−1

(ρ̃n − ρ0)−Hn−1

]
a.s.= 0. (4.2.88)
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Remark 4.2.12. We point out that W0, γ, λ, C1, C2 and Hn depend on θ0.

Let us now deduce from this theorem the asymptotic properties of the estimator of θ0 defined
by (4.2.77). For this purpose, we define the constant

C0 :=

(∑d
k=1 kakρ

−k
0 +

∑d
k=1 akρ

−k
0

∑d
k=1 kbkρ

−k
0 −

∑d
k=1 bkρ

−k
0

∑d
k=1 kakρ

−k
0

ρ0

(∑d
k=1 akρ

−k
0

)2

)2

. (4.2.89)

We then obtain the following result.

Theorem 4.2.13. Let us assume that the process (Xk)k>0 is supercritical. Then, on the set of
non-extinction, the estimator θ̃Xn is consistent:

lim
n→∞

θ̃Xn
a.s.= θ0, (4.2.90)

and has the following asymptotic distribution.
If λ2 < ρ0,

lim
n→∞

√
W0

(
1 + . . .+ ρn−1

0

)
C1C0

(
θ̃Xn − θ0

)
D= N (0, 1) . (4.2.91)

If λ2 = ρ0 and C2 > 0,

lim
n→∞

√
W0

(
1 + . . .+ ρn−1

0

)
n2γ−1C2C0

(
θ̃Xn − θ0

)
D= N (0, 1) . (4.2.92)

If λ2 > ρ0, there exist random variables Hn with lim |Hn| <∞, such that

lim
n→∞

[
W0

(
1 + . . .+ ρn−1

0

)
λn−1(n− 1)γ−1

(
θ̃Xn − θ0

)
−Hn−1

]
a.s.= 0. (4.2.93)

Proof. The strong consistency is immediate from (4.2.85).
We then express θ̃Xn −θ0 as a function of ρ̃n−ρ0, in order to deduce its asymptotic distribution

from (4.2.86)-(4.2.88). We write

θ̃Xn − θ0

=
∑
k ak

(
ρ−k0 − ρ̃−kn

)
+
∑
k akρ

−k
0

∑
k bk

(
ρ−k0 − ρ̃−kn

)
−
∑
k bkρ

−k
0

∑
k ak

(
ρ−k0 − ρ̃−kn

)∑
k akρ̃

−k
n
∑
k akρ

−k
0

, (4.2.94)

and use the fact that, for all k = 1 . . . d,

ρ−k0 − ρ̃−kn = (ρ̃n − ρ0)
∑k
l=1 ρ

l−k
0 ρ̃1−l

n

ρ̃nρ0
,

in order to obtain

θ̃Xn − θ0 = (ρ̃n − ρ0)

[ ∑d
k=1 ak

∑k
l=1 ρ

l−k
0 ρ̃1−l

n

ρ̃nρ0

∑d
k=1 akρ̃

−k
n
∑d
k=1 akρ

−k
0

+
∑d
k=1 akρ

−k
0

∑d
k=1 bk

∑k
l=1 ρ

l−k
0 ρ̃1−l

n −
∑d
k=1 bkρ

−k
0

∑d
k=1 ak

∑k
l=1 ρ

l−k
0 ρ̃1−l

n

ρ̃nρ0

∑d
k=1 akρ̃

−k
n
∑d
k=1 akρ

−k
0

]
. (4.2.95)

By (4.2.85), the square bracket in (4.2.95) almost surely converges to
√
C0, and (4.2.91)-(4.2.93)

are immediately deduced from (4.2.86)-(4.2.88).
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Unfortunately this theorem is seldom of direct practical applicability, in particular because of
the differentiation between the three cases λ2 < ρ0, λ2 = ρ0 and λ2 > ρ0. We can not provide here
an asymptotic confidence interval solely based on the observations, as we did for the estimators
θ̂X|X0| and θ̂Zn (see Theorem 4.2.1 and Corollary 4.2.9).

Remark 4.2.14. ρ̃n seems to have no interesting asymptotical properties for n fixed, as |X0| → ∞,
when d > 1 (if d = 1 then it reduces to the Harris estimator which is also the CLSE, hence
Subsection 4.2.1 can be applied), unless we assume that, for all i = 1 . . . d,

lim
|X0|→∞

X0,i

|X0|
a.s.=

ηi(θ0)
η(θ0) · 1

. (4.2.96)

If this holds, then for any multitype branching process (Xk)k>0 of any class of criticality,

lim
|X0|→∞

ρ̃n
a.s.= ρ0

It is however obvious that assumption (4.2.96) is much too strong and nearly never applicable.

4.2.4 Comparison of the estimators and illustration of the asymptotic

All the following simulations and computations have been done with the numerical computing and
programming environment Matlab.

Comparison of the estimators

In this section we compare the three estimators introduced in Subsections 4.2.1-4.2.3 on a set of
simulated trajectories, for several values of |X0| and n. As a context of simulation, we choose the
BSE epidemic in Great-Britain which, as detailed in Section 5.1, can be modeled by a multitype
branching process (Xk)k>0 of the form (4.1.1), with d = 9. For each k = 1 . . . 9, Ψk is of the form
(4.2.1), i.e. depends affinely on the unknown parameter θ0, which corresponds in this context to
the horizontal infection parameter (see (5.1.2) in Section Section 5.1). The numerical values ak
and bk are given in Table5.3. Then, by (4.2.3), the process is subcritical (resp. supercritical) for
θ0 < θcrit. (resp. θ0 > θcrit.), with θcrit. ' 23.

We focus on the three following set of trajectories. Fixing the parameter θ0 = 15, we first
simulate trajectories of the unconditioned subcritical process (Xk)k>0, and then of the condi-
tioned process (Zk)k>0. We finally simulate, with the parameter θ0 = 35, trajectories of the
unconditioned supercritical process (Xk)k>0. We consider different values of |X0| and n, namely
|X0| = 10, 100, 1000 and n = 10, 50, 100. For every couple (|X0|, n), we simulate, in each of the
previously mentioned cases, 100 trajectories of length n (i.e not extinct at time n), initiated by
X0 = (0, . . . , 0, |X0|), and compute the corresponding empirical means and standard deviations of
the estimators. These are reported in Tables 4.1-4.3, which allow to compare the three different
estimators in each of these situations.

The empty entries in Table 4.1 are due to the fact that for some given couples (|X0|, n),
trajectories of the subcritical process initiated by X0 with an extinction time greater than n occur
only with a very small probability. We recall that the estimator θ̂Zn has no explicit form. Its
precision thus depends on the optimization method which is chosen, while the precision for θ̂X|X0|

and θ̃Xn solely depends on the computing program. As a consequence, the estimations obtained
with θ̂X|X0| and θ̂Zn might slightly differ from each other, even when they are in theory equal, i.e.
on trajectories with no sequence of d − 1 = 8 zeros. We can see however in Table 4.1 and Table
4.3 that, in our example, this approximation error remains very small.

Table 4.1 enables to compare θ̂X|X0| and θ̃Xn . As just mentioned, θ̂Zn is, in this case, equal to

θ̂X|X0| since no trajectory contains 8 consecutive zeros. Obviously, θ̂X|X0| provides an estimation of

the parameter much closer to θ0 than θ̃Xn , which is of no surprise, since θ̃Xn is not proved to be
consistent in the subcritical case. This table provides moreover an illustration of the consistency
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PPPPPPPPn
|X0| 10 100 1000

mean std. dev. mean std. dev. mean std. dev.

10
θ̂X|X0| 14.7179 4.8811 14.7806 1.5794 14.9930 0.4526
θ̂Zn 14.7181 4.8805 14.7806 1.5794 14.9930 0.4526
θ̃Xn 22.2960 3.5440 22.1341 1.1615 22.3036 0.3438

50
θ̂X|X0| / / 15.1834 0.9552 14.9675 0.3370
θ̂Zn / / 15.1834 0.9551 14.9675 0.3371
θ̃Xn / / 19.0956 0.4860 18.9621 0.1803

100
θ̂X|X0| / / / / / /
θ̂Zn / / / / / /
θ̃Xn / / / / / /

Table 4.1: Empirical means and standard deviations of θ̂X|X0|, θ̂
Z
n and θ̃Xn corresponding to 100

trajectories of length n of the unconditioned subcritical process (Xk)k>0 initiated by X0 =
(0, . . . , 0, |X0|) and simulated with the infection parameter θ0 = 15, for different couples (|X0|, n).

PPPPPPPPn
|X0| 10 100 1000

mean std. dev. mean std. dev. mean std. dev.

10
θ̂X|X0| 14.4306 5.1569 14.8198 1.5400 14.9138 0.5442
θ̂Zn 14.4306 5.1568 14.8198 1.5400 14.9138 0.5442
θ̃Xn 22.0041 3.6403 22.1723 1.1272 22.2378 0.4094

50
θ̂X|X0| 16.0774 2.2719 15.0800 1.0376 15.0420 0.3276
θ̂Zn 14.6195 3.3079 15.0595 1.0550 15.0428 0.3248
θ̃Xn 19.7192 1.1291 19.0371 0.5284 18.9985 0.1714

100
θ̂X|X0| 17.7708 1.3873 15.1534 0.9573 15.0346 0.4027
θ̂Zn 14.7098 2.6979 14.8563 1.0287 15.0208 0.4047
θ̃Xn 20.4621 0.7545 19.0074 0.4620 18.9211 0.1943

Table 4.2: Empirical means and standard deviations of θ̂X|X0|, θ̂
Z
n and θ̃Xn corresponding to 100

trajectories of length n of the conditioned process (Zk)k>0 in the subcritical case, initiated by
X0 = (0, . . . , 0, |X0|) and simulated with the infection parameter θ0 = 15, for different couples
(|X0|, n).
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PPPPPPPPn
|X0| 10 100 1000

mean std. dev. mean std. dev. mean std. dev.

10
θ̂X|X0| 35.3485 6.2014 35.2777 1.6247 34.9629 0.6258
θ̂Zn 35.3611 6.1672 35.2777 1.6295 34.9630 0.6271
θ̃Xn 38.4696 5.3626 38.5015 1.4765 38.2363 0.5670

50
θ̂X|X0| 34.7898 1.2210 34.9792 0.2760 35.0008 0.0860
θ̂Zn 34.7898 1.2205 34.9792 0.2764 35.0008 0.0953
θ̃Xn 34.8578 1.2613 35.0580 0.2816 35.0816 0.0877

100
θ̂X|X0| 34.9942 0.1014 35.0056 0.0302 35.0021 0.0107
θ̂Zn 34.9943 0.1042 35.0056 0.0300 35.0000 0.0000
θ̃Xn 34.9930 0.1025 35.0053 0.0313 35.0032 0.0116

Table 4.3: Empirical means and standard deviations of θ̂X|X0|, θ̂
Z
n and θ̃Xn corresponding to 100

trajectories of length n of the unconditioned supercritical process (Xk)k>0 initiated by X0 =
(0, . . . , 0, |X0|) and simulated with the infection parameter θ0 = 35, for different couples (|X0|, n).

of θ̂X|X0| and a probable non consistency of θ̃Xn , as |X0| tends to infinity, which appears clearly for
n = 10.

Table 4.2 illustrates again the fact that θ̃Xn is not accurate when the process is not supercritical.
This table is however very interesting to compare θ̂X|X0| and θ̂Zn on trajectories of the process
conditioned on non-extinction at each step, which might for n large enough present one or several
sequences of 8 zeros (see Figure 4.2). It appears that for long trajectories (e.g. n = 50 or n = 100),
we obtain a better empirical mean with the estimator θ̂Zn , but a larger standard deviation. This is
particularly obvious when the initial size of the clinical population is small (|X0| = 10). In order
to better illustrate this phenomenon, we represent in Figure 4.3 the estimations obtained with the
estimators θ̂X|X0| and θ̂Zn for the 100 simulated trajectories, used in Table 4.2, of the conditioned
process with the infection parameter θ0 = 15, with |X0| = 10, respectively for n = 50 and for
n = 100. It appears that, as n increases, θ̂X|X0| tends to overestimate θ0, while θ̂Zn remains close to

θ0 but with a larger standard deviation. Moreover, Table 4.2 illustrates the consistency of θ̂Zn , as
n tends to infinity, as well as its consistency, as |X0| tends to infinity (see Remark 4.2.10).

