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A Note on

Testing the Copula Based on
Densities
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Abstract

We consider the problem of testing whether the density of a mul-
tivariate random variable can be expressed by a prespecified copula
function and the marginal densities. The proposed test procedure
is based on the asymptotic normality of the properly standardized
integrated squared distance between a multivariate kernel density es-
timator and an estimator of its expectation under the hypothesis. The
test of independence is a special case of this approach.
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1 Introduction and Notation

Let X be a Rd-valued random vector with distribution function H and density
function h. The marginal distribution functions and the marginal densities
are denoted by Fj and fj, respectively. With F (x) := (F1(x1), . . . , Fd(xd))

T ,
x = (x1, . . . , xd)

T we can write

H(x) = C(F (x)),

where C is the d-dimensional copula. Assume that C is differentiable with
derivative

c(u) =
∂dC(u1, . . . , ud)

∂u1 · · · ∂ud

u ∈ [0, 1]d.

Then the joint density h has the form

h(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd).

At first we consider the simple hypothesis that the function c has a specific
form, say c0. That is we have to test

H0 : c = c0 versus H1 : c 6= c0. (1)

Note that these are a nonparametric hypothesis and a nonparametric alter-
native, since the marginal distributions are not parameterized by a finite
dimensional parameter. Furthermore, choosing C0(u1, . . . , ud) = u1 · · · ud,
and c0(u) = 1 we get the problem of testing independence, which is consid-
ered by several authors, for example Rosenblatt (1975) and Liero (2003).
The simple hypothesis can be extended to test whether the copula function
belongs to a parametric class of copulas C = {C(·, θ), θ ∈ Θ ⊂ Rq}. For this
problem Liebscher (2006) proposes goodness-of-fit tests based on estimates
for the distribution function. In a further paper we will consider tests based
on densities for this test problem.

Our test procedure is based on a weighted quadratic distance between a non-
parametric kernel estimator for the density h and the smoothed hypothesis.
Let X1, . . . , Xn with X i = (X1i, . . . , Xdi)

T be i.i.d. copies of X. The kernel
estimator for the density h is defined by

ĥn(x) =
1

nbd
n

n∑
i=1

K

(
x1 −X1i

bn

, · · · , xd −Xdi

bn

)
=:

1

n

n∑
i=1

Kbn(x−X i),
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where K is a kernel function mapping from Rd into R, and bn is a sequence
of bandwidths tending to zero as n tends to infinity.
It is well-known that the kernel density estimator has a bias. To avoid this
bias in the test procedure we will compare ĥn not with the hypothetical
density

c0(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd) = c0(F (x))
d∏

j=1

fj(xj)

but with the estimated expectation of ĥn, where the expectation is taken
under the null hypothesis. This expectation is given by

E0ĥn(x) =

∫
Kbn(x−z) h(z) dz =

∫
Kbn(x−z) c0(F (z)) f1(z1) · · · fd(zd) dz.

To explain our estimation method assume for a moment that F is known.
Then an unbiased estimator for the expectation E0ĥn is

en0(x) =
(n− d)!

n!

∑
i

Kbn(x1 −X1i1 , . . . , xd −Xdid) c0(F (X1i1 , . . . , Xdid))

where the summation is taken over all vectors i = (i1, . . . , id) with ij ∈
{1, . . . , n} and ij 6= ij′ for j 6= j′. Note that this estimator has the form of a
U -statistic.
Of course, F is unknown - we replace it by its empirical version. Thus, finally,
we estimate the hypothetical expectation by

ên0(x) =
(n− d)!

n!

∑
i

Kbn(x1−X1i1 , . . . , xd−Xdid) c0(F̂1n(X1i1), . . . , F̂dn(Xdid)),

where F̂jn is the empirical marginal distribution of the j-th component.
As test statistic we propose the weighted integrated squared error

Q̂n0 =

∫ (
ĥn(x) − ên0(x)

)2

w(x) dx,

where the weight function w is introduced to control the region of integration.
It has to be chosen by the statistician. In the following section we will
present a theorem stating the asymptotic normality of the standardized Q̂n0.
Applying this theorem we get an asymptotic α-test by the rule: Reject H0,
if

Q̂n0 ≥ zα σ̂n0

nb
d/2
n

+ µ̂n0. (2)
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Here µ̂n0 and σ̂2
n0 are suitable estimators for the standardizing terms in the

limit theorem given below, and zα is the (1 − α)-quantile of the standard
normal distribution.

