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Nonparametric Estimation and Testing in Survival

Models

Henning Läuter and Hannelore Liero

Institute of Mathematics, University of Potsdam

e-mail: laeuter@ rz.uni-potsdam.de, liero@ rz.uni-potsdam.de

The aim of this paper is to demonstrate that nonparametric smoothing methods
for estimating functions can be an useful tool in the analysis of life time data.
After stating some basic notations we will present a data example. Applying
standard parametric methods to these data we will see that this approach fails
- basic features of the underlying functions are not reflected by their estimates.
Our proposal is to use nonparametric estimation methods. These methods are
explained in section 2. Nonparametric approaches are better in the sense that
they are more flexible, and misspecifications of the model are avoided. But,
parametric models have the advantage that the parameters can be interpreted.
So, finally, we will formulate a test procedure to check whether a parametric or
a nonparametric model is appropriate.

1 Stating the Problem

We consider life or failure times of individuals or objects belonging to a
certain group, the so-called population of interest. Examples are: survival times
of patients in a clinical trial, lifetimes of machine components in industrial
reliability or times taken by subjects to complete specified tasks in psychological
tests. We assume that these life times can be modelled by a random variable Y
with a distribution F , that is, we assume that the probability that an individual
of the underlying population dies (fails) before time point t can be expressed
in the form

P(Y ≤ t) = F (t).

The probability that the individual survives the time point t is given by the
survival function

S(t) = P(Y > t) = 1 − F (t).

Other functions of interest are the density f(t) = F ′(t) and the hazard or
failure rate

λ(t) = lim
s↓0

1

s
P(t < Y ≤ t + s|Y ≥ t)

describing the immediate risk attaching to an individual known to be alive at
time point t.
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Now, suppose that we have obtained data from the underlying population. How
we can use these data to estimate the survival function or the hazard rate?

Assuming a parametric model for the distribution the survival times we have
to estimate parameters. It is well-known, that the maximum likelihood method
provides good estimates.

For example, if we assume that our data are realizations of exponential
distributed random variables Y1, . . . , Yn, that is, the survival function is given
by

S(t) = exp(−tβ),

with parameter β > 0, then the problem of estimating the function S is
simply the problem of estimating the parameter β. And the maximum likelihood
estimator (m.l.e.) is given by

β̂ =
1

n

n
∑

i=1

Yi.

Assuming a Weibull distribution with parameters β and ν, i.e

S(t) = P(Y > t) = exp(−(t/β)ν),

we obtain that the m.l.e. of the two-dimensional parameter is a solution of

β̂ν̂ =
1

n

n
∑

i=1

Y ν̂
i

∑n
i=1 Y ν̂

i log Yi

β̂ν̂
=

n

ν̂
+

n
∑

i=1

log Yi. (1)

If the assumed parametric model is a good description of the of the underlying
population, then parametric estimators and test procedures based on these
estimators provide good results. But if the parametric model is not appropriate
such an approach can lead to wrong conclusions. This is demonstrated in the
following:

Suppose that a mixture of two Weibull distributions is considered. The first
group is characterized by parameters β1, ν1 and the second with β2, ν2, and let
p be the portion of the first group. Then the survival function is given by

S∗(t) = (1 − p) exp(−(t/β1)
ν1) + p exp(−(t/β2)

ν2) (2)

For β1 = 1, β2 = 4, ν1 = 2, ν2 = 4 and p = 0.05 the figures show S∗, the density
f∗ and the hazard rate λ∗ of the mixture (solid line). Further the main part of
the mixture, i.e. exp(−(t/β1)

ν1 is given in Figure (a). In (b) and (c) you see not
only this term of the mixture but also the minor one.
In such a case with a small p one can interprete the first Weibull distribution as
a disturbation of the second one and one would hope that the fit with a single
Weibull distribution is sufficiently well. Simulated data with 100 observations
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from the disturbed Weibull model were used to estimate the parameters β and
ν in a single Weibull model with

