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1. Intoduction

Recently, the interest in research on gases of Bosons has increased and models of

different kinds have been studied, in particular their connection to cycle percolations.

Sütő [17, 18] and Benfatto et all [1] considered limiting models of random permutations

without interaction and in the mean field, respectively. Ueltschi [19, 20] examined

lattice models on the basis of Sütő’s work. In particular both, Sütő and Ueltschi,

indicated in which way cycle percolation and Bose Einstein condensation are connected.

Very recently, Ueltschi and Betz [2, 21] generalised the lattice model to models of

random point configurations in space.

From the point of view of point processes Fichtner [8] started the investigation of

the position distribution of the Bose gas and gave a characterisation in terms of its

moment measures of a point process on Rd.

The initial point of our investigations is the work of Ginibre [10] who investigated

quantum gases and derived a representation of the reduced density matrices of the Bose

gas in terms of Wiener measures. His results are a valuable starting point for defining

a point process on a certain loop space, which will be called Ginibre gas. Our aim is to

characterise limits corresponding to various specifications in the sense of Preston [15].

The paper is organised as follows: In section 2, firstly the Ginibre gas model is

introduced. We then recall the notion of specifications and Martin-Dynkin boundary

due to Föllmer [7] and Dynkin [5, 6] and define the filtrations which this paper is

concerned with. After that, we study different examples of specifications. These are in

sections 3– 5 the microcanonical, canonical and grand canonical loop ensemble. Finally,

we turn second canonical ensemble in section 6, which could be more convenient from

a physical point of view.
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2. The setting

2.1. The Ginibre Gas

For an arbitrary integer j ¥ 1 consider a continuous function x : r0, jβs ÞÑ Rd with

xp0q � xpjβq. The image of x in Rd is a j-loop at inverse temperature β. It represents

j simultaneously moving particles starting at xpkβq, k � 0, . . . , j � 1 and changing its

positions during a time intervall of length β. Hence, x
(
rkβ, pk� 1qβs

)
is the trace of a

single particle or elementary component. Let Xj denote the space of j-loops

Xj :�
{
x P C

(
r0, jβs,Rd

)
: xp0q � xpjβq

}
, X :�

⋃
j¥1

Xj

the space of loops at the inverse temperature β. X contains continuous trajectories of

multiple length of β. Each of the spaces of j-loops is endowed with the Borel topology,

and we equip X with the corresponding disjoint union topology, that is the finest

topology such that the canonical injections Xj Ñ X are continuous.

Let B0pRdq be the algebra of bounded Borel sets of Rd, which is a partially ordered

set when endowed with the inclusion
(
B0pRdq,�

)
. For Λ P B0pRdq define the set of

bounded sets of X to be

B0 :� B0pXq �
{
B P BpXq : B � XΛ for some Λ P B0pRdq

}
where XΛ is the set of all the loops contained in Λ,

XΛ � {x P X : rangex � Λ}.

In that way we speak of a loop x contained in some region Λ, whenever the image of

the loop is fully contained in Λ, for which we write x � Λ; a set of loops is bounded,

whenever there exists some bounded region Λ, which contains these loops. Note that if

Λ1,Λ2 P B0pRdq are two disjoint bounded regions, then XΛ1 YXΛ2 � XΛ1YΛ2 without

equality in general, since loops may start in one region and cross the other one.

Let ψβ be the density of the centered normal distribution on Rd with covariance

matrix βI and consider on pRdqj the measure

ρ̄jpdaq � ψβpa1 � a0q � . . . � ψβpaj�1 � aj�2qψβpa0 � aj�1qda0 . . . daj�1.
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Furthermore, let p : Xj Ñ pRdqj be the projection x ÞÑ
(
xp0q, xpβq, . . . , xppj�1qβq

)
and ρj be a measure on Xj such that ρj �p�1 � ρ̄j . Of particular interest are Brownian

bridge measures or measures of a random walk bridge with normally distributed steps.

Now, sum up the measures ρj to get a family of measures ρz on X for z P p0, 1s,

ρz :�
∑
j¥1

zj

j
ρj . (2.1)

The parameter z is the fugacity.

Lemma 1. For any z P p0, 1s and any d ¥ 1, ρz is a σ-finite but infinite measure on

X.

Proof. Consider the projection s : X Ñ Rd on the initial point of a loop, s : x ÞÑ

xp0q, then

ρj � s
�1 �

1
p2πβjqd{2

λ

with λ denoting the Lebesgue measure on Rd. This can be seen from∫
fpa0qρj � s

�1pda0q �

∫
fpa0qψβpa1 � a0q � . . . � ψβpaj�1 � aj�2q

� ψβpa0 � aj�1qda0 . . . daj�1

�

∫
fpa0qψjβpa0 � a0qda0 � p2πβjq�d{2

∫
fpa0qda0,

since the rhs of the first line is a convolution of normal distributions. That way we get

ρz � s
�1 � p2πβq�d{2g1� d

2
pzqλ, (2.2)

where gα : r0, 1s Ñ R� Y {8} is for any α ¡ 0 defined as

gαpzq �
∑
j¥1

zj

jα
. (2.3)

Since for any α ¡ 1 this gα is finite on r0, 1s, we get the claim.

Observe that for 0   α ¤ 1 the series gα is only finite on r0, 1q without the right

boundary. Furthermore gα is strictly increasing and continuous whenever it is finite.

A configuration µ is an element of the phase space M��pXq of locally finite point

measures on X. Particularly, µ is a collection of loops such that any bounded region Λ
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contains only a finite number of loops. For simplicity write x P µ whenever µ � δx� ν

for some ν P M��pXq. Every configuration µ has a representation µ �
∑
xPµ δx. The

following restrictions of a configuration µ will be used throughout this article:

µj :�
∑

xPµ:xPXj

δx is the configuration of j-loops of µ,

µpΛq :�
∑

xPµ:x�Λ

δx the restriction of µ to loops which stay in Λ.