2 Limit theorem for the quadratic distance

Before we will state the limit theorem let us formulate the assumptions:

(A1) The density h of X has the form

h(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd)

and is Lipschitz continuous in x.

(A2) The kernel K, K : Rd → R, is a Lipschitz continuous density function
with finite support.

(A3) The weight function w is nonnegative, piecewise continuous and bounded
on Rd

(A4) The bandwidth sequence satisfies:

bn > 0, bn → 0 and nbd
n →∞.

Since we will present the limit statement not only under the null hypothesis
set

Qn =

∫ (
ĥn(x) − en(x)

)2

w(x) dx,

with

en(x) =
(n− d)!

n!

∑
i

Kbn(x1 −X1i1 , . . . , xd −Xdid) c(F (X1i1 , . . . , Xdid)),

and define

µn = (nbd
n)−1µ1n − (nbn)−1µ2n

with

µ1n =

∫
Ωn(t) w(t) dt Ωn(t) =

∫
K2(x)h(t− xbn) dx
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and

µ2n =
d∑

r=1

∫
Ωrn(t) w(t) dt

where

Ωrn(t)

=

∫
K(x)K(u1, . . . , ur−1, xr, ur+1, . . . , ud)h(t− xbn)

× c(F (t1 − u1bn, . . . , tr−1 − ur−1bn, tr − xrbn, tr+1 − ur+1bn, . . . , td − udbn)

×
d∏

j=1
j 6=r

fj(tj − ujbn) dx1 · · · dxd du1 · · · dur−1 dur+1 · · · dud

and

σ2 = 2

∫
h2(t) w2(t) dt

∫
(κ∗(z))2 dz, κ∗(z) =

∫
K(u)K(z + u) du.

Theorem 2.1 Suppose that (A1) - (A4) are satisfied. Then

nb
d/2
n

σ
( Qn − µn)

D−→ N(0, 1).

Since the empirical distribution functions F̂jn are
√

n-consistent, the limit
statement remains true if we replace en by

ên(x) =
(n− d)!

n!

∑
i

Kbn(x1−X1i1 , . . . , xd−Xdid) c(F̂1n(X1i1), . . . , F̂dn(Xdid)).

For

Q̂n =

∫ (
ĥn(t) − ên(t)

)2

w(t) dt,

we obtain the following corollary:

Corollary 1 Under the assumptions of Theorem 2.1 we have

nb
d/2
n

σ

(
Q̂n − µn

) D−→ N(0, 1).
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To apply this limit statement to the test problem we have to estimate the
standardizing terms µn and σ2. Note that

Ωn(t) =
1

bd
n

∫
K2

(
t− x

bn

)
h(x) dx =

1

bd
n

EK2

(
t−X1

bn

)
,

thus an unbiased estimator for Ωn is given by

Ω̂n(t) =
1

nbd
n

n∑
i=1

K2

(
t−X i

bn

)
.

For the term Ωrn we obtain

Ωrn(t) =
1

b2d−1
n

EK

(
t−Xr

bn

)
K

(
t1 −X11

bn

, · · · , td −Xdd

bn

)
c(F (X11, . . . , Xdd))

and an unbiased estimator is given by

(n− d)!

n!b2d−1
n

∑
i

K

(
t−X ir

bn

)
K

(
t1 −X1i1

bn

, · · · , td −Xdid

bn

)
c(F (X1i1 , . . . , Xdid)),

so we estimate Ωrn by

Ω̂rn(t)

=
(n− d)!

n!b2d−1
n

∑
i

K

(
t−X ir

bn

)
K

(
t1 −X1i1

bn

, · · · , td −Xdid

bn

)
c(F̂n(X1i1 , . . . , Xdid)).

So, finally we set

µ̂n = (nbd
n)−1

∫
Ω̂n(t) w(t) dt − (nbn)−1

d∑
r=1

∫
Ω̂rn(t) w(t) dt.

These estimators are
√

n-consistent. Since it is enough to estimate the vari-
ance consistently, we replace σ2 by

σ̂2
n = 2

∫
ĥ2

n(t) w2(t) dt

∫
(κ∗(z))2 dz.

The statement that an asymptotic α-test is given by (2) is a consequence of
the following corollary.

Corollary 2 Under the assumptions of Theorem 2.1 we have

nb
d/2
n

σ̂n

(
Q̂n − µ̂n

) D−→ N(0, 1).
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3 Testing independence of two random vari-

ables

Consider the case d = 2. The problem of testing independence of the compo-
nents of the vector X = (X1, X2) is equivalent to the test problem (1) with
c0(u1, u2) = 1. Let us estimate the density h by a kernel density estimator
with product kernel, i.e. we set

K(x1, x2) = K1(x1) ·K2(x2).

