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Abstract 

Potato is the 4th most important food crop in the world. Especially in tropical and sub-tropical 

potato production, drought is a yield limiting factor. Potato is sensitive to water stress. Potato yield 

loss under water stress could be reduced by using tolerant varieties and adjusted agronomic 

practices. Direct selection for yield under water-stressed conditions requires long selection cycles. 

Thus, identification of markers for marker-assisted selection may speed up breeding. The objective 

of this thesis is to identify morphological markers for drought tolerance by continuously 

monitoring plant growth and canopy temperature with an automatic phenotyping system. 

The phenotyping was performed in drought-stress experiments that were conducted in population 

A with 64 genotypes and population B with 21 genotypes in the screenhouse in 2015 and 2016 

(population A) and in 2017 and 2018 (population B). Drought tolerance was quantified as deviation 

of the relative tuber starch yield from the experimental median (DRYM) and parent median 

(DRYMp). Relative tuber starch yield is starch yield under drought stress relative to the average 

starch yield of the respective cultivar under control conditions in the same experiment. The specific 

DRYM value was calculated based on the yield data of the same experiment or the global DRYM 

that was calculated from yield data derived from data combined over yeas of respective population 

or across multiple experiments including VALDIS and TROST experiments (2011-2016). 

Analysis of variance found a significant effect of genotype on DRYM indicating that the tolerance 

variation required for marker identification was given in both populations.  

Canopy growth was monitored continuously six times a day over five to ten weeks by a laser 

scanner system and yielded information on leaf area, plant height and leaf angle for population A 

and additionally on leaf inclination and light penetration depth for population B. Canopy 

temperature was measured 48 times a day over six to seven weeks by infrared thermometry in 

population B. From the continuous IRT surface temperature data set, the canopy temperature for 

each plant was selected by matching the time stamp of the IRT data with laser scanner data.  

Mean, maximum, range and growth rate values were calculated from continuous laser scanner 

measurements of respective canopy parameters. Among the canopy parameters, the maximum and 

mean values in long-term stress conditions showed better correlation with DRYM values 

calculated in the same experiment than growth rate and diurnal range values. Therefore, drought 

tolerance index prediction was done from maximum and mean values of canopy parameters.   
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The tolerance index in specific experiment condition was linearly predicted by simple regression 

model from different single canopy parameters under long-term stress condition in population A 

(2016) and population B (2017 and 2018). Among the canopy parameters maximum light 

penetration depth (2017), mean leaf angle (2017, 2018, and 2016), mean leaf inclination or mean 

canopy temperature depression (2017 and 2018), maximum plant height (2017) were selected as 

tolerance predictors. However, no single parameters were sufficient to predict DRYM. Therefore, 

several independent parameters were integrated in a multiple regression model. 

In multiple regression model, specific experiment DRYM values in population A was predicted 

from mean leaf angle (2016). In population B, specific tolerance could be predicted from maximum 

light penetration depth and mean leaf inclination (2017) and mean leaf inclination (2018) or mean 

canopy temperature depression and mean leaf angle (2018). 

In data combined over season of population A, the multiple linear regression model selected 

maximum plant height and mean leaf angle as tolerance predictor. In Population B, mean leaf 

inclination was selected as tolerance predictor. However, in population A, the variation explained 

by the final model was too low.  

Furthermore, the average tolerances respective to parent median (2011-2018) across FGH plants 

or all plants (FGH and field) were predicted from maximum plant height (population A) and 

maximum plant height and mean leaf inclination (population B). Altogether, canopy parameters 

could be used as markers for drought tolerance. Therefore, water stress breeding in potato could 

be speed up through using leaf inclination, light penetration depth, plant height and canopy 

temperature depression as markers for drought tolerance, especially in long-term stress conditions.  
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Vorhersage von Trockentoleranz in Kartoffel durch automatische 

Phänotypisierung morphologischer und physiologischer 

Eigenschaften 

Zusammenfassung 
Die Kartoffel ist die viertwichtigste Nahrungspflanze der Welt. Besonders in den Tropen und 

Subtropen ist Trockenheit ein ertragsbegrenzender Faktor für die Kartoffelproduktion. Kartoffeln 

sind empfindlich gegen Trockenstress. Der Ertragsverlust von Kartoffeln unter Wasserstress 

könnte durch die Verwendung von toleranten Sorten und angepasste Anbaupraxis verringert 

werden. Die direkte Selektion für Ertrag unter Trockenstressbedingungen erfordert lange 

Selektionszyklen. Daher kann die Identifizierung von Markern für marker-assisted Selektion die 

Züchtung beschleunigen. Das Ziel dieser Arbeit ist es, morphologische Marker für 

Trockentoleranz mit Hilfe von kontinuierlichen Messungen von Pflanzenwachstum und 

Bestandstemperatur mittels automatischer Phänotypisierung zu identifizieren. 

Die Phänotypisierung wurde in Trockenstressexperimenten durchgeführt, welche mit 64 

Genotypen aus Population A und 21 Genotypen aus Population B in einem Foliengewächshaus in 

2015 und 2016 (Population A) bzw. 2017 und 2018 (Population B) stattgefunden haben. Die 

Trockentoleranz wurde als Abweichung des relativen Stärkeertrags der Knollen vom 

experimentellen Median (DRYM) und dem Elternmedian (DRYMp) quantifiziert. Der relative 

Stärkeertrag ist der Stärkeertrag unter Trockenstress relativ zum mittleren Stärkeertrag der Sorte 

unter optimaler Bewässerung im gleichen Experiment. Der spezifische DRYM wurde auf der Basis 

der Ertragsdaten des gleichen Experiments berechnet oder der globale DRYM wurde auf der Basis 

der Ertragsdaten kombinierter Experimente aus mehreren Jahren für die gleiche Population oder 

für mehrere Experimente auch aus VALDIS und TROST (2011-2016) berechnet.  

Die Varianzanalyse zeigte einen signifikanten Effekt des Genotyps auf DRYM, so dass die für die 

Identifizierung von Markern erforderliche Toleranzvariation in beiden Populationen gegeben war. 

Die Bestandsentwicklung wurde mit einem Laserscanner-System kontinuierlich sechsmal täglich 

über fünf bis zehn Wochen gemessen und lieferte Informationen zu Blattfläche, Pflanzenhöhe und 

Blattwinkel für Population A sowie zusätzlich Blattneigung und Lichteinfalltiefe für Population 

B. Die Oberflächentemperatur wurde 48mal täglich für sechs bis sieben Wochen mittels Infrarot-
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Thermometrie in Population B gemessen. Aus dem kontinuierlichen IRT-Oberflächentemperatur-

Datensatz wurde die Oberflächentemperatur jeder Pflanze bestimmt, indem die Zeitstempel der 

IRT-Daten mit denen der Laserscannerdaten abgeglichen wurden. Mittelwert, Maximum, 

Streubereich (range) und Wachstumsrate wurden für die Bestandsparameter der 

Laserscannermessungen bestimmt. Unter den Bestandsparametern zeigten die Maxima und 

Mittelwerte unter Langzeitstress die bessere Korrelation mit dem Toleranzindex DRYM, der aus 

dem gleichen Experiment berechnet wurde, als die Wachstumsrate und der Streubereich. Die 

Trockentoleranzprognose wurde daher aus den Maxima und Mittelwerte der Bestandsparameter 

gemacht. 

Der Toleranzindex spezifischer Versuche wurde linear mit einem einfachen Regressionsmodell 

aus verschiedenen einzelnen Bestandparameters unter Langzeitstressbedingungen in Population A 

(2016) und Population (B) (2017 und 2018) vorhergesagt. Toleranz-Prognoseparameter wurden 

unter den Bestandparametern maximale Lichteinfalltiefe (2017), mittlerer Blattwinkel (2017, 2018 

und 2016), mittlere Blattneigung und mittlere Oberflächentemperatur-Abweichung (2017 und 

2018), maximale Pflanzenhöhe (2017) ausgewählt. Kein einzelner Parameter war jedoch 

ausreichend um DRYM vorherzusagen. Daher wurden mehrere unabhängige Parameter in einem 

multiplen Regressionsmodell integriert. 