A configuration µ is said to be simple, if for all x P X the relation µ
(
{x}
)
¤ 1 is

satisfied, i.e. at each site x there is at most one loop in the configuration µ. The set

of locally finite simple point measures is denoted by M�pXq.

A probability measure on M��pXq and on M�pXq is a point process and a simple

point process, respectively. Of special interest are the Poisson point processes Pρz ,

which are even concentrated on simple configurations of loops M�pXq, since ρz has no

fixed atoms. If Pρz,Λ denotes the restriction of Pρz to M�pXΛq and ρz,Λ the restriction

of ρz to XΛ, respectively, then Pρz,Λ � Pρz,Λ .

Definition 1. The Ginibre gas with fugacity z P p0, 1s is the Poisson process Pρz on

M��pXq.

A composition η is a finite point measure on N�, i.e. an element of M��
f pN�q. Observe

that there is a canonical partial order on M��
f pN�q,

γ ¤ η :ô γpjq ¤ ηpjq

for all j P N�. For η PM��
f pN�q let denote η� the element in M��

f pN�q which represents

the support of η, namely

η� �
∑

jPN�:ηpjq¥1

δj for η �
∑
j¥1

ηpjqδj .

2.2. Specifications and Martin-Dynkin boundary

Specifications were studied intensely by Preston [15], who contributed the notion of

microcanonical and canonical ensemble in this context. A further tessera is the work

of Föllmer [7], who extended the Martin boundary technique to specifications. As a

consequence, a characterisation of Poisson processes by their local specifications was

given by Nguyen and Zessin [13].



6 Mathias Rafler

Consider the measurable space pM�pXq, Eq of simple point measures on X and fix

a with respect to pB0pRdq,�q decresing family of sub-σ-fields E � {EΛ}Λ of E . A

probability kernel π1 is a mapping M�pXq � E Ñ R¥0 with the properties

1. @µ PM�pXq : π1pµ, � q is a measure,

2. @E P E : π1p � , Eq is E-measurable.

An E-specification π � {πΛ}Λ is a collection of probability kernels on M�pXq � E

such that

1. @A P E : πΛp � , Aq is EΛ-measurable,

2. @A P EΛ : πΛp � , Aq � 1A,

3. @µ PM�pXq : πΛpµ,M�pXqq P {0, 1},

4. @Λ � Λ1 : πΛ1 � πΛ1πΛ.

A Gibbs state or a phase with respect to the E-specification is a probability measure

P on M�pXq such that its conditional expectations given the σ-algebras in E is given

by the corresponding kernel, EP
(
� |EΛ

)
pµq � πΛpµ, � q. Let C � Cpπq denote the set of

those phases. If C contains more than one phase, a phase transition occurs.

To define the Martin-Dynkin boundary fix a countable base pΛkqk of B0pRdq and a

polish topology on M�pXq compatible with {EΛk}k. One obtains a polish topology on

the set of probability measures on M�pXq. Furthermore, let C8 � C8pπq be the set

of all limits

lim
kÑ8

πΛkpµk, � q (2.4)

for sequences pµkqk � M�pXq. Now C8 does not depend on the choice of the family

pΛkqk and is complete in the set of probability measures on M�pXq, hence polish

with the induced Borel field C8. The Martin-Dynkin boundary associated to π is the

measurable space pC8, C8q.

Finally, let Qµ for µ PM�pXq be the limit

Qµ :� lim
kÑ8

πΛkpµ, � q, (2.5)
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then the essential part ∆ of the Martin-Dynkin boundary is the set of those P P C8XC,

for which Q� � P holds P-a.s, i.e.

QµpAq � PpAq for P-a.e. µ. (2.6)

2.3. Counting Loops

The purpose of this subsection is to define filtrations on M�pXq, that is to define

how to count loops. As already pointed out, x � Λ for some bounded region Λ and

some loop x P X iff x is completely contained in Λ. Consequently, the loop x is outside

Λ iff x leaves Λ at least once. Define a collection of counting variables {nΛ}ΛPB0pRdq,

each nΛ counting the number of loops of each kind in some region Λ

nΛ : M�pXq ÑM��
f pN�q, nΛµ :�

∑
j¥1

|µpΛq,j |δj , (2.7)

where |ν| :� νpXq is the total mass of ν of the point measure ν. nΛµ is indeed an

almost surely finite measure under Pρz , since Pρz is locally finite and hence µpΛqpXq   8

almost surely for any bounded region Λ. From the definition immediatly follows that

nΛµ ¤ nΛ1µ for each configuration µ and bounded regions Λ � Λ1. Therfore, we can

define spatial increments, that is for Λ,Λ1 P B0pRdq with Λ � Λ1

nΛ1,Λ : M�pXq ÑM��
f pN�q, nΛ1,Λ :� nΛ1 � nΛ.

Now we are able to give the definition of the filtration of the outside events E �

{EΛ}Λ,

EΛ � σ

({
nΛ1,Λ � η|Λ � Λ1 P B0pRdq, η PM��

f pN�q
})

, (2.8)

that is the smallest σ-algebra such that the increments of the region Λ are measurable.

In keeping the terminology of Preston, the phases corresponding to E will form the

grand canonical loop ensemble.

Adding more detailled information about the interior leads to the filtration F � {FΛ}Λ,

FΛ � EΛ _ σ

({
nΛ � η|η PM��

f pN�q
})

, (2.9)

which is associated to the microcanonical loop ensemble.