S(t) = exp(−(t/β)ν) and λ(t) =
tν−1

βν
,

which was assumed neglecting the inhomogenity of the population.
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Figure 1 (a) Survival functions, (b) Densities, (c) Hazard rates,

for the main component (dashed line), for the mixture (thin solid line), in (c) the hazard

rate for the minor component (bold solid line)

The maximum likelihood estimates, computed according to (1), are: β̂ = 1.057
and ν̂ = 1.422. Replacing these estimates into the functions S and λ we get
Figure 2.
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Figure 2 (a) Survival functions, (b) Hazard rates, (c) Densities,

for the estimated single Weibull model (bold dashed line), for the mixture (thin solid

line)

We see: The estimators using the single Weibull model are wrong estimators.
This model is unable to detect the features of the underlying functions!
Such a mixed distribution one meets if the underlying population is not
homogenous. A latent factor, which is not observed divides the population
into (for simplicity) two groups. Further, assume that both groups can be
characterized by a Weibull distribution: the first with parameters β1, ν1 and the
second with β2, ν2, and let p be the portion of the first group. Latent factors can
be: a not observed underlying disease (depression), different litter in an animal
experiment or different producer of a technical component.

2 Nonparametric Estimators

2.1 Model with censoring

Very often, in practical applications the life times Yi’s are subject to random
right censoring, i.e. some individuals may not be observed for the full time to
failure. Thus, our observations are values of r. v.’s Ti which are censored or
uncensored. Here we assume a random censoring scheme characterized by i.i.d.
r. v.’s Ci which are independent of the Y - sequence. Thus, we observe (Ti, δi),
i = 1, . . . , n with

Ti = min(Yi, Ci) and δi = 1(Yi ≤ Ci).

The distribution of the observations is described by the distribution function
and the subdistribution function of the uncensored observations

H(t) := P(Ti ≤ t) and HU (t) := P(Ti ≤ t, δi = 1).

2.2 The Nelson-Aalen estimator for the cumulative hazard

function

Starting point of the construction of an estimator for the hazard function λ and
the survival function S is an estimator for Λ, the cumulative hazard function
defined by

Λ(t) =

∫ t

0
λ(s) ds.
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Using standard transformations we can write this estimator in the following
form

Λ(t) =

∫ t

0

dF (y)

S(y)
=

∫ t

0

dHU (y)

1 − H(y)
. (3)

The idea for the estimation of Λ goes back to Beran (1981). He proposed to
replace the functions H and HU in (3)by their empirical versions

ĤU
n (t) =

n
∑

i=1

1(Ti ≤ t, δi = 1), Ĥn(t) =
n

∑

i=1

1(Ti ≤ t). (4)

The resulting estimator is the so-called Nelson-Aalen type estimator

Λ̂n(t) :=

∫ t

0

dĤU
n (s)

1 − Ĥn(s−)
.

The explicit formula of Λ̂n is given by

Λ̂n(t) =
n

∑

i=1

1(T(i) ≤ t)δ[i]

n − i + 1
.

Here T(1) ≤ · · · ≤ T(n) is the order statistic, and δ[i] = δj if Tj = T(i).

From this estimator we get the well-known Kaplan-Meier product limit estima-
tor by the transformation

F̂n(t) = 1 − exp(−Λ̂n(t)).

Asymptotic properties of these estimators were investigated by several authors,
for example by Horvath(1981), Lo/Singh(1986) and Major/Rejtő (1988).

2.3 A kernel estimator for the hazard function

The hazard function λ is the derivative of the cumulative hazard Λ. But the
estimator Λ̂n is not differentiable. So, we follow the same line as in the case
of nonparametric density estimation. Let us estimate λ at point t. Consider a
small interval [t − b, t + b) of length 2b around t. We can approximate λ(t) in
the following way:

λ(t) ∼

t+b
∫

t−b

λ(s) ds

2b
=

Λ(t + b) − Λ(t − b)

2b
∼ Λ̂n(t + b) − Λ̂n(t − b)

2b
. (5)

The last term in (5) can be written in the form

1

b

n
∑

i=1

K∗

(

t − T(i)

b

)

