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UNIVERSITÄT POTSDAM

Abstract
Institut für Physik und Astronomie

Doctor of Philosophy

Synchronization of Coupled Phase Oscillators — Theory and Modelling

by Chen Gong

Oscillatory systems under weak coupling can be described by the Kuramoto model of
phase oscillators. Kuramoto phase oscillators have diverse applications ranging from
phenomena such as communication between neurons and collective influences of po-
litical opinions, to engineered systems such as Josephson Junctions and synchronized
electric power grids. This thesis includes the author’s contribution to the theoretical
framework of coupled Kuramoto oscillators and to the understanding of non-trivial
N-body dynamical systems via their reduced mean-field dynamics.

The main content of this thesis is composed of four parts. First, a partially in-
tegrable theory of globally coupled identical Kuramoto oscillators is extended to in-
clude pure higher-mode coupling. The extended theory is then applied to a non-trivial
higher-mode coupled model, which has been found to exhibit asymmetric clustering.
Using the developed theory, we could predict a number of features of the asymmetric
clustering with only information of the initial state provided.

The second part consists of an iterated discrete-map approach to simulate phase
dynamics. The proposed map — a Möbius map — not only provides fast computa-
tion of phase synchronization, it also precisely reflects the underlying group structure
of the dynamics. We then compare the iterated-map dynamics and various analo-
gous continuous-time dynamics. We are able to replicate known phenomena such as
the synchronization transition of the Kuramoto-Sakaguchi model of oscillators with
distributed natural frequencies, and chimera states for identical oscillators under non-
local coupling.

The third part entails a particular model of repulsively coupled identical Kuramoto-
Sakaguchi oscillators under common random forcing, which can be shown to be par-
tially integrable. Via both numerical simulations and theoretical analysis, we deter-
mine that such a model cannot exhibit stationary multi-cluster states, contrary to the
numerical findings in previous literature. Through further investigation, we find that
the multi-clustering states reported previously occur due to the accumulation of dis-
cretization errors inherent in the integration algorithms, which introduce higher-mode
couplings into the model. As a result, the partial integrability condition is violated.

Lastly, we derive the microscopic cross-correlation of globally coupled non-identical
Kuramoto oscillators under common fluctuating forcing. The effect of correlation
arises naturally in finite populations, due to the non-trivial fluctuations of the mean-
field. In an idealized model, we approximate the finite-sized fluctuation by a Gaussian
white noise. The analytical approximation qualitatively matches the measurements
in numerical experiments, however, due to other periodic components inherent in the
fluctuations of the mean-field there still exist significant inconsistencies.

HTTPS://WWW.UNI-POTSDAM.DE/
http://www.physik.uni-potsdam.de/index.php
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Zusammenfassung

Oszillatorische Systeme unter schwacher Kopplung können durch das Kuramoto-
Modell beschrieben werden. Kuramoto-Phasenoszillatoren besitzen eine Vielzahl von
Modellanwendungsfällen von der Kommunikation zwischen Nervenzellen bis zu kollek-
tiven Einflüssen auf die politische Meinungsbildung sowie ingenieurwissenschaftlichen
Anwendungen wie Josephson-Kontakten und synchronisierten elektrischen Übertra-
gungsnetzen. In dieser Dissertation werden die Beiträge der Autorin zur Theorie der
Kuramoto-Oszillatorensysteme und zum Verständnis nichttrivialer dynamischer N-
Körpersysteme durch die Analyse ihrer reduzierten Mittelfelddynamik zusammenge-
fasst.

Der Hauptinhalt dieser Dissertation umfasst vier Teile: Zuerst wird eine teilweise
integrable Theorie global gekoppelter, identischer Kuramoto-Oszillatoren so erweit-
ert, dass sie auch den Fall reiner Phasenkopplung höherer Ordnung umfasst. Die
erweiterte Theorie wird anschließend auf ein nichttriviales Modell mit harmonischer
Kopplung höherer Ordnung angewendet, welches asymmetrisches Clustering aufweist.
Die Theorie sagt rein auf Basis der Anfangssystembedingungen einige Eigenschaften
des asymmetrischen Clustering erfolgreich voraus.

Im zweiten Teil wird die Phasendynamik von Kuramoto-Oszillatoren mithilfe einer
iterierten diskreten Abbildung simuliert. Diese Abbildung – eine Möbius-Abbildung –
erlaubt nicht nur eine schnelle Berechnung der Phasensynchronisation sondern spiegelt
die zugrundeliegende Gruppenstruktur der Phasendynamik auch exakt wieder. Die
Dynamik der iterierten Abbildung wird mit verschiedenen analogen Dynamiken mit
kontinuierlicher Zeitachse verglichen. Hierbei werden bekannte Phänomene, wie etwa
der Phasenübergang im Kuramoto-Sakaguchi-Oszillatormodell mit einer Verteilung
der natürlichen Frequenzen und “Chimärenzustände” (chimera states) bei identischen
Oszillatoren nichtlokalen Kopplungstypen, repliziert.

Im dritten Teil wird ein Modell von repulsiv gekoppelten, identischen, gemeinsam
stochastisch getriebenen Kuramoto-Sakaguchi-Oszillatoren beschrieben, dass teilweise
integrabel ist. Sowohl durch numerische Simulationen als auch theoretische Analyse
wird gezeigt, dass dieses Modell keine stationären Multi-Cluster-Zustände einnehmen
kann, was den Ergebnissen anderer numerischer Studien in der Literatur widerspricht.
Durch eine weitergehende Analyse wird gezeigt, dass das scheinbare Auftreten von
Multi-Cluster-Zuständen der Akkumulation von inhärenten Diskretisierungsfehlern
der verwendeten Integrationsalgorithmen zuzuschreiben ist, welche demModell Phasen-
kopplungen höher Ordnung hinzufügen. Als Resultat dieser Effekte wird die Bedin-
gung der teilweisen Integrabilität verletzt.

Zuletzt wird die mikroskopische Kreuzkorrelation zwischen global gekoppelten,
nicht identischen gemeinsam fluktuierend getriebenen Kuramoto-Oszillatoren herge-
leitet. Der Korrelationseffekt entsteht auf natürliche Art und Weise in endlichen
Populationen aufgrund der nichttrivialen Fluktuation des Mittelfelds. Die endliche
Fluktuation wird in einem idealisierten Modell mittels gaußschem weißem Rauschen
approximiert. Die analytische Annährung stimmt mit den Ergebnissen numerischer
Simulationen gut überein, die inhärenten periodischen Komponenten der Fluktuation
des Mittelfels verursachen allerdings trotzdem signifikante Inkonsistenzen.
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ñ ñ = 0, 1, 2, . . . , l − 1
∆t small time interval
ψS singular value of the constant of motion in mapMl

ϕS the oscillator phase in the original space transformed from
singular value ψS

ϕS1, ϕS2 two basin boundaries of second-order harmonic coupled model
N1 number of oscillators in cluster 1
θ̄ tracer phases for visualizing flow
θ̄S1, θ̄S2 tracers in numerical simulations which mark the basin

boundaries
Tsync time till synchronization is reached in numerical simulations
ε general small number/ general perturbation strength
h time step in numerical integration
p discrete probability of R value at steady state in Z2-model

simulation

Chapter 4
S1 unit circle
D open unit disk
z̄ complex number inside closed unit disk
Rχ(z̄) rotational map, χ the rotation number
Cq(z̄) contractional map in the direction of arg(q), degree of contraction



xiv

indicated by |q|, q a complex map parameter
z, zj complex exponential of the phase exp(iϕ), exp(iϕj)
Mq,χ Möbius group,Mq,χ = Cq ◦ Rχ
q = ρ̄ exp(iϑ̄), χ parameters of Möbius groupMq,χ

x(n) n-th discrete value in a sequence
n discrete time index, n = 0, 1, 2, . . .
z̄1, z̄2 two fixed points of the single-sequence iterated Möbius

map dynamics
κ, φ̄, d ansatz parameters for the fixed points z̄1, z̄2

Ψ̄ Möbius map rotation number
Q,Ξ Möbius group parameters
µ phase probability density
µ0 uniform phase probability density on a circle
µQ transformed phase probability density by CQ
[[]] functional transformation of the density of phases

via Ruelle-Perron-Frobenius operator
k̃ Fourier mode number
λ,A, β parameters of Adler equation
τ kick-time interval
Kλ,V,β kick map for Adler equation with time-varying parameters
σ,Γ spurious parameters of the kick map, σ =

√
1− λ2,

Γ = tanh
(
Aτ
2 σ
)

V cumulative impulse of time-varying force over kick
interval

T inter-kick interval
µQ(ω) phase density for a given frequency ω
ω̄ mean natural frequency of an ensemble of non-identical

oscillators (oscillators with distributed natural
frequencies)

γ scale parameter of the Lorentzian natural frequency
distribution

R̃ Kuramoto mean-field after kick (but before free rotation)
a0, b0 general homographic map parameters
G̃, H̃ short hand notations in the homographic map form of Möbius map
ε0, ε1, ε2 several bifurcation points for coupling strengths
p̃ relative strengths of intra- and inter-population couplings

of two populations of identical oscillators
Z1, Z2 Kuramoto mean-fields of two populations
N̄1, N̄2 sizes of two populations of identical oscillators
z1,j , z2,j complex exponential of the phases in two populations,

z1,j = exp(iϕ1,j), z2,j = exp(iϕ2,j)

Y1e
iΨ̃1 , Y2e

iΨ̃2 forces acting on all oscillators in population 1 and 2
x̄ coordinate on a ring
g̃jk kernel function for oscillator pair j, k
B̃ cosine kernel function parameter
Uj = R̄je

iΘ̄j the field acting on oscillator j in ring chimera
r̃ parameter for the initialization of phases in the

Kuramoto-Battogtokh ring chimera example
L length of the square distance kernel



xv

Chapter 5
η1, η2, η3 scalar Gaussian random variables
σ1, σ2, σ3 noise strengths
δ Dirac delta function
ξ(t) = r(t)eiθ(t) isotropic complex Gaussian random variable
M̃ number of clusters
m̃ cluster index
Φ̃m̃ the phase of the m̃-th cluster
U Lyapunov potential
Cj constant of motion in the form of cross ratio (MMS)

Ujj′ Ujj′ = sin
ϕj−ϕ′j

2
ej numerical error for integrating j-th oscillator dynamics

as assessed by the conservation of the cross ratio (MMS)
ErrWS(t) maximum numerical error made in integrating N

oscillators using WS constants
ErrMMS(t) maximum numerical error made in integrating N oscillators

using MMS cross ratios
λ̄ transversal Lyapunov exponent
p1, p2 relative sizes of the two clusters
∆Φ̃ ∆Φ̃ = Φ̃2 − Φ̃1

δ̃ small perturbation away from the cluster
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Chapter 1

Motivation and Background

Phase synchronization is a fascinating topic where mathematical theories meet with
important practical problems of our age. How do neurons in the brain communicate
with each other? How do coupled generators in a power grid maintain their collective
stability? How does political consensus form through collective influences of different
opinions? Surprisingly, these are all questions that can be addressed to various degrees
of sophistication via simple models of coupled oscillators. These models describe how
oscillators influence each other, and sometimes also under external influences. Notably,
one of the models — the Kuramoto model, describes oscillators coupled via a special
sinusoidal function of their phases, which simplifies their mathematical descriptions
in surprising ways.

Sinusoidal coupling of oscillators, as a theoretical framework has existed for more
than 40 years at the time of the writing of this thesis, after the first conception of
Yushiki Kuramoto in 1975 [Kur75]. Since then, a plethora of literature has been
dedicated to the theoretical treatment, extension and numerical modelling of these
sinusoidally coupled oscillators. Successful advances in studying the stability of the
phase transition of the original Kuramoto model and other extended models have
been made, and so have the discovery of new exotic states of synchrony. This thesis
concerns itself with some of these existing models, which are mostly centered around
the reduced mean-field dynamics of high-dimensional dynamics. Specifically, we study
the partial integrability property of sinusoidally coupled globally connected oscillators
of identical frequencies and the underlying Möbius group properties.

The structure of the thesis is as follows. In the introductory chapter, first we
discuss the motivation of the thesis from an applied as well as a theoretical point of
view (Sec. 1.1). We review the empirical motivation for studying synchronization, and
specifically the Kuramoto model as a simplified model for synchronization phenomena
in the natural world and in experiments. From the point of view of engineering and
applied sciences, the Kuramoto model can be used as a computational tool for machine
learning (Sec. 1.1.1). To give a historical context, we review existing literature on the
development of the field of dynamical systems, as well as on the more specific sub-field
of the theory of phase synchronization (Sec. 1.1.2). Lastly, we tie the content of the
thesis to an existing larger theoretical framework in Sec. 1.2.

In the following chapters, we first present a more technical introduction, containing
the historical development and theoretical background of the research topics presented
here (Ch. 2). This detailed introduction serves to make this thesis more or less self-
contained with minimal pre-knowledge on the subject, and also to emphasize various
otherwise easily-confused concepts for readers not used to the terminologies in the
particular discipline of phase synchronization.

Ch. 3 introduces the first main research topic — the partially integrable model of
sinusoidally coupled identical phase oscillators on an all-to-all network. We first intro-
duce the first-order sinusoidally coupled model, which has been shown to be partially
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integrable by Watanabe and Strogatz, and then extend it to higher-mode coupled
models. In Ch. 5 we add common noise to a first-order sinusoidally coupled model,
and find that even with common noise, the system remains partially integrable, with
conserved quantities forbidding the formations of synchronized clusters. Motivated
by the underlying group structure of the Kuramoto-type dynamics, we developed
a numerical method of integrating sinusoidally coupled phase dynamics via iterated
Möbius maps on a circle (Ch. 4). Last but not the least, in collaboration with Dr.
Franziska Peter, we studied an ensemble of oscillators with distributed natural fre-
quencies and the role of the finite-sized fluctuation of the mean-field on the otherwise
completely incoherent sub-population (Ch. 6).

Appendices include longer derivations that otherwise would disrupt the flow of the
main text. Some passages of this thesis have been quoted verbatim from the following
sources published by the author: [Gon+19; GP19; GTP20].

1.1 Motivation and Literature Review

The motivations for this doctoral thesis are twofold, one is from the perspective of
applications and the explanation of real-world phenomena, and a second one from the
perspective of the extension and addition to an existing pure theoretical framework.

1.1.1 Applications in Engineering, Applied Sciences and as a Com-
putational Tool

The Kuramoto model of globally coupled oscillators has been a standard tool used
by diverse scientific communities, particularly within the fields of nonlinear dynamics,
computational neuroscience and network science to describe synchronization transi-
tion in ensembles of interacting oscillatory sub-systems. It can be directly applied
after justifiable phase reduction of the original system — reducing the state of every
sub-system to a one-dimensional description by an angle. Despite its mathematical
simplicity, the Kuramoto model captures the essential characteristics of synchroniza-
tion phenomena.

The synchronization phenomenon is ubiquitous in nature. Male fireflies synchro-
nize their flashings to attract their mates [Buc88]. Crickets chant in synchrony [Wal69;
GR93; Har+05]. Neurons fire in the brains of humans and animals in synchronous
pattern as an information processing strategy [Ste+00; Fri15]. The human heart’s
pacemaker cells synchronize to generate pumping rhythms to circulate the blood
throughout the body [Yan+14]. Plant cells in vitro have been observed to synchronize
their cell division and differentiation cycles [FK79]. Birds and fish flock in synchro-
nized motion across the sky and the sea [SW13]. Even on a macroscopic human level,
we can observe the dramatic effect of self-feedback loop encoded in the positive weak
coupling between the motions in a large group of people: human pedestrians fall in
synchronized step on the London Millennium Bridge [Str+05]. Synchronization has
even been hypothesized as a way that societal and cultural hegemony can be reached
via opinion dynamics [PLR05; Lor07].

There are many examples where real-world oscillatory systems can be justifi-
ably reduced to the Kuramoto phase oscillator model, such as Josephson Junctions
[WS95], atomic recoil lasers [JPP08], power networks and smart grid [FNP08; DB12;
NM15], functional connectivity in the human brain [Cab+11; PPJ18] and in C. elegans
[MA19], neuronal oscillations which are created by excitatory and inhibitory mech-
anisms working together [Sin93; Buz06; TFS08; BHD10; PR15b; MP18], and even
hypothesized ways of neural encoding [Doe+09; Mal+15; SMC18]. Besides playing a
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role in communication and temporal binding [FA11], synchronization may also protect
the communication from noise and therefore raise the precision of the communication
channel [TSP10], where thanks to synchronization the coupled systems are almost at
their noise-free behaviors.

As a computational tool, phase synchronization has been used in oscillatory neural
networks [HI00; Cha+14; Vod+16; Zha+19] — a popular approach for potential hard-
ware implementation of computational neural networks. For instance, the so-called
phase-locked loop neural networks allow the phase-locked patterns to become images
that can be “memorized” by the algorithms. The neural network can achieve patterns,
for example, by converging to limit cycle attractors, which results in some synchro-
nized state of the network with certain sustained relations between the “phases” of
neurons.

Recent developments show that in many real-world oscillators, higher modes of
coupling play a significant role in the dynamics. For a higher-mode coupled phase dy-
namics, the connection topology is equivalent to that of hypernetwork models, which
may play an important role in neuronal coupling [Pet+14; GGB16; Siz+18]. Often, a
pure higher-mode global coupling of this type can be achieved in laboratories through
capturing the first-order mean-field value, computing its higher-order function dig-
itally and driving the system with the result as a feedback (e.g. the experimental
setup in Ref. [Tot+18]). Moreover, as suggested by Ref. [RP07], and experimentally
demonstrated in Ref. [Tem+12] with a population of electronic Wien-bridge oscilla-
tors, coupling terms can be nonlinear functions of the global mean-field.

Exotic synchronization states also have captured the imagination of both experi-
mentalists and theorists in recent years. This time the numerical experiments lead the
physical experiments in discovery (also see Sec. 2.4). In 2002, Dorjsuren Battogtokh
[KB02] first found the exotic state later coined by Steven H. Strogatz as the “chimera”
state [AS04], where oscillators with identical intrinsic dynamics and identical coupling
behave in drastically different ways in one ensemble — some oscillate coherently in
sync, while the others drift incoherently as if they are not coupled to anything. Later
such an exotic state has been observed in various settings: in chemical oscillators
[TNS12], in two subpopulations of coupled identical metronomes [Mar+13], sponta-
neously in photoelectrochemical experiments [Sch+14], and more are listed in review
articles such as Refs. [PA15; Sch16]. There are still theoretical open questions related
to the chimera states [PA15].

Most recently, experiments with a ring of eight nanoelectromechanical oscillators
(a.k.a. NEMS) displayed a large array of exotic synchronized states [Mat+19]. The
NEMS are coupled to their nearest neighbors, but many states after transient behav-
ior consist of remote synchronization, i.e., a given NEM is decoupled from its nearest
connected neighbors and instead is locked to some remote oscillator in the ring. The
NEMS are not phase oscillators, and their amplitudes are determined by their frequen-
cies, allowing a variety of ways for the symmetry to be broken in the system, which
generates the diversity of states observed. By reducing the dynamics to emergent
higher-mode phase coupled dynamics, these phenomena can be explained. A recent
popular science article Ref. [Wol19] gave a good overview for the general reader on
the discovery of some of these exotic states, along with a historical overview of the
field of synchronization.
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1.1.2 Review on Theoretical Background

First, there was nonlinear dynamics

The area of phase synchronization falls largely under a sub-area of theoretical physics
— the theory of dynamical systems mostly developed in the mid-20th century, al-
though there were certainly even earlier pioneers such as French mathematician Jules
Henri Poincaré in the mid- to late-19th century. In relation to the real-world phe-
nomenon, dynamical systems are idealized models of a physical system, where natural
fluctuations of the system’s parameters and other inevitable sources of noise in the
real world are for the most part ignored.1 Dynamical system theory is frequently
concerned with not just the solutions to the system — usually written as differential
equations or maps — but the stability properties of these solutions. Steven Stro-
gatz’s book on nonlinear dynamics and chaos is a good introductory source on the
basic tools and framework of nonlinear dynamics [Str00b]. Important historical dis-
coveries in dynamical system theory include chaotic attractors (e.g. the Lorenz model
[Lor63]), period-doubling transition to chaos (e.g. logistic maps), reaction-diffusion
systems (e.g. the Kuramoto-Sivashinsky model [Siv77; Kur78; Siv80], the complex
Ginzburg-Landau equation [GL50] and activator-inhibitor systems or “excitable sys-
tems”, such as the FitzHugh-Nagumo model [Fit61]), coupled conservative oscillators
(especially the Fermi–Pasta–Ulam–Tsingou problem [FPU55; Dau08] and the soliton
solution to the Korteweg–de Vries equation [Miu76]), and coupled dissipative (bio-
logical) oscillators with stable limit cycles (see the Winfree model [Win67], also Sec.
2.2.1), among many others. These discoveries mostly date from the period between
1950 and 1990.

The period from 1950 to 1990 in the history of dynamical system saw the amazing
development of the theory of “nonlinear dynamics”. Nonlinear dynamics was developed
comparatively much later than the development of linear dynamics, i.e., those systems
that can be written as linear differential equations. In linear equations, only at most
the first power of the unknown solution (function) or its derivatives can appear in
each term of the equation. Linear equations are simple to solve because they obey
the superposition principle. Basically, because differentiation is a linear operator, this
means that any linear combination of the solutions of a linear differential equation is
also a solution of the equation. Therefore methods such as Fourier transform could
be applied to express general solutions as an added series of basic solutions. However,
for the nonlinear case where the superposition principle fails, drastically different and
new methods are needed, such as inverse scattering theory [Gar+74] (analogous to
the Fourier transform in the linear case).

Phase synchronization, especially in the case of the canonical Kuramoto model,
can be seen as a theoretically advantageous extension of the Winfree model for coupled
nonlinear biological oscillators. The development of the Kuramoto model, according
to the inventor himself [Kor], has been inspired by the similarity between the coupling
of ferromagnetic spins and the coupling between Winfree model for biological oscil-
lators. The former has a well-known second-order phase transition, which Kuramoto
suspected would be also possible for coupled biological oscillators. His main discovery
was to realize that the product form of the coupling in Winfree model, though natural
and realistic, does not allow for a solvable model. This is the practical motivation for
the sinusoidal coupling that forms the basis for the Kuramoto model. Based on the
theoretical assumptions that the units are all-to-all coupled and the oscillators have a

1In the scope of this thesis, sometimes we deal with noise via established theoretical traditions.
In these cases we usually use a type of noise with certain convenient theoretical properties, such as
Gaussian white noise, which can be seen as idealized noise.
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strongly attractive limit cycle orbit, a sinusoidal form of coupling can be derived from
the complex Ginzburg-Landau equation. Later, Kuramoto showed in Ref. [Kur84] how
the long-term dynamics of any system of “weakly coupled”, nearly identical limit-cycle
oscillators can be described by a universal form of phase equations from averaging (see
Sec. 5.2 of Ref. [Kur84]). The oscillators are said to be “weakly coupled” if their mutual
perturbations via their interactions are small (1) when compared to the characteristic
strong stability of the oscillators amplitudes, and (2) when compared to their intrinsic
natural frequencies (the changes in period are small compared to the period itself). A
comprehensive review on the history and development of the Kuramoto model can be
found in Ref. [Str00a] or in Ref. [Ace+05]. Besides the synchronization of regular or
deterministic oscillators, chaotic systems have also been shown to be synchronizable
[PC90; OPK02]. Under many practical cases where phases can be defined for chaotic
oscillators, it is possible to have phase synchronization among the units while their
amplitudes remain uncorrelated and chaotic [RPK96].

Phase synchronization — a second boom in the 1990s and 2000s

After a period of relatively slow development, the Kuramoto-model started to gain
traction again in the 1990s and early 2000s with the theoretical community. This
second phase of development was partially due to the availability of the personal
computer and cheap computational power for conducting numerical experiments, and
partially due to two important theoretical developments which in one way or another
reduce the complex dynamics to lower dimensions. The generalized Kuramoto model
— the Kuramoto-Sakaguchi model (Sec. 2.2.4) — contains a low-dimensional descrip-
tion [WS94; OA08; PR15a; CEM17], i.e., a 2- or 3-dimensional dynamics can be shown
to be sufficient to describe an N-body interaction. The low-dimensional variables turn
out in both cases to be closely connected or identical to the mean-field of the oscil-
lator phases. Therefore we sometimes also call them mean-field or quasi-mean-field
theories.

The two “mean-field” theories are the Watanabe-Strogatz (WS) theory and the
Ott-Antonsen (OA) theory, named after their authors. The WS theory was devel-
oped for oscillators with identical natural frequencies in a system of any size, whereas
the OA theory was developed for oscillators with distributed natural frequencies in
the infinite-sized system limit. Between the two, the latter has been enjoying more
attention from the modelling and complex network community due to its ability to
handle heterogeneous populations (coupled sub-units have different natural frequen-
cies). However, OA utilizes an ansatz, which although shown to be attractive [OA09],
is technically only valid at the infinite system-size limit (and there has been a report of
the OA ansatz as a poor fit of the experimental data for biological oscillators [HFB18]).
WS on the other hand reduces the complex dynamics of N bodies to the dynamics
of 3 parameters and is not bound by any ansatz or assumptions about system size.
The only limitation of the WS theory is that it is solely applicable to identical oscil-
lators. Nevertheless, a perturbation theory exists for frequency distribution deviating
weakly from identical common frequencies [VRP16], as does an extension of the WS
theory for non-identical oscillators in the thermodynamic limit [PR11]. Regardless of
their intrinsic and external limitations, both WS and OA theories afford us powerful
tools at analyzing potentially highly complex N -dimensional dynamics by the reduced
dynamics of the population’s mean-field.

While being extremely powerful theoretical approaches, reductions via the WS or
OA theories still suffer from several limitations. First, the WS and OA theories are ap-
plicable mostly to ensembles of oscillators where every element is identically connected
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(even though certain types of deviations from all-to-all connection are allowed, see be-
low). Second, the WS and OA theories can only be applied to systems with a single
harmonic in the coupling function [MMS09]. The second limitation does not necessar-
ily mean that the theories can only be applied to a first-order harmonic coupling (or
sinusoidal coupling). In fact, the OA theory has been extended to pure higher-mode
coupling in the thermodynamic limit for non-identical oscillators [SOGR11], and for
the WS theory, we have extended it in this thesis to pure higher-mode coupling for
identical oscillators (see Ch. 3). Thirdly, the WS theory and OA ansatz are not valid
for systems whose oscillators evolve with individual noisy components. Each of these
three limitations could hinder the applicability of OA or WS theory to biological sys-
tems or other real-world systems, even if these systems can be justifiably described
by one-dimensional phase oscillator models. For instance, coupling between biological
oscillators often features higher-mode components, which might not necessarily be
of pure harmonic functions [HMM93; BHD10], and biological oscillators are almost
always noisy [BHD10].

In the following paragraphs we list recent advances in overcoming the limitations
of these paradigms of mean-field dynamics.

Theoretical extension to complex networks

In the real-world systems of coupled dynamics, often the connection topologies are
non-trivial — they are not simple topologies such as lattices or regular graphs. We
call such a topology a complex network, and understanding the dynamics of the in-
teracting agents on a complex network has been the main objective of complexity
science. Complexity science is still in its infancy, with the networks considered being
mostly simple networks, such as regular networks, random scale-free networks, and
Erdős–Rényi networks.

Because of the obvious numerical and theoretical advantages of reducing the gen-
eral complex oscillatory behaviors of agents on a network to simpler descriptions,
phase-reduction techniques of complex oscillatory systems can be and have been ap-
plied. Many of which have been summarized by Ref. [PD19]. Depending on different
phase reduction techniques, different phase dynamics may result from them.

For Kuramoto-type phase oscillators, mean-field theories such as WS and OA have
been generalized in some cases by theorists to certain types of complex networks, such
as star graphs [VZP14], random scale-free networks or other types of random net-
works [BAO11; Cou+13; Yoo+15; Lop+16]. Using WS theory, Ref. [PR08] described
hierarchical populations of identical oscillators with heterogeneous coupling between
populations.

In the context of power-grid networks, a particularly noteworthy paper [Pec+14]
discussed cluster formation induced by structural symmetry in a complex network. In
terms of pattern formations via chimera states, Omel’chenko et al. [OK19] has applied
OA theory to oscillators coupled non-locally on a ring, a torus and a three-dimensional
torus.

Theoretical extension to higher-mode coupling in phase

Despite the canonical status of the Kuramoto model, many oscillators interact with
each other beyond the simple picture of the first-order harmonic coupling. Higher-
order mode coupling usually means that the coupling function Υ(ϕk, ϕj) between each
pair of oscillators is a generic 2π-periodic function of the phase difference ϕk − ϕj ,
containing a few or many harmonics of the phase difference variable. The phase angles
can be coupled to each other and/or to an external mean-field. Phenomenologically,
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when higher-order modes are dominant in an interaction, the synchronous state of the
system is characterized by the formation of multiple synchronized groups (or “clusters”)
of oscillators, each with a common phase [HMM93]. This differs from the cases where
only the first-order harmonics exist, which can result in at most one cluster.

Recently there has been an increasing interest in second-order harmonic coupling
functions and other forms of coupling via higher-order modes. Such models of globally
coupled phase oscillators are often called Kuramoto-Daido models [Dai92; SOGR11;
KP13; Xu+16; Yua+16; WHY17]. There are indeed many situations where the
second-order harmonic coupling is large and even dominates over the first-order har-
monics [KZH05; KZH06; Gol+11; Gol+13; Czo+13]. Second-order harmonic coupling
can imply non-pairwise connections, which have been shown to exhibit multistability
and chaos [TA11; KP15; BAR16; SA19]. Recent theoretical research also points to a
more general type of coupling taking place on simplicial topologies, which can be seen
as being equivalent to having a mixture of more than one mode of phase coupling,
e.g. Refs. [BAR16; SA19].

In terms of mean-field theories for higher-mode coupling models, Skardal et al.
[SOGR11] extended the OA theory to pure higher-mode coupling in the thermody-
namic limit for non-identical oscillators. The author of this thesis extended the WS
theory to pure higher-mode coupling of arbitrary sized ensemble of identical oscillators
in Ref. [GP19].

Theoretical extension to nonlinearity in coupling

A series of papers by Pikovsky, Rosenblum and others [RP07; PR09; Bai+09] have
highlighted the possibility of having “nonlinearities” in global coupling, where the
parameters of the coupling functions, such as frequency and phase shift, depend on
the amplitude of the force that acts on the oscillators. This is to be distinguished
from the “nonlinear” oscillators which have nonlinear phase response functions such
as the Kuramoto oscillators with harmonic phase response functions. A coupling can
be nonlinear if a large perturbance does not simply have a “scaled-up” effect from
that of a small perturbance. Another scenario is if the oscillators are coupled not
directly to each other but through some dynamical medium (e.g. pendulums swinging
on a common beam, Josephson junctions or electrochemical oscillators coupled via a
common load). The coupling in this case is nonlinear if the equations for the mediator
of the interaction are nonlinear. Under such models, the synchronous state becomes
unstable and the system settles in a state between synchrony and asynchrony, known
as partial synchrony. Remarkably, these phenomena could be fully described by WS
theory. In this thesis (Sec. 3.2), we also provide a nonlinear global coupling model
and its mean-field reduction treatment.

Theoretical extension to noisy systems

Real-world systems are inevitably subject to noise, both intrinsic due to the variability
of the coupled individual elements, and extrinsic due to the fluctuating environment.
There have been many theoretical efforts to understand the effect of noise on the
synchronization of phase oscillators. Intrinsic noise usually inhibits synchronization
[Kur84; Sak88; SM91], while at the same time it is able to drastically change the stabil-
ity properties of the incoherence solution (by stabilizing it), as shown in Ref. [SM91].
More recently, Ref. [Tyu+18] extended the OA formulation to coupled oscillators with
intrinsic noise via perturbation theory through the “circular cumulant” method. Ex-
trinsic noise, on the other hand, usually facilitates synchronization of phase oscillators
under conditions which allow for phase reduction. This problem might be particularly
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relevant in biological or neurological contexts, since external noise might enhance the
synchronization of biological signals. These oscillators can usually be treated by phase
reduction. Ref. [NK10] extended the OA theory to include multiplicative “common
noise” — an externally imposed noise common to all oscillators in an ensemble. How-
ever, only weak noise — like weak coupling, can be theoretically treated via phase
reduction as mentioned above. Under strong noise, the noise-induced synchronization
will not occur for nonisochronous oscillators (i.e., those whose phase response func-
tions are not perfect sine or cosine functions). Instead, the nonisochronous oscillators
will desynchronize under strong noise [GP05; GP06].