Im multiplen Regressionsmodel wurde der spezifische Experiment-DRYM in Population A aus 

dem mittleren Blattwinkel (2016) vorhergesagt. In Population B konnte die spezifische Toleranz 

aus der maximalen Lichteinfalltiefe, der maximalen Blattneigung (2017) und der mittleren 

Blattneigung (2018) oder der mittleren Oberflächentemperatur-Abweichung und dem mittleren 

Blattwinkel (2018) vorhergesagt werden. 

In Daten aus mehreren Anbauperioden von Population A wählte das multiple lineare 

Regressionsmodel maximale Pflanzenhöhe und mittleren Blattwinkel als Prognoseparameter für 

Toleranz aus. In Population B wurde mittlere Blattneigung als Prognoseparameter für Toleranz 

ausgewählt. In Population A war jedoch die Variation, die durch das Endmodell erklärt wurde, zu 

niedrig. 

Die mittlere Toleranz hinsichtlich des Medians der Eltern (2011 – 2018) über alle FGH Pflanzen 

oder alle Pflanzen (FGH und Feld) wurde ferner aus der maximalen Pflanzenhöhe (Population A) 

und der maximalen Pflanzenhöhe und mittleren Blattneigung (Population) vorhergesagt. 
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Insgesamt konnten Bestandsparameter als Marker für Trockentoleranz genutzt werden. 

Dementsprechend könnte Trockenstresszucht in Kartoffeln beschleunigt werden, indem 

Blattneigung, Lichteinfalltiefe, Pflanzenhöhe und Oberflächentemperatur-Abweichung als Marker 

für Trockentoleranz, insbesondere unter Langzeitstressbedingungen, genutzt werden. 

(Übersetzung Karin Köhl, 4.6.2020). 



                                                                                                                                               

    
 

1. General introduction  

1.1 Yield stability under water stress conditions  

1.1.1 Drought  

Drought stress is the most prevalent environmental factor limiting crop productivity and ultimately 

the food security (Farooq et al. 2009; Basu et al. 2016). Global food security is being pressurized 

by the rapid population growth and drastic changes in the climate (Mancosu et al. 2015; Lesk et 

al. 2016). There is increasing evidence that human-induced climate change is changing the 

precipitation and the hydrological cycles, especially floods and droughts (Trenberth 2008). 

Warming increases the potential incidence and severity of drought through accelerated land-

surface drying by evaporation (Dai et al. 2004).  

Drought stress occurs when the available soil moisture is insufficient to meet the transpiration 

needs of the crop (Lobell et al. 2011; Tuberosa 2012; Rauf et al. 2016). Water moves from the soil 

into the plant, through the plant and into the atmosphere in response to a series of water potential 

differences. Water potential is the difference in potential energy between a given water sample and 

pure water (at atmospheric pressure and ambient temperature). The system that involves the soil, 

the plant’s roots, the xylem, the leaf and the atmosphere is called the soil-plant-atmosphere 

continuum (SPAC), which is a pathway for the movement of water from the soil into the 

atmosphere (Blum 2011). The value of the water potential is highest in the soil and decreases along 

the transpiration pathway (Bittelli 2010). This strong water potential gradient allows water 

movement through plants and ultimately for transpiration to take place. The SPAC responds 

primarily to the seasonal, daily and hourly change of net radiation. Other environmental factors 

are also affect the water potential gradient, such as wind, passing clouds, and the vapor pressure 

deficit of the air (Blum 2011). The vapor pressure deficit (VPD) of the air is the difference between 

the actual water potential of the air and the water potential at full saturation (Ficklin and Novick 

2017) and it is a combination of temperature and relative humidity in a single value (Eaton and 

Kells 2009).  

Drought stress can be aggravated by soil salinity, physical properties of the soil, and high air 

temperature (Rauf et al. 2016). Severe droughts substantially reduce crop yields through negative 

impacts on plant growth, physiology, and reproduction (Fahad et al. 2017). Drought stress not only 

limits crop productivity but also reduces the available area for crop cultivation. Out of the 
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potentially arable area, only 16% are under cultivation (Alexandratos and Bruinsma 2012). 

Drought primarily affects crops cultivated under rain-fed conditions, which represent 80% of the 

total cultivated area worldwide (Rockstrom 2003). Globally, the percentage of the cultivated area 

permanently affected by drought is estimated to be about 28% in sorghum, 20% in wheat, 19% in 

barley and 19% in maize (Li et al. 2009).  

1.1.2 Specific effects of drought on Ethiopia as a case study for subtropical 

Africa 

Drought is frequent in East African countries, especially in Ethiopia (Simane et al. 2016). Since 

85% of the population depends on predominantly rain-fed agriculture (Mersha and Boken 2005; 

Babikir et al. 2015), food production in Ethiopia is highly vulnerable to the effect of climate 

change.  

Ethiopian food production is insufficient already under the current climate condition, mainly 

because of recurrent droughts. During the last decade, frequency and intensity of drought increased 

in southern Ethiopia (Mera 2018). A major drought occurred following the 2015 El Nino event, 

resulting in severe acute food insecurity for more than 15 million people (FEWSNET 2015). 

Ethiopian annual top-40-cm soil moisture was reduced in the recent decades as compared with the 

average soil moisture between 1981-2014 (Funk et al. 2015).  

For the future, several models predict that tropical dry areas will become drier (Hantson et al. 

2017). Figure 1 shows the spatial and temporal pattern of rainfall and temperature in Ethiopia 

estimated for 2010-2039. Changes in precipitation are predicted to affect the short rainy season 

between March to June. During the local rainy season, rainfall will decline in a range from 50-150 

mm in south-central, eastern, western and southern parts of Ethiopia (Funk et al. 2012). 

Furthermore, the predictions suggest an increase in air temperature by more than 1°C thus 

increasing the risk of drought-driven yield loss (Zhao and Li 2015; Leng and Hall 2019).  

In conclusion, the change in soil moisture due to decreased rain fall and the temperature increase 

mainly affect the short rainy season, in which more than 62% of the Ethiopian potato is produces 

(Kolech et al. 2015; Gebru et al. 2017). Drought tolerance breeding is thus important to adapt 

Ethiopian agriculture to global change. This is especially the case for potato (see 1.2.5).  
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Figure 1. Projected rainfall (top) and temperature (bottom) changes in March–June, June–

September and March–September in 2010-2039. The model predicted future values based on the 

changes observed between 1960 and 2009, assuming persistence of the observed trends. Adapted 

from (Funk et al. 2012) by include rainfall and temperature labels on the left side of the original 

figure.   

1.1.3 Plant strategies to cope with water deficits  

Plants respond to drought by inducing several morphological, physiological and molecular 

mechanisms that enable them to cope with the stress. Drought resistance mechanisms can be 

grouped into three categories: drought escape, drought avoidance, drought tolerance (Blum 2011; 

Aslam et al. 2015; Fang and Xiong 2015).  