Finally, Table 4.3 allows to compare θ̂X|X0| with θ̃Xn in the supercritical case (again, θ̂Zn is here

in theory equal to θ̂X|X0|). On those examples, θ̂X|X0| provides a better estimation when the number

of observations is small (n = 10). However, when n increases, the consistency of θ̃Xn comes in
play, and it appears that θ̃Xn seems as good as the CLSE θ̂X|X0|, although θ̃Xn is originally not built
as an estimator with usual characteristics (CLSE, MLE, moments estimator...), but rather as an
explicit estimator based upon realistic data.

Asymptotic normal distribution

The aim of this section is to illustrate the asymptotic normal distribution of each of the three
estimators, namely (4.2.18), (4.2.69) and (4.2.91) (occurring in the case λ2 < ρ0).

To this end, we first simulate 1000 trajectories of length n = 10 of the supercritical uncondi-
tioned process (Xk)k>0, initiated by X0 = (0, . . . , 0, 1000), with the infection parameter θ0 = 35.
We represent in Figure 4.4.1 the empirical distribution of√√√√∑n

k=1 a ·Xk−1

σ2(θ̂X|X0|)

(
θ̂X|X0| − θ0

)
(4.2.97)

corresponding to the 1000 trajectories. Drawing the empirical Gaussian distribution corresponding
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Figure 4.2: Simulation of a trajectory of length n = 100 of the conditioned process (Zk)k>0 in the
subcritical case, initiated by (0, . . . , 0, 100), with the infection parameter θ0 = 15.
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Figure 4.3: Estimations with θ̂X|X0| and θ̂Zn for 100 simulated trajectories (used in Table 4.2) of
length n = 50 (resp. n = 100) of the conditioned process (Zk)k>0 in the subcritical case with the
infection parameter θ0 = 15 and initiated by X0 = (0, . . . , 0, 10).
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to 1000 realizations, we see that the two histograms are indeed very similar.
Second, we simulate 1000 trajectories of length n = 100 of the process (Zk)k>0 in the subcritical

case, initiated by X0 = (0, . . . , 0, 10), with the infection parameter θ0 = 15. We then represent in
Figure 4.4.2 the empirical distribution of∑n

k=0

(
f ′
(
θ̂Zn ,Zk

))2

√∑n
k=0

(
f ′
(
θ̂Zn ,Zk

))2

f
(
θ̂Zn ,Zk

)
(a · Zk)−1/2

(
θ̂Zn − θ0

)
, (4.2.98)

corresponding to the 1000 trajectories. It appears to be very similar to the empirical Gaussian
distribution, however with a larger negative support, which could mean that θ̂Zn has a tendency to
underestimate the real parameter. This is confirmed by Table 4.2, where for (|X0|, n) = (10, 100)
the empirical mean equals 14.7098 and the empirical standard deviation is rather large, equal to
2.6979.

We finally choose to illustrate the asymptotic normal distribution (4.2.91) occurring in the
case λ2 < ρ0. For the sake of simplicity and to be ensured that no numerical approximation errors
interfere in the Jordan decomposition of the mean matrix, we work in a simpler context as the
one considered until now: we choose d = 2, and a = (2, 1), b = (1/2, 0). The process is thus
supercritical if and only if θ0 > 1/6. Taking θ0 = 1/4, we have

M =
(

1 1
1
4 0

)
,

with eigenvalues λ1 = ρ0 = 1+
√

2
2 and λ2 = 1−

√
2

2 . Then necessarily λ = |λ2|, and we check that
λ2 < ρ0. We compute

C0 =
1
4

(
4ρ2

0 + 4ρ0 − 1
4ρ2

0 + 4ρ0 + 1

)2

=
(√

2− 1
)2

.

We simulate 1000 trajectories of length n = 100 of the supercritical process (Xk)k>0 initiated
by X0 = (0, 1000), with the infection parameter θ0 = 1/4. As an approximation of the random
variable W0, we take ρ−n0 Xn · ξ(θ0) (see (4.2.80)), and using the fact that (see (4.2.83))

lim
n→∞

ρn0βn

1 + . . .+ ρn−1
0

= C1,

where

βn :=
n∑
k=1

ρ−k0

2∑
i=1

ηi(θ0)Ψi(θ0)ν2
k,1,

we approximate C1 by ρn0βn
(
1 + . . .+ ρn−1

0

)−1
. We then represent in Figure 4.4.3 the empirical

distribution of √
Xn · ξ(θ0)

(
1 + . . .+ ρn−1

0

)2
ρ2n

0 βnC0

(
θ̃Xn − θ0

)
(4.2.99)

corresponding to the 1000 trajectories. It appears to be not so close to the Gaussian distribution,
which can be due to the several approximations just mentioned.

Conclusion

According to the simulations presented in Subsection 4.2.4, the conditional least squares estimators
θ̂X|X0| and θ̂Zn appear to be accurate and equivalent estimators of θ0 at finite distance (|X0|, n) in
the model introduced in Section 4.1, with moreover good asymptotic properties for any class of
criticality. In addition, the estimator θ̂Zn , which takes into account more information, provides
for long trajectories with sequences of zeros, estimations which are, according to the simulations,
better in mean but which have a larger standard deviation. The estimator θ̃Xn derived from
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Figure 4.4: 1) Empirical distribution of (4.2.97) for 1000 trajectories of length n = 10 of the
supercritical process (Xk)k>0 initiated by X0 = (0, . . . , 0, 1000), with θ0 = 35. 2) Empirical
distribution of (4.2.98) for 1000 trajectories of length n = 100 of the conditioned process (Zk)k>0

in the subcritical case initiated by X0 = (0, . . . , 0, 10), with θ0 = 15. 3) Empirical distribution of
(4.2.99) for 1000 trajectories of length n = 100 of the supercritical process (Xk)k>0 initiated by
X0 = (0, 10), with θ0 = 0.25. Comparison with the empirical Gaussian distribution.
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the explicit estimator ρ̃n of the Perron’s root introduced in [AsmKei78], only provides satisfying
estimations in the supercritical case, which are, in this case, not as good or are equivalent to
the ones obtained with θ̂X|X0|. Due to the differentiation of three cases and to the presence of
unexplicitly known random variables in its asymptotic distribution, it is not possible to build an
asymptotic confidence interval of θ0 based on θ̃Xn . The use of θ̃Xn is thus in our specific case less
appropriate than the use of the CLSE. However, we point out that θ̂X|X0| and θ̂Zn are of an extremely
more limited use that ρ̃n, since they do not provide an estimation of the Perron’s root and only
concern very specific processes, while ρ̃n is suitable for any multitype BGW process.
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4.3 Study of the very late extinction case

The aim of this section is to provide tools for the prediction of the evolution of the population
modeled by (4.1.1), in case of a very late extinction of this population. In particular, in the
epidemiological context, if this population represents the number of cases, this would correspond
to the prediction of the evolution of the epidemic in the worst-case scenario.

To this end, we introduce the Q-process associated with the BGW process (4.1.4) , i.e. the
process conditioned on “not being extinct in the distant future”. We then build an estimator θ̂X

∗

n

of θ0 with asymptotic properties, as n tends to infinity, in the setting of the conditioned process.
This enables us to predict the evolution of the population size in the very late extinction case,
thanks to simulations of trajectories of the Q-process, where θ0 is estimated by θ̂X

∗

n . This will
be illustrated in Subsection 5.3.2, where we handle with the problem of the propagation of the
BSE epidemic in Great-Britain, in case of a very late extinction of the disease.

First, we compute, in Subsection 4.3.1, the transition law of the Q-process. Then we provide
in Subsection 4.3.2, a CLSE of θ0 in the setting of the conditioned process, and show its strong
consistency and asymptotic normality, as time tends to infinity.

4.3.1 Q-process associated with the model

In order to study the evolution of the population size in its decay phase, assuming that the
extinction of the population will occur very late, we consider the conditioned distribution

Pθ0 (Xn = . | Xn+k 6= 0) , for any k very large. (4.3.1)

We approximate this law with by the following limit

lim
k→∞

Pθ0 (Xn = . | Xn+k 6= 0) . (4.3.2)

As already mentioned (see (2.1.18)), it has been proved in [DalJof08] that this limit defines a
Markov process (the Q-process associated with (Xn)n>0), denoted (X∗n)n>0 in what follows. This
Markov process has the following transition probability: for every n > 1, i, j ∈ Nd, i 6= 0,

Pθ0
(
X∗n = j|X∗n−1 = i

)
=

1
ρ0

j · ξ(θ0)
i · ξ(θ0)

Pθ0 (Xn = j|Xn−1 = i) , (4.3.3)

where ξ(θ0) := (ξ1(θ0), . . . , ξd(θ0)) is the normalized right eigenvector of the mean matrix M(θ0)
defined by (4.1.6), associated to its Perron’s root ρ0. Its explicit expression is given by (4.2.78).

Note that, by (4.3.3) and by definition of (Xn)n>0, Pθ0
(
X∗n = j|X∗n−1 = i

)
= 0 as soon as

(j2, . . . , jd) 6= (i1, . . . , id−1). Hence the process (X∗n)n>0 satisfies for all i = 2 . . . d and n > 0,
denoting X∗n = (X∗n,1, . . . , X

∗
n,d),

X∗n,i
a.s.= X∗n−1,i−1.

We define the one-dimensional d-Markovian process (X∗n)n>0 corresponding to the first coordinate
of X∗n, for all n > 0,

X∗n := X∗n,1. (4.3.4)

According to [DalJof08] and under the (XlogX) assumption (see (4.1.7)), the conditioned
process X∗n is positive recurrent with stationary probability measure πθ0 given by,

πθ0(i) :=
i · ξνθ0(i)∑

k∈Nd k · ξνθ0(k)
, i ∈ Nd, (4.3.5)

where νθ0 is the Yaglom distribution of the process (Xn)n>0, defined in (4.2.40).
Let us compute explicitly the law of the Q-process associated with the process (4.1.1).
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Proposition 4.3.1. Conditionally on X∗n−1, X∗n is distributed as the sum of two independent
Poisson and Bernoulli random variables:

X∗n|X
∗
n−1

D∼ Poisson
(
X∗n−1 ·Ψ(θ0)

)
∗ B
(
p
(
θ0,X

∗
n−1

))
, (4.3.6)

where

p
(
θ0,X

∗
n−1

)
:=

ξ1(θ0)X∗n−1 ·Ψ(θ0)

ξ1(θ0)X∗n−1 ·Ψ(θ0) +
∑d
k=2X

∗
n−k+1ξk(θ0)

. (4.3.7)

Proof. For the sake of simplicity, let us write ξ, and Ψ, instead of ξ(θ0), and Ψ(θ0). Applying
(4.1.2) and (4.3.3), we obtain that

Pθ0
(
X∗n = j|X∗n−1

)
= Pθ0

(
X∗n = (j,X∗n−1, . . . , X

∗
n−(d−1))|X

∗
n−1

)
=

1
ρ0

jξ1 +
∑d
k=2X

∗
n−k+1ξk

X∗n−1 · ξ
Pθ0

(
Xn = (j,X∗n−1, . . . , X

∗
n−(d−1))|Xn−1 = X∗n−1

)
=

1
ρ0

jξ1 +
∑d
k=2X

∗
n−k+1ξk

X∗n−1 · ξ

(
X∗n−1 ·Ψ

)j
j!

e−X∗n−1·Ψ

=
ξ1X∗n−1 ·Ψ
ρ0X∗n−1 · ξ

(
X∗n−1 ·Ψ

)j−1

(j − 1)!
e−X∗n−1·Ψ +

∑d
k=2X

∗
n−k+1ξk

ρ0X∗n−1 · ξ

(
X∗n−1 ·Ψ

)j
j!

e−X∗n−1·Ψ.

