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Abstract: Recent trends in ubiquitous computing have led to a proliferation of studies that focus on
human activity recognition (HAR) utilizing inertial sensor data that consist of acceleration, orientation
and angular velocity. However, the performances of such approaches are limited by the amount
of annotated training data, especially in fields where annotating data is highly time-consuming
and requires specialized professionals, such as in healthcare. In image classification, this limitation
has been mitigated by powerful oversampling techniques such as data augmentation. Using this
technique, this work evaluates to what extent transforming inertial sensor data into movement
trajectories and into 2D heatmap images can be advantageous for HAR when data are scarce.
A convolutional long short-term memory (ConvLSTM) network that incorporates spatiotemporal
correlations was used to classify the heatmap images. Evaluation was carried out on Deep Inertial
Poser (DIP), a known dataset composed of inertial sensor data. The results obtained suggest that for
datasets with large numbers of subjects, using state-of-the-art methods remains the best alternative.
However, a performance advantage was achieved for small datasets, which is usually the case in
healthcare. Moreover, movement trajectories provide a visual representation of human activities,
which can help researchers to better interpret and analyze motion patterns.

Keywords: human activity recognition; image processing; machine learning; sensor data

1. Introduction

Human activity recognition (HAR) has many advantages in various disciplines, such as assistive
technology. Prediction of human activities could play a pivotal role in healthcare’s future to check
patient compliance with recommendations regarding physical activity or to investigate the causes
of activity behavior. Indeed, a growing body of literature recognizes the importance of HAR [1–3].
As stated by Vrigkas et al. [2], this field can be categorized according to the nature of sensor data
employed. Methods being used to perform activity classification highly depend on the type of sensor
in action, e.g., cameras or motion-sensing sensors, each with both advantages and disadvantages.
While cameras, for instance, can capture wide-ranging information, their use is prohibitive in some
instances, e.g., in personal and professional spaces. This is a challenging issue that arises, especially in
the healthcare domain. In contrast, sensors employing accelerometers and gyroscopes on several axes,
also known as inertial measurement units (IMUs), are bound to the person wearing them [4]. Activity
recognition using inertial sensors is attained through acceleration, orientation and angular velocity
on three spatial axes [4]. Thanks to the expansion of smart devices and the possibility of embedding
sensors into portable wearables and workwear, IMUs are ever more present and can be used almost
without restrictions [5]. Moreover, the possibility of keeping track of activities indoors and outdoors
continuously while protecting the user’s privacy has increased the popularity of IMUs in HAR [6–10].

However, a limitation of IMUs is the comparatively limited information content they provide
compared to images from cameras, especially when it comes to HAR. In other words, nuances that
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can be captured by an image can hardly be reflected in IMU readings. The performance of IMU-based
HAR is further constrained by the scarcity of annotated datasets, an issue of particular relevance
when it comes to healthcare, given the high costs involved in annotating these datasets with highly
skilled personnel. At the same time, image classification techniques such as data augmentation
(DA) techniques and deep convolutional neural networks (CNNs) pre-trained on extensive datasets
have proven more reliable and robust in comparison to the ones commonly applied to other sensor
modalities [11].

We hypothesize that applying well-known image processing techniques to IMU data can help
address data scarcity while safeguarding subject privacy. This could enable researchers to take
advantage of privacy protection and continuous monitoring from the IMUs and use a mature research
field, such as image classification, potentially leading to new insights into movement patterns and
better classification performance. To test this hypothesis, we needed a general method for obtaining
movement trajectories from IMU readings. There have been approaches to generating trajectories
from a single IMU, but this is still only possible for the lower body parts [12]. Building upon previous
work by Huang et al. [13], we developed a new procedure to generate movement trajectories, i.e.,
positions over time, for any body part. These trajectories are then reduced into 2D heatmaps to facilitate
computer vision data augmentation and classification techniques. The heatmaps are then used as a
proxy for the IMU readings. The overall approach is illustrated in Figure 1.

Figure 1. Transforming motion sensor data inputs into corresponding trajectories for classifying
different activity types.