Drought escape is defined as the ability of a plant to complete its life cycle before the drought 

(Manavalan et al. 2009). Plants can escape drought stress with rapid development, e.g. early 

flowering and early maturity. Developmental plasticity and remobilization of assimilates from 

reserve organs (like stems) to economically important parts (e.g. grain) contribute to the escape 

mechanism (Turner 1979; Farooq et al. 2014). Developmental plasticity permits increased growth 

during the wet season to produce grains or tubers in spite of limited growth during the stress season 

(Basu et al. 2016). This mechanism of drought resistance minimizes yield loss in terminal stress 

scenarios. However, short crop duration and early maturity reduce yield (Turner et al. 2001). In 

potato, early maturing (Verkort 1994; Rana et al. 2011) and increasing dry matter partitioning to 

the tubers (Verkort 1994) are means to escape drought that gradually increases towards the end of 

the growing season. 
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Drought avoidance is the ability of plants to maintain (relatively) high tissue water content despite 

low soil water contents (Luo 2010). Various adaptive traits minimize water loss (water savers) and 

optimize water uptake (water spenders) (Fang and Xiong 2015; Basu et al. 2016). Under drought 

stress, water spenders achieve higher tissue water status by maintaining the water uptake through 

a well-developed root system (especially increased rooting depth, rooting density or root/shoot 

ratio). In contrast, water savers use water efficiently by reducing transpiration rate, leaf area and 

radiation absorption. Some of the mechanisms, through which plants manage drought effects, are 

increasing investment in the root, reallocation of nutrients from older leaves and higher rates of 

photosynthesis (Chaves et al. 2002). 

Drought tolerance is the ability of plants to sustain a certain level of physiological activity at 

reduced tissue water contents by reducing or repairing stress damage (Morgan 1984; Fang and 

Xiong 2015). Drought may reduce the cellular water potential, resulting in higher solute 

concentration, osmosis and turgor loss. Tolerance to low tissue water potential may involve 

osmotic adjustment, more rigid cell walls or smaller cells, which will help to maintain cell turgor 

(Obidiegwu et al. 2015). Osmotic adjustment is achieved through accumulation of compatible 

solutes or osmoprotectants called osmolytes. So called compatible solutes can accumulate to high 

levels without disrupting protein function (Bray 1997). Osmolytes accumulated in response to 

water stress include mannitol, proline, glycine, betaine, trehalose, fructan, inositol, and inorganic 

ions (Bray 1997; Fang and Xiong 2015). Osmotic adjustment decreases the osmotic potential and 

thus helps to maintain turgor (Tessema 2017; Turner 2018).  

Other water stress induced compounds like dehydrins, which belong to highly hydrophilic proteins 

known as late embryogenesis abundant (LEA) proteins (Borovskii et al. 2002), also have an 

important role in preserving the structural integrity of cells subjected to dehydration (Allagulova 

et al. 2003). Besides osmotic adjustment, reactive oxygen species (ROS) scavenging is reported to 

have an important role in protecting a plant from osmotic stress (Miller et al. 2010). ROS are toxic 

molecules that may cause oxidative damage to proteins, DNA, and lipids (Apel and Hirt 2004). 

When ROS are produced during water stress, accumulated ROS scavenging enzymes such as 

superoxide dismutase, ascorbate peroxidase, catalase and peroxiredoxin prevent damage (Miller 

et al. 2010).  
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1.1.4 Tolerance index  

Yield under drought stress is a complex integration of constitutive plant traits and stress-responsive 

processes which depend on stress intensity, duration and timing with respect to growth stage 

(Tardieu 1996; Blum 2011). A drought tolerant plant maintains production during mild stress 

(Tardieu 1996; Tardieu et al. 2018). Drought tolerance is most widely expressed as the rate of 

yield or biomass reduction by stress in comparison to non-stress conditions. Several yield-based 

drought tolerance indices, based on mathematical relationships between yield under irrigated and 

drought conditions, have also been proposed to characterize the behavior of genotypes in stress 

and non-stress environments, and to screen drought tolerant genotypes (Mitra 2001). Some of the 

tolerance indices used in different studies are Stress Susceptibility Index (SSI) (Fischer and Maurer 

1978), the Geometric Mean Productivity (GMP) and the Stress Tolerance Index (STI) (Fernandez 

1992), Tolerance index (TOL) and Mean Productivity (MP) (Rosielle and Hamblin 1981), Yield 

Index (YI) (Gavuzzi et al. 1997), Yield Stability Index (YSI) (Bouslama and Schapaugh 1984), 

Modified Stress Tolerance Index (MSTI) (Farshadfar and Sutka 2002) and Deviation of the 

Relative starch Yield from the experimental Median (DRYM) (Sprenger et al. 2015). However, 

the different indices have different levels of precision. According to (Fernandez 1992; Zangi 

2005), a good selection index allows distinguishing genotypes that express uniform superiority in 

both stress and non-stress environments. 

According to (Sprenger et al. 2015), DRYM is more powerful to distinguish between tolerant and 

sensitive genotypes independent of the yield potential than the more frequently used SSI , GMP 

and STI indices. In addition to its differentiation power, the interpretation of DRYM value is 

straightforward. A DRYM value of zero is median tolerance, with tolerant genotypes showing a 

positive value and sensitive genotypes a negative value. Therefore, the subsequent evaluation of 

our drought stress experiments was based on the DRYM index. 

1.1.5 Breeding strategies for drought tolerant crops 

Conventional breeding for drought tolerance 

The challenges resulting from global climate change require the breeding of tolerant cultivars 

adapted to the new conditions (Jarvis et al. 2015). However, identification of traits related to 

tolerance/resistance to abiotic stresses is difficult because they are governed by many genes 
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(Tardieu 1996), affected by genotype × environment interactions, stress timing and stress intensity 

(Tardieu 2012). 

There are two main approaches to improve economical yield: the empirical approach and the 

analytical approach (Rauf et al. 2016). In the empirical approach, the plant breeder directly selects 

the breeding material for yield or for yield components. For example, grain yield of wheat was 

doubled since 1940 throughout Australia through conventional breeding and management 

(Richards et al. 2014). In the analytical approach, yield is improved indirectly through selection 

for morphological, physiological or biochemical traits associated with yield. The trait(s) should 

be, as far as possible, easily measurable using non-destructive techniques, and highly heritable 

(Rauf et al. 2016). According to (Lanceras et al. 2004; Rauf et al. 2016), genetic variances of yield 

contributing traits generally decrease with the intensity of water stress. When the heritability for 

yield is low and the heritability for secondary traits is high, and the genetic correlation between 

secondary trait and yield is high, breeders select tolerant genotypes based on secondary traits 

(Lafitte et al. 2003). As an example: in maize, anthesis-silking interval is more useful for selection 

of drought tolerance than yield (Rauf et al. 2016).  

Marker assisted selection for drought tolerance 

Most traits contributing to drought tolerance are quantitative and strongly influenced by the 

environment. The progress of molecular genetics has made it possible to identify regions that are 

associated with a quantitative trait. The term quantitative trait locus (QTL) applies to genome 

regions that control these traits. After the development of mapping populations and identification 

of polymorphic markers, the linkage between the molecular markers and QTLs is established (Rauf 

et al. 2016). Molecular markers have been classified in protein-based markers (such as isozymes) 

and DNA-based markers, like restriction fragment length polymorphisms (RFLP), amplified 

fragment length polymorphisms (AFLP), simple sequence repeats (SSR) and single nucleotide 

polymorphisms (SNP).  

These molecular markers can then be used for marker-assisted selection (MAS). In various crop 

species such as wheat, rice, cotton, oil seeds and forage species, MAS has been shown to be a 

useful additional breeding tool to enhance yield in dry environments (Venuprasad et al. 2009).  

Microarray techniques have been widely exploited to understand the differential pattern of gene 

expression. Drought stress increases the expression of different genes in various species like 

Arabidopsis thaliana (Seki et al. 2002; Huang et al. 2008), potato (Sprenger et al. 2018), wheat 
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(Aprile et al. 2009) and maize (Gullì et al. 2015). In drought-responsive genes like GmSYP2, 

expression increases under drought stress (Chen et al. 2019). Drought-inducible genes like RAB18 

are exclusively express under drought stress (Pieczynski et al. 2018). 

Transgenic breeding for drought tolerance  

Transgenic breeding is genetic improvement of plants through biotechnology (Low et al. 2018). 

Transgenic plants are plants that have had their genomes modified through genetic engineering 

techniques either by the addition of a foreign gene or removal of a certain detrimental gene (Jhansi 

Rani and Usha 2013) or by gene editing (Mohanta et al. 2017). Genetically modified organisms 

(GMO) have been successfully created in various crop species. Transgenic approaches have 

mainly concentrated on plant survival rather than plant productivity under drought stress (Ahanger 

et al. 2017; Low et al. 2018).  