The equality MξT = ρ0ξ
T implies that, for all k = 1 . . . d − 1, ρ0ξk = Ψkξ1 + ξk+1, and that

ρ0ξd = Ψdξ1. Consequently,

ρ0X∗n−1 · ξ = ξ1X∗n−1 ·Ψ +
d∑
k=2

X∗n−k+1ξk,

and

Pθ0
(
X∗n = j|X∗n−1

)
=

ξ1X∗n−1 ·Ψ
ξ1X∗n−1 ·Ψ +

∑d
k=2X

∗
n−k+1ξk

(
X∗n−1 ·Ψ

)j−1

(j − 1)!
e−X∗n−1·Ψ

+

(
1−

ξ1X∗n−1 ·Ψ
ξ1X∗n−1 ·Ψ +

∑d
k=2X

∗
n−k+1ξk

) (
X∗n−1 ·Ψ

)j
j!

e−X∗n−1·Ψ

=

[
Poisson

(
X∗n−1 ·Ψ

)
∗ B

(
ξ1X∗n−1 ·Ψ

ξ1X∗n−1 ·Ψ +
∑d
k=2X

∗
n−k+1ξk

)]
(j) .

Remark 4.3.2. The conditioned process (X∗n)n>0 thus behaves at each time-step like the uncon-
ditioned process (Xn)n>0, according to a Poisson distribution, except that it has, at each time,
the possibility to add one unit or not, according to a Bernoulli random variable. Moreover, for
every n > 1, if X∗n−1 = . . . = X∗n−(d−1) = 0, then according to (4.3.7), p(θ0,X∗n−1) = 1, which
implies that at time n, the probability to add one unit is equal to one. Hence for every n ≥ 1,
Pθ0(X∗n = 0) = 0, and we obtain again the result that the Q-process (X∗n)n>0 can never become
extinct.

4.3.2 CLSE for the Q-process

In order to make predictions of the evolution of the population size in case of a very late extinction,
i.e. in order to make predictions of the behavior of the Q-process (X∗n)n>0 introduced in Subsection
4.3.1, we need to estimate the parameter θ0 for this conditioned process. We point out that θ0

112



CHAPTER 4. RISK ANALYSIS FOR VANISHING BRANCHING POPULATIONS 4.3.

does not play the same role in the conditioned process as in the unconditioned process, since, as
shown in Proposition 4.3.1, this parameter interferes not only in the Poisson random variable but
also in the Bernoulli one. It would thus be irrelevant to estimate θ0 with an estimator built for
the unconditioned process, for instance one of the estimators introduced in Section 4.2.

Let us notice that, according to (4.3.6), the process (X∗n)n>0 could be written as a multitype
branching process with state-dependent immigration. Because of this state-dependence, and since
the parameter θ0 acts in a nonlinear way in the immigration, the methods developed in estimation
theory for branching processes with immigration can not be directly applied here (see for example
[QuiDur77]). Consequently, we build a CLSE of θ0 in the setting of the conditioned process.
Similarly as in Subsection 4.2.1 relative to the unconditioned process, we consider the weighted
CLSE based on the process Y ∗k := X∗k/

√
a ·X∗k−1,

θ̂X
∗

n := arg min
θ∈Θ

S∗n(θ), S∗n(θ) :=
n∑
k=1

(
Y ∗k − f∗(θ,X

∗
k−1)

)2
, (4.3.8)

where Θ is as in Subsection 4.2.1, and

f∗(θ0,X∗k−1) := Eθ0
(
Y ∗k

∣∣∣X∗k−1

)
=

X∗k−1 ·Ψ(θ0) + p
(
θ0,X∗k−1

)√
a ·X∗k−1

. (4.3.9)

The normalization of the processX∗k by
√
a ·X∗k−1 appears to be the most natural and suitable.

On the one hand, it corresponds to the same normalization as for the unconditioned process (see
(4.2.12)), which, as detailed in Subsection 4.2.1, generalizes the normalization leading in the
monotype case to the Harris estimator ([Har48]). On the other hand, defining

ε∗k := Y ∗k − f∗(θ0,X∗k−1),

the error term between the normalized process and its conditional expectation, we obtain that

g
(
θ0,X∗k−1

)
:= Eθ0

(
(ε∗k)2 |X∗k−1

)
=

X∗k−1 ·Ψ(θ0) + p
(
θ0,X∗k−1

) (
1− p

(
θ0,X∗k−1

))
a ·X∗k−1

, (4.3.10)

which implies

θ0 +
b

a
6 Eθ0

(
(ε∗k)2 |X∗k−1

)
6 θ0 +

b+ 1
a

. (4.3.11)

Hence the conditional variance of the error term ε∗k in the stochastic regression equation

Y ∗k = f∗(θ0,X∗k−1) + ε∗k

is invariant under multiplication of the whole process by any constant, and bounded respectively
to (X∗k)k>0.

The following theorem states the strong consistency and asymptotic normality of the estimator
θ̂X
∗

n , as n tends to infinity. We denote by f∗
′

the derivative of f∗ with respect to θ.

Theorem 4.3.3. Let us assume that the process (Xn)n>0 defined by (4.1.4) is subcritical. Then
the estimator θ̂X

∗

n is strongly consistent:

lim
n→∞

θ̂X
∗

n
a.s.= θ0, (4.3.12)

and asymptotically normally distributed:

lim
n→∞

√√√√√n

(∑
j∈Nd (f∗′(θ0, j))

2
πθ0(j)

)2

∑
j∈Nd (f∗′(θ0, j))

2
g(θ0, j)πθ0(j)

(
θ̂X
∗

n − θ0

)
D= N (0, 1) , (4.3.13)

where f∗ and g are given by (4.3.9) and (4.3.10).
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In order to prove this theorem, we need the following technical results.
First, the proofs of Theorem 4.3.3 and of its Corollary 4.3.6 strongly rely on the following

strong law of large numbers for homogeneous irreducible positive recurrent Markov chains ([Bil61],
Theorem 1.1 and 1.3), applied to the conditioned process (X∗n)n>0 and its stationary distribution
πθ0 (see (4.3.5)): for every πθ0-integrable function h : Nd\{0} → R,

lim
n→∞

1
n

n−1∑
k=0

h(X∗k) a.s.=
∑
j∈Nd

h(j)πθ0(j). (4.3.14)

Next, we prove that the stationary measure πθ0 admits finite first and second-order moments.

Proposition 4.3.4. The stationary measure πθ0 satisfies for all i, j = 1 . . . d,∑
k∈Nd

kiπθ0(k) <∞, (4.3.15)

∑
k∈Nd

kikjπθ0(k) <∞. (4.3.16)

Proof. By using Proposition 4.3.1,

Eθ0 (X∗n) = Eθ0
[
Eθ0

(
X∗n|X

∗
n−1

)]
= Eθ0

[
X∗n−1 ·Ψ(θ0) + p(θ0,X∗n−1)

]
6

d∑
k=1

Eθ0
(
X∗n−k

)
Ψk(θ0) + 1,

which implies that

lim
n→∞

Eθ0 (X∗n) 6
1

1−
∑d
k=1 Ψk(θ0)

<∞.

We consequently obtain by means of Fatou’s lemma that, for every i = 1 . . . d,∑
k∈Nd

kiπθ0(k) = Eθ0
(

lim
n→∞

X∗n,i

)
= Eθ0

(
lim
n→∞

X∗n−i+1

)
= Eθ0

(
lim
n→∞

X∗n

)
6 lim
n→∞

Eθ0 (X∗n) <∞.

We similarly prove that πθ0 has finite second-order moments by writing

Varθ0
(
X∗n|X

∗
n−1

)
= X∗n−1 ·Ψ(θ0) +

ξ1(θ0)X∗n−1 ·Ψ(θ0)
∑d
k=2X

∗
n−k+1ξk(θ0)(

ξ1(θ0)X∗n−1 ·Ψ(θ0) +
∑d
k=2X

∗
n−k+1ξk(θ0)

)2

6 X∗n−1 ·Ψ(θ0) +
1
4
.

We finally need the following analytical result. For every θ ∈ Θ, we denote by ρ(θ) the Perron’s
root of the mean matrix M(θ). We thus have in particular ρ0 = ρ(θ0). For the sake of simplicity,
for any k ∈ R, we will write ρ(θ)k instead of [ρ(θ)]k.

Proposition 4.3.5. Let γ > 0 such that θ1−γ ≥ 0, and let us write (θ1,γ , θ2,γ) := (θ1−γ, θ2 +γ).
Then ρ(θ) and is a C3-function of θ on Θγ := ]θ1,γ , θ2,γ [ ⊃ Θ.

Moreover, for each j = 1 . . . d, the jth coordinate ξj(θ) of ξ(θ) is a C3-function of θ on Θγ ⊃ Θ.

Proof. It is well-known that the (unordered) spectrum of a matrix depends continuously on the
coefficients of the matrix. Since the entries of M(θ) are smooth functions of θ, its unordered
spectrum can be written Spec M(θ) := {λ1(θ), . . . , λd(θ)}, where each λi(θ) is a complex-valued
and continuous function of θ, and the numbering 1, . . . , d does not correspond to any specific order.
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Let us first show that ρ(θ) also depends continuously on θ. Let θ ∈ Θγ . There exists a subscript
1 6 i0 6 d (depending on θ) such that ρ(θ) = λi0(θ) = < (λi0(θ)). We define

τ(θ) := min
i 6=i0
{ρ(θ)−< (λi(θ))} .

Let ε > 0 such that τ(θ) > ε. By continuity of λi(θ) and of < (λi(θ)), there exists δ > 0 such that,
for all |θ′ − θ| 6 δ and all i 6= i0, |< (λi(θ))−< (λi(θ′)) | < τ(θ)− ε, and such that

|ρ(θ)−< (λi0(θ′)) | < ε. (4.3.17)

Then, for all |θ′ − θ| 6 δ, we have, for all i 6= i0,

< (λi0(θ′))−< (λi(θ′)) = < (λi0(θ′))− ρ(θ) + ρ(θ)−< (λi(θ)) + < (λi(θ))−< (λi(θ′))
> −ε+ τ(θ)− (τ(θ)− ε) = 0,

which by definition of ρ(θ′) means that ρ(θ′) = < (λi0(θ′)). Relation (4.3.17) then becomes |ρ(θ)−
ρ(θ′)| < ε, which proves the continuity of ρ(θ), on Θγ .

Let us now prove that ρ(θ) is differentiable at any θ ∈ Θγ . For this purpose, we use the relation∑d
k=1 Ψk(θ)ρ(θ)−k = 1 (see (4.1.8)), from which it ensues that for every h 6= 0,

d∑
k=1

(akθ + bk)
ρ(θ)−k − ρ(θ + h)−k

h
−

d∑
k=1

akρ(θ + h)−k = 0. (4.3.18)

Using the relation

ρ (θ)−k − ρ (θ + h)−k

=
(
ρ (θ)−1 − ρ (θ + h)−1

)(
ρ (θ)−k+1 + ρ (θ)−k+2

ρ (θ + h)−1 + . . .+ ρ (θ + h)−k+1
)

= (ρ (θ + h)− ρ (θ))
ρ (θ)−k+1 + ρ (θ)−k+2

ρ (θ + h)−1 + . . .+ ρ (θ + h)−k+1

ρ (θ + h) ρ (θ)
=: (ρ (θ + h)− ρ (θ))Qk(h),

equation (4.3.18) becomes

ρ(θ + h)− ρ(θ)
h

d∑
k=1

(akθ + bk)Qk(h)−
d∑
k=1

akρ(θ + h)−k = 0,

and thus, by continuity of ρ(θ),

lim
h→0

ρ(θ + h)− ρ(θ)
h

= lim
h→0

∑d
k=1 akρ(θ + h)−k∑d

k=1(akθ + bk)Qk(h)
=

∑d
k=1 akρ(θ)−k∑d

k=1 k(akθ + bk)ρ(θ)−k−1
= ρ′(θ).

The last relation implies that ρ′(θ) is continuous and differentiable on Θγ , and we prove by iterating
the same method that ρ is C3 on Θγ (we would prove actually the same way that ρ is C∞).

The last assertion of Proposition 4.3.5 is then an immediate consequence of (4.2.78).

Let us now prove Theorem 4.3.3.

