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Université de Lille 1

59655 Villeneuve d’Ascq Cedex, France

e-mail : Myriam.Fradon@univ-lille1.fr

tel : +33(0)32043 6694, fax : +33(0)32043 4302

Sylvie Rœlly

Institut für Mathematik der Universität Potsdam

Am Neuen Palais, 10

14469 Potsdam, Germany

e-mail : roelly@math.uni-potsdam.de

tel : +49 (0)331 9771478, fax : +49 (0)331 9771001

Abstract

We consider an infinite system of non overlaping globules undergoing Brownian motions
in R

3. The term globules means that the objects we are dealing with are spherical, but with
a radius which is random and time-dependent. The dynamics is modelized by an infinite-
dimensional Stochastic Differential Equation with local time. Existence and uniqueness of
a strong solution is proven for such an equation with fixed deterministic initial condition.
We also find a class of reversible measures.
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1 Introduction

The aim of this paper is to construct a random dynamics performed by an infinite system of
globules, where a globule is a sphere in R

3 with variable radius. The centers of the globules
undergo independent Brownian motions, while their radii perform Brownian oscillations
between a minimum and a maximum value. Since the scale of these oscillations can be
different than those of the centers, we introduce a coefficient σ which reflects the elasticity
of the surface of each globule. The globules can not overlap and when the distance between
two globules becomes 0, they repel each other immediatly; that means they interact through
a hard core potential.

A reversible system of infinitely many Brownian hard spheres (called balls) was first
introduced and analysed by H. Tanemura [11]. Then, some natural generalisations were
studied for different types of additional smooth interactions between the balls: for a gradient
type interaction with finite range in [4],[5] and for an interaction with infinite range in [7].
The specificity one has to deal with in a hard core situation – hard balls can not overlap –
comes from the additional infinite-dimensional local time term in the SDE. Notice that in
all these works the spheres have a fixed positive radius.

The originality and new difficulty of the present model – which can find relevant ap-
plications in cell dynamics like molecular motors – lies in the random oscillations of the
radius of each sphere. We propose here a pathwise approach for the construction of this
infinite-dimensional dynamics, by building a sequence of finite-dimensional approximating
processes. But already for finitely many globules, the existence of such dynamics is not a
simple question. Indeed, one of the authors constructed recently in [3] a finite system of
mutually repelling Brownian globules. Nevertheless, we need here a non trivial generalisa-
tion of these results: since the scale σ of the radii oscillations is different than the scale of
the center oscillations, the direction of the reflection after a collision between two globules
is no more normal as in [3]. It is an oblique reflection of Brownian motions on a complex
non smooth domain, whose existence problem we solve in Proposition 3.1.

In Section 2 we present the model and its dynamics described by the stochastic differ-
ential equation (E) and we state the results. In Section 3, we show the convergence of the
approximations and analyse the limit process. Last, we remark that some kind of hard core
Poisson measure is reversible for this dynamics.

2 The infinite model of mutually repelling globules

with Brownian radii

A globule is a sphere in R
d with a variable radius. For d = 2 the globules modelize for

example the motion of discs on a flat surface or balls floating on a liquid. In this paper, we
fix d = 3 which corresponds to the natural physical case of bubbles in the euclidean space.
Our techniques and results obviously extend to any dimension d larger than 1.

A globule is characterised by a pair (x, x̆) ∈ R
3 × R. x is the position of the center of

the globule and x̆ is its radius.
We are dealing here with infinitely many undistinguishable globules, thus the state space
of the system is included in M, the set of point measures on R

3 × R. A configuration
of globules is a locally finite point measure x =

∑
i∈J δ(xi,x̆i) on R

3 × R, where (xi, x̆i)
characterizes the i-th globule and J ⊂ N. For simplicity sake, we will identify any such
point measure x with its support {(xi, x̆i), i ∈ J} ⊂ R

3 × R.
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The globules we deal with in this paper can not overlap and their radii are bounded
from below (resp. from above) by a constant r− > 0 (resp. r+ > r−). Thus the exact
configuration space Ag of all allowed configurations of globules is the following set:

Ag =

{
x = {(xi, x̆i), i ∈ J} for some J ⊂ N,
with xi ∈ R

3, x̆i ∈ [r−; r+] and |xi − xj | ≥ x̆i + x̆j for i 6= j

}

Let us notice that this model can not be reduced to a hard core model in R
3 × R. In-

deed, a hard core condition between globules would mean that there exists ρ such that
∀i 6= j, |(xi, x̆i) − (xj , x̆j)| ≥ ρ, which is equivalent to |xi − xj |2 + |x̆i − x̆j |2 ≥ ρ2. This
last inequality is clearly not comparable with the condition |xi − xj | ≥ x̆i + x̆j .

We will use the notations:

• B(x, ρ) is the closed ball centered in x ∈ R
3 with radius ρ and by extension, for any

subset A in R
3, we define the ρ-neighbourhood of A by

B(A, ρ) := {y ∈ R
3 such that d(y, A) ≤ ρ}.

where d(y, A) denotes the Euclidian distance between y and A.

• The symbol |v| denotes the Euclidean norm of the vector v.
We also denote the volume of a subset A of R

3 by |A|.

• For A× I a borel subset of R
3 × R, NA×I is the counting variable on M :

NA×I(x) = ♯{i ∈ N : xi ∈ A and x̆i ∈ I}.

• For Λ a borel subset of R
3 × R, BΛ is the σ-algebra on M generated by the sets

{NΛ′ = n}, n ∈ N, Λ′ ⊂ Λ, Λ′ bounded.

• We write xΛ = x ∩ Λ for the restriction of the configuration x to Λ ⊂ R
3 × R,

and xy for the concatenation of configurations x and y.

• π (resp. πΛ) is the Poisson process on R
3 × R (resp. on Λ) with intensity measure

the Lebesgue measure dy (resp. dy|Λ).

We define the set Πg of hard globule Poisson processes via a local density function :

Definition 2.1 A Probability measure µ on M is a hard globule Poisson process if and
only if, for each compact subset Λ ⊂ R

3 × R,

µ(dx|BΛc)(y) =
1

ZΛ,y
1I{xΛyΛc∈Ag} πΛ(dx) for µ-a.e. y.

where the so-called partition function ZΛ,y is the renormalizing constant :

ZΛ,y = e−|Λ|

(
1 +

+∞∑

n=1

1

n!