δ(i)

n − i + 1
,

where

K∗(u) =

{

1
2 for −1 ≤ u ≤ 1
0 otherwise

.
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The first approximation step in (5) yields a systematic error, which becomes
small if the length of the interval is small. At the other hand, if b is small, then
the second approximation error, the stochastic error, is large, because we have
not enough observations for stability. To take these tendencies into account, we
have to choose b depending on the sample size n, b = bn, such that

bn → 0 and nbn → ∞. (6)

Further, it is useful to take instead of the function K∗ a more general function
K, a function giving small weights to observations T(i) far away from the point t
and large weights to observations very near to the point, at which we estimate.
This is realized, for example, by taking a symmetric density function for K. So,
finally we arrive at the following definition:

λ̂n(t) =
1

bn

n
∑

i=1

K

(

t − T(i)

bn

)

δ(i)

n − i + 1
. (7)

Here K : R → R is the kernel function and {bn} the sequence of bandwidths
satisfying (6). The estimator (7) can be written shortly as

λ̂n(t) =
1

bn

∫

K
( t − s

bn

)

dΛ̂n(s).

Several properties of this estimator are known. Let us mention here papers of
Singpurwalla and Wong (1983), Tanner and Wong (1983) and the results of
Diehl and Stute (1986). In these papers conditions for consistency are derived
and asymptotic expressions for the bias and the variance are given. Diehl and
Stute considered an approximation for the difference between the estimator λ̂n

and a smoothed hazard rate by a sum of i.i.d. r.v.’s. On the basis of such a
representation limit theorems can be derived.

The following picture shows a nonparametric kernel estimate for the data
generated in the simulated model (2). Here the kernel function is the Gaussian
kernel, the bandwidth is bn = 0.2. We see, that this estimate reflects the features
of the underlying hazard function much better than the parametric estimator.
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Figure 3 True underlying hazard rate (thin) and nonparametric estimate (bold)
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3 Testing the Hazard Rate

Nonparametric estimators of a curve are an appropriate tool in the analysis
of data. But, sometimes in practical situations it seems to be useful to have a
parametric model. The advantage of a parametric model is that the parameters
have a some meaning, very often they can be interpreted. Of course, this holds
only, if the chosen parametric model is appropriate. Thus, the question arises,
whether the choice of a certain parametric model can be justified by the data.
In this section we propose a test procedure for checking whether a hypothetical
model fits the data, that is we consider the following hypothesis

H : λ ∈ L vs. K : λ 6∈ L,

where L is the class of parametric hazard functions

L = {λ(t·; ϑ) |ϑ ∈ Θ ⊂ R
k}

An example for such an parametric class L is the set of all Weibull hazards.
Further parametric models are given in the book of Bagdonavičius, V. and
Nikulin, M. (2002).

At the first view one would choose as test statistic the deviation of the
nonparametric estimator λ̂n, which is a good estimator under the alternative,
from a hypothetical hazard with estimated parameter ϑ̂, i.e. from λ(t; ϑ̂). Here ϑ̂
is an appropriate estimator of the unknown parameter. But the nonparametric
λ̂n is a result of smoothing procedure. Remember formulae (5) - it is an unbiased
estimator of

1

bn

∫

K
( t − z

bn

)

λ(z) dz,

and not unbiased for the underlying hazard rate. So, it seems to be natural
to compare λ̂n, which smoothes the data, with a smoothed version of the
hypothesis. Thus, we will take the difference between λ̂n and λ̃n defined by

λ̃n(t; ϑ̂) =
1

bn

∫

K
( t − z

bn

)

λ(z; ϑ̂) dz.