Proof of Theorem 4.3.3. The proof of this theorem is quite similar to the one of Theorem 4.2.7.
According to Proposition 3.1 in [Jac10B], sufficient conditions for the strong consistency of θ̂X

∗

n

are that 1) f∗(.,X∗k−1) is Lipschitz, in the sense that there exists a nonnegative F∗k−1-measurable
function Ck (where F∗k−1 := σ(X∗0, . . . ,X

∗
k−1)), satisfying for all θ1, θ2 ∈ Θ,∣∣f∗(θ1,X∗k−1)− f∗(θ2,X∗k−1)

∣∣ a.s.6 Ck |θ1 − θ2| ,
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2) that limk→∞Eθ0
(

(ε∗k)2 |X∗k−1

)
a.s.
< ∞, and 3) that

lim
n→∞

inf
θ∈Θ

|θ−θ0|>δ

n∑
k=1

(
f∗(θ0,X∗k−1)− f∗(θ,X∗k−1)

)2 a.s.= ∞. (4.3.19)

First, for all θ ∈ Θ and j ∈ Nd, j 6= 0, f∗
′
(θ, j) = (a · j + p′ (θ, j)) (a · j)−1/2, where p′ denotes

the derivative of p with respect to θ, which thanks to (4.3.7) and Proposition 4.3.5 is bounded on
Θ. The Lipschitz condition for f∗(.,X∗k−1) is thus satisfied.

The second condition follows from (4.3.11).
The last condition (4.3.19) comes from the fact that, for every δ > 0 and every θ ∈ Θ such

that |θ − θ0| > δ, applying the mean value theorem to the C1-function p(.,X∗k−1),

n∑
k=1

(
f∗(θ0,X∗k−1)− f∗(θ,X∗k−1)

)2 = (θ0 − θ)2
n∑
k=1

a ·X∗k−1

(
1 +

p
(
θ0,X∗k−1

)
− p

(
θ,X∗k−1

)
(θ0 − θ)a ·X∗k−1

)2

> δ2
n∑
k=1

a ·X∗k−1 inf
θ∈Θ

(
1 +

p′(θ,X∗k−1)
a ·X∗k−1

)2

.

Let us show that the function

j 7→ a · j inf
θ∈Θ

(
1 +

p′(θ, j)
a · j

)2

is πθ0-integrable. For every θ ∈ Θ, j ∈ Nd and j 6= 0, denoting

Ξ := sup
i,θ∈Θ

{ξi(θ), |ξ′i(θ)|} <∞

(by continuity of ξ′i(θ) on Θγ ⊃ Θ), and ξ := mini,θ∈Θ ξi(θ) > 0,

|p′ (θ, j) | =

∣∣∣∣∣∣∣
(
ξ′1(θ)j ·Ψ(θ) + ξ1(θ)j · a

)∑d
i=2 jiξi(θ)− ξ1(θ)j ·Ψ(θ)

∑d
i=2 jiξ

′
i(θ)(

ξ1(θ)j ·Ψ(θ) +
∑d
i=2 jiξi(θ)

)2

∣∣∣∣∣∣∣
6

Ξ2

ξ2

3j ·Ψ(θ)
∑d
i=2 ji(

j ·Ψ(θ) +
∑d
i=2 ji

)2 6
3Ξ2

4ξ2 =: B1. (4.3.20)

Hence, for all j 6= 0, ∣∣∣∣∣a · j inf
θ∈Θ

(
1 +

p′(θ, j)
a · j

)2
∣∣∣∣∣ 6

(
1 +

B1

a

)2

a · j,

and applying (4.3.14) together with (4.3.15) we obtain that

lim
n→∞

1
n+ 1

n∑
k=1

a ·X∗k−1 inf
θ∈Θ

(
1 +

p′(θ,X∗k−1)
a ·X∗k−1

)2
a.s.=

∑
j∈Nd

a · j inf
θ∈Θ

(
1 +

p′(θ, j)
a · j

)2

πθ0(j). (4.3.21)

Let j 6= 0 fixed. Since for all θ ∈ Θ, p′(θ, j) 6= −a · j, the extreme value theorem implies that

inf
θ∈Θ

(
1 +

p′(θ, j)
a · j

)2

> 0.

Hence the right term in (4.3.21) is strictly positive, which together with (4.3.21) leads to (4.3.19).
Let us now consider the asymptotic distribution of θ̂X

∗

n − θ0. For this purpose, we follow the
steps of the proof of Proposition 6.1 in [Jac10B]. Writing the Taylor expansion of S∗

′

n (θ) in the
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neighborhood of θ0 we obtain that θ̂X
∗

n −θ0 = −S∗′n (θ0)/S∗
′′

n (θ̃n), for some θ̃n = θ0+tn
(
θ̂X
∗

n − θ0

)
,

with tn ∈ ]0, 1[. Since S∗
′

n (θ0) = −2
∑n
k=1 ε

∗
kf
∗′(θ0,X∗k−1), we can write

√
n
(
θ̂X
∗

n − θ0

)
=
∑n
k=1 ε

∗
kf
∗′(θ0,X∗k−1)
√
n

(
F ∗n
n

)−1
(

1
2
S∗
′′

n (θ̃n)
F ∗n

)−1

, (4.3.22)

where

F ∗n :=
n∑
k=1

(
f∗
′
(θ0,X∗k−1)

)2

.

Let us first show that
lim
n→∞

F ∗n
n

a.s.=
∑
j∈Nd

(
f∗
′
(θ0, j)

)2

πθ0(j). (4.3.23)

This is an application of (4.3.14) and (4.3.15), since for all j ∈ Nd, j 6= 0,(
f∗
′
(θ0, j)

)2

6 a · j + 2B1 +
B2

1

a
. (4.3.24)

In view of (4.3.22), we now prove that

lim
n→∞

S∗
′′

n (θ̃n)
F ∗n

a.s.= 2. (4.3.25)

Computing S∗
′′

n thanks to the formula S∗n(θ) =
∑n
k=1

(
ε∗k + f∗(θ0,X∗k−1)− f∗(θ,X∗k−1)

)2, it ap-
pears that (4.3.25) is true, as soon as the following holds:

lim
n→∞

sup
θ∈Θ

∣∣∣∑n
k=1 ε

∗
k f
∗′′(θ,X∗k−1)

∣∣∣
F ∗n

a.s.= 0, (4.3.26)

lim
n→∞

∑n
k=1

(
f∗
′
(θ̃n,X∗k−1)

)2

F ∗n

a.s.= 1, (4.3.27)

and

lim
n→∞

∑n
k=1

(
f∗(θ0,X∗k−1)− f∗(θ̃n,X∗k−1)

)
f∗
′′
(θ̃n,X∗k−1)

F ∗n

a.s.= 0. (4.3.28)

Let us prove (4.3.26)-(4.3.28). First, (4.3.26) is given by a strong law of large numbers proved in
[Jac10B], Proposition 5.1. The latter can be indeed applied since limn F

∗
n
a.s.= ∞ (as an immediate

consequence of the stronger result (4.3.23)), and since f∗
′′
(.,X∗k−1) fulfills the required Lipschitz

condition. Indeed, by Proposition 4.3.5, ξ′′′i (θ) is continuous on the compact set Θ and is thus
bounded on Θ, which implies that f∗

′′′
(.,X∗k−1) = p′′′

(
.,X∗k−1

)
(a · X∗k−1)−1/2 is bounded by a

F∗k−1-measurable function.
In view of (4.3.27), we consider the function (f∗(θ, j))2 and its derivative 2f∗

′
(θ, j)f∗

′′
(θ, j).

Similarly as for (4.3.20), one can show that there exists a constant B2 > 0 such that for all θ ∈ Θ,
and all j 6= 0, |p′′ (θ, j) | 6 B2. This implies∣∣∣2f∗′(θ, j)f∗′′(θ, j)∣∣∣ 6 2

∣∣∣∣ (a · j + p′(θ, j)) p′′(θ, j)
a · j

∣∣∣∣ 6 2B2

(
1 +

B1

a

)
. (4.3.29)

Consequently,∣∣∣∑n
k=1 f

∗′(θ̃n,X∗k−1)2 − f∗′(θ0,X∗k−1)2
∣∣∣

F ∗n
6 2B2

(
1 +

B1

a

) ∣∣∣θ̂X∗n − θ0

∣∣∣ (F ∗n
n

)−1

, (4.3.30)
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which by (4.3.23) and the strong consistency of θ̂X
∗

n almost surely tends to 0. Writing∑n
k=1 f

∗′(θ̃n,X∗k−1)2

F ∗n
= 1 +

∑n
k=1

(
f∗
′
(θ̃n,X∗k−1)2 − f∗′(θ0,X∗k−1)2

)
F ∗n

,

this implies (4.3.27).
It now remains to prove (4.3.28). We write∣∣∣∑n

k=1

(
f∗(θ0,X∗k−1)− f∗(θ̃n,X∗k−1)

)
f∗
′′
(θ̃n,X∗k−1)

∣∣∣
F ∗n

6
1
F ∗n

n∑
k=1

a ·X∗k−1|θ0 − θ̃n|+ |p(θ0,X∗k−1)− p(θ̃n,X∗k−1)|
a ·X∗k−1

|p′′(θ̃n,X∗k−1)|

6
1
F ∗n

n∑
k=1

(
|θ0 − θ̃n|+

B1|θ0 − θ̃n|
a

)
B2 6 |θ0 − θ̂X

∗

n |B2

(
1 +

B1

a

)(
F ∗n
n

)−1

,

which thanks to (4.3.23) and the strong consistency of θ̂X
∗

n implies (4.3.28).
In view of (4.3.22), we finally want to prove that

∑n
k=1 ε

∗
kf
∗′(θ0,X∗k−1)/

√
n converges in dis-

tribution, and to this end we make again use of Proposition 4.2.8. Let us define, for every k 6 n,

M
(n)
k :=

1√
n

k∑
l=1

ε∗l f
∗′(θ0,X∗l−1).

First, for every k 6 n, Eθ0
(
ε∗kf
∗′(θ0,X∗k−1)/

√
n|X∗k−1

)
= 0. Second,

Eθ0

(ε∗kf∗′(θ0,X∗k−1)
√
n

)2 ∣∣∣X∗k−1

 =

(
f∗
′
(θ0,X∗k−1)

)2

g
(
θ0,X∗k−1

)
n

,

where g
(
θ0,X∗k−1

)
is given by (4.3.10), and thus M (n)

k is a sequence of square integrable martin-
gales. Moreover, using inequalities (4.3.11) and (4.3.24), we obtain by (4.3.15),

∑
j∈Nd

(
f∗
′
(θ0, j)

)2

g (θ0, j)πθ0(j) 6
(
θ0 +

b+ 1
a

)∑
j∈Nd

a · jπθ0(j) + 2B1 +
B2

1

a

 <∞. (4.3.31)

So, by means of (4.3.14),

lim
n→∞

〈Mn〉(n) = lim
n→∞

n∑
k=1

Eθ0

(εkf∗′(θ0,X∗k−1)
√
n

)2 ∣∣∣X∗k−1


a.s.=

∑
j∈Nd

(
f∗
′
(θ0, j)

)2

g (θ0, j)πθ0(j).

Third, using Cauchy-Schwarz and Bienaymé-Chebyshev inequalities,

n∑
k=1

Eθ0

∣∣∣∣∣ε∗kf∗
′
(θ0,X∗k−1)
√
n

∣∣∣∣∣
2

1(˛̨̨̨
˛ ε∗kf∗

′ (θ0,X∗k−1)
√
n

˛̨̨̨
˛>ε

)∣∣∣X∗k−1


6

n∑
k=1

Eθ0

∣∣∣∣∣ε∗kf∗
′
(θ0,X∗k−1)
√
n

∣∣∣∣∣
4 ∣∣∣X∗k−1

 1
2 (

Pθ0

[∣∣∣∣∣ε∗kf∗
′
(θ0,X∗k−1)
√
n

∣∣∣∣∣ > ε∣∣∣X∗k−1

]) 1
2

6
1
n

3
2 ε

n∑
k=1

|f∗
′
(θ0,X∗k−1)|3

(
Eθ0

[
(ε∗k)4 |X∗k−1

]) 1
2
(
Eθ0

[
(ε∗k)2 |X∗k−1

]) 1
2
. (4.3.32)
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Let us compute Eθ0((ε∗k)4 |X∗k−1). We can show that the 4th central moment of the independent
sum of a Poisson and a Bernoulli random variables, equals µ4 + 6µ2γ2 + γ4, where µi and γi
denote the ith central moment of the Poisson and of the Bernoulli variable. If these variables have
parameter λ and p, respectively, then µ4 = λ(1 + 3λ), µ2 = λ, γ4 = p(1− p)(3p2 − 3p+ 1) ∈ [0, 1],
and γ2 = p(1− p) ∈ [0, 1]. We thus obtain∣∣∣Eθ0 ((ε∗k)4 |X∗k−1

)∣∣∣ 6 Ψ(θ0) ·X∗k−1

(
7 + 3Ψ(θ0) ·X∗k−1

)
+ 1(

a ·X∗k−1

)2 .