∫

Λn

1I{xΛyΛc∈Ag} dx1dx̆1 · · · dxndx̆n
)
.
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At least one hard globule Poisson process exists (generalisation of the existence results for
hard core Gibbs measure in [1]). It is conjectured that for r+ small enough it is unique,
while for r− large enough phase transition occurs : Πg should contain several measures (see
e.g. [8]).

In order to modelize the random motion of repelling globules with oscillating radii,
let us consider a probability space (Ω,F , P ) endowed with a complete filtration {Ft}t≥0

and two sequences of Ft-Brownian motions: (Wi(t), t ≥ 0)i∈N which are independent R
3-

valued Brownian motions and (W̆i(t), t ≥ 0)i∈N which are independent R-valued Brownian
motions, independent from the Wi’s too.
We fix a parameter σ > 0 which measures the scale of the radii oscillations, that is the
elasticity of the surface of each globule.
We consider the following system of stochastic differential equations with reflection :

(Eg)






For i ∈ N, t ∈ [0, 1],

Xi(t) = Xi(0) +Wi(t) +
∑

j∈N

∫ t

0

Xi(s) −Xj(s)

X̆i(s) + X̆j(s)
dLij(s)

X̆i(t) = X̆i(0) + σW̆i(t) − σ2
∑

j∈N

Lij(t) − Li+(t) + Li−(t)

where the local times Lij, Li+, Li− satisfy Lij(t) =

∫ t

0

1I{|Xi(s)−Xj(s)|=X̆i(s)+X̆j(s)}
dLij(s) ,

Li+(t) =

∫ t

0

1I{X̆i(s)=r+} dLi+(s) and Li−(t) =

∫ t

0

1I{X̆i(s)=r−} dLi−(s).

As usual, the collision local times are non-decreasing R
+−valued continuous processes

with bounded variations and satisfy Lij ≡ Lji and Lii ≡ 0. The starting configuration

X(0) = {(Xi(0), X̆i(0)), i ∈ N} is a point in Ag.

A solution of the system (Eg) is a family (Xi(t), X̆i(t), Lij(t), Li+(t), Li−(t), 0 ≤ t ≤
1, i, j ∈ N) of processes satisfying (Eg).

Let us interpret the different terms of (Eg) :

• when two globules collide (|Xi(t) −Xj(t)| = X̆i(t) + X̆j(t)), they are deflated (X̆i(t)
decreases by dLij(t)) and move away from each other (Xi(t) is submitted to the

repulsive force
Xi(t)−Xj (t)

X̆i(t)+X̆j (t)
);

• when the radius of a globule reaches the maximal value (X̆i(t) = r+), it is deflated
(X̆i(t) decreases by dL+

i (t));

• when the radius of a globule reaches the minimal value (X̆i(t) = r−), it is inflated
(X̆i(t) increases by dL−

i (t)).

Theorem 2.2 The stochastic equation (Eg) admits a unique solution with values in Ag for
any deterministic initial configuration which belongs to a full measure subset Ag in Ag.

Proposition 2.3 If the initial distribution µ is a hard globule Poisson process and if
µ(Ag) = 1, then the solution of (Eg) is time-reversible, that is its law is invariant with
respect to the time reversal.

The next section is devoted to the proofs of these results.
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3 The infinite-dimensional process, constructed by ap-

proximation

3.1 The approximating processes

In this whole subsection, ℓ ∈ N
∗ and y ∈ Ag are fixed. Using a classical penalization method

with external configuration y, we construct an approximating process which essentially

stays in the ball B(0, ℓ) . This is done by introducing in the dynamics (Eg) an additional
drift which vanishes in a subset of B(0, ℓ) and is strongly repulsive outside of B(0, ℓ); we
take as drift the gradient of the C2

b -function (twice differentiable function with bounded
derivatives) which is defined on R

3 × R by:

ψℓ,y(x, x̆) = ψ1(|x|) + ψ2(x̆) +
∑

j:|yj|>ℓ

ψ3

( |x− yj|
x̆+ y̆j

)

with ψ1, ψ2 and ψ3 non-negative C∞−functions vanishing respectively on ]−∞, ℓ], [r−, r+]
and [1,+∞[, and increasing rapidly on their supports :
ψ1(s) = 2s for s ≥ ℓ+ e−ℓ

ψ2(s) = ℓs for s ≥ r+ + e−ℓ and ψ2(s) = ℓ(r+ + r− − s) for s ≤ r− − e−ℓ

ψ3(s) = ℓ for s ≤ 1 − e−ℓ.
The function ψℓ,y satisfies

ψℓ,y(x, x̆) = 0 ⇔ x ∈ B(0, ℓ) and (x, x̆)yB(0,ℓ)c ∈ Ag.

By a slight abuse of notation, yB(0,ℓ)c denotes the restricted configuration ∪{j:|yj |>ℓ}{(yj, y̆j)}.
Remark that the functions ψℓ,y are so repulsive for large ℓ that they satisfy

sup
y∈Ag

+∞∑

ℓ=1

∫

R3×R

1Iψℓ,y(x,x̆)>0 exp(−ψℓ,y(x, x̆)) dxdx̆ < +∞. (1)

Let us now define the finite-dimensional dynamics :

(E ℓ,yn )






∀i ∈ {1, . . . , n}, ∀t ∈ [0, 1],

Xi(t) = Xi(0) +Wi(t) −
1

2

∫ t

0

∇xψ
ℓ,y(Xi(s), X̆i(s))ds+

n∑

j=1

∫ t

0

Xi(s) −Xj(s)

X̆i(s) + X̆j(s)
dLij(s)

X̆i(t) = X̆i(0) + σW̆i(t) −
σ2

2

∫ t

0

∇x̆ψ
ℓ,y(Xi(s), X̆i(s))ds− σ2

n∑

j=1

Lij(t) − Li+(t) + Li−(t)

where the local times satisfy Lij(t) =

∫ t

0

1I{|Xi(s)−Xj(s)|=X̆i(s)+X̆j(s)}
dLij(s) ,

Li+(t) =

∫ t

0

1I{X̆i(s)=r+} dLi+(s) and Li−(t) =

∫ t

0

1I{X̆i(s)=r−} dLi−(s).