For a configuration µ PM�pXq let cΛµ �
∑
j¥1 nΛµpjq be the total number of loops

inside Λ and

GΛ � EΛ _ σ

({
cΛ � k|k P N�

})
, (2.10)
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the G � {GΛ}Λ defines the canonical loop ensemble. Similiar to nΛ, we have for Λ � Λ1,

cΛ ¤ cΛ1 and cΛ1,Λ � cΛ1 � cΛ is EΛ-measurable.

Finally, we are interested in what happens if we give weights to loops of different

lengths, in particular we consider the counting variable

NΛ : M�pXq Ñ N�, NΛµ �
∑
j¥1

jnΛµpjq, (2.11)

which counts the number of elementary components of the loops inside Λ. It is clear

that NΛ fulfills the same monotonicity and measurablility properties of the increments

as cΛ. Let

HΛ � EΛ _ σ

({
NΛ � k|k P N�

})
(2.12)

and call the corresponding ensemble H � {HΛ}Λ canonical ensemble.

In the following sections specifications with respect to these Filtrations are going

to be discussed: In section 3 the microcanonical loop ensemble F, in section 4 the

canonical loop ensemble G, in section 5 the grand canonical loop ensemble E and

finally in section 6 the canonical ensemble H.

3. The microcanonical loop ensemble

In this section the specification for the filtration F � {FΛ}Λ is discussed. As an

intermediate step, a representation of the Poisson process Pρz conditioned on certain

events derived. Afterwards we turn to the Martin boundary technique.

Fix a fugacity z P p0, 1s. For each Λ P B0pRdq, nΛ maps the simple Poisson process

Pρz on M�pXq into a finite Poisson process Pτz,Λ on M��
f pN�q with intensity measure

τz,Λ given by

τz,Λpjq �
zj

j
ρjpXΛq. (3.1)

Indeed,

Pτz,Λpηq � Pρz pnΛ � ηq � expp�ρzpXΛqq
∏
jPη�

zjηpjqρjpXΛq
ηpjq

jηpjqηpjq!

� expp�τz,ΛpN�qq
∏
jPη�

τz,Λpjq
ηpjq

ηpjq!
,
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since ρzpXΛq � τz,ΛpN�q. Let ρ̃z,Λ denote the normalisation of the finite measure ρz,Λ;

then we define the η-convolution P ηρz,Λ of the probability measures ρ̃j,Λ, j ¥ 1 for some

η PM��
f pN�q as

P ηρ,Λ :� ρ̃ηΛ � �
jPη�

ρ̃
�ηpjq
j,Λ , (3.2)

which represents the superposition of loops of a given length j according to the number

ηpjq. The Pτz,Λ -combination of that convolution is

P̃ρz,Λ �
∑

ηPM��
f pN�q

Pτz,ΛpηqP
η
ρ,Λ. (3.3)

Thus P̃ρz,Λ is given by a two step mechanism: At first choose a composition η P

M��
f pN�q defining the number of loops in some bounded region Λ and then realise a

configuration according to this composition. An effect is that the fugacity z does only

affect the choice of the composition and not P ηρ,Λ.

These probability measures are closely related to the Ginibre gas restricted to

bounded sets Λ, Pρz,Λ.

Lemma 2. Pρz,ΛpA|nΛ � ηq � P ηρ,ΛpAq.

Proof. Since we have exactly K �
∑
j ηpjq loops in Λ and if we order them in

increasing length, we obtain

Pρz,ΛpAX nΛ � ηq � expp�ρzpXΛqq
∑
n¥0

1
n!
�

�

∫
� � �

∫
1A1nΛ�ηpδx1 � . . .� δxnqρz,Λpdx1q � � � ρz,Λpdxnq

� expp�ρzpXΛqq
1
K!
�

�

∫
� � �

∫
1A1nΛ�ηpδx1 � . . .� δxN qρz,Λpdx1q � � � ρz,ΛpdxN q

� expp�ρzpXΛqq
∏
jPη�

zjηpjqρjpXΛq
ηpjq

jηpjqηpjq!
�

�

∫
� � �

∫
1A1nΛ�ηpδx1 � . . .� δxN qρ̃

η
z,Λpdx1, . . . , dxN q

� expp�ρzpXΛqq
∏
jPη�

zjηpjqρjpXΛq
ηpjq

jηpjqηpjq!
P ηρ,ΛpAX {nΛ � η}q,
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Finally, setting A �M�pXq we get the normalisation constant and using the fact that

P ηρ,ΛpnΛ � ηq � 1 we get the assertion.

Corollary 1. P̃ρz,Λ � Pρz,Λ.

Proof. This follows immediatly since

P̃ρz,Λpϕq �
∑

ηPM��
f pN�q

Pτz,ΛpηqP
η
ρ,Λpϕq

�
∑

ηPM��
f pN�q

Pτz,ΛpηqPρ,Λpϕ|nΛ � ηq � Pρz,Λpϕq

for any measurable, nonnegative function ϕ.

That way we found a new representation of Pρz . Define on X �M�pXq

πF
Λpµ, ϕq � Pρz,Λ

(
ϕ
(
� � µpΛ

cq
)∣∣∣nΛ � nΛµ

)
� PnΛµ

ρz,Λ

(
ϕ
(
� � µpΛ

cq
))

and observe that πF
Λ is a probability kernel. πF � {πF

Λ}Λ is indeed an F-specification,

which follows from the conditioning procedure of the Poisson process. By definition,

Pρz P Cpπ
Fq, hence the set of phases CpπFq associated to πF is not empty.