1.2 A Small Contribution to a Larger Theoretical Pro-
gram

In connection to the aforementioned historical development in theory, Fig. 1.1 summa-
rizes the contribution during the past three years by the author and her colleagues in
relation to existing literature on the mean-field reduction approach of Kuramoto-type
oscillators. Due to limited space, only a few exemplary works from the literature are
shown, especially those relevant to the theoretical development (mainly the mean-field
dynamical theories) of phase oscillators.

The four studies contained in this thesis are as follows. The model of higher-
mode coupled identical phase oscillators on an all-to-all network is treated via WS
formulism in Ch. 3 and published in Ref. [GP19]. A discrete-time method for inte-
grating sinusoidally coupled phase dynamics is shown in Ch. 4, published in pre-print
[GTP20], and has been accepted by Physical Review E with revision. The globally
coupled identical Kuramoto-Sakaguchi oscillator ensemble under common isotropic
multiplicative noise is studied via WS formulism and numerical simulations in Ch. 5
and published in Ref. [Gon+19]. The finite-sized-noise induced cross-correlation of
coupled non-identical Kuramoto-Sakaguchi oscillators is derived in Ch. 6 and pub-
lished in Ref. [PGP19], where the author only participated in the analytical treatment
of the model.
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Chapter 2

Concepts and Terminology

In this chapter, we introduce relevant concepts and terminology regarding oscillators
and their coupling, such that the thesis can be read and understood self-contained.

2.1 Properties of Autonomous Oscillators

The simplest autonomous oscillator is just an oscillator with a phase rotating on the
unit circle at a constant speed

ϕ̇ :=
dϕ

dt
= ω0 , (2.1)

where ϕ(t) ∈ R denotes the time-varying phase of the oscillator, and ω0 ∈ R is the
so called natural frequency (or “intrinsic frequency”) of the oscillator. Because such
an oscillator only has one scalar variable, its phase, it is called a phase oscillator.
The phase of an oscillator can be best thought of as a spatial angular coordinate,
indicating the state of the oscillator within one recurring oscillatory cycle.

This idealized model of isolated oscillator assumes essentially no net dissipation of
energy — it will rotate perpetually on its own. This more general type of oscillator
is called a self-sustained oscillator. A wound clock is a good real-world example of a
self-sustained oscillator. If the state variable(s), e.g. phase angle for one-dimensional
oscillator, of such an oscillator repeats itself after a period T̃ , and the trajectory
corresponds to a closed curve in the phase space1, then such a curve is called a limit
cycle.

Phase oscillators are to be distinguished from more complicated oscillators such as
Stuart-Landau oscillators, Van der Pol oscillators, and many other “real-world” self-
sustained oscillators, where the oscillations can not be described by its phase alone, but
also by its amplitude. This type of oscillator cannot be described by one-dimensional
phase oscillator models because their state is not constrained on a unit circle. As
a simple example, the limit cycle of the Van der Pol oscillator, an electric circuit
oscillator, shown in Fig. 2.1, deviates greatly from the unit circle, and the position of
the oscillator in the limit cycle cannot be described only by a single variable.

From a theoretical point of view, the major analytical advancements in the theo-
ries of synchronization have only been concerned with phase oscillators due to their
mathematical simplicity. However, from an application point of view, limiting the
description of potentially complex oscillatory dynamics to one scalar phase variable
may appear to be highly restrictive at a first glance. Nevertheless, it has been shown
that within appropriate parameter ranges, oscillators’ dynamics can be approximately
described by their phases alone. For example, the Kuramoto model approximates the

1Note that here “phase space” is used in the conventional sense, i.e., the space containing all
possible states of the dynamical system, and has nothing to do with the oscillator phase, i.e., the
angular variable of an oscillation.
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Figure 2.1: Graph comparing the limit cycle of a phase oscillator (a unit
circle) and a phase- and amplitude-coupled Van der Pol oscillator.

long-term behavior of any ensemble of interacting oscillatory systems, so long as the
coupling is weak and the sub-units are nearly identical [Kur84]. The oscillator is said
to be weakly coupled if the perturbation via the coupling forces is small when com-
pared to its intrinsic natural frequency. If the coupling is strong, and the limit cycle is
perturbed away from the unit circle, phase alone might not be sufficient at accurately
describing the dynamics, since the coupling now also involves the amplitude of the
oscillatory motion.

When studying a complex network of oscillatory sub-units, it is important to dif-
ferentiate two main types of ensemble: the non-identical and the identical ensemble
of oscillators. Identical oscillators share a common frequency, which is to say when
they are observed in isolation (“autonomous” systems), they oscillate at the same
frequency. Non-identical oscillators on the other hand have a spread of various nat-
ural frequencies. In studying synchronization phenomena, the distribution of their
natural frequencies is an important source of heterogeneity, which works against the
ordering effect of a collective synchronizing tendency of the oscillators. Depending on
the frequency distribution of the oscillators, and in particular on certain symmetry
properties of the distributions (see Ref. [PP18]), one might obtain drastically differ-
ent collective behaviors of the oscillators once they are coupled. However, when the
distribution is a delta function, i.e., all oscillators are identical, the situation becomes
much simpler, since the synchronization of the oscillators will not include phenomena
such as frequency entrainment, but is only concerned with phase synchronization —
the effect of the phases coming close to a common value over time.

2.2 The Nature of Coupling

After having established the type of oscillators which we are interested in — self-
sustained oscillatory systems with a stable limit cycle on a unit circle, oscillating at
a designated natural frequency, now we can drive such an oscillator with an exter-
nal force and observe its reaction. In the simplest case, this is described by Adler
equation [Adl46] 2, where a self-sustained oscillator of natural frequency ω0 (ω0 ∈ R)
and described by its phase ϕ is driven externally by a periodic force with frequency
Ω (Ω ∈ R)

ϕ̇ = ω0 + ε sin(ϕ− Ωt) , (2.2)

After defining a new variable φ = ϕ− Ωt, we obtain the Adler equation

φ̇ = −υ + ε sinφ , (2.3)
2In Adler equation, it is assumed that the amplitude perturbation rapidly decays compared to the

time scale of the frequency detuning between the drive and the oscillator.
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0 2π 0 2π 0 2π

Figure 2.2: Stability condition for Adler equation (2.3) visualized for three
values of detuning parameters υ (marked by dashed lines), which acts as a bias
term to the phase velocity φ̇. For small value of υ (left), it can be seen that
there is a stable point (solid circle) that corresponds to phase locking. This
changes when the stable and unstable (open circle) merge to become a semi-
stable point (half filled circle) as detuning increases (middle). When detuning
is large enough (right), no phase locking is possible as phase velocity is never
zero.

where φ is the phase in the rotating reference frame of Ωt, under a 2π-periodic forcing
term, ε sinφ, proportional to the sine of the phase. ε ∈ R is a fixed parameter denoting
the strength of the sinusoidal forcing. υ := Ω−ω0 is the so-called detuning parameter.
Depending on the size of υ, a phase locking state may or may not exist (see Fig. 2.2).3

In the case where the forcing frequency is different from the natural frequency
of the oscillator (υ 6= 0), the latter will adjust its frequency to that of the forcing.
The flashing of a male firefly under an external electric light flash reflects such a
detuning phenomenon perfectly. When experimentalists, for example in Ref. [Buc88],
exposed the male fireflies of Pteroptyx cribellata of New Britain to rhythmic light
flashes, they discovered that the fireflies flashed at the same time as the driving light
if the imposed “driving” rhythm was the same as that of their spontaneous flashing;
the fireflies appeared to flash later than the driving signal when the driving light
flashed faster than their natural rhythms; and they lead the driving signal when the
driving period was longer. In other words, the frequencies of the fireflies’ flashes were
shortened by faster external driving flashes, and lengthened by slower external driving
flashes.

In the real world, dynamical systems rarely live in isolation. They are frequently
coupled to external fields and to each other. In most applications, a network of sub-
systems can be identified and be considered as a closed system subject to an external
environment, which imposes forces on this system but is not influenced by the system
in return. Hence the dynamics of the external environment will be ignored and only
the closed system of interacting sub-units will be considered.4 One can speak of

3If the oscillator is completely in phase as the external driving force, we say it is phase-locked.
4This assumption might seem general and implicit in most context, but it might be non-trivial

when it comes to real-world systems. For example, when we apply phase reduction technique on
coupled oscillatory dynamics which contains amplitude dynamics, in order to reduce it to coupled
phase dynamics, we normally require the weak-perturbation limit of the oscillators in question. The
existence of the weak-perturbation presumes an “unperturbed” stable limit-cycle of the autonomous
dynamics. However, an “unperturbed” limit-cycle simply might not exist. For instance, it is techni-
cally not possible to describe an unperturbed limit-cycle of a human heart, because a healthy heart
cannot beat in isolation, in the absence of the signals from the central nervous system and many
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external forcing in general terms, when such a forcing is not dependent on the states
of the closed system of interest. As an example, one can think of the heart as coupled
to the brain via the vagus nerve and the sympathetic cardiac nerve, but within the
heart, heart cells are coupled to each other in a complex network. The stimuli from
the brain to the heart can be seen as external to the heart network, the latter being
a closed system of interest. The hidden assumption in this example is that the heart
does not influence the brain in the steady state that we are interested in, which would
require a justification from experiments.

2.2.1 Biological Oscillators as Self-Sustained Oscillators with Limit
Cycles — the Winfree Model

The Winfree model [Win67] is one of the first attempts at examining the internal
coupling of nonlinear oscillators. Inspired by experimental observations on real bio-
logical oscillators, Arthur Winfree intuited that the oscillators can either advance or
delay in their cycle, depending on when a kick, or a perturbation, happens in the
cycle. As Steven Strogatz pointed out in his book [Str12], the novelty of the Winfree
model lies in the fact that the oscillators are not coupled linearly. Before Winfree,
physicists were mostly concerned with linear oscillators, e.g. the simple harmonic
oscillator, exemplified by a mass on a spring, which obeys Hooke’s law. For linear os-
cillators, the solution is a simple one of normal modes. However, Winfree realized that
for biological systems, the coupling must be nonlinear. Capable of consuming energy,
a biological oscillator is best described as a self-sustained oscillator with stable limit
cycles — which means it can cycle at any amplitude, not just at those described by a
fixed harmonic or anharmonic function. Winfree’s general framework is adequate in
describing many pulse-like interactions, e.g. between fireflies, crickets or neurons, as
well as the regulation of the menstrual cycle via a constant adjusting of pheromones.

For simplicity, Winfree made a mean-field approximation, and assumed all oscil-
lators in the population have the same phase response function as well as the same
influence on the mean-field. He allowed for heterogeneity in the population by giv-
ing the oscillators Gaussian distributed intrinsic frequencies. Winfree was the first to
realize that the widths of these Gaussian frequency distributions determine how well
the population will synchronize to a large degree. He discovered during this inquiry
that the synchronization transition, like phase transitions in thermodynamics, e.g.
from liquid to solid, was sudden and not gradual. Therefore he deduced the existence
of a critical transition and an accompanying critical parameter, which corresponded
to either the degree of heterogeneity, or the strength at which the oscillators were
coupled. This was an important step that connected the area of biological coupling
to the behavior of molecules in the area of thermal physics.

The Winfree model is

ϕ̇j = ωj +G(ϕj)
ε

N

N∑
k=1

F (ϕk) , (2.4)

where ϕj is the j-th oscillator’s phase, j = 1, 2, ..., N , indicating its position on the
limit cycle, and ωj is its intrinsic frequency. ε is the coupling strength. Winfree found
that with different combinations of the phase response function (or in his terminology
“sensitivity function”) G(ϕj), and the influence function F (ϕk), which describes how
the other oscillators k, k = 1, 2, ..., N , act to pull or push the observed frequency

other chemical receptors. In order to function, the heart must always be coupled to external signals
and is therefore always “perturbed”.
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of oscillator j, completely different behaviors could arise. In some cases the phases
stay completely apart on their limit cycles and the system is dominated by apparent
incoherence, while in other cases the phases stuck more or less together, exhibiting
some degree of synchronization. As we will see in Sec. 2.2.3, Kuramoto later greatly
simplified Winfree’s description of the interaction to obtain the same observation for
the synchronization transition, and even with an analytical solution of the critical
transition at the infinite system size limit.

2.2.2 Topology of the Coupling Connection

The most direct way of conceptualizing coupled oscillator system is by placing them
in a network (or a hypernetwork topology where oscillator simplexes are concerned,
e.g. see Ref. [SA19] as well as a partially integrable model in Sec. 3.2.1). If two or
more oscillators are connected to each other via an edge (or simplex), they are con-
sidered coupled to each other. There are mainly two ways the edges in a network (or
the connection between nodes) can be established. The connections can be based on
the existence of physical connections, such as a nation’s electric grid, where electric
generators are physically connected to each other and to the users. In cases where the
exact physical connections are hard or difficult to ascertain through direct imaging or
measurements (such as those between biological cells or neurons), the coupling con-
nections can be established based on mutual information, or cross-correlation between
time series [BM+16]. The latter technique is well established in recent years in the
area of computational neuroscience in terms of brain functional connectivity [BS09;
Lyn+10], as well as in bio-informatics in terms of genetic regulatory networks [SH01;
ZSD06; ZSD08]. On a network of oscillators where every sub-unit is connected to and
is influenced by every other sub-unit, the network is called an all-to-all network or
fully connected network, and we call the coupling a global coupling of the units.

Theoretical treatment of the complex interaction of oscillatory units on a network
— especially in terms of the reduction of many-body dynamics to a mean-field dynam-
ics — is possible under certain limit or assumptions. Fortunately, the assumptions
required in many cases are general enough that they allow for a theory to be applied
as a first-order approximation to the true dynamics. For example, parts of the brain
network are very densely connected, so at least in a small region of the brain, the
neuronal connections can be approximated by those on a fully connected network
[Cha+17].

Currently, mean-field or quasi-mean-field theories such as OA or WS require cer-
tain symmetries in the networks (see Sec. 1.1.2 for references). For this reason, sym-
metrical topologies will be for the most part assumed in this thesis. The topologies
which allow the mean-field dynamics reduction via either WS or OA theory are: fully-
connected graphs, scale-free graphs [BAO11; Cou+13; Yoo+15; Lop+16], star graphs
[VZP14], and other random networks [Cou+13; Lop+16]. Throughout this thesis,
we mostly focus on fully-connected graphs, although the theories used can be easily
generalized to scale-free or star graphs within their designated limits of assumptions
and regimes.

An extension of the mean-field reductions to more general networks is possible.
For example, Ref. [HFB18] discussed how the ansatz used by theoreticians might
not always adhere to the data, but modified version(s) of it could (even though one
should also take care of the convergence property of the macroscopic variables with
an alternative ansatz [GD19]). In cases of heterogeneous networks, one can apply a
heterogeneous mean-field such as in Ref. [Ves11], making a mean-field approximation
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within each degree class, that is, a class of all the oscillators that are connected to the
same number of neighbors on a network.

2.2.3 Mean-Field Theory and the Kuramoto Model

A mean-field formulation is a formulation for an N -body model under which each
individual oscillator can be thought of as being coupled to a mean-field, which in
turn is a function of the states of all the oscillators. For oscillators, the most famous
mean-field model — the Kuramoto model [Kur75; SK86] — has a canonical status
after its more than 40 years of history. It is a model of an all-to-all coupled ensemble
of phase oscillators, with each oscillator represented by a scalar variable — its phase.

Kuramoto’s original intention was to devise a model for coupled biological os-
cillators such as those proposed by Winfree (Sec. 2.2.1), but for which there is an
analytically solvable transition to synchronization (unlike the Ising model for ferro-
magnetism, whose transition is analytically unsolvable). Kuramoto accomplished this,
at least in the infinite system size limit, or the thermodynamic limit, by choosing an
all-to-all coupling topology with a first-order harmonic coupling function. That is,
the coupling term between two interacting oscillators is proportional to the sine or
cosine function of the difference of two phases. The oscillator coupling is global, i.e.,
averaged over all pairs of interactions in an ensemble of N oscillators

ϕ̇j = ωj +
ε

N

N∑
k=1

Υ(ϕk − ϕj) , (2.5)

where j = 1, 2, ..., N , and the coupling function Υ is

Υ(ϕ) = sin(ϕ) . (2.6)

ωj is the j-th oscillator’s natural frequency as an autonomous oscillator. (For infinite-
sized Kuramoto model, see Sec. 6.1.) Equation (2.5) can be written in a mean-field
representation

ϕ̇j = ωj + εIm
[
Z(t)e−iϕj(t)

]
= ωj + εR(t) sin[Θ(t)− ϕj(t)] , (2.7)

where the complex Kuramoto mean-field Z , Z ∈ C, is

Z(t) = R(t)eiΘ(t) =
1

N

N∑
k=1

eiϕk(t) . (2.8)

The mean-field nature of the model is apparent from the form in Eq. (2.7). Each
oscillator seems to be “uncoupled” from all the other ones and is only coupled to
the mean-field Z, which is an average of the complex exponential of the phases over
the entire ensemble. Since the effective strength of the coupling is proportional to
the degree of coherence R(t), the model includes a positive feedback loop between
coupling and coherence. Namely, when the population becomes more coherent and
synchronized, R increases, and so does the effective coupling strength. This leads to
the oscillator being coupled more strongly, which in turn leads to more coherence.
When R = 1, the system is said to be in full synchrony — meaning all oscillators
are in phase. When R = 0, the system is in complete asynchrony — meaning they
are completely out of phase, or decoherent, and their mean-field has zero amplitude,
which exerts zero influence on individual oscillators.
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The main result of Kuramoto’s mean-field analysis is that, for a uni-modal and
symmetric natural frequency distribution g(ω), and assuming the order parameter R
and mean-phase Θ are constant (meaning the oscillators are now effectively decoupled,
and only coupled to the constant mean-field Z), the model returns essentially a form
of Adler equation

˙̃
φj = ωj − εR sin φ̃j ,

where φ̃(t) = ϕ(t)−Θ. This shows that the population is separated exactly into one
locked region and two drifting regions depending on the relation between frequency
|ωj | and the value of εR (see also Fig. 2.2 and Sec. 2.2). At steady state, one can add
together the centroid (the mean of the first harmonics) of the locked oscillators and the
centroid of the drifting oscillators, which together contribute to an order parameter
value R′. For the model to be self-consistent, R′ must by definition be the same as R.
Having obtained the self-consistency equation, Kuramoto derived the critical coupling
strength εcr from the bifurcation of the partially synchronized solution.

For identical oscillators, the synchronization picture is much simpler, because the
intrinsic frequencies ωj = ω0 is common to all oscillators. The coupling of the identi-
cal oscillators is fully described by the WS partial integrable theory [WS94; PR15a;
Gon+19], which reduces N -body dynamics to low-dimensional quasi-mean-field dy-
namics. There are only two possible end states: either under attractive coupling all
oscillators are synchronized, or under repulsive coupling (or if they have initially zero
mean-field such that they will not evolve at all) all oscillators are completely decoher-
ent. We can set coupling strength ε = 1 without loss of generality, since it is simply
equivalent to rescaling time.

A summary of the known result of Kuramoto-type mean-field models is as follows.
For non-identical oscillators, R usually takes a value between 0 and 1, because not all
the oscillators lie within the synchronizable group. Only those with natural frequencies
that lie within a detuning range from the average rotational frequency of the ensemble
are entrained by the mean-field, while the other ones outside this range are freely
rotating. For identical oscillators, only R = 0 or R = 1 are possible at steady states
according to the WS theory, allowing for one solitary state [MPR14], where only
one oscillator with a different phase exists apart from the fully synchronous cluster.
We show in this thesis that this result can be generalized to higher-mode coupling.
Namely, that for pure higher-mode coupling, a possible steady state is either the
completely incoherent state, or multi-cluster states where the number of clusters is
smaller or equal to the mode number. As in first-order coupling, there still could
exist solitary states, but now instead of one oscillator, there can be multiple ones
corresponding to the multiple singular points of the dynamics. See also Sec. 3.1.

2.2.4 Attractive vs. Repulsive Coupling

An important constant parameter which was later added to the Kuramoto model,
is the phase shift parameter (sometimes called “phase lag”) [SK86], which we call α,
α ∈ [0, 2π). α enters into the model as a constant phase shift to the mean-field phase
Θ(t) = arg[Z(t)]

ϕ̇j = ωj +
ε

N

N∑
k=1

sin(ϕk − ϕj + α) = ωj + εIm[H(t)e−iϕj )] , (2.9)
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where the forcing term

H(t) = eiα
1

N

N∑
k=1

eiϕk(t) = Z(t)eiα = R(t)ei[Θ(t)+α] (2.10)

is equal to mean-field Z(t) rotated by a constant phase angle α. The phase shift
parameter α parametrizes the degree of repulsion and attraction in the coupling term.
In particular, when α = 0, the coupling between the oscillators is purely attractive,
when α = π, it is purely repulsive, and when α = π/2 the coupling is neutral — it is
neither attracting, nor repelling.

When the common coupling force is not the Kuramoto mean-field, but is simply
a generic global forcing field H(t), it is called the Kuramoto-Sakaguchi model
[SK86].

2.2.5 Coupling via Higher-Mode of Phase

Daido [Dai92; Dai93; Dai95] introduced the idea that the phase coupling function can
be generalized to a Fourier series of phase differences, and with it he introduced the
concept of Kuramoto-Daido mean-fields (a.k.a. Kuramoto-Daido order parameters)

Zl =
1

N

N∑
k=1

eilϕk , (2.11)

where l ∈ Z is the mode number.
Phases coupled via a pure higher-mode with mode number l usually “self-organize”

to form l clusters (although cluster numbers smaller than l are also possible depending
on initial conditions, see the example in Sec. 3.2.5). If these l clusters have spatial
symmetry, e.g. an anti-phase 2-cluster state under second-harmonic coupling (see Fig.
2.3(D)), then a straight-forward calculation shows that |Zl| is 1. This is true even if
the clusters are not equally sized. Therefore |Zl| is a good measure of the formation of
l-cluster states with spatial symmetry of the clusters (but not necessarily distribution
symmetry of the phases) under l-th order harmonic coupling.

(a) (b) (c) (d)
Figure 2.3: From left to right the synchronization of phase oscillators under
the Z2-mean-field model (see Sec. 3.2.1) is depicted. At steady state two
clusters are formed at the opposite sides on the unit circle (anti-phase). 20
initial phases are drawn randomly from a uniform distribution from 0 to 2π.
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2.3 Coupling with External Stochasticity

2.3.1 Common Noise as a Synchronizing Effect

When an oscillator experiences a force which is randomly fluctuating in time, the
dynamics becomes stochastic. Depending on the source of such fluctuations, as well
as on the nature of the noise, it often plays a decisive role in determining the system’s
long term behavior. Units which have inherent noisy dynamics can usually be treated
as a coupled ensemble with individual noise (or “uncommon noise”, “intrinsic noise”
in the literature). Under external noisy forces, the coupled units can be treated as an
ensemble under the influence from common noise — that is, the fluctuating force is
common to all of the oscillator phases, so every phase experiences the same random
kick at any given time.

Intuitively, noise should destroy order or coherence in a collective dynamics. How-
ever, an ensemble of coupled or uncoupled phase oscillators under the influence of weak
and common noise will experience only a synchronizing effect. The “weakness” of the
noise is relative to the strength of the coupling. The synchronizing effect of common
noise on either coupled or uncoupled oscillators is well known since the 80s, usually
demonstrated by the calculation of Lyapunov exponents [Pik84; PRK01; GP04; GP05;
NK10; Pim+16], also known as noise-induced synchronization.

Mathematically, there are several ways of introducing stochasticity into coupled
Kuramoto-type or uncoupled limit-cycle phase oscillator models (see Sec. 1.1.2). For
uncoupled oscillators, Refs. [GP04] and [GP05] gave a stability analysis of the models
with general multiplicative noise (one or more terms). By one-term multiplicative
noise we mean a model in which the time derivative of phase linearly depends on
one arbitrary 2π-periodic function of the phase f(ϕ) multiplied with a random real
Gaussian variable η(t) fluctuating in time

ϕ̇ =1 + f(ϕ)η(t) . (2.12)

Multiple such terms result in a model

ϕ̇ =1 +

M∑
m

σmfm(ϕ)ηm(t) , (2.13)

with a special case with two noise terms where f1 ∝ sin(ϕ) and f2 ∝ cos(ϕ) discussed
for uncoupled oscillators in Ref. [GP04]. M here is the total number of noise terms,
each indexed by m.

In general, weak common noise, either of the additive or multiplicative type, has
phase-synchronizing effects on the oscillators, regardless of individual dynamics or
initial phase distribution. This has been shown by Ref. [TT04], where together with
uncommon additive noise, common multiplicative noise causes intermittent phase
slips (phase slips are known to occur for strong unbounded noise such as Gaussian
noise)5. Individual additive noise alone usually shows desynchronizing tendencies
[TT04; NYK12]. In this sense, it is similar to the effect of dissimilarity of the natu-
ral frequencies of the oscillators which is a source of heterogeneity that acts against
collective synchronizing tendencies.

5For the concept of phase slips, see Sec.7.1.7 of [PRK01].
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2.3.2 Linear Stability

Given a stochastic dynamics, the microscopic variables, such as individual phases, as
well as the macroscopic variables, such as the mean coherence and mean phase of the
ensemble, are constantly fluctuating. However, we can still answer the question of
stability of the system at certain macroscopic states via the Fokker-Planck equation
combined with the standard technique of Lyapunov exponents.

The Fokker-Planck equation is a frequently employed technique in calculating the
distribution of the fluctuating macroscopic variable in a stochastic system6. Similarly
it is employed in coupled or uncoupled oscillator models with stochasticity. The
Fokker-Planck equation was first used by Fokker and Planck [Fok14; Fok17] to describe
the Brownian motion of particles. In general, for an N -dimensional stochastic process
X with multiple noise terms, indexed m for each term

dX(t) = f̄(X(t), t) dt+
∑
m

ḡm(X(t), t) dWm(t) , (2.14)

where Wm(t) is a Wiener process (i.e. Brownian motion)[Ris96]. To avoid confusion
with the frequency distribution function g(ω) we use f̄ and ḡ as general functions
instead. The stochastic differential equation corresponding to Eq. (2.14) is

ẋ = f̄(x, t) +
∑
m

ḡm(x, t)ηm(t) , (2.15)

where {ηm} are Gaussian variables with zero mean and correlation functions propor-
tional to the δ function. It is usually normalized such that

〈ηm(t)〉 = 0, 〈ηm(t)ηm′(t
′)〉 = 2δmm′δ(t− t′) . (2.16)

The Fokker-Planck equation [Ris96] which describes the evolution of the probability
distribution function p(x, t) of the state x is then 7

∂p(x, t)

∂t

= −
N∑
j=1

∂

∂xj

[
f̄j(x, t) p(x, t)

]
+

1

2

M∑
m=1

N∑
j=1

∂

∂xj

{
ḡjm(x, t)

N∑
k=1

∂

∂xk
[ḡkm(x, t) p(x, t)]

}
,

(2.18)

where j and k are both dimensional indices of x, and p(x, t) is the probability distri-
bution of the microscopic variables x at time t. From the Fokker-Planck equation, we
look for its stationary solution which gives us the stationary probability distribution

6Besides the Fokker-Planck equation, the Boltzmann equation and the master equation have also
been used for describing macroscopic variables in stochastic systems. The Fokker-Planck equation is
usually used for smaller systems, as when the system is large enough deterministic treatment is often
sufficient [Ris96].

7The Fokker-Planck equation can be also written in the form

∂p(x, t)

∂t
= −

N∑
j=1

∂

∂xj

{
[f̄j(x, t) + Sj(x, t)]p(x, t)

}
+

N∑
j=1

N∑
k=1

∂2

∂xj ∂xk
[Djk(x, t)p(x, t)] (2.17)

where Djk(x, t) = 1
2

∑M
m=1 ḡjm(x, t)ḡkm(x, t) and Sj(x, t) = 1

2

∑
k,m

ḡkm(x, t)∂xk ḡjm(x, t) is the

Stratonovich shift (see Appendix A). Equation (2.17) can be shown straightforwardly to be the
same as Eq. (2.18).
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function Pst(x) of x. The stationary solution is found by letting the probability flux
— the time derivative of the phase’s probability density — equal to a constant.

The Lyapunov exponents are a standard measure of the convergence (stability)
and divergence (instability) properties of infinitesimally close dynamical trajectories in
the area of nonlinear dynamics. In phase space, if nearby trajectories converge along
some directions, the Lyapunov exponent along this direction is negative, whereas
divergence corresponds to positive Lyapunov exponent. Furthermore, the absolute
value of the Lyapunov exponent characterises the rate of convergence or divergence.
Neutral stability (neither converging nor diverging but only shifting along the direction
of interest) corresponds to a zero Lyapunov exponent. For example, for a limit cycle
the Lyapunov exponent is 0 in the tangential direction to the limit cycle. For an
unstable limit cycle, there exists a positive Lyapunov exponent in the transversal
direction to it, and for a stable limit cycle, the Lyapunov exponent in the transversal
direction is negative.

For simplicity, the Lyapunov exponent of a given state of a one-dimensional ran-
dom variable x under white noise is equal to the average change of the logarithm of
an infinitesimal perturbation δx (see Sec. 9.2.2 of [PRK01] for derivation). The aver-
age is usually expressed by an integral of the stationary probability density function
Pst(x) of variable x — derived from Fokker-Planck equation (2.18) — multiplied with
d ln(δx)/dt, which is obtained by linearizing the SDE.

In previous literature there have been several examples using Lyapunov exponents
to determine the stability of cluster states of Kuramoto oscillators under common
Gaussian white noise. For example, to quantify the degree of stability of a fully syn-
chronous cluster, the transversal Lyapunov exponent (a.k.a. “evaporation” or “split
Lyapunov exponent” [Pim+16]) is calculated, which describes the evolution of oscil-
lator phases slightly deviated from the cluster. The transversal Lyapunov exponent is
these test phases’ average exponential rate of approach towards a cluster (or the rate
of moving away from the cluster if the exponent is positive).

2.4 Chimera States of Non-Locally Coupled Identical Os-
cillators

While non-identical oscillators are known to exhibit complex phenomena including
frequency locking, phase synchronization, partial synchronization, and complete asyn-
chrony, identical oscillators were thought to only be able to form steady states that are
either coherent or completely incoherent — that is, at least before the discovery made
by Kuramoto and Battogtokh [KB02] in 2002. They connected identical oscillators
placed on a ring with identical non-local (or “non-global”) connections and phase lag
(see Sec. 2.2.4), and found that for certain initial conditions, oscillators with identical
intrinsic frequency which are connected to others identically behave in drastically dis-
similar ways. This is the first existence of a special state called chimera. According to
Abrams and Strogatz [AS04], a chimera state is a spatio-temporal pattern occurring
in systems of identical oscillators, where the population splits into coexisting coherent
(phase synchronized and frequency locked) and incoherent (drifting, asynchronous)
regions. Oscillators are said to be non-locally coupled (see Fig. 2.4), when they are
only connected to a number of their spatial or topological neighbors (i.e., not all-
to-all connected). Non-local coupling, together with non-zero phase-lag is required
to induce chimera states. Chimera is not limited to phase oscillator model like the
Kuramoto oscillators. It has also been observed in coupled amplitude oscillators such
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Figure 2.4: An example of non-local coupling on a ring. On this ring, each
node is connected to its eight neighbors. We call such a connection configuration
“non-local”, because it is neither a local coupling, where each oscillator on a node
is connected only to its two nearest neighbors on the ring, nor is it an all-to-all
coupling, where every oscillator is connected to every other oscillator.

as Stuart-Landau oscillators [BPR10], and even real-world mechanical oscillators like
coupled metronomes [Mar+13].

In the subsequent years, researchers have found out that chimera states are stable
at the thermodynamic limit when the system is infinite. However, in finite systems,
a chimera state is not attracting or stable, but is merely a very long-lived transient
state. The basins of attraction for chimera states are normally smaller than that of the
fully synchronous state, but chimeras are robust against many types of perturbations,
as well as able to occur in many types of coupling topologies. Chimeras are robust
enough to have been observed in experiments [TNS12; Mar+13; Sch+14].