(E ℓ,yn ) is a n-dimensional reflected stochastic differential equation.
If σ = 1, that is if the radii oscillations and the center oscillations are on the same scale,
the above Skorohod equation contains a normal reflection on the boundary of the set of
allowed configurations of n globules. The problem of existence and reversibility of this type
of dynamics was recently solved by one of the authors in [3].
For σ 6= 1 a new difficulty appears: the reflection on the boundary of the domain of allowed
configurations has to be oblique in order to ensure the existence of a reversible solution.
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The existence of solution for general SDEs with oblique reflections on nonsmooth domains
is a hard problem which is solved in the literature only in some particular cases, like for
intersection of smooth bounded domains or for polyhedral domains (see e.g. [2] and [12]).
Since our model is not covered by these works, we present in the following proposition a
suitable existence result.

Proposition 3.1 Assume that Φ is an R-valued C2
b -function defined on (R3 × R)n. There

exists a unique strong solution to the Skorohod problem

(EΦ
n )






∀i ∈ {1, . . . , n}, ∀t ∈ [0, 1],

Xi(t) = Xi(0) +Wi(t) −
1

2

∫ t

0

∇xi
Φ(X(s))ds+

n∑

j=1

∫ t

0

Xi −Xj

X̆i + X̆j

(s)dLij(s)

X̆i(t) = X̆i(0) + σW̆i(t) −
σ2

2

∫ t

0

∇x̆i
Φ(X(s))ds− σ2

n∑

j=1

Lij(t) − Li+(t) + Li−(t)

where the local times satisfy Lij(t) =

∫ t

0

1I{|Xi(s)−Xj(s)|=X̆i(s)+X̆j(s)}
dLij(s) ,

Li+(t) =

∫ t

0

1I{X̆i(s)=r+} dLi+(s) and Li−(t) =

∫ t

0

1I{X̆i(s)=r−} dLi−(s).

For any initial condition in Ag the solution is an Ag-valued process.
Moreover, the solution with initial distribution e−Φ(x)1IAg

(x)dx is time-reversible.

The proof of this proposition is postponed to the end of this section. A key idea is the
transformation (see (2)) of the initial Skorohod problem into a simpler one, with normal
reflection on a modified domain.

Applying Proposition 3.1 with the potential Φ(x) =
∑n

i=1 ψ
ℓ,y(xi, x̆i), we obtain the

existence of a solution to (E ℓ,yn ).
When the initial condition is the deterministic configuration x, this solution is denoted
by Xℓ,y,n(x, ·). In particular, the Ag-valued finite-dimensional process Xℓ,y with initial
configuration x = yB(0,ℓ) and external configuration yB(0,ℓ)c evolving under the random
dynamics (E ℓ,yn ) is :

Xℓ,y(·) := Xℓ,y,n(yB(0,ℓ), ·) with n = ♯{i ∈ N : yi ∈ B(0, ℓ)}.

The associated local times are denoted by Lℓ,yi,j , L
ℓ,y
i+ , L

ℓ,y
i− , i, j ∈ N.

If the initial condition of the system (E ℓ,yn ) is random with distribution given by the
finite measure:

νℓ,yn (dx) := exp(−
n∑

i=1

ψℓ,y(xi, x̆i)) 1IAg
(x) dx1dx̆1 · · · dxndx̆n.

then the solution of (E ℓ,yn ) is reversible. Its law is denoted by Qℓ,y
n .

Consider now the following Poisson mixture in n of the Qℓ,y
n ’s:

Qℓ,y =
e−|B(0,ℓ)|

Zℓ,y

+∞∑

n=0

1

n!
Qℓ,y
n ,
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where Zℓ,y is the renormalizing constant which ensures that Qℓ,y is a Probability measure.
As a mixture of Ag-supported time-reversible measures, Qℓ,y is time-reversible with support
included in Ag. Its projection at time 0 is the Probability measure

µℓ,y(dx) :=
e−|B(0,ℓ)|

Zℓ,y

+∞∑

n=0

1

n!
νℓ,yn (dx),

which represents the law of a Poissonian number of globules essentially concentrated in
B(0, ℓ).

We will construct the infinite-dimensional globule process as limit in ℓ of Xℓ,y; unfortu-
nately, Xℓ,y is not time-reversible. This is why we had to introduce Qℓ,y, whose reversibility
plays a crucial role in the study of the set of nice paths defined in the next section. More-
over, we will prove that the law of Xℓ,y and Qℓ,y are asymptotically close.

To complete this section, let us prove Proposition 3.1.

Proof We first introduce an anisotropic linear transformation σ
−1 on the space of globule

configurations by

xσ := σ
−1x ⇔ ∀i, xσi = xi and x̆σi =

1

σ
x̆i.

We also transform the process, the potential and the local times as follows :

Xσ = σ
−1X, Φσ(·) = Φ(σ·), Lσij =

√
2 + 2σ2Lij , Lσi+ =

1

σ
Li+, Lσi− =

1

σ
Li−. (2)

Moreover, the set of allowed configurations becomes

Aσ
g := {x : σx ∈ Ag}.

X and its associated local times are solution of the system (EΦ
n ) if and only if Xσ and its

associated transformed local times are solution of the following system:

(EΦ,σ
n )






Xσ
i (t) = Xσ

i (0) +Wi(t) −
1

2

∫ t

0

∇xi
Φσ(Xσ(s))ds+

n∑

j=1

∫ t

0

1√
2 + 2σ2

Xσ
i −Xσ

j

σ(X̆σ
i + X̆σ

j )
(s)dLσij(s)

X̆σ
i (t) = X̆σ

i (0) + W̆i(t) −
1

2

∫ t

0

∇x̆i
Φσ(Xσ(s))ds− σ√

2 + 2σ2

n∑

j=1

Lσij(t) − Lσi+(t) + Lσi−(t)

where the local times satisfy Lσij(t) = Lσji(t) =

∫ t

0

1I{|Xσ
i (s)−Xσ

j (s)|=σ(X̆σ
i (s)+X̆σ

j (s))} dL
σ
ij(s) ,

Lσi+(t) =

∫ t

0

1I{X̆σ
i (s)=

r+
σ

} dL
σ
i+(s) and Lσi−(t) =

∫ t

0

1I{X̆σ
i (s)=

r
−

σ
} dL

σ
i−(s).

Furthermore, the reversibility of X is equivalent to the reversibility of Xσ; with other words,
the solution of (EΦ

n ) with initial distribution 1
Z
e−Φ(x)1IAg

(x)dx is reversible if and only if
the solution of (EΦ,σ

n ) with initial distribution 1
Zσ e

−Φσ(y)1IAσ
g
(y)dy is reversible.

