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Abstract

We study resonances for the generator of a di�usion with small noise in Rd : Lε =
−ε∆ +∇F · ∇, when the potential F grows slowly at in�nity (typically as a square root of
the norm). The case when F grows fast is well known, and under suitable conditions one
can show that there exists a family of exponentially small eigenvalues, related to the wells
of F . We show that, for an F with a slow growth, the spectrum is R+, but we can �nd a
family of resonances whose real parts behave as the eigenvalues of the �quick growth� case,
and whose imaginary parts are small.
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1 Introduction

The aim of this paper is to understand, from a spectral point of view, a probabilistic result
obtained by one of us ([Zit08]). This result is the convergence of an �annealing di�usion�, a
process de�ned by the stochastic di�erential equation

dXt =
√
σ(t)dBt −∇F (Xt)dt,

where F : Rd → R is a function to be minimized, and the �temperature� σ(t) is a deterministic
function going to zero (the �convergence� means that X �nds the global minima of F ). The
convergence was already known for potentials with a quick growth (the typical case being F =
|x|a , a > 1 at in�nity); we generalized it to the �slow growth� case (when F behaves like |x|a,
with a < 1). In this case, the classical approach using strong functional inequalities (log-Sobolev,
Poincaré) breaks down, and we had to resort to the so-called �weak Poincaré inequality�.

What we are interested in here is a spectral traduction of this convergence result. In the
�quick growth� case, it is known that the spectral gap of an �instantaneous equilibrium measure�
(equilibrium for a process at �xed temperature σ) is related to the depth d of a certain well of
F , so that:

Spectral gap at temperature σ ≈ exp
(
− d
σ

)
. (1)

This can be used to �nd the optimal choice of σ (namely σ(t) = d/ log(t)).

∗Universität Potsdam, Institut für Mathematik, Professur Mathematische Physik Semiklassik & Asympthotik,
14415 Potsdam
†Équipe d'accueil Modal'X, bât. G, Université Paris X, 92000 Nanterre

1



In the �slow growth� case of [Zit08], the instantaneous measure do not have a spectral gap.
However, in a sense, they behave as if they did: the same choice of the freezing schedule,
σ(t) = d

log(t) , still guarantees convergence.

To be more precise, let us recall here another set of results, focused on the behaviour of the
lower spectrum of the operators

−σ∆ +∇F · ∇,
when σ → 0. In other words, we consider the generators of the original SDE (with a conventional
minus sign), forgetting non-stationarity (σ is �xed), but looking at the asymptotic σ → 0. Once
more, when F grows fast at in�nity, much is known: using probabilistic ([BEGK04, BGK05]) or,
to re�ne the results, analytic techniques ([HKN04, HN06]), a very precise analysis of the lower
spectrum has already been done (we will recall and use one of these results in theorem 14). In
particular, these results contain and precise the asymptotic (1).

In this case, the convergence result for the annealing process can be �seen� on the lower
spectrum of the operators: the optimal freezing schedule is dictated by the asymptotic behaviour
of the lower spectrum, via the constant d in (1).

Let us remark here that the explicit terms in the asymptotic developments all depend on
�local� properties of F , i.e. its structure on a compact set, and not on the details of its growth
at in�nity.

In the �slow growth� case, the spectra are always R+: the simulated annealing process still
converges, but its optimal freezing schedule seems to be disconnected from the spectral properties
of the generators. We prove that, under certain circumstances, it is not, by exhibiting other
spectral quantities with the correct order of magnitude: in other words, we will try to understand
what becomes of the small eigenvalues when we �change� the growth rate of F at in�nity.

We will see that the former eigenvalues give rise to resonances.

Resonances are, in some sense, what remains of eigenvalues when eigenvalues disappear.
We refer to [Zwo99] for a very nice introduction to resonances (with examples from PDEs and
quantum mechanics). Let us give an idea of what resonances are (the precise de�nition we will
use comes from a di�erent point of view, see remark 1). They may be seen as singular values,
not of the resolvent map itself (like usual eigenvalues), but of an analytic continuation of the
resolvent map on a certain dense subspace.

To be more precise, for an operator L, the usual resolvent is R(λ) = (L−λ)−1. Suppose that
σ(L) = R+, and consider the map:

λ 7→ (φ,Rλφ).

For a given φ, this function may have a meromorphic continuation across the real axis. If the
continuations, for all φ in a dense subset, have a common pole at some complex number µ (µ
lies on the lower half-plane, see �gure 1), this pole is called a resonance.

To prove the existence of such quantities, a possible approach is to deform drastically the
operator and try to move the essential spectrum �out of the way�. Resonances of the original
operator then appear as (complex) eigenvalues of the (non self-adjoint) deformed operator. A
basic example of this technique, called �complex scaling�, can be found in Reed and Simon [RS78]
(sections XII.6 and XIII.10). However, what bothers us in our case is really the part coming
from in�nity, and we would like to keep the operator intact on the region where the minima are.
Therefore we will have to resort to the more re�ned exterior complex scaling (see below for more
remarks on this).
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Eigenvalues

λi ≈ exp(−di

ε )

Essential spectrum

Resonances:

Re(ri) ≈ exp(−di

ε )

Figure 1: Resonances

Remark 1. In the sequel, we will de�ne resonances as the eigenvalues of the distorted operator
(cf. section 3.2).

To be able to adapt known results on resonances more easily, we perform a unitary transform
of our operators that turn them into the following Schrödinger operators:

Hε = −ε2∆ + Vε (2)

where

Vε(x) =
1
2
|∇F |2 − ε

2
∆F,

and F is the original probabilistic potential. This correspondance is well known (originally, it
was noted and used to study Schrödinger operators, cf. for example [Car79]; later the reverse
way was also used, for example in [Cat05] to prove criteria for the spectral gap).

We also de�ne

V =
1
2
|∇F |2 . (3)

The paper is divided in the following way. First we state our hypotheses and the main
result (section 2). Section 3 describes exterior scaling and how it is used to prove the existence
of resonances: we will de�ne here several auxiliary operators, obtained by putting a Dirichlet
boundary condition on a particular sphere, and modifying further the �outside� part.

In section 4 we prove estimates on the decay of eigenfunctions of certain operators, in the
spirit of Agmon. We describe in section 5 the lower spectrum of the interior operator. We need
to show that the exterior part of the operator does not create resonances near the eigenvalues
(which come from the interior part). This is one of the main di�culties; it is done in section 6,
using symbolic calculus for pseudo-di�erential operators.

Finally, all these results are put together in section 7, where we establish a �spectral stability�
between the original operator and the modi�ed one, thereby proving the existence of resonances.

Notation. Almost every quantity we will consider will depend on the small parameter ε .
For two such quantities a and b, we write a . b if there exists a constant C such that a ≤ Cb.
This constant may depend on the dimension d, and on the potential F , but not on ε. We will

also write a
ln∼ b if log(a) ∼ log(b).

2 Main result

We need two kind of hypotheses on the �probabilistic potential� F (and on the �Schrödinger
potential� Vε): some describe the well structure inside a compact set, the others deal with
behaviour at in�nity.
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The �rst ones are in some sense �non degeneracy� assumptions, that were used in the �quick
growth� case ([BEGK04, BGK05, HKN04], to which we refer for more details). To state them,
we need a de�nition: for a point x and a set A, let C(x,A) be:

inf
γ∈Γ(x,A)

{ sup
t∈[0,1]

F (γ(t))} − F (x),

where the Γ is the set of continuous paths joining x to A. The quantity C(x,A) is the �cost� one
has to pay to go from x to A; in other words, this is the height of the energy barrier between x
and A.

In terms of this cost, the assumptions may be formulated as follows:

• F has a �nite number of local minima, x0, . . . xN .

• x0 is the (unique) global minimum.

• there exist critical depths d0 =∞ > d1 > · · · dN such that:

C (xi+1, {x0, . . . xi}) = di.

Remark 2. It is natural to set d0 = ∞: it corresponds to the cost of going from the global
minimum to in�nity (where F → ∞). Furthermore, we will associate to each potential well an
eigenvalue of order exp(−di/ε): the �rst eigenvalue 0 therefore corresponds to the global minimum
(the in�nitely deep well). Finally, we will have to consider a (simple) case with boundary later
on: we will then introduce a d′0, the cost of going from the global minimum to the boundary,
which will describe the lowest lying eigenvalue.

We now state the assumptions on the behaviour at in�nity of V . Let us note beforehand
that they seem much more stringent than the �local� ones. However, in the light of the original
probabilistic result, it is already interesting to know what happens in the �reference case� where
F (x) = |x|a at in�nity, with 0 < a < 1.

The �exterior scaling� method demands that Vε has an analytic continuation somewhere near
the �real axis� Rn. We assume it in a small conic region. To de�ne it, let I(z),R(z) denote the
real and imaginary parts of z ∈ Cd (if z = (x1 + iy1, . . . xd + iyd), R(z) is the vector (x1, . . . xd),
and |R(z)| is its euclidean norm in Rd).

Hypothesis 1. There exists an angle (say 3β0) such that F , as a function on the exterior of a
�xed ball, has an analytic continuation to the following subset of Cd:

S =
{
z

∣∣∣∣ |z| ≥ R0,
|I(z)|
|R(z)| ≤ tan(2β0)

}
. (4)

Remark 3. In some references, it is the map r 7→ V (r, ω) that is supposed to be analytic (where
V is seen as a multiplication operator on L2). For simplicity, we assume analyticity directly for
F , and therefore for Vε. This will also give us estimates on the derivatives of V .

Hypothesis 2. Vε has a power-law decay at in�nity: there exists γ ∈ (0, 2), cV , CV , independent
of ε, such that

cV |x|−γ ≤ Vε(x) ≤ CV |x|−γ ,
outside some �xed ball. Its analytic continuation is similarly bounded:

|V ′(z)| ≤ CV |z|−γ .
Moreover, outside this ball, and for any angle ω,

|V ′ε (r)| ≥ cV Vε(r).
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Remark 4. This hypothesis is very strong. However, such bounds do seem necessary if we are
to accurately estimate the deformation V (rθ, ω) (cf. in particular proposition 16). The lower
bound on V ′ is reminiscent of so-called �non-trapping conditions� (cf. remark 26 below). The
restriction γ < 2 is more natural than it seems: we will see later that, if γ > 2, the Agmon
distance between the wells and in�nity becomes �nite, so the approach should break down. In any
case, this hypothesis covers the reference case F = |x|a.

We now come to the statement of the main result. It uses the distorted operator H(θ), which
will be formally de�ned in the next section (eq. (7).

Theorem 5. There exist θ = iβ, some functions r0(ε), S(ε) and, for each index i, two functions
λi(ε) and µi(ε) ∈ C, such that:

• λi is a Dirichlet eigenvalue for ε2∆ + Vε in the ball of radius r0(ε),

• µi is an eigenvalue of the distorted operator H(θ) ( i.e. a resonance of Hε),

• these quantities satisfy:

|R(µi)− λi(ε)| ≤ exp(−S(ε)/ε)
|I(µi)| ≤ exp(−S(ε)/ε),

λi(ε)
ln∼ exp(−di/ε),

• S(ε) goes to in�nity.

Therefore, we have identi�ed spectral quantities (resonances) µi with the right asymptotic
behaviour: their real part is of order exp(−di/ε), and their imaginary part is much smaller (since
S(ε)→∞).

