UNIVERSITÄT POTSDAM
 Institut für Mathematik

Empirical Minimax Linear Estimates

Henning Läuter

Mathematische Statistik und Wahrscheinlichkeitstheorie

Universität Potsdam - Institut für Mathematik
 Mathematische Statistik und Wahrscheinlichkeitstheorie

Empirical Minimax Linear Estimates

Henning Läuter
Institute of Mathematics, University of Potsdam
e-mail: laeuter@uni-potsdam.de

Preprint 2008/06
November 2008

Impressum

© Institut für Mathematik Potsdam, November 2008	
Herausgeber:	Mathematische Statistik und Wahrscheinlichkeitstheorie am Institut für Mathematik
	Universität Potsdam
Adresse:	Am Neuen Palais 10
	14469 Potsdam
Telefon:	+49-331-977 1500 Fax:
E-mail:331-977 1578	neisse@math.uni-potsdam.de

Empirical Minimax Linear Estimates

Henning Läuter
Institute of Mathematics, University of Potsdam, Germany
e-mail: laeuter@uni-potsdam.de

Abstract

We give the explicit solution for the minimax linear estimate. For scale dependent models an empirical minimax linear estimates is defined and we prove that these estimates are Stein's estimates.

Key words and phrases: Minimax linear estimates, admissibility, empirical estimates AMS subject classification: Primary 62F30; Secondary 62F15,62F10

1 Introduction

In the past years some progress has been made with the study of minimax linear estimates in convex linear models. Considering linear models

$$
\begin{gather*}
Y=X \beta+\varepsilon, \tag{1.1}\\
\mathrm{E} \varepsilon=0, \quad \operatorname{Var} Y=\sigma^{2} I
\end{gather*}
$$

with the condition

$$
\begin{equation*}
\left(\beta, \sigma^{2}\right) \in \mathcal{B}=\left\{\left(\beta, \sigma^{2}\right):\left(\beta, \sigma^{2}\right) \in \mathbb{R}^{p} \times \mathbb{R}^{+}, \beta^{t} X^{t} M X \beta \leq k^{2} \sigma^{2}\right\} \tag{1.2}
\end{equation*}
$$

where the nonrandom design matrix X is an $n \times p$ matrix, i.e. $X \in \mathfrak{M}_{n \times p} . M$ is a known positive semidefinite matrix such that $H=X^{t} M X$ has a full rank. $\beta \in \mathbb{R}^{p}$ and σ^{2} are unknown parameters. Our aim is to estimate the parameter $\gamma=C X \beta+c$ with the $s \times n$ matrix C and $c \in \mathbb{R}^{s}$. In the class of linear estimators $\hat{\gamma}$ with

$$
\hat{\gamma}(y)=T y+t, \quad T \in \mathfrak{M}_{s \times n}, \quad t \in \mathbb{R}^{s}
$$

we look for a minimax linear estimate. With the risk

$$
R\left(T, t ; \beta, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \mathrm{E}_{\left(\beta, \sigma^{2}\right)}(\hat{\gamma}(Y)-\gamma)^{t} Z(\hat{\gamma}(Y)-\gamma),
$$

where Z is a positive semidefinite $s \times s$ matrix, an estimate γ^{*} and $\gamma^{*}(y)=T^{*} y+t^{*}$ is called a minimax linear estimate (MILE) if

$$
\sup _{\mathcal{B}} R\left(T^{*}, t^{*} ; \beta, \sigma^{2}\right)=\min _{T, t} \sup _{\mathcal{B}} R\left(T, t ; \beta, \sigma^{2}\right) .
$$

This problem was discussed and solved by J. Kuks \& V. Olman (1972) for $\operatorname{rank} Z=1$. For general Z a characterization of the MILE was given by H. Läuter (1975) and K. Hoffmann (1978). The equivalence with a spectral characterization was discussed in H. Drygas \&H. Läuter (1994). H. Drygas and J. Pilz (1996) and also V.L. Girko (1996) showed the equivalence of spectral theory and bayesian analysis in minimax estimation problems. In N. Gaffke \& B. Heiligers (1989) and J. Pilz (1991) several special cases are discussed. B.F. Arnold \& P. Stahlecker (2000) determined for another objective function the minimax solution. An explicit representation of the MILE was not known up to now. The present paper is organized as follows. In the next chapter we formulate the explicit general solution for the MILE. As a consequence we give an empirical MILE for scale dependent models (1.2). Here the term "empirical" is used in the similar sense as in empirical Bayes estimates. The risk of such estimates is calculated and we see that under normal distributions some of these estimates are Stein estimates.