To evaluate the discriminative performance of the movement trajectory heatmaps in comparison to
raw IMU data, we utilized DIP-IMU, the largest IMU dataset publicly available [13]. The experimental
set-up entailed different long short-term memory (LSTM) configurations, including data augmentation.
The results obtained suggest that the use of movement trajectories does present a performance
advantage over established methods, but only for studies with small numbers of subjects. In addition,
the generated images allowed a form of differentiation and interpretation that is more accessible to
humans. As such, this work shows that sensor-based activity recognition can build upon an already
existing field like image classification. As such, the main contributions of this work are two-fold, (1) a
novel procedure to selectively track the trajectory of any body part using IMUs and further transform
it into an image for activity recognition, and (2) evaluation of the usefulness of this transformation for
HAR in data-scarce settings where privacy also plays an important role.

The remainder of this work proceeds as follows: In Section 2, the work is placed in the context of
previous research on sensor modality transformation. Section 3 describes the methodology used to
transform the raw motion data into 2D images and classify them into different activities. Section 4
presents the research findings and limitations, focusing on comparing the proposed method with
state-of-the-art solutions on inertial sensor data and further discussed in Section 5. Lastly, in Section 6,
we draw the conclusions on this work.
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2. Related Work

Studies that rely on generating a visual representation from sensor data in the context of HAR can
be categorized in three main approaches: (1) frequency spectrum transformations, (2) sensor footprint
derivation and (3) IMU trajectory for indoor localization and pose estimation.

With respect to frequency spectrum transformations, Laput et al. [14] proposed a method for
fine-grained hand activity recognition based on acceleration data obtained from a commodity-based
smartwatch. The method relied on swapping the domain from 1D acceleration data to 2D images of
time-frequency-spectral features. The classification was achieved through a variant of the VGG16 CNN
architecture [15]. They demonstrated a 95.2% classification accuracy over 25 atomic hand activities of
12 people. Similarly, Jiang et al. [16] and Ravi et al. [17] applied a short-time discrete Fourier transform
(STDFT) to time-series signals for constructing a time-frequency-spectral image. A CNN network
was then applied to the image to recognize simple daily activities, such as walking and standing.
The generated images are a visual way of representing the spectrum of frequencies of a signal as it
varies over time. In these works, even though the performance was high, this approach would likely
fail to recognize activities executed at the same pace, i.e., frequency, but with different movement
patterns. Conversely, different people might execute the same activity, but at a different pace, i.e.,
a different spectral pattern. As such, the ability of this approach to capture complex movement patterns
is limited.

When it comes to sensor footprints, Singh et al. [18] also introduced the concept of transforming
a non-visually interpretable problem domain to a visual domain to leverage the effectiveness of
pre-trained CNNs on visual data. Data were extracted from a pressure sensor to identify a person from
the footprints of individual steps among 13 people. The proposed method’s classification performance,
with an average identification rate of 78.41%, suggests that the system with a pre-trained CNN as a
feature extractor can achieve higher accuracy rates than similar raw sensor signal methods. However,
this approach relies on non-trivial sensors, such as floor surface pressure mapping, not IMUs. Such an
approach is also limited in the range of activities that could be reliably recognized, since it only covers
one body part, i.e., foot movements. Still, this work demonstrates the potential of swapping domains
to change the HAR task into an image classification.

More explicitly addressing IMU trajectory generation, current works have not analyzed HAR
directly, but rather used it for the sensor-derived trajectories to track indoor localization in a given
space, e.g., a building, when GPS is not available. These approaches often rely on placing the IMUs
on a lower body part to enable leveraging the concept of zero-velocity update [19]. Only recently,
this approach was also extended to include the IMU sensors placed on the upper body (chest) for
indoor localization [20]. However, these approaches have only limited applicability for HAR, since they
ultimately rely on subject displacement, i.e., positional change in space. As such, any activities that do
not involve a change of position in space would not be recognized.

Therefore, an approach is necessary to identify the limbs and/or other body parts’ positions,
i.e., poses, and how they change over time regardless of the subject’s spatial positioning. For this,
the essential requirement is being able to estimate such poses. Baldi et al. were able to develop an
estimator for upper-body pose using IMUs [21]. Huang et al. developed a whole-body pose estimator
with a combination of different IMUs [13]. Leveraging Huang et al.’s fully body pose estimator,
which makes it possible to capture a wide range of body poses, our approach derives 2D heatmaps by
tracking single positions and how they change over time. Therefore, our approach can then be used to
recognize complex activities regardless of the body part and/or combination.

To the best of our knowledge, this is the first work that evaluates the concept of transforming
IMUs-generated signals into trajectories for any given body part and into additional 2D heatmap
images to exploit the sophistication of image classification techniques.
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3. Methods

Our method can best be described as a series of data processing steps in a pipeline, starting
from data collection and resulting in an activity classification. The necessary steps are detailed in
Algorithm 1 and also shown in Figure 2.

