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Abstract

We consider a class of ergodic Hamilton-Jacobi-Bellman (HJB) equations,
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1 Introduction

Let (xt)t≥0 be a continuous-time, homogeneous Markov process with infinitesimal gen-
erator L. To fix ideas, assume xt is Rd-valued. Given a function c : Rd → R and γ > 0,
we are interested in obtaining long-time asymptotics of the functional

S(T, x) := logEx

[
exp

(
γ

∫ T

0

c(xt)dt

)]
,

where Ex is the expectation conditioned to x0 = x. Let ϕ(T, x) = eS(T,x). At least at
the formal level, ϕ is a solution of the equation

∂tϕ(t, x) = Lϕ(t, x) + γc(x)ϕ(t, x).

If a Perron-Frobenius-type Theorem holds for the operator L + γc, then for T large
ϕ(T, x) gets close to eλTv(x), where λ is the largest eigenvalue of L+ γc, and v is the
corresponding strictly positive eigenfunction. In other words, setting V (x) := log v(x),
we obtain

S(T, x) = λT + V (x) + o(T ),

i.e.

λ = lim
T→+∞

1

T
logEx

[
exp

(
γ

∫ T

0

c(xt)dt

)]
(1.1)

and

V (x) = lim
T→+∞

{
logEx

[
exp

(
γ

∫ T

0

c(xt)dt

)]
− λT

}
. (1.2)

Note also that the pair (λ, V ) is a solution of the nonlinear equation

λ = e−VL(eV ) + γc. (1.3)

The actual proof of the existence of the limits (1.1) and (1.2) is, in general, not simple,
and various assumptions are required. If the empirical measures

Lt :=
1

t

∫ t

0

δxsds

of the Markov process obey a Large Deviation Principle with rate function i(µ) (which
is known under fairly general conditions), and c(·) is continuous and bounded (but
weaker conditions on c(·) may suffice), then the limit (1.1) exists, and

λ = sup
µ

[∫
cdµ− i(µ)

]
(1.4)

where in (1.3) µ varies over probability measures on Rd. The existence of the limit
(1.2), i.e. the second-order asymptotics of S(T, x), is a harder problem. For processes
taking values in a compact space, where things are simpler, we refer to [9], Section 4.
For Rd-valued diffusions, conditions for existence of solutions of (1.3) are given in [8]
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and [14]. In [8] it is also shown that, under sufficient ergodicity of (xt)t≥0 and if c(·)
is bounded and sufficiently smooth, then (1.3) has a solution, which needs not to be
the unique one, for which (1.1) and (1.2) hold.

In order to relate the above problem to stochastic control, assume that (xt)t≥0 is
a diffusion of the form

dxt = b(xt)dt+ dBt, (1.5)

where (Bt)t≥0 is a standard Brownian motion. We then consider the controlled diffu-
sion

dxut = [b(xut ) + ut]dt+ dBt, (1.6)

where (ut)t≥0 is a progressively measurable, square-integrable, Rd-valued process. De-
fine the performance functional

J(x, u) := lim sup
T→+∞

1

T
Ex

[∫ T

0

(
γc(xut )−

1

2
|ut|2

)
dt

]
. (1.7)

The aim of the controller consists in maximizing the performance J(x, u) over u. The
fact that

sup
u
J(x, u) = λ

with λ as in (1.1), is a consequence of a well known duality principle in stochastic
control (see e.g. [6]). Moreover, if the Hamilton-Jacobi-Bellman equation

λ =
1

2
∆V (x) + max

u∈Rd

[
(b(x) + u) · ∇V (x) + γc(x)− 1

2
|u|2
]

=
1

2
∆V (x) + b(x) · ∇V (x) +

1

2
|∇V (x)|2 + γc(x) (1.8)

has a sufficiently nice solution, then u∗t := ∇V (xu
∗
t ) provides an optimal feedback

control. Moreover, equation (1.8) coincides with equation (1.3).

A considerable improvement to the understanding of equation (1.3) (actually to a
more general version of it) is due to Kaise & Sheu [12]. They showed, under reason-
able conditions on b(·) and c(·), that (1.3) has indeed multiple solutions, even after
identifying solutions that differ by a constant. It is shown in [12] that there exists
λ ∈ R such that the equation

µ =
1

2
∆V + b · ∇V +

1

2
|∇V |2 + γc

has a (smooth) solution if and only if µ ≥ λ. Moreover, for µ = λ, this solution is
unique up to additive constant. Kaise & Sheu also indicates that this λ should be as
in (1.1). They do not address the possibility of interpreting one solution V as in (1.2).

We remark that all cited results require regularity on the cost c(·); in particular,
the available proof of the existence of the limits (1.1) and (1.2) rely on boundedness
of c(·) and ∇c(·). The main object of this paper is to propose a totally different
approach to the above problems, by tackling (1.1) and (1.2), for the diffusion (1.5),
directly, without relying on properties of equation (1.3). Our approach seems to have
the following advantages.
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1. Besides some inevitable growth conditions, no smoothness of c(·), not even con-
tinuity, is required.

2. In (1.1) and (1.2) the integral ∫ T

0

c(xt)dt

could be replaced by ∫
[0,T ]

c(xt)dµ(t),

where µ could be of the following forms:

i. µ is a σ-finite periodic measure, for instance µ(dt) =
∑

k≥0 δk∆(dt) for some
∆ > 0. In this last case the cost acts at discrete-time only.

ii. µ is a random measure, independent of (Bt)t≥0, translation invariant and
sufficiently ergodic in law. For instance we could take µ(dt) =

∑
n δτn(dt),

where (τn)n≥0 are the points of a Poisson process.

3. Jump processes, rather than diffusions, should also be treatable.

Not surprisingly, there is a price to pay. At the present stage our results hold for
γ in some interval [0, γ] which is certainly not optimal. Note that however one could
get an explicit expression for γ (carefully following the proofs), as a function of the
constants cb and Kb appearing in conditions (DC) and (CC) of section 3.

The paper is organized as follows. In section 2 we prove the existence of the limits
(1.1) and (1.2) under some general conditions on the diffusion process. In section 3
we give sufficient conditions on the drift b only, for these conditions to be fulfilled. In
section 4 we show that V and λ given by (1.2) and (1.1) respectively are linked to the
equation (1.8), more precisely we show that V is a viscosity solution of (1.8).

We consider here only diffusions whose diffusion coefficient is the identity matrix.
The uniformly elliptic case could be dealt with minor modifications. It is worth notic-
ing that the whole content of section 2 is based on Assumptions A1-A6 below, which
do not refer to any specific form of the Markov process. The fact that the process is
a diffusion plays a role in sections 3 and 4.