Even though Ref. [KB02] has shown the chimera state to be self-consistent, the
exact mechanism through which the asymmetry of the initial conditions gives rise to
the chimera state is not clear. However, as we show in this thesis, the asymmetry in
the initial conditions could give rise to asymmetrical clustering for identical oscillators
coupled via pure high-order harmonics. It is not known whether these two “symmetry-
breaking” phenomena are connected.
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Chapter 3

Low-Dimensional Dynamics of
Globally Coupled Identical Phase
Oscillators

Globally coupled identical oscillators can be seen as a minimal model for coupled
nonlinear oscillator models in general. Despite its simple mathematical description,
it can demonstrate a host of different spatial configurations from various underly-
ing structural complexity: complete synchrony, where all phases are synchronized,
partial synchrony (a nontrivial continuous distribution of phases, where all individ-
ual phases can be different, including the evolution towards fully synchronized state)
[RP07; PR09], clusters [Dai92; Dai93; Dai95], chimeras [MPMA16], and solitary states
[MPR14].

Recent advance in theoretical understanding, namely WS theory, points to a low-
dimensional underlying quasi-mean-field dynamics which can explain the various phe-
nomena observed from different parameters and initial conditions. In this chapter,
first, in Sec. 3.1, we introduce the WS theory and extend the theory to include pure
higher-mode coupled models. Then we give an analytical and numerical example of
such higher-order models in Sec. 3.2, and discuss new phenomena not seen in first-
order models.

3.1 Watanabe-Strogatz Theory of Partial Integrability

3.1.1 WS Theory for the Kuramoto-Sakaguchi Model

In 1994, in modelling arrays of N identical overdamped Josephson junctions, Watan-
abe and Strogatz [WS94] showed that such a system has hidden low-dimensional
dynamics, for which N − 3 constants of motion exist. This theory, which we shall call
the WS theory, is applicable to N -dimensional dynamics of a system of identically
driven identical phase oscillators described by

ϕ̇j = ω(t) + Im[H(t)e−iϕj ], j = 1, . . . , N , (3.1)

where ω(t) and H(t) are arbitrary real and complex-valued functions of time, respec-
tively. When ω is a constant, it represents the common natural frequency of the
oscillators. When H(t) ∼ Z(t), Z(t) the Kuramoto mean-field, this system corre-
sponds to the Kuramoto-Sakaguchi model of globally coupled identical oscillators.

A coordinate transformation M1 is central to the WS theory (see Refs. [WS94;
MMS09] for a detailed presentation). M1 formally belongs to the class of Möbius
maps (or Möbius groups). Möbius map is a type of fractional linear transformation
mapping the unit circle in the complex plane to itself in a one-to-one way. Explicitly,
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the time-dependent Möbius transformation and its inverse1 can be written as

M1 : ψj → ϕj(t), eiϕj(t) =
z̃(t) + ei(ψj+α̃(t))

1 + z̃∗(t)ei(ψj+α̃(t))
, (3.2)

M−1
1 : ϕj(t)→ ψj , eiψj = e−iα̃(t) z̃(t)− eiϕj(t)

z̃∗(t)eiϕj(t) − 1
. (3.3)

Here {ϕj} are the phases of the oscillators, the complex parameter z̃(t) satisfies
|z̃(t)| ≤ 1 (in closed unit disk), and the parameter α̃(t) is a rotation angle, α̃(t) ∈ R.
To distinguish from later use of z in Ch. 4 and Ch. 6, we use z̃(t) here. Similarly
we use α̃ here to distinguish from the phase shift α. If the phases evolve according to
Eq. (3.1) and the WS parameters z̃ and α̃ evolve according to{

˙̃z = iω(t)z̃ + 1
2H(t)− 1

2H
∗(t)z̃2,

˙̃α = ω(t) + Im[z̃∗H(t)] ,
(3.4)

then the transformed phases ψj = M−1
1 (ϕj(t)) are conserved quantities (“constants

of motion”). Thus, WS theory implies partial integrability of the system of identical
oscillators. Equation (3.4) can be shown to be a Riccati equation, and its integrabil-
ity follows from the transformation of the Riccati equation to a linear form [Goe95;
Che17].

Under the Möbius transform Eq. (3.2), constants ψj are rotated by the time-
varying angle α̃(t) and then contracted along the circle into the direction of arg[z̃(t)],
the degree of contraction controlled by |z̃(t)| (see also a visualization of second har-
monic example in Fig. 3.3). In fact, akin to the Kuramoto order parameter |Z|, |z̃|
can typically be used as a measure of synchronization, since both parameters become
equal to unity at full synchrony.

The Möbius transformation (3.2) is inspired from a transformation between two
representations of orbital angular position in celestial mechanics, namely the true
anomaly and the eccentric anomaly, for a given eccentricity (see Fig. 3.1 left). From
this geometric point of view, it transforms between a unimodal distribution and a
uniform one (see Fig. 3.1 right). The unimodal distribution corresponds to the dis-
tribution of phases being synchronized, and the uniform one, which stays uniform,
corresponds to the constants of motion.

The astrophysical transformation (as shown at the top of left figure of Fig. 3.1)
differs from the form we use throughout the thesis Eq. (3.2) 2, but qualitatively they
are the same. To illustrate how WS theory essentially reduces an N-body dynamics to
a low-dimensional one using a geometric “trick”, we look at how the Möbius transform
turns an equidistant set of phases into a discrete unimodal distribution in Fig. 3.1
right panel, under an idealised situation where α̃ = 0 and arg(z̃) is constant. As the

1Distinguishing forward and inverse transformations is rather arbitrary; here we just use one
possible formulation.

2The original Möbius transformation as used by Ref. [WS94], is the same one as used in celestial
mechanics

tan(
ψj + α̃(t)

2
) =

√
1 + |z̃(t)|
1− |z̃(t)| tan(

ϕj(t)− arg[z̃(t)]

2
) , (3.5)

whereas the transform Eq. (3.2) used in the rest of the thesis is equivalent to

tan(
ψj + α̃(t)

2
) =

1 + |z̃(t)|
1− |z̃(t)| tan(

ϕj(t)− arg[z̃(t)]

2
) . (3.6)
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Figure 3.1: The equation on the top left shows the original transforma-
tion between the true anomaly θ and the eccentric anomaly E (also used by
Ref. [WS94]). The eccentricity e, of which the WS parameter |z̃| plays the
role, is the only parameter in the transformation. Right: the transformation
between an equidistant set of phases and a unimodal one on the ellipse, under
an idealized condition where α̃(t) = 0 and arg(z̃) is constant. The true anomaly
θ corresponds to the constant of motion ψ, whereas the eccentric anomaly E
corresponds to the phase ϕ.

WS parameter |z̃(t)|, which plays the role of eccentricity, increases, the unimodal dis-
tribution gets narrower, in alignment with the observation of phases becoming closer
together during synchronization. Effectively, the N -dimensional phase dynamics is
reduced to only the one-dimensional dynamics of |z̃(t)|. As coherence measured by
|z̃(t)| increases, the eccentricity of the ellipse increases. While the distribution of
the true anomaly stays uniform, the distribution of the eccentric anomaly becomes
narrower, the values of these angles get closer to their mean value.

Choice of Initial Conditions for the Reduced System

Because we have introduced three extra parameters via the Möbius transform, to make
the Möbius transform unique, we must impose the same number of conditions on the
new system Eq. (3.4). We have the choice of either imposing three conditions on the
constants of motion, or, we can impose conditions on the initial values of the parame-
ters themselves. The conditions themselves are rather arbitrary. In practice however,
there are a number of ways of choosing conditions such that the system evolves more
“naturally”. For the WS reformulation of higher-mode coupled systems (see Sections
3.1.2 and 3.2.2), we focus on the latter option, namely, imposing conditions on the
parameters’ initial values.

As argued by Watanabe et al. [WS94], the three required constraints are best to
be imposed on the initial values of the constants {ψj(0)} instead of on the initial
values of the three reduced variables ρ0, Φ0 and α̃0 (e.g. by letting each of them equal
0), where ρ = |z̃| and Φ = arg(z̃), even though imposing constraints on the latter is
also valid. Imposing fixed initial conditions on the reduced variables (Fig. 3.2 (b))
was deemed “unnatural” by Watanabe et al. [WS94]. They argued that under this
initial condition, regardless of different initial phases, the starting coordinate of the
new system is always the same, while the flow is different. This makes the evolution
of the reduced system unnatural.

Among the three constraints proposed by Watanabe et al. [WS94], two of them
are significant. The two significant constraints imposed on the Watanabe-Strogatz
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(a) (b) (c)
Figure 3.2: Visualizing different ways of imposing constraints on the over-
determined system Eq. (3.4) after Möbius transformation. (a) The “incoherent”
initial condition Eq. 3.7, suggested by Watanabe et al. [WS94]. (b) The “unnat-
ural” condition suggested by Watanabe et al. [WS94], where the initial values of
the three newly-introduced parameters are set to an independent value, serves
as a contrast to condition (a). (c) A new set of constraints proposed, where we
set the initial condition of the WS order parameter z̃(0) (or ζ(0) for the higher
harmonic coupling case in Sec. 3.1.2) to be the same as the general forcing
term H(0).

constants of motion are described in Ref. [WS94] as:

〈cosψj〉 =
1

N

N∑
j=1

cosψj = 0 , 〈sinψj〉 =
1

N

N∑
j=1

sinψj = 0 , (3.7)

or simply, 〈eiψj 〉 = 0, i.e., the centroid of the N constants {ψj} vanishes. This is
defined as the “incoherent” condition (Fig. 3.2 (a)). Under this constraint, the flow is
preserved for all dynamical systems, and the starting coordinates in the phase space
of the new dynamics are different depending on different initial phases.

However, for the WS reformulation of higher-mode coupled system, we focus on
the latter option, namely, imposing constraints on the parameters’ initial values. We
argue later in the simulation Sec. 3.2.1 this can also be made “natural”, which is to
say, they can be made dependent on the initial conditions of the phases (see Fig.
3.2 (c)). One crucial difference between Fig. 3.2 (a) and (c), at least as observed in
the simulations, is that in (a) for certain initial conditions of phases under attractive
coupling, the amplitude ρ will first decrease to 0 then grow to 1, while the angle Φ
abruptly changes by π as ρ hits 0. In the complex plane this corresponds to the WS
parameter z̃ = ρ exp(iΦ) crosses the origin. In (c) such an effect will not happen. In
(a) (b) and (c) the starting coordinate lies on a plane with the rotation angle α̃(0) = 0
(β̃ for higher-mode cases). The initial value of α̃ has so far been found to have no
significant meaning in terms of the behavior of the transformed dynamics, in contrast
to the WS order parameter. Setting its initial value therefore becomes truly arbitrary.

3.1.2 Watanabe-Strogatz Equations for Higher-Mode Phase Cou-
pling

As we have seen in Sec. 3.1.1, sine or cosine coupled identical oscillators which are glob-
ally connected can be reduced to low-dimension and the system is partially integrable.
Perhaps surprisingly, a similar model coupled via pure but arbitrarily higher-order
harmonic functions is also partially integrable. Building on the first-order models,
we reformulated the higher-order problems using a similar method as employed by
Watanabe and Strogatz for first-order coupling in phase.
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Model Formulation

First we introduce the higher-mode phase coupled model. We consider a popula-
tion of N identical phase oscillators with phases {ϕj}, j = 1, 2, . . . , N , subject to a
global coupling. Here, unlike in the standard Kuramoto-Sakaguchi model [SK86], the
coupling term is purely of an arbitrary higher order l (l ≥ 2, l ∈ Z),

ϕ̇j = ω(t) + Im[H(t)e−ilϕj ] , (3.8)

where ω(t) and H(t) are arbitrary scalar and complex functions, respectively. Equiv-
alently we can write Eq. (3.8) as

ϕ̇j = ω(t) +H1(t) sin(lϕj) +H2(t) cos(lϕj) . (3.9)

When ω is constant, it represents the identical natural frequency of the oscillators.
While in the problem formulation and theory derivation we write generically ω(t),
in the numerical part we use a constant ω, to be comparable to previous numerical
studies in the literature. H(t) represents an arbitrary complex forcing term, which
can be dependent or independent of the phases {ϕj}, deterministic or stochastic, and
also can be external time-dependent forces. The latter case is not considered in this
chapter; see Ch. 5 or Ref. [Gon+19] for exploration of external driving within the
scope of the reduced WS theory for the first-order coupling.

Global coupling (a.k.a. “all-to-all” coupling) of the oscillators corresponds to the
case where H(t) depends on the Kuramoto-Daido order parameters (mean-fields of
the higher modes of phases)

Zl =
1

N

N∑
k=1

eilϕk .

For simplicity, in the rest of the chapter we use Z1 and Z interchangeably to denote the
Kuramoto order parameter, which is also the first Kuramoto-Daido order parameter.

The simplest example of higher-mode coupling of type Eq. (3.8) is a model of
identical phase oscillators globally coupled via the second-order harmonic coupling
function of their phase differences:

ϕ̇j = ω0 +
1

N

N∑
k=1

sin(2ϕk − 2ϕj + α) = ω0 + Im(Z2e
iαe−2iϕj ) , (3.10)

where α is the phase shift parameter, tuning the nature of the coupling between
various degrees of attractiveness or repulsiveness (see also Sec. 2.2.4). Here the global
forcing term H(t) is just the second Kuramoto-Daido mean-field Z2 rotated by the
phase shift α.

This system is trivial to solve due to its similarity with the Kuramoto model, with
phases ϕ now replaced by 2ϕ and everything else remaining the same (Ref. [Del19] has
shown that they are fully equivalent). Below we focus on more complex models, where
H(t) is a generic function of order parameters, which satisfies the phase shift invariance
property (i.e., under ϕ → ϕ + const. the dynamics are the same). In particular, the
complex forcing can take any form such as (Zq̄)

m̄(Z∗p̄)n̄, with m̄q̄ − p̄n̄ = l, or a
combination of these terms, where m̄, q̄, p̄, n̄ are integers. So for example, for l = 2
one can have H(t) ∼ Z2 like in Eq. (3.10), but also H(t) ∼ Z2 like in Ref. [KP15],
or, e.g., H(t) ∼ Z4Z

∗
2 .
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Derivation of the Reduced System

We now demonstrate that the WS theory can be generalized easily to higher-mode
coupling of the general form of Eq. (3.8), using derivation extremely similar to those
outlined in Ref. [PR15a]. Due to the algebraic similarity, we only sketch out a general
idea, and leave the details to be inferred from Ref. [PR15a].

N phase oscillators coupled via higher-modes obey the general equations of motion
Eq. (3.8). It can be rewritten as

d

dt
(eilϕj ) = ileilϕjω(t) +

l

2

[
H(t)−H∗(t)e2ilϕj

]
. (3.11)

We transform the phases ϕj into phases ϑj via Möbius transform

eilϕj =
ζ + eiϑj

1 + ζ∗eiϑj
, (3.12)

with an additional complex parameter ζ, ζ ∈ {D∪S1} is in the closed unit disk.
Equations (3.11) can be transformed in terms of {ϑj}, ζ and their time derivatives
{ϑ̇j} and ζ̇. Going through a similar procedure of picking out terms in the orders of
eiϑj as done in Ref. [PR15a], we obtain{

ζ̇ = l
[
iω(t)ζ + 1

2H(t)− 1
2H
∗(t)ζ2

]
,

ϑ̇j = l {ω(t) + Im[H(t)ζ∗]} ,
(3.13)

which satisfy all N transformed equations, and hence also the N original equations
(3.8). We notice that the right-hand side of the second equation of Eqs. (3.13) is
independent of oscillator index j, indicating that all the angles {ϑj} rotate at the
same speed. Therefore, we can create a new time-dependent parameter β̃, β̃ ∈ R,
which has the same rotational speed as {ϑj}, ˙̃

β = ϑ̇j , and define

β̃(t) := ϑj(t)− ψj , (3.14)

where {ψj} are the constants of motion.
We thus come to the Möbius transformation from constants ψj to phases ϕj

Ml : ψj → ϕj(t), eilϕj(t) =
ζ(t) + eiϑj(t)

1 + ζ∗(t)eiϑj(t)
=

ζ(t) + ei[ψj+β̃(t)]

1 + ζ∗(t)ei[ψj+β̃(t)]
, (3.15)

depending on the time-dependent WS variables ζ(t), β̃(t). The inverse Möbius trans-
formation for higher-mode coupling is

M−1
l : ϕj(t)→ ψj , eiψj = e−iβ̃(t) ζ(t)− eilϕj(t)

ζ∗(t)eilϕj(t) − 1
. (3.16)

Compare Eqs. (3.15) and (3.16) to the transform for a first-order coupling Eqs.(3.2)
and (3.3), only the original phases are multiplied with the order of coupling l, oth-
erwise the form of the transform stays the same. Comparing the WS equations for
the first-order coupling Eq. (3.4) with Eq. (3.13), we find that the equations for pure
higher-order harmonic (or “l-harmonic”) coupling are merely multiplied by the factor
l on the right-hand side.
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We can write the equations for the three WS parameters Eq.(3.13) in terms of dot
and cross products of H(t) and ζ in the complex plane (ζ = % exp(iΨ), % 6= 0):

%̇ = l 1−%
2

2% H(t) · ζ,
Ψ̇ = l[ω(t) + 1+%2

2%2 H(t)× ζ],
˙̃
β = l[ω(t) +H(t)× ζ],

(3.17)

where parameter Ψ evolves according to H(t) × ζ, similar to a torque experienced
by an object with a magnetic moment under a magnetic field. For the same initial
condition, but for a different common forcing H(t), the higher-order quasi-mean-field
ζ behaves like a magnet with the same magnetic moment, but now its moves under a
different magnetic field H(t).

For a transform of the second-mode coupled model 3where l = 2, we demonstrate
in Fig. 3.3 how the WS parameters shape the transform as the parameters are evolved.

3.1.3 Numerical Simulation of the Dynamics in the WS Variables

At first glance, Eqs. (3.17) present an enormous simplification compared to the original
model (3.8), as the number of independent variables is reduced from N to 3. However,
the difficulty in numerical simulation of the WS equations is that the coupling term
H(t) is typically expressed in terms of the original phases via the Kuramoto-Daido
order parameters, and not in terms of the WS variables and the constants of motion.
Therefore, for each calculation of the right-hand side in Eq. (3.17) one has to perform
transformation Eq. (3.15). If the coupling contains only order parameters Zm̄∗l with
integer m̄, then only quantities exp(ilϕj) are needed to compute the coupling term
and no transformation step is needed. However, if other order parameters have to be
calculated, then one needs to know phases ϕj , which are not uniquely defined through
quantities exp(ilϕj). Indeed, one value of a constant ψ maps to l values of the phase
variable: ϕ/l + 2ñπ/l, where ñ = 0, 1, . . . , l − 1. To choose a proper value, one can
use continuity of the dynamics of the phases ϕ in time. This means, the proper value
of the phase at time instant t + ∆t is the value closest to that at the previous step
ϕ(t), for small ∆t. In numerical implementations without intermediate steps, like
Euler or Adams-Bashforth [BF04] schemes for solving ordinary differential equations,
this check is simple. In Runge-Kutta-type schemes, one should also take care that
at intermediate calculations of the right-hand side of equations inside a Runge-Kutta
step, the proper phase is extracted from the transformation Eq. (3.15).

3.1.4 Basins of Attraction for Clusters

The WS theory implies that a system of globally coupled identical oscillators with an
l-harmonic coupling can evolve to at most l clusters at any point in time. Indeed, if
the initial phase distribution has no clusters, then all the constants of motion ψ are
different. Then, for any |ζ| < 1, all the phases are different as well. The only way for
clusters to form is |ζ| → 1 under attractive coupling.

3By the convention in existing literature, Kuramoto-Sakaguchi oscillators refer to those phase
oscillators that are coupled via their first-order harmonics, i.e., when l = 1. Hence to be consis-
tent, phase oscillators coupled via higher-modes should not be referred to as Kuramoto-Sakaguchi
oscillators. Additionally, second-order-harmonic (or more compactly, “higher-mode”) coupled models
should also be distinguished from “second-order Kuramoto models”. The latter type of models involve
inertia term, i.e. the second-order time derivatives of phases, and is frequently used in simulations
of power grid.
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Figure 3.3: The Möbius transformation ϕj(t) ↔ ψj for the second-mode
coupling is visualised for two parameter values of |ζ(t)|. Horizontal axis: phases
ϕj are shifted by the parameter arg[ζ(t)]/2; Vertical axis: constants ψj are
shifted by the parameter β̃(t). Transforming the same set of constants to the
phases results in a more spread out set of phases (panel (a)) for small values of
|ζ|, and in a more clustered state of phases for |ζ| close to one (panel (b)). The
two branches of the mapping illustrate the non-uniqueness of M2(t). Figure
reprinted with permission from Ref. [GP19].

For attractive l-harmonic coupling, in general it is expected that eventually the
phases form l clusters, i.e., l distinct attractive subgroups of oscillators (there are
special initial states for which this is not true, see discussion in Sec. 3.2.4 below
about the solutions in which |ζ| does not grow). Thus, the circle is divided in l
basins of attraction of these clusters. The boundaries of these basins of attraction
are hence special points of the collective motion, since they will not be synchronized
to any final cluster, and can be described as “unsychronizable” (“solitary states” in
the terminology of Ref. [MPR14]). Because basins evolve in time, the boundaries
are unstable trajectories of the dynamics on the unit circle. Below we relate these
boundaries to the mathematical singularity occurring in the WS formulation of the
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system, specifically, to the pole in the Möbius transformation Eq. (3.15).
Because basin boundaries are not trajectories of real oscillator phases, we have to

consider the transformation Eq. (3.15) for all possible values of ψ. One can see that
this transformation becomes singular at the limit |ζ| → 1. For |ζ| = 1, all values of ψ
are mapped to the cluster states ϕ = Ψ/l + 2ñπ/l, where ñ = 0, . . . , l − 1, except for
the singular value ψS = Ψ+π− β̃, where Ψ = arg(ζ) as defined in Section 3.1.2 . This
singular constant is mapped via Eq. (3.15) (at |ζ| → 1− when the map is not singular)
to the basin boundaries at the end of the evolution t→∞: ϕS = Ψ/l + (2ñ+ 1)π/l.

In a particular case under l = 2 to be explored numerically below, we have two such
basin boundary trajectories. At the end of the evolution, at t → ∞, where clusters
are formed and |ζ(∞)| = 1, the boundary points are ϕS1(∞) = Ψ(∞)/2 + π/2 and
ϕS2(∞) = Ψ(∞)/2 + 3π/2. To find these boundaries at all times, and in particular
at the initial moment in time, one can trace these states back in time according to
the oscillator dynamical equation, but even that is not necessary. In fact, to find
ϕS1,S2(t), it is sufficient to know the singular value of the constant ψS at the final
stage of the evolution: ψS = Ψ(∞)− β̃(∞) +π. Then, for each 0 ≤ t <∞, the basins
can be calculated according to the transformation Eq. (3.15):

e2iϕS(t) =
ζ(t) + ei(ψS+β̃(t))

1 + ζ∗(t)ei(ψS+β̃(t))
. (3.18)

At each moment in time the basin boundaries ϕS can be obtained via the above
expression using a combination of the corresponding constant of motion ψS , as well as
the instantaneous transform parameters ζ(t) and β̃(t). Expression (3.18) also tells us
that the sizes of the basins are equal (in the case of l = 2, the sizes are π). However, the
positions of the basins depend on the final point of integration of both WS variables
ζ(t = ∞) and β̃(t = ∞): thus to find them one first has to perform integration up
to large enough time, and only after that formula Eq. (3.18) is applicable. Below we
will also discuss an approximate way to define these boundaries solely from the initial
state, and will see that even though it does not provide an exact prediction of the
clustering, it could predict certain features of the final state of clustering.

3.2 Numerical Example

In this section we numerically simulate a particular model of second-mode coupling
which has been studied in previous literature. The approach can be generalized to
arbitrary higher-mode phase coupling, and we offer one example with the fifth-order
coupling for completeness.

3.2.1 Higher-Mode Coupling Example: Z2 Mean-Field

As discussed above, for l = 2, a coupling scheme via the second Kuramoto-Daido
order parameter Z2 is trivial, because it can be reduced to the standard Kuramoto
model. Instead, we can choose a simple nontrivial example, such as a coupling via
the square of the first-order mean-field, i.e., H(t) = Z2. This model has appeared in
previous literature [KP15], where an ensemble of identical phases at steady state is
always found to exhibit a curious strictly non-symmetric two-cluster distribution (or
“asymmetrical clustering” in literature), starting from phases drawn randomly from
a uniform distribution on the circle. It is “strictly” asymmetric because one cluster
always contains more phases than the other in the final state.
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The asymmetrical steady state might look a little puzzling at first because the
underlying dynamics are completely symmetrical — the ensemble contains only iden-
tical oscillators which are identically driven in the absence of noise or other poten-
tial symmetry-breaking dynamical mechanisms. The only source of asymmetry must
therefore come from the initial states of the oscillators. The initial phases are drawn
randomly from a uniform distribution on a circle, thus they are unlikely to be sym-
metrically distributed for each given draw.

To further study the asymmetrical two-cluster formation under the H(t) = Z2

model, we use the extended WS formulation above and its prediction of the bound-
aries of the two basins of attraction to partially explain the source of this apparent
symmetry breaking.

The equations for the Z2-mean-field model of identical oscillators can be written
as the following

ϕ̇j = |Z|2 sin [2 arg(Z)− 2ϕj ] , Z =
1

N

N∑
k=1

eiϕk , (3.19)

or in non-mean-field coupled form

ϕ̇j =
1

N2

N∑
k=1

N∑
k′=1

sin(ϕk + ϕk′ − 2ϕj) . (3.20)

Eq. (3.19) (or Eq. (3.20)) corresponds to the general higher-mode coupled system
Eq. (3.8) with mode number l = 2 and general forcing H(t) = Z2. Moreover, we
assume the natural frequency ω0 to be a constant and fix its value to zero (one can
accomplish this by choosing a rotating reference frame).

Since we can rescale time, we have set the coupling strength to 1 without loss of
generality. The coupling term in Eq. (3.20), instead of being between pairs of phases,
as in the Z2-mean-field model (Eq. 3.10), now involves a triplet of phases indexed by
k, k′, and j. This coupling form corresponds to a hypernetwork topological connection
between the oscillators. In this hypernetwork, three nodes jointly form a coupling
connection, as opposed to those in a conventional network where two nodes form a
coupling connection. Dynamics on a hypernetwork could play an important role in
neuronal coupling [Pet+14; GGB16; Siz+18].

As discussed above, for t → ∞, two clusters will form with some constant final
value of Z, one with the phase of the mean-field arg(Z) and the other one shifted by π:
arg(Z) + π, as can be easily found from Eq. (3.19) by equating the right-hand side to
zero. A simple metric for describing the distribution of the phases among the clusters
is R := |Z|, the Kuramoto order parameter amplitude. It relates to the population of
one of the clusters by R = |2N1/N − 1|, where N1 is the number of oscillators in one
of the two clusters. When R = 0, the two clusters have equal size. When R = 1, all
the oscillators are in one cluster.

3.2.2 Integration of the WS Equations for the Z2-Mean-Field Model

Before we carry out numerical integration of WS equations, we introduce a method of
visualizing the basins. As discussed above, one needs to follow the evolution not only of
the set of coupled oscillators, but of all possible values of phases that can be mapped to
the space of the constants ψ. Equivalently, we can use Eq. (3.19), and unidirectionally
couple an arbitrary number of oscillators to the field. These oscillators, which we
denote θ̄ as passive tracers, are influenced by but do not contribute to the global field
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which depends on the “active” phases ϕj only,

˙̄θ = Im[Z2e−2iθ̄] , (3.21)

where the mean-field is defined in Eq. (3.19). The variable of a tracer θ̄ is not indexed
since we can use any number of them and they take on any value between 0 and 2π.

Introducing passive oscillators gives us the advantage of visualizing the field on the
entire circle, because we can place them anywhere on the circle to “test” the strength
of the field, and not just at those places where the active oscillators happen to be.
In this sense they are analogous to fluid tracers in hydrodynamical simulations or
experiments. These tracers make the motion of the points on the circle under the
field obvious to the eye, especially those near the unstable points.

For the Z2-mean-field model Eq. (3.19), the WS parameters obey{
ζ̇ = Z2(t)− [Z∗(t)]2ζ2

˙̃
β = 2 Im[Z2(t)ζ∗] .

(3.22)

Initial values of the WS parameters in our numerical simulation are chosen as
ζ(0) = Z2(0) and β̃(0) = 0. Under such an initial condition, the second WS equation
is ˙̃
β = 0 at t = 0, therefore, it can be considered as a natural initial condition, although

it is not the only reasonable one. For instance, previous literature Ref. [WS94] has
given two initial conditions as options. One is the “identity conversion”, with the
introduced WS parameters all set to 0: |ζ(0)| = 0, arg[ζ(0)] = 0 and β̃(0) = 0, which
corresponds to the case whenM1 is just the identity operator at t = 0. The other is
the “incoherent state”, which corresponds to the case when the constants of motion are
maximally incoherently distributed, i.e., choose ζ(0) and β̃(0) such that 〈exp(iψj)〉 = 0
(if no majority cluster exists). “Identity conversion” was deemed unsuitable because
even with different initial sets of phases, the WS parameters start at the same point
in the three-dimensional phase space. However, our chosen initial condition for the
parameter, ζ(0) = H(0), does depend on the initial phases. This initial condition is
also more suited to the complex representation of the WS system, as opposed to the
three real equations in Ref. [WS94] or like Eq. (3.17), since %(0) := |ζ(0)| = 0 is a
singularity there, and arg[ζ(0)] would be undefined. For clarity, we define explicitly
the argument of ζ: Ψ = arg(ζ) as before. Also see the discussion in Sec. 3.1.1.

As outlined above, numerical integration can be performed either directly in vari-
ables ϕ, θ̄ or in WS variables ζ, β̃ with additional transformation at each integration
step from the constants ψj to the phases ϕj , to calculate the mean-field Z. Both
methods match to a very good accuracy. The numerical procedure for integrating via
the WS variables can be found in Appendix B. Two examples of the time evolution
shown in Fig. 3.4 for two random initial conditions (N = 20) illustrate this.

In Fig. 3.4, we highlight the trajectories of the two tracers that end up exactly
at asymptotic basin boundaries ϕS1 = Ψ(t = Tsync)/2 + π/2 and ϕS2 = Ψ(t =
Tsync)/2 − π/2 in ϕ-space (corresponding to the pole of M2 in ϑ-space at the final
synchronous state), where Tsync is the time at which some synchronization threshold
is reached during the integration process. These trajectories are time-varying basin
boundaries. This variation in time of basin boundaries is typically the case not just for
higher-mode coupling like ∼ Z2, but also for the standard Kuramoto model. These
variations make it impossible to predict the initial locations of the basins without
integration, and therefore also unable to predict the numbers of oscillators in the final
two clusters explicitly from the initial condition alone. Because the basin boundaries
being unstable trajectories in reverse time become attractive, their positions at t =
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Figure 3.4: Euler integration with h = 0.01 of the WS equations (3.22) for
the Z2-mean-field model. The model is simulated for two sets of random initial
conditions (phases are randomly drawn from uniform distribution from 0 to 2π).
Integration is carried out until two synchronized clusters are formed. Gray lines
are the tracers θ̄ (Eq. 3.21), which are uniformly spaced initially on a circle,
and passively coupled to the global field of the active phases. The flow of 20
active phases ϕj are marked by purple or blue. Purple indicates if at time t, the
phase ϕj transformed back from the constant ψj does not need to be added π,
and blue indicates if it does, to ensure the continuity of the flow of the phases.
Trajectories of WS parameter Ψ(t)/2 + π/2 and Ψ(t)/2 − π/2 are in orange
and green. Pink and red lines are the trajectories of two tracers which end up
at singular points ϕS1(∞) and ϕS2(∞) (as discussed in Sec. 3.1.4). These
unstable trajectories are computed via Eq. (3.18) from the singular constant
ψS and the saved values of ζ(t) and β̃(t). The intercepts of the red and
pink trajectories with horizontal axis match well with the initial position of the
basin boundaries, where the tracers split. Figure reprinted with permission from
Ref. [GP19].
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Figure 3.5: Comparison between prediction and simulation of the population
sizes of the two clusters, plotted as a histogram of R values, based on random
initial conditions (uniform distribution on a circle) for ensemble sizes N =
10, 20, 50, 100, 200, 500, 1000 (color-coded for N). Round markers: predictions
of the cluster size based on the basins estimated from initial states. p is the
discrete probability of R value at steady state. Diamond markers: simulated
results at steady state (data obtained from Ref. [KP15] with permission of the
author). The distributions nearly coincide for R

√
N & 1, but for small R the

estimated distribution does not reproduce the drop in the density near the totally
absent symmetrical clustering state at R = 0. Figure reprinted with permission
from Ref. [GP19].