The new system of globules (EΦ,σ
n ) has now the form of a Skorohod problem with normal

reflection. Thus it has a unique solution under the assumptions of Theorem 3.3 (and
Corollary 3.6) in [3], that is if the domain Aσ

g on which the equation is reflected satisfies
the geometrical regularity properties listed in [3] Proposition 3.4. The rest of the proof
consists in showing these four properties (see [3] for the relevant definitions).
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The domain Aσ
g does not have a smooth boundary but it is the intersection of smooth

domains in the following way:

Aσ
g = (

⋂

1≤i<j≤n

Dij) ∩ (
⋂

1≤i≤n

Di+) ∩ (
⋂

1≤i≤n

Di−)

where Dij = {x, |xi − xj | ≥ σ(x̆i + x̆j)}, Di+ =
{
x, x̆i ≤

r+
σ

}
and Di− =

{
x, x̆i ≥

r−
σ

}
.

(i) At each point x of the boundary of the smooth set Dij (resp. Di+, Di−), there exists a
unique unit normal vector nij(x) (resp. ni+, ni−).

Each Dij is a smooth set with unit inward normal vector at point x ∈ ∂Dij equal to

nij(x) =
w√

2 + 2σ2
where wi =

xi − xj
σ(x̆i + x̆j)

= −wj , w̆i = w̆j = −σ and wk = w̆k = 0, k 6= i, j.

Each Di+ (respectively Di−) is a half-space of (R3 × R)n with a constant unit inward nor-
mal vector ni+ =

(
0, · · · , 0,−1, 0, · · · , 0

)
((2i− 1)th coordinate equal to −1) (resp. ni− =

−ni+).

x1

σr
−

n1−
x2

σr+

n2+

x3
n3;4

x4

x5

σx̆5

Figure 1: A configuration of 5 globules in ∂D1− ∩ ∂D2+ ∩ ∂D3;4 ∩ Aσ
g , and the different

directions of impulsion n1−, n2+ or n3;4(x) to go back into the interior of Aσ
g .

(ii) Each set Dij has the Uniform Exterior Sphere property on Aσ
g :

∃αij > 0, ∀x ∈ Aσ
g ∩ ∂Dij B̊(x − αijnij(x), αij) ∩ Dij = ∅.

Each x ∈ Aσ
g ∩ ∂Dij satisfies |xi − xj | = σ(x̆i + x̆j) ≥ 2r−.

For xes = x − r−
√

2 + 2σ2nij(x) and for any z :

|(xesi + zi) − (xesj + zj)| − σ(x̆esi + z̆i + x̆esj + z̆j)

≤ |zi| + |zj | − σ(z̆i + z̆j) +

∣∣∣∣xi − xj − 2r−
xi − xj

σ(x̆i + x̆j)

∣∣∣∣− σ(x̆i + x̆j) − 2r−σ
2

≤
√

2 + 2σ2|z| − 2r−(1 + σ2)

This is negative as soon as |z| < r−
√

2 + 2σ2. Consequently, the property (ii) holds with
αij ≡ r−

√
2 + 2σ2. See figure 2.
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Dc
ij

Dij

x

nij

x
es

xi

x
es
i

σx̆
es
i

xj

x
es
j

σx̆
es
j

Figure 2: A configuration x ∈ ∂Dij and the corresponding center xes of the Uniform Exte-
rior Sphere : xes = x−αijnij(x) = x− r−

√
2 + 2σ2nij(x). Left, a simplified representation

in R
2. Right, a representation as a pair of colliding globules. Remark that xes 6∈ Aσ

g .

(iii) Each set Dij has the Uniform Normal Cone property on Aσ
g :

∃βij ∈ [0, 1[ and δij > 0 such that, for each x ∈ Aσ
g ∩ ∂Dij, there is a unit vector lijx

satisfying

y ∈ Aσ
g ∩ ∂Dij ∩B(x, δij) ⇒ nij(y).lijx ≥

√
1 − β2

ij.

For x,y ∈ Aσ
g ∩ ∂Dij one has nij(y).nij(x) =

1

1 + σ2

(
xi − xj
|xi − xj |

.
yi − yj
|yi − yj |

+ σ2

)
. The

inequality

xi − xj
|xi − xj |

.
yi − yj
|yi − yj|

≥
1 −

√
2 |x−y|
|xi−xj |

1 +
√

2 |x−y|
|xi−xj |

≥ 1 − 2
√

2
|x − y|
|xi − xj |

≥ 1 −
√

2

r−
|x − y|

implies that nij(y).nij(x) ≥ 1−
√

2

r−(1 + σ2)
|x−y|. Hence, for lijx = nij(x), (iii) is satisfied

for each βij ∈ [0, 1[ as soon as δij ≤
r−(1 + σ2)√

2
(1 −

√
1 − β2

ij).

(iv) Compatibility between the boundaries:

∃β0 >
√

2 maxi,j βij , ∀x ∈ ∂Aσ
g , ∃v(x) such that






x ∈ ∂Dij ⇒ v(x).nij(x) ≥ β0|v(x)|
x ∈ ∂Di+ ⇒ v(x).ni+(x) ≥ β0|v(x)|
x ∈ ∂Di− ⇒ v(x).ni−(x) ≥ β0|v(x)|

.

Let us define the following cluster

Ci(x) = {i} ∪
{
km, ∃k1, . . . , km such that x ∈ ∂Dik1 ∩ ∂Dk1k2 ∩ · · · ∩ ∂Dkm−1km

}

and define the vector v(x) = (v1(x), v̆1(x), · · · , vn(x), v̆n(x)) by

∀i ∈ {1, · · · , n} vi(x) = xi −
1

♯Ci(x)

∑

k∈Ci(x)

xk and v̆i(x) =
r++r−

2
− σx̆i

(r+ − r−)(σ ∨ 1)
r−.

See figure 3.

Since |vi(x)| ≤ (n− 1)(2r+) and |v̆i(x)| ≤ r−
2(σ∨1)

, then |v(x)| ≤ 2r+n
3/2. Moreover :
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xi

xj
xk

vi

vj

vk

v̆i

v̆j
v̆k

Figure 3: A cluster with 3 globules and the associated impulsion v(x) constructed to push
x ∈ ∂D back into the interior of the set of allowed globule configurations.