2 Existence of the limits (λ, V ).

We begin by stating our assumptions on the Rd-valued diffusion

dxt = b(xt)dt+ dBt. (2.1)

A1. Equation (2.1) has, for every deterministic initial condition, a unique strong
solution.
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A2. There is C > 0 such that

|c(x)| ≤ C(|x|2 + 1).

A3. The process (2.1) has a unique invariant probability measure m(dx) such that,
for some β > 0, ∫

eβ|x|
2

m(dx) < +∞.

A4. The transition probability of the process (2.1) admits a density pt(x, y) with
respect to m(dx). Furthermore there exist K > 0, p > 2 and t0 > 0 such that for
t ≥ t0,

‖ pt(., .) ‖Lp(m⊗m)≤ K .

A5. Let Ptf(x) = Ex(f(xt)) which extends as a continuous semi-group on L2(m). For
all f ∈ L2(m), ∫ ∣∣∣∣Ptf(x)−

(∫
fdm

)∣∣∣∣2 m(dx) → 0 as t→ +∞.

A6. For all a > 0 and all x there exists βa,x > 0 such that

Ex

[
eβa,x

∫ a
0 |xs|

2 ds
]
< +∞ .

We shall say that A6 is uniformly satisfied if for all a > 0 there exist βa > 0 and a
locally bounded function ha such that for all x,

Ex

[
eβa

∫ a
0 |xs|

2 ds
]
≤ ha(x) .

Notice that Assumption A4 implies that the semi-group Ptf(x) = Ex(f(xt)) maps
continuously L2(m) into Lp(m), p > 2, for t ≥ t0. Hence, according to Gross hypercon-
tractivity theorem (see e.g. [1]), m satisfies a defective logarithmic Sobolev inequality.
If m is absolutely continuous with respect to the Lebesgue measure, m(dx) = e−V dx,
and V is locally bounded, a result by Röckner and Wang says that m satisfies a so
called “weak Poincaré inequality”, hence thanks to a result by Aida, m will satisfy
a tight log-Sobolev inequality (for all these results see the book of Wang [17]). In
particular m will both satisfy a Poincaré inequality (or spectral gap inequality), so
that Assumption A5 is satisfied, and a gaussian concentration inequality implying A3.

Section 3 will be devoted to giving sufficient conditions for these hypotheses to hold.

We begin to show that the limits (1.1) and (1.2) exist along suitable sequences.

Proposition 1 . Under A1-A6, for every a > 0 large enough, there exists γ(a) such
that for all γ < γ(a) and all x the limits

λa = lim
n→+∞

1

an
logEx

[
exp

(
γ

∫ an

0

c(xt)dt

)]
(2.2)
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and

Va(x) = lim
n→+∞

{
logEx

[
exp

(
γ

∫ an

0

c(xt)dt

)]
− λan

}
, (2.3)

exist. If A6 is uniformly satisfied, then the limit in (2.3) is uniform on compact sets.

The proof of Proposition 1 is done via a cluster expansion technique. The conver-
gence of the expansion requires some small parameter, which is obtained by choosing
γ small and by a suitable choice of the time step a in the discretization. We will not
try to give explicit bounds on the γ(a) in Proposition 1, even though this would be
possible.

In what follows, define

ψγ(t, x, y) := logEx

[
exp

(
γ

∫ t

0

c(xs)ds

) ∣∣∣xt = y

]
= logExy

[
exp

(
γ

∫ t

0

c(xs)ds

)]
, (2.4)

where Exy denotes the expectation under the law of the bridge of (xs)0≤s≤t between x
and y.

Proof of Proposition 1. Consider a time-step a > 0. Note that

eS(an,x) = Ex

[
exp

(
γ

∫ an

0

c(xt)dt

)]
= Ex

[
exp

(
n−1∑
k=0

ψγ(a, xka, x(k+1)a)

)]

= E

[
exp

(
n−1∑
k=0

ψγ(a, ξk, ξk+1)

)
n−1∏
k=0

pa(ξk, ξk+1)

]

= E

[
exp

(
n−1∑
k=0

φγ(a, ξk, ξk+1)

)]
, (2.5)

where E is the expectation with respect to a probability P, ξ0 = x, ξ1, . . . , ξn are
random variables that, under P, are i.i.d. with law m(dx), and

φγ(a, x, y) = ψγ(a, x, y) + log pa(x, y).

A cluster in this context is a subset of Z+ := {0, 1, 2, . . .} of the form {k, k +
1, ..., k + l}. We say that two clusters are separated if their union is not a cluster or,
equivalently, if there is an integer k which is strictly bigger than all elements of one
cluster and strictly smaller that all elements of the other. We denote by C the set
of all clusters, while Cn denotes the set of clusters contained in {0, 1, ..., n − 1}. The
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usual cluster expansion procedure yields

exp

(
n−1∑
k=0

φγ(a, ξk, ξk+1)

)
=

n−1∏
k=0

[(
eφγ(a,ξk,ξk+1) − 1

)
+ 1
]

=
∑

τ⊆{0,1,...,n−1}

∏
k∈τ

(
eφγ(a,ξk,ξk+1) − 1

)
=
∑
p≥0

1

p!

∑
τ1,...,τp∈Cn

separated

p∏
i=1

∏
k∈τi

(
eφγ(a,ξk,ξk+1) − 1

)

=
∑
p≥0

1

p!

∑
τ1,...,τp∈Cn

separated

qτ1qτ2 · · · qτp ,

where
qτi :=

∏
k∈τi

(
eφγ(a,ξk,ξk+1) − 1

)
,

and we have used the fact that any subset of {0, ..., n − 1} is union of p separated
clusters for some p ≥ 0, and these clusters can be rearranged in p! ways. The key
remark is that if τi and τj are separated clusters, then E(qτiqτj) = E(qτi)E(qτj). Thus,
by (2.5),

eS(an,x) =
∑
p≥0

1

p!

∑
τ1,...,τp∈Cn

separated

E(qτ1)E(qτ2) · · ·E(qτp).