Hence

|f∗
′
(θ0,X∗k−1)|3

(
Eθ0

[
ε4
k|X

∗
k−1

]) 1
2
(
Eθ0

[
ε2
k|X

∗
k−1

]) 1
2

6

(√
a ·X∗k−1 +

B1√
a

)3

√
Ψ(θ0) ·X∗k−1

(
7 + 3Ψ(θ0) ·X∗k−1

)
+ 1

a ·X∗k−1

(
θ0 +

b+ 1
a

) 1
2

. (4.3.33)

Since the highest power of X∗n involved in (4.3.33) is 3/2, and since the stationary distribution πθ0
has finite second-moments (see Proposition 4.3.4), we can apply (4.3.14) to (4.3.32) and obtain
that

lim
n→∞

n∑
k=1

Eθ0

∣∣∣∣∣ε∗kf∗
′
(θ0,X∗k−1)
√
n

∣∣∣∣∣
2

1(˛̨̨̨
˛ ε∗kf∗

′ (θ0,X∗k−1)
√
n

˛̨̨̨
˛>ε

)∣∣∣∣X∗k−1

 a.s.= 0.

It then ensues from Proposition 4.2.8 that

lim
n→∞

∑n
k=1 ε

∗
kf
∗′(θ0,X∗k−1)
√
n

D= N

0,
∑
j∈Nd

(
f∗
′
(θ0, j)

)2

g (θ0, j)πθ0(j)

 . (4.3.34)

Finally, (4.3.22) together with (4.3.23), (4.3.25), (4.3.34) and Slutsky’s Lemma imply that

lim
n→∞

√
n
(
θ̂X
∗

n − θ0

)
D= N

0,

∑
j∈Nd

(
f∗
′
(θ0, j)

)2

g (θ0, j)πθ0(j)(∑
j∈Nd (f∗′ (θ0, j))

2
πθ0(j)

)2

 . (4.3.35)

Theorem 4.3.3 is clearly not directly applicable: first, the stationary distribution πθ0 is in
general not explicitly known, and second, (4.3.13) involves the function f∗

′
, and thus requires the

knowledge of the derivative of the function ξj(θ0), which is not an explicit function of θ0 since ρ0

itself is not an explicit function of θ0. In order to solve this problem, we deduce from (4.3.13) the
following more practical result.

Corollary 4.3.6. The estimator θ̂X
∗

n has the following asymptotic distribution

lim
n→∞

∑n
k=0

(
f∗
′
(
θ̂X
∗

n ,X∗k

))2

√∑n
k=0

(
f∗′
(
θ̂X∗n ,X∗k

))2

g
(
θ̂∗n,X

∗
k

) (θ̂X∗n − θ0

)
D= N (0, 1) . (4.3.36)

Proof. The result is immediate as soon as we prove that

lim
n→∞

1
n+ 1

n∑
k=0

(
f∗
′
(
θ̂X
∗

n ,X∗k
))2

g
(
θ̂X
∗

n ,X∗k
)
a.s.=

∑
j∈Nd

(
f∗
′
(θ0, j)

)2

g (θ0, j)πθ0 (j) , (4.3.37)
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as well as the equivalent result for the numerator. For this purpose, we write

n∑
k=0

(
f∗
′
(
θ̂X
∗

n ,X∗k
))2

g
(
θ̂X
∗

n ,X∗k
)

=
n∑
k=0

(
f∗
′
(θ0,X∗k)

)2

g (θ0,X∗k)

+
n∑
k=0

[(
f∗
′
(
θ̂X
∗

n ,X∗k
))2

g
(
θ̂X
∗

n ,X∗k
)
−
(
f∗
′
(θ0,X∗k)

)2

g (θ0,X∗k)
]
, (4.3.38)

and show that (f∗
′
(., j))2g (., j) has a bounded derivative and is thus Lipschitz. We have indeed

|g′(θ, j)| = |a · j + p′(θ, j)| (a · j)−1 6 1 +B1a
−1, hence∣∣∣2f∗′′(θ, j)f∗′(θ, j)g(θ, j) + (f∗

′
(θ, j))2g′(θ, j)

∣∣∣
6 2B2

(
1 +B1a

−1
)
a−1 (Ψ(θ) · j + 1) +

(
1 +B1a

−1
)2

(a · j +B1) 6 B3Ψ(θ2) · j,

for some constant B3 > 0. This enables to write

1
n+ 1

n∑
k=0

∣∣∣∣(f∗′ (θ̂X∗n ,X∗k
))2

g
(
θ̂X
∗

n ,X∗k
)
−
(
f∗
′
(θ0,X∗k)

)2

g (θ0,X∗k)
∣∣∣∣

6
∣∣∣θ̂X∗n − θ0

∣∣∣B3
1

n+ 1

n∑
k=0

Ψ(θ̂max) ·X∗k. (4.3.39)

By the strong consistency of θ̂X
∗

n together with (4.3.14) and (4.3.15), (4.3.39) almost surely tends
to zero. Combined with (4.3.14) and (4.3.31) in (4.3.38), this implies (4.3.37).

Remark 4.3.7. We point out that ξ′j(θ) is a function of ρ(θ) and ρ′(θ), because ξj(θ) is an explicit
function of ρ(θ) (see (4.2.78)). Moreover ρ′(θ) satisfies

ρ′(θ) =
∑d
k=1 akρ(θ)−k∑d

k=1 k(akθ + bk)ρ(θ)−k−1

(see Proposition 4.3.5). Consequently (4.3.36) can be used as soon as ρ(θ̂X
∗

n ) is known. In general
the largest solution ρ(θ) of

∑d
k=1 Ψk(θ)ρ(θ)−k = 1 is not an explicit function of θ, but can be

easily numerically approximated.
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Chapter 5

BSE epidemic in Great-Britain

The bovine spongiform encephalopathy (BSE, or “mad cow disease”) is a fatal neurodegenerative
transmissible disease in cattle due to self-replicating proteins, the prions. The epidemic in Great
Britain was first officially identified in 1986 ([Wel87]), and reached its peak in 1992 (36682 cases).
The epidemic is nowadays in its decay phase, and since only a very few cases were recently reported
(33 in 2008 and 9 from January to September 2009, see [OIE]), the spread of the disease should a
priori “soon” come to an end.

Until the main feed ban regulation, introduced by the British government in July 1988, on the
feeding of protein derived from ruminants to any ruminant, the main routes of transmission of
BSE were horizontal via protein supplements (Meat and Bone Meal, milk replacers), and maternal
from a cow to its calf. A previous statistical study ([Jac10A]) concluded to the full efficiency of
the 1988 ban. Since most of cattle are slaughtered before the age of 10 years, the fact that cases of
BSE are still observed more than 20 years later could suggest the existence of a remaining source
of infection, either via a maternal transmission route, or via a horizontal one, for example via
the ingestion of excreted prions from alive infected animals. The prediction of the future disease
spread thus strongly relies on the intensity of this remaining infection.

Our goal is therefore to estimate this remaining infection and to predict in a fine way the
future epidemic evolution, based on a stochastic model taking into account the variability of
transmission, of incubation time and of survival. More precisely, besides the estimation of the
remaining infection, we plan to predict the incidences of cases and of infected cattle, to estimate
the distributions of the epidemic extinction time and that of the total number of cases until
extinction (epidemic size), and finally to analyze the behavior of the future disease spread in
case of a very late extinction. To this end, we use a stochastic model on the yearly incidences
of cases of the form (4.1.1). This model was elaborated in [Jac10A] as the limit process, as the
initial population size increases to infinity, of a stochastic age and population-dependent branching
process taking into account all the health stages of the disease and the variability of the infection
process, under the assumption that the disease is rare at the initial time of the epidemic, and
that the probability for an animal to be infected follows a Reed-Frost model. We assume that the
process starting from 1989 is time-homogeneous, that is, we neglect the different regulations and
breeding changes occurring from 1989 which could have some influence on the probability for an
animal to catch the disease.

The limit model of the form (4.1.1) is a recursive process with Poissonian transitions and
memory of order d := aM − 1, where aM is the largest reported survival age with a nonnegligible
probability (here aM = 10). The recursivity of the process allows long-term predictions contrary to
usual back-calculation methods, and the branching stochastic and integer-valued character of the
process allows a realistic random and finite extinction time, contrary to more classical deterministic
models that predict the extinction only as the time tends to infinity.

The purpose of this chapter is to quantify the infection of an epidemic in its different phases
(growth phase, decay phase, and decay phase assuming a very late extinction) by using appropriate
estimators of the infection parameter for each of these phases, previously introduced in Section
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Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
Cases 7137 14181 25032 36682 34370 23945 14302 8016 4312 3179
Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Cases 2274 1355 1113 1044 549 309 203 104 53 33

Table 5.1: Yearly number of cases of BSE reported in Great-Britain from 1989 to 2008 ([OIE]).

4.2. The epidemic model which is used here is suitable for any rare transmissible SEIR disease
in a large branching population following a Reed-Frost model for the infection. The process
corresponds to the incidence of the clinical cases, which are assumed to be the only available
observations.

Our study is based on the yearly number of cases of BSE reported in Great Britain from 1989
to 2008 (Figure 5.1 and Table 5.1) provided by the World Organisation for Animal Health ([OIE]).
No data are yet available after September 2009.

The outline of the chapter is as follows. We first present in Section 5.1 the epidemic model.
Section 5.2 is devoted to the prediction of the disease spread. In Subsection 5.2.1, we es-
timate the remaining current infection parameter θ0, the other parameters of the model being
estimated from previous works ([Jac10A] for the incubation distribution, [Don97] for the survival
probabilities, and [Brad96, Don97] for the maternal infection). We use the CLSE introduced in
Subsection 4.2.1. It has the advantage to rely only on the distribution of the process, contrary to
the Bayesian estimator provided in [Jac10A] that also requires an arbitrary prior distribution of
θ0. Moreover, it is strongly consistent and asymptotically normal, when the initial population size
tends to infinity, which enables the elaboration of a confidence interval. Furthermore, it is shown
in Section 4.2.4, on the base of simulations, that this estimator provides accurate estimations in
the setting of the epidemic phase starting from 1989. Since in [Jac10A] some correlations were
shown between the infection parameter and the incubation distribution parameters, and between
the two kinds of infection parameters (maternal and horizontal), we analyze the sensitivity of the
estimator to the incubation and maternal infection parameters. Then we predict in Subsection
5.2.2, by means of simulations, the future yearly incidences of cases, as well as the future yearly
incidences of infected cattle. This last quantity is an important piece of information, because
non diagnosed infected cattle could enter the human food process, and this proportion of animals
could be much higher than the incidence of cases, even in the decay phase, because of the large
proportion of cattle slaughtered at low ages and the possibility for those that are infected to have
not achieve their incubation. We next predict in Subsection 5.2.3 and in Subsection 5.2.4,
the extinction time distribution and the total epidemic size distribution, not simply by means of
simulations, but also using their exact theoretical distribution and the confidence interval obtained
for θ0. The final Section 5.3 is devoted to the very late extinction case, which means that we
study and predict the future incidence of cases in case of a very late extinction of the disease. We
know, thanks to the prediction of the extinction time in Subsection 5.2.3, that such a scenario
is very unlikely. It must however be carefully studied in order to provide a complete risk analysis
of the future spread of the BSE epidemic, since it corresponds to the most dangerous scenario. We
estimate the infection parameter for the Q-process associated with the epidemic model, using the
estimator introduced in Section 4.3.2, in order to predict the evolution of the incidence of cases
and of the incidence of infected cattle, in case of a very late extinction.