Drought tolerance of rice and wheat can be improved by overexpressing the transcription factor 

OsNAC14 (Shim et al. 2018) and a synthetic bacterial cold shock protein gene (SeCspA) (Yu et al. 

2017). Transformation of tomato with gibberellic acid methyl transferase (ATGAMT1) (Nir et al. 

2014) and alfalfa with GsWRKY20 (Tang et al. 2014) improves drought tolerance in the respective 

crops. Until recently, GMO with increased drought tolerance rarely produced higher yields 

compared to their parent genotypes in agronomic settings. However, the transgenic maize variety 

MON 87460, which overexpresses the cold shock protein B, has been released for cultivation in 

water-deficit prone areas of the US (Chang et al. 2014). The other successful story is delivering 

drought-resistant GMO canola plants to farmers in Canada and Australia (Blum 2014).  

1.1.6 Phenotyping  

Phenotyping is the quantitative description of the plant’s anatomical, developmental, physiological 

and biochemical properties (Walter et al. 2015). Linking genomics with high-throughput 

phenotyping may improve the efficiency of selection during molecular breeding (Montes et al. 

2007; Vadez et al. 2015; Marko et al. 2018; Peirone et al. 2018). Thus, phenotyping is an important 

aspect of crop breeding. Phenomics is the study of phenotypes by high-throughput technologies 

including biochemical and imaging methods (Lanktree et al. 2010). High-throughput phenotyping 

techniques allow to quantify complex traits - such as growth, development, tolerance, resistance 

to stresses, yield - in one run, repeatedly through the plant’s life-span, efficiently and with high 

accuracy in large populations in breeding and genetics studies (Chen et al. 2014; Humplik et al. 
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2015; Marko et al. 2018). However, phenotyping is still lagging behind genotyping (Furbank and 

Tester 2011; White et al. 2012; Fahlgren et al. 2015a; Singh et al. 2018).  

Different high-throughput phenotyping platforms (HTPP) have been set up in several countries 

(Pratap et al. 2015). These HTPPs are mostly run by large seed companies and advanced crop 

research institutes around the world. Some of the popular HTPPs around the world include the 

Biotron Canada, the Julich Plant Phenotyping Centre, LEPSE-Montpellier Plant Phenotyping 

Platform, PhenoFab Wageningen, Phenopsis Arabidopsis Platform, INRA, and the Australian 

Plant Phenomics Facility (Pratap et al. 2015). Most of the HTPPs were built in Europe 

(https://www.plant-phenotyping.org/IPPN-Participating-Organisations). The major plant 

phenotyping centers are represented by the international plant phenotyping network (IPPN). IPPN 

has different regional partners (https://www.plant-phenotyping.org/IPPN-home): European 

Phenotyping Plant Network (EPPN), The European Infrastructure for Multi-Scale Plant 

Phenomics and Simulation (EMPHASIS), The North American Plant Phenotyping Net-

work (NAPPN) and Nordic Plant Phenotyping Network (NPPN).  

Depending on the research objective, HTPP facilities use various camera systems to generate plant 

images or information by capturing signal from the visible (VIS) and infrared (IR) spectrum of 

light (Fahlgren et al. 2015b). VIS cameras are used to measure the morphological, geometric, and 

color properties of plants. Infrared, near-infrared (NIR), thermal infrared (TIR) and hyperspectral 

cameras are used to detect leaf water content, leaf temperature or indices related to stress response 

in plants.  

Laser scanner  

Digital growth analysis is one of the least complicated and most useful methods for quantitatively 

determining stress tolerance (Furbank and Tester 2011). Digital growth analysis can be done based 

on VIS imaging or based on surface scans by lasers. The laser scanner system PlantEye (PlantEye, 

Phenospex B.V., Herleen, The Netherlands) uses an NIR laser beam to acquire 3D point clouds of 

plant surfaces. The system projects a narrow, oblong NIR laser beam on the plant and captures the 

light scattered by the plant surface with an integrated camera (Kjaer and Ottosen 2015). A carrier 

moves the laser scanner with constant speed over the scanning field. The scanning field is divided 

into a number of subfields. From each subfield image, depth profiles of the x-z plane are compute. 

These depth profiles are arranged as histograms or displayed as a raw 3D point cloud of the 

subfield canopy. Automatic segmentation of the 3D point cloud estimates different morphological 

https://eppn2020.plant-phenotyping.eu/
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parameters like leaf area, plant height and digital biomass. Correlation between digital estimation 

of leaf area and that obtained by destructive harvesting on cowpea, peanut and pear millet achieves 

r2 values of 0.80, 0.82, and 0.96, respectively (Vadez et al. 2015). This method efficiently estimates 

plant parameters in a diurnal cycle (Fahlgren et al. 2015b) without interacting with the 

photosystem or the plant’s clock (Kjaer and Ottosen 2015). Laser imaging has been used in maize 

(Reis 2013), sugar beet and wheat ears (Paulus et al. 2014a), triticale (Busemeyer et al. 2013), 

barley (Paulus et al. 2014b), rice and soybean (Fang et al. 2009), and canola (Kjaer and Ottosen 

2015) to determine canopy parameters and physiological parameters.  

Infrared thermometry 

Infrared thermometry measures an object’s surface temperature without touching it by sensing the 

long-wave infrared radiation emitted from the object. The measurement is based on the 

relationship between emitted radiation and surface temperature (Blum 2011). The total energy 

radiated per unit time per unit surface area of a blackbody is proportional to the fourth power of 

the temperature of the body (Stephen Boltzmann law). Canopy temperature measurements by IR 

thermometry was used for the first time by Blum (Blum et al. 1982) as a screening technique for 

dehydration avoidance in a wheat breeding program.  

Canopy temperature (CT) is a parameter that can be monitored nondestructively on a whole-plant 

level to monitor the plant’s response to environmental stresses including drought (Blum et al. 

1982). The relationships between CT, air temperature and transpiration is not simple, involving 

atmospheric conditions (VPD, air temperature and wind velocity), soil parameters (mainly 

available soil moisture) and plant features (canopy size, canopy architecture, and leaf adjustments 

to water deficit) (Mahan et al. 1995; Blum 2009). Moreover, CT is best assessed at full canopy 

stage with high VPD conditions associated with low relative humidity and warm air temperature 

(Blum 2009; Tuberosa 2012). Relatively low CT in drought-stressed plants indicates a better 

capacity for taking up soil moisture (Lopes and Reynolds 2010) and thus maintain a better plant 

water status by various plant adaptive traits (Burke et al. 1988; Balota et al. 2008). CT 

measurements have been widely used to study the drought response of various crops (Stark et al. 

1991; Mutava et al. 2011; Gerhards et al. 2016; Hirut et al. 2017). Canopy temperature depression 

(CTD) is expressed as the difference between air and foliage temperature (Jackson et al. 1981; 

Balota et al. 2007; Mahmud et al. 2016). CTD correlates more closely with stomatal aperture than 

CT. The underlying concept is that a decrease in plant water status leads to a reduction in leaf 
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transpiration as a result of active regulation of stomatal aperture, consequently increasing the leaf 

temperature due to a reduced evaporative cooling (Inoue et al. 1990). In contrast, a well-watered 

plant will have a lower temperature relative to the ambient air temperature. Under high VPD and 

low RH condition, the difference between canopy temperature and air temperature may reach 12oC 

(Duffková 2006). CTD is a highly integrative trait resulting from the effects of several biochemical 

and morphophysiological features acting at the level of root, stomata, leaf, and canopy (Tuberosa 

2012). Under drought, canopy temperature depression is the single most drought-adaptive trait 

contributing to a higher performance. CTD is a highly heritable secondary trait in drought tolerance 

breeding (Olivares-Villegas et al. 2007). High stomatal conductance cools leave and thus leads to 

CT less than air temperature. This results in a negative correlation of CTD with stomatal 

conductance, photosynthesis, the maximal quantum yield of primary photochemistry and 

chlorophyll content (Roohi et al. 2015). CTD is widely used to study the drought response of 

various crops (Singh et al. 2014; Mahmud et al. 2016; Kumar et al. 2017; Thapa et al. 2018). 