Applying the proposed procedure we obtain (with a slight modification) the
following test: Reject the hypothesis of independence if

În ≥ zα σ̂I
n

nbn

+ µ̂I
n (3)

where

În =

∫ (
ĥn(t1, t2) − f̂1n(t1) · f̂2n(t2)

)2

w(t1, t2) dt1 dt2

and f̂1n and f̂2n are the kernel estimators of the marginal densities:

f̂1n(t1) =
1

nbn

n∑
i=1

K1

(
t1 −X1i

bn

)
f̂2n(t2) =

1

nbn

n∑
i=1

K2

(
t2 −X2i

bn

)
.

The terms ΩI
n and ΩI

rn, r = 1, 2 are given by

ΩI
n(t1, t2) =

1

b2
n

∫
K2

1

(
t1 − x1

bn

)
K2

2

(
t2 − x2

bn

)
f1(x1)f2(x2) dx1 dx2

=
1

b2
n

EK2
1

(
t1 −X11

bn

)
K2

2

(
t1 −X21

bn

)

=
1

bn

EK2
1

(
t1 −X11

bn

)
1

bn

EK2
2

(
t1 −X21

bn

)
,

ΩI
1n(t1, t2) =

1

b2
n

EK2
1

(
t1 −X11

bn

)
K2

(
t2 −X21

bn

)
1

bn

K2

(
t2 −X22

bn

)

=
1

bn

EK2
1

(
t1 −X11

bn

) (
Ef̂2n(t2)

)2
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and

ΩI
2n(t1, t2) =

1

b2
n

EK1

(
t1 −X11

bn

)
K2

2

(
t2 −X21

bn

)
1

bn

K1

(
t1 −X12

bn

)

=
1

bn

EK2
2

(
t2 −X21

bn

) (
Ef̂1n(t1)

)2

respectively. These terms can be estimated by

Ω̂I
n(t1, t2) =

1

nb2
n

n∑
i=1

K2
1

(
t1 −X1i

bn

)
K2

2

(
t2 −X2i

bn

)
.

and

Ω̂I
1n(t1, t2) =

1

nb2
n

n∑
i=1

K2
1

(
t1 −X1i

bn

)
K2

(
t2 −X2i

bn

)
f̂2n(t2)

Ω̂I
2n(t1, t2) =

1

nb2
n

n∑
i=1

K1

(
t1 −X1i

bn

)
K2

2

(
t2 −X2i

bn

)
f̂1n(t1)

leading finally to

µ̂I
n = (nb2

n)−1

∫
Ω̂I

n(t1, t2) w(t1, t2) dt1 dt2

− (nbn)−1

∫ (
Ω̂I

1n(t1, t2) + Ω̂I
2n(t1, t2)

)
w(t1, t2) dt1 dt2.

The variance is estimated by

σ̂I2
n = 2

∫
f̂ 2

1n(t1)f̂
2
2n(t2) w2(t1, t2) dt1 dt2

∫
(κ∗1(z))2 dz

∫
(κ∗2(z))2 dz.

Remark: A test for independence based on kernel densities was already
considered by Rosenblatt (1975). But the approach given here differs from
that proposed by Rosenblatt. He replaced the Ωn’s in the standardizing terms
by their asymptotic expressions, then choosing the weight function w(t1, t2) =
(f1(t1)f2(t2))

−1 the standardizing terms become independent of the unknown
underlying marginal densities. The weight function in the quadratic distance
In is then estimated by (f̂1nf̂2n)−1. Note that this approach requires stronger
conditions on the smoothness of the densities and on the asymptotic behavior
of the bandwidth sequence to ensure that the limit statement remains valid
with these plug ins.

8



4 Proofs

The proof of Theorem 1 goes along the lines of the proof of the limit the-
orem for the integrated square error of multivariate nonparametric density
estimators given by P. Hall (1984). The main difference is that we have here
only the stochastic part of this deviation. For details of this approach see
Liero (1999). Furthermore, in the model considered here we give a further
term for the expectation of the integrated difference

E

∫ (
ĥn(x) − en(x)

)2

w(x) dx,

namely the term (nbn)−1µ2n.
The statements of the corollaries follows immediately, since the unknown
terms are replaced by

√
n-consistent estimators. Since n−1 tends zero faster

than the normalizing sequence in the limit statement nb
d/2
n converges to in-

finity the estimation error vanishes.
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