Before we go on to the proof, let us mention that we did not address the problem of a
probabilistic interpretation of the resonances: we only prove that their asymptotic behaviour is
related to the depths of the wells of F , which are in turn related to mean exit times from these
wells.

3 Exterior scaling

The exterior dilation (or scaling) is a technical device that allows one to see resonances of an
operator as an eigenvalue of some (non self-adjoint) dilated operator. Intuitively, the operator is
unchanged inside a large region, but is modi�ed outside it by a change of scale (hence the name).

Let us �rst use hypothesis 2 to de�ne the region we will use.

De�nition 6. Let r0(ε) =
(
cV
ε

) 1
γ .

Then r0(ε)→∞, and on the sphere ∂B(r0(ε)), Vε(x) ≥ ε.
This choice of the ball is guided by two constraints:

• It must be far enough from the critical values of F (we will see later that the Agmon
distance between this ball and the critical points of F should go to in�nity),

• V on the boundary should be large w.r.t the order of the lower eigenvalues (here V ≈ ε,
whereas the eigenvalues are exponentially small).

The proper way to de�ne exterior scaling is to use polar coordinates.
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3.1 The operators in polar coordinates

We express the exterior dilation transformation in polar coordinates. To simplify notations, we
drop here the dependence on ε and write r0.

We introduce the change of coordinates:

B(r0)c → [r0,∞)× Sn−1

x 7→ (r(x), ω(x))
.

To f we associate f̃ : (r, ω) 7→ f(rω), and for any x, f̃x : ω 7→ f̃(r(x), ω).
The Laplacian decomposes as the sum of a radial operator and a spherical operator, as follows:

∆f(x) =
1

rn−1

∂f̃

∂r
(rn−1 ∂f̃

∂r
f̃)(r(x), ω(x)) + ∆LB f̃x(ω(x)). (5)

where ∆LB is the Laplace Beltrami operator on the sphere Sn−1.
Since we would like the change of coordinates to be unitary in L2, we use a slightly di�erent

choice:
O : L2(B(r0)c)→ L2([r0,∞)× Sn−1)

f 7→ Of : (r, ω) 7→ r(n−1)/2f(rω).

In turn, this de�nes (by conjugation) an equivalence between operators in the two L2 spaces. We
also note that the second space can be identi�ed with the tensor product L2([r0,∞))⊗L2(Sn−1).

We look for an expression of ∆. It is easy to see that ∂
∂r (in polar coordinates) corresponds

to Df(x) = (n−1)/(2r(x))+ω(x) ·∇f(x) (in other words, ODO−1 = ∂
∂r ). An easy computation

yields

D2f =
(n− 1)(n− 3)

4r2
f +

n− 1
r

ω · ∇f + ω · ∇(ω · ∇f)

=
(n− 1)(n− 3)

4r2
f +

n− 1
r

∂f̃

∂r
+
∂2f̃

∂r2

=
(n− 1)(n− 3)

4r2
f + ∆f − 1

r2
∆LB f̃ .

Since Of(r, ω) = r(n−1)/2f̃(r, ω),

∆LB f̃x(ω) = r(x)−(n−1)/2∆LB(Of)(r(x), ω).

The decomposition (5) becomes

−∆ = −D2 +
(n− 1)(n− 3)

4r2
I +

1
r2
O−1∆LBO.

We de�ne Λ = (n− 1)(n− 3) +O−1∆LBO, and �nally get

−∆ = −D2 +
1
r2

Λ. (6)

3.2 Exterior scaling

Let θ ∈ R. The exterior dilation of an operator H is de�ned in polar coordinates by:

Hθ = U(θ)HU(θ)−1
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where U(θ)f(r, ω) = f(rθ, ω), and rθ = r + (r − r0)eθ. It is easily seen that D(θ) = e−θD, and
Λ
r2 (θ) = 1

r2θ
Λ. Therefore, if H = −ε2∆ + Vε (on the outside of the ball), then

H(θ) = −ε2e−2θD2 + ε2 Λ
r2
θ

+ Vε(rθ, ω). (7)

We refer to the appendix for the expression of the symbol of this operator.
This modi�cation of the operator is then extended to complex θ by analyticity (exterior

complex scaling). We will then de�ne resonances to be eigenvalues of H(θ) : this coincides with
the de�nition in terms of continuation of the resolvent, at least for simple complex scaling (cf.
[RS78]).

3.3 Some operators

We write down some of the auxiliary operators involved here, for future reference.

• Hε = −ε2∆ + Vε is the operator we would like to study.

• Hr0(ε) = H
r0(ε)
i ⊕ H

r0(ε)
e is the operator with the same symbol, but with a Dirichlet

condition on the sphere of radius r0(ε). It decomposes into an interior and an exterior
part.

• H(θ) is the exterior dilation of Hε (outside the sphere of radius r0(ε)).

• Hr0(ε)
e (θ) is the exterior dilation of H

r0(ε)
e .

4 Preliminary Agmon-type estimates

4.1 The decay of eigenfunctions

The estimates we present here are in the spirit of Agmon's [Agm82]; we refer to [HS84] and
the online course [Hel95] for details. We will follow the last two references, making only slight
modi�cations of the arguments.

The estimates we seek are a way to express the following (informal) statement.

Proposition 7. A Schrödinger operator −ε2∆ +V may be approximated by a sum of harmonic
oscillators (−ε2∆ + ca(x − a)2) located at the minima of V . In particular, the eigenfunctions
associated to an eigenvalue coming from an harmonic oscillator at a are concentrated near a.

Remark 8. This informal description is accurate when we study the spectrum below lim inf V .
Let us note however two di�erences between our case and the usual one. The �rst is that our
V depends on ε. This is what explains the appearance of exponentially small eigenvalues. The
additional di�culty of our degenerate case (where lim inf V = 0) is that the spectra of the har-
monic oscillators at the minima is lost in the essential spectrum coming from the behavior of V
at in�nity.

We start with the following �basic� estimate.

Proposition 9 ([Hel95], prop. 8.2.1). If Ω is a bounded domain in Rd with C2 boundary, V is
continuous on Ω̄ and φ is a real valued lipschitzian function on Ω̄, then for any u ∈ C2(Ω̄,R)
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such that u|∂Ω = 0,

ε2

∫
|∇(exp(φ/ε)u)|2 dx+

∫
(V − |∇φ|2) exp(2φ/ε)u2dx

=
∫

exp(2φ/ε)(−ε2∆u+ V u)udx.
(8)

To prove this with a regular φ, just set v = exp(φ/ε)u in the Green�Riemann formula∫ |∇v|2 = − ∫ ∆v · v; the general case follows by a regularisation argument.
If we plug a �good� φ into this estimate, and apply it to an eigenfunction u, we obtain L2

estimates on the weighted function u exp(φ/ε). This will tell us that u must be small when φ is
big, or in other words that u is localized near the small values of φ.

The �good� φ turns out to be related to a new metric, which takes into account the function
V .

De�nition 10. The Agmon metric is de�ned by V dx2, where dx2 is the euclidean metric on
Rd. In other words,

dAg(x, y) = inf
{∫ 1

0

√
V (γ(t)) |γ′(t)| dt; γ ∈ Γ(x, y)

}
where Γ(x, y) is the set of C1 paths joining x to y.

Remark 11. In the usual setting, the potential does not depend on ε. Here, Vε does vary with ε;
however, we de�ne the Agmon metric using only V = |∇F |2. We could probably drop the metric
entirely and use F instead; we keep it for the sake of intuition and comparison with known results.

This metric degenerates on the minimas of V (i.e. the critical points of F , cf. (3)), and it
can be shown that:

dAg(x, y) ≥ |F (x)− F (y)| ,
∇ydAg(A, y) ≤ V (y),

for any closed set A and almost every y. Once more, we refer e.g. to [Hel95] (sec. 8.3) for details.
The main result of this section is the following rigorous statement in the spirit of proposition

7.

Theorem 12 (A rough decay estimate). Let Ω be a bounded domain, H = −ε2∆ +Vε in Ω with
Dirichlet boundary condition. Let λ be an eigenvalue of H going to zero (when ε → 0), and u
be a corresponding (normalized) eigenfunction. LetM be the set of global minima of V ( i.e. the
critical points of F ). Then for any δ > 0, there exists ε0 and a constant Cδ such that:

∀ε < ε0, ‖u exp(d(x)/ε)‖2 + ‖∇u exp(d(x)/ε)‖2 ≤ Cδ exp(δ/ε), (9)

where d(x) = dAg(x,M).

Before we turn to the proof of this result, let us mention here that very similar ideas will be
used later when we reconstruct a resolvent from two di�erent parts. Since the operators involved
will be a bit di�erent, we delay that discussion (but see the proof of theorem 33, section6.6).
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4.2 Proof of theorem 12

The proof follows closely the one of Theorem 8.4.1 of [Hel95] (the changes come from the depen-
dance of V in ε).

Let δ̃ be a small number (to be �xed later, depending on Ω and δ). We use (8) with V = Vε−λ
and φ(·) = (1− δ̃)dAg(M, ·). Since u is an eigenvector, the r.h.s disappears and we get:

ε2

∫
|∇(exp(φ/ε)u)|2 dx+

∫
(Vε − λ− |∇φ|2) exp(2φ/ε)u2dx = 0.

We cut the second integral in two parts, setting Ω+ = {x;V ≥ δ̃}, Ω− = Ω \ Ω+.

ε2

∫
|∇(exp(φ/ε)u)|2 dx+

∫
Ω+

(Vε − λ− |∇φ|2) exp(2φ/ε)u2dx (10)

= −
∫

Ω−

(Vε − λ− |∇φ|2) exp(2φ/ε))u2dx

≤ sup
Ω−

(∣∣∣Vε − λ− |∇φ|2∣∣∣) ∫
Ω−

exp(2φ/ε)u2dx

≤ C
∫

Ω−

exp(2φ/ε)u2dx, (11)

where C does not depend on ε and δ̃ (indeed, λ goes to zero with ε, and |Vε| ≤ supΩ |∇F |2 +
ε supΩ |∆F | ≤ C, by compactness). We now bound the left-hand side (10) from below.

Vε − λ− |∇φ|2 = V − 1
2
ε∆F − λ− (1− δ̃)2 |∇dAg(x,M)|2

≥ V − 1
2
ε∆F − λ− (1− δ̃)2V

≥ −1
2
ε∆F − λ+ δ̃(2− δ̃)V.

For x ∈ Ω+, V ≥ δ̃. By compactness, ∆F is bounded, so that:

Vε − λ− |∇φ|2 ≥ δ̃2(2− δ̃) + C(ε),

where C(ε) goes to zero. For ε su�ciently small, (depending on δ̃),

Vε − λ− |∇φ|2 ≥ δ̃2.