Now the logarithm of the above expression can be rewritten as

S(an, x) =
∑

τ∈Cn,τ 6=∅

∑
p≥0

∑
τ1,...,τp∈Cn
τ1∪···∪τp=τ

ap(τ1, τ2, . . . , τp)E(qτ1)E(qτ2) · · ·E(qτp) :=
∑

τ∈Cn,τ 6=∅

Γτ ,

where the coefficients ap(τ1, . . . , τp) come from the Taylor expansion of the logarithm
(see [13] page 492). Now note that Γτ depends on x if and only if 0 ∈ τ , i.e. τ =
{0, 1, ...,m} for some m. In what follows we write Γm in place of Γ{0,1,...,m}. Thus we
can write∑

τ∈Cn,τ 6=∅

Γτ =
n−1∑
m=0

Γm +
n−1∑
i=1

∑
τ∈Cn,τ 630
i∈τ

1

|τ |
Γτ =

n−1∑
m=0

Γm + (n− 1)
∑

τ∈Cn,τ 630
1∈τ

1

|τ |
Γτ , (2.6)

where in the last step we used the fact that, for 0 6∈ τ , Γτ is invariant by translation
and permutation of τ , property that is inherited from the measure P. Thus, at a
formal level, the limits (2.2) and (2.3) are given by

Va(x) =
+∞∑
m=0

Γm, (2.7)

λa =
1

a

∑
τ∈C,τ 630

1∈τ

1

|τ |
Γτ , (2.8)
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provided the sums in (2.7) and (2.8). By the usual cluster expansion estimates (see
e.g. [7]), the convergence of (2.8) follows from the strong cluster estimates: there
exists ρ ∈ (0, 1) such that for τ ∈ C, 0 6∈ τ ,

|E(qτ )| ≤ ρ|τ |. (2.9)

In the case of τ 3 0, we will prove an estimate of the type

|E(qτ )| ≤ C(x)ρ|τ |. (2.10)

This is enough for the convergence of (2.8) and of (2.7) for each fixed x.

Thus, to complete the proof, we only have to prove the estimates (2.9) and (2.10),
for γ sufficiently small. We begin by proving (2.9). Recall that

|E(qτ )| =

∣∣∣∣∣E
[∏
k∈τ

(
eφγ(a,ξk,ξk+1) − 1

)]∣∣∣∣∣ .
By the generalized Hölder inequality in [15], Lemma 5.2, we have

|E(qτ )| ≤
∏
k∈τ

[
E
[(
eφγ(a,ξk,ξk+1) − 1

)2
]]1/2

= ρ|τ | (2.11)

for

ρ :=
[
E
[(
eφγ(a,ξ1,ξ2) − 1

)2
]]1/2

.

We now show how to make ρ strictly less than 1 by choosing a sufficiently large
and γ small enough.

ρ2 = E
((
eψγ(a,ξ1,ξ2)pa(ξ1, ξ2)− 1

)2
)

=

∫
R2d

[
Exy

(
eγ
∫ a
0 c(xs)ds

)
pa(x, y)− 1

]2

m(dx)m(dy)

=

∫
R2d

[
Exy

(
eγ
∫ a
0 c(xs)ds − 1

)
pa(x, y) + (pa(x, y)− 1)

]2

m(dx)m(dy)

≤ 2

∫
R2d

E2
xy

(
eγ
∫ a
0 c(xs)ds − 1

)
p2
a(x, y)m(dx)m(dy) + 2

∫
R2d

(pa(x, y)− 1)2m(dx)m(dy)

The second integral term in the above right hand side goes to 0 as a → +∞ thanks
to Lemma 1 below. We thus analyze the first integral term in the right hand side of
the above inequality. For any ε ∈]0, 1[, by Hölder inequality,

I(a, γ) :=

∫
R2d

E2
xy

(
eγ
∫ a
0 c(xs)ds − 1

)
pεa(x, y)p2−ε

a (x, y)m(dx)m(dy)

≤
[∫

R2d

E2/ε
xy

(
eγ
∫ a
0 c(xs)ds − 1

)
pa(x, y)m(dx)m(dy)

]ε [∫
R2d

p
2−ε
1−ε
a (x, y)m(dx)m(dy)

]1−ε

=
[
E
(
|eγ

∫ a
0 c(xs)ds − 1|2/ε

)]ε
‖ pa ‖2−ε

L
2−ε
1−ε (m⊗m)
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Thanks to Assumption A4, for a large enough and ε small enough (such that 2−ε
1−ε ≤ p),

‖ pa ‖2−ε

L
2−ε
1−ε (m⊗m)

< +∞.

To complete the proof, it remains to control J(a, γ) := E
(
|eγ

∫ a
0 c(xs)ds − 1|2/ε

)
.

Since eγ
∫ a
0 c(xs)ds − 1 = γ

∫ a
0
c(xs)ds

∫ 1

0
euγ

∫ a
0 c(xs)dsdu,

J(a, γ) = γ2/εE

(∣∣∣∣∫ a

0

c(xs)ds

∣∣∣∣2/ε(∫ 1

0

euγ
∫ a
0 c(xs)dsdu

)2/ε
)

≤ γ2/εE1/2

(∣∣∣∣∫ a

0

c(xs)ds

∣∣∣∣4/ε
)

E1/2
(
e

4γ
ε

∫ a
0 c(xs)ds

)
By Jensen’s inequality

J(a, γ) ≤ γ2/εa2/ε−1/2

[
E
(∫ a

0

|c(xs)|4/εds
)]1/2 [

1

a

∫ a

0

E
(
e

4γ
ε
ac(xs)

)
ds

]1/2

≤ (γa)2/ε

[∫
|c(x)|4/εm(dx)

]1/2 [∫
e

4γa
ε
c(x)m(dx)

]1/2

The first integral term of the right hand side in the above inequality is finite due to
Assumption A2 and A3. For the same reason, if γa < ε

4C
β, the last integral term of

the right hand side is finite. Then, for γa small enough, J(a, γ) is as small as we want
and the cluster estimate ρ is smaller than 1, which completes the proof.

For the proof of (2.10), we proceed in the same way, just observing that the first
factor in the right hand side of (2.11) is now dependent on x. The additional term to
control is Ex

[
eqγ

∫ a
0 c(xs) ds

]
for some large q > 1. This can be done using A2 and A6.

It remains to state and prove

Lemma 1 If A4 and A5 are satisfied, lima→+∞
∫

R2d (pa(x, y)− 1)2m(dx)m(dy) = 0 .

Proof. Recall the semi-group Ptf(x) =
∫
f(y) pt(x, y)m(dy). By Assumption A5,

Pt is a contraction semi-group on L2(m), and∫ ∣∣∣∣Ptf(x)−
(∫

fdm

)∣∣∣∣2 m(dx) → 0 as t→ +∞.

Notice also that for a > b > 0 and m almost all y,

pa(x, y) = Pa−bpb(., y)(x)

in L2(m) for all rational times a and b and, by invariance of m,
∫
pb(x, y)m(dx) = 1.