2 Representation of the MILE

Let us consider the scale invariant model (1.1) with (1.2) and the parameter $\gamma=C X \beta+c$ is to be estimated. In Läuter (1975) it was remarked that

$$
\chi(T):=\sup _{\mathcal{B}_{1}} R\left(T^{*}, t^{*} ; \beta, \sigma^{2}\right)=\operatorname{tr} Z T T^{t}+k^{2} \lambda_{\max }\left[Z^{\frac{1}{2}}(T X-C X) H^{-1}(T X-C X)^{t} Z^{\frac{1}{2}}\right],
$$

where $\lambda_{\max }(A)$ is the largest eigenvalue of A. Let $\mathcal{R}(A)$ be the space spanned by the column vectors of the matrix A and $P_{\mathcal{R}(A)}$ denotes the orthogonal projection on $\mathcal{R}(A)$. For a symmetric matrix A with the spectral representation

$$
A=\sum_{i=1}^{k} \mu_{i} a_{i} a_{i}^{t}, \quad \mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{l}>0 \geq \mu_{l+1} \geq \ldots \geq \mu_{k}
$$

we denote by $A^{>}$the positive part

$$
A^{>}=\sum_{i=1}^{l} \mu_{i} a_{i} a_{i}^{t}
$$

With

$$
\begin{gather*}
V=k^{2} H^{-\frac{1}{2}} X^{t} X H^{-\frac{1}{2}}=: k^{2} \tilde{V}, \tag{2.3}\\
G=\frac{1}{k^{2}} H^{\frac{1}{2}}\left(X^{t} X\right)^{-1} X^{t} C^{t} Z C X\left(X^{t} X\right)^{-1} H^{\frac{1}{2}}=: \frac{1}{k^{2}} \tilde{G} \tag{2.4}
\end{gather*}
$$

we denote

$$
\begin{equation*}
\tilde{A}_{\eta}=\tilde{V}^{-1 / 2}\left(\eta \tilde{V}^{-1}-\tilde{V}^{1 / 2} \tilde{G} \tilde{V}^{1 / 2}\right)^{>} \tilde{V}^{-1 / 2} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\rho}:=\frac{1}{k^{2}} \tilde{A}_{\frac{\rho}{k^{2}}} . \tag{2.6}
\end{equation*}
$$

Obviously $A_{\rho} \in \mathfrak{M}_{p \times p}$ is positive semidefinite (denoted by $A_{\rho} \geq 0$). Then the following theorem gives the general representation of the MILE.

Theorem 1 1. There exists a $\rho_{0} \geq 0$ such that

$$
\begin{equation*}
\operatorname{tr}\left[\left(G+A_{\rho_{0}}\right)^{1 / 2}\right]=\sqrt{\rho_{0}}\left(1+\operatorname{tr}\left(V^{-1}\right)\right) . \tag{2.7}
\end{equation*}
$$

2. With

$$
D_{\rho_{0}}:=\frac{1}{\sqrt{\rho_{0}}}\left(G+A_{\rho_{0}}\right)^{1 / 2}-V^{-1}
$$

and

$$
\begin{equation*}
T^{*}=k^{2} C X H^{-\frac{1}{2}} D_{\rho_{0}} H^{-\frac{1}{2}} X^{t}\left(I+k^{2} X H^{-\frac{1}{2}} D_{\rho_{0}} H^{-\frac{1}{2}} X^{t}\right)^{-1} \tag{2.8}
\end{equation*}
$$

the estimator γ^{*} with

$$
\gamma^{*}(y)=T^{*} y+c
$$

is a MILE for γ.
Now the problem is reduced to find a solution of (2.7) for the given A_{ρ} and this is easy to determine. The restriction to linear estimates is not really so restrictive. This is justified by the maximality of the normal distribution in the sense of the risk for the best unbiased estimate (BUE) being maximal under normality and the BUE being linear.
From (2.8) it becomes clear that the MILE is a type of shrinkage estimate. With the orthonormal eigenvectors $e_{1}, \ldots e_{p} \in \mathcal{R}(X)$ of $k^{2} X H^{-\frac{1}{2}} D_{\rho_{0}} H^{-\frac{1}{2}} X^{t}$ and corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ we have

$$
\begin{equation*}
T^{*}=C P_{\mathcal{R}(X)}-C \sum_{i=1}^{p} \frac{1}{1+\lambda_{i}} e_{i} e_{i}^{t} \tag{2.9}
\end{equation*}
$$

From the representation

$$
D_{\rho_{0}}=\frac{1}{\sqrt{\rho_{0}}} \frac{1}{k}\left(\tilde{G}+\tilde{A}_{\frac{\rho_{0}}{k^{2}}}\right)^{1 / 2}-\frac{1}{k^{2}} \tilde{V}^{-1}
$$

we see the explicit dependence on k and ρ_{0}. This can be used for the calculation of the λ_{i} for different k and ρ_{0}.