5.1 The epidemic model

5.1.1 Description

The epidemic model used here has been elaborated by C. Jacob and introduced in [Jac10A]. It
is obtained as the limit, as the initial size of the population tends to infinity, of an age and
population-dependent branching process based on the random health state evolution of each an-
imal, taking into account the different types of transmission routes. We will briefly recall this
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Figure 5.1: Yearly number of cases of BSE reported in Great Britain from 1989 to 2008 ([OIE]).

result in Subsection 5.1.4.
The BSE can be considered as a SEIR disease, which means that the population can be

classified into those who are susceptible (S) to the disease, those who have been infected but are
not yet infectious themselves (E for exposed), those who are infectious (I), and finally those who
are removed (R) of the susceptible population, either because they recover and gets immune or
because of their death. The latter is what happens for the BSE, which is a fatal disease.

However, in order to fit the observations available in Great-Britain for the BSE epidemic, which
are the yearly incidences of cases (i.e. animals with clinical symptoms at the very end of their
incubation period, which can last several years), the classification of the health status slightly
differs in [Jac10A] from the standard convention labels. The classification is the following (see
Figure 5.2) and consists of four states:

� S susceptible animals,

� E infected animals without clinical symptoms but possibly infectious,

� I clinical cases,

� R slaughtered animals.

One of the difficulty of the model is that S and E animals seem identical, i.e. are apparently
healthy. The only available observations are the incidence of cases I (Figure 5.3). As already
mentioned in the introduction, the different types of transmission routes are maternal from a
cow to its calf, horizontal from supplemental feeding made of animal proteins, and possibly from
excreting infectious animals.

The epidemic model elaborated in [Jac10A] is the following. It is a random function of the only
yearly incidences of cases (Xn)n. More precisely, it is a Markovian process of order d := aM−1 = 9,
where aM = 10 is the largest reported survival age with a nonnegligible probability:

Xn =
d∑
k=1

Xn−k∑
i=1

ζn−k,n,i, n > 1. (5.1.1)

The {ζn−k,n,i}i, that represent the number of secondary cases produced at time n with a delay k
(incubation time) from each case i of time n− k, are i.i.d. given Fn−1 := σ

(
{Xn−k}k>1

)
, with a
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Figure 5.2: Evolution of the health status of an animal in the BSE epidemic.
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Figure 5.3: Available observations.
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Figure 5.4: Stochastic model for the BSE epidemic.

common Poisson distribution with parameter Ψk(θ0) independent of n, and the {ζn−k,n,i}i,k are
independent given Fn−1. The epidemic model thus belongs to the class of processes of the form
(4.1.1) introduced in Section 4.1. Figure 5.4 illustrates how a clinical case alive at time n (animal
A in the figure) generates secondary cases several years later. This will be justified in Subsection
5.1.4, notably with Figure 5.6.

The first time n = 1 of the model is chosen here in order that the model covers the period
starting from 1989, that we consider here as a time-homogeneous period, that is X1−d = Xobs

1989,
and therefore n = 1 corresponds to 1989 + d = 1998.

In addition, for k = 1 . . . d,

Ψk(θ0) := θ0

∑d+1
i=k+1 Si∑d+1
j=1 Sj

Pinc.(k) + pmat.
Sk+1∑d+1
j=1 Sj

Pinc.(k), (5.1.2)

denoted from now on
Ψk(θ0) = akθ0 + bk, (5.1.3)

where

� θ0 is the unknown remaining infection parameter from 1989, via a horizontal route of trans-
mission, i.e. the mean number per infective and per year of newly infected cattle via, for
example, the ingestion of excreted prions from other alive infected cattle;

� pmat. is the maternal infection parameter, i.e. the probability for a calf with an infectious
mother to be infected by its mother during the first year of its life;

� Sk is the probability of survival for apparently healthy animals; the quantity

Sk+1∑d+1
j=1 Sj

represents the percentage of animals aged k + 1 years, at any year;

� Pinc.(k) denotes the probability that the intrinsic incubation period equals k years. Following
[Jac10A], we assume here a discretized Weibull distribution with parameters α, β,

Pinc.(k) := e−
α−1
αβα (k−1)α − e−

α−1
αβα k

α

,
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where α is a shape parameter, and β is the mode of the probability density of the corre-
sponding Weibull distribution.

We assume here that Ψi(θ0) > 0, for i = 1 . . . d, which means that at least either pmat. > 0 or
θ0 > 0. The epidemic process defined by (5.1.1) can thus be written as a positive regular and non
simple d-type BGW process (see Section 4.1).

5.1.2 Theoretical results

In addition to the properties satisfied by the process (5.1.1) which have already been mentioned in
Section 4.1, we quote here some theoretical results that will be used later, namely the distribution
of the extinction time and the distribution of the total size of the process until extinction.

As usual in stochastic processes, these quantities are calculated conditionally on the value of
X0, but for the sake of simplicity, we do not make it appear in the notations.

Extinction time

Let
T := inf {n > 1,Xn = 0} (5.1.4)

denote the extinction time of the process (Xn)n>0, and

fθ0n (r) := fθ0 [fθ0n−1(r)]

the nth iterate of the generating function fθ0 := (fθ01 , . . . , fθ0d ) given by (4.1.5). Then

Pθ0 (T 6 n) = Pθ0 (Xn = 0) =
(
fθ0n (0)

)X0

=
(
fθ0n,1 (0)

)X0,1

. . .
(
fθ0n,d (0)

)X0,d

. (5.1.5)

Tree size

Let

N :=
T∑
n=1

Xn (5.1.6)

be the size of the tree generated by the process (Xn)n>1, thus excluding X0. Then, in the
subcritical case (see [JacPe10]),

N
D= ⊕dk=1 ⊕

X−k+1
i=1

(
⊕Yk,ij=1Nk,i,j

)
, (5.1.7)

where ⊕ denotes the mutual independence (with the convention ⊕0
k=1 := 0), where the {Yk,i}k,i

are independent, the {Yk,i}i i.i.d with

Yk,i ∼ Poisson(
d∑
l=k

Ψl(θ0)),

and the {Nk,i,j}k,i,j i.i.d. with

Nk,i,j ∼ Borel − T anner(
d∑
l=1

Ψl(θ0), 1),

that is,

P (Nk,i,j = n) = e−n
Pd
l=1 Ψl(θ0)

(
n
∑d
l=1 Ψl(θ0)

)n−1

n!
, n > 1. (5.1.8)

126



CHAPTER 5. BSE EPIDEMIC IN GREAT-BRITAIN 5.1.

n+1n

INFECTION

p E,E

pE,I

1- p     - p
E,E E,IPoiss(θ  + p     (                   ))mat.0

1- p     - p
E,E E,I

Figure 5.5: 2-type epidemic model, in the case of a geometric incubation time and life span.

This implies

Eθ0 (N) =
d∑
k=1

X−(k−1)

( ∑d
l=k Ψl (θ0)

1−
∑d
l=1 Ψl (θ0)

)
, (5.1.9)

Varθ0 (N) =
d∑
k=1

X−(k−1)

∑d
l=k Ψl (θ0)(

1−
∑d
l=1 Ψl (θ0)

)3 . (5.1.10)

5.1.3 The geometrical case

If we assume the particular (unrealistic) case of a geometric incubation time and life span with
d = ∞, then it is also possible to rewrite the epidemic model according to a 2-type BGW, by
considering the hidden Markov process keeping track of the animals in the incubation period,
which constitute the memory of the process.

Let us denote by pE,E the probability for a E animal to stay one time unit more in the E
state, and pE,I its probability to become I at the following time (see Figure 5.5).

Let Yn :=
(
Y In , Y

E
n

)
, where the two coordinates correspond respectively to the incidence of

clinical cases I and to the number of E animals, at time n. The process Yn may be written as
follows:

Y In =
Y En−1∑
i=1

δE,In,i ,

Y En =
Y In−1∑
i=1

ζEn,i +
Y En−1∑
i=1

δE,En,i ,

(5.1.11)

where
ζEn,i|FYn−1 ∼ Poisson

(
θ0 + pmat

(
1− pE,E − pE,I

))
,

δE,En,i |F
Y
n−1 ∼ B

(
pE,E

)
,
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δE,In,i |F
Y
n−1 ∼ B

(
pE,I

)
.

We can show that the first coordinate Y In then well corresponds to the epidemic process Xn.
Indeed, let us define

ζn−k,n,i :=
ζEn−k+1,i∑
j=1

δE,En−k+1,n−k+2,i,j . . . δ
E,I
n−1,n,i,j .

Using (5.1.11), we obtain that

Y In =
∞∑
k=2

Y In−k∑
i=1

ζn−k,n,i,

ζn−k,n,i|FYn−1 ∼ Poisson
(
ΨI
k(θ0)

)
,

(5.1.12)

with, for k > 2,

ΨI
k (θ0) =

(
θ0 + pmat

(
1− pE,E − pE,I

)) (
pE,E

)k−2
pE,I .

Moreover, since under the geometric distributions, the survival law (Sk)k>1 and the intrinsic
incubation period distribution (Pinc.(k))k>1 are given by

Sk =
(
pE,E + pE,I

)k
,

Pinc.(k) =
(

pE,E

pE,E + pE,I

)k−1
pE,I

pE,E + pE,I
,

then, for every k > 2,

ΨI
k (θ0) = θ0

∑∞
i=k Si∑∞
j=1 Sj

Pinc.(k − 1) + pmat.
Sk∑∞
j=1 Sj

Pinc.(k − 1). (5.1.13)

Comparing (5.1.12)-(5.1.13) with (5.1.1)-(5.1.2), we see that we obtain similar models. The only
difference lies in the fact that for every k > 2, ΨI

k = Ψk−1. Indeed, in the 2-type model (5.1.11),
a clinical case I cannot generate secondary cases one year later (see Figure 5.5) and we thus have
ΨI

1 = 0.

In this setting of a geometric incubation time and life span, the study of the incidence of cases
thus reduces to the study of (5.1.11), which is a 2-type BGW process with mean matrix(

0 θ + pmat(1− pE,E − pE,I)
pE,I pE,E

)
.

Its Perron’s root is

ρ =
pE,E +

√
(pE,E)2 + 4(θ + pmat(1− pE,E − pE,I))pE,I

2
,

and we obtain that

ρ 6 1 ⇐⇒
(
θ + pmat

(
1− pE,E − pE,I

))
pE,I

1− pE,E
6 1,

which is equivalent to
∑∞
k=2 ΨI

k 6 1.
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5.1.4 Origin of the model

It is shown in [JacPe10] that the age-dependent process (4.1.1) can be obtained as the limit of a
more complex age and population-dependent process Nn :=

(
Nk
n

)
k∈T , describing the population-

size at time n for each type k ∈ T (corresponding e.g. to health stages, locations, ages etc.).
We first very briefly recall this result (which is due to C. Jacob and thus will not be exposed in

this thesis), and then describe in which way this has been applied in order to obtain the epidemic
model (5.1.1).

The number of k individuals at time n is given by

Nk
n =

aM∑
l=1

∑
h∈T

Nhn−l∑
i=1

Y
(h),k
n−l,n,i, (5.1.14)

where aM is the largest survival age, and Y (h),k
n−l,n,i is the number of k individuals generated at time

n by individual i belonging to the type h at time n− l. This number Y (h),k
n−l,n,i of “mathematical”

offsprings depends on the individual transition of i from h to k, as well as on the number of its
“true” offsprings and their respective transition from their initial type to k.

Assuming the existence of a subset K ⊂ T of rare types, and eventually of a subset K′ ⊂ K
corresponding to rare types “of interest”, it is shown in [JacPe10] (Proposition 5.1) that, under
technical assumptions (which are rather weak in the epidemiological context), the process Nk

n

converges in distribution, for all k ∈ K, as the initial population size N0 :=
∑
k∈T N

k
0 tends to

infinity. Moreover, the process summed on the rare types of interest, Xn :=
∑
k∈K′ X

k
n, where

Xk
n

D
:= limN0 N

k
n , is a process of the form (4.1.1).

In the epidemiological context of a SEIR disease with horizontal and vertical infection routes,
where the types are the health states, if K concerns all the infected states and K′ ⊂ K, the clinical
state, then we obtain that the process

Xn := lim
N0→∞

∑
k∈K′

Nk
n ,

corresponding to the incidence of the clinical cases at time n, assuming that the initial population
size N0 is very large, is of the form (5.1.1)-(5.1.2). We illustrate in Figure 5.6 in which way
a clinical case alive at time n (animal A in the figure) can actually generate secondary cases
(animals B and C in the figure) several years later, through the processes of infection, incubation
and slaughtering. This also very roughly justifies the presence in Ψk(θ0) of the infection terms θ0

and pmat., as well as of the survival and incubation terms Sk and Pinc.(k).