Fix an expanding sequence pΛkqk � B0pRdq with
⋃
k¥1 Λk � Rd, let F8 �

⋂
k FΛk

be the tail-field and P P C8pπFq, then for ϕ P L1pPq,

Ppϕ|F8q � lim
kÑ8

πF
Λk
p � , ϕq P-a.s.. (3.4)

Therefore, the limits Qµ � limk π
F
Λk
pµ, � q exist P-a.s. in µ and are by construction

contained in the Martin-Dynkin boundary C8pπFq.

Define the j-loop density of some configuration µ in Λk as

Yj,kpµq �
nΛkµpjq

ρjpXΛkq
, (3.5)

let Yj be its limit as k Ñ 8 provided that the limit exists and write Y � pYjqj . Let

M be the set of all those µ PM�pXq, such that Yj exists for each j P N� and is finite.

Note that instead of the volume of Λk the volume of XΛk is used to define the density.

However, it has been shown in lemma 1 that, asymptotically, their volume is the same



Martin-Dynkin boundaries of the Bose gas 11

up to a constant given by p2πβjq�d{2. For notationally purpose we write for the convex

y-combination

y  ρ :�
∑
j¥1

yjρj (3.6)

for any sequence y � pyjqj of nonnegative real numbers.

Proposition 1. Let f : X Ñ R be nonnegative and measurable with bounded support,

µ PM and Y pµq  ρ
(

expp�fq � 1
)

convergent. Then for any ϕ P L1pPq

Ppϕ|F8q � lim
kÑ8

πF
Λk
p � , ϕq � PY ρpϕq P-a.s. (3.7)

Proof. At first we show that the following limit exists and equals

lim
kÑ8

̂πF
Λk
pµ, � qpifq � Q̂µpifq � exp

(
�
∑
j¥1

Yjpµqρj

(
1� expp�fq

))
. (3.8)

Let N be the set of ”good configurations”,

N � {µ PM�pXq : lim
kÑ8

πF
Λk
pµ, � q exists}.

Let f : X Ñ R be nonnegative and measurable with bounded support and such that∫ (
expp�fq � 1

)
dρ � 0, then there exists k0 such that supp f � Λk for k ¥ k0. Provided

µ P N , we get

̂πF
Λpµ, � qpifq �

∫
expp�

∫
fdνqπF

Λk
pµ,dνq �

∫
expp�

∫
fdνqP

nΛkµ
ρΛk

pdνq

�

∫
exp
(
�pδx1 � . . .� δxnΛk

µpN�q
qf
)
ρ̃
nΛkµ

Λk
pdx1, . . . ,dxnΛkµpN�qq

�
∏

jPpnΛkµq
�

[∫
exp
(
�fpxq

)
ρ̃j,Λkpdxq

]nΛkµpjq

�
∏

jPpnΛkµq
�

[
1� ρ̃j,Λk

(
exp
(
�fpxq

)
� 1
)]nΛkµpjq

�
∏

jPpnΛkµq
�

{[
1�

ρj

(
exp
(
�fpxq

)
� 1
)

ρjpXΛkq

]ρjpXΛk q
} nΛk

µpjq

ρjpXΛk
q

.

Use supp f � supp
(

expp�fq � 1
)

to obtain the last line. Since the lhs converges

by assumption, so the rhs does. Therefore N � M . Vice versa, if µ P M , the rhs

converges and so the lhs does, hence M � N and (3.8) is shown.
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Immediatly we get that Qµ is a Poisson process with intensity measure Y pµq  ρ,

which is the claim.

In case of divergence of the series, Q̂µpifq � 0 whenever f � 0, and there is no

suitable limit for Qµ. Thus we have shown that the only possible limits for Qµ are

Poisson processes.

For F8-measurable ϕ the proposition 1 implies P
(
ϕfpQ�q

)
� PpϕPY ρ

(
f
(
Q�q
))

and we get

PY pµqρpQ� � Qµq � 1 P-a.s.

Particularly, Yj � Yjpµq P-a.s. for each j.

Let ∆F � {P P C8XC|Q� � P P -a.s.} be the essential part of the Martin-Dynkin

boundary associated to F. Since ∆F is a Borel set in C8, ∆F is a Borel space itsself

with the induced field. For a phase P P C define a probability measure V P on ∆F as

V PpAq � PpQ� P Aq,

hence by conditioning

Ppϕq � PpQ�pϕqq �

∫
∆F
P pϕqV PpdP q

can be written as a Cox process. Vice versa, any probability measure V on ∆F induces

a phase P P C.

Theorem 1. The essential part of the Martin-Dynkin boundary of πF consists of all

Poisson processes with intensity measure yρ for nonnegative sequences y � pyjqj such

that y  ρ is a σ-finite measure on X,

∆F � {Pyρ|y  ρ σ-finite}.

Proof. Let y  ρ be σ-finite. As already seen, Pyρ P CpπFq, and clearly

Qµ � Pyρ Pyρ-a.s.

For arbitrary P P ∆F we have∫
∆F
P pϕqV PpdP q � Ppϕq � Q�pϕq P-a.s.

This implies V P � δPyρ for some σ-finite intensity measure y  ρ.

Remark 1. Observe that the fugacity z played only a minor role in the analysis of

the microcanonical ensemble.
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4. The canonical loop ensemble

In the previous section we conditioned on the different types of loops; now we

drop this distinguishing feature and consider the total number of loops. This means

to count like cΛ. Intuitively, this means to forget the superposition of the different

Poisson processes on each space of j-loops. Since the reasoning generally is the same

as in the previous section, some details are left out, whenever already given. Troughout

this section the fugacity z remains fixed.

Lemma 3. Let Bk � {η PM��
f pN�q :

∑
ηpjq � k} the set of compositions of mass k,

then

Pτz,ΛpBkq �
∑
ηPBk

Pτz,Λpηq �
ρzpXΛq

k

k!
exp
(
ρzpXΛq

)
Proof.