Algorithm 1: IMU-based movement trajectory heatmaps for human activity recognition.

Input : S = {S1, . . . , Sm} - List of m equally sized time windows where each time window
consists of k time series of measurement values Si = {Si,1, . . . , Si,k};
A ∈ Nm×l - List of activity labels {a1, . . . , al} for each time window;
vertices = 1, . . . , r - List of vertices to track, e.g., wrist, ankle;
d ∈ N - Dimension for heatmap;
n ∈ N - Time frames in each time window

Output : Cross Validated Metrics
Procedure :

1 // Predict Movement Trajectory Heatmaps

2 Initialize SMPL ∈ Rr×n×3, T ∈ Rvertices×n×3, T′ ∈ Rvertices×n×2, H ∈ Rm×vertices×d×d

3 for i← 1 to m do
4 SMPL← PoseEstimation(Si); // Body pose using DIP from Huang et al., r = 6890
5 T ← SMPLr=vertices; // Track arbitrary vertex over time
6 T′ ← PCA(T, n_components = 2); // Generate principal components
7 Hi ← Heatmap(T′); // Crossed pixels into heatmaps → Algorithm 2
8 end for
9 // Leave-one-person-out cross-validation

10 return CrossValidate(H, A)

The pipeline describes a function f : S → A, where S is the set of time series coming from the
IMU sensors and A the activity labels, such that f (Si) is as close as possible to the actual activity
performed. To generate the mapping f from IMU sensor time series data to images, the raw sensor data
(acceleration and orientation) are first transformed to the global reference frame and then normalized
to a local state-of-the-art statistical model called the skinned multi-person linear model (SMPL) [22].
The standardized raw data are then processed by a method proposed by Huang et al. called deep
inertial poser (DIP), where six IMU signals on the wrists, knees, head and lower back are used to
estimate a full human body pose [13]. Specific vertices of the hip-rooted 3D model striking the pose
are tracked over time to form trajectories in 3D space. The windowed trajectories are flattened using
principal component analysis (PCA) before being fed into the convolutional long short-term memory
(ConvLSTM) model responsible for automatic feature extraction and classification. The entire pipeline
comprises four key stages: data collection, pose estimation, movement trajectory heatmap generation
and classification. A more detailed description for each step is provided in the following subsections.

Figure 2. Overview: Left: implementation pipeline of modality transformation from 1D IMU data for
given time windows into 3D trajectories. Middle: generating 2D heatmap images from 3D trajectories
via deep inertial poser. Right: classification with ConvLSTM.
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3.1. Experimental Setup

To examine the performance of the proposed approach, both IMU readings and the corresponding
position over time for an arbitrary point are necessary. Therefore, the number of available datasets
is limited. One dataset, which includes both and was recorded for the purpose of pose estimation,
is DIP-IMU [13]. The dataset contains approximately 90 min of real IMU data consisting of 10 (9 male,
1 female) subjects wearing 17 IMUs (Xsens sensors) for validation in 64 sequences with 330,000 time
instants. Participants were asked to repeatedly carry out motions in five different categories, including
controlled motion of the extremities (arms, legs); locomotion; and more natural full-body activities
(e.g., jumping jacks, walking). The motion categories include, in total, 13 different activities. Table 1
provides an overview of the different activities.

Table 1. Descriptions of activity labels.

Activity Description

Arm Chest
Crossings

Starting from T-pose, both arms are folded together against the chest and stretched
out again

Arm Circles either one or both arms are repeatedly circled around the shoulder forwards
or backwards

Arm Head
Crossings Starting from T-pose, both hands are brought behind the head and stretched out again

Arm Raises Starting from I-pose, one or both arms are repeatedly raised straight up to shoulder
height and afterwards lowered

Arm Stretches up Starting from a straight pose with hands up, the shoulders are touched and then
reached up again

Cross Stepping Walking sideways faced orthogonal to walking direction, each step in front of the other

Jumping Jacks Repeated jumps involving legs spreading and arms stretching out and over the head

Leg Raises One knee is repeatedly raised up to hip height and lowered again

Lunges One big step with forward shifted weight is performed and then reversed

Side Stepping Walking sideways faced orthogonal to walking direction, one foot catching up on
the other