5.2 Prediction of the disease spread

The recursivity of the epidemic model (5.1.1) enables long-term predictions of the process. For this
purpose we need to estimate the parameters of the model, namely the incubation period distribu-
tion Pinc.(.), the maternal infection parameter pmat., the survival distribution in the apparently
healthy state (Sk)k, and the infection parameter θ0 corresponding to the remaining horizontal
infection route.

The survival distribution is derived from [Don97] (see Table 5.2). The incubation period
distribution, that can be estimated only on the whole epidemic series (growth and decay) because
of a very bad identifiability of these parameters with the infection parameters on a sole monotonous
phase, is estimated by the Bayesian maximum a posteriori (MAP) estimations realized on the whole
epidemic, under the modeling of this distribution by a Weibull distribution with parameters α, β
(see Subsection 5.1.1). We set

α = α̂MAP = 3.84
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Figure 5.6: Model taking account all the health status of the disease.

and
β = β̂MAP = 7.46,

where α̂MAP and β̂MAP are the MAP Bayesian estimations obtained in [Jac10A]. Finally, we set
pmat. = 0.1, which is the largest commonly admitted value for this parameter ([Brad96, Don97]).
Concerning θ0, we could also use the MAP estimator

θ̂MAP = 2.43 (5.2.1)

got on the whole epidemic until 2007 ([Jac10A]), but since it is the parameter of interest, we
reestimate this parameter using here a conditional least squares estimation approach, which does
not require an arbitrary prior distribution relative of this parameter as in the Bayesian setting.

The CLSE and a confidence interval of θ0 is calculated in Subsection 5.2.1 in the setting of
the model (5.1.1), where

X0 = Xobs
1997 = (Xobs

1997, . . . , X
obs
1989),

given in Table 5.1. We study moreover the sensitivity of this estimation to the values of (pmat., α, β).
In Subsection 5.2.2, we predict the future disease evolution from 2009. For the predictions

from 2009, we set X0 = Xobs
2008.

All the following simulations and computations have been done with the numerical computing
and programming environment Matlab.

5.2.1 Estimation of the infection parameter

Estimation

In order to estimate the infection parameter θ0, we use in model (5.1.1)-(5.1.2) the weighted CLSE
θ̂X|X0| introduced in Subsection 4.2.1, where {pmat., α, β, {Sj}} correspond to the values given in
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0.97 0.65 0.36 0.30 0.25 0.18 0.10 0.06 0.02 0.01

Table 5.2: Observed survival probabilities of cattle in Great Britain (deduced from [Don97]). Sk
is the probability for an (apparently) healthy animal to survive at least until k years.

k 1 2 3 4 5 6 7 8 9
ak.103 0.2192 1.9315 5.5275 9.2323 10.4353 8.3260 5.1357 1.8642 0.5569
bk.104 0.0738 0.5432 1.8025 3.7227 5.0766 4.3821 3.4238 1.2428 0.5569

Table 5.3: Values of ak and bk defined by (5.1.2)-(5.1.3).

the introduction of Section 5.2. The corresponding numerical values of ak and bk defined by
(5.1.2)-(5.1.3) are given in Table 5.3.

According to Table 5.1,
|X0| = |Xobs

1997| = 167977.

We are thus close to the asymptotic |X0| → ∞. The estimator (4.2.12) provides the following
estimation,

θ̂X|X0| = 2.4486. (5.2.2)

We point out that this estimation is very close to the maximum a posteriori Bayesian estimation
(5.2.1), got on the whole epidemic until 2007.

Using the asymptotic normality of θ̂X|X0| given by (4.2.18), we obtain the following confidence
interval with asymptotic probability 0.95:

[θ̂min, θ̂max],

where
θ̂min := θ̂X|X0| −

1.96
ĉ1

, and θ̂max := θ̂X|X0| +
1.96
ĉ1

.

The value

ĉ1 :=
∑n
k=1 a ·Xk−1

σ2
(
θ̂X|X0|

)
is computed assuming (see (4.2.16))

αi =
Xobs

1997,i

|Xobs
1997|

.

Therefore ĉ1 = 40.3938, and

P
(
θ0 ∈

[
θ̂min, θ̂max

] )
' 0.95,

θ̂min = 2.4000, θ̂max = 2.4971.
(5.2.3)

Let us mention that a credibility interval of θ0 of probability 0.95 calculated from the quantiles
at 0.025 and 0.975 of the posterior distribution of θ in the Bayesian setting was [2.231, 2.728]
[Jac10A], which is much larger than the confidence interval given here. Although this confidence
interval is an asymptotic one, as |X0| → ∞, it is a very good approximation of the true confidence
interval since |X0| is here very large.

Sensitivity analysis

Let us evaluate the sensitivity of the estimator to the other parameters of the model, namely
the maternal infection parameter pmat. and the incubation parameters α and β. To this end, we
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pmat. α β θ̂X|X0| [θ̂min, θ̂max]
0.1 3.84 7.46 2.4486 [2.4000, 2.4971]
0 3.84 7.46 2.5022 [2.4537, 2.5507]
1 3.84 7.46 1.9658 [1.9172, 2.0143]

0.1 2 7.46 2.7976 [2.7425, 2.8528]
0.1 20 7.46 4.0664 [3.9862, 4.1465]
0.1 3.84 1 1.0143 [0.9940, 1.0345]
0.1 3.84 10 6.2579 [6.1355, 6.3803]
0.1 3 6 1.5487 [1.5177, 1.5797]
0.1 4 5 1.0277 [1.0069, 1.0486]

Table 5.4: Estimation of the environmental infection parameter θ0, and its confidence interval
[θ̂min, θ̂max] with asymptotic probability 0.95, for different values of the maternal infection pa-
rameter pmat. and of the incubation parameters (α, β). The values (3.84, 7.46) correspond to the
Bayesian MAP estimations (α̂MAP , β̂MAP ), and 0.1 to the largest commonly admitted value for
pmat..

compute the estimation of θ0 and the associated confidence interval with asymptotic probability
0.95, for different values of (pmat., α, β), listed in Table 5.4.

The first line of the table corresponds to the parameters chosen for the model. In each of
the four following lines, we fix two coordinates and choose an extremal (unrealistic) value for
the third one. It appears that the estimation of θ0 does not strongly depend on the value of
the maternal infection parameter: we obtain estimations of the same order, even when assuming
that no maternal infection occur, or that every newborn with an infectious mother is infected.
However, the estimation differs a bit more when we change the parameters of the incubation period
distribution. We obtain for example an estimation of the order of 4 if the shape parameter α of the
Weibull distribution equals 20, and around 6 if the mode β equals 10. Since these cases correspond
to unrealistic incubation period distributions (see Figure 5.7), we also compute the estimation of
θ0 for two other more realistic sets of (α, β), namely (α, β) = (3, 6) and (α, β) = (4, 5). The results
are given in the last two lines of Table 5.4, and we obtain estimations of the order of 1 to 2.

Conclusion

Even for very unrealistic values (α, β), all the estimations of θ0 remain in the same order of
magnitude of several units, which is really small compared to the estimations obtained in [Jac10A]
for the infection via Meat and Bone Meal or lactoreplacers (before 1989), which are of the order
of 1000. However, although these estimations are all very small, θ0 seems nonnull. This could
suggest the existence of a minor but nonnull infection source which is not of maternal type.

5.2.2 Prediction of the incidences of cases and infected cattle

In this subsection, we predict the spread of the disease from 2009 by means of simulations of the
epidemic process, where θ0 is replaced by its previous estimation θ̂X|X0| = 2.4486, and where the
initial time of the model is 2008, that is

X0 = Xobs
2008 = (Xobs

2008, . . . , X
obs
2000).

The simulations are done recursively using the transition law (4.1.2).
The expected value of cases in 2009 given the past is, by definition,

EbθX|X0|

(
X2009|Xobs

2008

)
= Ψ

(
θ̂X|X0|

)
·Xobs

2008 = 46.46,

which is surprisingly higher than the number of reported cases in 2008 (Xobs
2008 = 33), and larger

than the 9 reported cases in 2009 from January to September (see [OIE]). The simulations initiated

132



CHAPTER 5. BSE EPIDEMIC IN GREAT-BRITAIN 5.2.

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

k

P
in

c.
(k

)

 

 

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

k

P
in

c.
(k

)

 

 

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

k

P
in

c.
(k

)

 

 

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

k

P
in

c.
(k

)

 

 

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

k

P
in

c.
(k

)

 

 

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

k

P
in

c.
(k

)

 

 

α=3.84, β=7.46  
α=2, β=7.46

α=3.84, β=7.46  
α=20, β=7.46

α=3.84, β=7.46  
α=3.84, β=1

α=3.84, β=7.46  
α=3.84, β=10

α=3.84, β=7.46  
α=3, β=6

α=3.84, β=7.46  
α=4, β=5

Figure 5.7: Incubation period distribution for different values of the shape parameter α and
of the mode β of the Weibull distribution. In red, the distribution computed with (α, β) =
(α̂MAP , α̂MAP ) = (3.84, 7.46) (values chosen for our model). For each figure we use an adapted
scale in order to compare the two distributions.
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Figure 5.8: On Figure 5.8.1, 10 simulations of the epidemic process with the infection parameter
θ̂X|X0| = 2.4486 on the period 1998-2008, and comparison with the observations; on Figure 5.8.2,
10 simulations of the same epidemic process, on the period 2009-2017.

by X0 = Xobs
2008 present indeed a “step” between 2008 and 2009, as illustrated in Figure 5.8.2. The

model thus does not completely fit the reality at this point, which can be explained by the choice
of a two-parameter incubation period distribution, the use of several assumptions to obtain a
simplified model, and an over or under-declaration of the number of cases during the past 20
years. Nevertheless, the height of this step is extremely small compared to the values of the
process, which are in majority of the order of 10000 to 1000 since 1997, and we point out that
the model initiated by X0 = Xobs

1997 provides quite realistic simulations on the period 1998-2008
compared to the real observations on the same period, as illustrated in Figure 5.8.1. The epidemic
model thus seems to provide a satisfying prediction of the overall evolution of the real epidemic.
We must however be cautious when interpreting predictions at a given year.

Incidences of cases

We simulate 1000 trajectories of the epidemic model (Xn)n>0 initiated by the observed values
Xobs

2008. We illustrate in Figure 5.9.1, for each year from 2009, the maximum, minimum, median,
0.025 and 0.975 quantiles associated with the 1000 realizations.

Incidences of infected cattle

As mentioned in the introduction, it is also crucial to study and predict the evolution of the
incidence of infected cattle in the population. These could not only infect other animals later
on, when they are in the infectious phase of their incubation period, but also, since they have no
clinical symptoms, they could enter the human food process if they do not undergo a diagnostic
test. The incidence En of infected cattle at time n, conditionally on the number Xn of cases at

134



CHAPTER 5. BSE EPIDEMIC IN GREAT-BRITAIN 5.2.

2010 2015 2020 2025 2030 2035
0

10

20

30

40

50

60

70

year

nu
m

be
r 

of
 c

as
es

1. Prediction of the number of cases

 

 
maximum
97.5% quantile
median
2.5% quantile
minimum

2010 2015 2020 2025 2030 2035
0

50

100

150

200

year

nu
m

be
r 

of
 in

fe
ct

ed
 c

at
tle

2. Prediction of the number of infected cattle

 

 
maximum
97.5% quantile
median
2.5% quantile
minimum

Figure 5.9: Prediction, based on 1000 simulations of the epidemic process with the infection
parameter θ̂X|X0| = 2.4486, of the yearly incidences of cases (1) and of infected cattle (2) from 2009.
95% of the trajectories remain in the band delimited by the blue dashed lines.

that time, is given by the following Poisson distribution (see [JacPe10]):

En|Xn ∼ Poisson

((
θ0 + pmat.