However, CTD is influenced by several factors like the capacity of the crop plant to extract water, 

transpiration differences, phenological stages of crop growth (Kumar et al. 2017), individual 

environments and the species (Thapa et al. 2018). 

1.2 Potato as a system for drought tolerance breeding 

1.2.1 Potato origin and distribution  

Potato (Solanum tuberosum L.) belongs to the Solanaceae family and to the large and diversified 

genus Solanum. The genus Solanum contains approximately 2000 species, including over 100 

tuber-bearing species, which form a polyploidy series ranging from diploids to hexaploids 

(Magoon et al. 1962). Cultivated potato varieties are diploid or tetraploid (4n=48) and wild species 

are diploid to hexaploid (Hawkes 1994). 

Potato is native to the Andes Mountains in Chile, Peru and Bolivia in South America, where it has 

been cultivated for about 2400 years (Acquaah 2012). It was later introduced into Europe in 1570 

and then taken from Europe and cultivated in all corners of the globe (Hawkes and Francisco-

Ortega 1993). Potato was introduced to Africa in the mid-19th century (Haverkort 1990) and to 

Ethiopia in 1858 by the German botanist Schimper (Pankhurst 1964). Over the following decades, 

farmers in Ethiopia's highlands began cultivating the new tuber - known as ‘Denech’ in Amharic. 

At present, potato is the most widely grown root and tuber crop in Ethiopia (CSA, 2018). 
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1.2.2 Importance of potato  

Potato is the fourth most important food crop in the world after maize, wheat, and rice in terms of 

volume of production (FAOSTAT, 2017). In 2017, worldwide potato production was more than 

388 million tones. Out of these, Asia alone produced 50% (FAOSTAT, 2017). Potatoes produce 

more quantity food per unit of land and water than any other major crop (Villamayor 1984). 

Around 1.3 billion people worldwide eat potato on a regular basis (Devaux et al. 2020). Potato 

also constitutes part of the diet of half a billion consumers in the developing countries (Mondal 

2003). In addition to its importance as human food, potato is an important commodity in the starch 

industry (Sawicka and Gupta 2018). The tubers contain starch, minerals, protein, antioxidants and 

vitamins (Hussain 2016). The high nutrient content, ability to adapt to marginal environments, 

relative ease of cultivation, and low cost and high productivity make potatoes one of the principal 

and most important sources of food and income for developing countries (Gildemacher et al. 

2009). Consequently, the share of developing countries to the world potato production has 

increased over the last decades and exceeded the production of the developed word in 2005 (FAO, 

2008). 

1.2.3 Potato production in subtropical Africa: case study in Ethiopia  

In 2017, Ethiopia was the 9th top potato producing country in Africa (POTATOPRO 2019). 

Ethiopia has possibly the highest potential for potato production of any country in Africa as 70% 

of the country's arable land is potentially suitable for potato cultivation (FAO, 2008). However, 

presently only 2% of the potential area in Ethiopia is used for potato production (Tufa et al. 2015). 

Potato is a high-potential food security crop in Ethiopia, because it is grown by many small-holders 

in the country. For example, in the 2017/2018 season, it was grown by more than one million 

households on 7000 ha (CSA, 2018). Potato is an important crop to fill the gap in food supply 

during the ‘hungry’ months July and August before grain crops are harvested (Helen 2016). 

Besides its use as a food security crop, potato is a source of cash income in the densely populated 

highlands of Ethiopia (Gildemacher et al. 2009). In Ethiopia, potato is grown in four major areas: 

the Central, the Eastern, the North-Western and the Southern regions (Helen 2016) (see Figure 2). 

The climatic zones of potato growing areas are Woina Dega and Dega. The Woina Dega climate 

zone occurs in regions between 1500 and 2300 m a.s.l. and has an average annual temperature of 

17.5 – 20.5°C with an average annual rainfall of 800 – 1200 mm. The Dega climate occurs in 

regions above 2300 m a.s.l. and has an average annual temperature of 11.5 – 17.5°C with an 
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average annual rainfall of 900 – 1200 mm (Varshney et al. 2005). More than 62 % of potato is 

grown during the short rainy (Belg) season in order to fill the food gap in July and August. 

Furthermore, avoiding the main rain season Kiremit (Figure 3) reduces the late blight risk (Kolech 

et al. 2015; Gebru et al. 2017). 

Potato productivity in Ethiopia is much lower (13.9 tones/ha) than the current world average (20 

tones/ha) (FAOSTAT, 2017). The low productivity results from the lack of good quality seed 

tubers and improved cultivars (Tufa et al. 2015), insufficient agricultural inputs (fertilizer, 

pesticides), poor agronomic practices (Dersseh et al. 2016), abiotic stress (Kolech et al. 2015; 

Hirut et al. 2017) and biotic stress (Guchi 2015; Abewoy 2018). Drought is one of the main abiotic 

stresses in the subtropics especially in Ethiopia because of erratic rainfall and the lack of irrigation 

facilities. Breeding drought-resilient germplasm for Ethiopia is crucial especially in drought-

sensitive crops like potato.  

 

Figure 2. Potato production areas and average yields in Ethiopia (Hirpa et al. 2010). 
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Figure 3. Ethiopian topography and potato growing areas (inside broken line) (a) and seasonal 

rainfall distribution of Kiremit (Jun-Sep) (b), Belg (Feb-May) (c) and Bega (Oct-Jan) (d). Note: 

seasonal rainfall is calculated using long-term CHIRPS rainfall data from 1983 to 2015. Modified 

from (Bayissa et al. 2019) by demarcating the potato growing areas in digital elevation model.  

1.2.4 Drought effects on potato  

Potato is best suited to cool and humid climate conditions. Potato grows best at 14 - 22oC  (Struik 

2007b) . However, optimum temperature range varies depending on the developmental stage of 

the potato plant (Struik 2007b) and the photoperiod (Wheeler 2006). Potato is drought-sensitive 

(van Loon 1981; Schafleitner 2009; Obidiegwu et al. 2015; Romero et al. 2017) because of its 

shallow and low-density root system (Gregory and Simmonds 1992). About 85 % of the roots are 

concentrated in the upper 0.3 m of the soil and the maximum root pentation depth is about 1 m 

(Gregory and Simmonds 1992). Thus, potato plants extract less of the available water from the soil 

than other crops (Weisz et al. 1994). 

The magnitude of drought effects on potato depends on the phenological timing, duration and 

severity of stress (van Loon 1981; Obidiegwu et al. 2015). Drought reduces plant growth 

(Deblonde and Ledent 2001), shortens the phenological development (Obidiegwu et al. 2015) and 

decreases the number and size of tubers (Schafleitner et al. 2007b). Water-limited conditions 

reduce leaf growth (Walworth and Carling 2002; Lahlou et al. 2003), leaf size (Jefferies and 

Mackerron 1987), leaf area index (LAI) (Lahlou et al. 2003; Schafleitner et al. 2007b) and ground 
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coverage (Ojala et al. 1990). Water deficiency increases the rate of leaf senescence (Fleisher et al. 

2008). Drought events reduce nitrate reductase activity, which consequently affects nitrogen use 

efficiency (Schafleitner et al. 2007a). Water stress also makes the plants more susceptible to pest and 

diseases, such as early blight caused by Alternaria solani, common scab caused by Streptomyces 

scabies and powdery mildew (Nolte et al. 2003). 