2.1 MILE for commutable \tilde{G}, \tilde{V}

Assuming that \tilde{G}, \tilde{V} are commutable, i.e. they have the same eigenvectors, say h_{1}, \ldots, h_{p}. \tilde{G} has the eigenvalues $\gamma, \ldots, \gamma_{p}$ and \tilde{V} has the eigenvalues ν_{1}, \ldots, ν_{p}. Then A_{ρ} from (2.6) has the eigenvalues

$$
\frac{1}{k^{2} \nu_{i}}\left(\frac{\rho}{k^{2} \nu_{i}}-\gamma_{i} \nu_{i}\right)_{+}, \quad i=1, \ldots, p
$$

with $a_{+}:=\max (0, a)$. Consequently D_{ρ} has the eigenvalues

$$
\begin{equation*}
\frac{1}{\sqrt{\rho} k} \sqrt{\gamma_{i}+\frac{1}{\nu_{i}}\left(\frac{\rho}{k^{2} \nu_{i}}-\gamma_{i} \nu_{i}\right)_{+}}-\frac{1}{k^{2} \nu_{i}}=\frac{1}{k \nu_{i}}\left(\frac{\nu_{i} \sqrt{\gamma_{i}}}{\sqrt{\rho}}-\frac{1}{k}\right)_{+} . \tag{2.10}
\end{equation*}
$$

Hence we have the spectral representation

$$
\begin{equation*}
k^{2} X H^{-\frac{1}{2}} D_{\rho} H^{-\frac{1}{2}} X^{t}=\sum_{i=1}^{p} \lambda_{i} e_{i} e_{i}^{t} \tag{2.11}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{i}=\frac{k \nu_{i}}{\sqrt{\rho}} \sqrt{\gamma_{i}+\left(\frac{\rho}{k^{2} \nu_{i}^{2}}-\gamma_{i}\right)_{+}}-1=\left(\frac{k \nu_{i} \sqrt{\gamma_{i}}}{\sqrt{\rho}}-1\right)_{+} . \tag{2.12}
\end{equation*}
$$

Theorem 2 For the unique ρ_{0} with $\operatorname{tr} D_{\rho_{0}}=1$ we have

$$
T^{*}=C P_{\mathcal{R}(X)}-C \sum_{i=1}^{p} \frac{1}{1+\left(\frac{k \nu_{i} \sqrt{\gamma_{i}}}{\sqrt{\rho_{0}}}-1\right)_{+}} e_{i} e_{i}^{t} .
$$

Proof : From (2.10) follows that

$$
\operatorname{tr} D_{\rho}=\sum_{i=1}^{p} \frac{1}{k \nu_{i}}\left(\frac{\sqrt{\gamma_{i} \nu_{i}^{2}}}{\sqrt{\rho}}-\frac{1}{k}\right)_{+}
$$

is a monotone decreasing function in ρ and for $\rho \leq \max \left\{1 /\left(\gamma_{i} k^{2} \nu_{i}^{2}\right), i=1, \ldots, p\right\}$ it is continuous and strictly monotone from ∞ to 0 . Hence, ρ_{0} with $\operatorname{tr} D_{\rho}=1$ exists and it is unique. Now from (2.9) the assertion follows.

3 Empirical minimax linear estimate

By construction it follows from (2.7) that ρ_{0} depends on k, consequently $\rho_{0}=\rho_{0}(k)$. If k is unknown then the MILE is also unknown. If one substitutes an estimation $\hat{\kappa}$ for k we get empirical minimax linear estimates. Using (2.9) then λ_{i} and e_{i} depend on k. If we substitute $\hat{\kappa}$ instead of k directly in (2.8) then we get

$$
\begin{equation*}
\hat{T}^{*} y=\hat{\kappa}^{2} C X H^{-\frac{1}{2}} D_{\rho_{0}(\hat{\kappa})} H^{-\frac{1}{2}} X^{\prime}\left(I+\hat{\kappa}^{2} X H^{-\frac{1}{2}} D_{\rho_{0}(\hat{\kappa})} H^{-\frac{1}{2}} X^{\prime}\right)^{-1} y . \tag{3.13}
\end{equation*}
$$

More generally

$$
\begin{equation*}
\hat{T}^{*}=C P_{\mathcal{R}(X)}-C \sum_{i=1}^{p} \frac{\mu_{i}}{1+\hat{\lambda}_{i}} \hat{e}_{i} \hat{e}_{i}^{t} \tag{3.14}
\end{equation*}
$$

is an empirical MILE if the μ_{i} 's are positive constants ≤ 1 and $\hat{\lambda}_{i}, \hat{e}_{i}$ are estimates for the corresponding λ_{i}, e_{i}. An appropriate estimation $\hat{\kappa}$ is those with

$$
\begin{equation*}
\hat{\kappa}^{2}=\eta\left\|M^{1 / 2} y\right\|^{2}=\eta y^{t} M y \tag{3.15}
\end{equation*}
$$

for a positive constant $\eta .\|z\|$ denotes the Euclidean norm of z. We calculate the risk for an empirical MILE.