Generally speaking, one can take as deviation measures Lp-distances for
functions. Here we will consider a L2-type distance, namely

Qn =

∫

(

λ̂n(t) − λ̃n(t; ϑ̂)
)2

a(t) dt

The function a is a known weight function, it is introduced to control the region
of integration.
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3.1 An asymptotic α-test

To formulate a test based on this statistic we have to derive the distribution of
Qn, or at least the limiting distribution under the hypothesis. The theory about
the asymptotical distributional behavior of quadratic forms yields the following
limit statement. Under

- regularity conditions on the kernel K and the bandwidth bn,

- smoothness of the functions Hand HU and

- conditions ensuring that the estimator ϑ̂n is
√

n-consistent

the distribution of the standardized Qn converges to the standard normal
distribution , that is

nb
1/2
n

σ
(Qn − µn)

D−→ N(0, 1)

where

µn = (nbn)−1 κ1

∫

λ(t; ϑ̂n)

1 − H(t)
a(t) dt

σ2 = 2κ2

∫
(

λ(t; ϑ̂n)

1 − H(t)

)2

a2(t) dt (8)

with κ1 =
∫

K2(x) dx and κ2 =
∫

(K ∗ K)2(x) dx and ”∗” denotes the
convolution.

The only unknown term in this limit statement is the distribution H of the
observations. Replacing this by the empirical distribution Ĥn we obtain the
following asymptotic α-test: Reject H, iff

Qn ≥ zα σ̂n

nb
1/2
n

+ µ̂n. (9)

Here zα is the (1−α)-quantile of the standard normal distribution and µ̂n and
σ̂2

n are defined as in (8), where H is replaced by Ĥn.

3.2 Application to the example

Now, let us apply the proposed test to the example considered in Section 1. The
nonparametric estimator of the hazard rate in the Weibull mixture model and
the smoothed hypothetical hazard function, that is a hazard rate in a Weibull
model with parameter ϑ̂ = (1.057, 1.422), are given in Figure 4.
We compute the integrated quadratic distance over the interval [0, 4]. and get
the following values for the test statistic and the standardizing terms

Qn = 2.8161

µ̂n = 1, 461

σ̂2
n = 1853.717
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With these values the test procedure yields for α = 0.05: Reject H. The p-value
is 0.0025.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5
x

(a)

0

0.5

1

1.5

2

1 2 3 4 5
t

(b)

Figure 4 (a) Densities, (b) Hazard rates. Hypothetical single Weibull model (dashed

line), nonparametric estimate (bold solid line), in (b) true underlying mixture model

(thin solid line)

3.2.1 Conclusions

1. There are two possible points of view. The first is to consider the minor
part of the mixture as a disturbation. That is, one is interested in the main
part, for which the parametric model is justified. Then the nonparametric
estimate of the hazard rate shows that the population is not homogenous,
or in other words, our data are not appropriate for the estimation of both
parameters. Further, we see that the hazard rate reflects this deviation
much better then the survival function. Hence, in this case the application
of a nonparametric estimator for the hazard rate is helpful for detecting
outliers.

2. A second point of view is, that one is interested in the distribution of
the population, that is the data are correct in the sense, that they are
represent the population we are interested in. Then our nonparametric
approach shows that the chosen parametric model is not appropriate.
Thus, the nonparametric estimator can be helpful for stating a better
parametric model. Of course a parametric mixture model with unknown
parameter p is a complicated matter.

3. In both cases we see that the hazard rate is more sensitive. The deviation
of a hazard rate from a hypothetical one, which can be seen very clearly,
is smoothed away when we consider the corresponding survival functions.

4 Some further remarks

1. The proposed test is consistent, that is, if the distribution of the data does
not belong to the hypothetical class, then the probability that the test
rejects the hypothesis tends to one. This is not a very strong property.
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So, it seems to be useful to consider the power of the test under so-called
local alternatives. For testing a density function nonparametrically such
considerations were done in Liero, Läuter and Konakov (1998). The results
for the hazard rate are similar. Roughly speaking one obtains, that the
test is sensitive against alternatives tending to the hypothetical hazard

function at the rate

√

nb
1/2
n .

2. The problem of the application of the nonparametric estimator and
the test is the choice of the bandwidth bn. If the bandwidth is chosen
large, the systematic error becomes large. At the first view this is not
crucial, because we compare the smooth nonparametric estimator λ̂n

with the smoothed hypothetical function λ̃n. But the approximation
of the distribution of the standardized test statistic Qn by the normal
distribution is worse for large bn. Simulation results show that in this
case the test has the tendency to accept the hypothesis. At the other
hand, if bn is chosen to small, then the resulting estimator is wiggly, and
the power of the becomes worse.