Under drought, a reduction in radiation interception as a result of reduced canopy expansion 

(Jefferies and Mackerron 1987) reduces photosynthetic rate and eventually tuber yield. A 

prolonged soil moisture deficit results in small tubers, while intermittent water stress produces tubers 

with secondary growth (Nolte et al. 2003). Water shortage also increases the content of reducing sugar 

in the stem, and promotes quality problems like tuber cracking and malformation, surface abrasions, 

hollow heart, brown center, internal brown spot, vascular discoloration or bruising, degradation of 

starch in the tuber stem end and accumulation of total glycoalkaloids (Papathanasiou et al. 1999). 

Under drought stress, potato accumulates the compatible solutes proline, inositol, raffinose, 

galactinol, and trehalose (Evers et al. 2010; Obidiegwu et al. 2015; Sprenger et al. 2016; Rudack 

et al. 2017). 

The yield loss is highest when water deficiency occurs during tuber formation (Deblonde and 

Ledent 2001; Aliche et al. 2018) or tuber bulking (van Loon 1981) as many physiological traits 

are most sensitive during these stages (Rudack et al. 2017). Water shortage at plant establishment 

also affects final yield and recovery potential of the plant (Deblonde and Ledent 2001). Drought-

resistant genotypes have higher root mass, high leaf/stem ratio (Deguchi et al. 2010), high harvest 

index (Deblonde and Ledent 2000; Deguchi et al. 2010), high water use efficiency (WUE), 

increased root elongation (Anithakumari et al. 2012) and rapid recovery on re-watering (Bansal 

and Nagarajan 1987; Anithakumari et al. 2012). Since potato is a drought-sensitive crop, 

adaptation by breeding is important to sustain future potato production.  

1.2.5 Potato breeding for drought tolerance 

Drought tolerant varieties can improve yield stability in drought-prone areas (Hijmans 2003; 

Chapman et al. 2012; Jarvis et al. 2015). Furthermore, the use of drought tolerant varieties may 

reduce the competition for limited freshwater resources (Anithakumari 2011). However, breeding 

for drought tolerance can be complicated by simultaneous occurrence of other abiotic and biotic 

stresses (Atkinson and Urwin 2012), low heritability of drought tolerance, genotype × environment 

interaction, and the lack of suitable selection tools for the traits of interest (Langridge and Reynolds 
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2015; Çalişkan 2016). The genotype × environment interaction (Obidiegwu et al. 2015) makes 

drought tolerance breeding complex, as genotypes have to be bred for specific target environments.  

Potato could be improved through conventional or genetic approaches (Bradshaw 2007; 

Anithakumari 2011). Conventional breeding in potato involves evaluation and selection based on 

several traits (yield and yield components and other secondary traits) within the clonally 

propagated progeny of a cross between two tetraploid clones. These clones can be existing 

cultivars or clones with introgressions from wild species. Many wild species, which can be crossed 

directly with cultivated potato, can serve as a great source of genetic variation for drought tolerance 

(Plaisted et al. 1989). The progress of gene transfer is impeded by linkage between desirable and 

undesirable genes from the wild species (Bethke et al. 2017). In addition, genetic improvement of 

cultivated potato is hampered by its high level of heterozygosity, tetrasomic inheritance and 

incompatibility barriers (Muthoni et al. 2015). Conventional breeding is thus time consuming and 

the outcome is hard to predict (Pacilly et al. 2016).  

The availability of the potato genome sequence provides a great resource to develop molecular 

markers and identify QTLs linked to these traits (Xu et al. 2011). Modern drought tolerance 

breeding in potato exploits natural genetic variation to map tolerance QTL and establish marker-

assisted selection (Bradshaw 2007; Anithakumari 2011) or even introduce new genes from species 

that cannot be crossed with potato (Bradshaw 2007; Si et al. 2018). 

So far, QTLs linked to drought tolerance have been identified in diploid potato mapping 

populations (Anithakumari et al. 2011; Anithakumari et al. 2012; Khan et al. 2015; Tessema 

2017). However, selection markers have not yet been validated (Çalişkan 2016). In European 

potato cultivars, (Sprenger et al. 2018) predicted potato yield stability by using a combination of 

transcript and metabolite markers.  

Pest resistance and quality traits have been improved through novel gene transfer from another 

organism (Bradshaw 2007; Si et al. 2018). However, similar approaches to increase drought 

tolerance seem to be more challenging. There are reports indicating that transformation of the 

transcription factor CaPF1 gene from Capsicum annuum (Youm et al. 2008), the ScCBF1 gene 

from Solanum commersonii (Pino et al. 2013), the ibMyb1 gene from Ipomoea batatas (Cheng et 

al. 2013) and the StDREB1a gene from potato (Bouaziz et al. 2013) into potato improve drought 

tolerance under greenhouse conditions. 
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Objectives of this thesis 

In order to improve potato yield, we need to identify best production practices and develop new 

potato cultivars that best fit in the predicted climate change. Yet the lack of data on the precise 

mechanisms of plant resistance to abiotic stress and the subsequent ability to predict future 

outcomes constitute a major knowledge gap. Therefore, we aim to find a breeding approach that 

works independently of extensive genomic information of the crop by identifying phenotypic 

markers. 

The general aim of this thesis is to identify morphological and physiological markers for drought 

tolerance in potato that could be easily measured under field conditions and thus speed up variety 

development under stress conditions.  

Specific objectives  

 

• To determine drought tolerance in potato germplasm as the dependent parameter of the 

prediction model. 

• To identify suitable morphological and physiological parameters for drought tolerance 

prediction by automatic phenotyping with laser scanner and IR thermometry  

• To determine the appropriate conditions for the measurement of the predictive parameters 

with respect to the diurnal cycle, the developmental stage and the environmental 

conditions. 

To achieve this aim, the following questions were addressed: 

• Which morphological and physiological traits differ between sensitive and tolerant 

genotypes during stress? 

• How can these morphological and physiological markers be easily measured in early 

developmental stages and under field conditions?  

• Are those morphological and physiological markers stable over different environments and 

developmental stages?  

• Are those morphological and physiological markers specific to a population or do they 

work in different populations? 
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2. Materials and methods 

2.1 Plant materials and experimental conditions 

 

Plant materials 

Drought tolerance (population A and B) and recovery potential (population B) were studied in two 

populations of potato (Solanum tuberosum ssp. tuberosum L.) genotypes (supplementary Table 

S1). Populations included progenies from two crosses between tolerant and sensitive cultivars and 

commercial varieties. Commercial varieties and the seeds from crosses between the cultivars 

Euroresa x Albatros and Albatros x Ramses were obtained from breeding companies. In the project 

VALDIS, 200 seedlings of both crosses were evaluated for drought tolerance, genotyped by Prof. 

Horn ((University of Rostock), manuscript in preparation) and maintained in tissue culture 

facilities of MPI-MP. The parent Albatros (At) identified as tolerant lines and Euroresa (Es) and 

Ramses (Rs) as sensitive parent lines. From this population, 60 progeny lines with different 

tolerance levels (supplementary Table S1) were selected based on their relative tuber starch yield 

(24 tolerant lines (PPt)) in three stress experiments or on the tolerance predicted from metabolite 

and transcript measurements (23 tolerant lines (MPt) and 22 sensitive lines (MPs)) (Haas et al. 

2020). In PPt sub-population, the share of AxR and ExA progenies were about 58 % and 42 %. In 

MPt sub-population, 83 % of lines were from AxR progeny whereas in MPs sub-population, 95% 

of lines were from ExA progeny. There were three shared lines between PPt and MPs sub-

populations and six shared lines between MPt and PPt sub-populations (Haas et al. 2020). The 

population A contained 64 different genotypes, namely the three parent cultivars, 60 progeny lines, 

and the reference genotype Desiree.  