3.1 Risk of empirical MILE

Assuming that \tilde{G}, \tilde{V} are commutable, i.e. they have the same eigenvectors, say h_{1}, \ldots, h_{p}. From section 2.1, it follows that also the h_{i} 's are the eigenvectors from \tilde{A}_{η} and so the eigenvectors h_{1}, \ldots, h_{p} of A_{ρ} are independent of ρ. These h_{1}, \ldots, h_{p} are also the eigenvectors of D_{ρ} for any ρ. Consequently $e_{1}, \ldots e_{p}$ with $h_{i}=H^{-\frac{1}{2}} X^{t} e_{i}$ is a system of orthonormal eigenvectors of $X H^{-\frac{1}{2}} D_{\rho_{0}} H^{-\frac{1}{2}} X^{t}$. Using (2.10) the empirical MILE (3.13) can be written as

$$
\hat{T}^{*}=C P_{\mathcal{R}(X)}-C \sum_{i=1}^{p} \frac{\mu_{i}}{1+\left(\frac{\hat{\kappa} \nu_{i} \sqrt{\gamma_{i}}}{\sqrt{\rho_{0}(\hat{k})}}-1\right)_{+}} e_{i} e_{i}^{t} .
$$

From (2.10) and the condition $\operatorname{tr} D_{\rho_{0}}=1$ it follows that $\sqrt{\rho_{0}} \approx 1 / k$ at least for large k. Then we consider the empirical MILE

$$
\hat{T}^{*}=C P_{\mathcal{R}(X)}-C \sum_{i=1}^{p} \frac{\mu_{i}}{1+\hat{\lambda}_{i}} e_{i} e_{i}^{t}
$$

emp3 with

$$
\begin{equation*}
\hat{\lambda}_{i}=\left(\hat{\kappa}^{2} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+} \tag{3.16}
\end{equation*}
$$

according to (2.12). This estimation $\hat{T}^{*} y$ is of the form

$$
\hat{T} y=C P_{\mathcal{R}(X)} y-C Q y
$$

for an $n \times n$ matrix $Q=Q\left(y^{t} M y\right)$ with $Q\left(y^{t} M y\right) \leq P_{\mathcal{R}(X)}$. Denote

$$
L=\sum_{i=1}^{p} \gamma_{i} e_{i} e_{i}^{t}
$$

Then we get the following representations.

Lemma 1 We have
1.

$$
\begin{equation*}
M C^{t} Z C Q=Q^{1 / 2} L Q^{1 / 2} \tag{3.17}
\end{equation*}
$$

2.

$$
M^{1 / 2+} Q C^{t} Z C M^{1 / 2}=\sum_{i=1}^{p} \frac{\gamma_{i} \mu_{i}}{1+\hat{\lambda}_{i}} M^{1 / 2+} e_{i} e_{i}^{t} M^{1 / 2+}
$$

for orthogonal vectors $M^{1 / 2+} e_{i}, \quad i=1, \ldots, p$.
3.

$$
\begin{equation*}
\operatorname{tr} Q C^{t} Z C=\sum_{i=1}^{p} \frac{\gamma_{i} \mu_{i}}{1+\hat{\lambda}_{i}} e_{i}^{t} M^{+} e_{i} \tag{3.18}
\end{equation*}
$$

4.

$$
\frac{Y^{t} Q^{1 / 2} L Q^{1 / 2} Y}{Y^{t} M Y} \leq \lambda_{\max }\left(M^{1 / 2+} Q^{1 / 2} L Q^{1 / 2} M^{1 / 2+}\right)=\max _{i}\left\{\frac{\gamma_{i} \mu_{i}}{1+\hat{\lambda}_{i}} e_{i}^{t} M^{+} e_{i}\right\}
$$

5.

$$
\frac{Y^{t} Q C^{t} Z C Q Y}{Y^{t} M Y} \leq \lambda_{\max }\left(M^{1 / 2+} Q L Q M^{1 / 2+}\right)=\max _{i}\left\{\frac{\gamma_{i} \mu_{i}^{2}}{\left(1+\hat{\lambda}_{i}\right)^{2}}\left(e_{i}^{t} M^{+} e_{i}\right)^{2}\right\}
$$

By Stein's identity we get a bound for the risk of the empirical MILE.
Lemma 2 For $\mathcal{R}(M) \subseteq \mathcal{R}(X), Y \sim \mathrm{~N}_{n}\left(X \beta, \sigma^{2} I\right)$ we have

$$
\begin{align*}
& \sigma^{2} R(\theta, \hat{T}) \leq \sigma^{2} \operatorname{tr} Z C C^{t}-2 \operatorname{tr} \mathrm{E} Q\left(Y^{t} M Y\right) C^{t} Z C+ \tag{3.19}\\
& \quad+4 \mathrm{E} \frac{Y^{t} Q^{1 / 2}\left(Y^{t} M Y\right) L Q^{1 / 2}\left(Y^{t} M Y\right) Y}{Y^{t} M Y}+\mathrm{E} Y^{t} Q\left(Y^{t} M Y\right) C^{t} Z C Q\left(Y^{t} M Y\right) Y
\end{align*}
$$

The empirical MILE is defined with

$$
Q=\sum_{i=1}^{p} \frac{\mu_{i}}{1+\hat{\lambda}_{i}} e_{i} e_{i}^{t}
$$

and $\hat{\lambda}_{i}$ as in (3.16). In order to find conditions for an empirical MILE to be minimax it is more convenient to look at

$$
\tilde{Q}\left(y^{t} M y\right)=Q\left(y^{t} M y\right) y^{t} M y .
$$

We see that

$$
\tilde{Q}\left(y^{t} M y\right)=\sum_{i=1}^{p} \frac{\mu_{i} y^{t} M y}{1+\left(\eta y^{t} M y \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}} e_{i} \mathrm{e}_{i}^{t}
$$

is an increasing matrix in $y^{t} M y$ and it is bounded by

$$
\tilde{Q}\left(y^{t} M y\right) \leq \sum_{i=1}^{p} \frac{\mu_{i}}{\eta \nu_{i} \sqrt{\gamma_{i}}} e_{i} e_{i}^{t} .
$$