Consider now an increasing sequence (an)n≥0 such that an → +∞. We have to show
that, for any such sequence,∫

R2d

(pan(x, y)− 1)2m(dx)m(dy)→ 0 (2.12)
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as n → +∞. It is not restrictive to assume a1 > t0, where t0 is the constant in
Assumption A4. By Assumption A5, for (m almost all) fixed y,∫

(pan(x, y)− 1)2 m(dx) =

∫
(Pan−a1pa1(., y)(x)− 1)2 m(dx)→ 0

as n→ +∞. But thanks to Assumption A4, the sequence

y 7→
∫

(pan(x, y)− 1)2 m(dx)

is uniformly integrable. Thus the conclusion (2.12) follows by Vitali convergence
theorem.

Now we shall see why the limits (2.2) and (2.3) do not depend on the time step a,
yielding the limits (1.1) and (1.2).

So we choose once for all some convenient a and consider the corresponding set of
convenient γ’s, yielding for each γ a λ obtained thanks to Proposition 1. For large T
we choose n such that a(n− 1) ≤ T < an.

Remark that if c = c+ − c− with non-negative c+ and c−,

Ex

[
eγ

∫ a(n−1)
0 c(xs)ds e− γ

∫ an
a(n−1) c

−(xs)ds
]
≤ Ex

[
eγ

∫ T
0 c(xs)ds

]
≤ Ex

[
eγ

∫ a(n−1)
0 c(xs)ds eγ

∫ an
a(n−1) c

+(xs)ds
]
.

We denote by eS
−(an,x) and eS

+(an,x) respectively the lower and upper bounds above.
Both S−(an, x) and S+(an, x) can be calculated using the same cluster expansion
except that we have to replace ψγ(a, xa(n−1), xan) by a similar ψ− (resp. ψ+) obtained
by replacing c by −c− (resp c+). We thus obtain a similar decomposition S−(an, x) =∑

T∈Cn,T 6=∅ Γ−T with Γ−T = ΓT if n− 1 /∈ T and Γ−T obviously modified if n− 1 ∈ T . In
particular in the decomposition (2.6) we see that, in the first sum, the only modified
term is Γn−1. But since −c− also satisfies A2, the same estimates as in the proof
of the previous Theorem show that the modified term Γ−n−1 goes to 0 as T (hence
n) goes to infinity, by possibly choosing smaller γ. The second sum in (2.6) is a
little bit more intricate to study. The only modified terms are those obtained for
(n − 1) ∈ T (notice that we can no more use translation or permutation invariance
for these clusters). But summing up all these modified terms gives a quantity which
is smaller than M(an) −M(a(n − 1)) where M(an) is defined similarly as S(an, x)
replacing E(qT ) by ρ|T | for some ρ strictly less than 1 and larger than E(qT ) and the
modified E(q−T ). Since this difference goes to 0 as n goes to infinity, and since we can
control S+(an, x) in exactly the same way, we have obtained

Theorem 1 . Under A1-A6 there is γ > 0 such that for every γ < γ the limits (1.1)
and (1.2) exist.

Furthermore if A6 is uniformly satisfied, the convergence in (1.2) is uniform on
compact sets.
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3 Some properties of diffusion processes

and their invariant measures.

We consider the Rd-valued diffusion process (xt)t defined by the stochastic differential
equation (2.1), with an unique invariant probability measure m(dx). We denote by L
its associated infinitesimal generator i.e. L = 1

2
∆ + b∇.

First we discuss existence, uniqueness, non explosion, existence and uniqueness of
an invariant probability measure, existence of kernels and time reversal.

If b is local Lipschitz, existence and strong uniqueness are ensured up to the explo-
sion time, starting from any x. If there exists a Lyapunov function ψ, i.e. ψ is smooth,
larger than 1, goes to +∞ at infinity and such that Lψ ≤ Cψ for some constant C,
then the explosion time is a.s. infinite, just applying Ito’s formula to ψ up to the exit
time of the level sets of ψ (in the same spirit as in [16], Théorème 2.2.19).

Existence and uniqueness of an invariant probability measure m is ensured by the
existence of some ψ as before, but satisfying the stronger condition Lψ ≤ C 1IK for
some compact subset K.
In particular if b satisfies for some R ≥ 0,

〈b(x), x〉 ≤ −r for some r > d/2 and all x s.t. |x| ≥ R, (3.1)

we may choose ψ(x) = 1 + |x|2, so that (2.1) has an unique solution starting from any
x, and an unique invariant probability measure m.

Assume in addition that b ∈ C1. Then Malliavin calculus shows that the law of
xt is absolutely continuous w.r.t. Lebesgue measure for all initial conditions x and all
t > 0. Hence m is also absolutely continuous w.r.t. Lebesgue measure, and it can be
shown that dm/dy is a.e. positive.

Hence the law of xt with initial condition x denoted by Ptδx(dy) is absolutely con-
tinuous w.r.t. m, i.e. there exists some kernel pt such that Ptδx(dy) = pt(x, y)m(dy).

Another proof of this fact follows from [3] where additional (but unnecessary here)
regularity is derived.

The semi-group Pt defined on the bounded Borel functions, extends to a contraction
semi-group, denoted again by Pt, on L2(µ), whose generator coincides with L on
smooth functions. We thus have a pair of generators (L,L∗) and of semi-groups
(Pt, P

∗
t ) in duality w.r.t. m, i.e.∫

gPtfdm =

∫
fP ∗t gdm and P ∗t g(x) =

∫
p∗t (x, y)m(dy) ,

with p∗t (x, y) = pt(y, x).

Remark 1 If in addition,
∫
b2dm < +∞, we may write b = −∇V + a (see [5]) where

−∇V is the orthogonal projection (in L2(m)) of b onto the closure of the gradients of
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test functions (it is not known whether ∇V is actually the gradient of some function
V in L2(m), so that this is an abuse of notation). Hence

∫
a ·∇fdm = 0 for all smooth

f . Following [10] and [4], one knows that the time reversal of the stationary process
is a drifted Brownian motion with drift b∗ = −∇V − a. The associated semi-group is
the dual semi-group.

We do not need this remark in the remaining of the paper. ♦

The aim of this section is to find sufficient conditions for the following three prop-
erties to hold

(1) m satisfies a logarithmic Sobolev inequality,

(2) pt(., .) ∈ Lp(m⊗m) for some p > 2 and t large,

(3) there exists some β > 0 such that
∫
eβ|y|

2
m(dy) < +∞.

It is well known that (1) implies (3), but we shall try to obtain explicit estimates.
Similarly in some situations (2) implies (1) (recall the discussion in the previous sec-
tion), but again we shall look at both properties separately. Nevertheless if m satisfies
a log-Sobolev inequality, it satisfies a spectral gap inequality and A5 is thus satisfied.