0 can be obtained by integrating back in time (under the correct mean-field time
evolution calculated forward in time), starting from any point on the circle outside a
small neighborhood around the two poles ofM−1

2 . The size of the neighborhood ε→ 0
under infinite forward integration time. Alternatively, we can simply map the singular
constant ψS via Eq. (3.18) with ζ(0) and β̃(0) as transformation parameters to obtain
basin boundaries ϕS at t = 0. However, ψS can only be known after integrating to
full synchrony: ψS = Ψ(∞) − β̃(∞) + π. Therefore, both methods of determining
basin boundaries at t = 0 require integration.

3.2.3 Comparison of the Asymmetrical Clustering under the Z2-
Mean-Field Model: Prediction and Numerics

Here we discuss a way of approximating cluster distribution just from initial data. As
discussed above, the basin boundaries rotate in the course of evolution. However, this
rotation is usually small, which means we could estimate roughly the boundaries using
the initial value of ζ (according to our choice of initial condition). This method will
therefore naturally involve an error corresponding to the degree of rotations. Using the
same expression as the final singular points ϕS : Ψ(∞)/2 + π/2 and Ψ(∞)/2 + 3π/2,
we approximate basin boundaries at initial time as Ψ(0)/2 + π/2 and Ψ(0)/2 + 3π/2.
Since the initial condition is ζ(0) = H(0) = Z2(0), this implies arg[ζ(0)] = Ψ(0) =
2 arg[Z(0)]. The number of oscillators falling into each basin (marked by arg(Z)+π/2
and arg(Z) + 3π/2 at t = 0) therefore yields an estimate for the populations of the
final clusters. In Fig. 3.5, this estimation in the form of a probability distribution is
compared with the correct final asymmetrical clustering distribution, as a function of
the metric R = |Z|, both axes scaled by

√
N .

This estimate is naturally not accurate because of the rotation of the basin bound-
aries, however, it is able to explain several features of the distribution. First, for both
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the prediction and the simulation, the distribution is asymmetrical, i.e., the maximum
of the distribution is not at R = 0 (the symmetric clustering state). However, the
location of the maximum is underpredicted by theory. Second, the

√
N scaling law

with respect to the ensemble size applies to both. In fact, the successful scaling of the
prediction based only on initial conditions implies that the source of the steady state
scaling law lies in the initial conditions and their finite sampling, not in the dynamics.

According to the first observation, the source of this “symmetry breaking” in terms
of particle distribution should in part be related to the geometrical fact that the angle
of the particle mean-field arg[Z(0)] is not isotropic relative to the particle positions on
the circle, even if the underlying particle distribution is isotropic on average. Because
if arg[Z(0)] has no preferred direction relative to the particles, we should see a final
cluster-size distribution more akin to the binomial distribution. This is intuitive when
one reflects on the meaning of arg[Z(0)] as the direction of the average over-density
of the initial phase distribution. There will, by definition, be more phases on the side
where arg[Z(0)] is pointing towards, and fewer on the side opposite to it. Naturally, the
half circles spanning these two sides marked by arg[Z(0)] + π/2 and arg[Z(0)] + 3π/2
will have unequal numbers of phases in these “approximate basins”. This confirms our
initial intuition that the source of asymmetry must come from the non-symmetrically
distributed phase particles, since the underlying dynamics is entirely symmetric and
isotropic.

We must note that our estimate of the basin position is completely reliant on
our particular choice of initial conditions for the WS variable Ψ(0). The choice is
arbitrary due to over-determinedness of the transformed equations. Therefore, another
choice of initial conditions will give another completely different estimate. The fact
that our estimate seems to explain some features of the final distribution speaks
only for the “naturalness” of our choice of initial conditions, justified by the WS
equation (3.22), namely that the second WS equation has zero r.h.s. for the choice
Ψ(0) = 2 arg[Z(0)]. Conversely, another better choice might be able to exactly predict
the final distribution, if such a choice exists generally for all initial conditions.

Despite the partial explanation for the final asymmetrical clustering, the estimate
fails to predict the lack of states near R = 0, as well as the complete absence of the
symmetrical state (two clusters being equally sized). This failure can only be due to
the dynamics of the system, which is not inferrable directly from the initial conditions,
even though the system is fully deterministic. Specifically, in simulations, the R = 0
final state is completely absent, which is in fact due to the weak instability at the
symmetry state. An elementary linear stability analysis of the symmetry states with
N = 2 or N = 4 shows that the states (two clusters with sizes 1-1 or 2-2) are weakly
unstable, thus giving evidence of the weak instability at the symmetrical state and
justifying their absence from the distribution.

3.2.4 Possibility for Decreasing Mean-Field in the Z2-Mean-Field
Model under Positive Coupling

The Kuramoto model with first-order mean-field coupling is known to possess a Lya-
punov function [WS94]. This means that generic initial conditions (i.e., with an
initially non-zero order parameter) monotonously evolve towards a synchronous clus-
tered state under attractive coupling (only initial states with a zero mean-field do
not evolve). This property is not shared by the Z2-coupling model we consider here.
It is possible, using symmetry, to construct special initial conditions which lead to
a monotonic decrease of the order parameter. For example, we consider a special
symmetric set of initial phase values as shown in Fig. 3.6(b) inset. The initial value
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of the Kuramoto order parameter is nonzero, R > 0, i.e., the system will evolve under
Z2. However, the evolution preserves the symmetry, so a formation of asymmetric
clusters is not possible. Numerical integration shown in Figure 3.6(a) demonstrates
convergence towards an unstable configuration with R = 0. One should note, that
numerical errors could eventually destabilize this symmetric state due to symmetry
breaking, with a formation of two clusters of unequal sizes, which should eventually
be observed on a long timescale.

Figure 3.6: A unique phenomenon of decreasing mean-field under positive
coupling in the second-mode coupled model, illustrated by a special initial con-
dition. A decreasing mean-field under positive coupling can never occur in
first-order-harmonic coupled models. (a): Flow of passive (gray) and active
oscillator phases (red). (b): Evolution of the mean-field amplitude R2. Inset in
panel (b): Special symmetric initial conditions. Figure reprinted with permission
from Ref. [GP19].

3.2.5 Example of WS Integration for Fifth-Order Phase Coupling

Since the theory proposed in this chapter — that phase variables with identical fre-
quency globally coupled via pure higher-mode coupling is partially integrable — is
in fact valid at any order l, we provide in Fig. 3.7 an example where l = 5 for 20
oscillators with random uniform initial conditions.
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Figure 3.7: Analogous to the Z2 case in Fig. 3.4, here a flow plot for model
ϕ̇j = Im[Z5e−i5ϕj ], for N = 20. Red curves are the basin boundaries ϕS(t).
Figure reprinted with permission from Ref. [GP19].

Analogous to Fig. 3.4, where a second-mode coupled example is provided, for
l = 5 and a forcing term H = Z5 where Z is the Kuramoto mean-field, Fig. 3.7
shows the phase flow plot (along with passive tracers). As with the H = Z2 model,
we can find the basin boundaries of the cluster formation numerically. Also note that
it is generally possible to arrive at a number of clusters smaller than l which gives the
maximal number of clusters; in this case four clusters under fifth-order coupling.

3.3 Conclusion

This chapter provides an analytical extension of the dimension-reducing formulation
of globally coupled identical phase oscillators under pure higher-mode coupling, and
carries the analytical tradition of Watanabe-Strogatz theory further, the same way
Ref. [SOGR11] did in terms of the OA theory for the Kuramoto model. Similar to the
WS formulation for a first-order harmonic coupling, we apply an analogous type of
Möbius transformation from the space of the original phases into the space of the trans-
formed phases (constants of motion) to obtain the three-dimensional WS equations.
We invoke the continuity condition to solve the apparent non-unique transformation
from the constants back to the original phases. Numerical integration shows that the
simulation based on reduced WS equations matches the simulation based on the phase
equations.

As an example, the WS formulation of the Z2-mean-field model, which exhibits
asymmetrical clustering, is tested with good numerical agreement to the phase model.
The boundaries of the basins of attraction under such a model match the pole in the
Möbius map at the final steady state. The asymmetric clustering can be explained,
albeit partially via the theory, explicitly from the initial distribution of phases. The
main obstacle is the fact that the pole only appears in the Möbius map at the final
synchronous steady state, and neither at intermediate nor initial states. This makes
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it impossible to find the initial basin boundaries without following the dynamics to
the end state.

We also report on a possibility for (unstable) desynchronization to happen in the
attractively coupled Z2-mean-field model, a situation not observed in the classic Ku-
ramoto setup. This is an indication for complex non-monotonous transient behaviours
in identical ensembles with higher-mode coupling.
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Chapter 4

Coupled Möbius Maps – a Tool to
Model Kuramoto Phase
Synchronization

In this chapter, we propose a discrete-time analogue of the Kuramoto-Sakaguchi
model, a system of globally coupled maps that has similar dynamical properties,
and which also provides fast and exact computation of the dynamics in discrete-time
steps.

Globally coupled maps [Kan90; Kan91; Noz92; PK94; Jus95; TKP01] have been
extensively studied in the literature, often with emphasis on the collective dynamics of
intrinsically chaotic units. Among the existing coupled maps, globally coupled circle
maps are ideal for studying synchronization phenomena due to their periodic domains.
The simplest and most widely used circle map is the sine circle map ϕ→ ϕ+Ω+ε sinϕ,
which has been explored in the context of global coupling [Kan91; CG96; OK02] as well
as in non-trivial coupling networks such as computational neural networks [BM09].
However, the coupled sine circle maps have several properties different from that of the
Kuramoto-Sakaguchi model. For example, a known property of the continuous-time
Kuramoto-Sakaguchi model is that clustering, i.e., the formation of several distinct
synchronized groups, cannot occur [Gon+19]. However, for the sine circle maps, when
the map parameters are tuned to regions which do not produce chaos in a single map
(i.e., the mapping remains one-to-one), the iterated map dynamics for identical units
governed by the same mean-field nevertheless produces various complex cluster states.

As shown in previous literature, the propagator of continuous-time sinusoidally
forced phase oscillators has the form of a Möbius Map (MM) [MMS09]. The Möbius
transform lies at the heart of the low-dimensional dynamical theory for globally forced
populations of continuous-time phase oscillators formulated by Watanabe and Stro-
gatz (WS) [WS94; PR08; MMS09; PR15a; CEM17]. There, the Möbius transform is
used to convert the original phase variables to new conserved quantities, such that
the time-varying transformation parameters obey a simple low-dimensional system of
ordinary differential equations.

In this chapter, we implement an MM, inspired by the aforementioned Möbius
transform, as the basic circle map. The main arguments for studying synchronization
using an MM are threefold. First, one distinct feature of MMs over other circle maps
is that a single map does not possess higher-order phase-locked states (higher-order
Arnold tongues), and instead exhibits only the simplest first-order Arnold tongue (see
Ref. [PRK01] for the concept of Arnold tongue). Therefore, by using an MM, complex
clustering can be avoided by default. Second, coupled MMs under positive coupling
reach qualitative agreement with the dynamics of Kuramoto-type coupled oscillators in
continuous time, and can be used for fast computation of desired Kuramoto dynamics
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by making larger computational steps. Third, MMs under negative coupling produce
new and interesting dynamics, different from the continuous-time counterparts.

By using an MM model, the fundamental properties of the continuous-time mod-
els are preserved and many synchronization phenomena can be reproduced. One
such property is the WS integrability mentioned above. Another property is the ap-
plicability of the Ott-Antonsen (OA) ansatz [OA08], under which the existence of
a low-dimensional manifold can be established for an infinite population of globally
coupled continuous-time phase oscillators. Similarly, for maps, we can establish a
low-dimensional dynamics in an ensemble of phase oscillators evolved under identical
Möbius mapping.

The plan of the chapter is as follows. In Sec. 4.1, we first review the general form of
the complex MM and discuss its group properties. We discuss its single-map dynamics
under function iteration and fixed parameters. Then we present a real form of the
MM to be used in numerical calculations. Next, by allowing the parameters of the
map to vary in time and applying the group properties, we study the low-dimensional
dynamics in globally coupled identical maps, and make a connection to the WS and
OA theories. We also briefly discuss the connection of MMs to homographic maps.
In Sec. 4.2, we find the MM which solves the Adler equation (Eq. 2.3) with piece-
wise constant parameters, and suggest a model of globally coupled, non-identical
Möbius maps analogous to the Kuramoto-Sakaguchi model. Lastly, in Sec. 4.3, we
compute synchronizing dynamics using the map analogues of several systems which
have been studied extensively before in the context of Kuramoto-Sakaguchi dynamics.
We discuss globally coupled MMs with frequency heterogeneity, chimera states in two
populations of identical phase oscillators with different intra- and inter-population
coupling [Abr+08], and chimeras on a periodic lattice of identical oscillators with non-
local coupling [AS04; KB02; Kal+17]. In all examples, known dynamical behaviour of
the smooth dynamics can be qualitatively reproduced under positive coupling, and an
interesting new dynamical behaviour can be found for negative couplings, under which
the familiar continuous-time dynamics would simply be incoherent or asynchronous.

4.1 The Möbius Map and Its Properties

4.1.1 Basic Properties

In order to model the coupled phase oscillator dynamics in discrete-time steps we are
looking for a map from the unit circle S1 to itself. Examples of global coupling of such
one dimensional maps on a periodic domain include the sine circle map [Arn65; Kan91;
CG96; OK02; BM09], more general circle maps [Noz92], as well as chaotic maps such
as the Bernoulli map [TKP01]. The MM we propose is a one-to-one mapping on the
open unit disc D in the complex plane and its boundary S1. The set of these maps
is a Lie group, the Möbius group, with parameters (q, χ) ∈ D×S1, i.e., |q| < 1 and
exp(iχ) ∈S1. The map for any complex number z̄ in the closed unit disk, z̄ ∈ {D∪S1},
can be written as a composition of a rotation by an angle χ,

Rχ : z̄ → eiχz̄ , (4.1)

and a directional contraction

Cq : z̄ → q + z̄

1 + q∗z̄
(4.2)
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in the direction of complex parameter q, and with the degree of contraction controlled
by |q|. To distinguish from later use of z in this chapter and Ch. 6, as well as WS
parameter z̃ from previous chapter, we use z̄(t) here. We adopt the standard form of
the MM [MMS09] as

Mq,χ (z̄) = Cq ◦ Rχ (z̄) =
q + eiχz̄

1 + q∗eiχz̄
, (4.3)

with q∗ denoting the complex conjugate of q. We distinguish the MM here with the
MM from Ch. 3 by its subscript: The MM used in this chapter has two subscripts,
corresponding to the two map parameters, whereas the MM used in Ch. 3 has one
positive integer subscript, which corresponds to the order of harmonic coupling. The
phase ϕ on the unit circle, exp(iϕ) = z, z ∈S1, is therefore transformed by

Mq,χ

(
eiϕ
)

=
q + ei(ϕ+χ)

1 + q∗ei(ϕ+χ)
. (4.4)

The rotational actions commute: Rχ1 ◦ Rχ2 = Rχ2 ◦ Rχ1 = Rχ1+χ2 , with the
inverse of the rotation R−1

χ = R−χ. The inverse of the contraction is C−1
q = C−q such

that
M−1

q,χ = R−χ ◦ C−q. (4.5)

Rotational symmetry is expressed as

Cq = R−χ ◦ Cqeiχ ◦ Rχ . (4.6)

The identity map isM0,0.
Under a functional composition of two MMs, a very useful property is that the new

map parameter of the composite map is itself expressed by a MM using the parameters
of the component maps:

Mq2,χ2 (z̄) =Mq1,χ1 ◦Mq0,χ0 (z̄)

=
Mq1,χ1(q0) + Cq1q∗0 (eiχ1)eiχ0 z̄

1 +M∗q1,χ1
(q0) Cq1q∗0 (eiχ1) eiχ0 z̄

,
(4.7)

or equivalently,

q2 =Mq1,χ1 (q0) , eiχ2 = Cq1q∗0
(
eiχ1

)
· eiχ0 . (4.8)

Hence MMs form a group under functional composition.

4.1.2 Dynamics of the Iterated Möbius Map

Here we shortly discuss the iterated map dynamics of a single MM with constant
parameters q and χ:

z̄(n+1) =Mq,χ

(
z̄(n)

)
, (4.9)

where n = 0, 1, . . . is a discrete time index.
To find the fixed points of the discrete dynamics under Eq. (4.9), we solve the

quadratic equation

z̄2 − eiχ − 1

q∗eiχ
z̄ − q

q∗eiχ
= 0 . (4.10)
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Equation (4.10) has two solutions z̄1 and z̄2 with the properties

z̄1z̄2 = − q

q∗
e−iχ , z̄1 + z̄2 =

eiχ − 1

q∗eiχ
. (4.11)

From the first property it follows that |z̄1||z̄2| = 1, which means that either the two
fixed points are on the unit circle, or one fixed point is inside and the other outside
the unit circle. We make the general ansatz

z̄1 = κei(φ̄+d) , z̄2 =
1

κ
ei(φ̄−d) . (4.12)

Denoting q = ρ̄ · exp(iϑ̄) with 0 ≤ ρ̄ < 1 (using an overbar to distinguish from the
variables φ, ρ and ϑ used in previous chapters), we obtain from (4.11) the following
two relations:

φ̄ = ϑ̄− χ− π
2

, (4.13)

sin
χ

2
=

ρ̄

2

[(
κ+

1

κ

)
cos d+ i

(
κ− 1

κ

)
sin d

]
. (4.14)

The two fixed points do not uniquely determine the Möbius group parameters q and
χ. In the first regime, the two fixed points are on the unit circle, which means κ = 1.
As a result, the second relation (4.14) is simplified to

ρ̄ cos d = sin
χ

2
. (4.15)

The condition for fixed points on the unit circle is therefore

ρ̄ >
∣∣∣sin χ

2

∣∣∣ . (4.16)

One of the fixed points is stable and the other unstable, so the dynamics of the single
MM are trivial, and the rotation number is 0. When equality holds in Eq. (4.16), it
corresponds to the tangent bifurcation point, where the two fixed points merge into
one.

In the second regime, κ < 1, i.e., z̄1 is inside the unit circle, then Eq. (4.14) yields
two results

d = 0 (4.17)

κ = ρ̄−1

(
sin

χ

2
±
√

sin2 χ

2
− ρ̄2

)
. (4.18)

For κ to be a real number, ρ̄ ≤ | sin(χ/2)|must be satisfied, which is the exact opposite
condition from Eq. (4.16). Under this set of map parameters, i.e., ρ̄ ≤ | sin(χ/2)|,
map (4.9) shows rotational dynamics, which can be reduced to a pure rotation by
virtue of a transformation which is also an MM

ȳ(n) = C−z̄1
(
z̄(n)

)
(4.19)

The resulting pure rotational dynamics are

ȳ(n+1) = C−z̄1 ◦Mq,χ ◦ Cz̄1
(
ȳ(n)

)
= RΨ̄

(
ȳ(n)

)
, (4.20)



4.1. The Möbius Map and Its Properties 47

with the fixed point z̄1 = κ ·exp(iφ̄) as the group parameter, and the rotation number
is

Ψ̄ = 2 arctan

(
tan

χ

2

√
1− ρ̄2

sin2 χ
2

)
. (4.21)

Note that to distinguish from Ψ in the previous chapter and Ψ̃ later in this chapter,
we have used Ψ̄ here. Also to distinguish from coordinate y, we have used ȳ.

Equation (4.21) shows that in this second regime, the rotation number Ψ̄ is a
smooth function of the map parameters χ and ρ̄. Altogether, the above analysis
shows that the iterated single (uncoupled) MM dynamics with fixed parameters have
only one Arnold tongue given by Eq. (4.16), a region of synchronous phase locking,
with rotation number zero (and when rotational map parameter Ψ̄ takes its values
on a real line, it has an Arnold tongue with an integer rotation number). For all
other non-zero rational values of Ψ̄ there are no extended regions of phase locking as
found typically in other types of circle maps. Explicitly, this implies that clustering
dynamics cannot occur under an iterated MM-dynamics with constant parameters.

Incidentally, like all invertible circle maps (those mapping the unit circle to itself
in a one-to-one way), chaotic phase dynamics cannot occur under the iterated map
dynamics of MM, regardless of whether the map parameters are constant or time-
varying, even including chaotic sequences of map parameters.

4.1.3 Real Form of the Möbius Map

Compared to the complex form of the MM (4.3), the following real form of the MM
is more suitable for numerical implementation in programming languages that do
not natively support a data type for complex numbers. Denoting z(n) = exp(iϕ(n)),
q = ρ̄ ·exp(iϑ̄), and using the identity exp(iφ) = (1+ i tan φ

2 )(1− i tan φ
2 )−1, we obtain

from (4.3)

tan
ϕ(n+1) − ϑ̄

2
=

1− ρ̄
1 + ρ̄

tan
ϕ(n) + χ− ϑ̄

2
. (4.22)

A further transformation yields still another form of the MM

sin(ϕ(n+1) − ϑ̄) =
(1− ρ̄2) sin(ϕ(n) + χ− ϑ̄)

1 + ρ̄2 + 2ρ̄ cos(ϕ(n) + χ− ϑ̄)
,

cos(ϕ(n+1) − ϑ̄) =
(1 + ρ̄2) cos(ϕ(n) + χ− ϑ̄) + 2ρ̄

1 + ρ̄2 + 2ρ̄ cos(ϕ(n) + χ− ϑ̄)
.

(4.23)

This allows for a straightforward numerical implementation of the MM via the ATAN2
function1

ϕ(n+1) = ϑ̄+ ATAN2
[
(1− ρ̄2) sin(ϕ(n) + χ− ϑ̄), (1 + ρ̄2) cos(ϕ(n) + χ− ϑ̄) + 2ρ̄

]
.

(4.24)
1 Function ATAN2(y, x) is defined as the angle (given in radians) in the Euclidean plane, between

the positive x-axis and the line crossing the origin and the point (x, y), where (x, y) 6= (0, 0).
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4.1.4 Low-Dimensional Evolution of Oscillator Ensembles Under
Möbius Map

The group property of the MM, as shown by Eqs. (4.7) and (4.8), means that the
evolution under MM dynamics from any set of initial states is reducible to a three-
dimensional evolution of the parameters of the map q and χ. In particular, consider
single-map dynamics (4.9) with discrete sequence of parameters q(n), χ(n) that vary in
time

eiϕ
(n)

=Mq(n),χ(n)

(
eiϕ

(n−1)
)
. (4.25)

The evolution over any time interval from the initial state exp(iϕ(0)) to the final state
exp(iϕ(n)) can be expressed as an MM

eiϕ
(n)

=MQ(n),Ξ(n)

(
eiϕ

(0)
)
, (4.26)

with the composite group parameters governed by the following MM

Q(n) =Mq(n),χ(n)

(
Q(n−1)

)
,

eiΞ
(n)

= Cq(n)Q∗(n−1)

(
eiχ

(n)
)
eiΞ

(n−1)
, (4.27)

due to the group property (4.7). We note that the MM governing Q is the same as
the original MM (4.25) that governs the phase. The evolution of any ensemble of
oscillators governed by an identical sequence of MMs is always restricted to a three-
dimensional manifold described by (4.27) and parametrized by (Q(n),Ξ(n)). Hence
the discrete-time dynamics (4.27) for an ensemble of oscillators identically forced (i.e.,
under common forcing) are fully analogous to the Watanabe-Strogatz quasi-mean-field
equations in the continuous-time case (also see Sec. 4.2.1 below).

In fact, the transformation of any measure on the unit circle via the Ruelle-
Frobenius-Perron operator corresponding to the mapping of the phases is restricted
to such a three-dimensional manifold. In the special case of a continuous, uniform
phase density µ0(ϕ) = 1/(2π), its invariant manifold (MM transformed density) is the
family of wrapped Cauchy distributions, a.k.a. a univariate Poisson kernel, as shown
by Ref. [MMS09]. The invariant manifold exactly corresponds to the Ott-Antonsen
invariant manifold in the continuous-time case, so we shall call this family the OA
manifold. Consider µQ = MQ,Ξ[[µ0]] = CQ[[µ0]], where the double brackets denotes
the functional transformation of the density of phases, via Ruelle-Perron-Frobenius
operator of the mapsMQ,Ξ and CQ, both transforming the phases on the unit circle.
Because µ0 is uniform, and is invariant under rotation, i.e., RΞ[[µ0]] = µ0, the density
µQ is independent of Ξ. Then the following holds for the characteristic function or
Fourier transform of the phase density〈

eik̃ϕ
〉
µQ

=

∫ 2π

0
eik̃ϕµQ(ϕ)dϕ

=
1

2π

∫ 2π

0

(
MQ,Ξ

(
eiϕ
))k̃

dϕ

=
1

2π

∫ 2π

0

(
Q+ ei(Ξ+ϕ)

1 +Q∗ei(Ξ+ϕ)

)k̃
dϕ

=
1

2πi

∮
|z|=1

1

z

(
Q+ z

1−Q∗z

)k̃
dz = Qk̃ , (4.28)
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where k̃ is the Fourier mode of the phases, which is to be distinguished from the
oscillator index k. The last integral is a complex contour integral with a simple pole
z = 0 inside and a k̃th-order pole z = (Q∗)−1 outside the unit circle. In the derivation
above we have also used the fact that the integral over the unit circle with respect to
the transformed density µQ is equal to the integral of the transformed circleMQ,Ξ(S1)
with respect to the uniform density µ0.

Equation (4.28) shows that the first circular moment of the phase distribution is〈
eiϕ
〉
µQ

= Q, and all higher moments are integer powers of Q. Therefore, on the OA
manifold, the MM parameter Q that transforms a uniform density to the wrapped
Cauchy density is the first circular moment of the phase distribution, i.e., the usual
Kuramoto order parameter

Q = Z = 〈eiϕ〉µQ . (4.29)

Incidentally, the explicit form of the wrapped Cauchy probability density, corre-
sponding to the set of the moments (4.28), reads

µQ(ϕ) =
1

2π

1− |Q|2

|eiϕ −Q|2
. (4.30)

From result (4.29) and the group property (4.27), the evolution of the mean-field
Z on the unit disc D∪S1 can then be expressed by the same MM that transforms the
phases on the unit circle S1

Z(n) =
q(n) + eiχ

(n)
Z(n−1)

1 + q∗(n)eiχ
(n)
Z(n−1)

. (4.31)

Equation (4.31) is in fact a discrete analogue of the Ott-Antonsen equation in continuous-
time dynamics. It is interesting to note that, map (4.31) has the exact same form as
the the map describing the dynamics of one MM (4.25). This is similar to the fact
that for the continuous-time dynamics, the OA equation for the mean-field has the
same form as the equation for the individual oscillator, written in terms of z = eiϕ.

As a side note, both time-varying parameters q and χ in Eq. (4.25) can contain
noisy components. In this way, more complicated noisy dynamics can also be studied
with the discrete map model proposed here for which all the results above still hold.

4.1.5 Relation to Homographic Maps

Griniasty and Hakim [GH94] studied a family of homographic maps, defined for real
x

x(n+1) = a0 −
b0

x(n)
. (4.32)

This map leaves a Cauchy distribution density invariant, in the same sense as an
MM leaves a wrapped Cauchy distribution invariant. A homographic map (4.32) can
be shown to be equivalent to an MM, as the latter (Eq. 4.22) can be rewritten as a
fractional linear transformation of the variable x(n) = tan (ϕ(n)/2) as follows

x(n+1) =
(1 + ρ̄)G̃+ (1− ρ̄)H̃ + x(n)[(1− ρ̄)− (1 + ρ̄)G̃H̃]

1 + ρ̄− (1− ρ̄)G̃H̃ − x(n)[(1 + ρ̄)H̃ + (1− ρ̄)G̃]
,

G̃ = tan
ϑ̄

2
, H̃ = tan

χ− ϑ̄
2

.

(4.33)

The MM (4.33) can be considered as a shifted homographic map (4.32).
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4.2 Relation to Adler Equation and Construction of Glob-
ally Coupled Möbius Maps

4.2.1 Möbius Maps as a Solution to the Adler Equation

The Adler equation [Adl46] with constant parameters has the form

ϕ̇ = A [λ− sin(ϕ− β)] , (4.34)

where the real-valued parameters consist of the amplitude A, the ratio λ between the
constant bias term and the amplitude of the sinusoidal forcing and the phase shift β.
It is known (Sec. 2.2) for |λ| ≤ 1 that the Adler equation has a steady state solution,
and for |λ| > 1, it yields phase rotations.

The solution of the Adler equation over a time interval τ can be shown to be an
MM, where the fixed parameters consist of A, λ, β and τ , but in the end only the
product A · τ enters the solution. Denoting

σ =
√

1− λ2, Γ = tanh

(
Aτ

2
σ

)
, (4.35)

and using the conventions
√
−1 = i and tanh(ix) = tan(x), we can show the solution

of Eq. (4.34) over τ is an MM

eiϕ(τ) =
(σ + iλΓ)eiϕ(0) + eiβΓ

(σ − iλΓ) + eiϕ(0)e−iβΓ
=Mq,χ

(
eiϕ(0)

)
(4.36)

with the group parameters

q = eiβ
Γ

σ − iλΓ
, eiχ =

σ + iλΓ

σ − iλΓ
. (4.37)

Equation (4.36) has been derived in detail in Appendix C.
If the solution to the Adler equation after τ is an MM, then the evolution under

iterated MMs is an MM again, as shown by the group property in Sec. 4.1.1. Therefore
the solution to the problem (4.34) is an MM after any time interval for fixed parameters
A, λ and β. Additionally, for time-dependent parameters A(t), λ(t) and β(t), which
are arbitrary functions of time, the solution to the problem (4.34) is still an MM.

Consequently, all basic properties of the Adler equation are inherited by the MM.
In particular, it is known that for a periodic solution of the Adler equation there is
only one Arnold tongue, corresponding to an integer rotation number [BKT10; IRF11].
This matches exactly the property of MMs as discussed in Section 4.1.2, i.e., the MM
has at most one stable fixed point in the synchronized state.

Here it is important to note, that Eq. (4.36) can be viewed as an ideal numerical
scheme to simulate the continuous-time Adler equation with a small time step τ .
In linear order the standard Euler scheme coincides with the MM. However, while
a standard Euler scheme breaks the Watanabe-Strogatz partial integrability of the
coupled Adler equation [Gon+19], the MM (4.36) preserves this partial integrability.
The later is hence similar to the symplectic schemes for Hamiltonian equations.

In the special case where the amplitude A = A(t) has explicit time dependence, the
solution is still an MM. Under this condition, the Adler equation (4.34) has the form
of a linear phase response to a time-dependent forcing, ϕ̇ = H(ϕ)A(t). Separation of
variables shows that in this case the product Aτ from Eq. (4.35) is to be replaced by
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V , which is the integral of A(t) over the time interval τ

V =

∫ τ

0
A(t)dt. (4.38)

The solution to the Adler equation with time varying parameter A(t) is hence the
“kick map”

Kλ,V,β (z) =
(σ + iλΓ)z + eiβΓ

(σ − iλΓ) + ze−iβΓ
(4.39)

with Γ = tanh(σV/2), mapping a phase under a “kick” V . This way, A(t) can be any
generic function, regardless of whether it is a delta pulse or a constant force.

4.2.2 Globally Coupled Möbius Maps

To formulate a model of globally coupled MMs, we can use the result from Sec. 4.2.1,
where we show an MM as the solution to an Adler equation. We start with the
Kuramoto-Sakaguchi model in continuous time

ϕ̇j = ωj + εR sin (Θ− ϕj − α) , j = 1, . . . , N . (4.40)

Here {ϕj} is the set of phases of oscillators in a population of size N , indexed by
oscillator index j. Their natural frequencies ωj are generally different. The Kuramoto
mean-field of the population is defined according to

Z = ReiΘ =
1

N

N∑
k=1

eiϕk . (4.41)

One can see that for a constant mean-field parameter R and Θ, the dynamics of each
oscillator is governed by the Adler equation (4.34), where they are effectively decoupled
from each other and are only coupled to the constant mean-field. However, because we
do not assume a constant mean-field, we must look for ways to implement the changing
mean-field via time-dependent parameters of the map. We notice that the parameters
λ and A enter the resulting MM (4.36) in a rather complex manner. Therefore, to
get a simple discrete-time model that nevertheless carries essential properties of the
Kuramoto-Sakaguchi model, we split the evolution in two stages. In stage one, the
phases are transformed according to the kick map K0,εR(n),Θ(n)−α, i.e., with a constant
kick V (n) = εR(n), setting the kick duration τ = 1 without loss of generality. In the
second stage phases undergo free rotation over a time interval T according to their
natural frequencies ωj . Combining stage one and two, the resulting model of globally
coupled MMs reads

eiϕ
(n+1)
j = RωjT ◦ K0,εR(n),Θ(n)−α

(
eiϕ

(n)
j

)

= eiωjT
eiϕ

(n)
j + ei(Θ

(n)−α) tanh εR(n)

2

1 + eiϕ
(n)
j e−i(Θ

(n)−α) tanh εR(n)

2

,

R(n)eiΘ
(n)

=
1

N

N∑
k=1

eiϕ
(n)
k . (4.42)

This discrete-time system has, similar to the Kuramoto-Sakaguchi model (4.40), the
natural frequencies ωj , the coupling strength ε and the coupling phase shift α as
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parameters, with an additional parameter time interval T .