Then the next theorem gives a condition for the empirical MILE to be minimax.
Theorem 3 Let be $\mathcal{R}(M) \subseteq \mathcal{R}(X)$ and $Y \sim \mathrm{~N}_{n}\left(X \beta, \sigma^{2} I\right)$. If

$$
\begin{align*}
2 \mathrm{E} \frac{1}{Y^{t} M Y} \operatorname{tr} M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+} & \geq 4 \mathrm{E} \frac{1}{Y^{t} M Y} \lambda_{\max }\left(M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+}\right)+ \\
& +\mathrm{E} \frac{1}{Y^{t} M Y} \lambda_{\max }\left(M^{1 / 2+} \tilde{Q} L \tilde{Q} M^{1 / 2+}\right) \tag{3.20}
\end{align*}
$$

then the empirical MILE is minimax.
Here one sees that $p \geq 3$ is necessary because for $p=1$ or $p=2$ we have

$$
R:=\frac{\operatorname{tr} M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+}}{\lambda_{\max }\left(M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+}\right)} \leq 2
$$

And if $R>2$ then one finds small μ_{i} 's so that (3.20) is fulfilled, because the last term in (3.20) depends on \tilde{Q} in a quadratic way and the others only linearly.
This Theorem 3 gives several possibilities for constructing Stein's estimators. Let $\gamma_{1}, \ldots, \gamma_{q}$ be the eigenvalues larger 0 . We put $a_{i}:=e_{i}^{t} M^{+} e_{i}$ and choose for any positive constant c such values μ_{i} that

$$
\frac{\mu_{i} \sqrt{\gamma_{i}} a_{i}}{\nu_{i}}=c, \quad i=1, \ldots, q
$$

and we admit only such c that $\mu_{i} \leq 1$.
Theorem 4 Let be $\mathcal{R}(M) \subseteq \mathcal{R}(X)$ and $Y \sim \mathrm{~N}_{n}\left(X \beta, \sigma^{2} I\right)$. If $\nu_{1} \sqrt{\gamma_{1}}=$ $\max \left\{\nu_{i} \sqrt{\gamma_{i}}, \quad i=1, \ldots, p\right\}$ and

$$
\begin{equation*}
2 \sum_{i=1}^{q} \frac{\nu_{i} \sqrt{\gamma_{i}}}{\nu_{1} \sqrt{\gamma_{1}}}-4 \geq \frac{c}{\eta} \max \left\{\frac{1}{\gamma_{j} a_{j}} ; j=1, \ldots, q\right\} \tag{3.21}
\end{equation*}
$$

then the empirical MILE (3.14) is a Stein's estimator.
One recognizes that only the ratio c / η plays a role. Also we see that under the condition

$$
\begin{equation*}
\sum_{i=1}^{q} \frac{\nu_{i} \sqrt{\gamma_{i}}}{\nu_{1} \sqrt{\gamma_{1}}}>2 \tag{3.22}
\end{equation*}
$$

such c / η exist. Obviously this condition can be fulfilled only for $q \geq 3$. This is the same condition as in the other known Stein's estimates.

4 Proofs

Proof of Theorem 1: We have from (2.5) for any ρ

$$
A_{\rho}=V^{-1 / 2}\left(\rho V^{-1}-V^{1 / 2} G V^{1 / 2}\right)^{>} V^{-1 / 2} \geq 0
$$

Moreover we have the spectral representation

$$
\rho V^{-1}-V^{1 / 2} G V^{1 / 2}=\sum_{i=1}^{p} \mu_{i} f_{i} f_{i}^{t}, \quad \mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{l}>0 \geq \mu_{l+1} \geq \ldots \geq \mu_{p}
$$

for orthonormal eigenvectors f_{i} and the corresponding eigenvalues μ_{i}. Consequently we have

$$
A_{\rho}=\rho V^{-2}-G-\sum_{i=l+1}^{p} \mu_{i} V^{-1 / 2} f_{i} f_{i}^{t} V^{-1 / 2}
$$

From this follows

$$
\frac{1}{\rho}\left(G+A_{\rho}\right) \geq V^{-2}
$$

Therefore, a positive semidefinite matrix B exists with

$$
\begin{equation*}
\frac{1}{\sqrt{\rho}}\left(G+A_{\rho}\right)^{1 / 2}=V^{-1}+B \tag{4.23}
\end{equation*}
$$

For

$$
C:=\frac{1}{\sqrt{\rho}}\left(G+A_{\rho}\right)^{1 / 2} V A_{\rho}
$$

we get $C=A_{\rho}$, because

$$
C^{t} C=\frac{1}{\rho} A_{\rho} V\left(G+A_{\rho}\right) V A_{\rho}=A_{\rho}^{2}
$$

and for any $c \in \mathbb{R}^{p}$ we have

$$
c^{t} C^{t} C c=c^{t} A_{\rho}^{2} c
$$

and so

$$
\begin{equation*}
\left|(I+B V) A_{\rho} c\right|^{2}=\left|A_{\rho} c\right|^{2} \tag{4.24}
\end{equation*}
$$