Since we do not have any information on m, our condition will be a “drift condi-
tion”, namely we shall say that condition (DC) is satisfied if

Condition (DC) ∃cb > 0 and ∃R ≥ 0 s.t. for |x| ≥ R, 〈b(x), x〉 ≤ −cb|x|2 .
(3.2)

Since (DC) is stronger than (3.1), all the previous discussion is available. In addition

Lemma 2 If (DC) holds, then for all λ < cb,
∫
eλ|y|

2
m(dy) < +∞.

Proof. Since (DC) holds there exists D > 0 such that 〈b(x), x〉 ≤ −cb|x|2 +D for all
x, and c = cb in the proof.

Let gn be a smooth non-decreasing concave function defined on R+ such that
gn(u) = u if u ≤ n − 1 and gn(u) = n if u ≥ n (such a function exists). Let
fn(x) = exp(λ gn(|x|2)), for λ < c.

Then ∇fn(x) = 2λfn(x)g′n(|x|2)x and

∆fn(x) = 2λfn(x)
(
2g′′n(|x|2)|x|2 + 2λ(g′n)2(|x|2)|x|2 + dg′n(|x|2)

)
,

so that

Lfn(x) = λ fn(x)
(
(2g′′n(|x|2)|x|2 + dg′n(|x|2)) + 2g′n(|x|2)(λg′n(|x|2)|x|2 + 〈b(x), x〉)

)
≤ λ fn(x)(d+ 2D − 2(c− λ)|x|2)

≤ λ(d+ 2D)eλ
d+2D
c−λ − λ(d+ 2D) fn(x) ,

12



since
d+ 2D − 2(c− λ)|x|2 ≤ −(c− λ)|x|2 ≤ −(d+ 2D)

for |x|2 ≥ d+2D
c−λ .

For short, there exist c1 and c2 positive constants such that for all n, Lfn ≤
c1 − c2fn.

Define hn(s) = E
[
eλgn(|Xx

s |2)
]
. Ito’s formula yields

hn(t) ≤ hn(0) + c1t− c2

∫ t

0

hn(s)ds ,

hence applying Gronwall’s lemma we obtain

E
[
eλgn(|Xx

t |2)
]
≤ c1

c2

+ e−c2t eλgn(|x|2) . (3.3)

Integrating (3.3) with respect to the invariant measure m yields

(1− e−c2t)
∫
eλgn(|y|2)m(dy) ≤ c1

c2

.

We may thus choose t large enough for e−c2t ≤ 1/2 and then use monotone convergence
theorem with n→ +∞ in order to obtain

∫
eλ|y|

2
m(dy) < +∞ for λ < cb.

The next step will be the study of hypercontractivity. To this end we introduce
another condition called a “curvature condition” denoted by (CC). First recall the
notation (used by Wang)

〈∇ξb(x), ξ〉 =
∑
i,j

ξi ∂ibj(x) ξj . (3.4)

The curvature condition is then

Condition (CC) ∃Kb ∈ R s.t. for all x and all ξ , 〈∇ξb(x), ξ〉 ≤ Kb|ξ|2 .
(3.5)

Now we may use the deep results by Wang in [17] Theorem 5.7.3 and Corollary
5.7.2 and Theorem 5.7.1 in order to get

Lemma 3 Let b ∈ C1. Assume that conditions (DC) and (CC) are satisfied with
cb > Kb. Then

(1) for all 1 < p < q < +∞ there exists tp,q such that for t ≥ tp,q, Pt is a bounded
operator from Lp(m) into Lq(m) with norm equal to 1 (we shall say that the
semi-group Pt is hypercontractive),

(2) m satisfies a logarithmic Sobolev inequality, i.e. there exists some CG such
that for all smooth f with compact support satisfying

∫
f 2dm = 1, it holds∫

f 2 log f 2 dm ≤ CG

∫
|∇f |2 dm ,
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(3) the semi-group P ∗t is hypercontractive too (with a family t∗p,q of contraction
times).

The final statement is obtained by duality, in particular if t∗p,q = tp′,q′ where p′ and
q′ are the conjugates of p and q.

Remark 2 The condition cb > Kb is a mild condition. Indeed, if we replace (DC) by
a stronger (but more symmetric) condition namely

Condition (DCC) for all x and y it holds

〈b(x)− b(y) , x− y〉 ≤ −cb |x− y|2

(if b = −∇V this is a convexity assumption) then we may choose Kb < 0. One guess
that (this can be rigorously done in the symmetric case, i.e b = ∇V ), if b can be
written as b1 + b2 with b1 ∈ C1 satisfying (DCC) and b2 a C1 compactly supported
function, then Lemma 3 is still true, with the only cb > 0 condition.

It is worth noticing that if we reinforce (DC) assuming the following (SDC) con-
dition

lim
|x|→∞

〈b(x),
x

|x|2
〉 = −∞ ,

then we may always choose cb > Kb (if Kb is finite of course). In this situation it can
be shown (see [17] Corollary 5.7.7) that the semi-group is even superbounded. ♦

The proof of all these results lies on a beautiful Harnack inequality derived by
Wang ([17] Theorem 2.5.2)

(Ptf(x))α ≤ Ptf
α(y) exp

(
α

2(α− 1)
Kb(1− e−2Kbt)−1 |x− y|2

)
(3.6)

holding for t > 0, α > 1, all (x, y) and all nonnegative continuous and bounded f ,
with the convention Kb(1 − e−2Kbt)−1 = 1/2t if Kb = 0 (see also [1] Lemma 7.5.4 if
α = 2).

This inequality is the key for the following lemma

Lemma 4 Let b ∈ C1. Assume that conditions (DC) and (CC) are satisfied. Then
for all p > 2, pt(., .) ∈ Lp(m⊗m) for all t such that

cb >
Kb p (p− 1)

1− e−2Kbt
.

In particular, if Kb ≤ 0, then for all p > 2 there exists tp such that pt(., .) ∈ Lp(m⊗m)
for t ≥ tp, while for Kb > 0 such a tp exists provided cb > Kb p (p− 1).
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Proof. We shall first derive an upper bound for the density.

Let α > 1, Dt := {x ∈ Rd, |x| ≤ γ(t)} for some increasing function γ going to
∞ and f be nonnegative and bounded. Integrating Harnack inequality for Pt with
respect to m(dy) on Dt and denoting

κ(t) =
α

2(α− 1)
Kb(1− e−2Kbt)−1

we get

((Ptf)(x))α ≤
∫
Dt

(Ptf
α)(y) eκ(t)|x−y|2 m(dy)/m(Dt)

≤
∫

fα(y) (P ∗t (1IDt(.) e
κ(t)|x−.|2))(y)m(dy)/m(Dt)

≤ e2κ(t)(|x|2+γ2(t))

∫
fα(y) m(dy)/m(Dt) ,

since
‖ 1IDt(.) e

κ(t)|x−.|2 ‖∞≤ e2κ(t)(|x|2+γ2(t)) .