We inject this in (10) ≤ (11) to obtain:

ε2

∫
|∇(exp(φ/ε)u)|2 dx+ δ̃2

∫
Ω+

exp(2φ/ε)u2dx ≤ C
∫

Ω−

exp(2φ/ε)u2dx

We add δ̃
∫

Ω−
exp(2φ/ε)u2dx on both sides to get

ε2

∫
|∇(exp(φ/ε)u)|2 dx+ δ̃2

∫
exp(2φ/ε)u2dx

≤ (C + δ̃2)
∫

Ω−

exp(2φ/ε)u2dx
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On the r.h.s, we bound the φ from above, and incorporate δ̃ into (a new) C:

ε2

∫
|∇(exp(φ/ε)u)|2 dx+ δ̃2

∫
exp(2φ/ε)u2dx

≤ C
∫

Ω−

exp

(
2(1− δ̃)

ε
dAg(x,M)

)
u2dx

≤ C exp

(
2(1− δ̃)

ε
sup
Ω−

dAg(x,M)

)
,

since u is normalized. The continuity of dAg, of V and a compactness argument shows that we

can choose δ̃ small enough to ensure:

2dAg(x,M) ≤ δ/3
on Ω− (which depends on δ̃). In words, the only places where V can be small is on small balls
near its minima. The estimate becomes

ε2

∫
|∇(exp(φ/ε)u)|2 dx+ δ̃2

∫
exp(2φ/ε)u2dx ≤ C exp

(
δ

3ε

)
.

It is now easy to obtain the bound we seek. Indeed, we may choose δ̃ such that

δ̃ sup
Ω
dAg(x) ≤ δ/3,

(here we use strongly the fact that our domain is bounded), and ε−2 ≤ C exp(δ/(3ε)). Remem-
bering that φ = (1− δ̃)dAg(·,M), we obtain:∫

exp(2dAg(x)/ε)u2(x)dx ≤ C

δ̃2
exp

(
δ

ε

)
.

The bound on
∫ |∇(exp(dAg(x)/ε)u)|2 is obtained similarly.

5 The lower spectrum of the interior operator

We are now in a position to describe the bottom of the spectrum of the operator H
r0(ε)
i . Let

d0 =∞, d1, d2, . . . , dN be the critical heights of the potential F .

Theorem 13. There exist a d′0 > d1, N + 1 functions λ0(ε), λ1(ε), . . . , λN (ε) such that:

λ0(ε) = O(e−d
′
0/ε)

∀1 ≤ i ≤ N, λi(ε)
ln∼ exp

(
−di
ε

)
σ(Hr0(ε)

i ) = {λi(ε), 0 ≤ i ≤ N} ∪ S,
where S ⊂ [Cε,∞).

We proceed in two steps:

• we begin by showing the following decomposition:

σ(Hr0(ε)
i ) = S1 ∪ S,

where S1 is a set of at most N + 1 eigenvalues, and S ⊂ [Cε,∞).

• then we study S1 more precisely, and prove the theorem.
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R′ R r0(ε)

J2
0

J2
1

Figure 2: The partition of unity

5.1 A rough division of the spectrum

This step is mainly a rewriting of known arguments (for the case where the ball does not depend
on ε), where we keep track of the dependance on the outside. In particular, we draw heavily on

the presentation of [CFKS87], chapter 11.1 (note that our ε is their 1/λ, we take h = |∇F |2 and
g = ∆F , and multiply the whole operator by ε2 = λ−2).

The main idea is to compare H
r0(ε)
i (in the growing ball) with the operator HR

i in a �xed
ball B(R), which contains all minima of V . We �rst choose an R′ such that:

inf {dAg(x,M), x ∈ B(R′)c} = d′0 > d1, (12)

where d1 is the highest barrier of potential; and Vε ≥ Cε when R′ ≤ |x| ≤ r0(ε). Then we take
R > R′ (e.g. R = R′ + 1). We let d′i = di for 1 ≤ i ≤ N : the d′i will give the rates of decrease of
the exponentially small eigenvalues of HR

i .
Following [CFKS87], we introduce a partition of unity:

1 = J2
0 + J2

1 , (13)

where J0 is localized outside the �xed ball, and J1 inside (see �gure 2).
By the IMS localization formula, we have

H
r0(ε)
i = J0H

r0(ε)
i J0 + J1H

r0(ε)
i J1 − ε2

∑
i=1,2

(∇Ji)2. (14)

Now, the choice of the radius r0(ε) of the growing ball (cf. de�nition 6) ensures that for some
C, Vε ≥ 2Cε on Supp J0. Since −∆ is positive, we have in terms of quadratic forms:

J0

(
−ε2∆ +

1
2
|∇F |2 − ε∆F

)
J0 ≥ CεJ2

0 . (15)

In words, the operator localized between the �xed ball and the growing ball has a spectrum
bounded below by Cε.

Since the operators are local, we have for any φ ∈ L2(B(r0(ε))): J1H
r0(ε)
i J1φ = J1H

R
i J1φ.

Fortunately, the low-lying spectrum of HR
i is well-known.

Theorem 14. The spectrum of HR
i is given by:

σ(HR
i ) = {µ0, . . . , µN} ∪ S,

where

∀1 ≤ i ≤ N, µi
ln∼ exp

(
−d
′
i

ε

)
,

µ0(ε) = O(ε∞), and S is included in [Cε3/2,∞) for some constant C.

11



Results in this spirit date back at least to Freidlin and Wentzell's [FW98]; in this special form
it can be found in [HN06]. The 3/2 exponent is not optimal (the statement holds if it is replaced
by any quantity which is o(ε)).

Let E be the span of the N + 1 �rst eigenvalues of HR
i , P the orthogonal projection on E,

and K the restriction of HR
i to E. Then

J1H
R
i J1 − J1KJ1 ≥ Cε3/2J2

1 .

Let K̃ = J1KJ1. If we now plug (15) and the last equation into (14), we get:

H
r0(ε)
i − K̃ ≥ Cε3/2 − C ′ε2 ≥ C ′′ε3/2,

where C and C ′ are constants, and Rank(K̃) ≤ N + 1.
This is enough to conclude the �rst step. Indeed, H

r0(ε)
i − K̃ has no spectrum in the interval

(0, C ′′ε3/2). It is known that a perturbation by an operator of �nite rank can only create as

many eigenvalues as its rank in such an interval (cf. e.g. [Beh78]). Therefore, H
r0(ε)
i has at most

N + 1 eigenvalues in (0, Cε3/2).

5.2 Approximation of the low-lying eigenvalues

We precise the approximation of the previous paragraph and show that the �rst N+1 eigenvalues

of H
r0(ε)
i are in fact near the ones of HR

i .
Once more, the intuition is simple: the N eigenvectors of HR

i will be shown to be quasimodes

(i.e. approximate eigenvalues and eigenvectors) of H
r0(ε)
i . Therefore, a classical result in spectral

theory will tell us that near each eigenvalue of HR
i , there is one for H

r0(ε)
i and this will prove

theorem 13.
Let us now be more precise. By theorem 14, we know that the N + 1 exponentially small

eigenvalues of HR
i are such that:

∀1 ≤ i ≤ N, µi(ε)
ln∼ exp

(
−d
′
i

ε

)
(16)

for any δ. Let φi be the corresponding normalized eigenfunctions. We would like to consider

them as approximate eigenfunctions for H
r0(ε)
i . However, φi has no reason to be in the domain

of H
r0(ε)
i (because ∆φi, seen as a distribution on B(r0(ε)), will have a singular part on ∂B(R)).

Our approximate eigenfunction will therefore be ψi = χφi, where χ is a cuto� function (we may
take χ = J1, where J1 was de�ned above (13)) We will show

H
r0(ε)
i ψ̃i = λiψ̃i +O

(
exp

(
−d
′
0 − δ
ε

))
, (17)

where ψ̃i is a normalized version of ψi. Once this is shown, the proof is complete: indeed, this
implies

σ(Hr0(ε)
i ) ∩

[
λi − Cδ exp

(
−d
′
0 − δ
ε

)
, λi + Cδ exp

(
−d
′
0 − δ
ε

)]
6= 0

([Hel95], prop. 5.1.4). The asymptotics of λi ensure that these intervals are disjoint (for ε small
enough), and the error is negligible with respect to the main term e−λi/ε. Since we already know

that, below Cε, the spectrum of H
r0(ε)
i is discrete and contains at most N + 1 points, it follows

that there each of these N + 1 eigenvalues must be located in one of these intervals. Thanks to
(16), this concludes the proof of theorem 13.

12



We now establish (17). We �rst show the bound for ψi.

H
r0(ε)
i ψi − λiψi = H

r0(ε)
i χφi − λiχφi

= χH
r0(ε)
i φi − λiχφi + [Hr0(ε)

i , χ]φi.

On the support of χ, H
r0(ε)
i φi is well de�ned and equals λiφi. Therefore

H
r0(ε)
i ψi − λiψi = [Hr0(ε)

i , χ]φi
= −ε2[∆, χ]φi
= −2ε2∇χ∇φi − ε2(∆χ)φi.

Taking norms, we get∥∥∥Hr0(ε)
i ψi − λiψi

∥∥∥2

2
≤ 4ε4 ‖∇χ∇φi‖22 + 2ε4 ‖(∆χ)φi‖22 .

We now use the fact that φi is small when we are far from the critical points of V , therefore on
the support of ∇χ and ∆χ. More precisely,

‖φi(∆χ)‖2 ≤ exp
(
− inf

Suppχ
(d(x))/ε)

)∥∥∥φied(x)/ε∆χ
∥∥∥2

2

≤ C exp
(
− infSuppχ d(x)− δ

ε

)
,

where the second bound follows from the decay estimate for the �xed operator (equation (9)).
By a similar argument (using the other part of (9) to bound ∇φ), we get:∥∥∥Hr0(ε)

i ψi − λiψi
∥∥∥2

2
≤ Cδ exp

(
− infSuppχ d(x)− δ

ε

)
.

The de�nition of R′ and d′0 (equation (12)) implies:∥∥∥Hr0(ε)
i ψi − λiψi

∥∥∥2

2
≤ Cδ exp

(
−d
′
0 − δ
ε

)
,

and the desired bound is proved, for the non-normalized functions ψi. However, since φi is
normalized and localized inside the �xed ball, similar arguments show that ‖ψi‖ ≥ 1/2 for small
ε. This concludes the proof of (17), and theorem 13 is proved.

6 Bounds on the exterior resolvent

6.1 The general strategy

We prove here that the exterior part of the dilated Dirichlet resolvent is regular in the neigh-
borhood of the small eigenvalues. We are interested in a bound on RDe (θ, z) when z is on a
contour around one of the eigenvalues λj . Since λj is exponentially small, the contour is in a
small neighbourhood of 0, and since 0 is in the essential spectrum of HD

e (θ), the best bound we
can hope for is of the type: ∥∥RDe (θ, z)

∥∥ ≤ const

λj
.

The following result will be enough for our purpose.

13



Theorem 15. Let λj be the exponentially small eigenvalues of the interior operator (cf. Theorem
13). Let η > 0. There exists θ = iβ, cz, C, independent of ε, such that, if |z − λj | ≤ czλj,∥∥RDe (θ, z)

∥∥ ≤ Cη

λ1+η
j

,

The main problem to show such a bound is the behaviour at in�nity. We investigate it by
using techniques of pseudo-di�erential operators. However, these techniques are mainly known
when the symbol of the operator depends smoothly on the parameters (which is not the case here,
since we put a Dirichlet boundary condition on a sphere). Therefore, we will work separately on
the two �boundaries� of our domain. Let χ0, χ1 be a partition of unity, where χ0 is 1 on the ball
B(r0(ε)) and χ1 = 1 at in�nity (the cut-o� functions will be de�ned later, cf. �g 6.6). We will
de�ne two auxiliary operators H0 and H1:

• The operator �at in�nity�, H1, will be de�ned by pseudo-di�erential operator theory (cf
section 6.3),

• We de�ne H0 with a Dirichlet condition on the sphere, but without degeneracy at in�nity,
and bound its resolvent (section 6.5).