Pτz,ΛpBkq � Pρz,ΛpcΛ � kq.

Since cΛ is the sum of independently Poisson distributed random variables, cΛ is Poisson

distributed itself with the given intensity.

From the decomposition of Pρz,Λ in Corollary 1 immediatly follows

Pρz,Λpϕ|cΛ � cΛµq �
( ∑
ηPBcΛµ

Pτz,Λpηq
)�1 ∑

ηPBcΛµ

Pτz,ΛpηqP
η
ρ,Λpϕq (4.1)

for any measurable function ϕ on XΛ, which again emphasises the two step mechanism:

At first choose a composition according to some law and then realise the loops according

to the given composition.

Let the kernel be

πG
Λpµ, ϕq � Pρz,Λ

(
ϕ
(
� � µpΛ

cq
)∣∣∣cΛ � cΛµ

)
. (4.2)

It follows that πG � {πG
Λ}Λ is an G-specification. Again, Pρz P Cpπ

Gq, hence CpπGq

is not empty. Fix an expanding sequence pΛkqk � B0pRdq with
⋃
k¥1 Λk � Rd, let

G8 �
⋂
k GΛk be the tail-field and P P C8pπGq, then for ϕ P L1pPq,

Ppϕ|G8q � lim
kÑ8

πG
Λk
p � , ϕq P-a.s.. (4.3)



14 Mathias Rafler

Therefore the limits

Qµ � lim
kÑ8

πG
Λk
pµ, � q (4.4)

exist P-a.s. in µ and are by construction contained in the Martin-Dynkin boundary

C8pπ
Gq in case of existence.

Let the loop density of a configuration µ in Λk be

Wkpµq �
cΛkµ

ρzpXΛkq
, (4.5)

and let W be its limit as k Ñ 8 provided that the limit exists. Let M be the set of

all those µ PM�pXq, such that W exists.

Proposition 2. Let f : X Ñ R be nonnegative and measurable with bounded support

and W pµq   8. Then for any ϕ P L1pPq

Ppϕ|G8q � lim
kÑ8

πG
Λk
p � , ϕq � PWρz pϕq P-a.s.. (4.6)

Proof. Essentially the arguments as in the previous section apply,

̂πG
Λk
pµ, � qpifq �

ρzpexpp�fqqcΛkµ

ρzpXΛq
cΛkµ

�

{[
1�

ρz
(
expp�fpxqq � 1

)
ρzpXΛkq

]ρzpXΛk q
} cΛk

µ

ρzpXΛk
q

Ñ exp
(
�W pµqρz

(
1� expp�fq

))
.

Hence we get

Q̂µpifq � exp
(
�W pµqρz

(
1� expp�fq

))
,

that is that Qµ is a Poisson process with intensity measure W pµqρz.

Similiar to the microcanonical case, if W pµq is not finite, Q̂µpifq � 0 whenever

f � 0, and there is no suitable limit for Qµ. Furthermore, the possible limits Qµ are

Poisson processes.

Since this implies for G8-measurable ϕ, PpϕfpQ�qq � PpϕPWρz pfpQ�qqq one gets

PW pµqρz pQ� � Qµq � 1 P-a.s.

Particularly W �W pµq P-a.s. holds.
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Let ∆G � {P P C8XC|Q� � P P -a.s.} be the essential part of the Martin-Dynkin

boundary. For P P C define a probability measure V P on ∆G as

V PpAq � PpQ� P Aq,

hence

Ppϕq � PpQ�pϕqq �

∫
∆G

P pϕqV PpdP q

can be written as a mixed Poisson process. Vice versa, any probability measure V on

∆G induces a phase P P C.

Theorem 2. The essential part of the Martin-Dynkin boundary of πG consists of all

Poisson processes with intensity measure wρz for any positive real number w,

∆G � {Pwρz |w ¡ 0}.

Proof. If w is a positive real number, wρz is a σ-finite measure on X. As already

seen, Pwρz P Cpπ
Gq, and clearly Qµ � Pwρz Pwρz -a.s. For arbitrary P P ∆F we have∫

∆G
P pϕqV PpdP q � Ppϕq � Q�pϕq P-a.s.

This implies V P � δPwρz for some σ-finite intensity measure wρz.

Remark 2. It is remarkable that in the microcanonical case any fugacity z leads to the

same set of Gibbs states, where in the canonical loop case these Gibbs states depend

on this parameter. Essentially a similiar result for Poisson processes on Rd can already

be found in [13].

5. The grand canonical loop ensemble

This last ensemble completes the considerations about loop ensembles to the last

case, when we do not condition on a number of loops of a given configuration. For

that, define the kernel as follows

πE
Λpµ, ϕq � Pρz,Λ

(
ϕ
(
� � µpΛ

cq
))

. (5.1)

Similiar to the previous sections πE � {πE
Λ}Λ is an E-specification.

Fix an expanding sequence pΛkqk � B0pRdq with
⋃
k¥1 Λk � Rd, let E8 �

⋂
k EΛk be
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the tail-field and P P C8pπEq, then for ϕ P L1pPq,

Ppϕ|E8q � lim
kÑ8

πE
Λk
p � , ϕq P-a.s.. (5.2)

Therefore the limits

Qµ � lim
kÑ8

πE
Λk
pµ, � q (5.3)

exist P-a.s. in µ and are by construction contained in the Martin-Dynkin boundary

C8pπ
Eq.

Proposition 3. Let f be nonnegative and measureable with bounded support. Then

Q̂µpifq � lim ̂πE
Λk
pµ, � qpifq exists, is non-degenerate and

Q̂µpifq � exp
(
�ρz

(
1� expp�fq

))
. (5.4)

Proof. The proof of the corresponding microcanonical loop ensemble applies with

Yj �
zj

j .