4.3 Mean-Field Dynamics for Phases Evolved Under Cou-
pled Möbius Maps

4.3.1 Globally Coupled Population of Kuramoto-Sakaguchi Type

Here we consider the simplest case of one population of globally coupled MMs (4.42) in
the thermodynamic limit. On the Ott-Antonsen manifold, the phase density µQ(ω) for
each value of ω is a wrapped Cauchy distribution with mean-field Q(ω) =

〈
eiϕ
〉
µQ(ω)

,
as derived before from Eq. (4.29). Q then evolves according to the same map for the
individual phase with frequency ω (4.42), i.e.,

Q(n+1)(ω) = eiωT
Q(n)(ω) + ei(Θ

(n)−α) tanh εR(n)

2

1 +Q(n)(ω)e−i(Θ
(n)−α) tanh εR(n)

2

(4.43)

as derived in Sec. 4.1.4. The intrinsic frequency ω is responsible merely for a free
rotation of Q by the angle ωT during the interval T between the kick. Therefore we
merely need to multiply the right hand side with eiωT .

Integrating over the frequency distribution, we obtain the global mean-field

Z(n) = R(n)eiΘ
(n)

=

∫ ∞
−∞

Q(n)(ω)g(ω)dω . (4.44)

Similar to the approach of Ott and Antonsen [OA08], we can assume that Q(ω) is
analytic in the upper half-plane, which allows us to calculate the integral via the
residue theorem. For a Lorentzian frequency distribution g(ω) of mean ω̄ (to be
distinguished from intrinsic frequency ω) and scale parameter γ (to be distinguished
from synchronization index γ12 in Ch. 6)

g(ω) =
1

πγ

γ2

(ω − ω̄)2 + γ2
(4.45)

we have Z = Q(ω̄ + iγ). Accordingly, the global mean-field evolves as

Z(n+1) = e(iω̄−γ)T
Z(n) + ei(Θ

(n)−α) tanh
(
εR(n)

2

)
1 + Z(n)e−i(Θ

(n)−α) tanh
(
εR(n)

2

) . (4.46)

The free rotation RωT (z) = exp(iωT )z for identical oscillators is replaced by a ro-
tation with the mean frequency ω̄ of the ensemble and a decay of the mean-field
due to population heterogeneity γ, which denotes the width of the natural frequency
distribution.

For this model we can calculate the steady state order parameter R̃ = R exp(γT )
after each kick implicitly. Because we can always go into the co-rotating frame with
the mean frequency ω̄, we can set it to 0 without loss of generality. Setting the order
parameter R̃ equal on both sides of (4.46)

R̃2 =

∣∣∣∣∣Γe−iα + R̃e−γT

1 + ΓeiαR̃e−γT

∣∣∣∣∣
2

=
Γ2 + R̃2e−2γT + 2ΓR̃e−γT cosα

1 + Γ2R̃2e−2γT + 2ΓR̃e−γT cosα
(4.47)
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where Γ = tanh
(
εe−γT R̃/2

)
, we solve a quadratic equation for Γ, and obtain

Γ =
R̃

1− R̃4e−2γT

[
−(1− R̃2)e−γT cosα

±
√

(1− R̃2)2e−2γT cos2 α+ (1− e−2γT )
(

1− R̃4e−2γT
)]

.

(4.48)

Inverting the expression for ε we obtain

ε =
2

R̃e−γT
arctanh (Γ) . (4.49)

Equations (4.48) and (4.49) together allow us to express coupling strength ε explicitly
as a function of the steady state synchronization order parameter R̃ and to plot them
in a bifurcation diagram, as shown in Fig. 4.1..

The first notable limit of the expression of the bifurcation curve is the existence
of two critical coupling strengths for R̃→ 0

εcr = 2
(
− cosα±

√
cos2 α+ e2γT − 1

)
. (4.50)

This implies that there is always a positive and a negative critical coupling strength
for the incoherent state in globally coupled MMs. The second limit is the limit of
identical oscillators γ → 0. Then R̃ = R and

Γ = tanh

(
εR

2

)
= R
− cosα± |cosα|

1 +R2
. (4.51)

This indicates two lines of fixed points connecting incoherence at R = 0 and complete
synchronization R = 1.

Under negative coupling and identical frequency, there are several regimes for a
transition to synchrony. At ε0 = 0, the stability of complete synchronization and
incoherence is exchanged instantly. At ε1 = −4 cosα, incoherence R = 0 becomes
unstable, and at ε2 = ln [(1− cosα)/(1 + cosα)], complete synchronization R = 1
becomes unstable.

The existence of a synchronization transition for strongly repulsively coupled oscil-
lators under discrete time stands in stark contrast to the continuous-time Kuramoto-
Sakaguchi model (4.40). In the continuous case, the order parameter R decreases
to zero continuously under negative coupling, whereas in the coupled-maps system a
negative forcing strong enough can invert the orientation of the mean-field during one
step, and even increases its amplitude.

4.3.2 Two-Population Chimera

Here we consider a setup similar to the one studied in Ref. [MPMA16], where two pop-
ulations of identical continuous-time oscillators interact, with each population more
strongly coupled to itself than to the other population. To formulate the correspond-
ing MM model, we denote coupled phases in the two populations by their complex
exponentials as before, z1,j = exp(iϕ1,j) and z2,j = exp(iϕ2,j), and the corresponding
mean-field of each population as

Z1 =
1

N1

N1∑
k=1

z1,k, Z2 =
1

N2

N2∑
k=1

z2,k ,
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Figure 4.1: Steady state order parameter R̃ as a function of coupling strength
ε (i.e., the bifurcation curve) in the attractively (a)-(b) (ε > 0) or repulsively
coupled (c)-(d) (ε < 0) MM model. Without loss of generality we assume the
time interval between discrete kicks to be T = 1.0. Linearly unstable and stable
partially synchronized states are marked by dotted and solid lines, respectively.
In (a) and (c), we keep α = π/4 constant and vary the natural frequency het-
erogeneity parameter γ from 0 to 0.5 (from top to bottom). In (b) and (d) we
set γ to a constant value, γ = 0.05 in (b) and γ = 0 in (d), and vary the param-
eter α. In (a)-(b) we see the typical second-order synchronization transition as
in the classical Kuramoto-Sakaguchi model with frequency heterogeneity. For
negative coupling strengths as in (c)-(d) there can be several transitions, both
continuous and discontinuous, even for identical oscillators in (d) with γ = 0.
Figure reprinted with permission from Ref. [GTP20].

where N1, N2 are the sizes of two populations of identical oscillators. The forces
acting on the populations are linear combinations of these mean-fields

Y1e
iΨ̃1 = p̃Z1 + (1− p̃)Z2 ,

Y2e
iΨ̃2 = p̃Z2 + (1− p̃)Z1 ,

(4.52)

where parameter p̃ defines relative strengths of intra- and inter-population couplings,
to be distinguished from probability density p in Ch. 3. We use Ψ̃ here to differentiate
from the WS parameter Ψ in Ch. 3. Substituting these forces into Eq. (4.42), the
resulting MMs for the phase variables are

z
(n+1)
1,j =

z
(n)
1,j + ei(Ψ̃

(n)
1 −α) tanh( εY1

2 )

1 + z
(n)
1,j e

−i(Ψ̃(n)
1 −α) tanh( εY1

2 )
,

z
(n+1)
2,j =

z
(n)
2,j + ei(Ψ̃

(n)
2 −α) tanh( εY2

2 )

1 + z
(n)
2,j e

−i(Ψ̃(n)
2 −α) tanh( εY2

2 )
,

(4.53)
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Figure 4.2: Bifurcation diagram (order parameter R vs. coupling strength ε)
illustrating the stability of the chimera states of the two coupled maps of the
mean-fields (4.54) . Scatter plots depict the stable solutions (after transient)
obtained from the direct simulation of the coupled maps (4.54), showing |Z1|
(orange) and |Z2| (green). The dashed line is the fixed point of the coupled
map dynamics found via a numerical solver (the findroot function of the mp-
math package [Joh+13]) while assuming one of the mean-fields is 1 (at full
synchrony). Figure reprinted with permission from Ref. [GTP20].

where α is the common phase shift and ε is the common coupling strength. Here we
set the identical frequency to zero by transforming into a co-rotating frame with the
common natural frequency.

In the thermodynamical limit, i.e., N1, N2 →∞, assuming that both systems are
on the OA manifold, we can write the dynamics of the coupled system as two coupled
maps of the order parameters Z1,2

Z
(n+1)
1 =

Z
(n)
1 + ei(Ψ̃1−α)Γ1

1 + Z
(n)
1 e−i(Ψ̃1−α)Γ1

,

Z
(n+1)
2 =

Z
(n)
2 + ei(Ψ̃2−α)Γ2

1 + Z
(n)
2 e−i(Ψ̃2−α)Γ2

,

(4.54)

using Eq. (4.46), ω̄ = γ = 0 for identical populations. Γ1 = tanh(εY1/2), Γ2 =
tanh(εY2/2). Y1,2 and Ψ̃1,2 are expressed by Eq. (4.52).

As in Ref. [MPMA16], we choose α = 0.5π−0.025, in-group coupling ratio p̃ = 0.6,
and start iterations at initial order parameters Z(0)

1,2 with small amplitudes, either close
to in-phase or to anti-phase. We first evolve the coupled maps (4.54) according to
various positive coupling strengths ε. We found the results to be qualitatively similar
to the continuous limit solutions. Namely, at low coupling strengths, chimera states,
where one of the population is in full synchrony and the other in partial synchrony
are obtained. At intermediate coupling strengths, depending on the initial conditions
Z1,2(0), either chimera or full synchrony of the two populations are possible steady
state solutions, where it is appropriate to speak of a basin of attraction, similar to the
continuous case [MPMA16]. At high coupling strength, both populations are in full
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(a)

(b)

Figure 4.3: Chimera states on a ring in model (4.55) and (4.56). Panel
(a): configuration of the phases; panel (b): the local field amplitude. This
chimera pattern appears stable after 18000 steps. The network size is N = 256,
coupling strength ε = −0.8, kernel function parameter B̃ = 0.995 and phase lag
α = π/2−0.18. Same as the initial condition in Ref. [AS04] for the continuous
dynamics, we use ϕ(t = 0) = 6r̃ exp(−0.76x̄2), where r̃ ∈ [−1/2, 1/2] is
randomly sampled. Figure reprinted with permission from Ref. [GTP20].

synchrony at the steady state.
For negative ε, we see four regimes. At ε > ε−cr, corresponding to the negative

critical coupling strength (derived in Sec. 4.3.1), we observe only the complete asyn-
chronous case with vanishing order parameter. As we decrease ε, we see first a regime
where only chimeras are obtained, then a regime where either chimera or full syn-
chrony are possible depending on the initial conditions, and finally the regime where
only full synchrony of both populations is obtained.

Therefore it is possible for negative coupling strength under discrete dynamics
to create steady states that are either partially (chimera state) or completely syn-
chronized. This is in contrast with continuous-time dynamics, where under negative
coupling both order parameters can only decrease to zero at steady state.

To probe the stability of the chimera states of the coupled maps (4.54), we conduct
a bifurcation analysis across both positive and negative ε regime (Fig. 4.2). The sta-
ble chimera state, as found via integrating the coupled maps, numerically agrees with
the fixed points found by a numerical solver (the findroot function of the mpmath
package [Joh+13]) for stable chimera states. At ε ≈ −0.07 a period-doubling bifur-
cation of the chimera amplitude occurs corresponding to a periodic or quasi-periodic
mean-field. As ε continues to increase to about −0.06 the quasi-periodic orbit collides
with the full synchrony and both disappear. The asynchronous state becomes stable.
In the limit ε→ 0+ the map dynamics corresponds to the continuous-time dynamics
discussed in Ref. [MPMA16]. The loss of stability of the chimera for a larger positive
coupling strength at ε ≈ 0.16 is again an effect of the discrete map dynamics.
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4.3.3 Chimera on a Ring

The first example of a chimera state for continuous-time oscillators was on a one-
dimensional ring with non-local coupling [KB02; AS04], first explored by Kuramoto
and Battogtokh. The oscillators are coupled via a kernel function, which determines
the spatial extend of the interactions with their neighbors. We can find similar
chimeras with the coupled map model.

The oscillators on the ring have positions x̄j = 2πj/N , where N is the total
number of oscillators. Following Ref. [AS04], we have chosen the kernel as g̃jk =
1 + B̃ cos(x̄j − x̄k), so that the field acting on oscillator j is calculated as

Uj = R̄je
iΘ̄j =

N∑
k=1

g̃jk sin(ϕj − ϕk − α) . (4.55)

We denote the kernel function g̃ to be distinguished from generic function ḡ and the
frequency distribution g(ω). The local mean-field parameters R̄j and Θ̄j are to be
distinguished from the Kuramoto mean-field amplitude R and phase Θ. The phases
are driven by these local fields according to the MM

z
(n+1)
j =

z
(n)
j + ei(Θ̄

(n)
j −α) tanh(

εR̄
(n)
j

2 )

1 + z
(n)
j e−i(Θ̄

(n)
j −α) tanh(

εR̄
(n)
j

2 )

, (4.56)

where, as before, zj = exp(iϕj).
Similar to the continuous dynamics, we can obtain a stable chimera pattern for

a range of positive values of ε (e.g., ε = 0.025) (not shown). Same as in the two-
population case before, under discrete map dynamics, there exists a regime under
large negative coupling strength which can give rise to a stable chimera pattern, see
for example Fig. 4.3.

Besides the cosine kernel function, we have also simulated the case with a square
kernel, i.e., with the local field

Uj =
1

2L+ 1

k=L∑
k=−L

sin(ϕk+j − ϕj − α) . (4.57)

Iterating the same map (4.56) using this new local field with N = 1000, L = 130,
ε = 0.025 and α = 2.71, we obtained a many-headed chimera state as in the continuous
case in Ref. [Mai+14].

4.4 Conclusion

In this chapter we propose a method of modelling synchronizing phase dynamics
using an MM. This map precisely reproduces the dynamics of phase oscillators in
discrete time. It can be an ideal choice for fast simulation of phase synchronization,
since it inherits all the properties of continuous-time phase dynamics. In particular,
neither clustering nor chaos under the iteration of a sequence of MMs can occur. All
continuous-time models based on the Adler phase equation (i.e., with a pure sinusoidal
coupling) can be equivalently studied via MMs. Additionally, phase coupling models
with pure higher-harmonics couplings [GP19] can be modelled with correspondingly
modified MMs.
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With the proposed MM, we have studied map analogues of known continuous-
time models for oscillator ensembles with various connection topologies: the globally
coupled Kuramoto-Sakaguchi model, two coupled populations of identical oscillators,
and identical oscillators on a ring with non-local coupling via cosine or square distance
kernel. For small coupling strengths and small free rotation time steps, the coupled
maps reproduce the dynamics of their continuous-time dynamical counterparts. In
particular, we have reproduced known chimera states with coupled maps under non-
local couplings. For large coupling strengths, and in particular for large repulsive
coupling, the discrete time dynamics can lead to new synchronization phenomena
with continuous and discontinuous bifurcations to synchrony. This phenomenon is
not observed in the analogous continuous-time models.
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Chapter 5

Repulsively Coupled Oscillators
under Multiplicative Common
Noise

In this section, we extend the application of WS theory to noisy models, and discuss
the restriction on possible attracting states. We discover that the standard numerical
integration schemes violate the partial integrability due to discretization that intro-
duces higher-mode coupling into the model.

As we have shown in Ch. 3, the WS approach turns out to be a fruitful one at
converting the original complex dynamics into a precise low-dimensional one. One of
the important consequences of the WS approach, which we explore below, is that it
leads to a restriction on possible states that are not fully synchronous — namely, it
excludes the formation of several clusters. This restriction holds not only for noise-
free models already discussed, but also certain types of noisy models. As we will
see, the violation of the partial integrability in this case might lead to drastically
different results in numerical experiments from the correct, theoretically predicted
ones. The model we studied originated from Gil et al. [GKM09] and belongs to a type
of Kuramoto model with common noise.

There are mainly two ways common noise can be added to a coupled mean-field
model as shown in Eq. (5.1), via two directions of multiplicative noise or an additive
noise term (also see Fig. 1.1 for a summary of the existing literature)

ϕ̇j = ωj︸︷︷︸
intr. freq.

+
ε

N

N∑
k=1

sin(ϕk − ϕj + α)︸ ︷︷ ︸
coupling term

+σ1η1(t) sinϕj + σ2η2(t) cosϕj︸ ︷︷ ︸
multiplicative noise

+ σ3η3(t)︸ ︷︷ ︸
add. noise

,

(5.1)
where η1(t), η2(t), η3(t) are random scalar Gaussian(0,1) variables and σ1, σ2, σ3 are
the corresponding scalar noise strengths. In the complex plane of the phase space,
common additive noise corresponds to a random scalar Gaussian field applied uni-
formly along the unit circle, whereas the common multiplicative noise corresponds to
a vector field on the circle, with the term proportional to the sine of phases pointing
along the imaginary axis, and the term proportional to the cosine of phases pointing
along the real axis (see Fig. 5.1). The multiplicative common noise is analogous to a
flashlight which is randomly shone on a group of synchronizing fireflies. The fluctuat-
ing light from the flashlight is added to the common light field of the fireflies — their
mean-field. Depending on the position of each firefly, it experiences more or less of
the fluctuating light. For additive noise, a similar picture holds, except that now each
firefly receives the same fluctuating light from a flashlight regardless of its position.
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Figure 5.1: Illustration of the two types of common noise. Formula see Eq.
(5.1). Left: additive common noise, and right: multiplicative common noise.
Red and blue code for the sine and cosine multiplicative terms. On the right it
is clear that depending on the location on the circle, various degrees of noisy
force are exerted.

The model previously studied numerically by Gil et al. had only multiplicative
noise with sine and cosine terms, and the two terms have equal coupling strength,
such that their sum corresponds to an isotropic random vector field on the circle, i.e.,
σ1 = σ2, and σ3 = 0. In Gil et al., stationary states of 2 or 3 clusters were observed in
a set of identical oscillators under common multiplicative noise and repulsive coupling.
Under strong repulsive coupling a fully synchronized cluster becomes unstable, but it
is not evident a priori what will be observed instead. Therefore, Gil et al. conducted
numerical simulations and reported that common noise generally causes clustering in
globally repulsively coupled Kuramoto interactions.

However, this claim is called into question based on the following reasons. First,
clustering is indeed observed in some models of globally coupled identical phase os-
cillators [HMM93; Gol+92; PRK01], but always in situations where the interaction
functions include higher modes of the coupled phases. In the interaction term in the
model proposed by Gil et al., no such higher modes are present. Secondly, recent
studies of the competition between common noise and repulsive coupling revealed
non-trivial distributions for identical and non-identical oscillators [Pim+16; LAP13],
but no clustering has been observed. Gil et al., on the other hand, reported that
for identical oscillators, clusters formed without a threshold, at any noise intensity.
Finally and perhaps most decisively, because the model used by Gil et al. can be fully
described by WS theory, there are restrictions due to the general properties of the
Möbius transform governing the dynamics [MMS09], i.e., clusters are not allowed to
appear (see Sec. 5.2 below). Therefore, a thorough numerical and analytical study is
needed to resolve the conflict between the numerical findings of Ref. [GKM09] and
known theories.

The observation of clustering in simulations by Gil et al. [GKM09] may be at-
tributed to numerical artefacts, as one cannot expect WS integrability to be preserved
by standard numerical methods. In this chapter we explore how different numerical
integration methods for integrating deterministic and stochastic equations affect WS
integrability and clustering.

The main goal of this chapter is twofold: (i) to demonstrate that the occurrence of
clusters in the system studied by Gil et al. is impossible, contrary to their numerical
report, and (ii) to identify numerical artefacts that may nevertheless lead to cluster
formation in simulations. In the following sections, we first present the WS approach
and show that clustering is impossible. Then we study the formation and stability
of clusters under the model in Gil et al. both analytically and numerically. We have
found that the exact integrability is not preserved by the standard numerical schemes,
both for deterministic and stochastic equations. The WS constants of motion have
not been preserved during simulation. This is in contrast with similarly repulsively
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coupled Van der Pol oscillators under common additive noise, for which higher-order
Fourier terms and multiplicative noise are naturally present in the phase reduced
dynamics, and form clusters as predicted.

5.1 Main Model

Per Gil et al., we study a population of identical phase oscillators with phases {ϕj}
subject to a global coupling of Kuramoto-Sakaguchi type (Sec. 2.2.4) and two common
1phase-dependent nonlinear noise terms

ϕ̇j =ω0 +
1

N

N∑
k=1

sin(ϕk − ϕj + α) + σ1η1(t) sinϕj + σ2η2(t) cosϕj . (5.2)

Here η1,2(t) are Gaussian random variables, with 〈η1(t)〉 = 0, 〈η2(t)〉 = 0, 〈ηm(t)ηm′(t
′)〉

= δmm′δ(t − t′) . The parameters σ1 and σ2 parametrize the noise strengths for the
two noise terms. The Langevin Eq.(5.2) is to be interpreted in the Stratonovich sense
so that WS theory is applicable. Indeed, when interpreted in the sense of Itô calculus,
for σ1 6= σ2 a noise-induced drift, i.e., Stratonovich shift, exists, and is proportional
to the second harmonics in ϕj . The occurrence of higher-order harmonics mixed with
first-order harmonic coupling violate the conditions under which WS theory can be
applied, since WS theory can only be applied to models with a single order of harmonic
coupling (Ch. 3).

Because it is always possible to rescale time, we can, without loss of generality,
set the coupling strength between the mean-field and the phases to 1 (ε = 1 in Eq.
(5.1)).

Models of Kuramoto-Sakaguchi oscillators under multiplicative common noise have
been analysed in Refs. [NK10] and [Pim+16], and in Gil et al. [GKM09] for two noise
terms. Gil et al. [GKM09] argued that when the two noise strengths are equal, model
Eq. (5.2) is equivalent to the phase-reduced model of a population of weakly coupled
identical Stuart-Landau oscillators with a common additive noise isotropic in the
complex plane. In this case, the model under the isotropic noise is invariant under
rotation. We let σ1 = σ2 = σ, and rewrite Eq. (5.2) as

ϕ̇j = ω0 + Im{[Zeiα + σξ(t)]e−iϕj} , (5.3)

where Z is the Kuramoto mean-field and ξ = −η1 + iη2 is a complex Gaussian white
noise. The identical intrinsic frequency ω0 can be set to zero by going into a co-rotating
frame due to the rotational symmetry. After change of variable ϕj → ϕj − ω0t, with
ξ(t) = r(t)eiθ(t), Eq. (5.3) becomes

ϕ̇j =Im

[
1

N

N∑
k=1

eiϕke−i(ϕj−α)

]
+ σr(t) sin[θ(t)− ω0t] cosϕj − σr(t) cos[θ(t)− ω0t] sinϕj (5.4)

which is the same as the original model Eq. (5.3). However, one should note here
that eliminating identical intrinsic frequency ω0 by going into co-rotating frame is only
valid if the noise is isotropic in the complex plane, i.e., the two multiplicative noise

1The noise is common because the vector field itself is common to all oscillators. But depending
on the oscillator’s position in the field, it experiences different degrees of noise. If the parameter σ is
also different for different individual oscillators, then it is individual noise. Also see introduction in
Sec. 2.3.1.
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terms must have equal noise strength. Because the multiplicative noise term depends
on the absolute value of the phase, which in turn depends on the frequency, so if there
is a preferred direction in the system, for example, caused by the anisotropic noise in
the complex plane, the system loses its rotational invariance and it will no longer be
possible to go into a co-rotating frame. Specifically, for a one-noise-term model, it is
no longer valid to set ω0 = 0.

5.2 WS Theory Applied to Globally Coupled Identical Os-
cillators with Common Noise

As already introduced in Sec. 3.1, expression Eq. (3.2) alone rules out the formation
of clustered states from non-clustered initial conditions. Two oscillators with initially
different phases are mapped to a single point only at full synchrony for first-order
harmonic coupling. Therefore, only a single cluster attracting different phases can
exist at a time. Nevertheless, this only prohibits the formation of multiple clusters
but not their existence under this model. There is no restrictions on the oscillators to
start out in one or several distinct clusters and stay in that configuration.

Table 5.1 shows in detail, that for multiple clusters the Möbius structure of the
dynamics cannot hold, and the violation of the Möbius structure in turn is forbidden
by WS theory. The Möbius transformation dictates that no more than 1 cluster can
be found at the steady state. Even if the model is stochastic with noise terms, as long
as it is still within the regime of WS theory, clusters are forbidden to form. Therefore,
even though noise is known to result in clustering, as an exception, cluster states
cannot form in the first-order harmonic coupled Kuramoto-Sakaguchi models even if
they contain noise.

State WS mean-field State under Möbius transform
no cluster z̃ = 0 ϕj = ψj + α̃

1 cluster z̃ = eiΦ ϕj = Φ, Φ the synchronized phase

M̃ clusters (2 ≤
M̃ < N)

z̃ = ρeiΦ M1: eiϕj,m̃ = eiΦ̃m̃ 6= ρeiΦ+ei(ψj+α̃)

1+ρe−iΦei(ψj+α̃)

Φ̃m̃ the phase of the m̃-th cluster

Table 5.1: Table detailing the reason why multi-cluster states are precluded
by WS theory for the KS type models, and the only possible states are full
synchrony and full asynchrony. Multiple clusters cannot occur under such a
model because on the l.h.s. of the Möbius transformM1, there are M̃ values,
corresponding to M̃ clusters, whereas the r.h.s. has N values, corresponding
to the N constants of motion. The equality on the third row therefore cannot
hold. Number of clusters M̃ and cluster index m̃ are to be distinguished from
the number of noise terms M and noise term index m. Φ̃ is to be distinguished
from the WS parameter Φ (Ch. 3).

When the multiplicative noise is only dependent on one variable, as in our case,
the j-th component of the Stratonovich shift ~S(ϕ) is

Sj(ϕ) =
σ2

2

N∑
j′=1

[
sinϕj′∂ϕj′ (sinϕj) + cosϕj′∂ϕj′ (cosϕj)

]
=
σ2

2
[sinϕj cosϕj − cosϕj sinϕj ] = 0 .

(5.5)
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Therefore for Eq. (5.3) with two equal-strength noise terms, the Stratonovich shift is
0.

Since we expect the partial integrability, guaranteed by the maintaining of Möbius
group structure, to be likely not conserved by the numerical integration scheme, we
set out to measure the degree that the partial integrability might be violated during
numerical integration. The easiest way to measure the potential violation of partial
integrability is by the values of the constants of motion. A drift of the constants
of motion will directly imply that the partial integrability is violated. As has been
outlined in Sec. 3.1.1, the constants of motion of the system can be determined via
the Möbius transformation Eq. (3.2) of the N phases {ϕj}. In practice, one must
first determine the complex variable z̃ = ρeiΦ which characterizes the transformation.
Watanabe and Strogatz (see Sec. 4.2 in Ref. [WS94]) have shown that this can be
accomplished with the help of a potential function

U(ρ,Φ) =
1

N

N∑
k=1

log
1− 2ρ cos(ϕk − Φ) + ρ2

1− ρ2
. (5.6)

The proper value of z̃ corresponds to the minimum of this function with respect to
its modulus ρ and to its argument Φ. The easiest way to determine the minimum is
by integrating

ρ̇ = −Uρ , Φ̇ = −UΦ ,

where subscripts indicate partial derivatives, until the steady state is established. The
angles ψj + α̃ can then be obtained with the Möbius transformation Eq. (3.2), where
ψj are the WS constants of motion. It is possible to avoid integrating α̃ by considering
only the differences ψj−ψ1, j = 2, . . . , N as constants of motion. The disadvantage of
this method lies in the necessity of solving the minimization problem for the potential
Eq. (5.6), which can be performed with finite accuracy only. There exists, however,
another possibility to determine the constants of motion.

Marvel, Mirollo and Strogatz (MMS) (see Sec. V in Ref. [MMS09]) have demon-
strated that the cross ratio of four complex numbers on the unit circle is a preserved
quantity under the Möbius transformation. For any four phases ϕj , ϕj+1, ϕj+2, ϕj+3

(not necessarily ordered on the circle), the constant of motion Cj is defined as

Cj =
Uj,j+2

Uj,j+3
· Uj+1,j+3

Uj+1,j+2
, where Ujj′ = sin

ϕj − ϕj′
2

. (5.7)

Our method of checking the conservation of these quantities is based on Eq. (5.7),
but we find it appropriate to avoid calculating fractions, because as the phases syn-
chronize, the denominators can be very small or vanish. Instead, we calculate the
numerical errors in the following form

ej =Uj,j+2(t)Uj+1,j+3(t)Uj,j+3(0)Uj+1,j+2(0)

− Uj,j+3(t)Uj+1,j+2(t)Uj,j+2(0)Uj+1,j+3(0) .

In summary, we test for integrability in numerical schemes by calculating the
following errors containing changes in the conserved quantities under Möbius action

ErrWS(t) = max
j
{sin |[ψj(t)− ψ1(t)]− [ψj(0)− ψ1(0)]|}, where j = 2, . . . , N ,

(5.8)

ErrMMS(t) = max
j

(|ej |), where j = 1, 2, . . . , N − 3 . (5.9)
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In this section we have shown that clusters cannot appear from non-clustered
initial conditions. The same arguments can be applied when the dynamics evolve
from an initial multicluster state. Here, either the multicluster remains with the
same partition, or the fully synchronized state with maximally one additional cluster
or oscillator in a solitary state appears. Imperfect clusters, i.e., configurations with
phases very close to one another, can also dissolve or contract depending on their
dynamical stability.

The conclusion drawn here from WS theory of partial integrability will be fur-
ther supported below by an analytic and numerical investigation of the Lyapunov
exponents of oscillators evolving in the field of two fully synchronized clusters in Sec.
5.3 .

5.3 Linear Stability Analysis of Two-Cluster States

According to WS theory, one expects that not more than one of the clusters can
be asymptotically attracting. Otherwise multiclusters would also form from non-
clustered initial conditions, a phenomenon which is forbidden by the argument in
Sec. 5.2. Additionally, there exist previous results on the stability of the completely
synchronous cluster for the model with one noise term, which can be expressed in
terms of the transversal Lyapunov exponent [Pim+16]

λ̄ = − cosα− σ2

2
. (5.10)

where α is the usual phase shift (Ch. 2 and Ch. 4), and σ the noise strength. λ̄ is to
be distinguished from the Adler equation parameter λ (Ch. 2 and Ch. 4). When λ̄ is
negative, complete synchronization is stable, i.e., it attracts nearby phases that are
perturbed from it. According to Eq. (5.10), for sufficiently strong noise, the cluster of
complete synchrony is stable. For repulsive coupling, with cosα < 0 and sufficiently
weak noise, the cluster is unstable. However, contrary to this result, Gil et al.’s result
indicated that for two noise terms, clusters formed at any noise intensity. Therefore,
in this section we provide a linear stability analysis of a two-cluster state under the
stochastic evolution given by model Eq. (5.3) which confirms our expectation that
the two-cluster state cannot be attracting.

We write system (5.3) for a two-cluster state as

˙̃Φ1 =ω0 + p1 sinα+ p2 sin(∆Φ̃ + α) + σ sin Φ̃1η1(t) + σ cos Φ̃1η2(t)

˙̃Φ2 =ω0 + p2 sinα− p1 sin(∆Φ̃− α) + σ sin Φ̃2η1(t) + σ cos Φ̃2η2(t) .
(5.11)

Here Φ̃1 and Φ̃2 are the phases of the two clusters. ∆Φ̃ = Φ̃2 − Φ̃1 is their phase
difference. Parameters p1 and p2 = 1− p1 are their relative population sizes.