Once these two steps are done, we construct an approximate resolvent by gluing R0 and R1,
considering R = χ0R0 + χ1R1. We �nally deduce a bound on the true resolvent (section 6.6).

We begin by preliminary estimates on Vε.

6.2 Some estimates on F and V

Let us gather some consequences of the hypotheses on F . Recall that F is analytic in a region
of Cd de�ned by equation (4). Consider the following subset of C:

R = {r, |r| ≥ r0, arg(r) ≤ tan(2β0).} .
The following subset of Rd is contained in the analyticity region for F :{

rω = (ω1r, ω2r, . . . ωnr), r ∈ C, ω ∈ Sn−1
R , r ∈ R.} .

Therefore, for each ω, Ṽω,ε : r 7→ Vε(rω) is analytic in R. The exterior scaled potential Vθ(x),
for x = rω, coincides with Ṽω(rθ), where rθ = r0 + (r − r0)eθ. We will only consider imaginary
θ, and let θ = iβ.

Proposition 16. The following development holds, for small β = I(θ):

∀r ≥ r0(ε), V (xθ) = V (rθ, ω) = V (r, ω)(1 +O(β)), (18)

where the O(β) takes complex values, but does not depend on ε, r, ω. Moreover, on the region
V (r) ≤ 2λj,

V (xθ) = V (r, ω) + iβ(r − r0)
∂

∂r
V (r, ω)(1 +O(β)), (19)

Remark 17. Note that, given the growth rates of V , and the fact that r0(ε)(ε) is polynomial in
ε and λj(ε) exponentially small, r0(ε) is much smaller than r if V (r) = λj. We will take ε small
enough so that:

V (r) ≤ 2λj =⇒ r − r0(ε) ≥ 1
2
r.
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Figure 3: The analyticity region of the map Ṽω and the relevant Cauchy contours.
The function V is analytic in the whole sector of angle 3β0 (light grey angle). Therefore, the
distance between a generic point in the colored sector (where the rθ live, for θ ≤ 2β0) and the non
analyticity region is at least AC = AB + BC. Since BC = (r0 − R0) tan(3β0), and AB = (r −
r0) sin(β0), AC ≥ (r−R0) sin(β0). So the circle centered in rθ with radius (1/2)(r−R0) sin(β0)
is entirely contained in the analyticity region.

Proof. These bounds are given by the Taylor approximation of V (rθ) for small θ. The strong
hypotheses on V guarantee that, for small β independent of x, the �rst terms of the development
are the main ones. To see it, we �rst prove

Lemma 18. For α < β0,
∣∣∣Ṽ ′ω,ε(riα)

∣∣∣ ≤ Cr−γ−1, and
∣∣∣Ṽ ′′ω,ε(riα)

∣∣∣ ≤ Cr−γ−2, where the constants

do not depend on ω, ε.

This follows from the estimates on V and analyticity. Indeed, Ṽω,ε is analytic in a conical
region of angle 3β0. Therefore, for any rθ, with θ = iα and α < 2β0, the circle centered in rθ
with radius (r −R0) sin(β0)/2 is contained in the cone (cf. �gure 6.2). Apply Cauchy's formula
on this circle:

Ṽ ′ω,ε(rθ) =
1

2iπ

∫
circle

Ṽω,ε(z)
z − r .

On this circle, |z| ≥ r/2 so Ṽω,ε ≤ 2γCV r−γ , and |z − r| = (1/2)(r − R0) sin(β0). For ε small
enough, since R0 is �xed and r is bigger than r0(ε) (which is larger and larger), we have r−R0 ≥
r/2. Therefore Ṽ ′ω,ε(rθ) ≤ Cr−γ−1, and the �rst claim is proved (for α < 2β0). We now repeat

the reasoning with Ṽ ′ω,ε instead of Ṽω,ε: since we know how to bound Ṽ ′ω,ε on the cone of angle

2β0, we deduce bounds on Ṽ
′′
ω,ε on the smaller cone of angle β0.This concludes the proof of lemma

18.
Let us go back to the proof of (18). The �rst-order Taylor expansion of V (rθ) reads:

Ṽω,ε(rθ) = Ṽω,ε(r) +
∫ β

0

i(r − r0)eiαṼ ′ω,ε(riα)dα.

Using the upper bound on Ṽ ′ω,ε (previous lemma) and the lower bound on Ṽω,ε (hypothesis), we

see that
∣∣∣rṼ ′ω,ε(riα)

∣∣∣ ≤ C |V (r)| (where C does not depend on ε, β). This shows (18).

The second bound follows from the Taylor expansion up to order 2, using lemma 18 and
remark 17 to bound Ṽ ′′ω,ε from above, and hypothesis 2 to bound Ṽ ′ω,ε from below.

We also need to bound partial derivatives with respect to the cartesian coordinate xi.
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Proposition 19. Each partial derivative of V is smaller by a factor of 1/r. More precisely,

|∂αxVθ(x)| . r(x)−|α| |Vθ(x)|
when r ≥ r0(ε).

Proof. We use the same ideas as in the proof of lemma 18. Let x be such that r(x) ≥ r0. Suppose
we freeze the coe�cients x2, . . . xd, and consider the map:

φ : x1 7→ Vθ(x1, . . . xd).

This function φ has an analytic continuation to a region that contains a circle of radius of order
r(x). Using the Cauchy formula on this circle, and the a priori upper and lower bounds on the
analytic continuation of V , we prove the claim.

6.3 The resolvent �at in�nity� � symbol bounds

6.3.1 The strategy

Following the strategy outlined in section 6.1, we start by de�ning the operator H1. We obtain
H1 by modifying the original operator in two ways. First, Vε is replaced by a function V1,ε such
that:

• V1,ε = Vε on the support of χ1.

• V1,ε is smooth and greater than Cε inside the ball B(r0(ε)).

The second condition may be imposed since by de�nition of the radius R(ε), V ≥ Cε on the
boundary of the ball.

Remark 20. For notational convenience, and since the problematic behaviour of the operator
comes from the part where Vε = V1,ε, we will write V1, or even V , instead of V1,ε.

The other modi�cation is in the kinetic term. To de�ne it, we let h(x, ξ; ε, θ) be the symbol
of the exterior-scaled Dirichlet operator (an explicit expression is given in equation (68)). We
modify h near the boundary to make it smooth: let χsm be a smooth cuto� function supported
near B(r0(ε)) and with value 1 on the ball (cf. �gure 6.6 for a precise de�nition), we de�ne the
smoothed symbol

hs(x, ξ; ε, θ) = χ(x)σ(−∆) + (1− χ(x))σ(−∆θ).

Adding the scaled potential, we obtain:

h1(x, ξ; ε, θ) = hs(x, ξ) + Vθ(x).

This function is, for each x, polynomial in ξ (of order 2). Therefore, it de�nes by quanti�cation
(cf. section 8.1 in the appendix) an operator H1.

The main idea is to construct an approximate resolvent by the following formula:

(H1 − z)−1 ≈ Op
(

1
h1 − z

)
.

Remark 21. This idea is behind the classical construction of a parametrix (cf. appendix).
However we need here an explicit L2 control (not only smoothing), therefore we will use explicit
expressions of the remainder, given in terms of oscillatory integrals (cf. theorem 40, in the
appendix).
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To apply regularity results from ΨDO theory, we need estimates on the symbol and its
derivatives.

Proposition 22. For some θ = iβ, there exists constants c, C and cz (independent of ε, x, ξ)
such that, when z is on a small circle around λ = λj(ε) (z = λj(1 + cze

iω))

∀ε, x, ξ, |h1(x, ξ)− z| ≥ cmax (M(x, ξ), λ) (20)∣∣∣∂αx ∂βξ h1(x, ξ)
∣∣∣ ≤ (r0

r

)|α|(
1β=0 (V (r)1r>r0 + 1r<r0) + ε2 max(

1
r
, |ξ|)2−|β|

)
, (21)∣∣∣∣∂αx ∂βξ 1

h1(x, ξ)− λ
∣∣∣∣ ≤ C |α|+|β|∑

n=0

(r0

r

)|α| M(x, ξ)n−|β|/2

max (M(x, ξ), λ)1+n (22)

where M(x, ξ) = max(V1(x), ε2 |ξ|2).

This is proved in the following sections (6.3.2, 6.3.3).

The next step is to use the pseudo-di�erential theory to obtain operator bounds:

Proposition 23. 1. The approximate resolvent G = Op (1/(h1 − z)) is �almost� bounded by
1/λ: for all η > 0,

‖G‖ . Cηλ
−(1+η)
j . (23)

2. The same estimate holds for the real resolvent (H1 − z)−1.

This is proved in section 6.4.

6.3.2 The lower bound

In this section we prove proposition 22. Note that it is enough to show a lower bound on
|h1(x, ξ)− λ| (from which the desired bound follows, up to a change of cz and c). Recall that

h1 − λ = hs(x, ξ) + V1(x)− λ
= ε2ξ2

(
χ(x) + e−2θ(1− χ(x))

)
(24)

+ ε2(1− χ(x))
(
r2

r2
θ

− e−2θ

)(
|ξ|2 + σ(D2)

)
+ V1(xθ)− λ.

where χ(x) is 1 for r ≤ r0 and 0 at in�nity.
We use di�erent arguments for di�erent regions of (x, ξ). Let us begin by an informal ex-

plaination before we go into details. In the �interesting� regions (x su�ciently large), h1 − λ
should behave in �rst approximation like its real part, which looks like

e−2θε2ξ2 + V1(x)− λ.
So when V is large enough with respect to λj , we can use this real part and positivity to get the
desired bounds.

When V is approximately λ, or even smaller, the real part will not give us the bound.
Therefore, we multiply by e2θ (to move the kinetic part back to R), and bound the imaginary
part of (approximately) e2θ(V1 − λ). The result then follows from the development (19) of V .

Note that we keep the ε2ξ2 as a term in the maximum, so as to deal with the �large ξ� regions
when we consider derivatives later on, but most of the trouble comes from the potential part.

We state here two results we will need in the proof. The �rst one concerns the symbol of D2.
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Proposition 24. The derivatives of the symbol of D2 admits the following bounds:∣∣∣∂αx ∂βξ σ(D2)
∣∣∣ ≤ Cn 1

r|α|
max

(
1
r
, |ξ|
)2−|β|

, (25)

for all multi-indices α, β. (The derivatives are 0 if |β| ≥ 3).

The expression of σ(D2) is shown in the appendix. The bounds come from the homogeneity
in x and �polynomialness� in ξ.

The second result we need is the following elementary lemma, on the sum of �almost real
positive� numbers.

Lemma 25. If a, b are two complex numbers with arguments in −π/4, π/4, then |a+ b| ≥
max(|a| , |b|).

We are ready to tackle the �rst case, when V is larger than λ. We need a safety margin, and
we de�ne:

cS =
cV

12CV
(26)

First case: V (r) ≥ (1 + cS)λ. Let us slightly rewrite h1:

h1 − λ = ε2ξ2 ×
((

χ(x) +
r2

r2
θ

(1− χ(x))
))

(27)

+ ε2

(
(1− χ(x))

(
r2

r2
θ

− e−2θ

)
σ(D2)

)
+ V1(xθ)− λ

= ε2ξ2K1 +K2 + P.