• if x ∈ ∂Dij , then Ci(x) = Cj(x) and

√
2 + 2σ2 v(x).nij(x) = σ(x̆i + x̆j) − σr−

r+ + r− − σx̆i − σx̆j
(r+ − r−)(σ ∨ 1)

≥ 2r− − σr−
σ ∨ 1

≥ r−

• if x ∈ ∂Di+, i.e. σx̆i = r+, then v(x).ni+(x) = r−
2(σ∨1)

• if x ∈ ∂Di−, i.e. σx̆i = r−, then v(x).ni−(x) = r−
2(σ∨1)

.

So, with β0 =
r−

4r+(σ ∨ 1)n3/2
, (iv) is satisfied. �

3.2 A full set of nice paths

From now on, the techniques we use to study the globule model present some similarities
with the methods developed for the model of hard balls treated in [5]. So, in the rest of
the paper, we will only detail the proofs which contain new technical difficulties.

We first bound from below the probability of globule paths which do not move too fast
under the (E ℓ,yn )-dynamics.
For every ε > 0 and δ ∈]0, 1], let Ñ (δ, ε) denote the paths for which all globules have a
δ-modulus of continuity w smaller than ε, i.e.

Ñ (δ, ε) =
{
X ∈ C([0, 1],Ag) : ∀i, w((Xi, X̆i), δ) ≤ ε

}
,

where the δ-modulus of continuity of a globule path (X, X̆) on [0, 1] is defined as

w((X, X̆), δ) := sup
0≤s,t≤1
|t−s|≤δ

√
|X(t) −X(s)|2 + (X̆(t) − X̆(s))2. (3)

Proposition 3.2 There exists c > 0 and c1 > 0 such that the following lower bound holds :
∀ε > 0, ∀δ ∈]0, 1], ∀ℓ ∈ N

∗,

inf
y∈Ag

Qℓ,y(Ñ (δ, ε)) ≥ 1 − c1
ℓ3

δ
exp

(
−cε

2

δ

)
.
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Proof of Proposition 3.2

By construction, the processes

Wi(t) = Xℓ,y,n
i (t) −Xℓ,y,n

i (0)

+
1

2

∫ t

0

∇xψ
ℓ,y(Xℓ,y,n

i (s), X̆ℓ,y,n
i (s))ds−

n∑

j=1

∫ t

0

Xℓ,y,n
i (s) −Xℓ,y,n

j (s)

X̆ℓ,y,n
i (s) + X̆ℓ,y,n

j (s)
dLij(s)

and W̆i(t) =
1

σ

(
X̆ℓ,y,n
i (t) − X̆ℓ,y,n

i (0)
)

+
σ

2

∫ t

0

∇x̆ψ
ℓ,y(Xℓ,y,n

i (s), X̆ℓ,y,n
i (s))ds+ σ

n∑

j=1

Lij(t) +
1

σ
Li+(t) − 1

σ
Li−(t)

are 3-dimensional (resp. 1-dimensional) Brownian motions starting from 0.
When the initial distribution is νℓ,yn the law Qℓ,y

n of Xℓ,y,n is reversible, and the backward
processes

Ŵi(t) = Xℓ,y,n
i (1 − t) −Xℓ,y,n

i (1)

+
1

2

∫ 1

1−t

∇xψ
ℓ,y(Xℓ,y,n

i (s), X̆ℓ,y,n
i (s))ds−

n∑

j=1

∫ 1

1−t

Xℓ,y,n
i (s) −Xℓ,y,n

j (s)

X̆ℓ,y,n
i (s) + X̆ℓ,y,n

j (s)
dLij(s)

and
̂̆
W i(t) =

1

σ

(
X̆ℓ,y,n
i (1 − t) − X̆ℓ,y,n

i (1)
)

+
σ

2

∫ 1

1−t

∇x̆ψ
ℓ,y(Xℓ,y,n

i (s), X̆ℓ,y,n
i (s))ds

+σ
n∑

j=1

(
Lij(1) − Lij(1 − t)

)
− 1

σ

(
Li+(1) − Li+(1 − t)

)
+

1

σ

(
Li−(1) − Li−(1 − t)

)

are Brownian motions too.

As in [9], the above equations provide the identities





Xℓ,y,n
i (t) −Xℓ,y,n

i (0) =
1

2

(
Wi(t) + Ŵi(1 − t) − Ŵi(1)

)

X̆ℓ,y,n
i (t) − X̆ℓ,y,n

i (0) =
σ

2

(
W̆i(t) +

̂̆
W i(1 − t) − ̂̆W i(1)

)
.

Therefore, the control of the modulus of continuity of a globule path (Xℓ,y,n
i , X̆ℓ,y,n

i ) reduces
to the estimate of the modulus of continuity of Brownian paths, as follows:

Qℓ,y
n (Ñ (δ, ε)c)

≤ 2 n P
(
w((W1, σW̆1), δ) > ε

)
νℓ,yn ((R3 × R)n)

≤ 2 n P
(
w((W1, σW̆1), δ) > ε

) ∫

R3×[r−,r+]

exp(−ψℓ,y(x1, x̆1)) dx1dx̆1 ν
ℓ,y
n−1((R

3 × R)n−1)

Now, we can use the following estimate obtained as corollary of Doob’s inequality (for a
proof in the one-dimensional case, see the Appendix of [5]) :

Lemma 3.3 Let us consider two independent Brownian motions B ∈ R
3 and B̆ ∈ R.

There exist two constants c > 0 and c2 > 0 (depending only on σ) such that for every ε > 0
and every δ ∈]0, 1]

P (w((B, σB̆), δ) ≥ ε) ≤ c2
δ

exp

(
−cε

2

δ

)
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This leads by summation in n to :

Qℓ,y(Ñ (δ, ε)c) =
e−|B(0,ℓ)|

Zℓ,y

+∞∑

n=1

1

n!
Qℓ,y
n (Ñ (δ, ε)c)

≤ e−|B(0,ℓ)|

Zℓ,y

( +∞∑

n=1

1

(n− 1)!
νℓ,yn−1((R

3 × R)n−1)
) 2c2

δ
exp(−cε

2

δ
)

∫

R3×[r−,r+]

exp(−ψℓ,y(x1, x̆1)) dx1dx̆1

≤ 2c2
δ

exp(−cε
2

δ
)

∫

R3×[r−,r+]

exp(−ψℓ,y(x1, x̆1)) dx1dx̆1.