To evaluate the stability of the two-cluster state in terms of a small perturbation
from one of the clusters, say, cluster 1, we perturb two oscillators belonging to cluster
1 by pulling them in opposite directions by a small amount away from the cluster,
i.e., ϕ1,2 = Φ̃1 ± δ̃. For small δ̃, linearization yields

˙̃
δ =δ̃

[
− p1 cosα− p2 cos(∆Φ̃ + α) + σ cos Φ̃1η1(t)− σ sin Φ̃1η2(t)

]
. (5.12)

δ̃ is to be distinguished from the Dirac delta function δ. This allows us to express
stability of cluster 1 via the split/evaporation Lyapunov exponent [Kan89; PPM01;
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PP16] as

λ̄1 = <
d ln δ̃

dt
>= −p1 cosα− p2〈cos(∆Φ̃ + α)〉+ σ〈cos Φ̃1η1(t)〉 − σ〈sin Φ̃1η2(t)〉 ,

(5.13)
where 〈·〉 indicates time average, which in this case also equals to the ensemble average,
because as we will see in (5.21), the probability distribution of the phase ∆Φ̃ is
stationary. Also see Sec. 2.3.2 in the introduction.

While the Stratonovich shift for the Langevin Eqs.(5.11) happens to be zero, that
is not the case anymore when Eq.(5.12) is considered as well. It is important to keep
this in mind and choose a correct integration scheme when Eqs.(5.11) and (5.12) are
integrated numerically. To calculate the Lyapunov exponent analytically, we need to
know the probability distribution of ∆Φ̃ and the averages 〈cos Φ̃1η1(t)〉, 〈sin Φ̃1η2(t)〉.
First, we write a two-dimensional Fokker-Planck equation for Φ̃1 and ∆Φ̃ correspond-
ing to the Langevin equations (5.11) under Stratonovich interpretation [HT82] as
follows. The 2 SDEs are

˙̃Φ1 = p1 sinα+ p2 sin(∆Φ̃ + α) + σ sin Φ̃1η1(t) + σ cos Φ̃1η2(t)

∆ ˙̃Φ = (p2 − p1) sinα(1− cos ∆Φ̃)− cosα sin ∆Φ̃ + σ[sin(Φ̃1 + ∆Φ̃)− sin Φ̃1]η1(t)

+ σ[cos(Φ̃1 + ∆Φ̃)− cos Φ̃1]η2(t) .

(5.14)

Rewrite them in this short form

˙̃Φ1 = h̄1(∆Φ̃) + ḡ11(Φ̃1)η1(t) + ḡ12(Φ̃1)η2(t)

∆ ˙̃Φ = h̄2(∆Φ̃) + ḡ21(∆Φ̃, Φ̃1)η1(t) + ḡ22(∆Φ̃, Φ̃1)η2(t) ,
(5.15)

where h̄, ḡ are functions expressed in Eq. (5.14). h̄ is to be distinguished from the
time step parameter h. ḡ is to be distinguished from the frequency distribution g.
According to the formula in the introductory section Eq. (2.18), the Fokker-Planck
equation is 2

∂W (Φ̃1,∆Φ̃, t)

∂t
=− ∂

∂Φ̃1

(h̄1W )− ∂

∂∆Φ̃
(h̄2W )

+
1

2

∂

∂Φ̃1

{
ḡ11[

∂

∂Φ̃1

(ḡ11W ) +
∂

∂∆Φ̃
(ḡ21W )]

}
+

1

2

∂

∂Φ̃1

{
ḡ12[

∂

∂Φ̃1

(ḡ12W ) +
∂

∂∆Φ̃
(ḡ22W )]

}
+

1

2

∂

∂∆Φ̃

{
ḡ21[

∂

∂Φ̃1

(ḡ11W ) +
∂

∂∆Φ̃
(ḡ21W )]

}
+

1

2

∂

∂∆Φ̃

{
ḡ22[

∂

∂Φ̃1

(ḡ12W ) +
∂

∂∆Φ̃
(ḡ22W )]

}
.

(5.16)

where W (Φ̃1,∆Φ̃, t) is the time-varying joint probability density of Φ̃1 and ∆Φ̃.
Then, when integrating the joint probability distribution W (Φ̃1,∆Φ̃, t) over the

slow variable Φ̃1 to obtain the probability distribution P (∆Φ̃), we use the fact that
2Note that our definition of noise intensity is different from that in Gil et al. [GKM09]. Our

definition for the Gaussian noise has noise intensity 1, i.e. 〈ηm(t)ηm′(t
′)〉 = δmm′δ(t− t′), instead of

〈ηm(t)ηm′(t
′)〉 = 2δmm′δ(t− t′). So in Eq. (5.16), for terms containing products of two noise terms,

we do not need to multiply it by 2.
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the probability distribution of Φ̃1 is rotationally symmetric, which means all partials
with respect to Φ̃1 vanish3

∂P (∆Φ̃)

∂t
=

∫ 2π

0
W (Φ̃1,∆Φ̃)dΦ̃1

=

∫ 2π

0

{
−
∂
(
h̄2W

)
∂∆Φ̃

+
1

2

∂

∂∆Φ̃

[
−ḡ21W

∂ḡ21

∂∆Φ̃
+ ḡ21W

∂ḡ11

∂Φ̃1

+ ḡ21ḡ11
∂W

∂Φ̃1

]
+

1

2

∂

∂∆Φ̃

[
−ḡ22W

∂ḡ22

∂∆Φ̃
+ ḡ22W

∂ḡ12

∂Φ̃1

+ ḡ22ḡ12
∂W

∂Φ̃1

]}
dΦ̃1

+
1

2

∂2

∂∆Φ̃2

[∫ 2π

0
(ḡ2

21 + ḡ2
22)WdΦ̃1

]
(5.17)

After straightforward differentiation, finally, we obtain a closed-form equation for the
probability distribution P (∆Φ̃) of the phase difference

∂P (∆Φ̃)

∂t
=− ∂

∂∆Φ̃

{[
(p2 − p1) sinα(1− cos ∆Φ̃)− cosα sin ∆Φ̃

]
P
}

+ σ2 ∂2

∂∆Φ̃2

[
(1− cos ∆Φ̃)P

]
.

(5.18)

Note that this probability density function is defined and restricted on the open inter-
val (0, 2π) since the two clusters cannot cross each other. We then find the stationary
solution [Ris96] to the above Fokker-Planck equation. The solution is stationary when
r.h.s. of Eq. (5.18) is zero, i.e., when the probability flux is constant. However, due
to rotational invariance, the probability current can be set to 0, because if the prob-
ability current vanishes at some ∆Φ̃ the current must be zero for any ∆Φ̃. The flux
(r.h.s. of Eq. (5.18)) does vanish at value ∆Φ̃ = 0. So for a general Fokker-Planck
equation of the form

J(x) :=
∂P (x)

∂t
= − ∂

∂x
f̄1P +

∂2

∂x2
f̄2P, (5.19)

the stationary probability distribution Pst (J = 0), i.e. the zero-flux solution, satisfies

f̄1(x)Pst =
∂

∂x
f̄2(x)Pst . (5.20)

After integration, the stationary solution has the form

Pst(∆Φ̃) = N0 exp

[
∆Φ̃(p2 − p1) sinα

σ2

] ∣∣∣∣∣sin ∆Φ̃

2

∣∣∣∣∣
−2

(
cosα
σ2 +1

)
. (5.21)

A closed-form expression for the normalized probability density is possible when
α = π, i.e., the repulsion between the oscillators is maximal. In this case,

Pst(∆Φ̃) =
1

2B
(

1
σ2 − 1

2 ,
1
2

) ∣∣∣∣∣sin ∆Φ̃

2

∣∣∣∣∣
−2

(
1− 1

σ2

)
, (5.22)

3Note ḡ21
∂(ḡ11W )

∂Φ̃1
and ḡ22

∂(ḡ12W )

∂Φ̃1
do not vanish, for the reason that they are multiplied with ḡ11

or ḡ12 which when integrating over Φ̃1 isn’t 0.
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where B(x, y) is the beta function. The shape of the probability density function in
the general case Eq. (5.21) is shown in Fig. 5.2.

Figure 5.2: Probability density function Eq. (5.21), when p1 = 0.4, α = 0.8π
and the noise strength takes on various values (see legend). When the exponent
of
∣∣∣sin ∆Φ̃

2

∣∣∣ is positive, the function peaks asymmetrically at values larger than
π (orange lines, solid and dashed); when the exponent is 0, it is an exponential
distribution (red), and when it’s negative, the distribution has an asymmetrical
singularity at 0 (black lines, dashed and solid). The function will become a Dirac
delta function when the exponent is −1 (not shown here). Figure reprinted with
permission from [Gon+19].

In the expression Eq. (5.21), a nonzero phase shift parameter α introduces a
curious asymmetry in form of the exponential factor which is not a periodic function,
i.e., when we consider the distribution on (0, 2π) wrapped around the circle, the
derivative is not continuous at the singular absorbing point ∆Φ̃ = 0 = 2π. The
critical noise strength σcr beyond which the two clusters are synchronized to become
one cluster, corresponds to the case where Pst(∆Φ̃) becomes the delta distribution
P (∆Φ̃) = δ(∆Φ̃). Formally, this corresponds to divergence of the integral of the
probability density Eq. (5.21). This happens if the exponent of | sin(∆Φ̃/2)| is smaller
than −1, and from this we can calculate the critical noise strength to be σ2

cr/2 =
− cosα.

In addition to the distribution of the phase difference ∆Φ̃, one needs to calculate
the averages 〈cos Φ̃1η1(t)〉 and 〈sin Φ̃1η2(t)〉 to evaluate Eq. (5.13). Since η1(t) and
η2(t) are independent Gaussian white noise processes and Φ̃1 is a functional of both
η1 and η2 this can be accomplished by virtue of the Furutsu-Novikov formula [Fur63;
Nov64]

〈sin Φ̃1η2(t)〉 =

∫
δ(t− t′)

〈
δ sin Φ̃1

δη2

〉
dt′ =

〈
d(sin Φ̃1)

dΦ̃1

δΦ̃1

δη2

〉
=

〈
1

2
σ cos2 Φ̃1

〉
=
σ

4
,

(5.23)
where δ

δ is the functional derivative operator. Similarly, 〈η1(t) cos Φ̃1〉 = −σ
4 . A

general expression for the Lyapunov exponent λ̄1, which describes the stability of the
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cluster 1, is therefore

λ̄1 = −p1 cosα− (1− p1)

∫ 2π

0
cos(∆Φ̃ + α)P (∆Φ̃)d∆Φ̃− σ2

2
. (5.24)

Lyapunov exponent Eq. (5.24) can even be analytically represented for the case α = π

λ̄1 =

{
p1 + p2(σ2 − 1)− σ2

2 , σ2 < 2 ;

1− σ2

2 , σ2 ≥ 2 .
(5.25)

Exchanging p1 and p2, we obtain the Lyapunov exponent λ̄2 of the other cluster. From
this special case one can easily see that when σ2 < 2, i.e., when a fully synchronized
one-cluster state is unstable and the two-cluster Lyapunov exponents are well defined,
they satisfy λ̄1 + λ̄2 = 0.

Through direct numerical evaluation of the Lyapunov exponent λ̄1 in Fig. 5.3 , we
obtain a confirmation of the above analytical result.

Figure 5.3: Diagram for linear stability of one of the two clusters indicated
by its Lyapunov exponent, for phase shift α = π (maximal repulsion), in the
plane of parameters p1, the relative size of cluster 1, and the noise strength
σ2/2. Bold solid lines: theoretical result Eq. (5.25) obtained by Fokker-Planck
formulation. Contour lines/color: by direct simulation of Eqs. (5.11)-(5.13)
via Euler-Heun scheme. The Lyapunov exponent for cluster 1 below the critical
noise strength σ2

cr/2 = 1 is shown in color gradient. Above the critical noise
strength one cluster is formed. The diagram is symmetric with respect to the
line p1 = 0.5 (except for very small positive exponents for p1 < 0 and σ2 ≈ 2,
which can be attributed to finite averaging time), indicating that together with
the second cluster Lyapunov exponent λ̄1 + λ̄2 = 0. Figure reprinted with
permission from Ref. [Gon+19].
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For the case of the Kuramoto-Sakaguchi model with general phase shift parameter
α, using Eq. (5.13) and the corresponding expression for λ̄2, we obtain for the sum

λ̄1 + λ̄2 =− cosα− σ2 − cosα

∫ 2π

0
cos ∆Φ̃P (∆Φ̃)d∆Φ̃

+ (p2 − p1) sinα

∫ 2π

0
sin ∆Φ̃P (∆Φ̃)d∆Φ̃

(5.26)

After applying integration by parts for the product of three functions4, 〈sin ∆Φ̃〉 can
be written in terms of 〈cos2(∆Φ̃/2)〉 and 〈cos ∆Φ̃〉 in the following way∫ 2π

0
sin ∆Φ̃P (∆Φ̃)d∆Φ̃

=

∫ 2π

0
sin ∆Φ̃N0 exp

{(p2 − p1) sinα∆Φ̃

σ2

}
| sin ∆Φ̃

2
|−( 2 cosα

σ2 +2)d∆Φ̃

= N0

[ σ2

(p2 − p1) sinα
(
cosα

σ2
+ 1)

∫ 2π

0

sin ∆Φ̃ cos ∆Φ̃
2

sin ∆Φ̃
2

P (∆Φ̃)d∆Φ̃

− σ2

(p2 − p1) sinα

∫ 2π

0
(cos ∆Φ̃)P (∆Φ̃)d∆Φ̃

]
= N0

[ σ2

(p2 − p1) sinα
(
cosα

σ2
+ 1)〈2 cos2 ∆Φ̃

2
〉 − σ2

(p2 − p1) sinα
〈cos ∆Φ̃〉

]

(5.27)

With the help of simple algebra, the relation λ̄1+λ̄2 = 0 for the generic Kuramoto-
Sakaguchi model can be shown. This means that for two narrowly distributed groups
of repulsively coupled oscillators with common multiplicative noise, the larger group
will dissolve while the smaller group is attractive (Fig. 5.3). Simultaneous attraction
into two clusters is not possible.

5.4 Deterministic Evolution

We first explore how well the WS integrability is preserved in numerical simulation of
deterministic equations. Here the original Kuramoto-Sakaguchi model is not optimal.
After a short initial transient, the evolution of R1 = |Z1| effectively comes to a halt
as soon as a steady state is reached, i.e., R1 = |Z1| is zero for repulsive coupling
or unity for attractive coupling. Instead, we integrate a model of type Eq. (3.1)
with a prescribed modulated time-dependent forcing ω(t) = 0.2 sin(1.752t), H(t) =
0.4 cos(2.33t) · Z, and N = 10, designed to ensure the state remains nontrivial (see
Fig. 5.4). Integrating this deterministic equation, we use the standard Runge-Kutta
method of 4th order (RK4) and the first-order Euler method.

First, comparing Fig. 5.4 panels (a) and (b), where the two methods Eq. (5.8)
and Eq. (5.9) of determining the constants of motion are used, we can conclude that,
while the errors in the constants of motion are similar for large steps, the calculation

4Integration by parts of three functions∫ ã

b̃

ūv̄dw̄ = [ūv̄w̄]ãb̃ −
∫ ã

b̃

ūw̄dv̄ −
∫ ã

b̃

v̄w̄dū (5.28)

where dw̄ = e
(p2−p1) sinα

σ2
∆Φ̃
d∆Φ̃, w̄ = σ2

(p2−p1) sinα
e

(p2−p1) sinα

σ2
∆Φ̃, ū = sin ∆Φ̃, dū = cos ∆Φ̃d∆Φ̃ and

v̄ = (sin ∆Φ̃
2

)
−( 2 cosα

σ2
+2)

, dv̄ = − 1
2
( 2 cosα

σ2 + 2)(sin ∆Φ̃
2

)
−( 2 cosα

σ2
+3)

cos ∆Φ̃
2
d∆Φ̃. And [ūv̄w̄]ã

b̃
vanishes in

this case due to periodicity in v̄.
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(a) ErrWS(t), RK4 (b) ErrMMS(t), RK4

(c) ErrMMS(t), Euler (d) log10 Err(T ) vs. log10 h
Figure 5.4: Time evolution of discretization errors as calculated from the
drift in the constants of motion (Eq. 5.9), with RK4 (A-B) and Euler scheme
(C), of a deterministic Kuramoto model, which was designed to ensure the state
remains nontrivial. Dashed lines in (A-C) have slope = 1 in log10-log10 plot.
(D) shows the numerical errors at end time Tint = 1000 vs. time step h, as
well as their linear fits (shown in legend). Figure reprinted with permission from
Ref. [Gon+19].

of the errors via ErrWS Eq. (5.8) does not allow for a proper estimation of very small
errors, due to the necessity of a minimization procedure which can be performed only
with finite precision. Therefore, for the rest of the section we calculate the errors
using only ErrMMS Eq. (5.9).

The second observation is that in all the cases the errors grow roughly linearly in
time, with prefactors depending on the integration step h: ErrMMS,RK4 ∼ h4.94t for
the RK4 method, and ErrEuler ∼ h0.99t for the Euler method, indicating a drift of the
constants of motion. This is consistent with the known fact that the numerical error
per time step is h5 for RK4, and h for Euler.

In Fig. 5.5 we present the results for the integration of the deterministic equation
Eq. (5.3) with ω0 = σ = 0, N = 100 and α = 0.54π (slightly repulsive). Here we use
rather large integration steps to make the clustering effect visible during a relatively
short transient time interval, before the main order parameter becomes very small
and the dynamics stops. One can see that for h > 0.6 the order parameter R2, which
measures formation of a two-cluster state, grows to macroscopic values.

For instructive purposes, we explore here which type of perturbations are intro-
duced by the numerical integration methods to the original dynamics Eq. (5.3) when
noise is not present. The simplest case is to estimate the perturbations introduced
by the Euler method. The Euler method models a continuous-time dynamical system
ϕ̇j = f̄j(~ϕ) up to the order h as a map ϕj(t+ h) = ϕj(t) + hf̄j [~ϕ(t)]. Then we might
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ask, what continuous equation is integrated by the same map correctly up to the order
h2. Looking for this equation in the form of ϕ̇j = f̄j(~ϕ) + hḡj(~ϕ), we find

ḡj(~ϕ) = −1

2

∑
k

f̄k(~ϕ)
∂

∂ϕk
f̄j(~ϕ) .

Substituting for the Kuramoto-Sakaguchi model f̄j = ω0 +Im
[
Zei(α−ϕj)

]
(details and

result to h3 order are presented in Appendix D), we obtain a modified equation where
the error in the Euler integration is part of the dynamics

ϕ̇j = ω0 + Im
[
Zei(α−ϕj)

]
− ε

4
Im
[
Zei(2α−ϕj) + ZZ∗2e

iϕj − Z2ei2(α−ϕj)
]
.(5.29)

Here Z2 = 〈exp (2iϕk)〉k is the second Kuramoto-Daido mean-field. One can see,
that in addition to the new coupling terms proportional to sinϕ or cosϕ, which do
not violate the WS integrability, terms proportional to sin 2ϕ, cos 2ϕ appear, which
violate the WS integrability and may result in the formation of two clusters. Clusters
of the third order can presumably be attributed to terms ∼ sin 3ϕ etc. appearing in
the third order errors in h.

Figure 5.5: Main model Eq. (5.3) with ω0 = σ = 0 (no noise), N = 100
and α = 0.54π are integrated using the Euler method. Clustering, indicated by
the second Kuramoto-Daido order parameter R2 (Eq. 2.11) (left) and errors
deviating from the partial integrability (Eq. 5.9) (right) grow together in time.
The time series are averaged over 10 random initial conditions of phases drawn
from a uniform distribution on the unit circle. Cluster formation on the left
always corresponds to poor conservation of the constants on the right. Figure
reprinted with permission from Ref. [Gon+19].

5.5 Numerical Evaluation of Clustering

In numerical simulations of model Eq. (5.3) (details shall be outlined below) we may
observe different clustered states, illustrated in Fig. 5.6.

We quantify the formation of synchronized clusters with the help of the Kuramoto-
Daido mean-fields Eq. (2.11).

After long integration time, the first-order mean-field Z1 for repulsive coupling is
either small if noise is present, or vanishes completely in the deterministic case. The
second-order parameter R2 = |Z2| is maximal and equal to 1 for two fully synchronized
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Figure 5.6: Besides 2-cluster and 3-cluster states discovered by Gil et al.,
4 or 5 clusters can also be found for large integration steps. Shown here are
the multiclusters, formed under model Eq. (5.3), from the same set of initial
conditions of 100 Kuramoto phase oscillators, drawn randomly from a uniform
distribution, with coupling phase shift α ∈ (π/2, π) (repulsive coupling regime),
various integration step sizes h and noise strength σ, after an integration time of
Tint. (a): σ = 0.01, α = 0.3, h = 1.0, Tint = 220, 000; (b): σ = 0.1, α = 0.4,
h = 1.5, Tint = 225, 000; (c): σ = 0.1, α = 0.4, h = 2.0, Tint = 100, 000;
(d): σ = 0.1, α = 0.45, h = 2.0, Tint = 100, 000. In most cases the final
distributions of clusters are close to equipartition; in some cases the dynamics is
quite complex, with switchings between different nearly-clustered states. Figure
reprinted with permission from Ref. [Gon+19].

clusters of arbitrary sizes with phase difference π between them. Altogether, the degree
of the formation of two clusters can be measured by a growth of R2 approaching values
close to one. We will henceforth use the evolution of R2 as an indication for a two-
cluster state.

5.6 Stochastic Evolution

Throughout this section we interpret the stochastic system Eq. (5.3) in the Stratonovich
sense. However, the additional drift term needed to transform it into Itô interpreta-
tion vanishes in the case where the two noise terms correspond to complex isotropic
noise term, i.e., σ1 = σ2 in Eq. (5.3). Therefore, the numerical schemes for both
Stratonovich and Itô interpretations can be used to integrate the phases in the case
of two noise terms of equal strength. On the other hand, the two noise terms in
Eq. (5.3) do not commute according to commutativity condition (8.10), because∑

j cosϕj
∂sinϕj′
∂ϕj

6=
∑

j sinϕj
∂cosϕj′
∂ϕj

. Therefore it is sensible for us to only use lower-
order integration schemes (see Appendix A and Appendix E). Only in the case of noise
in a single direction (i.e., σ1 6= 0, σ2 = 0), higher-order methods like the stochastic
Runge-Kutta method [Bur98] are used.

In Fig. 5.7 we show the results in the case of two relatively strong noise terms
σ1 = σ2 = 0.1 . The integration is performed with the Euler-Heun scheme for various
time steps h. Due to the rotational invariance preserved by two noise terms of equal
strength, we have set ω0 = 0. One can clearly see the formation of two clusters,
indicated by values of R2 growing close to one, on a time scale ∼ h−1. For a weaker
noise σ = 0.01, clustering appears much slower. This dependence of the clustering
time scale on the integration step size demonstrates that clustering in this system is a
numerical artefact. In fact, when we break WS integrability by adding a term to the
stochastic dynamics Eq. (5.3) which is proportional to the error in the deterministic
integration scheme as in Eq.(5.29), namely

ϕ̇j = ω0 + Im
{[
Zeiα + σξ − ε

4

(
Ze2iα + ZZ∗2e

2iϕj − Z2e2iα
)]
e−iϕj

}
, (5.30)

we observe a robust clustering of two synchronized subgroups under dynamics Eq. (5.30)
at a similar time scale as in the original system Eq. (5.3) for an integration time step
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Figure 5.7: Evolution of the second Kuramoto-Daido order parameter R2

under integration of Eq. (5.3) with strong noise. using Euler-Heun scheme for
different step sizes h. Inset: collapse of the curves when plotted as functions of
ht. The data is averaged over simulations with 10 different sets of initial con-
ditions. System parameters: system size N = 100, intrinsic frequency ω0 = 0,
noise strength σ = 0.1, phase shift α = 0.6π. Figure reprinted with permission
from Ref. [Gon+19].

of h = ε (see Fig.5.8).
In Fig. 5.9, we compare different integration schemes applied to models with one

or two noise terms. Here for the cases of two noise terms (like in Fig. 5.7) and of
one noise term (where we set ω0 = 10 because the rotational symmetry is broken), we
present results for the Euler-Heun scheme, suitable for the Stratonovich interpretation
of the SDE. Additionally, we show the results of the stochastic Runge-Kutta scheme
4th-order (sRK4), which is suitable for the one-noise term case only, because of the
non-commutativity of the two noise terms mentioned above. One can see that all
plots are qualitatively similar, with only some quantitative differences. As one would
expect, the conservation of the constants of motion under the sRK4 scheme is the
best, and here also the growth of the second Kuramoto-Daido order parameter is
rather weak on the chosen time interval t < 2 × 105. Additionally, we performed
simulations with the Euler-Maruyama scheme with Stratonovich shift for the model
Eq. (5.3) in the Stratonovich interpretation, both with one noise term and with two
noise terms (where the Stratonovich shift is zero), all of which yield quantitatively
identical results to the Euler-Heun scheme and are therefore not shown.

We can conclude this section by stating that in general, numerical schemes do not
conserve the integrals of motion of the system, and eventually may lead to forma-
tion of clusters. Because the numerical methods for integrating SDE typically have
lower order than the deterministic ones, the clusters may be more easily observed
in the integration of noisy equations. In the deterministic case, clustering may not
be observed at all if a zero mean-field steady state is reached first. The presence of
noise can prolong the time within which the constants of motion continue to drift and
their deviation from their initial values continues to grow until at some point fully
synchronized multiclusters are formed.
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Figure 5.8: Three Euler-Heun integrations of identical initial conditions show-
ing the time series for the 2-cluster order parameter R2. Blue and green: under
the original model Eq. (5.3) with 2 equal noise terms, with time step h0 = 0.02
and h1 = 0.005, respectively. Red: under the modified dynamics Eq. (5.30)
with the perturbation amplitude ε = h0 in the modified dynamics and time
steps h = h1. The time scales at which the 2 clusters build up for the blue
and red time series are comparable, supporting the hypothesis that the Fourier
terms of second order in the discretization errors of the integration scheme are
responsible for the formation of two clusters. Figure reprinted with permission
from Ref. [Gon+19].

As mentioned in Sec. 5.2, the best way to avoid the numerical artefacts of clus-
tering is to integrate the Watanabe-Strogatz equations Eq. (3.4). However, in order
to accomplish this, one has to perform multiple Möbius transforms at each time step
for a full time series of the mean-field, which may be quite computationally expen-
sive. 5 Furthermore, discretization errors will still be present in integrating the low-
dimensional dynamics of the Möbius group parameters. Only multicluster formation
would be guaranteed to no longer occur.

5.7 Van der Pol Oscillators: Oscillators with Naturally
Occurring Clusters Under Repulsive Coupling and Com-
mon Noise

Unlike the Kuramoto model, more realistic oscillator models such as Van der Pol
oscillators have limit cycles which intrinsically contain higher-order Fourier terms and
additional amplitude dynamics. Under common additive noise and repulsive coupling,
formation of multiclusters is no longer forbidden and could now naturally occur. We
consider N identical repulsively all-to-all coupled Van der Pol oscillators subject to

5However, it should be noted that the method via iterated Möbius Map introduced in Ch. 4 would
be a better alternative. It is faster than integrating WS equations, and it preserves the constants of
motion.
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Figure 5.9: Simulations of Eq. (5.2) with 1 and 2 noise terms. We show R2

(top panels) and numerical errors (bottom panels) as functions of time, for the
Euler-Heun and sRK4 order methods. Constant parameters: N = 100, noise
strength σ = 0.01, phase shift α = 0.6π. Intrinsic frequency ω0 = 0 for 2 noise
terms, and ω0 = 10 for one noise term. Resulting evolution is averaged over 8
different initial conditions (same for all experiments). The dashed lines in the
left and middle columns (Euler-Heun method) have slopes equal to 1, whereas
in the right column the slope is 0.5, showing the superiority of the sRK4 method
of integration. Figure reprinted with permission from Ref. [Gon+19].

additive common Gaussian white noise in the y direction

ẋj = yj

ẏj = ā(1− x2
j )yj − xj − b̄

1

N

N∑
k=1

(yk − yj) + ση(t) . (5.31)

Here b̄ > 0 is the repulsive coupling strength, ā parametrizes the nonlinearity of the
Van der Pol oscillators, σ is the noise strength, and η(t) is a scalar random Gaussian
variable. To distinguish from later use of a and b in Ch. 6, we use ā and b̄ here. Using
phase reduction [Win67; PD19] the additive noise term will become multiplicative
with the linear phase response function as a factor.

With a similar approach to that of Sec. 5.3, one can determine the Lyapunov expo-
nents for the two-cluster state in Eqs. (5.31) numerically by integrating a perturbation
from one of the clusters in the linearized dynamics of the two-cluster system. Contrary
to the case of the Kuramoto model, presented in Fig. 5.3, now in Fig. 5.10 we see that
the two-cluster state with p1 ≈ p2 is locally stable, which is confirmed in Fig. 5.11
by direct simulations of Eqs. (5.31). Here, we defined the Kuramoto order parameter
R using the phases defined by virtue of Poincaré sections (see also Ref. [PRK01]).
One oscillator has been chosen as a reference, and the moments of time t(1)

, t
(2)
, . . .

at which it crosses half-line (x > 0, y = 0) have been determined. Then the phase
differences of all other oscillators to the reference oscillator at time t(n) are defined as
2π(t

(n)
j − t

(n)
)/(t

(n+1)− t(n)
). Here t(n)

j − t
(n) is the time needed for the j-th oscillator

to reach the Poincaré section (positive half-line) from its position at time t(n).
In general, clustering strongly depends on the level of nonlinearity of the Van der
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Figure 5.10: Contour plot of the Lyapunov exponent for one of the two
clusters of repulsively coupled Van der Pol oscillators with additive noise in one
direction, similar to Fig. 5.3. Contour plot of the Lyapunov exponent of cluster
1 is obtained by numerical integration of the linearized equations of Eqs. (5.31)
for two clusters of relative sizes p1 and p2 = 1−p1. Constant system parameters:
ā = 1 and b̄ = 0.01 correspond to a highly nonlinear regime of the Van der
Pol oscillator limit cycle. The numerical integration uses the Euler-Maruyama
scheme with step size h = 0.005. Unlike in Fig. 5.3, an analytical expression
for critical noise strength is hard to obtain. From the simulations we found
it to be σ2

cr/2 ≈ 0.027 for Van der Pol oscillators. The gray region beyond
the critical noise strength therefore corresponds to the formation of one cluster
under strong noise. Compared to the Kuramoto-Sakaguchi model in Fig.5.3, a
previously forbidden region of 2 stable clusters appears in the domain p1 ≈ p2

below the critical noise strength. As the noise strength increases, the region
with a negative Lyapunov exponent becomes larger, and it is evident that the
common noise stabilizes both clusters. Figure reprinted with permission from
Ref. [Gon+19].

Pol oscillators, described by ā. For large ā (ā = 1, b̄ = 0.01), in the deterministic
case three clusters can be observed. In the presence of noise, the picture is not so
clear as several different cluster states may appear depending on the realization of
initial conditions and of the noise, but at least a tendency toward temporal formation
of clusters can clearly be observed. For small values of nonlinearity parameter ā,
typically, non-clustered states are observed both with and without noise. This is
to be expected, since the Van der Pol oscillators with a weakly anharmonic limit
cycle have comparably much smaller amplitude for the higher-order Fourier terms in
their phase response functions. In general, the dynamic complexity of systems like
Eq. (5.31) with non-negligible amplitude dynamics can be very high, with chimera-like
states becoming possible (i.e., where clusters coexist with dispersed elements), and a
full characterization is beyond the scope of this thesis.