This means that the Poisson process with intensity measure ρz is the only limit,

hence there is no phase transition. Clearly,

Theorem 3. The essential part of the Martin-Dynkin boundary of πE consists of the

Poisson process with intensity measure ρz.

6. The canonical ensemble of elementary components

From a physical point of view it could be more convenient to work on the level

of elementary constituents instead of the composite loops, since they represent the

elementary particles, the bosons; and it is more interesting to find statements about

the number of particles in some bounded region Λ rather than the number of families

they align with. Recall from eq. (2.11) that the number of elementary components in

a bounded region Λ is

NΛµ �
∑
j¥1

jnΛµpjq.

Hence, under Pρz , NΛ has a compound Poisson distribution whenever z ¤ 1 for d ¥ 3

and z   1 for d � 1, 2. However, the conditions

HΛ � EΛ _ σ

({
NΛ � k : k P N�

})
.
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do not allow a direct computation as in the previous sections. Instead we are going to

define πH
Λ in a similiar way as before as a conditioned Poisson process, to represent it

as a convex combination of P ηρΛ
and to show a large deviation principle for the mixing

measure. If the latter measure converges to a suitable limiting probability measure,

then, since the microcanonical weak limits are known, πH
Λ will converge as well.

From now on fix d ¥ 3, z � 1 and write ρ instead of ρ1, etc. At first we derive the

representation in terms of P ηρ,Λ.

Lemma 4. With CM � {η P M��
f pN�q :

∑
jηpjq � M} being the set of compositions

with first moment M and µ PM�pXq a fixed configuration with NΛµ �M , it follows∫
ϕ
(
ν � µpΛ

cq
)

1CM pνqPρΛpdνq �
∑
ηPCM

PτΛpηqP
η
ρ,Λ

(
ϕ
(
� � µpΛ

cq
))

. (6.1)

Proof. This can be seen from disintegration of conditional expectations as in the

beginning of section 3.

If we now condition PρΛ on the event {NΛ �M} on the lhs. of eq. (6.1), this turns

into PτΛ conditioned on CM on the rhs. Though define

πH
Λpµ, ϕq � Pρ,Λ

(
ϕ
(
� � µpΛ

cq
)∣∣∣NΛ � NΛµ

)
(6.2)

�

∫
P ηρ,Λ

(
ϕ
(
� � µpΛ

cq
))

PτΛpdη|CNΛµq, (6.3)

which is indeed a probability kernel on X �M�pXq.

It even follows that πH � {πH
Λ}Λ is an H-specification. As in the previous sections, fix

an expanding sequence pΛkqk of bounded regions.

Before we turn to the analysis of the Martin-Dynkin boundary of πH, we derive a large

deviation principle for PτΛp � |CNΛµq. This one can be shown in using a large deviation

principle for PτΛp � q. Since the deviation is done for fixed µ, we write Mk instead of

NΛkµ and think of it as an increasing parameter in k such that Mk

|Λk|
converges to some

finite limit as k Ñ8.

Large deviation principle for PτΛ . The intensity measure τΛk grows asymptotically

like the volume of Λk, already seen in Lemma 1,

τ :� lim
kÑ8

τΛk
|Λk|

� p2πβq�d{2
∑
j¥1

1

j1� d
2
δj . (6.4)
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τ in some sense represents the critical limiting loop densities. From that already follows

that there is a law of large numbers,

@A � N�@δ ¡ 0 : lim
kÑ8

PτΛk

({
η :
∣∣∣ηpAq
|Λk|

� τpAq
∣∣∣ ¡ δ

})
� 0,

which says that the mean density of loops of any kind tends to τ .

The large deviation principle for PτΛ is established in [11] using Cramer’s method:

On MpN�q, PτΛk

(
η

|Λk|
P �
)

satisfies a LDP with speed |Λk| and good rate function

I : MpN�q Ñ r0,8s given by

Ipκ; τq �

τpf log f � f � 1q if κ ! τ, f :� dκ
dτ , f log f � f � 1 P L1pτq

8 otherwise
,

which means that {I ¤ c} is compact for any c ¥ 0 and for any G �MpN�q vaguely

open

lim inf
kÑ8

1
|Λk|

log PτΛk

({
η :

η

|Λk|
P G

})
¥ � inf

κPG
Ipκ; τq (6.5)

and for any F �MpN�q vaguely closed

lim sup
kÑ8

1
|Λk|

log PτΛk

({
η :

η

|Λk|
P F

})
¤ � inf

κPF
Ipκ; τq. (6.6)

Large deviation principle for PτΛk p � |CMk
q. The conditioned Poisson process can

be interpreted as being absolutely continuous with respect to the unconditioned pro-

cess, where the density is roughly an indicator function times a normalisation constant.

That way the LDP for PτΛk transforms into some LDP for PτΛk p � |CMk
q.

PτΛk pη|CMk
q �

(
PτΛk

(
expp�χCMk q

))�1

exp
(
�χCMk pηq

)
PτΛk pηq,

where the functional χA for some set A � MpN�q is defined to be χA � 81Ac . As

known in large deviation theory, the rate function for PτΛk p � |CMk
q will be the rate

function for PτΛk plus a functional of the form χA for a suitable set A, see i.e. [4].

However, because of poor continuity properties of these functionals χA additional care

has to be taken. Let

Du :�
{
κ PMpN�q|

∑
jκpjq � u

}
be the set of measures on N� with first moment u representing the densities of the

loops of the different kinds. Observe that in the vague topology χDu is neither upper
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nor lower semicontinuous. But if its upper or lower semicontinuous regularisations are

not infinite for any κ PMpN�q, one may deduce the lower and upper large deviation

bound, respectively, as will do in the sequel.