S1∑d+1
j=1 Sj

)
Xn

)
, n > 0. (5.2.4)

For every n > 0 and for each of the 1000 simulated values Xn, we make one realization of En,
according to (5.2.4). We then illustrate in Figure 5.9.2, the yearly maximum, minimum, median,
0.025 and 0.975 quantiles associated with the 1000 realizations. As expected, the incidence of
infected cattle is much larger than the incidence of cases.

5.2.3 Prediction of the extinction time

We know thanks to (4.2.3) that the process is subcritical if and only if θ0 < θcrit. ' 23. The
epidemic process observed here is thus obviously subcritical, and will die out almost surely in a
finite time.

Let
T := 2008 + inf {n > 1,Xn = 0}
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n Pbθmax (T 6 n) Pbθmin (T 6 n) n Pbθmax (T 6 n) Pbθmin (T 6 n)
2009 0.0000 0.0000 2036 0.9560 0.9622
. . . . . . . . . 2037 0.9703 0.9747

2023 0.0002 0.0004 2038 0.9800 0.9831
2024 0.0032 0.0049 2039 0.9866 0.9888
2025 0.0226 0.0307 2040 0.9910 0.9925
2026 0.0837 0.1037 2041 0.9940 0.9950
2027 0.1941 0.2260 2042 0.9960 0.9967
2028 0.3319 0.3702 2043 0.9973 0.9978
2029 0.4737 0.5123 2044 0.9982 0.9985
2030 0.6040 0.6386 2045 0.9988 0.9990
2031 0.7137 0.7421 2046 0.9992 0.9993
2032 0.7990 0.8211 2047 0.9995 0.9996
2033 0.8613 0.8778 2048 0.9996 0.9997
2034 0.9050 0.9171 2049 0.9998 0.9998
2035 0.9352 0.9439 2050 0.9998 0.9999

Table 5.5: Cumulative distribution function of the year of extinction for the infection parameters
θ̂min and θ̂max defined by (5.2.3). The year 2030 (resp. 2036) corresponds to the smallest n such
that Pbθmax (T 6 n) > 0.5 (resp. Pbθmax (T 6 n) > 0.95).

denote the extinction year of the epidemic model. By (5.1.5), for every n > 1,

Pθ0 (T 6 2008 + n) =
(
fθ0n,1 (0)

)Xobs2008
. . .
(
fθ0n,d (0)

)Xobs2000
,

which by iterating the generating function fθ0 can be computed explicitly.
For every i = 1 . . . d, n ∈ N and r ∈ [0, 1]d, θ 7→ fθn,i (r) is a decreasing function, hence

θ 7→ Pθ (T 6 n) is decreasing as well, and we obtain, thanks to (5.2.3), that for n > 2009,

P

(
Pθ0 (T 6 n) ∈

[
Pbθmax (T 6 n) ,Pbθmin (T 6 n)

])
' 0.95. (5.2.5)

We collect in Table 5.5 the values of the confidence interval
[
Pbθmax (T 6 n) ,Pbθmin (T 6 n)

]
for each n > 2009, and obtain in particular that

P
(
Pθ0 (T 6 2030) > 0.5

)
' 0.95,

P
(
Pθ0 (T 6 2036) > 0.95

)
' 0.95.

We illustrate in Figure 5.10 the cumulative distribution function of the extinction time for
the parameters θ̂min and θ̂max, corresponding to the confidence band, as well as for two extremal
values of the infection parameter (θ = 1 and θ = 6). We see in Figure 5.10 that the confidence band
[Pbθmax (T 6 n) ,Pbθmin (T 6 n)] is very narrow, leading to an accurate estimation of Pθ0 (T 6 n).

5.2.4 Prediction of the total size of the epidemic

Let

N :=
T−2008∑
n=1

Xn

be the total size of the future epidemic from 2009 (total number of cases from 2009 until the
extinction of the epidemic).
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Figure 5.10: In dashed lines, cumulative distribution function of the year of extinction for the
infection parameters θ̂min and θ̂max defined by (5.2.3). In dotted lines, cumulative distribution
function of the year of extinction for two extremal values of the infection parameter (θ = 1 and
θ = 6).

We compute the distribution of N using (5.1.7), (5.1.8), conditionally on the event {X0 =
Xobs

2008}.
We first compute the first two moments of N , using (5.1.9) and (5.1.10),

Ebθmin (N) = 119.3170, Varbθmin (N) = 149.2324,

Ebθmax (N) = 124.6133, Varbθmax (N) = 157.3303.
(5.2.6)

Let us point out that, according to (5.1.9) and (5.1.10), Eθ0 (N) and Varθ0 (N) are increasing
functions of θ0.

Then defining
∑0
j=1 · = 0 and

∏0
j=1 · = 1, we can explicitly compute, for every n ∈ N,

Pθ0 (N = n) =
∑

{06yk,i6n,{16nk,i,j6n}j}i,k:Pd
k=1

PX−k+1
i=1

Pyk,i
j=1 nk,i,j=n

d∏
k=1

X−k+1∏
i=1

e−
Pd
l=k Ψl(θ0)

(∑d
l=k Ψl(θ0)

)yk,i
yk,i!

×
yk,i∏
j=1

e−nk,i,j
Pd
l=1 Ψl(θ0)

(
nk,i,j

∑d
l=1 Ψl(θ0)

)nk,i,j−1

nk,i,j !
, (5.2.7)

and obtain thanks to (5.2.3), for every n ∈ N,

P

(
Pθ0 (N 6 n) ∈

[
Pbθmax (N 6 n) ,Pbθmin (N 6 n)

])
' 0.95. (5.2.8)

Using (5.2.7), the confidence interval (5.2.8) should be theoretically computable for any value
of n, even large ones, and according to (5.2.6), n of the order of hundred is quite likely. However,
because of the numerous partitions and combinatoric terms involved in (5.2.7), and because the
values Xobs

2000, . . . , X
obs
2008 are very large, formula (5.2.7) is not easily computable for large values
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n Pbθmax (N 6 n) Pbθmin (N 6 n) n Pbθmax (N 6 n) Pbθmin (N 6 n)
80 0.0000 0.0000 130 0.6830 0.8130
90 0.0030 0.0070 140 0.9090 0.9440
100 0.0240 0.0600 141 0.9220 0.9520
110 0.1170 0.2510 142 0.9310 0.9600
120 0.3800 0.5180 143 0.9420 0.9660
121 0.4100 0.5550 144 0.9490 0.9710
122 0.4430 0.5840 145 0.9570 0.9740
123 0.4710 0.6140 146 0.9660 0.9810
124 0.5000 0.6510 150 0.9820 0.9930
125 0.5320 0.6850 160 0.9980 0.9990
126 0.5610 0.7140 170 1.0000 1.0000

Table 5.6: Empirical cumulative distribution function (based on 1000 simulated trajectories) of
the total size of the epidemic for the infection parameters θ̂min and θ̂max defined by (5.2.3).
The value 124 (resp. 145) corresponds to the smallest n such that Pbθmax (N 6 n) > 0.5 (resp.
Pbθmax (N 6 n) > 0.95).

of n. Consequently, we rather choose to compute the empirical cumulative distribution functions
Pbθmin (N 6 n) and Pbθmax (N 6 n), based on 1000 simulated trajectories of the epidemic model
from 2009 (with memory over the years 2000-2008).

The numerical values are reported in Table 5.6. We obtain in particular that

P
(
Pθ0 (N 6 124) > 0.5

)
' 0.95,

P
(
Pθ0 (N 6 145) > 0.95

)
' 0.95.

We illustrate in Figure 5.11 the empirical cumulative distribution function of the extinction
time for the parameters θ̂min and θ̂max corresponding to the confidence band, as well as for two
extremal values of the infection parameter (θ = 1 and θ = 6).

5.3 Prediction of the disease spread in case of a very late
extinction

In this section we focus on the worst-case scenario, which means a very late extinction of the
epidemic. In order to predict the evolution of the epidemic in such a case, we use the Q-process
associated with the branching process, introduced in Subsection 4.3.1. We first estimate in Sub-
section 5.3.1 the infection parameter θ0 with the estimator θ̂X

∗

n built for the Q-process and
defined by (4.3.8), and then predict in Subsection 5.3.2 the spread of the disease by means of
simulations.

5.3.1 Estimation of the infection parameter

Let us compute the value of θ̂X
∗

n based on the data in Great Britain presented in Table 5.1.
Unfortunately, since the observations stop in 2008, the number of available observations is only
n = 11. We are thus far from the asymptotic setting n→∞ of the previous section. However, the
large value of |X0| can make us hope a good accuracy. We point out that, by making use of the
estimator θ̂X

∗

n on the real data, we make an unverifiable assumption on the future of the epidemic:
we consider the data as if they were the beginning of a trajectory with very late extinction. This
should have the following consequence: the estimation provided by θ̂X

∗

n should a priori be a bit
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Figure 5.11: In dashed lines, the empirical cumulative distribution functions (based on 1000
simulated trajectories) of the total size of the epidemic for the infection parameters θ̂min and θ̂max
defined by (5.2.3). In dotted lines, the empirical cumulative distribution functions of the total size
of the epidemic for two extremal values of the infection parameter (θ = 1 and θ = 6).

smaller than the value 2.4486 provided by θ̂X|X0|. Indeed we obtain:

θ̂X
∗

n = 2.4472. (5.3.1)

Using this value, we obtain the following rate of convergence in (4.3.36) to the asymptotic
normal distribution,

ĉ2 :=

∑n
k=0

(
f∗
′
(
θ̂X
∗

n ,X∗k
))2

√∑n
k=0

(
f∗′
(
θ̂X∗n ,X∗k

))2

g
(
θ̂∗n,X

∗
k

) = 40.4967. (5.3.2)

We deduce the confidence interval of θ0 with asymptotic probability 0.95, [θ̂∗min, θ̂
∗
max], where

θ̂∗min := θ̂X
∗

n − 1.96
ĉ2

, and θ̂∗max := θ̂X
∗

n +
1.96
ĉ2

.

We thus obtain
P
(
θ0 ∈

[
θ̂∗min, θ̂

∗
max

] )
' 0.95,

θ̂∗min = 2.3988, θ̂∗max = 2.4956,
(5.3.3)

which is of the same magnitude order as the confidence interval [2.4000, 2.4971] obtained with the
unconditioned process.

5.3.2 Prediction of the disease spread

In order to predict the behavior of the “most dangerous” evolution of the epidemic, we can now
use the transition law of the conditioned process given by Proposition 4.3.1.

First, we see thanks to Figure 5.12.1 that the simulations provided by the conditioned process
initiated by X0 = Xobs

1997, and where θ0 is estimated by θ̂X
∗

n = 2.4472, are quite realistic, compared
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Figure 5.12: On Figure 5.12.1, 10 simulations of the conditioned process with the infection pa-
rameter θ̂X

∗

n = 2.4472 from 1998 to 2008, and comparison with the observations; on Figure 5.12.2,
one simulation of the conditioned process with the infection parameter θ̂X

∗

n = 2.4472 from 2009
to 2040.

to the real observations on the period 1998-2008. Figure 5.12.2 is an example of one simulation
on the period 2009-2040 of the conditioned process, for X∗0 = Xobs

2008. It appears that the values of
this simulated trajectory are rapidly very small, and of course never equals 0.

For a finer prediction, we simulate 1000 realizations of the Q-process from 2009 until 2050,
with X∗0 = Xobs

2008 and θ0 = θ̂X
∗

n . Moreover, for every k > 0 and for each of the 1000 simulated
values X∗k , we make one realization of the incidence Ek of infected cattle at time k, according to
the law given by (5.2.4). Figure 5.13 represents the yearly maximum, minimum, median, 0.25 and
0.975 quantiles associated with the 1000 realizations of respectively, the incidence of cases and the
incidence of infected cattle, in case of a very late extinction.

Conclusion

It appears thanks to this last study that the supposedly “most dangerous” trajectories, corre-
sponding to a very late extinction of the epidemic, nevertheless do not reach high values and do
not present a new peak of epidemic.
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Figure 5.13: Prediction, based on 1000 simulations of the conditioned process (X∗n)n>0, with the
parameter θ̂X

∗

n = 2.4472, of the yearly incidences of cases (1) and of infected cattle (2) from 2009.
95% of the trajectories remain in the band delimited by the blue dashed lines.
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spatial branching processes. Astérisque. 281.
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