The population B included 21 different genotypes, namely ten progeny lines, three parent cultivars 

and reference genotype Desiree from population A plus seven commercial cultivars. Fourteen 

genotypes were represented in both populations. This allowed to link the two populations and 

generated more data in different environmental conditions (season). Plus, to this, more predictive 

parameters were generated by advanced software version used in Pop B under different treatment 

conditions. 
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Pot/screenhouse experiments 

Pot experiments were performed on the populations A and B in the polytunnel screenhouse (FGH) 

at the MPI-MP in Potsdam-Golm, Germany in 2015 to 2018 (Table 1). The experimental design 

was a split-plot randomized complete block design. Water supply levels were the main plot 

treatments and genotypes were the subplot factors.  

In population A, plants were established from tissue culture plantlets in 2015 and 2016. After two 

weeks of acclimatization, plantlets were transferred to big-bags (30 l) filled with a fertilized potting 

substrate (2/3 white peat, 1/3 Quarz sand, 1kg/m³ Novatec Classic, pH Wert 5,5-6,6) (Fritz Kausek 

GmbH & Co KG, Germany).    

Twelve plants per genotype were randomized within four blocks (three plants per block). Two 

blocks received optimal water supply, two blocks drought stress regime. After 12 (2015) or 27 

(2016) days of optimal water supply, irrigation was reduced to 50 % of the optimal water supply 

in the drought stress blocks (see Table 1).  

Plants were irrigated through manually controlled drip irrigation system. The optimally irrigated 

(cc) block received water as required by the plant and determined from previous trials for normal 

growth at the site. Soil water content, environmental and seasonal conditions were considered in 

deciding on timing and amount of irrigation. Stress treatments (ss) received 50 % of the control 

irrigation. Altogether, plants from the stress block got 39 l per plant (2015) or 40 l (2016) water in 

the screenhouse experiment, whereas the control plants got 81 l (2015) or 74 l (2016) (Figure 4).  
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Figure 4. Total volume of water (irrigation and precipitation) received by the plant in the 

screenhouse and field experiment, 2015-2018. In the 2017 field experiment, cc and cs treatment 

received 67 l of rainfall (85% of the total volume of water) (see supplementary Figure S1). 

Population B was tested for drought tolerance and recovery in two independent experiments in 

2017 and 2018 in the screenhouse. Plants were established from seed tubers in the same potting 

substrate and pot size as described before. Plants were subjected to four treatments: cc, cs, ss, and 

sc (see Table 1). In the treatment cc, plants received optimal water supply for the entire cultivation 

period, in the treatment ss, plants were water-stressed during the entire treatment period. However, 

at the time of switching the treatments (cs and sc blocks), the ss block was irrigated to optimal soil 

water content for three to four days. In the cs treatment, plant received optimal water supply until 

flower initiation, after which they were switched to stress conditions. Treatment sc was switched 

from stress to control conditions at flower initiation.  After 25 (2017) and 22 (2018) days of optimal 

water supply, irrigation was reduced in the ss and sc blocks. The treatment switch from optimum 

to stress in cs block and from stress to optimum in sc block was done 45 (2017) or 38 (2018) days 

from planting (DFP). The total amount of water received by the plants in the different treatments 

is depicted in Figure 4.  

In both populations, soil moisture and temperature in pots were monitored by plantCare soil 

moisture sensors (PlantCare Ltd. Switzerland).  

The soil moisture sensor was used to measure temperature and moisture content of soil in pots (pot 

experiment) and at a depth of 15 to 20 cm in the ridges of field experiments. The daily soil moisture 

content is presented in Figure 5, the soil temperature in supplementary Figure S2. As expected, the 

soil moisture in stress blocks was lower than in the optimal water blocks. As a result, the soil 

temperature of the stress blocks was higher than under optimal water conditions.     
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Plants were scored for developmental stage and plant height from plant establishment until full 

canopy stage according to the stage table of the Biologische Bundesanstalt, Bundessortenamt und 

Chemische Industrie (BBCH) scale (Hack et al. 1997). Plant growth time was expressed as thermal 

time with a base and maximum limit temperature of 6oC and 30oC respectively (Data from M. 

Haas, Max Planck Institute of Molecular Plant Physiology). Shoots were removed when the target 

thermal time had been reached. Tubers were harvested and their numbers, sizes, and fresh weight 

were determined. Tuber starch content was measured gravimetrically. Starch yield was calculated 

as the product of tuber mass and tuber starch content. Finally, tubers were disinfected with 

MENNO solution (2%) and stored at 5oC in cold store to be used as planting material in the field 

experiments. 

 

Figure 5. Daily mean soil moisture in treatments performed in the screenhouse in 2015 to 2018 

depicted against plant age in days from planting. Vertical broken line indicates stress initiation 

date.   
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Field experiments 

Four field experiments were carried out at the site of Potsdam-Golm, Germany as split-plot 

experiments with five plants per plot in 2015 to 2018 (see Table 1). Treatments and genotypes 

were the same as with the screenhouse experiment. 

In the field experiments, plots were arranged in four blocks, half of which were planted under a 

rain-out shelter. Within blocks, plots were separated by one plant of a red-skinned cultivar. The 

two marginal ridges and the beds at both ends were planted with buffer plants. Based on soil test 

result, 201, 93, 109 and 109 g/m2 NovaTec classic (12-18-16+3) fertilizer were added to the soil 

in 2015, 2016, 2017, and 2018, respectively. Seed potatoes were planted manually into the ridges 

at a depth of ~10-15 cm, with a spacing of 30 cm within and 75 cm between rows. Plants were 

drip-irrigated from the top of the ridges with about 11 mm per m2 water during the night when 

plants in control plots showed signs of decreased turgor at noon. Drought stressed plants were 

irrigated when they showed signs of water stress a few hours after sunrise. The total amount of 

water applied per growth season (Figure 4) and daily soil moisture are presented in Figure 6. The 

daily rainfall per meter square (supplementary Figure S2) and soil temperatures are presented as 

supplementary Figures (supplementary Figure S3 and supplementary Figure S4). The figures, 

indicates that soil moisture of the stress blocks was lower than in the optimal water blocks and 

vice versa for soil temperature.  
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Figure 6. Daily mean soil moisture of treatments under field condition in 2015 to 2018. Vertical 

broken line indicates stress initiation date.   

For population A, three replicate plots (five plants per plot) per genotypes were planted in 2015 

and 2016. After 47 (2015) and 50 (2016) days of optimal water supply, irrigation was reduced in 

the drought stress blocks. In population B, two replicate plots with five plants per plot were grown 

for each genotype in 2017 and 2018. The reference and parent cultivars were replicated in four 

plots in 2018 experiment. After 33 (2017) and 22 (2018) days of optimal water supply, irrigation 

was reduced to 50 % of the control level in the ss and sc blocks. Water supply was switched from 

optimum to stress in the cs block and from stress to optimum in the sc block 53 DFP in 2017 and 

38 DFP in 2018.   

The ss treatment was planted under the rainout shelter in all field experiments. In population B, sc 

was planted under the shelter in 2017, cs in 2018 (see Figure 7).  
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Pests and diseases were controlled as required by pesticide application. Shoots were killed by 

herbicide (Reglone 200 g/l Diquat) application at the onset of haulm (above ground plant part) 

senescence. Phenotyping of harvested tubers was done as described for the pot experiments. 

 

Figure 7. Phenotyping platform and experiments. (a) Laser scanner and infrared thermosensor 

(IRT) (b) Weather station with sensor for temperature and relative humidity (c) Field experiment 

with rainout shelter and (d) without rainout shelter 22 Jun, 2017. 

Meteorological measurements      

In all experiments (FGH and field), meteorological data were recorded automatically by GP2 data 

logger (Figure 7). In the FGH experiment, temperature and relative humidity were recorded every 

15 min at 2 m above ground in the polytunnel compartment where the experiment was conducted. 

In field experiment, temperature and relative humidity, light radiation, wind speed and rainfall 

©Benjamin 
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were recorded every min with sensors situated 2 m above ground level and about 300 m from the 

test site where the experiments were conducted. The daily midday (10:00 -14:00) VPD (data from 

M. Haas) are plotted against the plant age in Figure 8, the mean midday VPD in Figure 9. As 

expected, the VPD under FGH was higher than the field conditions.    