Recalling that ψℓ,y only vanishes into the ball B(0, ℓ), we get :

∫

R3×[r−,r+]

exp(−ψℓ,y(x1, x̆1)) dx1dx̆1

≤
∫

B(0,ℓ)×[r−,r+]

exp(−ψℓ,y(x1, x̆1)) dx1dx̆1 +

∫
1Iψℓ,y>0 exp(−ψℓ,y(x1, x̆1)) dx1dx̆1.

The first term of the right side is smaller than ℓ3(r+ − r−)|B(0, 1)| and, thanks to (1), the
last term is uniformly bounded in ℓ and y. This completes the proof of Proposition 3.2. �

In order to control the convergence of the finite-dimensional systems, we have to estimate
how many globules collide with a fixed globule i during a short time interval. If the paths
have a small oscillation, this set will be finite because globule i can not reach globules which
are too far away. But we also have to avoid the bump to propagate along a large chain

of neighbouring globules. We first define patterns called chains of globules, and then prove
that they are rare enough, in the sense that their probability decreases exponentially fast
as a function of the length of the chain.

Definition 3.4 Let ε > 0. The set of configurations containing an ε-chain of M globules
is defined by:

m
M(ε) =

{
x ∈ Ag, ∃i1, · · · , iM distinct , |xi2−xi1 | < x̆i2+x̆i1+ε, · · · , |xiM−xiM−1

| < x̆iM +x̆iM−1
+ε
}

We now define a set of paths which are smooth in the sense that, at regular time intervals,
there is no chain of globules: for δ ∈ 1/N∗,M ∈ N

∗, ε > 0

˜̃N (δ,M, ε) :=

{
X ∈ C([0, 1],Ag) : ∀k ∈ {0, . . . , 1

δ
− 1}, X(δk) 6∈ m

M(ε)

}

Note that this set decreases as a function of ε.
We now prove a lower bound for the Qℓ,y-Probability of ˜̃N (δ,M, ε).

Proposition 3.5 For any M ∈ N
∗, there exists c3 > 0 such that, for any δ ∈ 1/N∗ and

0 < ε < 1 :
inf

y∈Ag

Qℓ,y
(

˜̃N (δ,M, ε)
)

≥ 1 − c3
δ
ℓ3 εM−1.

12



Proof of Proposition 3.5

Let us estimate the νℓ,yn - and the µℓ,y-Probability that a chain exists. For n ≥M :

νℓ,yn (mM(ε)) ≤ n!

(n−M)!

∫

(R3×R)n

M∏

i=2

1Ix̆i+x̆i−1≤|xi−xi−1|≤x̆i+x̆i−1+ε

M∏

i=1

1Ir−≤x̆i≤r+

exp(−
M∑

i=1

ψℓ,y(xi, x̆i)) exp(−
n∑

i=M+1

ψℓ,y(xi, x̆i))

n∏

i=M+1

1Ir−≤x̆i≤r+

∏

M+1≤i,j≤n

1Ix̆i+x̆j≤|xi−xj | dx1dx̆1 · · · dxndx̆n

≤ n!

(n−M)!
νℓ,yn−M((R3 × R)n−M)

∫

R3×RM

|B(0, x̆1 + x̆2 + ε) \B(0, x̆1 + x̆2)| · · · |B(0, x̆M−1 + x̆M + ε) \B(0, x̆M−1 + x̆M)|
M∏

i=1

1Ir−≤x̆i≤r+ exp(−ψℓ,y(x1, x̆1)) dx1 dx̆1 · · · dx̆M

≤ n!

(n−M)!
νℓ,yn−M((R3 × R)n−M) |B(0, 2r+ + ε) \B(0, 2r+)|M−1

(r+ − r−)M−1

∫

R3×[r−,r+]

exp(−ψℓ,y(x1, x̆1)) dx1dx̆1

≤ n!

(n−M)!
νℓ,yn−M((R3 × R)n−M) c3ℓ

3εM−1

for a certain constant c3 > 0. Therefore

µℓ,y(mM(ε)) ≤ e−|B(0,ℓ)|

Zℓ,y

+∞∑

n=M

1

(n−M)!
νℓ,yn−M((R3 × R)n−M) c3ℓ

3εM−1

≤ c3ℓ
3εM−1

and the stationarity of Qℓ,y implies

Qℓ,y
(

˜̃N (δ,M, ε)c
)
≤

1
δ
−1∑

k=0

Qℓ,y

(
X(

k

m
) ∈ m

M(ε)

)
=

1

δ
µℓ,y(mM(ε)) ≤ c3

δ
ℓ3εM−1.

�

To prove the convergence of the approximations, we have to connect in a right way the
different parameters δ, ε, M , ℓ, in order to introduce a set of nice paths Ωy ⊂ Ω on which
the convergence holds. Since the Brownian motion has a.s. a δ-modulus of continuity
bounded by δκ for any κ < 1/2, we choose κ = 1/4 and take ε proportional to δ1/4.
The maximal length M of the chains is fixed, large enough so that M > 1 + 4

κ
= 17 (see

(8)). Taking a unique scale parameter m ∈ N we thus choose

ℓ(m) = (1 + 3r+)M24m, δ(m) =
1

24m
. (4)

It will be clear in (11) why this, with a suitable ε(m) = cst
2m , is a right choice.
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We now define

Ωy = lim inf
m→+∞

{
ω ∈ Ω : Xℓ(m),y(ω) ∈ Ñ (

1

24m
,

1

2m
) ∩ ˜̃N (

1

24m
,M,

27

2m
)

}
. (5)

We show in the next proposition that the set Ωy is of full measure with respect to any hard
globule Poisson process.

Proposition 3.6 For any hard globule Poisson process µ ∈ Πg, one has

∫

M

P (Ωy) µ(dy) = 1.

As a corollary, for µ a.e. y, P (Ωy) = 1.

Proof We have to prove that

∫

Ag

P (Ωc
y) µ(dy) = 0.