If
θ(t, x) =

(
e2κ(t)γ2(t)/m(Dt)

)
e2κ(t)|x|2 ,

we thus have

((Ptf)(x))α ≤ θ(t)

∫
fα(y)m(dy) . (3.7)

Applying the previous inequality with (a continuous approximation of, and then
taking limits)

fN(z) = pβt (x, z) 1I{pt(x,z)≤N}

yields(∫
p1+β
t (x, z) 1I{pt(x,z)≤N}m(dz)

)α
≤ θ(t, x)

∫
pαβt (x, y) 1I{pt(x,y)≤N} m(dy) ,

i.e. letting N go to ∞ and choosing 1 + β = αβ hence β = 1/(α− 1)∫
p

α
α−1

t (x, y)m(dy) ≤ θ1/(α−1)(t, x) . (3.8)

According to Lemma 2, the right hand side in (3.8) is in L1(m) provided

cb >
2κ(t)

α− 1
=

αKb

(α− 1)2(1− e−2Kbt)
. (3.9)

In particular if p > 2 define 1 < α = p/(p − 1) < 2. Hence pt(., .) ∈ Lp(m ⊗ m)
provided

cb >
Kb p (p− 1)

1− e−2Kbt
.

We may thus state the main result of this section,
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Theorem 2 Let b ∈ C1. If condition (DC) holds, Assumption A6 is uniformly satis-
fied.

If conditions (DC) and (CC) are satisfied and cb > 2Kb, then

• for all λ < cb,
∫
eλ|x|

2
m(dx) < +∞,

• the semi-groups Pt and P ∗t are hypercontractive,

• there exist p > 2 and tp such that for t ≥ tp, pt(., .) ∈ Lp(m⊗m).

In particular assumptions A1, A3, A4 and A5 are satisfied.

Proof. The only thing to prove is the first statement since all others statements are
consequence of the three previous lemmata.

Using Ito’s formula up to the exit time TM of the ball of center 0 and radius M we
have

Ex

[
eθ |xt∧TM |

2
]

= eθ|x|
2

+ Ex

[∫ t∧TM

0

(
2θ 〈b(xs), xs〉+ dθ + 2θ2|xs|2

)
eθ |xs|

2

ds

]
.

In particular if condition (DC) holds with cb > θ, the integrand in the right hand side
is non-positive for large values of |xs|, hence we can let M go to infinity in order to
show that there exists some constant κ (depending on (DC) and θ) such that

Ex

[
eθ |xt|

2
]
< eθ|x|

2

+ κt .

Accordingly using Jensen inequality

Ex

[
e
∫ a
0 β |xs|2 ds

]
= Ex

[
e

1
a

∫ a
0 a β |xs|2 ds

]
≤ 1

a
Ex

[∫ a

0

ea β |xs|
2

ds

]
< +∞

as soon as aβ < cb. The proof is completed.

Remark 3 It can be interesting to get explicit local bounds for the density. Here is
a result in this direction. It will not be used, however, in this paper.

Assume that b ∈ C1, that (DC) holds and that (CC) holds for some Kb ≤ 0.
Assume in addition that the drift b∗ of the dual semi-group belongs to C1.

Then there exist a(t) and ā(t) going to 1 when t goes to ∞ , β(t) and β̄(t) going to
0 when t goes to ∞ and some Tb > 0 such that for all t > Tb the following estimates
hold

a(t) e−β(t)(|x|2+|y|2) ≤ pt(x, y) ≤ ā(t) eβ̄(t)(|x|2+|y|2)

for all pair (x, y).
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Let us prove this statement. First we derive the upper bound. We follow the proof
of Lemma 4 up to (3.8). Similarly by duality we have∫

p
α
α−1

t (y, x)m(dy) ≤ θ1/(α−1)(t, x) . (3.10)

But the semi-group property yields

p2t(x, y) =

∫
pt(x, z) pt(z, y)m(dz)

≤
(∫

p2
t (x, z)m(dz)

)1/2 (∫
p2
t (z, y)m(dz)

)1/2

≤ θ
1
2 (t, x) θ

1
2 (t, y)

where we have arbitrarily chosen α = 2, i.e

pt(x, y) ≤ e2κ(t/2)γ2(t/2)

m(Dt/2)
eκ(t/2)(|x|2+|y|2) . (3.11)

Since Kb ≤ 0, κ(t) → 0 as t → +∞ so that we may choose now any γ such that
γ(t)→ +∞ and κ(t)γ2(t)→ 0 as t→ +∞.

We turn now to the lower bound.

We use Harnack’s inequality with f(u) = pt(u, z) 1I|u|≤N and α = 2 again. It yields(∫
pt(x, u) pt(u, z) 1I|u|≤N m(du)

)2

≤
(∫

pt(y, u) p2
t (u, z) 1I|u|≤N m(du)

)
eκ(t)|x−y|2

≤
(∫

pt(y, u) p2
t (u, z)m(du)

)
eκ(t)|x−y|2

hence, letting N go to ∞ we obtain for all x,y,z

p2
2t(x, z) ≤

(∫
pt(y, u) p2

t (u, z)m(du)

)
eκ(t)|x−y|2 . (3.12)

Now we plug our upper bound into the right hand side of (3.12), bounding p
1/2
t (y, u)

and p
3/2
t (u, z) respectively. It furnishes

p2
2t(x, z) ≤

(∫
(pt(y, u) pt(u, z))

1/2 e2β̄(t)|u|2 m(du)

)
ā2(t) e

1
2
β̄(t)(|y|2+3|z|2) eκ(t)|x−y|2

≤
(∫

e4β̄(t)|u|2m(du)

)1/2

p
1/2
2t (y, z) ā2(t) e

1
2
β̄(t)(|y|2+3|z|2) e2κ(t)(|x|2+|y|2) ,

where we used Cauchy-Schwarz inequality. We may take the square root of both sides
and then integrate with respect to m(dx). It yields

1 ≤ p
1/4
2t (y, z) ā(t) e

1
4
β̄(t)(|y|2+3|z|2) eκ(t)|y|2 δ(t)
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where

δ(t) =

(∫
e4β̄(t)|u|2m(du)

)1/4 (∫
eκ(t)|x|2m(dx)

)
goes to 1 as t goes to +∞, thanks to the concentration property of m (i.e. Lemma 2)
and Lebesgue theorem. Notice that δ(t) is finite for t large enough, so that the lower
bound we have obtained is true for t > Tb.