Here we have $B \geq 0, V>0$ and hence $I+B V$ only has real eigenvalues ≥ 1. From (4.24) it follows $B V A_{\rho}=0$. From (4.23) we get

$$
\begin{equation*}
C=\frac{1}{\sqrt{\rho}}\left(G+A_{\rho}\right)^{1 / 2} V A_{\rho}=A_{\rho} \tag{4.25}
\end{equation*}
$$

We see that A_{ρ} depends continuously and monotone increasing on ρ. We have $A_{\rho}=0$ for small ρ and for $\rho \geq \lambda_{\max }(G) \lambda_{\max }(V)^{2}$ we have

$$
A_{\rho}=\rho V^{-2}-G
$$

and then

$$
\frac{1}{\sqrt{\rho}}\left(G+A_{\rho}\right)^{1 / 2}=V^{-1}
$$

Hence, there exists a ρ_{0} from (2.7), i.e.

$$
\operatorname{tr}\left[\left(G+A_{\rho_{0}}\right)^{1 / 2}\right]=\sqrt{\rho_{0}}\left(1+\operatorname{tr}\left(V^{-1}\right)\right) .
$$

For such a ρ_{0} we have from (4.23)

$$
\frac{1}{\sqrt{\rho_{0}}}\left(G+A_{\rho_{0}}\right)^{1 / 2} \geq V^{-1}
$$

and it follows from (4.25)

$$
\frac{1}{\sqrt{\rho_{0}}}\left(G+A_{\rho_{0}}\right)^{1 / 2} V A_{\rho_{0}}=A_{\rho_{0}}
$$

In Läuter (1975) it was shown that with such a $A_{\rho_{0}}$ the matrix T^{*} in (2.8) yields a MILE for $\gamma=C X \beta+c$.

Proof of Lemma 1: The matrices \tilde{G}, \tilde{V} are given by (2.4) and (2.3). For h_{i}, γ_{i} from section (2.1) we define

$$
g_{i}:=X\left(X^{t} X\right)^{-1} H^{1 / 2} h_{i}
$$

and it follows from this

$$
M C^{t} Z C g_{i}=\gamma_{i} g_{i}
$$

and consequently

$$
M^{1 / 2} C^{t} Z C M^{1 / 2} M^{1 / 2+} g_{i}=\gamma_{i} M^{1 / 2+} g_{i}
$$

This means that $\left\{M^{1 / 2+} g_{i}, i=1 \ldots p\right\}$ is a system of orthogonal eigenvectors and the γ_{i} are eigenvalues of $M^{1 / 2} C^{t} Z C M^{1 / 2}$. From (2.11) follows

$$
k^{2} H^{-1 / 2} X^{t} X H^{-1 / 2} D_{\rho_{0}} H^{-1 / 2} X^{t} e_{i}=\lambda_{i} H^{-1 / 2} X^{t} e_{i} .
$$

From the commutability of \tilde{V} and $D_{\rho_{0}}$ we obtain now that

$$
H^{-1 / 2} X^{t} e_{i}=\alpha_{i} h_{i}
$$

for some constants α_{i}. This means now $e_{i}=\alpha_{i} g_{i}$ and so

$$
M C^{t} Z C Q=\sum_{i=1}^{p} e_{i} e_{i}^{t}=Q^{1 / 2} L Q^{1 / 2}
$$

From this representation we get directly

$$
\begin{equation*}
M^{1 / 2+} Q C^{t} Z C M^{1 / 2}=\sum_{i=1}^{p} \frac{\gamma_{i} \mu_{i}}{1+\hat{\lambda}_{i}} M^{1 / 2+} e_{i} e_{i}^{t} M^{1 / 2+} \tag{4.26}
\end{equation*}
$$

and the orthogonality of $M^{1 / 2+} e_{i}, i=1, \ldots, p$ was found already. From (4.26) follows (3.18).

Proof of Lemma 2:
With $\hat{\kappa}^{2}$ in (3.15) and $\hat{\lambda}_{i}$ in (3.16) and

$$
Q=Q\left(y^{t} M y\right)=\sum_{i=1}^{p} \frac{\mu_{i}}{1+\hat{\lambda}_{i}}
$$

we have

$$
\begin{align*}
R\left(\vartheta, \hat{T}^{*}\right) & =\mathrm{E}(C Y-C X \beta-C Q Y)^{t} Z(C Y-C X \beta-C Q Y)= \\
& =\sigma^{2} \operatorname{tr} Z C C^{t}-2 \mathrm{E} Y^{t} Q C^{t} Z C(Y-X \beta)+\mathrm{E} Y^{t} Q C^{t} Z C Q Y \tag{4.27}
\end{align*}
$$