From the above observation we can therefore conclude that there exists a qualita-
tive difference between the dynamics of the phase oscillator model (e.g., Fig. 5.3), and
that of the more general oscillator model with additional amplitude dynamics (e.g.,
Fig. 5.10), specifically under a repulsive coupling and common noise: while under
the Kuramoto-Sakaguchi model clusters are not able to form, under the Van der Pol
model they are naturally forming and are stablized by the common stochastic forces.
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Figure 5.11: Direct simulation of Van der Pol oscillator ensemble of size
N = 100 under weak common additive noise and repulsive coupling results in
stable two clusters with relative sizes p1 = 53% and p2 = 47% after a transient.
Left: time series for order parameters R1 and R2 during the initial transient
from normal Gaussian random initial conditions in the (x, y) plane. Right: snap
shot of two stable clusters formed after integration time Tint = 33000. System
parameters are ā = 1.0, b̄ = 0.01 and σ2/2 = 0.01. Euler-Maruyama integration
scheme with h = 0.001 is used. This is consistent with the negative evaporation
Lyapunov exponents for both clusters within the triangular parameter region in
Fig. 5.10. Figure reprinted with permission from Ref. [Gon+19].

5.8 Conclusion

In this chapter, we apply WS theory to the Kuramoto-Sakaguchi model of repulsively
coupled phase oscillators under common noise, studied previously in Ref. [GKM09] .
Although both WS theory and the stability analysis of clustered states exclude the
possibility for an appearance of clusters as observed in Ref. [GKM09], the numeri-
cal observations of clustering can be generally explained as artefacts from the dis-
cretization of numerical simulations. The correct long term behavior for repulsively
coupled phase oscillators under common noise is either an incoherent state with no
clustering (when the common noise has weaker effect compared to coupling forces)
or a completely coherent state (when the common noise has a stronger effect com-
pared to coupling forces). We study the numerical errors of different deterministic
and stochastic schemes by monitoring the evolution of the constants of motion which
must be conserved under the exact dynamics.

It should be stressed that the conclusions of WS theory only apply to a restricted
class of phase oscillators which approximate weakly coupled, weakly nonlinear limit
cycle oscillators. Violation of WS integrability occurs naturally in general coupled
oscillator systems. We show that in the case of repulsively coupled Van der Pol
oscillators noise-induced or deterministic clustering can indeed be easily observed in
regimes of larger nonlinearity.

Due to the limitation of the Kuramoto-Sakaguchi system in describing real-world
oscillator models or even more complicated coupled systems of differential equations,
in terms of numerics, this chapter presents only a cautionary tale. For most types of
high-dimensional coupled differential equations, a hidden low-dimensional dynamics
such as present in Kuramoto-type systems is not available, nor do there often exist
integrals of motion. For these systems, often the only way to measure or to gauge
numerical errors is by using integration steps which are as small as possible, and to
compare results under various degrees of numerical accuracy.
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Chapter 6

Finite-Size Induced
Cross-Correlation in Non-Identical
Populations

Despite the mathematical simplicity of the Kuramoto model, the ground-breaking the-
oretical treatments which simplify the original high-dimensional dynamics frequently
face the limitation that they are derived at the thermodynamic limit. Specifically,
the critical synchronization transition, as solved by Kuramoto, was derived under the
assumption of the thermodynamic limit, in order for the assumption of the constant
mean-field to be valid. The latter is necessary for the self-consistency equation to
be applied. The Ott-Antonsen theory of the mean-field evolutionary equation was
similarly derived at the thermodynamic limit. However, one important real-world
phenomenon that is missing from these descriptions is the fluctuating mean-field of
the ensemble when the ensemble is finite.

As mentioned in the introduction (Sec. 2.2.3), a system of infinite number of Ku-
ramoto oscillators at the supercritial state (i.e. beyond the synchronization transition)
exhibit the coexistence of two subgroups. One subgroup is completely synchronous,
with their natural frequency band located at the central bulge of the frequency distri-
bution. In the synchronous subgroup, the oscillators are frequency- and phase-locked
by the constant mean-field. A second subgroup is completely asynchronous, and with
their natural frequencies flanking either side of the central bulge of the frequency
distribution. In the asynchronous subgroup, the oscillators are not locked to the
mean-field, and instead rotate incoherently at their own natural frequencies. When
the coupling strength increases, the synchronous group recruits more and more os-
cillators from outside the central bulge of the frequency distribution, and more and
more oscillators are locked by the increasing mean-field.

For a finite-sized ensemble, this picture is qualitatively similar, except that the
Kuramoto mean-field now fluctuates continuously with an amplitude which depends
on the ensemble size N in a nontrivial way [Dai87; Hon+07; Hon+15; PP18]. Intrigu-
ingly, the persistent fluctuations of the mean-field are most pronounced close to the
critical transition, and can be attributed to the weak chaoticity of the finite-population
dynamics [Bar13; PP16].

In this chapter, we investigate the effect of the mean-field of a finite-sized Ku-
ramoto oscillator ensemble. Specifically, how does the fluctuation of the mean-field
of a finite ensemble act on the oscillators that compose it? To answer that, we ap-
proximate the fluctuating mean-field with Gaussian white noise, effectively returning
the finite-sized model to an earlier model, namely the Kuramoto-Sakaguchi model
under common multiplicative noise (Eq. 5.3 in Ch. 5), which corresponds to adding
an externally imposed noise on the mean-field. The difference from the setup of model
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Eq. 5.3 is that here we consider non-identical oscillators and attractive coupling under
infinite system-size limit — the classic Kuramoto setup.

Considering the well known effect of noise-induced synchronization (Sec. 2.3.1), we
calculate the induced ordering effect by the fluctuating mean-field, first analytically
via the Fokker-Planck formulation, then numerically of the induced cross-correlation
between pairs of oscillators of different intrinsic frequencies. As expected, there are
discrepancies between the analytical approach and the measurement in numerical ex-
periments due to the fact that the fluctuating mean-field is qualitatively different
from the approximate mean-field; nevertheless, the two approaches present qualita-
tively similar results.

Due to the limited space and the scope of the author’s own contribution to the
whole of this collaborative project, only analytical results are presented here. We refer
the reader to the publication [PGP19] for a detailed presentation of the numerical
results.

We find it instructive to begin the analytical approach with a Kuramoto model at
the thermodynamic limit under external Gaussian white noise in the complex plane.
We will in the end analytically derive the cross-correlation of a pair of oscillators
outside the synchronous region as a function of system parameters — noise strength,
system size, and the difference of the intrinsic frequencies of the pair.

6.1 Analytical Derivation for the Deterministic Case

As a first step of the derivation, we calculate the pair-wise correlation under a purely
deterministic setup, i.e., under the classic, i.e. infinite-sized Kuramoto model

ϕ̇ = ω + εR Im[ei(Θ−ϕ)] , (6.1)

where the complex mean-field is Z := R exp(iΘ) =
∫ 2π

0 dϕ
∫∞
−∞ dωP (ϕ|ω)g(ω)eiϕ.

(See Sec. 2.2.3 for the finite-sized model.) ω is the non-identical intrinsic frequency
of the oscillator, which has a continuous distribution g(ω). Here g(ω) can have an
infinite support. ε is the coupling strength. P (ϕ|ω) is the conditional probability
distribution of the oscillator phase ϕ given intrinsic frequency ω.

We define a mean-field frequency by ω̄ := Θ̇, then go into its co-rotating frame by
redefining phase ϕ = ω̄t+ ϕ̃ and obtain

˙̃ϕ = ω − ω̄ − εR sin ϕ̃ (6.2)

For a given frequency ω the probability density of the phase is:

P (ϕ̃, ω) ∼ 1

| ˙̃ϕ|
(6.3)

since the probability of observing a value ϕ̃ is inversely proportional to the rotational
speed at this point | ˙̃ϕ|. With normalization constraint

P (ϕ̃, ω) = (|ω − ω̄ − εR sin ϕ̃|C0)−1 , (6.4)

where C0 =
∫ 2π

0 (1/|ω−ω̄−εR sin ϕ̃|)dϕ̃ is the normalization constant. Using a change
of variable

sin ϕ̃ =
z − z−1

2i
, dϕ̃ = − idz

z
, (6.5)
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where z = exp(iϕ̃), and defining λ = (ω̄ − ω)/εR, when λ > 1

C0 =
2

εR

∮
C:|z|=1

1

(z − z+)(z − z−)
dz

z+ = i(−λ+
√
λ2 − 1); z− = i(−λ−

√
λ2 − 1) .

(6.6)

In order to quickly determine the position of the poles in relation to the contour
C : |z| = 1, we check the modulus of z± by letting λ = 1, which means z± = −i.
Letting λ→∞, we find z+ → 0 and z− → −∞, so |z+| < 1 and |z−| > 1, only z+ is
inside the contour. We do this similarly for λ < −1. Using the residue theorem, we
obtain

C0 =
2π

εR
√
λ2 − 1

(6.7)

for both λ > 1 and λ < −1. Therefore the joint probability density function of phase
(in co-rotating frame of the ensemble mean-field) and frequency is

P (ϕ̃, ω) =

√
(ω̄ − ω)2 − (εR)2

|ω − ω̄ + εR sin ϕ̃|2π
. (6.8)

Because both cos(ϕ̃) and P (ϕ̃, ω) are even functions, integrating over their product
we get 0: < cos ϕ̃ >=

∫ 2π
0 cos ϕ̃P (ϕ̃, ω)dϕ̃ = 0. With < sin ϕ̃ >= λ

√
1− (1/λ2)− λ,

the expectation value of the first-order harmonics Z̄ (averaged over phase) for a given
intrinsic frequency ω is

Z̄(ω) =< eiϕ̃ >= 0 + i < sin ϕ̃ >= iλ(ω)

√
1− 1

λ(ω)2
− iλ(ω) . (6.9)

The phases with the same intrinsic frequency clearly do not distribute uniformly
along the circle, according to Eq. (6.8). But we can apply Möbius transform

eiψ̃ =
eiϕ̃ − Z̄

1− Z̄∗eiϕ̃
, (6.10)

on the distribution of ϕ̃ such that the transformed phases ψ̃ distribute uniformly on
the circle. Taking the time derivative on both sides of Eq. (6.10), and with straight-
forward algebraic manipulations, we obtain the observed frequency of the transformed
angles ψ̃

ν(ω) :=
˙̃
ψ = −εRλ(ω)

√
1− 1

λ(ω)2
. (6.11)

Since in the Kuramoto model R is constant in time for a given coupling strength ε
in the thermodynamic limit, the observed frequency ν is also constant in time, only
depending on the intrinsic parameter ω. So after the transformation, the phase angles
in the asynchronous regions of the ensemble rotate at their own constant frequency
ν(ω) and grow linearly in time. With different frequency ν(ω), the phases have zero
pair-wise correlation, as defined by

γ12 = |ei(ψ̃2−ψ̃1)| . (6.12)

The correlation equals to 1 only when the two oscillators share the same observed
frequency. That is, either they are in the synchronous subgroup (the bulk of the
frequency distribution), or they are in the asynchronous subgroup (flanking either
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side of the frequency distribution) but share the same intrinsic frequency and initial
phase. This shows that under the Möbius transformation, for non-identical oscillators,
the asynchronous group has exactly pair-wise correlation 0 among their oscillators,
whereas the synchronous group has exactly pair-wise correlation 1. This result will
be different for both the noisy infinite-sized case and the deterministic finite-sized
case below, since for what was before the asynchronous region, there will be a small
correlation that arises from the fact that the mean-field is no longer constant but
fluctuating in time.

6.2 Analytical Derivation for the Case with External Gaus-
sian Noise

In this section, we approximate the fluctuation of the mean-field in a finite Kuramoto
ensemble with an externally imposed Gaussian white noise. We add complex Gaussian
noise to the constant Kuramoto mean-field, namely Z := R exp(iω̄t)+σξ(t), where ξ =
−η1+iη2 is complex Gaussian white noise, with η1 and η2 both scalar random Gaussian
variables, 〈ηm(t)〉 = 0, 〈ηm(t)ηm′(t

′)〉 = 2δmm′δ(t− t′) . A necessary assumption must
be made for the noise strength to be weak, such that the intrinsic oscillator dynamics
as well as the distribution function of their microscopic density of state remains the
same, i.e., a wrapped Cauchy distribution (Eq. 6.8). We perform the same Möbius
transform as before

eiϑ̃ =
eiϕ̃ − Z̄

1− Z̄∗eiϕ̃
, (6.13)

this time using ϑ̃ to denote the transformed phases. Under the weak noise limit, we
can use the previously derived value Z̄ = iλ

√
1− 1

λ2 − iλ, Z̄∗ = −Z̄,

cos ϑ̃+ i sin ϑ̃ =
(2− 2iλZ̄) cos ϕ̃

2iλZ̄ + 2Z̄i sin ϕ̃
+ i

1 + λ sin ϕ̃

λ+ sin ϕ̃
. (6.14)

Noticing Z̄ is purely imaginary, so the first term on the r.h.s. is real, we can match
the two terms on either side

cos ϑ̃ =
(|λ|
√

1− λ−2) cos ϕ̃

λ+ sin ϕ̃
, sin ϑ̃ =

1 + λ sin ϕ̃

λ+ sin ϕ̃
. (6.15)

We can rewrite the second relation as

sin ϕ̃

λ+ sin ϕ̃
=
λ sin ϑ̃− 1

λ2 − 1
, (6.16)

then the new observed rotational frequency of the transformed phases is

ν̃ :=
˙̃
ϑ = ν + εIm{[ση1(t) + iση2(t)]e−iϕ̃}

λ
√

1− 1
λ2

λ+ sin ϕ̃

= ν + ε

−ση1(t)
λ
√

1− 1
λ2 sin ϕ̃

λ+ sin ϕ̃
+ ση2(t)

λ
√

1− 1
λ2 cos ϕ̃

λ+ sin ϕ̃

 .

(6.17)

We substitute the derived relations from Eqs. (6.15) and (6.16) and rearrange to obtain

˙̃
ϑ = ν + (Ā+ B̄ sin ϑ̃)η1(t) + C̄ cos ϑ̃η2(t) . (6.18)
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Ā = −σε2R/ν, B̄ = −εσ(ω − ω̄)/ν and C̄ = εσ are effective noise strengths. To
distinguish from the Adler equation parameter A (Eq. (4.34)), we have used Ā here.
ν is shown in Eq. (6.11).

We now assume two oscillators (in the asynchronous region at the thermody-
namic limit) with very close intrinsic frequencies ω1 ≈ ω2, and has a difference
∆ω := ω1 − ω2 � ω (this is valid since |ω| for supercritical states is far from
zero). Because Ā, B̄ ∼ 1/ν, and as before the observed frequencies ν depend on
ω, ν = (ω − ω̄)

√
1− (εR)2/(ω̄ − ω)4, via Taylor expansion it is easy to establish

ν ∼ O(ω) and 1/ν ∼ O(ω). First we can define the difference between the observed
frequencies ∆ν, such that we can write ν2 = ν1−∆ν/2, with ∆ν � ν1, while treating
ν2 ≈ ν1. Secondly, we can write Ā1 ≈ Ā2 := Ā and B̄1 ≈ B̄2 := B̄.

To calculate the correlation function Eq. (6.12), we denote the Langevin equations
for the difference and the sum of the two phases

a = ϑ̃1 − ϑ̃2 b = ϑ̃1 + ϑ̃2 , (6.19)

whose differential equations are

ȧ = ∆ν + (Ā1 − Ā2)η1(t) + η1(t)(B̄1 sin ϑ̃1 − B̄2 sin ϑ̃2) + (C̄1 cos ϑ̃1 − C̄2 cos ϑ̃2)η2(t)

ḃ = 2ν + (Ā1 + Ā2)η1(t) + η1(t)(B̄1 sin ϑ̃1 + B̄2 sin ϑ̃2) + (C̄1 cos ϑ̃1 + C̄2 cos ϑ̃2)η2(t) .

(6.20)

Inserting identities

cos ϑ̃1 = cos

(
a+ b

2

)
= cos

a

2
cos

b

2
− sin

a

2
sin

b

2

sin ϑ̃1 = sin

(
a+ b

2

)
= sin

a

2
cos

b

2
+ cos

a

2
sin

b

2

cos ϑ̃2 = cos

(
−a+ b

2

)
= cos

a

2
cos

b

2
+ sin

a

2
sin

b

2

sin ϑ̃2 = sin

(
−a+ b

2

)
= cos

a

2
sin

b

2
− sin

a

2
cos

b

2
,

and since C̄1 = C̄2, denoting C̄1 = C̄2 = C̄, as well as Ā1 = Ā2 and B̄1 = B̄2, we
obtain

ȧ =∆ν + 2B̄ sin
a

2
cos

b

2
η1(t)− 2C̄ sin

a

2
sin

b

2
η2(t)

ḃ =2ν + 2Āη1(t) + 2B̄ cos
a

2
sin

b

2
η1(t) + 2C̄ cos

a

2
cos

b

2
η2(t) ,

and rewrite them in this short form

ȧ = h̄1 + ḡ11(a, b)η1(t) + ḡ12(a, b)η2(t)

ḃ = h̄2 + ḡ21(a, b)η1(t) + ḡ22(a, b)η2(t) .
(6.21)

We use now a similar procedure at integrating over the fast variable as in Ref. [PDG19],
or in the earlier part of this thesis Sec. 5.3, to obtain a Fokker-Planck equation for
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the density of state of the slow variable a,

∂P (a)

∂t
=

∫ 2π

0
W (a, b)db (6.22)

where P (a) and W (a, b) are probability density functions. Using the fact that b is
rotationally invariant

∂P (a)

∂t
=

∫ 2π

0
W (a, b)db

=

∫ 2π

0

{
− h̄1

∂W

∂a
+

∂

∂a

[
−ḡ11W

∂ḡ11

∂a
+ ḡ11W

∂ḡ21

∂b

]
+

∂

∂a

[
−ḡ12W

∂ḡ12

∂a
+ ḡ12W

∂ḡ22

∂b

]}
db+

∂2

∂a2
(

∫ 2π

0
(ḡ2

11 + ḡ2
12)Wdb)

(6.23)

Since ∂ḡ11

∂a = ∂ḡ21

∂b , ∂ḡ12

∂a = ∂ḡ22

∂b , above equation becomes

∂P (a)

∂t
+ ∆ν

∂P (a)

∂a
= [

(B̄1 + B̄2)2

4
+ C̄2]

∂2

∂a2
[P (a)(1− cos a)] (6.24)

The stationary solution of the 1D Fokker Planck equation (6.24) with flux J =
∆ν/(2π)1is

∆νP (a)−
[

(B̄1 + B̄2)2

4
+ C̄2

]
∂

∂a
[P (a)(1− cos a)] = J =

∆ν

2π
(6.25)

Letting (B̄1 + B̄2)2/4+ C̄2 ≈ B̄2 + C̄2 = σ2
eff be an effective noise strength term for

the (transformed) phase difference variable a, where σeff is the effective noise strength,
we normalize the Eq. (6.25) as

KP − ∂

∂a
[(1− cos a)P ] = J̃ (6.26)

where
K =

∆ν

σ2
eff

J̃ =
J

σ2
eff
. (6.27)

Integrating Eq. (6.26) from 0 to 2π yields

2πJ̃ = K. (6.28)

With the two methods shown in Appendix F we solve for probability density function
P that satisfies the stationary density flux equation

KP − ∂

∂a
[(1− cos a)P ] =

K

2π
. (6.29)

The analytical result reads

γ2
12 = (〈cos a〉)2 + (〈sin a〉)2

= 1 + 4K2[ci2(2K) + si2(2K)]− 4K[ci(2K) sin(2K)− si(2K) cos(2K)] .
(6.30)

1The average frequency of a is ∆ν, hence 〈ȧ〉a = ∆ν,
∫ dP (a)

dt
da = ∆ν,

∫
Jda = ∆ν, because

J = dP (a)
dt

, then J = ∆ν
2π

.
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In Fig. 6.1 we plot both the numerical approach via truncated series presented in
Appendix F, as well as the analytical expression Eq. (6.30) above, and obtain visually
the relation between the effective parameter difference K between two oscillators,
given by Eq. (6.27), and their cross-correlation (synchronization index) γ12 under an
idealized setup of an infinitely sized population with a mean-field biased by a common
complex Gaussian white noise.

Figure 6.1: Synchronization index γ12 of two oscillators in the transformed
frame as a function of their effective parameter difference K, K = ∆ν/σ2

eff
(Eq. (6.27)), calculated by three methods: two approximate functions using
numerical method listed in Appendix F up to two various degrees of truncation
of the iterated series (Eq. 8.55 to first iteration and Eq. 8.53 to hundredth
iteration, i.e., 1/r100 = 0), one analytical function which is exact (Eq. 6.30).

6.3 Conclusion

In order to theoretically examine the effect that the finite-sized fluctuation of the
Kuramoto mean-field in an ensemble of non-identical oscillators has on the population,
we have turned to a model of a Kuramoto ensemble in the thermodynamic limit,
whose mean-field has an externally imposed noisy component. Through analytical
calculations, we have shown that the mean-field in the Kuramoto model with external
noise leads to cross-correlation in the disordered part of the oscillator population. The
size of the cross-correlations of an oscillator at a particular frequency depends only
on the competition between the natural frequency mismatch from its neighbor, and
the noise strength. This theoretical result is directly applicable to Kuramoto-type
models, where the mean-field of a population is subject to external Gaussian noise.
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SUMMARY AND DISCUSSION
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Chapter 7

Conclusion and Future Work

In the world of complex interacting dynamics, the topic of this thesis only repre-
sents the tip of the iceberg. Most of the elementary dynamics of real-world coupled
systems cannot be properly described as recurring or oscillatory. Similarly, most
elementary oscillatory dynamics cannot be properly described by simple phase oscil-
lators, i.e. Kuramoto oscillators. The complexity of real-world networks is also not
to be underestimated. Nevertheless, studying simple elementary dynamics on simple
connective topologies offer insights and understandings not obtainable via direct nu-
merical simulations or experiments of more complex dynamical models. This can be
shown especially through the main focus of this thesis, namely, the mean-field reduc-
tion approach of studying coupled one-dimensional phase oscillators. Specifically, the
mean-field approach provides a framework for reducing high-dimensional systems to
lower dimensions for the ease of mathematical analysis.

There exists a large body of literature dedicated to the study of phase synchroniza-
tion under the framework of the Kuramoto model due to its simplicity and its ability to
capture the essence of the synchronizing dynamics. While many oscillatory dynamics
cannot be categorized as pure phase-coupled oscillators, there exist surprisingly com-
plex systems whose elementary dynamics or emergent dynamics can be categorized
as similar to that of phase oscillators. In these notable cases, the Kuramoto model
can surpass its usual status as a toy model to qualify as a more realistic model. For
systems such as groups of firing neurons and electric power grids, frequency or phase
synchronization is crucial for the functioning and control of the system. The stability
of the synchronized frequency of the grid is crucial in maintaining the stability of the
whole network [NM15]. When a large network perturbation occurs, the synchronized
state of the power grid is destroyed, leading to power failures that could results in
high human and economic costs. Groups of neurons generate emergent oscillations
that are slower than the individual neuronal firing. It has been postulated that dif-
ferent groups of neurons could communicate with the help of phase synchronization
of these slower oscillations [Doe+09; FA11; Mal+15; SMC18]. When two groups of
neurons are phase synchronized on a macroscopic scale, it can be seen as an opening of
the communication channel, after which the individual neurons in the different groups
can communicate. This two-stage communication mechanism could potentially help
filter out noise or signals from other parts of the brain which are not phase locked
[TSP10].

Comprised of four rather distinct problems, this thesis is centered on various ex-
tensions of the Kuramoto model, which is the canonical model for studying phase
synchronization. The thesis can be divided into theoretical methods and numerical
methods. In Ch. 3, we extend the theoretical method of Watanabe and Strogatz
such that it can be applied to a wider range of models. In previous literature [WS94;
MMS09], only first-order sinusoidally coupled identical phase oscillators have been
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shown to have low-dimensional dynamics under identical coupling. Under higher-
mode coupling, the theory wasn’t shown to be applicable. We now have extended the
theory to pure higher-mode coupling. Similar to the low-dimensional case, we apply
a Möbius transformation — a non-linear coordinate transformation to reduce an ar-
bitrarily high-dimensional system to 3 dimensions. To demonstrate that the theory is
correct in practice, we carried out numerical simulations based on the reduced dynam-
ical equations and see that the result matches that of the high-dimensional original
equations.

Connecting the now extended theory to numerical simulations in earlier literature
[KP15], we are able to explain, albeit partially, the asymmetric clustering observed
in a second-mode coupled model. We exploit the fact that the unstable points that
mark the boundaries of the basins of attraction under such a model correspond to the
mathematical singularity in the Möbius transform at the final steady state. The main
obstacle to an exact prediction of the final cluster distribution is the fact that the
pole only appears in the Möbius transform at the synchronous steady state. The pole
cannot be analytically obtained in a similar way at any other parameter values, despite
that the unstable points are observed at all times in the dynamics. This fact gives
us pause. Ideally, a map that transforms between the original phase dynamics and
the low-dimensional dynamics should have pole(s) throughout the parameter range to
correspond with the unstable points. Because analytical expression for the unstable
points are missing everywhere except at the steady state, this might hint at the
potential for a better theory. In addition, in numerical simulations, we have observed
phenomena not yet observed in first-order models, namely, in the aforementioned
second-mode coupled model, we observe that the system evolves to an unstable de-
synchronized state even though the coupling is positive, i.e. attractive.

Chapters 4 and 5 consist mostly of applying the theory of Watanabe and Strogatz
to other methods and models. In Ch. 4 we devised a numerical method of mod-
elling synchronizing phase dynamics using an iterated Möbius map. The Möbius map
precisely evolves the dynamics of general sinusoidally coupled phase oscillators in dis-
crete time, and can be seen as a discrete version of the well-known Adler equation.
Using the derived Möbius map, we simulated dynamics under setups analogous to
several continuous-time collective dynamics from previous literature, and recovered
various known phenomena. These include the the synchronization transition in the
Kuramoto-Sakaguchi model of non-identical oscillators, as well as chimera states under
non-local coupling (chimera in two coupled populations of identical phase oscillators,
and Kuramoto-Battogtokh chimeras on a ring). We also discovered new behavior un-
der the discrete dynamics. For large coupling strengths, and in particular for large
repulsive coupling, the discrete time dynamics can lead to new synchronization phe-
nomena with continuous and discontinuous bifurcations to synchrony, which are not
observed in the equivalent continuous-time models.

In Ch. 5, we apply the WS theory to the Kuramoto-Sakaguchi model of repulsively
coupled phase oscillators under common noise, studied previously in Ref. [GKM09].
We were initially interested in the numerical findings of Ref. [GKM09], because they
showed the model formed stationary clusters, which is directly at odds with the pre-
diction from WS theory. Despite containing noise terms, the system in Ref. [GKM09]
is integrable as shown by WS, which precludes the formation of clusters. The preclu-
sion of stationary clusters is further confirmed by a stability analysis of the two-cluster
states. Through detailed and systematic numerical analysis, we demonstrated that
the observed clusters are actually artefacts stemming from the discretization of the
numerical integration schemes.

In order to compare the result of phase oscillators to real-world oscillators, we
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also studied Van der Pol oscillators under similar setup (repulsive coupling, under
various noise strengths). Because the WS theory only applies to harmonic coupling of
a single order, not to mixed orders, it naturally does not apply to amplitude coupled
oscillators such as Van der Pol oscillators. Amplitude and phase coupled oscillators
such as Van der Pol oscillators have a phase response function of more than one mode
(or harmonic), so that the WS theory cannot be applied here. Under a similar setup
as the phase oscillator model, Van der Pol oscillators therefore are allowed to form
clusters, unrestrained by the WS theory.

Continuing with the theme of oscillators under common noise from Ch. 5, in the
final part of the thesis (Ch. 6), we study the fluctuations of the Kuramoto mean-field
in an ensemble of non-identical Kuramoto oscillators. Specifically, we are interested
in how this fluctuation leads to cross-correlations of a pair of phase variables in the
disordered subpopulations under super-critical condition. The disordered subpopula-
tions consist of those oscillators with intrinsic frequencies either too slow or too fast
compared to the population mean frequency to be synchronized. We approach the
problem first by studying an infinitely-sized ensemble. By artificially imposing a white
Gaussian noise as a source of fluctuation onto the ensemble mean-field, we approxi-
mate the fluctuation of the mean-field of a finite-sized population. For non-identical
oscillators, this creates two competitive effects. On the one hand, the common fluctu-
ating mean-field creates noise-induced synchronization on the sub-population, and on
the other hand, the differences in the natural frequencies create a desynchronizing ef-
fect. Under such a setup using an infinite-sized population, we can derive an analytical
formula for the pairwise phase cross-correlation of the disordered subpopulations.

In Ref. [PGP19], the above analytical result is then compared to the result from
numerical experiments in actual finite-sized populations. Comparing the analytical
result with numerical observations, we find similarities and differences. As confirmed
by Ref. [PGP19], for either sub- or super-critical coupling strength there exist nearly
periodic components in the mean-field. There are regions in the parameter space where
phases are locked to these periodic components, corresponding to high pairwise cross-
correlations. However, in between these special locked regions, the phases are largely
incoherent due to frequency mismatch, and in such zones, we could obtain qualitative
agreement with the analytical result, which is derived from an approximate setup
using infinite populations.

7.1 Future Work and Outlook

We would like to highlight two directions into which the approaches of mean-field
dynamics of coupled (phase) oscillators could be extended. The first is to extend
existing mean-field theories (WS or OA theories) to include more varieties of coupling
function and connection topology. Currently, both WS and OA formulations are
limited to harmonic coupling of a single harmonic order. They are not applicable
to mixed harmonic coupling. Besides this constraint on the form of the coupling,
these mean-field approaches are restricted also by the connection topology and by the
natural frequency distribution of the oscillators. In the first case, global coupling or
simple topologies like star graphs [VZP14] or random networks are usually required.
In the latter case, the frequency distribution must be a delta distribution in the case
of WS theory, and a Cauchy distribution in the case of OA theory.

The second direction involves making further connections between the two mean-
field theories, namely the WS and OA theories. There has been successful theoretical
attempt at partially connecting the two [MMS09]. However, a complete picture is
still lacking. The difficulty mainly lies in the fact that the OA equation is a special
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solution on a sub-manifold for the Kuramoto mean-field Z, whereas the WS equation
is a reduced equation of the coordinate transformation parameter (sometimes also
known as WS order parameter) z̃, which at best can be only characterized as a quasi-
mean-field. In almost all practical cases, Z 6= z̃. For WS theory, there exist attempts
to extend it to non-identical oscillators: either at the thermodynamic limit [PR11],
or a perturbation theory for almost but not completely identical oscillators [VRP16;
Tyu+18]. However, there currently lacks a reduced mean-field dynamical theory for
finite-sized fully non-identical oscillators.

In conclusion, the canonical Kuramoto model is a simple model that nevertheless
captures the basic characteristics of synchronization. On a symmetrical network and
with pure mode coupling, under certain frequency distributions, the complex N -body
dynamics can be reduced analytically to simply the dynamics of the mean-field. This
method might provide some basis for understanding more complex phenomena in
numerical and real-world experiments. However, this is reduction is highly limited to
symmetrical setups, and its significance to real-world application is still not quite clear.
Therefore, in general, we should look for more applications of WS or OA theories in
context where symmetry is not presumed, as well as a similar mean-field dynamical
approach for general oscillators — those that are coupled with not only phases but
also amplitudes.
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Chapter 8

Appendix

A. Stratonovich Shift and the Two Interpretations of
Stochastic Calculus

The two standard interpretations for stochastic differential equations are Itô and
Stratonovich interpretations. The problem arises with multiplicative Langevin equa-
tion

ẋ = f̄(X) + ḡ(x)η(t) , (8.1)

where η(t) is a Gaussian white noise, f̄ , ḡ are generic functions. Equation 8.1 can be
written as a Wiener process

dX = f̄(X)dt+ ḡ(X)dW (t) , (8.2)

where dW (t) = η(t)dt.
An interpretation of the multiplicative term ḡ(X)dW (t) needs to be provided, since

due to the extreme randomness of the white noise, it is not clear what value ofX should
be used during an infinitesimal time-step dt. According to the Itô interpretation, the
evaluation is the one before the beginning of the time step, i.e., X = X(t). According
to the Stratonovich interpretation, the evaluation is at the middle of the time step,
X = X(t + dt/2) = X(t) + dX(t)/2. As shown in Ref. [Per+00], the evaluations at
different time points have real implications when we consider for example the chain
rule for taking the derivative of the product of two random processes

d(XY ) = [(X + dX)(Y + dY )]−XY . (8.3)

This expression can be written in many different ways. One possibility is to follow
the Stratonovich interpretation

d(XY ) = (X +
dX

2
)dY + (Y +

dY

2
)dX . (8.4)

Another is to follow the Itô interpretation

d(XY ) = XdY + Y dX + dXdY . (8.5)

Notice that under the Stratonovich interpretation, Eq. (8.4) obeys the ordinary dif-
ferential calculus chain rule

d(XY ) = XSdY + YSdX , (8.6)

whereas Eq. (8.5) does not obey such a rule, which means it represents a different
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calculus from the ordinary differential calculus. This is also why the Stratonovich
interpretation, as opposed to the Itô interpretation, is the more frequently used in-
terpretation of statistical integrals in physics, because only under the Stratonovich
interpretation, does the act of applying the standard calculus procedure for deriving
the SDE remain valid.