This scheme of proof is standard in the symmetric case where sharper bounds can
be obtained. However the integral maximum principle (see e.g. Proposition 13 in [2])
does not hold in the non-symmetric case, so that we have to replace it, but obtain
worse bounds. ♦

4 The limiting function as viscosity solution

We are considering the function

ϕ(t, x) := Ex

[
exp

(
γ

∫ t

0

c(xs)ds

)]
. (4.1)

We have shown that (under some assumptions we shall assume to be in force below),
for γ sufficiently small, the limits

λ := lim
t

1

t
logϕ(t, x) (4.2)

and
V (x) := lim

t
[logϕ(t, x)− λt] (4.3)

exist uniformly over compact sets. We want to show that V is a viscosity solution of
the Hamilton-Jacobi-Bellman equation (1.8) or, equivalently, that v(x) := eV (x) is a
viscosity solution of the linear equation

−
[

1

2
∆v + b · ∇v + γcv

]
+ λv = 0. (4.4)

In the last few years A. Gulisashvili and J.A. Van Casteren have been writing a
series of papers and a book [11] one the evolution operator for ϕ(t, x), the so-called
Feynman-Kac propagator. They work in a rather general context (locally compact,
second countable Hausdorff space), but then they specialize their results in Rd. They
give conditions under which ϕ(t, x) is continuous and is a viscosity solution of the
corresponding parabolic equation, which are the following:
Condition 1. The semigroup of the process xt transforms bounded measurable func-
tions to bounded continuous function (the strong Feller property);
Condition 2. The function x 7→

∫ t
0
Ex[|c(xs)|]ds is bounded, and goes to zero uniformly

as t→ 0.

While condition 1 is acceptable (it is implied by our assumptions on the diffusion
in section 3), condition 2 cannot hold true for c unbounded. In what follows we assume
condition 1, but only quadratic growth on c (i.e. assumption A2).
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Proposition 2 . Assume that conditions A1 to A5 are satisfied (hence the limits
(4.2) and (4.3) exist) and that condition (DC) is satisfied, so that condition A6 is
uniformly satisfied. Then v(·) is continuous, and it is a viscosity solution of equation
(4.4).

Proof. Step 1. Continuity of ϕ(t, x). We first establish continuity in x.

First note that, according to the proofs in section 2, for γ < γ̄, one can find some
δ ∈]1, γ̄

γ
[ and some function hγ(t, x) which is bounded on compact sets such that

Ex

[
exp

(
γδ

∫ t

0

|c(xs)|ds
)]
≤ hγ(t, x) (4.5)

for all t > 0 and x ∈ Rd.

Note that, for 0 < ε < t,

|ϕ(t, x) − ϕ(t, y)|

=

∣∣∣∣Ex [ϕ(t− ε, xε) exp

(
γ

∫ ε

0

c(xs)ds

)]
− Ey

[
ϕ(t− ε, xε) exp

(
γ

∫ ε

0

c(xs)ds

)]∣∣∣∣
≤ Ex

[∣∣∣eγ ∫ ε0 c(xs)ds − 1
∣∣∣ϕ(t− ε, xε)

]
+ Ey

[∣∣∣eγ ∫ ε0 c(xs)ds − 1
∣∣∣ϕ(t− ε, xε)

]
+ |Ex[ϕ(t− ε, xε)]− Ey[ϕ(t− ε, xε)]| . (4.6)

We begin by estimating the first term in the r.h.s. of (4.6). By Hölder inequality

Ex

[∣∣∣eγ ∫ ε0 c(xs)ds − 1
∣∣∣ϕ(t− ε, xε)

]
≤
{
Ex

[∣∣∣eγ ∫ ε0 c(xs)ds − 1
∣∣∣p]}1/p

{
Ex

[
exp

(
γδ

∫ t

0

|c(xs)|ds
)]}1/δ

, (4.7)

where p = δ
δ−1

. Our aim is to show that the l.h.s. of (4.7) goes to 0 as ε → 0,
uniformly in x varying in a compact set. By (4.5), the second factor in the r.h.s. of
(4.7) is locally bounded. Thus, it is enough to show that

Ex

[∣∣∣eγ ∫ ε0 c(xs)ds − 1
∣∣∣p]

goes to zero uniformly in compact sets. By the inequality |ex − 1| ≤ |x|e|x|, Cauchy-
Schwartz inequality and Jensen’s inequality

Ex

[∣∣∣eγ ∫ ε0 c(xs)ds − 1
∣∣∣p]2

≤ γ2pEx

[(∫ ε

0

c(xs)ds

)p
eγp

∫ ε
0 |c(xs)|ds

]2

≤ γ2pEx

[(∫ ε

0

c(xs)ds

)2p
]
Ex

[
e2γp

∫ ε
0 |c(xs)|ds

]
≤ ε2p−1γ2p

∫ ε

0

Ex
[
|c(xs)|2p

]
ds Ex

[
e2γp

∫ ε
0 |c(xs)|ds

]
≤ ε2p−2γ2p

∫ ε

0

Ex
[
|c(xs)|2p

]
ds

∫ ε

0

Ex
[
e2γpε|c(xs)|

]
ds.(4.8)
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Since p > 1, it is enough to show that the two integrals in (4.8) are locally bounded.
This follows easily from the assumption that c(·) has quadratic growth (see A2 where
the constant C is defined), and from the proof of the first part of theorem 2, as soon
as 2γpCε < cb. Indeed we get some exponential integrability which is strong enough
to control both terms. This establishes continuity in x.

To get joint continuity in (t, x) just observe that, by the integrability condition (4.5),
we can differentiate in t ϕ(t, x), and show that this derivative is locally bonded. Thus
ϕ(t, x) is locally Lipschitz in t, locally uniformly in x. This, together with continuity
in x, implies joint continuity.

Step 2. Viscosity solution of the parabolic equation. In what follows we introduce the
upper-semicontinuous (resp. lower-semicontinuous) extension c∗ (resp. c∗) of c(·):

c∗(x) := lim sup
y→x

c(y) c∗(x) := lim inf
y→x

c(y).