5 About the Extension to the Model with Covariates

The approach described above can be generalized to the model with covariates.
In applications often we observe in addition to the life times some covariates.
These covariates can be e.g. the dosis of a drug, the temperature or other
factors of influence. That is, we have observations (Ti, Xi, δi), where Xi is the
covariate taking values in R or more general in R

k. We can consider these
covariates as fixed design points, or as random values. In both cases we are
interested in statistical inference about the survival function S(t|x), the density

f(t|x) = − dS(t|x)
dt and the hazard function λ(t|x) = f(t|x)

S(t|x) . Here S(t|x) is the
probability that an individuum or item survives the time point t given the
covariate takes the value x. We do not want to go into further details, the
basic idea is to estimate the distribution functions H(·|x) and HU (·|x) not by
the emprirical distribution functions given in (4), but by weighted empirical
distribution functions

ĤU
n (t) =

n
∑

i=1

wni(X, x; hn)1(Ti ≤ t, δi = 1) Ĥn(t) =
n

∑

i=1

wni(X, x; hn)1(Ti ≤ t).

Here, the weights wnj(X, x) depend on the observed covariates X =
(X1, . . . , Xn), on x and on a smoothing parameter hn. They are chosen such
that the Tj gets a large weight in counting all the Ti’s, which are smaller or
equal t, if the corresponding covariate Xj is near x. Appropriate weights are
kernel weights of Gasser-Müller type for fixed covariates or Nadaraya-Watson
kernel weights for random Xi’s. The resulting estimator of the hazard rate has
then the following form

λ̂n(t|x) =
1

bn

n
∑

i=1

K

(

t − T(i)

bn

)

δ(i)wn(i)(X, x; hn)

1 − ∑i−1
j=1 wn(j)(X, x; hn)

.
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Properties of nonparametric estimators for the hazard rate, the cumulative
hazard function and the survival functions for models with covariates are
derived, for example, in papers by González-Manteiga and Cadarso-Suarez
(1996) and Van Keilegom and Veraverbeke (1997, 2001, 2002).

For testing the hypothesis that λ(·|x) is equal to a given hazard function λ∗(·|x)
we propose (for fixed covariates) the following test statistic

Sn =
1

n

n
∑

k=1

∫

(

λ̂n(t|xk) − λ̃∗
n(t|xk)

)2
a(t) dt

Here λ̃∗
n(·|xk) is the smoothed hypothetical hazard function at fixed covariate

xk. In Liero (2003a) it is shown that under certain conditions on K, bn, the
weights wni and hn and on the smoothness of the underlying distribution
functions that the (appropriate standardized) Sn is asymptotically normally
distributed. Based on this limit statement a test procedure can be derived.
Moreover, for testing the hypothesis, that λ(·|x) lies in a prespecified parametric
class a test statistic with estimated parameters can be applied.

Appendix: Formulation of the Limit Theorem

This theorem is formulated not only for the behavior under the null hypothesis, but
for general hazard rate λ. We define

λ̃n(t) :=

∫

Kbn
(t − s)λ(s) ds.

Qn =

∫

(

λ̂n(t) − λ̃n(t)
)2

a(t) dt

Further, let TH be the right end point of the distribution H.

Theorem 1 Suppose that

(i) K is a continuous density function vanishing outside the interval [−L,L] for
some L > 0.

(ii) λ and H are Lipschitz continuous.

(iii) The function a is continuous and a(t) ≡ 0 for all t > TH .

(iv) bn → 0 and nb2

n → ∞.

Then for n → ∞
nb

1/2

n

σ
(Qn − µn)

D−→ N(0, 1) (10)

where

µn = (nbn)−1

∫

λ(t)

1 − H(t)
a(t) dt κ1 σ2 = 2

∫
(

λ(t)

1 − H(t)

)2

a2(t) dt κ2
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The proof of this theorem is given in Liero (2003b).
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