Thanks to Borel-Cantelli lemma,
∫
Ag
P (Ωc

y) µ(dy) vanishes as soon as the series

∑
m

∫

Ag

P
(
∃i : w((X

ℓ(m),y
i , X̆

ℓ(m),y
i ),

1

24m
) >

1

2m

)
µ(dy)

and
∑

m

∫

Ag

P
(
∃k ≤ 24m : Xℓ(m),y(

k

24m
) ∈ m

M(
27

2m
)
)
µ(dy)

converges. Since for large ℓ, Qℓ,y and the law of Xℓ,y with initial distribution µ(·|yB(0,ℓ)c)
are close, a similar argument as in [5] Proof of Proposition 3.2 and the condition (1) yield
that these series converge as soon as

∑
m

∫

Ag

Qℓ(m),y
(
∃i : w((Xi, X̆i,

1

24m
) >

1

2m

)
µ(dy) < +∞ (6)

and
∑

m

∫

Ag

Qℓ(m),y
(
∃k ≤ 24m : X(

k

24m
) ∈ m

M(
27

2m
)
)
µ(dy) < +∞. (7)

Following Proposition 3.2

Qℓ(m),y
(
∃i : w((Xi, X̆i,

1

24m
) >

1

2m

)
≤ c1ℓ(m)324m exp

(
−c 22m

)

≤ c42
16m exp

(
−c 22m

)

for a certain constant c4 > 0 independent of y. The above right side is the general term of
a summable series in m. Therefore (6) holds.
Following Proposition 3.5

Qℓ(m),y
(
∃k ≤ 24m : X(

k

24m
) ∈ m

M(
27

2m
)
)

≤ c3 24m ℓ(m)3 2(7−m)(M−1)

≤ c52
−m(M−17), (8)

for a certain constant c5 > 0 independent of y. We choosed M large enough to ensure the
summability in m of the right side, so (7) holds and the proof is complete. �
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3.3 The convergence

In this subsection, y ∈ Ag is still fixed and we study the convergence of the approximating
processes as ℓ→ +∞.

Proposition 3.7 For every ω in Ωy and every i ∈ N, the sequence

((X
ℓ(m),y
i , X̆

ℓ(m),y
i )(ω, t), L

ℓ(m),y
i,j (ω, t), L

ℓ(m),y
i+ (ω, t), L

ℓ(m),y
i− (ω, t), j ∈ N, t ∈ [0, 1])m∈N∗ is sta-

tionary as an element of C([0, 1],R3 × R × R
N

+ × R
2
+). The limit will be denoted by

((X∞,y
i , X̆∞,y

i )(ω, t), L∞,y
i,j (ω, t), L∞,y

i+ (ω, t), L∞,y
i− (ω, t), j ∈ N, t ∈ [0, 1]). Therefore,

lim
m→+∞

Xℓ(m),y(ω, ·) = X∞,y(ω, ·)

in C([0, 1],Ag).

Proof The main idea is that if a fixed globule moves along a nice path, it will only collide
into a finite number of other globules. Thus dynamics (Eg) reduces to an infinite number
of SDE involving only a finite random number of particles up to time 1.

Take ω ∈ Ωy and ρ > 0. Then, for m large enough, Xℓ(m),y(ω) and Xℓ(m+1),y(ω) both

belong to the same set of regular paths Ñ (
1

24m
,

23

2m
) ∩ ˜̃N (

1

24m
,M,

26

2m
).

For X in this set and k = 0, · · · , 24m − 1, we define the finite set of indices Jk,m(X) as:

Jk,m(X) :=
{
i ∈ N, |Xi(

k

24m
)| ≤ vk,m or

Xi(
k

24m
) belongs to some

26

2m
− chain of globules which intersects B(0, vk,m)

}
,

where vk,m := ρ+ (1 + 3r+M)24m − 3r+Mk.
One can show (similarly as in Lemma 3.3 [5]) that, for m large enough:

{i : |Xi(0)| ≤ ρ} ⊂ J24m−1,m(X) ⊂ · · · ⊂ J0,m(X) (9)

Moreover, a globule with index in Jk,m(X) does not bump into globules outside this set :

i ∈ Jk,m(X), j 6∈ Jk,m(X) ⇒ ∀t ∈ [
k

24m
,
k + 1

24m
] |Xi(t) −Xj(t)| > X̆i(t) + X̆j(t) +

25

24m
(10)

and it stays in a large ball around the origin :

i ∈ Jk,m(X) ⇒ ∀t ∈ [ k
24m ,

k+1
24m ] |Xi(t)| ≤ vk−1,m ≤ ℓ(m) − 2r+. (11)

Thus the penalization functions ψℓ(m),y and ψℓ(m+1),y vanish on globule (Xi(t), X̆i(t)) if
i ∈ Jk,m(X) and t ∈ [ k

24m ,
k+1
24m ]. Consequently, the paths Xℓ(m),y(ω) and Xℓ(m+1),y(ω)

satisfy the following simplified version of equation (E ℓ,yn ) :

∀k ∈ {0, · · · , 24m − 1} ∀i ∈ Jk,m(X) ∀t ∈ [ k
24m ,

k+1
24m ],

Xi(t) = Xi(
k

24m
) +Wi(ω, t) −Wi(ω,

k

24m
) +

∑

j∈Jk,m(X)

∫ t

k

24m

Xi(s) −Xj(s)

X̆i(s) + X̆j(s)
dLij(s)

X̆i(t) = X̆i(
k

24m
) + σW̆i(ω, t) − σW̆i(ω,

k

24m
)

− σ2
∑

j∈Jk,m(X)

(
Lij(t) − Lij(

k

24m
)
)
−
(
Li+(t) − Li+(

k

24m
)
)

+
(
Li−(t) − Li−(

k

24m
)
)
.
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The initial configurations Xℓ(m),y(ω, 0) and Xℓ(m+1),y(ω, 0) are equal to the same configu-
ration y. Hence the set of indices J0,m(Xℓ(m),y(ω)) and J0,m(Xℓ(m+1),y(ω)) are equal and

(X
ℓ(m),y
i (ω), X̆

ℓ(m),y
i (ω), i ∈ J0,m(Xℓ(m),y(ω)) satisfy the same equation as

(X
ℓ(m+1),y
i (ω), X̆

ℓ(m+1),y
i (ω), i ∈ J0,m(Xℓ(m+1),y(ω)) during the time interval [0; 1

24m ]. The

strong uniqueness in Proposition 3.1 implies the equality of the final values X
ℓ(m),y
i (ω, 1

24m )

and X
ℓ(m+1),y
i (ω, 1

24m ) for the indices i in the set J0,m(Xℓ(m),y(ω)), which contains both sets
J1,m(Xℓ(m),y(ω)) and J1,m(Xℓ(m+1),y(ω)). Thus these two sets of indices are equal, which

in turn implies that the paths (X
ℓ(m),y
i (ω), X̆

ℓ(m),y
i (ω)) and (X

ℓ(m+1),y
i (ω), X̆

ℓ(m+1),y
i (ω))

coincide up to time 2
24m for indices i ∈ J1,m(Xℓ(m),y(ω)). Using inclusions (9) and the

strong uniqueness again, we obtain the equality of both paths on J2,m(Xℓ(m),y(ω)) =
J2,m(Xℓ(m+1),y(ω)) up to time 3

24m , and so on.