Lemma 5. The upper and lower semicontinuous regularisations χuscDu
and χlscDu of χDu

with respect to the vague topology are

χuscDu pκq � 8, χlscDupκq �

8 if
∑
jκpjq ¡ u

0 otherwise
. (6.7)

Proof. First note that χuscA � χintA and χlscA � χclA, where intA and clA denote the

interior and the closure of A, respectively. But clDu � {κ PMpN�q :
∑
jκpjq ¤ u},

hence we get the lower semicontinuous regularisation of χDu . By the same argument

we get intDu � pclDc
uq
c � H and the upper semicontinuous regularisation.

Upper bound of the partition function. In applying [4, Lemma 2.1.7] we get

the upper bound as

lim sup
kÑ8

1
|Λk|

log PτΛk
(
expp�χCMk q

)
¤ � inf

MpN�q

[
I � χlscDu

]
. (6.8)

Since χDu is not lower semicontinuous, it is replaced by its lower semicontinuous

regularisation on the rhs. We solve the variational problem on the rhs. of eq. (6.8),

which is a minimisation problem with a constraint.

Proposition 4. Let zu be the solution of

p2πβq�d{2gd{2pzq � u^ u�, (6.9)

where u� :� p2πβq�d{2gd{2p1q and gd{2 is given in eq. (2.3). Then

inf
MpN�q

[
I � χlscDu

]
�
∑
j¥1

p1� zjuqτpjq. (6.10)

Proof. The minimisation of I � χlscDu is equivalent to the minimisation of I under

the constraint
∑
jκpjq ¤ u. For the moment, assume u ¤ u� and minimise I
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given
∑
jκpjq � υ for any υ ¤ u. By the Euler-Lagrange method of conditional

minimisation,

Ipκq �
∑
j¥1

jκpjq log z �
∑
j¥1

κj

(
log

κpjq

τpjq
� 1
)
� τpN�q �

∑
j¥1

log zjκpjq

�
∑
j¥1

κj

(
log

κpjq

zjτpjq
� 1
)
� τpN�q,

which has a unique minimiser on MpN�q, κ̄ �
∑
j¥1 z

j
υτpjqδj with zυ being the solution

of eq. (6.9) with u replaced by υ. Immediatly

Ipκ̄q � �
∑
j¥1

zjυτpjq � τpN�q �
∑
j¥1

p1� zjυqτpjq

follows. Since necessarily zυ ¤ 1 and zυ is an increasing function of υ, eq. (6.10) holds.

Now let u ¡ u�, so there is no solution of eq. (6.9). Let u0 � u� � p2πβq�d{2gd{2p1q

be the excess mass. Define κ̄ � τ and κ̄pnq � κ̄� u0
n δn, then clearly for all n

∑
j¥1

jκ̄pnqpjq �
∑
j¥1

jκ̄pjq � u0 � u

while κ̄pnq Ñ κ̄ vaguely. Furthermore

I
(
κ̄pnq

)
�
∑
j�n

κ̄pjq

(
log

κ̄pjq

τpjq
� 1
)
�

(
κ̄pnq �

u0

n

)(
log

κ̄pnq � u0
n

τpnq
� 1
)
� τpN�q

� �τpN�\{n}q �
(
τpnq �

u0

n

)(
log
(

1�
u0

nτpnq

)
� 1
)
� τpN�q

Ñ Ipκ̄q � Ipτq � 0 as nÑ8.

Lower bound of the partition function. As we have seen in lemma 5, the upper

semicontinuous regularisation χuscDu
of χDu is not finite and the analogue argument for

the lower bound does not apply. The reason is the sparseness of Du in the vague

topology which even holds for the blow ups Dε
u of Du of the form Dε

u � {κ PMpN�q :

|
∑
jκpjq � u| ¤ ε} for any ε ¡ 0. Otherwise this could have been used for some kind

of Boltzmann principle, see e.g. [16].

However, the 2-parameter sets

Dm,s :�
{
κ PMpN�q :

∑
j¤m

jκpjq   s

}
, (6.11)
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of those measures in MpN�q, whose first moment restricted to {1, . . . ,m} does not

reach s are vaguely open. Furthermore

⋂
ε¡0

⋂
m¥1

Dm,s�ε � clDs,

i.e. if the first moment of some measure on N� restricted to {1, . . . ,m} is bounded by

s�ε for any m P N� and ε ¡ 0, then the first moment of the whole measure is bounded

by s. Since now χDm,s�ε is upper semicontinuous for any m P N� and

lim
LÑ8

lim sup
kÑ8

1
|Λk|

log PτΛk

(
exp
(
�χDm,s�ε

)
1{χDm,s�ε¤�L}

)
� �8, (6.12)

we get for any m and ε by [4, Lemma 2.1.8] a lower bound

lim inf
kÑ8

1
|Λk|

log PτΛk
(
expp�χDm,s�εq

)
¥ � inf

MpN�q

[
I � χDm,s�ε

]
(6.13)

for the system restricted to the first m components. Therefore, we get the lower bound

as mÑ8 and εÑ 0.

Consider now the family of minimisation problems on the rhs of eq. (6.13). Here we

have to link the two parameters m and s. Since
∑
j¡m

1
jd{2

is strictly decreasing to 0,

there exists m0 P N� such that for any m ¥ m0, u� p2πβq�d{2
∑
j¡m

1
jd{2

¥ 0.

Proposition 5. Let ε ¡ 0 and m P N� be such that

sm,ε :� u� ε� p2πβq�d{2
∑
j¡m

1
jd{2

¥ 0

and zpm,εq be the solution of p2πβq�d{2
∑
j¤m

zj

jd{2
� sm,ε. Then infMpN�q

[
I�χDm,sm�ε

]
�∑

j¤m

(
1� zjpm,εq

)
τpjq and as firstly mÑ8 and then εÑ 0, zpm,εq Ñ zu, where zu is

given in proposition 4.