However, in terms of numerical algorithms, most of the standard SDE integra-
tion schemes assume the Itô interpretation, such as the Euler-Maruyama, Milstein
and stochastic Runge-Kutta schemes (there are exceptions such as the Euler-Heun
scheme). Therefore to integrate an SDE under the Stratonovich interpretation us-
ing an algorithm assuming the Itô interpretation, one needs to add an additional
Stratonovich shift to the SDE which is to be integrated. The correspondence between
the equation and the algorithm is as follows. To integrate an equation of Stratonovich
interpretation

dX = f̄(X(t), t)dt+
∑
m

ḡm(X(t), t) dWm(t) , (8.7)

using an algorithm assuming Itô interpretation, one should instead integrate the fol-
lowing equation

dX = [f̄(X(t), t) + S(X(t))]dt+
∑
m

ḡm(X(t), t)dWm(t) , (8.8)

where the Stratonovich shift S is

Sj =
1

2

∑
m,k

ḡmk
∂ḡmj
∂Xk

, X = {X1, ...Xj ..., XN} . (8.9)

In other words, the solutions provided by the numerical integration of Eq. (8.8) is
equivalent to that of Eq. (8.7) under their corresponding interpretations.

On a related note, the commutativity condition∑
k

ḡmk
∂ḡm′k′

∂Xk
=
∑
k

ḡm′k
∂ḡmk′

∂Xk
(8.10)

needs to be satisfied for stochastic schemes of higher-order to be used to an advantage.
It has been shown, e.g., in Refs. [Bur98; BB98; BBT04], that the strong order of
convergence of all higher-order integration methods for SDEs with non-commutative
noise cannot be higher than 0.5. Strong order of convergence is defined by the average
error made by the time-discretized approximation of the stochastic integration scheme
in approximating each individual path of the continuous-time process. Therefore for
non-commutative noise terms it would be sufficient to restrict ourselves to using only
low-order integration schemes, such as Euler-Heun or other Euler based schemes.

B. Numerical Procedure for Integrating the Z2-Mean-Field
Model via WS Formulation

The numerical procedure of integrating the system Eq. (3.20) via the WS formulation
is summarized as follows.

1. Transform the original phases {ϕ0
j} into the space of the constants of motion

ψ via M−1
2 , using the recommended initial conditions ζ(0) = H(0) = Z2(0) and

β̃(0) = 0.
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2. Integrate the WS equations (3.22) using a standard algorithm such as the Euler
scheme to obtain the new values of ζ(t(n+1)) and β̃(t(n+1)). Higher order schemes can-
not be used here, since H cannot be calculated at several points within one integration
step. Combined with the constants ψj we carry out the transform M2 (Eq. (3.15))
to obtain N values between 0 and π: ϕ̄(n+1)

1 , ϕ̄
(n+1)
2 , . . . , ϕ̄

(n+1)
N . Given ϕ(n+1)

j which

is the true new values of ϕj at step n+ 1, array {ϕ̄(n+1)
j } will contain some unknown

numbers of ϕ̄(n+1)
j that are equal to ϕ(n+1)

j + π instead of to the true ϕ(n+1)
j due to

the non-uniqueness of the mappingM2.
3. We denote the result of step (2) {ϕ̄(n+1)

j } =: {ϕ̄n+1,0
j }, and create a second

array of phases shifted by π {ϕ̄n+1,1
j } := {ϕ̄n+1,0

j + π}. Then the j-th element of the
correct phase array at time step n+ 1 is

ϕ
(n+1)
j = arg min

w̃=0,1
|ϕ̄n+1,w̃
j − ϕ(n)

j | , (8.11)

where {ϕ(n)
j } are the phases at step n. This chooses the correct result from mapping

M2, which guarantees the continuity of the flow of the variable phases.
4. The new phases {ϕ(n+1)

j } found at step n+ 1 give the new value for the global
field H(t(n+1)) = Z(~ϕ(n+1))2. Repeat steps (2)-(4) until a steady state is reached.

It is clear from the procedure, that because at every step a transform back to
the original space is needed, numerically integrating the reduced WS equations does
not save computational time. However, it does by default preserve the constants
of motion, which the numerical integration of the original phase equations will not
guarantee (see e.g., Ref. [Gon+19]).

C. Derivation of the Möbius Maps Solution for Adler Equa-
tion

We derive the following formula for the proposed Möbius map

Kλ,V,β (z) =
(σ + iλΓ)z + eiβΓ

(σ − iλΓ) + ze−iβΓ
(8.12)

where
σ =

√
1− λ2, Γ = tanh

(
Aτ

2
σ

)
. (8.13)

Equation (8.12) (Eq. 4.36 in the main text) is the solution of the dynamics under
Adler equation Eq. (4.34), z(n+1) = Kλ,V,β

(
z(n)

)
. Before doing so, we first address the

meaning of the parameter λ in the main Adler equation, which aids in the derivation
later.

Geometric Meaning of the Parameter λ

The meaning of parameter λ is of a geometrical nature and is clear by observing the
fixed points zFP of the map Kλ,V,0 when there is no rotation β = 0, obtained by letting
z(n+1) = z(n)

zFP = iλ± σ. (8.14)
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When |λ| < 1, there are two fixed points on the unit circle: z1,2
FP = i sin ϑ̃ ± | cos ϑ̃|,

where λ takes on the geometric meaning of sin ϑ̃, where ϑ̃ is angular position of the
fixed point. When V is furthermore positive, the fixed point at ϑ̃ is stable and the
one at π − ϑ̃ is unstable (see Fig. 8.1(a)).

When |λ| > 1, there are no fixed points on the unit circle. Instead, two neutrally
stable fixed points (i.e., centers) are inside and outside the circle: z3,4

FP = iλ±i
√
λ2 − 1,

and the phases merely rotate around the center inside the circle.

Figure 8.1: Significance of parameter λ in terms of the fixed points of a
simplified Möbius map Kλ,V,0. For simplicity, rotational parameter β in the
map is set to zero. (a) |λ| < 1. When V > 0, the stable fixed point is S with
angle ϑ̃, and the unstable fixed point is U. λ =

√
1− λ2 is the distance SP,

and σ is hence OP. When V < 0, the positions of stable and unstable fixed
points are switched. (b) |λ| > 1. The center M is inside the circle, and another
center N is outside the circle (not shown). All other points rotate around M.
The length of OQ is now λ. With the right triangle OPQ, the length of PQ is
equal to the magnitude of σ, where σ = i

√
λ2 − 1. The position of the center

M can be determined geometrically by the length of PQ from Q, as shown by
the arc.

When λ = 0, the stable and unstable fixed points are at 0 and π, respectively.
Now we are ready to derive the Möbius map Eq. (8.12).
To simplify the derivation, we first ignore the rotation parameter by letting β = 0,

i.e., the Adler equation (4.34) becomes

ϕ̇ = A(t)(λ− sinϕ) . (8.15)

Also for simplicity, we let the forcing amplitude A(t) be a delta kick, A(t) = Aδ(t−t0),
where t0 is the kick time instance.

The kick map Kλ,V,0, where V =
∫ τ

0 A(t)dt = Aτ , τ the kick duration, is derived
as a composition of four Möbius maps. First, a map M which removes the bias
term λ in the phase response function of the Adler equation; second, a map G which
transforms the WS parameter from before the delta kick to after the kick; third, M
which contracts the phase coordinate (result ofM, with bias removed) according to
the WS parameter after the kick (result of G); and fourth, the inverse mapM−1 which
transforms the coordinate back to the original coordinate with the bias.

Removal of bias in the phase response function via M

Consider the Adler equation (8.15), which we can write in terms of a unit-length
vector z in the complex plane

ż =
A(t)

2
(2iλz − z2 + 1) , (8.16)
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where A(t) = Aδ(t− t0), and z is the complex exponential of the phase z = exp(iϕ).
We make a first transformation which removes the bias term (λ−sinϕ)→ (− sinϕ)

in (8.15). We use a Möbius mapM = Ci∆ (C defined in Sec. 4.1)

M : z → s, s = Ci∆(z) =
i∆ + z

1− i∆z
, (8.17)

where the value of ∆ (0 ≤ |∆| < 1), ∆ ∈ C as a transformation parameter is to be
determined, and the factor i represents the fact that we are contracting the coordinates
along the direction of the imaginary axis. This makes geometric sense especially when
considering the case where λ < 1, namely we want to contract the points U and S to
−1 and +1 respectively (see Fig. 8.1 (a)), which corresponds to having no bias term
in the phase response function. Effectively, we are removing the first-order term from
Eq. (8.16) via this first coordinate transformM.

Plug Eq. (8.17) into Eq. (8.16), we obtain the value for ∆ by letting the term
proportional to s be 0, and it is

∆ = −1−
√

1− λ2

λ
. (8.18)

After the transformationM, we obtain for s

ṡ =
A(t)

2

√
1− λ2(1− s2) , (8.19)

where s now stands for the first harmonic complex exponential of the original phases
in a transformed coordinate system where the bias term in the phase response function
is zero.

Delta Kick of the WS Parameter via G

We now derive the second map G which corresponds to a kick of the WS group
parameter z̃− → z̃+, such that the phase variable s can be contracted according to
z̃+ via a third transformM. Because at the continuous limit, the WS parameter z̃ is
advanced according to the WS equation, we will first transform the WS equation.

Given the real function A(t), the WS equation (Eq. (3.4)) for advancing z̃ is

˙̃z =
A(t)

2

√
1− λ2(1− z̃2) . (8.20)

According to Eq. (8.20), if z̃ is real-valued before the kick, it will stay real-valued after
the kick. In other words, the kick only shifts the value of z̃ along the real axis. This is
because that before the kick, G is precisely the identity transform I since the variable
z̃ is not under any force and therefore unchanged. To satisfy G = I, it must be that
z̃− = 0. Applying the map to z̃−, it is clear that after the kick we can treat z̃+ as a
real parameter.

To write Eq. (8.20) as a map, we use an ansatz for G derived as follows. Generally,
we want to rewrite an ODE

ẋ = f̄(x) + εḡ(x)δ(t− t0) (8.21)

as a composite transform of three steps. Given G as the desired Möbius map: (1)
transformation G : x(t−0 ) → G(x(t−0 )), (2) linearly shift the variable proportional the
kick amplitude: G(x(t−0 )) + ε, and (3) carry out the inverse transform G−1. So the
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composite transform is summarized as

x(t+0 ) = G−1(G(x(t−0 )) + ε) . (8.22)

Defining a transformed variable y := G(x), y(t+0 ) = y(t−0 ) + ε. We use an ansatz
for G

y = G(x) =

∫
x

1

ḡ(r̄)
dr̄ . (8.23)

This ansatz is justified when we look at its time derivative

ẏ = ẋG′(x) = ẋ
1

ḡ(x)
| insert Eq. (8.21)

=
f̄(x)

ḡ(x)
+ εδ(t− t0) .

ḡ(x), which is multiplied with the delta function has now been cancelled. This is
exactly what is needed.

Applying the ansatz Eq. (8.23) to the WS equation (8.20), we obtain

p̄ = G(z̃) =

∫
z̃

1

1− r̄2
dr̄ =

1

2
ln(

1 + z̃

1− z̃
) .

And the inverse of G is

z̃ = G−1(p̄) = tanh(p̄) ,

where p̄ = ε = A
2

√
1− λ2.

As mentioned before, z̃− = 0 is the WS transform parameter for before the kick,

G(z̃−) = ln 1 = 0 ,

which means

z̃+ = tanh(
A

2

√
1− λ2) .

General Möbius Map

Transformed phase parameter s is contracted along the circle via a Möbius transform
Cz̃+ parametrized by the delta-kicked WS parameter z̃+

Cz̃+ : s− → s+, s+ =
z̃+ + s−

1 + z̃+s−
(8.24)

And eventually s is transformed back to z to viaM−1
= C−i∆

M−1
: s+ → z+, z+ =

s+ − i∆
1 + i∆s+

. (8.25)

The composite map without rotation is K̃ = M−1 ◦ Cz̃+ ◦ M. Plug Eq. (8.24)
(Cz̃+ : s− → s+) and Eq. (8.17) (M : z− → s−) into Eq. (8.25). After algebraic
manipulations, we obtain

K̃ : z+ =
(σ + iλz̃+)z− + z̃+

σ − iλz̃+ + z−z̃+
(8.26)
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where σ =
√

1− λ2 and z̃+ = tanh(A2 σ). In the main text, z̃+ is simply denoted Γ.
When rotations are considered as in the Adler equation (4.34), i.e., when the phase

shift β is non-zero, map (8.26) can be easily modified. Phase shift β corresponds to
the rotation of the frame of reference under which z is transformed by K̃, which we can
obtain by replacing z+ → z+e−iβ and z− → z−e−iβ . This concludes the derivation
of the kick map Kλ,V,β (Eq. 8.12). When A is not a delta kick, it can be easily
generalized to a cumulative impulse over the kick interval by replacing A→ V , where
V =

∫ τ
0 A(t)dt, where τ is the kick duration.

D. Multivariate Taylor Expansion of A Dynamical System

In the following two parts, we expand the coupled ODEs of the Kuramoto-Sakaguchi
model ϕ̇j = ω + Im

[
Zei(α−ϕj)

]
in Taylor series, in order to model the errors of the

discrete Euler step up to the second and third order in step size h. Without loss of
generality, we set identical frequency ω = 0.

To Second Order in Discretization Step Size h

For a smooth dynamics, represented by the ODE ϕ̇j = f(~ϕ, ϕj), the multivariate
Taylor expansion to the first order can be derived as

ϕj(t0 + h)− ϕj(t0) =

∫ h

0
f(~ϕ, ϕj)

=

∫ h

0

{
f(~ϕ(t0), ϕj(t0)) +

∑
k

[
(ϕk(t)− ϕk(t0))

∂f(~ϕ, ϕj)

∂ϕk

∣∣∣
t=t0

]
+

1

2!

∑
k′

∑
k

[
(ϕk(t)− ϕk(t0))(ϕk′(t)− ϕk′(t0))

∂2f(~ϕ, ϕj)

∂ϕk∂ϕk′

∣∣∣
t=t0

]
+ . . .

}
dt

≈ hf(~ϕ(t0), ϕj(t0)) +
∑
k

[∂f(~ϕ, ϕj)

∂ϕk

∣∣∣
t=t0

∫ h

0
(ϕk(t)− ϕk(t0))dt

]
(8.27)

where h is the step size of integration. In the last line, we truncate to the first-order in
h. When the integral is approximated by Euler step ϕk(t) = ϕk(t0)+ tf(~ϕ(t0), ϕk(t0))

ϕj(t0 + h)− ϕj(t0) ≈ hf(~ϕ(t0), ϕj(t0)) +
∑
k

[∂f(~ϕ, ϕj)

∂ϕk

∣∣∣
t=t0

∫ h

0
tf(~ϕ(t0), ϕk(t0))dt

]
≈ hf(~ϕ(t0), ϕj(t0)) +

h2

2

∑
k

[∂f(~ϕ, ϕj)

∂ϕk
f(~ϕ, ϕk)

]∣∣∣
t=t0

(8.28)

Function f and derivative of f for identical Kuramoto-Sakaguchi oscillator dy-
namics in co-rotating frame are

f(~ϕ, ϕj) =
1

N

∑
j′

sin(ϕj′ − ϕj + α) (8.29)

∂f(~ϕ, ϕj)

∂ϕk
=


1
N cos(ϕk − ϕj + α), k 6= j

− 1
N

∑
j′ 6=j

cos(ϕj′ − ϕj + α), k = j (8.30)
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Plugging into Eq. (8.28)

ϕj(t0 + h)− ϕj(t0)

= hf(~ϕ(t0), ϕj(t0)) +
h2

2

{∑
k 6=j

[ 1

N
cos(ϕk − ϕj + α)

1

N

∑
k′

sin(ϕk′ − ϕk + α)
]

− 1

N

∑
k 6=j

cos(ϕk − ϕj + α)
1

N

∑
k′

sin(ϕk′ − ϕj + α)
}∣∣∣
t=t0

(8.31)

where the last term contains second-order harmonic coupling of ϕj . In summary,

f(~ϕ(t0), ϕj(t0)) =
ϕj(t0 + h)− ϕj(t0)

h
− h

2

{∑
k 6=j

[ 1

N
cos(ϕk − ϕj + α)

1

N

∑
k′

sin(ϕk′ − ϕk + α)
]

− 1

N

∑
k 6=j

cos(ϕk − ϕj + α)
1

N

∑
k′

sin(ϕk′ − ϕj + α)
}∣∣∣
t=t0

,

(8.32)

so the Euler step actually integrates the following modified ODE to O(h2)

ϕ̇j = f̃(~ϕ(t0), ϕj(t0))

= Im(ZKSe
−iϕj − h

4
(ZKSe

iαe−iϕj + ZKSe
iαZ∗KS,2e

iϕj − Z2
KSe

−2iϕj ))
(8.33)

where ZKS = eiα 1
N

∑
k

eiϕk is the Kuramoto-Sakaguchi mean-field.

Using standard definition of Kuramoto mean-field Z = 1
N

∑
k

eiϕk , and second

Kuramoto-Daido order parameter Z2 = 1
N

∑
k

ei2ϕk , we obtain from Eq. (8.33)

ϕ̇j = Im

[
Zei(α−ϕj) − h

4
(Zei(2α−ϕj) + ZZ∗2e

iϕj − Z2ei2(α−ϕj))

]
. (8.34)

To Third Order in Discretization Step Size h

We can further ask, what is the smooth dynamics that the Euler scheme integrates up
to O(h3)? Based on our earlier expansion up to O(h2), we only need to include one
term further in the Taylor expansion Eq. (8.27). When the integral is approximated
by Euler step ϕk(t) = ϕk(t0) + tf(~ϕ(t0), ϕk(t0))

ϕj(t0 + h)− ϕj(t0) ≈ hf(~ϕ(t0), ϕj(t0)) +
h2

2

∑
k

[∂f(~ϕ, ϕj)

∂ϕk
f(~ϕ, ϕk)

]∣∣∣
t=t0

+
h3

6

∑
k′

∑
k

[
f(~ϕ, ϕk)f(~ϕ, ϕk′)

∂2f(~ϕ, ϕj)

∂ϕk∂ϕk′

]∣∣∣
t=t0

.

(8.35)

For identical Kuramoto-Sakaguchi oscillator dynamics in co-rotating frame, func-
tion f and its first derivative of f are given in Eq. (8.29), Now we just need to
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calculate the second derivative of f :

∂2f(~ϕ, ϕj)

∂ϕk∂ϕk′
=



0, k 6= j, k′ 6= j, k 6= k′

− 1
N sin(ϕk − ϕj + α), k′ = k 6= j

1
N sin(ϕk − ϕj + α), k′ = j 6= k
1
N sin(ϕk′ − ϕj + α), k = j 6= k′

− 1
N

∑
j′ 6=j

sin(ϕj′ − ϕj + α), k′ = k = j .

(8.36)

Evaluating
∑
k′

∑
k

[
f(~ϕ, ϕk)f(~ϕ, ϕk′)

∂2f(~ϕ,ϕj)
∂ϕk∂ϕk′

]
for these cases we have

∑
k′

∑
k

f(~ϕ, ϕk)f(~ϕ, ϕk′)
∂2f(~ϕ, ϕj)

∂ϕk∂ϕk′
(8.37)

k = j = k′, f2(~ϕ, ϕj)
∂2f(~ϕ,ϕj)

∂ϕ2
j

= − 1
N f

2(~ϕ, ϕj)
∑
j′ 6=j

sin(ϕj′ − ϕj + α)

k = j 6= k′,
∑
k′
f(~ϕ, ϕj)f(~ϕ, ϕk′)

∂2f(~ϕ,ϕj)
∂ϕj∂ϕk′

= 1
N f(~ϕ, ϕj)

∑
k′ 6=j

f(~ϕ, ϕk′) sin(ϕk′ − ϕj + α)

k 6= j, k′ = j,
∑
k 6=j

f(~ϕ, ϕk)f(~ϕ, ϕj)
∂2f(~ϕ,ϕj)
∂ϕk∂ϕj

= 1
N f(~ϕ, ϕj)

∑
k 6=j

f(~ϕ, ϕk) sin(ϕk − ϕj + α)

k 6= j, k′ = k,
∑
k 6=j

f2(~ϕ, ϕk)
∂2f(~ϕ,ϕj)

∂ϕ2
k

= − 1
N

∑
k 6=j

f2(~ϕ, ϕk) sin(ϕk − ϕj + α) .

(8.38)

Insert the above in Eq. (8.35), we find that the following ODE is being integrated by
Euler scheme to third order O(h3)

ϕ̇j = Im(ZKSe
−iϕj )− h

4
Im(ZKSe

iαe−iϕj + ZKSe
iαZ∗KS,2e

iϕj − Z2
KSe

−2iϕj ) (8.39)

− h2

12
Im
{
|ZKS |2ZKS,2ei(−2ϕj+α) + Z2

KSZ
∗
KS,2e

iα − Z2
KSe

i(−2ϕj+α)

− |ZKS |2e−iα +
1

2
Z3
KSe

−3iϕj − 3|ZKS |2

2
ZKSe

−iϕj − 1

2
|ZKS |2ZKSei(−ϕj+α)

+
1

2
Z∗2KSZKS,3e

i(ϕj−α)
}
,

where as before ZKS = eiα 1
N

∑
k

eiϕk is the Kuramoto-Sakaguchi mean-field.

From Eq. (8.39), it is now possible to obtain third and fourth mode couplings by
going to the third order of h. We can draw the conclusion that, as h gets larger (or as
the integration time gets longer in the case of Ref. [GKM09], where noise combined
with repulsive coupling prolongs the integration till the forbidden multiclusters are
formed), these terms will play an increasingly significant role in the final dynamics
calculated by the numerical scheme.

When there is no phase shift, α = 0, we can write Eq. (8.39) as

ϕ̇j = Im(Ze−iϕj )− h

4
Im(Ze−iϕj + ZZ∗2e

iϕj − Z2e−2iϕj )− h2

12
Im
{
|Z|2Z2e

−2iϕj

+ Z2Z∗2 − Z2e−2iϕj − |Z|2 +
1

2
Z3e−3iϕj − 2|Z|2Ze−iϕj +

1

2
Z∗2Z3e

iϕj
}
.

(8.40)
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E. Integration Schemes for Coupled SDEs

We would like to numerically integrate SDE

ẋj = f̄(~x, xj) +
∑
m

ḡm(~x, t)∆Wm(t) , (8.41)

where m is the noise term index, with Wiener process ∆Wm(t) = [Wm(t + h) −
Wm(t)] ∼ N (0, 1). In the order from lower to higher numerical accuracies, we have
used the following three integration schemes for the numerical integrations conducted
in this thesis.

1. Euler-Maruyama scheme, which has an implicit Itô interpretation:

xj,n+1 = xj,n + hf̄(~x, xj) +
√
h
∑
m

ḡm(~x, t)∆Wm(t) . (8.42)

It has weak order 1, strong order 1/2 [Bur98; BB98; BBT04].

To obtain the Stratonovich interpretation for the integral of Eq. (8.41), the
Stratonovich shift needs to be added to the SDE, i.e, we need to use the following
scheme:

xj,n+1 = xj,n + h
[
f̄(~x, xj)− sj(x, t)

]
+
√
h
∑
m

ḡm(~x, t)∆Wm(t) , (8.43)

where sj(x, t) = 1
2

∑
k,m

ḡm(xk, t)∂xk ḡm(xj , t) is the Stratonovich shift.

2. Euler-Heun scheme, which has implicit Stratonovich interpretation:

x̃j = xj,n +
√
h
∑
m

ḡm(~x, t)∆Wm(t) (8.44)

xj,n+1 = xj,n + hf̄(~x) +
1

2

√
h
∑
m

[
ḡm(~̃x, t) + ḡm(~x, t)

]
∆Wm(t) , (8.45)

It has strong order 1.
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3. Stochastic Runge-Kutta 4th-Order scheme, which has a strong order of 1.5, has
been adjusted to have the Stratonovich interpretation as follows:

Kj1 =xj,n

fj1 =f̄(~xn,Kj1)− S(Kj1, t)

Kj2 =xj,n +
2

3
hfj1 +

2

3
η̄ḡ(Kj1)

fj2 =f̄(~xn,Kj2)− S(Kj2, t)

Kj3 =xj,n +
3

2
hfj1 −

1

3
hfj2 +

1

2
η̄ḡ(Kj1) +

1

6
η̄ḡ(Kj2)− 2

3
ξ̄ḡ(Kj1)

Kj4 =xj,n +
7

6
hfj1 −

1

2
η̄ḡ(Kj1) +

1

2
η̄ḡ(Kj3) +

1

6
ξ̄ḡ(Kj1) +

1

2
ξ̄ḡ(Kj2)

xj,n+1 =xj,n + h
{1

4
fj1 +

3

4
fj2 −

3

4

[
f̄(~xn,Kj3)− S(Kj3, t)

]
+

3

4

[
f̄(~xn,Kj4)− S(Kj4, t)

] }
+ η̄
{
− 1

2
ḡ(Kj1) +

3

2
ḡ(Kj2)− 3

4
ḡ(Kj3)

+
3

4
ḡ(Kj4)

}
+ ξ̄

[
3

2
ḡ(Kj1)− 3

2
ḡ(Kj2)

]
,

(8.46)

where S(xj , t) is the Stratonovich shift, and η̄, ξ̄ are calculated according to
η̄ = u

√
h and ξ̄ =

√
h(u2 + v

2
√

3
), where u and v are two random Gaussian

numbers. Eq. (8.46) is of Itô interpretation if we eliminate all the shift terms.

For the concepts of the Stratonovich and Itô interpretations, please refer to Appendix
A.

F. Calculation of the Synchronization Index for Non-identical
Oscillators in an Infinite Ensemble Under Common Multi-
plicative White Noise

We use two methods to calculate the zero-flux solution of the Fokker-Planck equation
presented in Eq. (6.29).

Numerical approximation

We first expand P in a

P =
1

2π

∞∑
k̃=−∞

pk̃e
ik̃a (8.47)

Substituting in Eq. (6.29) to obtain

W
∑
k̃

pk̃e
ik̃a −

∑
k̃

ik̃pk̃e
ik̃a +

∂

∂a

∑
k̃

eia + e−ia

2
pk̃e

ik̃a = W . (8.48)

Rearranging, we obtain∑
k̃

eik̃a[Wpk̃ − ik̃pk̃ +
1

2
ik̃(pk̃−1 + pk̃+1)] = W . (8.49)
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Focusing on the summed term Wpk̃ − ik̃pk̃ + 1
2 ik̃(pk̃−1 + pk̃+1), for k̃ = 0

Wp0 − i · 0 · p0 +
1

2
i · 0 · (pk̃−1 + pk̃+1) = Wp0 . (8.50)

By letting p0 = 1, the k̃ > 0 contribution is all 0, i.e., for general nonzero k̃

im

2
pk̃−1 + pk̃(W − ik̃) +

ik̃

2
pk̃+1 = 0 (8.51)

Assume pk̃−1/pk̃ = rk̃, then

ik̃

2
rk̃ +W − ik̃ +

ik̃

2

1

rk̃+1

= 0

rk̃ =
2k̃ + 2iW

k̃
− 1

rk̃+1

(8.52)

The synchronization index (cross-correlation) is

γ12 = |p1| = |
1

2 + 2iW − 1
r2

| , (8.53)

with rk̃ iteratively calculated according to Eq. (8.52).
If we assume the second harmonic coefficient p2 ≈ 0, then r2 ∼ ∞, i.e., 1/r2 ≈ 0,

then

r1 =
2 + 2iW

1
p1 =

1

2 + 2iW
. (8.54)

So the synchronization index (up to first truncation) is

γ12 = |ei(ψ̃2−ψ̃1)| = |〈eia〉| ≈ |p1| =
1

2
√

1 +W 2
(8.55)

Analytical solution

We use the following transformation to solve Eq. (6.29)

x = cot
a

2
sin2 a

2
=

1

1 + x2
cos a =

x2 − 1

x2 + 1
sin a =

2x

1 + x2
(8.56)

with derivative of the transform

dx = −1 + x2

2
da . (8.57)

The probability density of x should obey P (a)da = Q(x)dx. So we derive Q(x) as

P (a)da = −P (a)
2

1 + x2
dx = Q(x)dx, (8.58)

where comparing two sides we obtain

Q(x) = − 2P (a)

1 + x2
. (8.59)
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We first check for the convergence of the transformed distribution Q(x) at x→ ±∞,
which corresponds to the original variable a → 0. We assume a narrow Gaussian
distribution for the original variable a centered around 0

P (a) ∼ 1

ε
exp

[
−
(a
ε

)2
]
, (8.60)

which when transformed becomes

Q(x) ∼ − 2

1 + x2

1

ε
exp

[
−
(

2x

(1 + x2)ε

)2
]
, (8.61)

where we used the small-angle approximation a ≈ sin a and the transform above
sin a = 2x/(1 + x2).

For large x, Eq. (8.61) can be simplified to

Q(x) ∼ − 2

x2ε
exp

[
− 4

(xε)2

]
, (8.62)

and it’s easy to see if xε � 1, Q(x) ∼ 1/(x2ε), and if xε � 1, Q(x) ∼ 0. So even for
an almost delta distribution, in the transformed space, the density at the point which
corresponds to the delta peak location goes to 0. Hence after the transformation, the
probability density converges to 0 at |x| → ∞.

After transformation, Eq. (6.29) becomes

− ∂Q

∂x
−WQ =

W

(1 + x2)π
(8.63)

To solve the ODE (8.63), we use the ansatz Q(x) = C(x)e−Wx,

WC(x)e−Wx − C ′(x)e−Wx −WC(x)e−Wx =
W

(1 + x2)π

− C ′(x)e−Wx =
W

(1 + x2)π
⇒ C(x) = − 1

π

∫ x WeWy

1 + y2
dy .

(8.64)

So

Q(x) = −e−Wx 1

π

∫ x WeWy

1 + y2
dy . (8.65)

To calculate the synchronization index γ12 = 〈eia〉 = 〈cos a〉+i〈sin a〉, we calculate
〈cos a〉 and 〈sin a〉 separately. By making substitution x = v, x− y = u, (0 < u <∞
and −∞ < v <∞)

〈sin a〉 =

∫ ∞
−∞

2x

1 + x2
Q(x)dx = −W

π

∫ ∞
−∞

2x

1 + x2
e−Wx

∫ x eWy

1 + y2
dydx

=
W

π

∫ ∞
0

e−Wu

∫ ∞
−∞

2v

1 + v2

1

1 + (v − u)2
dvdu ,

(8.66)

which we proceed to solve using complex integration and the residue theorem∫ ∞
−∞

2v

(1 + (v − u)2)(1 + v2)
dv :=

∫ ∞
−∞

f(v)dv = (

∮
C
−
∫
arc

)f(v)dv (8.67)
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The arc contribution is negligible, hence we only need to calculate the contour integral∮
C
f(v)dv = 2πiRes(z = i) + 2πiRes(z = i+ a) =

2πu

u2 + 4
. (8.68)

Bring it into Eq. (8.66)

〈sin a〉 =
W

π

∫ ∞
0

e−Wu 2πu

u2 + 4
du = 2W

∫ ∞
0

e−Wuu

u2 + 4
du . (8.69)

Using formula 3.354.2 in the integral tables [GR80]

〈sin a〉 = 2W [−ci(2W ) cos(2W )− si(2W ) sin(2W )] , (8.70)

where ci and si are sine and cosine integrals

ci = −
∫ ∞
x

cos r

r
dr si = −

∫ ∞
x

sin r

r
dr . (8.71)

Similarly, we can solve for 〈cos a〉 with formula (3.354.1) in Ref. [GR80]

〈cos a〉 = 1− 2W [ci(2W ) sin(2W )− si(2W ) cos(2W )] . (8.72)

So altogether the synchronization index

γ2
12 = (〈cos a〉)2 + (〈sin a〉)2

= 1 + 4W 2[ci2(2W ) + si2(2W )]− 4W [ci(2W ) sin(2W )− si(2W ) cos(2W )] .

(8.73)
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