Strong uniqueness of the solution of (E ℓ,yn ) holds for the path X and the reflection term
(linear combination of local times), but a priori not for each local time separately. How-
ever, as shown in the proof of corollary 3.6 in [3], the local times Lij , Li+, Li can be chosen
in a unique way. With this choice, the same argument as above prove that local times
L
ℓ(m),y
i,j (ω, t), L

ℓ(m),y
i+ (ω, t), L

ℓ(m),y
i− (ω, t) and L

ℓ(m+1),y
i,j (ω, t), L

ℓ(m+1),y
i+ (ω, t), L

ℓ(m+1),y
i− (ω, t) co-

incide for i, j in J0,m(Xℓ(m),y(ω)) and t ∈ [0; 1
24m ], and then again for i, j in J1,m(Xℓ(m),y(ω))

and t ≤ 2
24m , and so on.

In particular, if |yi| ≤ ρ, then form large enough depending on ρ, X
ℓ(m),y
i (ω) = X

ℓ(m+1),y
i (ω)

and X̆
ℓ(m),y
i (ω) = X̆

ℓ(m+1),y
i (ω) on the whole time interval [0; 1]. The associated local times

can be chosen in such a way that they also coincide, which implies the equality of the
reflection terms up to time 1. This completes the proof of the stationarity of the sequence
of continuous functions ((X

ℓ(m),y
i , X̆

ℓ(m),y
i , L

ℓ(m),y
i,j , L

ℓ(m),y
i+ , L

ℓ(m),y
i− )(ω, ·))m∈N∗ and therefore

its convergence to some path denoted by (X∞,y
i , X̆∞,y

i , L∞,y
i,j , L∞,y

i+ , L∞,y
i− )(ω, ·).

To check the convergence of Xℓ(m),y(ω, ·) in C([0, 1],Ag), we remark that for each continuous
function f on R

3 × R with compact support,

< Xℓ(m),y(ω, ·), f >=
∑

i

f(X
ℓ(m),y
i (ω, ·), X̆ℓ(m),y

i (ω, ·))

where the sum is indeed finite due to the minimal distance 2r− between any pair of points

X
ℓ(m),y
i (ω, t) and X

ℓ(m),y
j (ω, t) and the local boundedness of path oscillations. Therefore

the stationary convergence of each term insures the stationary convergence of the sum. �

3.4 Properties of the limit process

To complete the proof of Theorem 2.2 it suffices to show the following proposition.

Proposition 3.8 For every y ∈ Ag := {x ∈ Ag : P (Ωx) = 1} the family of processes

(X∞,y
i (t), X̆∞,y

i (t), L∞,y
i,j (t), L∞,y

i+ (t), L∞,y
i− (t), i, j ∈ N, t ∈ [0, 1]) with initial configuration y

solves uniquely the stochastic equation (Eg).

Proof The equation satisfied by each X∞,y
i (resp. X̆∞,y

i ) includes by construction a finite
sum of local time terms. It is straightforward to prove, using a similar argumentation as
in Proposition 4.1 of [5], that in fact this finite sum is already equal to the infinite sum
present in (Eg).
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The stationary convergence in Proposition 3.7 implies that:

∀I ⊂ N finite , ∃m0, ∀m ≥ m0 (X∞,y
i , X̆∞,y

i )i∈I ∈ Ñ (
1

24m
,

1

2m
) ∩ ˜̃N (

1

24m
,M,

27

2m
)

Consequently, using the strong uniqueness in Proposition 3.1 as in the proof of Proposition
3.7, uniqueness of the solution of (Eg) can be proved in the path space

{
X ∈ C([0, 1],Ag) : ∀I ⊂ N finite , ∀m0, ∃m ≥ m0 (Xi, X̆i)i∈I ∈ Ñ (

1

24m
,

1

2m
)∩ ˜̃N (

1

24m
,M,

27

2m
)
}

�

Let us conclude with the proof of Proposition 2.3, that is with the reversibility of the
solution of (Eg) when the initial distribution is a hard globule Poisson process.

Proof of Proposition 2.3 Using similar estimates as in the proof of Proposition 3.6, the
solution of (Eg) starting with a hard globule Poisson process is the limit of processes whose
distribution are close to Qℓ,y, which is a time-reversible measure. More precisely, we have to
prove that, if µ ∈ Πg, for any f1, . . . , fk bounded continuous functions on Ag with compact
support and for t1, . . . , tk ∈ [0, 1]

∫

Ag

∫

Ω

k∏

i=1

fi(X
∞,y(ω, ti)) P (dω) µ(dy) =

∫

Ag

∫

Ω

k∏

i=1

fi(X
∞,y(ω, 1− ti)) P (dω) µ(dy) (12)

which is equivalent to

lim
m→+∞

∫

Ag

∫

Ω

( k∏

i=1

fi(X
ℓ(m),y(ti)) −

k∏

i=1

fi(X
ℓ(m),y(1 − ti))

)
dP µ(dy) = 0.

By computations similar to those done in [5] to obtain inequality (17), we have

∣∣∣
∫

Ag

∫

Ω

( k∏

i=1

fi(X
ℓ,y(ti)) −

k∏

i=1

fi(X
ℓ,y(1 − ti))

)
dP µ(dy)

∣∣∣

≤
∣∣∣
∫

Ag

∫

Ω

( k∏

i=1

fi(X(ti)) −
k∏

i=1

fi(X(1 − ti))
)
Qℓ,y(dX) µ(dy)

∣∣∣

+2
k∏

i=1

sup
x∈Ag

|fi(x)|
∫

Ag

(
1 − ZB(0,ℓ),y

Zℓ,y

)
µ(dy)

The first term of the right hand side is equal to 0. The second term tends to zero as ℓ tends
to infinity, thanks to assumption (1). �
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