The �rst kinetic factor K1 is a convex combination of 1 and the complex number r2

r2θ
, the latter

having small argument (for small beta, independent of ε, r0, r), and a norm bigger than 1:
therefore,

∣∣arg(ε2ξ2)
∣∣ < π/4, and

∣∣ε2ξ2K1

∣∣ ≥ ε2ξ2.
For the potential term P we use the development (18). So

V (xθ)− λ = V (r)(1 +O(β))− λ
= (V (r)− λ)(1 +O(β)).

Since λ ≤ 1
1+cS

V (r), V (r)−λ ≥ cS
1+cS

V (r). Therefore, for β small enough, and for some constant
c, |V (xθ)− z| ≥ cV (r) and |arg(V (xθ)− z)| < π/4.

Finally, |K2| is small, in modulus, with respect to one of the two other terms. Indeed, equation
(25) entails:

|K2| ≤ 5CNβε2 max
(

1
r
, |ξ|
)2

≤
∣∣∣∣ cβV (r) if 1

r ≥ |ξ| ,
cβε2 |ξ|2 if |ξ| ≥ 1

r .
(28)

]]] This, combined with lemma 25, shows that |h1 − λ| ≥ c′max(ε2 |ξ|2 , |V (x)| , |λ|), as an-
nounced.

This �positivity� argument still works in a slightly di�erent setting. Indeed, if V (r) ≤ (1+cS)λ
but ε2 |ξ|2 ≥ λ, then |P | = |V (xθ)− λ| ≤ cSλ(1 +O(β)) ≤ 2cSε2ξ2 (make O(β) smaller than 1);
and |K2| ≤ cβε2 |ξ|2 (thanks to eq. (28)). So

|h1 − λ| =
∣∣ε2ξ2K1 +K2 + P

∣∣ ≥ 1
2
ε2ξ2−cβε2ξ2−2cSε2ξ2 ≥ (

1
2
−cβ−2cS) max(ε2 |ξ|2 , λ), (29)

and the lower bound (20) holds (since cS and β may be taken small).
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Second case: V (r) < (1 + cS)λ. Note that this in this region, r is much bigger than r0,
therefore χ is 0. We will even take ε small enough so that

r0(ε)
r
≤ cS

2(CN + 1)CV
. (30)

Let us multiply the symbol by e2θ:

e2θ(h1 − λ) = ε2 |ξ|2 + ε2

(
r2

r2
θ

e2θ − 1
)(
|ξ|2 + σ(D2)

)
+ e2θ (V1(xθ)− λ) . (31)

We develop the last product for small β (recall θ = iβ). Since e2θ = 1 + 2iβ(1 +O(β)),

e2θ(V (xθ)− λ) = V (xθ)− λ+ 2iβ(1 +O(β)(V (xθ)− λ).

We develop the �rst V (xθ) to the second order (using (19), which holds in this region) and the
other to the �rst order (eq. (18)). This yields

e2θ(V (xθ)− λ) = V (r)− λ+ iβ(r − r0)V ′(r) (1 +O(β))
+ 2iβ(V (r)− λ)(1 +O(β))

= V (r)− λ+ iβ ((r − r0)V ′(r) + 2(V (r)− λ)) (1 +O(β)) . (32)

The correction term in the kinetic part can be shown to have the following development:(
r2

r2
θ

e2θ − 1
)

=
2ir0

r
β(1 +O(β)). (33)

We return to h1 − λ, and focus on its imaginary part. We use the notation z1 ≡ z2 if
I(z1) = I(z2). Plug the developments (32) and (33) into (31), and dismiss real parts:

e2θ (h1 − λ) ≡ 2iβ
r0

r
ε2
(
|ξ|2 + σ(D2)

)
(1 +O(β))

+ iβ ((r − r0)V ′(r) + 2(V (r)− λ)) (1 +O(β))

≡ iβ (1 +O(β))
(r0

r
ε2
(
|ξ|2 + σ(D2)

)
+ (r − r0)V ′(r) + 2(V (r)− λ)

)
(34)

Now,
∣∣∣|ξ|2 + σ(D2)

∣∣∣ ≤ (1 + CN ) max
(
|ξ|2 , 1

r2

)
(cf. (25)). Since on the one hand, r−2 ≤ r−γ ≤

CV V (r) ≤ 2CV λ, and on the other hand we may suppose ε2 |ξ|2 ≤ λ (cf. the discussion that
leads to eq. (29)), we obtain thanks to eq. (30):∣∣∣r0

r
ε2(|ξ|2 + σ(D2))

∣∣∣ ≤ cSλ.
We claim that the second term in (34) is bounded below:

|(r − r0)V ′(r) + 2(V (r)− λ)| ≥ cSλ (35)

Indeed, if V ≥ λ/2, 2(V (r)− λ) ≤ 2cSλ, and (r − r0)V ′(r) ≤ r
2V
′(r) ≤ cV

4CV
λ ≤ 3cSλ (using the

negativity of V ′, the bounds on V and the de�nition (26) of cS). This implies (35). If V ≤ λ/2,
the V (r)− λ term su�ces to show the bound (the V ′ term being negative).

Getting back to (34), we obtain

|h1 − λ)| ≥ I(e2θ(h1 − λ))
≥ cSλ(1 +O(β))

Since in this case, λ ≥ ε2
∣∣ξ2
∣∣, the proof of (20) is �nally complete.
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Remark 26. Equation (35) is a kind of �non-trapping� condition. It says that V ′(r) is �negative
enough� with respect to V . Informally speaking, a classical particle in that potential should escape
to in�nity (and not get trapped).

6.3.3 Bounds on derivatives

We have seen in detail how to bound the symbol from below. Bounding the derivatives is then
mainly a technical problem, and uses the same ideas as before. Therefore, we only give a brief
outline of the proofs.

Recall the decomposition (24) of h(x, ξ). We have already seen the behaviour of the derivatives
of σ(D2) (cf. (25)) and V . The x-derivatives of χsm satisfy:

|∂αx (χsm)| ≤ Cα1r0,r0+1(x).

Using the explicit expression of rθ, one can see that there exists constants such that∣∣∣∣∂αx (r2

r2
θ

− e2θ

)∣∣∣∣ ≤ Cα (r0

r

)1+|α|
.

The e�ect of x-derivatives on V has already been seen: intuitively, each derivative gains a factor
of 1/r (cf. proposition 19)

The bounds on the ξ-derivatives are even simpler, due to the polynomial character of the
symbol. All these estimates imply the bound (21) on ∂αx ∂

β
ξ h1.

To bound the derivatives of g = 1/(h − z), remark that ∂αx ∂
β
ξ g is a sum of terms of the

following type: ∏k
j=1

(
∂
αj
x ∂

βj
ξ h
)nj

(h− z)1+
P
nj

,

where nj ∈ N, αj and βj are multiindices, and
∑
j njαj = α,

∑
j njβj = β. We may now use the

bound (21) on each term. Denote by n the sum
∑
ni ≤ |α|+ |β|. All the (r0/r)αj terms coming

from (21) recombine to give (r0/r)|α|, and the same kind of arguments on the β derivatives show
the bound (22).

6.4 The resolvent at in�nity � operator bounds

6.4.1 An estimate on Op (1/(h1 − z))
We now turn the symbol bounds of the previous section into bounds for operators in L2. We
begin by proving the �rst item of proposition 23, namely the bound on G = Op (1/(h1 − z).

Let χ be a (non negative with positive L2 norm) bump function, in the product form χ =
χxχξ, where |x| , |ξ| are less than 1 on Suppχ.

Proposition 27. The symbol g satis�es the following bounds.∫ ∣∣∣∂αx ∂βξ g∣∣∣2 χ(x− k, ξ − l)dxdξ .

{
ε−2dλ−2 if |β| ≤ bd/2c,
ε−2dλ−2−|β|+d/2 if bd/2c ≤ |β| ≤ bd/2c+ 1

(36)

Proof. (Note that χ is choosed independently of ε, therefore the theorem applies uniformly for
every epsilon). We use the bound (22) on the derivatives of g = 1/(h− λ). Let Q be one of the
terms in this bound:

Q =
M(x)n−|β|/2

max(M(x, ξ), λ)1+n
.
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We need to control the following quantity:∫
R2n
|Q|2 χ(x− k, ξ − l)dxdξ.

We integrate on two di�erent regions and consider:

A1 =
∫
|Q|2 1V≤ε2ξ2χ(x− k, ξ − l)dxdξ (37)

A2 =
∫
|Q|2 1V >ε2ξ2χ(x− k, ξ − l)dxdξ (38)

Let us consider A1 �rst. On the region of integration, M(x, ξ) = ε2ξ2, and we replace the max
in the denominator by a sum:

A1 .
∫
x,ξ

(ε2ξ2)2n−|β|

(λ+ ε2ξ2)2+2n
χdxdξ.

We carry out the integration w.r.t. x (on a bounded set, independent of ε), which leaves us with:

A1 .
∫
ξ

(ε2ξ2)2n−|β|

(λ+ ε2ξ2)2+2n
χξ(l − ξ)dξ.

When ξ is large, the integrand is small, so it is enough to consider the case l = 0. In that case,
using polar coordinates for ξ, we get:

A1 .
∫
|ξ|≤1

ε2ξ2)2n−|β|

(λ+ ε2ξ2)2+2n
=
∫ 1

0

(ε2r2)2n−|β|

(λ+ ε2r2)2+2n
rd−1dr.

If |β| ≤ bd/2c, we bound r−2|β|+d−1 by r−1 in the numerator. Then we change variables and let
u = rελ−1/2. An easy computation then shows that:

A1 . ε2−2|β|λ−2

∫ ∞
0

u4n−3

(1 + u2)2+2n
du.

Since n ≥ 1 (there is at least one derivative), the integral is �nite and A1 is bounded by the r.h.s.
of (36).

When β ∈ [bβ/2c, bβ/2c+ 1], the same change of variables leads to

A1 . ε2−2|β|λ−2−|β|+d/2
∫ ∞

0

u4n−2|β|+d−1

(1 + u2)2+2n
du.

The power of u in the numerator is between 4n − 3 and 4n + 1, therefore the integral is �nite
and A1 is once more bounded by the r.h.s. of (36)

To bound A2, we use the fact that the set of ξ s.t. ε2ξ2 ≤ V has volume at most ε−dV d/2.
Therefore, for each x,∫

ξ

|Q|2 1V >ε2ξ2χx(x− k)χξ(ξ − l)dξ ≤ V 2n−|β|+d/2

max(λ, V )1+2n
.

Since |β| ≤ d/2 + 1, the r.h.s. is bounded (for any V (x)) by λ−2. Since the integration in x is
on a bounded volume, A2 is bounded by C/λ2. This ends the proof of proposition 27
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The estimates of proposition 27, for the classical derivatives of g, entail similar ones for
fractional derivatives:

Proposition 28. Let s and s′ be real numbers, d/2 < s < bd/2c+ 1, s′ = bd/2c+ 1. The symbol
g satis�es the following:∫ ∣∣∣(1−∆x)s

′/2(1−∆ξ)s/2 (g(x, ξ)χ(x− k, ξ − l))
∣∣∣2 dxdξ . λ−2(1+s−d/2). (39)

uniformly in k, l.

With this symbol control, we can apply theorem 42 in the appendix, and show the �rst part
of proposition 23, with η = s− d/2. Note that η can therefore be made arbitrarily small.

Proof. To prove proposition 28, we need to interpolate the bounds for integer derivatives to
obtain those for fractional derivatives.