Squats From a standing position, a sitting motion up to a knee angle of 90° is performed,
before straightening up again

Sumos Similar to squats, legs spread at a wide angle

Walking Repeated forward steps on a straight line

The proposed approach uses the pre-trained model of DIP. Hence, the sensor setup closely
resembles theirs. Six IMU sensors are placed at the locations of the wrists, knees, head and lower back.
They each measure three-axis acceleration and global orientation. Using the measured values of a
known initial calibration pose, the measured accelerations are cleaned of gravity (Equation (1)) and
the measured rotation is set into relation to the calibration and virtual bone orientation (Equation (2)).

anoG(t) = RIMU(t) · aIMU(t)− g

alocal(t) = Rcalib · anoG(t)
(1)

Rlocal(t) = Rcalib · RIMU(t) · Rbone (2)
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As a final step, the accelerations and joint rotations are normalized with respect to the pelvis
sensor location as the body root (Equation (3)), because it is the most stable location of the body and
also acts as the root of the SMPL body model.

anormalized(t) = R−1
root · (alocal(t)− aroot)

Rnormalized(t) = R−1
root · Rlocal(t)

(3)

3.2. Pose Estimation

Generating trajectories from acceleration signals has been studied thoroughly, especially for
gait analysis [23]. A reoccurring problem with sensors is the varying levels of noise that influence
measurement reliability. Theoretically, calculating the position of an arbitrary point xt provided
the acceleration of that point at is possible by numerically integrating the signal twice, as seen in
Equation (4). The variable vt denotes the velocity at time t. However, even a constant error from
noise leads to a linear error in velocity and a resulting position’s quadratic error. Hence, the error is
unbounded and drifts increasingly over time, shadowing the actual signal. In gait analysis, the problem
can be circumvented due to the periodic nature of these motions. They include short periods of zero
foot velocity when the foot is in contact with the ground. This pattern allows for precise drift error
correction. Thus, merely relative position changes from the previous step need to be calculated
through double integration of drift corrected accelerometer data. However, this does not apply
for arbitrary motions in arbitrary sensor locations. Therefore, an indirect procedure is necessary to
generate trajectories.

xt+∆t = xt + ∆t(vt + ∆t(at+∆t)) (4)

The idea is to reconstruct a 3D human pose in each time step and then generate trajectories
from it, as shown in Figure 3. In this work, we utilized DIP to estimate a full human body pose.
The body’s shape and pose are described through the SMPL model. SMPL is a realistic 3D model of
the human body that is based on skinning and blend shapes. The model can be expressed in the form
M(β, θ; Φ) : R|θ|×|β| → R3r, which maps 10 shape parameters β and 72 pose θ parameters to vertices
represented by a vector of length r = 6890. The model, M(β, θ; Φ), is then

M(β, θ) = W(T(β, θ), J(β), θ,W)

T(β, θ) = Tµ + Bs(β) + Bp(θ)

where W is a linear blend–skinning function, J a function to predict joint locations,W a set of blend
weights, Bs(β) a blend shape function, Bp(θ) a pose-dependent blend shape function and Tµ the base
pose [22].

Given the model and a training dataset D = (xi, yi)
n
i=1, the mapping function h : x→ y predicts

the SMPL pose parameters given the IMU inputs (acceleration and orientation). Huang et al. [13]
have shown on different datasets that the mapping performs best using bidirectional recurrent neural
networks (BiRNN) with LSTM cells [24]. Experiments have shown that accurate real-time pose
estimation can be generated with 5 future and 20 past frames resulting in a latency of only 85 ms [25].
Predicting the SMPL model enables tracking an arbitrary point over time.
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Figure 3. Overview: Left: IMU signals from sensors placed on a human body. Middle: a RNN takes the
IMU signals as input and predicts a full body pose from only 6 sensors. Right: the algorithm allows
selective tracking for each body part; hence it allows a point-wise trajectory generation.

3.3. Movement Trajectory Heatmaps

From the SMPL body model, virtually any vertex of the 6890 vertices of the 3D model can be
chosen and tracked over numerous frames. The model allows for immense flexibility, despite having
only six sensors for the initial data acquisition. The 3D coordinates of each frame are saved as an
n-dimensional time series for each vertex location. For further processing as images, these trajectories
are split into chunks of equal length to avoid extensive overlapping. The window size needs to be
adjusted to the motion’s nature, minimizing overlap while conserving prominent patterns. In practice,
time frames of 2.5–5 s were used.