Using $\tilde{Q}=\tilde{Q}(x):=x Q(x)$ we have that \tilde{Q} is bounded, continuous and piecewise continuously differentiable. Here $\frac{\mathrm{d}}{\mathrm{d} x} \tilde{Q}=: \tilde{Q}^{\prime}$ is positive semidefinite where it exists. This \tilde{Q}^{\prime} has the same eigenvectors as \tilde{Q}, only the eigenvalues change. By construction there exist disjoint subsets A_{1}, \ldots, A_{p+1} of \mathbb{R}^{n} with

$$
\mathbb{R}^{n}=\bigcup A_{j}
$$

and with \tilde{Q} is differentiable in the interior of A_{j}. With Stein's identity based on integration by parts we obtain

$$
\begin{align*}
& \mathrm{E} Y^{t} Q C^{t} Z C(Y-X \beta)=\operatorname{tr} \mathrm{E} \frac{\tilde{Q} C^{t} Z C}{Y^{t} M Y}-2 \operatorname{tr} \mathrm{E} \frac{M Y Y^{t} \tilde{Q} C^{t} Z C}{\left(Y^{t} M Y\right)^{2}}+ \\
&+2 \sum_{j} \int_{A_{j}} \frac{\operatorname{tr} M \xi \xi^{t} \tilde{Q}^{\prime} C^{t} Z C}{\xi^{t} M \xi} p(\xi \mid X \beta) \mathrm{d} \xi \tag{4.28}
\end{align*}
$$

The eigenvalues of \tilde{Q}^{\prime} are nonnegative. Hence the last term in (4.28) is nonnegative. This leads to

$$
\begin{aligned}
& R\left(\vartheta, \hat{T}^{*}\right) \leq \sigma^{2} \operatorname{tr} Z C C^{t}-2 \operatorname{tr} \mathrm{E} \frac{\tilde{Q} C^{t} Z C}{Y^{t} M Y}+4 \operatorname{tr} \mathrm{E} \frac{M Y Y^{t} \tilde{Q} C^{t} Z C}{\left(Y^{t} M Y\right)^{2}}+ \\
&+\operatorname{trE} \frac{Y Y^{t} \tilde{Q} C^{t} Z C \tilde{Q}}{\left(Y^{t} M Y\right)^{2}} \\
&=\sigma^{2} \operatorname{tr} Z C C^{t}-2 \operatorname{tr} \mathrm{E} Q C^{t} Z C+4 \mathrm{E} \frac{Y^{t} Q C^{t} Z C M Y}{Y^{t} M Y}+ \\
&+\mathrm{E} Y^{t} Q C^{t} Z C Q Y .
\end{aligned}
$$

From (3.17) the desired relation (3.19) follows.

Proof of Theorem 3: We calculate with (3.17) and (3.18)

$$
\operatorname{tr} \mathrm{E} Q C^{t} Z C=\operatorname{tr} \mathrm{E} \frac{\tilde{Q} C^{t} Z C}{Y^{t} M Y}=\operatorname{tr} \mathrm{E} \frac{M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+}}{Y^{t} M Y}
$$

Moreover, from (3.17) it follows

$$
\frac{Y^{t} Q C^{t} Z C M Y}{Y^{t} M Y}=\frac{Y^{t} Q^{1 / 2} L Q^{1 / 2} Y}{Y^{t} M Y} \leq \frac{1}{Y^{t} M Y} \lambda_{\max }\left(M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+}\right)
$$

and in the same way

$$
Y^{t} Q C^{t} Z C Q Y \leq \frac{1}{Y^{t} M Y} \lambda_{\max }\left(M^{1 / 2+} \tilde{Q} L \tilde{Q} M^{1 / 2+}\right)
$$

From Lemma 2 the assertion follows.

Proof of Theorem 4: We put $\tilde{Y}=Y^{t} M Y$. Then for $i=1, \ldots, q$ easy calculations give

$$
\begin{aligned}
& \frac{\mu_{i} \gamma_{i} a_{i} \tilde{Y}}{1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}}=\left\{\begin{array}{cl}
c \nu_{i} \sqrt{\gamma_{i}} \tilde{Y} & \text { for } \quad \eta \nu_{i} \sqrt{\gamma_{i}} \tilde{Y}<1 \\
\frac{c}{\eta} & \text { otherwise },
\end{array}\right. \\
& \frac{\mu_{i}^{2} \gamma_{i} a_{i} \tilde{Y}^{2}}{\left[1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}\right]^{2}}=\left\{\begin{array}{cl}
\frac{c^{2} \nu_{i}^{2} \tilde{Y}^{2}}{a_{i}} & \text { for } \quad \eta \nu_{i} \sqrt{\gamma_{i}} \tilde{Y}<1 \\
\frac{c^{2}}{\eta^{2} \gamma_{i} a_{i}} & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Hence we have

$$
\begin{gather*}
\max _{i}\left\{\frac{\mu_{i} \gamma_{i} a_{i} \tilde{Y}}{1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}}\right\}=\left\{\begin{array}{c}
c \nu_{1} \sqrt{\gamma_{1}} \tilde{Y} \quad \text { for } \quad \eta \nu_{1} \sqrt{\gamma_{1}} \tilde{Y}<1 \\
\frac{c}{\eta} \quad \text { otherwise },
\end{array}\right. \\
\max _{i}\left\{\frac{\mu_{i}^{2} \gamma_{i} a_{i} \tilde{Y}^{2}}{\left[1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}\right]^{2}}\right\} \leq \frac{c^{2}}{\eta^{2}} \max \left\{\frac{1}{\gamma_{i} a_{i}} ; i=1, \ldots, q\right\} . \tag{4.29}
\end{gather*}
$$