Lemma 29. For u ∈ S ′(Rd) and s > 0 de�ne the Sobolev norm:

‖u‖2s =
∫
û(ξ)2(1 + |ξ|2)sdξ.

Let Hs be the corresponding Sobolev space. Then, if u ∈ Hn∩Hn+1 for some integer n, it is also
in Hs for s ∈ [n, n+ 1], and:

‖u‖2s ≤ ‖u‖n+1−s
n ‖u‖s−nn+1 .

Proof. Decompose the integrand: û(ξ)2(1 + |ξ|2)s = û(ξ)2−α(1 + |ξ|2)s−β × û(ξ)α(1 + |ξ|2)β ,
and apply Hölder's inequality with p = 1/(s − n), q = 1/(n + 1 − s), α = 2(s − n) and β =
(n+ 1)(s− n).

Now, we would like to bound:

As,s′ =
∫ ∣∣∣(1−∆ξ)s/2(1−∆x)s

′/2 (g(x, ξ)χ(x− k, ξ − l))
∣∣∣2 dxdξ,

for an s in (d/2, bd/2c + 1). Suppose for example that d is even. The same resaoning as in the
lemma gives the interpolation:

As,s′ ≤ Ad/2+1−s
d/2,s′ A

s−d/2
d/2+1,s′ . (40)

Since d/2, d/2 + 1 and s are integers, the quantities on the right hand side can be controlled
using only classical derivatives:

Ad/2,s′ ≤ C
∑

|α|≤s′,|β|≤d/

∫ ∣∣∣∂αx ∂βξ (gχ)
∣∣∣2 dxdξ

≤ C
∑

Cα,β

∫
χ̃α,β

∣∣∣∂αx ∂βξ g∣∣∣2 dxdξ,
where the χ̃α,β are (norms of) derivatives of χ. Since Supp(χ̃α,β) ⊂ Suppχ, and χ may be chosen
such that the χ̃α,β are bounded, we may apply the estimates of proposition 27, and obtain:

Ad/2,s′ . Cε−2dλ−2.

In the same way, one can derive a bound on Ad/2+1,s′ . Interpolating between these two bounds,
thanks to (40), gives the result.
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6.4.2 Bounds on the inverse (Op(h1 − z))−1

We prove here the second item of proposition 23, going from Op(g) = Op((h1−z)−1) to Op(h1−
z)−1, we use the symbolic calculus. Let us write down the expansion of (h1 − z) ◦ g given by
theorem 40 (in the appendix). Since the derivatives of order 3 of h1 with respect to ξ all vanish,
the remainder r3 is identically zero, and:

(h1 − z) ◦ g = 1 +
∑
i

∂iξ(h1 − z)Di
x(g) +

∑
i,j

∂ijξ (h1 − z)Dij
x g. (41)

= 1 +
∑

Ri +
∑

Rij . (42)

The operators appearing in the r.h.s. can now be bounded in L2, using the same arguments as
before (i.e. bounds on the derivatives of their symbol in a local L2 space):

Proposition 30. The remainders Ri, Rij are bounded, and for all η > 0,

‖Op(Ri)‖ . λη; ‖Op(Rij‖ . λη.

Proof. We follow the same scheme of proof as for proposition 27; however, each term Q is
multiplied by an additional ε2ξi

r0
r . This modi�es the bounds by a factor of λ1/2+1/γ , where γ is

the decay rate of V (given by hypothesis 2) (indeed, the critical region is the one where V ≈ λ
and ε2ξ2 ≈ λ, so that ε2 ξi

r0
r ≈ λ1/2+1/γ).

Therefore, the �nal operator bound will be:

‖Op(Ri)‖ . λ1/2+1/γ−1−η

Since γ < 2, and η is arbitrarily small, this concludes the proof.

Therefore, we have de�ned a G = Op(g) and an R such that:

(H1 − z)G = I +R,

with ‖R‖ ≤ Cε. For small ε, I +R is invertible, and

(H1 − z)G(I +R)−1 = I.

This shows that H1 − z is invertible, and the �resolvent� R1(z) = (H1 − z)−1 is bounded:

‖H1 − z‖ ≤ ‖G‖ 1
1− ‖R‖ .

This concludes the proof of proposition 23, page 17.

6.5 The Dirichlet part

We now de�ne and study the auxiliary operator H0, which deals with the Dirichlet boundary
condition (cf. the explanation of the general strategy in section 6.1). Its de�nition is way simpler
than that of H1, we just put

H0 = Hr0(ε)
e (θ) + εχ̃0

where χ̃0 is 1 at in�nity, and is supported outside Suppχ0 (cf. �gure 6.6).
Once more, we would like to bound a resolvent associated to H0.

23



Proposition 31. There exists a C such that, if |z − λj | ≤ czλj (where cz is de�ned in proposition
22), H0 − z has a bounded inverse, and

‖(H0 − z)−1‖ ≤ C

ε2
. (43)

The main argument is positivity, and we will see, on the operator level, arguments that are
reminiscent of the positivity bounds on the symbol in section 6.3.2.

Since z is exponentially small, it su�ces to bound H−1
0 . We rotate it and study e2θH0.

Recalling the expression (7) of H
r0(ε)
e (θ), we get:

e2θH0 = −ε2D2 + ε2 e
2θΛ
r2
θ

+ e2θ(Vε(rθ, ω) + εχ̃0). (44)

We now localize the so-called numerical range of e2θH0, i.e. the set {(e2θH0φ, φ), ‖φ‖ = 1}.
Lemma 32. For any φ ∈ L2 with unit norm,

• (−ε2D2φ, φ) ∈ R+,

• ( e
2θΛ
r2θ

φ, φ) is in the cone {|arg(z)| < π/4},

• (e2θ(Vε(r, θ, ω) + εχ̃0)φ, φ) is in the cone {|arg(z − i(ε)| < π/4}, where i(ε) is given by

i(ε) =
1
2

inf
x

(Vε(x) + εχ̃0(x)).

The �rst claim follows from the positivity of −D2. To show the second one, it su�ces to see
that e2θr−2

θ is in the cone, to use the positivity of Λ and then integrate over r. The proof of the
third claim is similar to the positivity bounds in section 6.3.2 (and uses ‖φ‖ = 1).

This shows that the numerical range is included in the cone {|arg(z − i(ε))| < π/4}, which
is bounded away from 0 in C by at least i(ε). Therefore, by a well known result of functional
analysis, H0 is bounded by i(ε)−1. The choice of the cuto� function χ̃0 guarantees that V + εχ̃0

is greater than ε2 (cf. �gure 6.6), so the bound of proposition 31 follows.

6.6 Proof of the main bound

We are �nally in a position to prove theorem 15. We do this by reconstructing an approximate
exterior resolvent from the Dirichlet part R0 and the �in�nity� part R1 (both depend on z). Let χ
be such that χ = 1 on Suppχ1, and R̃(z) = R0(z)χ0 +χR1(z)χ1. Then R̃(z) is our approximate
resolvent.

Proposition 33. The operator R̃(z) is bounded:∥∥∥R̃(z)
∥∥∥ ≤ Cη

λ1+η
. (45)

It is an approximate resolvent:

(Hr0(ε)
e (θ)− z)R̃(z) = Id+ r̃(ε), (46)

where the remainder is such that ‖r̃(ε)‖ = o(ε).
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χ̃1

χsm

χ1

χ0

χ̃0

Figure 4: The various indicator functions
We use many cuto� functions to de�ne our approximate resolvent. χsm, χ1 and χ̃1 are used to
deal with the �in�nity� part R1 = (H1 − z)−1. We require the following:

• H1 = H on Supp χ̃1 (this is true since χsm and χ̃1 have disjoint supports);

• dAg(Supp(∇χ̃1),Supp(χ1)) �goes to in�nity� (cf. remark 34 for the precise hypothesis).

The other indicators χ0 and χ̃0 deal with the Dirichlet part H0. They must satisfy:

• V + χ̃0ε is larger than ε
2;

• dAg(Supp(χ0),Supp(χ̃0)) �goes to in�nity� (once more, cf. remark 34).

All these conditions are met if we choose rj(ε) = cV ε
−(1+(j/6))/γ (this choice is of course largely

arbitrary).
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Once this is proved, the bound on the true resolvent follows. Indeed, for ε su�ciently small,
the r.h.s. of (46) is invertible, and its inverse is bounded by (say) 2. Multiplying (46) by this
inverse, we get

(Hr0(ε)
e (θ)− z)R̃(z)(Id+ r̃(ε))−1 = Id.

This implies that (Hr0(ε)
e (θ) − z) is invertible, and, thanks to (45), its inverse is bounded by

2 Cη
λ1+η . This will (�nally!) end the proof of theorem 15.

6.7 Proof of proposition 33

Let us �rst decompose (Hr0(ε)
e (θ)− z)R̃(z).

(Hr0(ε)
e (θ)− z)R̃(z) =

(−ε2∆θ + Vθ − z
)

(R0(z)χ0 + χ̃1R1(z)χ1)

= (−ε2∆θ + V + εχ̃0 − z)R0(z)χ0 + (−ε2∆θ + V1)χ̃1R1(z)χ1 (47)

− εχ̃0R0(z)χ0 + (V − V1)χ̃1R1(z)χ1

(48)

The last term vanishes, because (V − V1)χ̃1 is zero. We commute χ̃1 and (−ε2∆θ + V1). Since
χ0 + χ1 = 1, we get:

(Hr0(ε)
e (θ)− z)R̃(z) = Id+ [−ε2∆θ, χ̃1]R1χ1 − εχ̃0R0χ0

= Id+ r1 + r0. (49)

It remains to show that the last two terms are small: ‖r0‖+ ‖r1‖ = o(ε). The idea is similar to
the proof of the Agmon estimates (theorem 12). It is made a bit more di�cult by the fact that
we are dealing with the distorted operators and not with the usual Laplacian.

Let us prove in some detail the bound on r0. Let v be in L2, and let u = R0(z)χ0v. We
would like to show:

‖χ̃0u‖ ≤ o(ε) ‖v‖ . (50)

Let us recall the basic result used in the proofs of Agmon estimates (eq. (8)):

ε2

∫
|∇(exp(φ/ε)u)|2 dx+

∫
(V −|∇φ|2) exp(2φ/ε)u2dx =

∫
exp(2φ/ε)(−ε2∆u+V u)udx. (51)

This is originally written for Ω a bounded domain, but the arguments of [HS84] (in the proof of
lemma 2.7) show that it extends to our case, if φ is constant at in�nity.

We need to choose a good function φ. We impose:

• φ is radial;

• φ is constant on Supp χ̃0 and on Suppχ0;

• Calling S and I the values of φ on Supp χ̃0, Suppχ0, S− I should go to ∞ when ε→ 0 (S
and I depend on ε through the choice of the functions χ0, χ̃0);

• |∇φ|2 ≤ 1
2Vε.

Remark 34. φ should be thinked of as (a multiple of) the Agmon distance to the support of χ̃0

(and made constant on Suppχ0). This particular choice cannot be made in general, since we
need φ to be radial to perform our computations with the distorted operator H0.

The hypotheses on V make it easy to �nd a φ that works: choose φ(r) = rβ beween the
supports, with 1 < β < 2− γ. Since β > 0, S − I will go to in�nity, and β < 2− γ ensures that
|∇φ|2 ≤ Vε/2.
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Let us begin our calculation: the idea is to apply equation (51), and the fact that on Supp χ̃0,
φ is much larger than it is on Suppχ0.