The generated trajectories were recorded in a three-dimensional space in a sliding-window fashion.
As motions are subtle with respect to the 2D image plane, we reduced the image’s dimensionality from
3D to 2D by applying PCA. The outcomes of this were sparse images.

Creating a trajectory image like that addresses the spatial domain, but neglects temporal relations,
which might contain useful information. Hence, pixels crossed more often by the trajectory were
counted and highlighted in heatmaps, as outlined in Algorithm 2.

Algorithm 2: Heatmap generation.

Input : T′ ∈ Rn×2 - 2d data points for time window of length i = 1, . . . , n
Output : H ∈ Rd×d - 2d heatmap

1 Function Heatmap(T′):
2 Initialize X ∈ Rd×d, H = 0 // X - Equally spaced coordinate grid
3 for i← 1 to n do
4 for j← 1 to d do
5 for k← 1 to d do
6 if Xj,k < T′j,k ≤ Xj+1,k+1 then
7 Hj,k ← Hj,k + 1;
8 end if
9 end for

10 end for
11 end for
12 return H

3.4. Classification

There are two main approaches to neural networks that are appropriate for time series
classification and that have been demonstrated to perform well on activity recognition using wearable
inertial sensors [26]: CNN and RNN models. They have also proven to be very useful in challenging
computer vision problems when trained at scale for classifying objects in images. For sequential
tasks, it may be more common to use an LSTM in conjunction with a CNN in a CNN-LSTM model or
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ConvLSTM model [27], because LSTM models alone are used to leverage the capability of memory cells
to store information for later use, which is rather useful for time series prediction than classification.
In such a case, a CNN model is used to extract features from a subsequence of raw sample data.
An LSTM then interprets the outcome in aggregate [28].

For the presented approach’s comparison purposes, three different models were trained to solve
the activity classification problem. The first model is trained directly on the raw sensor data sequences
using LSTM. The second model classifies the same sequences using one-dimensional ConvLSTM.
The third model extends the second model by taking a sequence of trajectory images of fixed-length
time windows after dimensionality reduction as inputs to a two-dimensional ConvLSTM. The models
were trained on TensorFlow-GPU with Keras as the high-level API [29]. Training was performed using
the early stopping method to prevent overfitting the training data.

The network input format depends on the architecture in use. Three different formats were used:
(1) unmodified sensor data of size 300× 60 corresponding to 5 s of recording for each time window;
(2) SMPL model pose parameters of size 300× 216; and (3) the sequence of generated images using a
window size of 150, resulting in an input size of 4× 6× 64× 64. The designed LSTM model has two
LSTM hidden layers, followed by a fully connected layer to interpret the features extracted by the
LSTM hidden layer before the final output layer that was used to make the predictions. The image
ConvLSTM model was composed of two consecutive ConvLSTM layers with 16 5× 5 and 32 3× 3
filters respectively; Maxpooling layers of size 2; and successive time distributed flattening and dense
layers to interpret the extracted features over multiple time steps. As Keras does not provide a
one-dimensional ConvLSTM layer, a very similar architecture was built manually. The output of each
network is a dense softmax layer representing probabilities for each of the activity classes.

The models were trained using the efficient Adam version of stochastic gradient descent to
optimize the network [30], and the categorical cross-entropy loss function was used given that this is a
multi-class classification problem. There was only one element in the label vector, which was not zero,
resulting in a loss function of

L = −log

(
esp

∑C
j esj

)
(5)

where C denotes the set of classes, s the vector of predictions of the network and sp the prediction for
the target class.

4. Results

For the validation of the proposed method, we performed experiments using DIP-IMU. To capture
the performance power of the proposed approach against reference methods in the field of sensor-based
HAR, the following models were drawn for comparison: (1) ConvLSTM and (2) LSTM on the sensor
signal; (3) ConvLSTM and (4) LSTM on the SMPL model; ConvLSTM on the generated images (5)
without and (6) with DA. The accuracy for the considered cases is plotted in Figure 4 over subsets
of the data with different sizes. The leave-one-person-out cross-validation evaluation scheme was
adopted to evaluate the approaches.

The results show that the ConvLSTM model using heatmap images as inputs consistently achieves
higher accuracy levels than LSTM on the raw sensor signal. To account for bias from the SMPL
feature extraction, another LSTM model based on the SMPL body parameters was trained, yielding
accuracy below the proposed ConvLSTM model using heatmap images. Looking at the results of the
one-dimensional ConvLSTM on the raw sensor signal, training on the full dataset yields the highest
classification accuracy of 90.6% but underperforms image ConvLSTM for smaller subsets of subjects.