Moreover, let vT (t, x) := ϕ(T − t, x). We now show that vT is a viscosity solution (in
[0, T ]) of the parabolic equation

−
(
∂tvT + b · ∇vT +

1

2
∆vT + γcvT

)
= 0. (4.9)

Since vT is continuous, this amounts to show that the following two properties hold
true.

i. (Supersolution property). Let (t, x) ∈ [0, T )×Rd and let ψ : [0, T )×Rd → R be
a smooth function such that ψ(t, x) = vT (t, x), and vT −ψ has a local maximum
at (t, x) (there may be no such function). Then

−
(
∂tψ(t, x) + b(x) · ∇ψ(t, x) +

1

2
∆ψ(t, x) + γc∗(x)vT (t, x)

)
≤ 0.

ii. (Subsolution property). Let (t, x) ∈ [0, T ) × Rd and let ψ : [0, T ) × Rd → R be
a smooth function such that ψ(t, x) = vT (t, x), and vT −ψ has a local minimum
at (t, x). Then

−
(
∂tψ(t, x) + b(x) · ∇ψ(t, x) +

1

2
∆ψ(t, x) + γc∗(x)vT (t, x)

)
≥ 0.

vT − ψ has a strict local extreme in (t, x). Indeed, if vT − ψ has a local extreme at
(t, x) and ψ̃(s, y) := ψ(s, y)± [(s− t)2 + |x− y|4] (where the sign depends on whether
we are dealing with a maximum or a minimum), then vT − ψ̃ has a strict local extreme
in (t, x), and ψ and ψ̃ have the same first space and time derivatives and second space
derivatives at (t, x). We now observe the following identities.

ϕ(t, x) = 1−
∫ t

0

d

ds
Ex

[
exp

(∫ t

s

γc(xτ )dτ

)]
ds = 1+γ

∫ t

0

Ex

[
c(xs) exp

(
γ

∫ t

s

c(xτ )dτ

)]
ds

= 1 + γ

∫ t

0

Ex [c(xs)ϕ(t− s, xs)] ds,
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where all steps are justified by (4.5). It follows that, for ε > 0,

ϕ(t, x)− Ex[ϕ(t− ε, xε)] = γEx

[∫ ε

0

c(xs)ϕ(t− s, xs)ds
]
.

By a change t 7→ T − t of the time variable, we get

vT (t, x)− Ex[vT (t+ ε, xε)] = γEx

[∫ ε

0

c(xs)vT (t+ s, xs)ds

]
. (4.10)

Now we use (4.10) to prove that vT has the subsolution property. The supersolution
property is proved in the same way. Note that, both properties are local, so it is not
restrictive to assume the test functions ψ to have compact support.
So let ψ be a smooth function with compact support such that ψ(t, x) = vT (t, x), and
vT − ψ has a local minimum at (t, x). We first claim that

lim sup
ε→0

vT (t, x)− Ex[vT (t+ ε, xε)]

ε
≤ lim sup

ε→0

ψ(t, x)− Ex[ψ(t+ ε, xε)]

ε
. (4.11)

This is done by a simple localization. Let ρ > 0 be such that vT (s, y) ≥ ψ(s, y) for
(s, y) ∈ [t− ρ, t+ ρ]×B(x, ρ). Then, for |ε| < ρ,

vT (t, x)− Ex[vT (t+ ε, xε)]

ε

= Ex

[
vT (t, x)− vT (t+ ε, xε)

ε
1I|xε−x|≤ρ

]
+ Ex

[
vT (t, x)− vT (t+ ε, xε)

ε
1I|xε−x|>ρ

]
≤ Ex

[
ψ(t, x)− ψ(t+ ε, xε)

ε
1I|xε−x|≤ρ

]
+ Ex

[
vT (t, x)− vT (t+ ε, xε)

ε
1I|xε−x|>ρ

]
= Ex

[
ψ(t, x)− ψ(t+ ε, xε)

ε

]
−Ex

[
ψ(t, x)− ψ(t+ ε, xε)

ε
1I|xε−x|>ρ

]
+ Ex

[
vT (t, x)− vT (t+ ε, xε)

ε
1I|xε−x|>ρ

]
.

Thus, in order to obtain (4.11), it is enough to show that the last two terms go to zero
as ε→ 0. We only deal with the last, the other being easier.∣∣∣∣Ex [vT (t, x)− vT (t+ ε, xε)

ε
1I|xε−x|>ρ

]∣∣∣∣ ≤ 2

ε
Ex

[
eγ
∫ T
0 |c(xs)|ds1I|xε−x|>ρ

]
≤ 2

ε
Ex

[
eγδ

∫ T
0 |c(xs)|ds

]
Ex(1I|xε−x|>ρ)

1− 1
δ ,

that goes to zero as ε→ 0 since, by small time estimates again, Ex(1I|xε−x|>ρ) = o(ε).
This establishes (4.11). On the other hand, by Ito’s rule,

lim
ε→0

ψ(t, x)− Ex[ψ(t+ ε, xε)]

ε
= −

(
∂tψ(t, x) + b(t, x) · ∇ψ(t, x) +

1

2
∆ψ(t, x)

)
.

(4.12)
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Putting together (4.10), (4.11) and (4.12), the subsolution property follows from

lim inf
ε→0

1

ε
Ex

[∫ ε

0

c(xs)vT (t+ s, xs)ds

]
≥ c∗(x)vT (t, x), (4.13)

where the above convergence is again controlled by small time estimates and the fact
that vT is continuous.

Step 3. Conclusion. Letting ṽT (t, x) := vT (t, x)e−λ(T−t), it is easily checked that ṽT is
a viscosity solution of

−
(
∂tṽT + b · ∇ṽT +

1

2
∆ṽT + γcvT

)
+ λṽ = 0. (4.14)

Moreover ṽT (t, x) → v(x) as T → +∞ uniformly on compact sets. In particular v is
continuous. Now, it is a standard argument, that I now sketch, to show that v is a
viscosity solution of (4.4).
Let x ∈ Rd, and let ψ : Rd → R be a smooth function such that v(x) = ψ(x) and v−ψ
has a local minimum at x. Fix t > 0, and define ψ̃(s, y) := ψ(y)− |y − x|4 − (s− t)2.
Note that v − ψ̃ has a strict local minimum at (t, x), and

∂tψ̃(t, x) + b(t, x) · ∇ψ̃(t, x) +
1

2
∆ψ̃(t, x) = b(x) · ∇ψ(x) +

1

2
∆ψ(x). (4.15)

A simple exercise in uniform convergence show that there is a sequence (tn, xn)→ (t, x)
as n → +∞, such that ṽn − ψ̃ has a local minimum at (tn, xn). Therefore, since ṽ is
a viscosity solution of (4.14)

−(∂tψ̃(tn, xn)+b(xn)·∇ψ̃(tn, xn)+
1

2
∆ψ̃(tn, xn)+γc∗(xn)ṽn(xn))+λṽn(xn) ≥ 0. (4.16)

Letting n→ +∞, using (4.15) and lower-semicontinuity of c∗ we obtain the subsolution
property for equation (4.4). The supersolution property is obtained in the same way.
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