Proof. The first part is similar to the previous proof where the minimiser in this

case is

κ̄pjq �
1

p2πβqd{2


1

j1�d{2
j ¡ m

zpm,εq
j1�d{2

j ¤ m

. (6.14)

To see the second part, assume for the moment u � u�, then sm,ε is not exactly the m-

th partial sum of the series of p2πβq�d{2gd{2p1q, but close to it. Observe that zpm,εq ¡ 1
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for each m ¥ m0 and pzpm,εqqm¥m0 is an decreasing sequence for any ε ¡ 0. Indeed,

from

p2πβq�d{2
∑
j¤m

1
jd{2

� ε � sm,ε � p2πβq�d{2
∑
j¤m

zjpm,εq

jd{2

immediatly follows zpm,εq ¡ 1 and

sm�1,ε � sm,ε � p2πβq�d{2
1

pm� 1qd{2
  p2πβq�d{2

zm�1
pm,εq

pm� 1qd{2

yields the decrease. Finally the sequence pzpm,εqqm can not be bounded away from 1

for any ε ¡ 0 since otherwise the sequence of sums
(∑

j¤m

zj
pm,εq

jd{2

)
m¥m0

would diverge.

Hence zpm,εq Ñ 1 for any ε ¡ 0 as mÑ8.

For u ¡ u� these arguments apply as well.

Let now u   u�, fix ε ¡ 0 such that u� ε   u� and m0 be even large enough, such

that sm,ε ¡ 0. Then firstly zpm,εq   1 for each m ¥ m0 follows since

p2πβq�d{2
∑
j¤m

zjpm,εq

jd{2
� sm,ε   u� � p2πβq�d{2

∑
j¡m

1
jd{2

� p2πβq�d{2
∑
j¤m

1
jd{2

.

Next we show that pzpm,εqqm¥m0 is an increasing sequence in m and tends to zu�ε.

Since

sm�1,ε � sm,ε � p2πβq�d{2
1

pm� 1qd{2
¡ p2πβq�d{2

zm�1
pm,εq

pm� 1qd{2
,

zpm�1,εq needs to be bigger than zpm,εq. Since necessarily pzpm,εqqm is bounded from

above by 1, the sequence converges and the only limit can be zu�ε since sm,ε tends to

u� ε as mÑ8. By the continuity of gd{2 the claim follows as εÑ 0.

Thus we have shown that the following limit exits and equals

lim
kÑ8

1
|Λk|

log PτΛk
(
expp�χCMk q

)
� �τpGzuq,

where u � limk
Mk

|Λk|
is the limiting particle density, zu is given in proposition 4 and

Gz : N� Ñ R, j ÞÑ 1� zj .

Since the minimiser of the minimisation problem was unique, the conditioned Poisson

process is asymptotically degenerate and

lim
kÑ8

PτΛk

({
η :

η

|Λk|
P �
}∣∣∣CMk

)
� δτzu . (6.15)
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Martin-Dynkin boundary. Back to Martin-Dynkin boundary technique, we inter-

pret the boundary condition µ PM�pXq as a random element and write capital letters

instead of small ones to emphasize the dependence on µ. Let U be the limiting particle

density, Upµq � limkÑ8
NΛkµ

|Λk|
, in case of existence of the limit and put Upµq � 8 if the

limit does not exist. For each configuration µ with Upµq   8 there exists Z � Zpµq

such that

p2πβq�d{2gd{2pZq � U ^ u�. (6.16)

Proposition 6. Let f : X Ñ R be nonnegative and measurable with bounded support

and µ PM . Then for any ϕ P L1pPq

Ppϕ|H8q � lim
kÑ8

πH
Λk
p � , ϕq � PρZ pϕq P-a.s.

Proof. From eq. (6.15) we get

PτΛk

({
η :

η

|Λk|
P �
}∣∣∣CNΛkµ

)
Ñ δτZpµq

as k Ñ 8. Now we can use the results of section 3 to deduce that the measures

converge

lim
kÑ8

πH
Λk
pµ, � q � PρZpµq .

Again the reasoning of the preceeding sections applies. Since for H8-measurable ϕ,

PpϕfpQ�qq � PpϕPρZ pfpQ�qqq holds, we get

PρZpµqpQ� � Qµq � 1 P-a.s.

In particular Z � Zpµq P-a.s.

Let ∆H � {P P C8 X C|Q� � P P -a.s.} be the essential part of the Martin-Dynkin

boundary associated to H.

Theorem 4. The essential part of the Martin-Dynkin boundary of πH consists of all

Poisson processes with intensity measure ρz for z P r0, 1s and d ¥ 3,

∆H � {Pρz |0 ¤ z ¤ 1}.

Proof. As already seen, Pρz P Cpπ
Hq, and clearly Qµ � Pρz Pρz -a.s.For arbitrary

P P ∆H we have ∫
∆H

P pϕqV PpdP q � Ppϕq � Q�pϕq P-a.s.

This implies V P � δPρz .
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Remark 3. Finally note that, starting with the intensity measure ρz1 for z1   1, the

calculations stay the same in principle. The difference is that the Lagrange multiplier

z, which occures during the minimisation procedure using ρ, will be, given ρz1 , some

z̃ related to z via z � z1z̃. In particular, the analysis is not restricted to d ¥ 3 and

applies in this fashion, using the intensity measure ρz1 for some z1   1 instead of ρ and

u� � 8, to the one- and two-dimensional Ginibre gas. In contrast to the cases d ¥ 3,

d � 1, 2 do not show the critical behaviour.
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