One benefit of taking a detour off the generated heatmap images from trajectories is the possibility
of image manipulation to virtually increase the amount of data available. The effects of the application
of DA to the DIP-IMU dataset such as flipping and rotating, do not significantly benefit us in terms of
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absolute accuracy. However, it tends to have smaller confidence intervals for its predictions, promising
more stable results, as can be seen from the data in Table 2.

Figure 4. Model performance on DIP-IMU data over varying numbers of subjects on all 6 IMU
signal inputs.

Table 2. Accuracy comparison of methods on DIP-IMU dataset with all 10 subjects.

Input Modality
Accuracy

Classifier

Raw Sensor Data
(1) ConvLSTM 90.59 (±1.55)
(2) LSTM 82.70 (±2.43)

SMPL Parameters
(3) ConvLSTM 83.89 (±2.24)
(4) LSTM 84.12 (±2.01)

Trajectory Images
(5) ConvLSTM 85.11 (±8.29)
(6) Augmented ConvLSTM 86.23 (±2.59)

By taking a closer look at the prediction results of the models in Figure 5a,b, certain patterns can
be identified. In general, all models have difficulties predicting certain individual classes. For example,
the “cross stepping” activity is one of the worst-performing for both approaches, most often confused
with “side stepping”, a very similar motion. Additionally, “squats” and “sumo squats” are often
confused with “leg raises” by the image ConvLSTM model. Another interesting pattern is that
detecting “arm chest crossing” seems to work badly on both ConvLSTM models compared to the
sensor LSTM model. Despite the similarity to the “arm head crossing” activity, the raw sensor data
LSTM predicts this activity with 90% accuracy, whereas ConvLSTM predicts at least 20% of the samples
incorrectly. The next chapter moves on to discuss these findings.
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(a)

(b)

Figure 5. Normalized confusion matrix of activity recognition for the whole dataset with (a) ConvLSTM
model on raw sensor signal and (b) ConvLSTM model on images (rows: ground-truth classes; columns:
estimated classes). No value listed equals 0. Action list: (0) arm chest crossings; (1) arm circles; (2) arm
head crossings; (3) arm raises; (4) arm stretches up; (5) cross stepping; (6) jumping jacks; (7) leg raises;
(8) lunges; (9) side stepping; (10) squats; (11) sumo squats; and (12) walking.

5. Discussion

This study assessed the importance of trajectory image classification over the direct classification
of motion sensor signals. The most prominent finding to emerge from the analysis is that image
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ConvLSTM performs best on a smaller subset of subjects but then plateaus, while ConvLSTM on the
raw sensor signal rises steadily for more subjects. The finding implies that the pose prediction as a
preprocessing step reduces noise and extracts features allowing for early generalization. As the number
of data increases, complex models learn to generalize better from self-learned features. The lower
asymptote of the presented method is likely due to missing information that gets lost within the pose
prediction, such as global coordinate system reference and rooting the model at the hip.

The outcome also implies that the predicted poses could be the reason for achieving higher
accuracy for small subject numbers. Therefore, both an LSTM and a one-dimensional ConvLSTM
model based on the SMPL body pose parameters were trained, which yielded worse accuracy rates in
comparison with the ConvLSTM model on the heatmap images, but performed better than the raw
sensor-based LSTM. This suggests that both pose estimation and ConvLSTM classification of images
contribute to the final result independently of each other.

To evaluate the method on a smaller sensor setup, for example, a single smartwatch, another set
of models was trained using only the right wrist sensor as an input. In the process, the SMPL pose
prediction failed to accurately predict body limb positioning, leading to uncharacteristic trajectories and
poor classification results. Both models trained on the raw sensor data outperformed the ConvLSTM
image classification significantly. However, a perfect sensor, simulated by using the predicted pose of
all six sensors and then only feeding the right wrist trajectories, could achieve better results for the
ConvLSTM image classification compared to the raw sensor data. The results are set out in Figure 6.
On the other hand, this may also be due to the fact that the information encoded in the right wrist
movements of the body model includes influences of the other sensors introduced by the DIP network.

Figure 6. Model performance on DIP-IMU data for a varying number of subjects on 1 IMU signal input.