‖χ̃0u‖2 =
∫
χ̃0(x) |u(x)|2 dx

≤
(

inf
χ̃0>0

(
(Vε + εχ̃0 − |∇φ|2)e2φ/ε

))−1 ∫
e2φ/ε(Vε + εχ̃0 − |∇φ|2) |u|2 dx.

Let us write the inf as Ĩ, and apply (51).

‖χ̃0u‖2 ≤ Ĩ−1

∫
e2φ/ε(−ε2∆ + Vε + εχ̃0)u · udx. (52)

We want to use the fact that H0u = v: we need to bound the r.h.s. in terms of H0 = −ε2∆θ +
Vθ. We denote by A the function such that A(r(x)) = e2φ(x)/ε (this is made possible by the
requirement that φ should be radial).

∀x, Vε(x) ≤ 2R(Vθ(x)), therefore∫
A(r(x))Vε(x) |u(x)|2 ≤ 2R

(∫
Vθ(x) |u(x)|2 dx

)
. (53)

We treat the kinetic part with a kind of �sectoriality� argument, using the decomposition (6)
that helped us de�ne the distorted operator:

∀x, 1
r2(x)

≤ R

(
2

rθ(x)2

)
, therefore∫

A(r)(−∆u) · udx =
∫∫

(−D2u)udrdω +
∫
A(r)
r2

∫
Λu · udωdr

≤ 2
∫∫

(−D2u)udrdω + 2
∫
A(r)R

(
1
r2
θ

)∫
Λu · udωdr

≤ 2R

(∫
A(r)(−D2 +

Λ
r2
θ

)u · udx
)

≤ 2R

(∫
A(r)(−∆θu)udx

)
.

Inserting this inequality and (53) in (52) yields:

‖χ̃0u‖2 ≤ 2
Ĩ
R

(∫
A(r(x))H0u · udx

)
.

Now, H0u = χ0v, by de�nition of u. By de�nition of A (and of φ), A(r) = S̃ = exp(−2S/ε) on
Suppχ0. Therefore

‖χ̃0u‖2 ≤ 2S̃
Ĩ
×R

(∫
χ0v · udx

)
. (54)

Use Cauchy�Schwarz on the right side:

‖χ̃0u‖2 ≤ 2S̃
Ĩ
‖χ0v‖ ‖u‖ ≤ 2S̃

Ĩ
‖v‖ ‖u‖ .
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Now we use our a priori bound on the resolvent R0 ( proposition 31): ‖u‖ = ‖R0χ0v‖ ≤
(C/ε) ‖v‖. Since S̃ = exp(−2S/ε) and Ĩ ≥ ε exp(2Iε), we get:

‖χ̃0u‖2 ≤ 2C
ε2

exp
(

2(I − S)
ε

)
‖v‖2 .

Since S − I goes to in�nity, ‖χ̃0R0χ0v‖ = ‖χ̃0u‖ = o(ε) ‖v‖, (50) holds and r0 is indeed a small
term.

Recall that the other term, r1, is de�ned by

r1 = [−ε2∆θ, χ̃1]R1χ1

The commutator is explicit:

[−ε2∆θ, χ̃1] = −ε2 (∆θχ̃1 −∇χ̃1∇) .

Since Supp∇χ̃1 is far (in Agmon distance) from Suppχ1, an argument similar to the one we just
developed for r0 proves the same kind of estimate. Therefore proposition 33 holds.

7 Spectral stability

In this section, we prove the stability of spectral quantities when we put a boundary condition on

the sphere : near the eigenvalues of H
r0(ε)
i , there must be eigenvalues of H(θ), i.e. resonances.

We �rst prove an estimate on the Dirichlet perturbation. Then, we get the existence of resonances
and a �rst rough localization result. Finally, we re�ne this localization and prove theorem 5.

7.1 An estimate on the Dirichlet perturbation

For any a and θ, we de�ne, following [CDKS87],

W (θ, a) = R(θ, a)−RD(θ, a).

This describes how much the Dirichlet boundary condition changes the solution of the equation
Hεu = φ.

The idea is to express the perturbation in terms of trace operators on the boundary of the
sphere, and then use Agmon estimates (inside and outside the sphere) to control the traces.

Let Te, Ti be the trace operators on the outside and inside of the sphere. Still following
[CDKS87], de�ne

A(θ, a) = Ti(H(θ)− a)−1,

Be(θ, a) = e−3θ/2Te∇r(Hr0(ε)
e (θ)− a)−1,

Bi(θ, a) = Ti∇r(Hr0(ε)
i − a)−1,

B(θ, a) = Bi ⊕Be.

(55)

where ∇r is the radial derivative. We also de�ne PD as the spectral projector on the span of the
exponentially small eigenvalues of the Dirichlet operator, and QD = 1− PD.
Proposition 35 ([CDKS87], eq. (3.2)). The perturbation W can be decomposed in the following
way:

W (θ, a) = ε8B∗T (H − a)−1T ∗B. (56)
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We show the following:

Theorem 36. For any δ, there is a Cδ such that:

‖A‖ ≤ Cδeδ/ε, (57)

‖B‖ ≤ Cδeδ/ε, (58)

‖W‖ ≤ Cδeδ/ε. (59)

Moreover, B is very small on the Dirichlet eigenspaces :

∥∥BPD∥∥ ≤ Cδ exp
(
−S(ε)− δ

ε

)
(60)

The remainder of the section is the proof of this result. We do it in several steps.
Step 1: Bounds on Bi and Be. We detail the bounds on the interior part Bi. We use the
following to control the trace operator:

Theorem 37. For all u ∈ H1, and all cuto� function χ supported near the boundary of the ball,

‖Tiu‖2 ≤ 2 ‖χu‖ ‖∇χu‖

For a proof, see [CDKS87] (lemma 4).
So, it is enough to show: ∥∥∥χ(Hr0(ε)

i − a)−1u
∥∥∥ . ε−3/2 ‖u‖ , (61)∥∥∥∇rχ(Hr0(ε)

i − a)−1u
∥∥∥ . Cδ exp(δ/ε) ‖u‖ , (62)∥∥∥∇rχ∇r(Hr0(ε)

i − a)−1u
∥∥∥ . Cδ exp(δ/ε) ‖u‖ . (63)

The control (61) follows from Agmon estimates. Indeed, we know that the spectrum of the
interior operator consists of two parts. Let S be the Agmon distance between the minima and
the ball of radius r0(ε). Then∥∥∥χ(Hr0(ε)

i − a)−1u
∥∥∥ ≤ ∥∥∥χ(Hr0(ε)

i − a)−1PDu
∥∥∥+

∥∥∥(Hr0(ε)
i − a)−1QDu

∥∥∥
. Cδ exp

(
−S − δ

ε

)
‖u‖+ ε−3/2 ‖u‖ ,

where the �rst bound is the Agmon estimate of theorem 12 on eigenfunctions coming from small

eigenvalues, and the second bound comes from the fact that (Hr0(ε)
i − a)−1 is bounded by C/ε

on the range of QD.
We now turn to the proof of (62). Once more, decompose u as Pu + (u − Pu). To bound∥∥∥∇rχ(Hr0(ε)

i − a)−1Pu
∥∥∥, we use theorem 12 again:∥∥∥∇rχ(Hr0(ε)
i − a)−1PDu

∥∥∥
≤ exp

(
− inf

Suppχ
d(x)/ε

)∥∥∥exp(d(x)/ε)
∣∣∣∇(Hr0(ε)

i − a)−1Pu
∣∣∣∥∥∥

≤ Cδ exp ((δ − S(ε)/ε)
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Since χ is localized on the boundary, the r.h.s. is o(ε), and (62) is proved (for PDu).

To bound the other term, we apply (8) once more, with u = (Hr0(ε)
i − a)−1QDu:∥∥∥∇rχ(Hr0(ε)

i − a)−1QDu
∥∥∥2

≤ exp
(
−2 inf

Suppχ
d(x)/ε

)∥∥∥exp(d(x)/ε)
∣∣∣∇(Hr0(ε)

i − a)−1QDu
∣∣∣∥∥∥2

≤ exp
(
−2 inf

Suppχ
d(x)/ε

)∫
exp(2d(x)/ε)(1− P )u · (Hr0(ε)

i − a)−1QDudx

≤ exp
((

sup d(x)− inf
Suppχ

d(x)
)
/ε

)∥∥QDu∥∥∥∥∥(Hr0(ε)
i − a)−1QDu

∥∥∥
≤ Cδ exp (δ/ε) ε−3/2 ‖u‖2 ,

where we successively introduce the Agmon distance, use (8), use Cauchy�Schwarz and �nally
use the easy bound on the resolvent restricted to the range of QD. Therefore, (62) holds.

We turn to the proof of (63): this may be reduced to the previous estimates. To see
it, �rst remark that, now that (61) and (62) are known, it is enough to show a bound on∥∥∥∇r∇rχ(Hr0(ε)

i − a)−1
∥∥∥ (commute the χ through the ∇r, and use the previous bounds with

∇χ instead of χ). The double radial derivative is now relatively bounded with respect to the
Laplacian (cf. for example [Kle86]):

∃C, ∀v, ‖∇r∇rv‖ ≤ C(‖v‖+ ‖∆v‖).

The Laplacian is itself relatively bounded w.r.t. H
r0(ε)
i (because the potential Vε is bounded):

‖∇r∇rv‖ ≤ C ‖v‖+
C

ε2

∥∥∥(Hr0(ε)
i − a)v

∥∥∥
Setting v = χ(Hr0(ε)

i − a)−1u, and using (61) and (62) again, we obtain (63).
Thus, we have bounded Bi. The proof also shows that, on the range of PD, the much better

bound (60) holds. Using similar arguments, we can control the exterior operator Be and get
(58).
Step 2: Bound on TR(a)T ∗. The proof of this bound is a straightforward adaptation of
the proof of the simiular result in [CDKS87] (equation 3.7 of that reference), and uses the same
arguments we just applied to bound B. Indeed, since T ∗ maps continuously the sphere into L2, it
su�ces to bound TR(a)u. Using theorem 37, this reduces to bounds on χR(a)u and ∇rχR(a)u,
for χ supported near the boundary. These are in turn obtained by Agmon-type estimates.
Step 3: Conclusion. The bounds on the di�erent parts of B (�rst and second steps) prove
that (58) holds; the bound on TR(a)T ∗, together with the decomposition (56) of W and the
bound on B, show (59). This concludes the proof of theorem 36.

7.2 Existence of resonances

We follow the proof of [CDKS87] (lemma 3 and theorem 4) and use the classical argument of
integrating resolvents on a contour to get spectral projections on appropriate eigenspaces. More
precisely, for each j (and each eigenvalue λj of the interior operator), we de�ne the contour
Γj(ε) to be the circle of radius λj/2, centered in λj . We would like to show that

∫
Γj
R(θ, z)dz

and
∫

Γj
RD(θ, z)dz have the same rank. We change variables: let a(ε) = − exp(−da/ε), where
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da > d1, and let z̃ = 1
z−a . The �rst integral above exists if and only if∫

Γ̃j

(R(θ, a)− z̃)−1dz̃

exists, and if so, their values are equal.
We have all the ingredients to estimate the integrand.

Proposition 38. The quantity (RD(θ, a)−z̃)−1 is O(λ1−η
j (ε)) when ε→ 0, uniformly on z̃ ∈ Γ̃j.