Because of

$$
\begin{align*}
\operatorname{tr} M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+} & =\sum_{i=1}^{q} \frac{\mu_{i} \gamma_{i} a_{i} \tilde{Y}}{1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}}, \tag{4.30}\\
\lambda_{\max }\left(M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+}\right) & =\max _{i}\left\{\frac{\mu_{i} \gamma_{i} a_{i} \tilde{Y}}{1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}}\right\}, \tag{4.31}
\end{align*}
$$

$$
\begin{equation*}
\lambda_{\max }\left(M^{1 / 2+} \tilde{Q} L \tilde{Q} M^{1 / 2+}\right)=\max _{i}\left\{\frac{\mu_{i}^{2} \gamma_{i} a_{i} \tilde{Y}^{2}}{\left[1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}\right]^{2}}\right\} \tag{4.32}
\end{equation*}
$$

Therefore under (3.22)

$$
\begin{equation*}
f(\tilde{Y}):=2 M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+}-4 \lambda_{\max }\left(M^{1 / 2+} \tilde{Q}^{1 / 2} L \tilde{Q}^{1 / 2} M^{1 / 2+}\right)- \tag{4.33}
\end{equation*}
$$

is a strictly monotone increasing function in $\tilde{Y} \leq \frac{1}{\eta \nu_{q} \sqrt{\gamma_{q}}}$ and moreover in $\tilde{Y} \leq \frac{1}{\eta \nu_{1} \sqrt{\gamma_{1}}}$ it is linear in \tilde{Y}. With these representations we get by easy calculations that for any \tilde{Y}

$$
\begin{align*}
2 \sum_{i=1}^{q} \frac{\mu_{i} \gamma_{i} a_{i} \tilde{Y}}{1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}}-4 \max _{i} & \left\{\frac{\mu_{i} \gamma_{i} a_{i} \tilde{Y}}{1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}}\right\}- \\
& -\max _{i}\left\{\frac{\mu_{i}^{2} \gamma_{i} a_{i} \tilde{Y}^{2}}{\left[1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}\right]^{2}}\right\} \geq 0 . \tag{4.34}
\end{align*}
$$

Consequently it follows

$$
\begin{gather*}
\mathrm{E} \frac{1}{\tilde{Y}}\left[2 \sum_{i=1}^{q} \frac{\mu_{i} \gamma_{i} a_{i} \tilde{Y}}{1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}}-4 \max _{i}\left\{\frac{\mu_{i} \gamma_{i} a_{i} \tilde{Y}}{1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}}\right\}-\right. \\
\left.-\max _{i}\left\{\frac{\mu_{i}^{2} \gamma_{i} a_{i} \tilde{Y}^{2}}{\left[1+\left(\eta \tilde{Y} \nu_{i} \sqrt{\gamma_{i}}-1\right)_{+}\right]^{2}}\right\}\right] \geq 0 . \tag{4.35}
\end{gather*}
$$

With (4.30), (4.31), (4.32) and the assertion of Theorem 3 we get that the MILE (3.14) is a Stein's estimate.

References

Arnold, B.F. and Stahlecker, P. (2000). Another view of the Kuks-Olman estimator. J. Statist. Plann. Inference 89, 169-174.

Drygas H.(1996). Spectral methods in linear minimax estimation,Acta Appl. Math. 43 17-42.

Drygas H. and Läuter H. (1994). On the representation of the linear minimax estimator in the convex linear model. In: T. Calinśki and R. Kala (eds). Proc. Internat. Conf. on Linear Statistical Inference LINSTAT '93, Kluwer Acad. Publ., Dordrecht, pp. 13-26.

Drygas, H. and Pilz, J. (1996). On the equivalence of spectral theory and bayesian analysis in minimax linear estimation. Acta Appl. Math. 43 43-57.

Gaffke N. and Heiligers B.: 1989, Bayes, admissible and minimax linear estimators in linear models with restricted parameter space,Statistics 20 478-508.

Girko V. L.(1996). Spectral theory of estimation, Acta Appl. Math. 43, 59-69
Hoffmann, K. (1978). Characterization of minimax linear estimators in linear regression. Math. Oper. Statist. Ser. Statist. 10 19-26.

Kuks J. and Olman V.(1972). Minimax linear estimation of regression coefficients. Izv. Akad. Nauk Est. SSR 21 66-72 (inRussian)

Läuter, H. (1975). A linear minimax estimator for linear parameters under restrictions in form of inequalities. Math. Oper. Statist. Ser. Statist. 6 689-695.

Pilz J.(1991). Bayesian Estimation and Experimental Design in Linear Regression Models, Wiley, Chichester, New York.