The confusion of some activities like “squats” and “sumo squats” with “leg raises” by the image
ConvLSTM model was likely due to the hip-rooting of the SMPL body model, resulting in similar leg
raising motions for each of the three activities. Contrary to expectations, the classification accuracy
for “arm chest crossing” with LSTM on sensor data was much higher as compared to ConvLSTM
for both input types, sensor data and images. This discrepancy could be attributed to the higher
spatial correlations of similar movements, such as “arm head crossings”, which is discriminated by
the convolutional layers, whereas LSTM predictions are more suited to capture more long-range
information. Other common confusions mainly allude to similar movements of body parts during the
different activities, activity overlap inside one sample window and pauses between the activities.
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Overall, these results indicate that images are more accessible for human interpretation of the
achieved results. For example, taking a closer look at the images generated for the activities “arm circles”
and “arm raises”, displayed in Figure 7, which are just a small subsample of the whole sequence on the
right wrist, the values of the confusion matrix in Figure 5a indicate good performance. Additionally, the
human eye can perceive more detail and make a better distinction between the different movements.
On the other hand, images of the activities “squats” and “sumo squats”, which did not perform
well, are also confusing for the human eye, since the movements seem slight variations in a planar
representation. While IMU-based time series data leave no room for interpretation, motion-based
trajectory images are well suited for explaining particular classification behavior.

Figure 7. Examples of heatmaps for a generated trajectory of the right wrist for each class of activity.

Limitations

The proposed method is mainly limited by the complex sensor setup that it requires. As of
now, image classification with only one sensor is insufficient for most tasks. All six sensors have to
be applied in a specific order to achieve acceptable and competitive prediction accuracy, even for
single handed activities. Permanently wearing six IMU sensors (e.g., sewed into workwear) requires
substantially more planning and resources than merely wearing a smartwatch or carrying a smartphone.
Furthermore, slightly different sensor setups or using sensors from a different manufacturer could
require extensive transfer learning from the original synthetic Archive of Motion Capture as Surface
Shapes (AMASS) dataset [31]. Gathering high-quality ground truth data using motion capture or a
Kinect camera may not be feasible. Optical motion capture provides the most accurate ground truth;
it requires a full camera and marker setup. A sensor with less noise and drift or a better pose estimator
could help overcome this limitation in theory.

Another limitation of using trajectory images is the loss of the time domain. Using heatmaps
adds frequency information to the location, yet direction and speed are lost from the original data.
The influence of this limitation enormously varies with the type of activities that have to be classified.

Both an advantage and a disadvantage of the method is the ability to manually select the vertices
on the SMPL body model for which the trajectories will be generated. The experiment presented in
this work used the sensor locations as key intuitive points to track. However, this choice is arbitrary,
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and an optimal choice may not be intuitively guessed. The vertex choice should also consider the main
body parts involved in the targeted activities.

6. Conclusions and Future Work

The current study’s main goal was to determine the classification power of human motion
from images generated from IMU readings. The investigation showed that this data transformation
improved HAR classification accuracy compared to the state-of-the-art methods for relatively small
datasets. However, it fails to maintain competitive accuracy for more subjects in the wake of
information loss during feature engineering. Overall, this study strengthens the idea of transforming
data into a different research domain to use multidisciplinary techniques. The results contribute to the
rapidly expanding field of digital health, where most of the studies conducted are still small regarding
the number of subjects. Additionally, the types of possibly deployable devices are limited due to
regulatory and privacy concerns. This is the first study that examines associations between IMU
readings and corresponding trajectory images for HAR on any body part to the best of our knowledge.
These findings contribute in several ways to our understanding of classification methodology and
provide a basis for visual interpretation of motion.

Further research might explore the impacts of pre-trained models, such as the ones trained on the
Modified National Institute of Standards and Technology (MNIST) handwritten dataset [32], which
seems like a good fit compared to our generated images. Future research might also apply noise
reduction techniques for IMUs to improve the signal-to-noise ratio, as suggested in [33]. This could
help overcome the complex experimental setup. In addition, the optimal sensor location might prove
an important area for future research. Beyond that, 3D image classification’s effectiveness instead of 2D
images with concomitant loss of information could also be investigated in more depth. A hybrid model
is recommended to ensure higher accuracy for both settings, fewer subjects and wealth information
utilization with more subjects. Hence, two submodels for feature extraction in both strands, IMU and
image, can be created to make full use of each classification strength.
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