Proof. We follow closely the proof of lemma 3 in [CDKS87]. We rewrite our quantity as

(RD(θ, a)− z̃)−1 = −(z − a)− (z − a)2RD(θ, z).

Since a = a(ε) = − exp(−da/ε) is much smaller than λj , |z − a| . |λj |. The Dirichlet resolvent
RD is estimated separately on the interior and on the exterior. On the interior part, we estimate

it by the inverse distance to the spectrum: z is on Γj , therefore its distance to σ(Hr0(ε)
i ) is at

least of the order of λj . On the exterior part, we use the bound 15. We obtain:

∥∥(RD(θ, a)− z̃)−1
∥∥ = O(λj) + λ2

j

(
C

λj
+

C

λ1+η
j

)
= O(λ1−η

j ).

Recall that W (θ, a) = R(θ, a)−RD(θ, a), and let us de�ne, for ζ ∈ C, |ζ| ≤ 2,

Aζ(z̃) =
∫

Γj

(RD(θ, a)− z̃)−1
∑
n

(
W
(
RD(θ, a)− z̃)−1

ζ
)n

.

Now,
∥∥W × (RD(θ, a)− z̃)−1

∥∥ is o(1), thanks to theorem 36 and proposition 38. Therefore, the
series on the r.h.s. converges when ε is small, Aζ is analytic in ζ, and uniformly bounded in z̃.

For ζ = 0, we recover (RD(θ, a)− z̃)−1. For ζ = 1, it is easy to see that A1(R(θ, a)− z̃) = Id,
therefore (R(θ, a)− z̃) is invertible with inverse A1(z̃).

We now consider the contour integral:

Pζ = −(2iπ)−1

∫
Γ̃j

Aζ(z̃)dz̃ (64)

The boundedness guarantees the existence of the integral. Moreover, Pζ depends analytically on
ζ. Since P0 is the spectral projection on the eigenstate corresponding to λj , the analyticity shows
that P1 is still a projection on a one dimensional space, and there exists a unique eigenvalue of
H(θ) inside the contour Γj . This eigenvalue is the resonance of the original operator that we
were looking for.

7.3 Re�ned estimates on resonances

The proof of our main result (theorem 5) is not yet complete. Up to this point, we only know
that there exists a resonance (say µi(ε)) inside a contour Γj around the eigenvalue λi(ε), where
the radius of the circle Γj is of the order of λj . In this section, we indicate how to re�ne the
estimation to get the stronger estimates annouced in theorem 5.

We follow the strategy of [CDKS87], section V, to prove the following result :
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Proposition 39. There exists functions ti(ε), σn,i(ε) such that µi(ε) has the following develop-
ment :

µi(ε) = λi(ε) +
∑
n

σn,i(ε)
t(ε)n

n!
,

where the σn,i are uniformly bounded in n, ε, and

ti(ε) = O

(
exp

(
−S(ε)

ε

))
.

In particular, this result entails the estimates announceed in theorem 5.
The idea is the following :

• First, de�ne λ̃, µ̃ by the same change of variables as before :

λ̃ =
1

λi(ε)− a(ε)
, µ̃ =

1
µi(ε)− a(ε)

.

• Use the description of the Dirichlet perturbation by trace operators to get an implicit
equation on µ̃ :

µ̃− λ̃ = t(θ)σ(θ, µ̃),

where t(θ) and σ(θ, z) are given explicitly in terms of traces (cf. infra).

• Show that t and σ are independant of θ, and estimate them, as well as

σ̃n,i =

((
d

dz

)n−1

(σn(z̃)

)
|z̃=λ̃

• Use a re�ned implicit function theorem (Lagrange's inversion formula) to obtain a power
series expansion of µ̃:

µ̃ = λ̃+
∑

σ̃n,it
n/n!.

• Go back to µi(ε), λi(ε).

These steps are detailed in [CDKS87]. The t and σ are given by ([CDKS87], proof of theorem
V.2):

t(θ) = ε2 trace
∣∣B(θ, a)PDA∗(θ̄, a)

∣∣ ,
σ(θ, z̃) = ε2t(θ)−1 tracePDA∗(θ̄, a)(1−M(θ, z̃))B(θ, a)PD,

M(θ, z̃) = ε2B(θ, a)QD(QDR(θ, a)QD − z̃)−1QDA∗(θ̄, a).

Analyticity arguments show that these quantities do not depend on θ. Since these algebraic
formulæ still hold in our case, all we have to do is to get estimates on t, σ and the σ̃n,i and σn,i.
First, putting together the bound (60) on BPD and the bound (57) on A, we get:

t = O

(
exp

(
−S(ε)− δ

ε

))
.

Next, σ is controlled by:

σ ≤ ε2t−1 ‖1−M‖ trace
∣∣B(θ, a)PDA∗

∣∣
≤ ‖1−M‖ ,
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so it su�ces to get a bound on M . Following the arguments of proposition 38, one can show
that (QDRD(θ, a)QD − z̃)−1 is exponentially small. The same interpolation argument that
was developed after (64) then shows that (QDR(θ, a)QD − z̃)−1 is exponentially small. This
compensates the exp(δ/ε) coming from the bounds on A and B, thereby proving thatM is O(1).

We can then go back to [CDKS87] to see that this justi�es the steps explained above, proving
the power series expansion of proposition 39 and ending the proof of our main result.

8 Appendix: on symbols and pseudo-di�erential calculus

We found it convenient to use well known techniques of microlocal analysis and pseudo-di�erential
operators (ΨDO) to approximate the resolvent. We brie�y describe these techniques in this
appendix. For more detailed presentations and historical remarks, see e.g. [Tay81, Hör85, Ste93].

8.1 Pseudo-di�erential operators

It is well known that a (classical) di�erential operator with constant coe�cients A =
∑
aαD

α

(where Dα = i−|α|∂αx ) becomes, in the Fourier space, a multiplication by a polynomial in ξ,
called the symbol of the operator. More precisely, if û(ξ) = (2π)−d/2

∫
u(x)e−ix·ξdx denotes the

Fourier transform, we have
Âφ(ξ) = a(ξ)φ̂(ξ),

where a(ξ) =
∑
α aαξ

α. In particular, the operator is inversible if the symbol is nowhere zero,
and the inverse corresponds to multiplication by a−1.

Trying to generalize this to non-constant coe�cients naturally leads to considering operators
de�ned by a symbol a(x, ξ) which is not necessarily a polynomial, and try to de�ne H(a) by:

H(a)f : x 7→ (2π)−d/2
∫
ei(x,ξ)a(x, ξ)f̂(ξ)dξ

To make sense of this de�nition, hypotheses on a are needed, and many classes of �good� a
have been de�ned. Such classes allow �symbolic calculus�, i.e. results that allow one to work on
symbols rather than operators: typically, one would like to compare Op(a)Op(b) by Op(ab).

Among these classes, we mention the classical classes Sm, de�ned by decay conditions on ξ:

a ∈ Sm ⇐⇒
∥∥∥∂αx ∂βξ a∥∥∥∞ ≤ Cα,β

〈ξ〉m+|β| ,

where 〈ξ〉 = (1 + ξ2)1/2. This decay in ξ implies that, for m > 0, operators in Sm improve
di�erentiability by m units. On these classes, the following holds:

Theorem 40 (Symbolic calculus,[BF74], Theorem 1). If a ∈ Sm, b ∈ Sn, then Op(a)Op(b) is a
ΨDO, its symbol a ◦ b is in Sm+n, and has the following expansion:

∀N, a ◦ b =
∑
|α|<N

1
α!
∂αξ a(x, ξ)Dα

x b(x, ξ) + rN (65)

where rN ∈ Sm+n−N , and is de�ned by the integral:

rN =
∑
|α|=N

cα

∫ 1

0

∫∫
R2d

e−i〈y−x,η−ξ〉∂αξ a(x, ηt)Dα
y b(y, ξ)dydηdt (66)

for some constants cα and ηt = ξ + t(η − ξ).
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Remark 41. We cite [BF74], where the result is more general, because the remainder there is
explicit. This theorem can be found in any of the textbooks mentioned above.

The derivative estimates show that our symbols always belong to some Sm.

8.2 L2 bounds

The ΨDO are de�ned at �rst on the Schwartz space; proving that they send L2 to L2 is a well
studied problem, and many criteria are available.

The �rst results are written for the classical symbols (in Sm). If m ≤ 0, they de�ne bounded
operators in L2. In our case, the boundedness is therefore easy to prove. However, the estimates
of the L2 norm depend on the L∞ norm of many derivatives of the symbol, and are insu�cient
to carry on the stability argument of section 7.

Finding precisely how many derivatives are needed for L2 continuity to hold has been the
subject of much work (following Calderon and Vaillancourt's [CV72], see e.g. [Hwa87, CM78]).
These re�ned estimates do not yet give the desired result. They are still stated in terms of
uniform norms of the derivatives, and our symbols behave badly in this respect.

To understand the di�culty, consider the symbol r(x, ξ) = 1/(λ + ξ2). It is a gross sim-
pli�cation of our symbol, but it retains its main features. The fact that Op(r) should be an
approximate resolvent for the Laplacian, and the trivial positivity bound of the latter lead us to
believe that Op(r) should be bounded in L2 by c/λ : if this bound can be obtained by pseudo
di�erential arguments (without resorting to positivity, nor on the fact that it does not depend
on x), it should carry over to our symbol.

However, it is easily seen that the best uniform bound on ∂βξ r when βi = 0 or 1, is of the order
λ−1−|β|/2, and even the restricted conditions of Calderon and Vaillancourt (|β| ≤ bn/2c + 1, or
βi ∈ {0, 1}) do not give a bound of the right order.

Fortunately, subsequent papers have shown still other conditions for L2 continuity. In par-
ticular, A. Boulkhemair (in [Bou95], to which we refer for further reference) , expliciting results
from [BM88], gives a statement which involves local L2 norms of the symbol.

Theorem 42. [[Bou95], Corollary 3] Let χ be a bump function in R2d (χ is compactly supported
and normalized in L2), and s > d/2, s′ > d/2. Let a : Rd × Rd be such that

∃C(a),
∫ ∣∣∣(1−∆x)s/2(1−∆ξ)s

′/2 (χ(x− k, ξ − l)a(x, ξ))
∣∣∣2 dxdξ ≤ C(a)2, (67)

for all (k, l) in Rd × Rd.
Then a(x,D) is continuous from L2 to L2 with its norm bounded by Cs,dC(a) , where Cs,d

only depends on s, d and χ.

This condition, on the toy symbol r, gives a bound of the order λ−1−(s−d/2): we almost
recover the right order λ−1.

8.3 Some symbols

Finally, we record here the symbols of various operators. The radial part of the Laplacian, D2,
has the following symbol:

σ(D2)(x, ξ) =
(n− 1)(n− 3)

4r(x)2
+ i

n− 1
r2(x)

x · ξ − 1
r2(x)

(x · ξ)2.
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It is then easily seen that the symbol of the scaled Laplacien is given by:

σ(−∆θ) =
(
r2

r2
θ

− e−2θ

)
σ(D2) +

r2

r2
θ

|ξ|2

= e−2θ |ξ|2 +
(
r2

r2
θ

− e−2θ

)(
|ξ|2 + σ(D2)

)
(68)

for r(x) > r0, and σ(−∆θ) = |ξ|2 for r < r0.
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