 

Figure 8. Daily midday (10:00 – 14:00) VPD in FGH and field experiments in 2015-2018.  
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Figure 9. Average midday VPD during the cultivation time in FGH (left) and field (right) 

experiments. Bars represent mean ± SD of daily values of phenotyping period.

2.2 Automated Phenotyping  

2.2.1 Laser scanner  

In the FGH experiments, plant growth of both populations was monitored by laser scanner 

(PlantEye system, Phenospex, Heerlen, Netherlands) mounted on a Fieldscan (Phenospex) carrier 

system that moves the scanner automatically over the plants (Figure 7 A), generating 50 height 

profiles per second. In this study, the Fieldscan carrier was set to a scanning speed of 35 mm/s and 

a scanning interval of 4 h between repeated measurements of the same plant. The control and the 

stress blocks were scanned by two independent PlantEye scanners, which were positioned on right 

and left side of the Fieldscan carrier. The data from the laser scanner are automatically merged 

into a 3D point cloud (Figure 10 C) with a resolution of around 0.8 × 0.8 × 0.2 mm into the xyz- 

direction, respectively (Kjaer and Ottosen 2015). The PlantEye software Hortcontrol computes a 

diverse set of plant parameters on the flight by meshing neighbouring points with a nearest 

neighbour search (Fanourakis et al. 2014). From this triangle mesh, a subsequent surface 

triangulation algorithm computes different morphological parameters (Figure 10) within a second 
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(Kjaer and Ottosen 2015; Vadez et al. 2015). Hortcontrol does not dissect the continuous mesh 

into individual plants automatically. The separation is performed based on the location information 

uploaded to the software, which identified plant position relative to a reference barcode.  

In this study, plant parameters in population A and population B were generated by using two 

different software versions. The plant parameters (see below), plant height, total leaf area, 

projected leaf area and leaf angle were generated by both versions. The more advanced software 

version generated the additional parameters digital biomass, leaf inclination, light penetration 

depth and leaf area index for the experiments performed on population B.   

Plant parameters estimated from the laser scanner data of this study are listed below (Phenospex ; 

Vadez et al. 2015):  

• Plant height (PH) (mm) is the height of the plant in the Z-axis above the pot surface. 

• Total leaf area (A3D) (mm2) is the total leaf area measured by scanner. Starting from the 

3D point could, all points that belong to the same sector are triangulated. The total 3D 

leaf area of the plant is then calculated by taking the sum of the elementary triangle’s 

area. 

• Projected leaf area (A2D) (mm2) measures the area of the projection of the plant onto 

the X-Y-plane. 

• Leaf inclination (LI) (mm2/mm2) is the ratio of leaf area 3D to leaf area 2D. It expresses 

how erect the leaves of a plant are on average. 

• Leaf area index (LAI) (mm2/mm2) is the ratio of leaf surface area to unit ground area. 

• Light penetration depth (LPD) (mm) denotes how deep light can penetrate into the 

canopy. 

• Digital biomass (DB) (mm3) is calculated as the product of height and 3D leaf area.  

• Leaf angle (LA) (o) is the mean angle of a leaf’s surface to the y-axis 

The following descriptive traits per plant were estimated from the above plant parameters: 

• Maximum (plant height, leaf area, leaf area index, digital biomass) values per plant  

• Average (leaf angle, leaf inclination, and canopy temperature depression) values per plant   

• Range of leaf movement was calculated from each canopy parameters per day per plant.    



                                                                                                                                       

28 
 

  

 

 

Figure 10. Laser scanner, 3D point cloud and sample plant parameters. (a) Plant height (PH) and 

light penetration depth (LPD). (b) 3D point cloud of plant id-858641 (position 8:10:1) at different 

time of 10 Jun, 2018. A = leaf area (3D) (103) mm2 and LA =leaf angle (o). (c) Leaf area (3D) 

(mm2) of genotype 858641 at plant position of 8:10:1 depicted against the measurement date 

(treatment ss, 2018). The separation of specific plant position is performed based on the location 

information uploaded to the software, which identified plant position relative to a reference 

barcode.   

2.2.2 Infrared thermosensor (IRT) 

Canopies emit long-wave infrared radiation as a function their temperature. The IRT senses this 

radiation and converts it to an electrical signal, which is displayed as temperature (Blum 2011). In 

this study, canopy temperature of population B plants was measured by 16 IRT (IR100, Campbell 

Scientific Ltd.), which were mounted on the Fieldscan carrier (Figure 7 A) and stored in CR1000 

@CIP 

C 
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data logger (CR1000, Campbell Scientific Ltd.). The distance between sensors and plant canopy 

were approximately 80 cm and scanning diameter was around 30 cm. The distance between the 

sensors and the plants was maintained by manually adjusting the height of the thermosensors 

relative to the plant height. The IRT measurements were programed with a three second integration 

interval. On average, the sensor passed the canopy of a single plant within nine seconds, yielding 

three data points per plant. For each plant, canopy temperature was monitored two times per hour 

between 27 to 66 DFP in 2017 and 24 to 74 DFP in 2018. From the continuous IRT surface 

temperature data set, the canopy temperature for each plant was selected by matching the time 

stamp of the IRT data based on the rapid temperature changes caused by the reflecting barcodes 

or the bare soil at the parking position to the timestamps of laser scanner dataset taking the time 

lag (47 sec) caused by the mounting distance (150 cm) between laser scanner and IRT into account. 

2.3 Data evaluation and statistical analysis  

Data evaluation was performed in SAS 9.4 (SAS, Cary, NC, USA). Starch yield was calculated as 

the product of tuber mass and tuber starch content. The average tuber weight (ATW) was 

determined by dividing total tuber weight by total tuber number.  

Drought tolerance of starch yield 

Drought tolerance level was calculated for each experiment as deviation of relative starch yield 

from either experimental (DRYM) (Sprenger et al; 2015) and parental median (DRYMp) (Eqn 1, 

(Hass et al; 2020)). DRYMp value was calculated relative to parent median by using equation 

below (Eqn 1), with parent median in place of experimental median.  

DRYMGx,Ei = RelSYGx,Ei − median(relSYEi)                                          (1) 

Where 

DRYMGx,Ei - tolerance of genotype x in experiment i, Gx - genotype x, Ei - experiment  

RelSYGx,Ei =
starchyieldGxs,Ei

starchyieldGxc,Ei
                                                          (2) 

Where  

RelSYGx,Ei - relative starch yield of genotype x in experiment i, Gxs - genotype x under drought 

conditions, Gxc - Genotype x under control conditions  
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The DRYMp was used to analysis a joint analysis across season or experimental conditions 

(FGH and Field) of respective population.  

Descriptive morphological and physiological parameters 

Plant traits used in this study were obtained from laser scanner and IRT. Data sets were checked 

for outliers by using proc sql (SAS) procedures. A normally distributed data set was obtained after 

the outliers were trimmed at plus or minus two standard deviations.  Proc mean procedure was 

used for the normally distributed data set to calculate different parameters like maximum (max), 

mean, range from different morphological (see laser scanner) and physiological (CTD) traits. 

Maximum values of plant height, leaf area, digital biomass, leaf area index and light penetration 

depth per plant were calculated from continuous values of the measuring periods of respective 

canopy traits. Among the canopy traits considered in this study, LA, LI and CTD values oscillated 

around mean values through the plant age. Therefore, mean values were calculated instead of 

maximum values. Daily range was calculated as the difference between the daily maximum and 

minimum of a particular parameter value. Range per season was calculated as the mean of the 

daily range.  

Canopy temperature and canopy temperature depression 

Canopy temperature depression (CTD) was calculated as the difference between canopy 

temperature and air temperature. The data from plant temperature logger and metrological logger 

were matched by considering the data logging frequency of the loggers. The metrological data 

were logged less frequently (four times per hour) than plant temperature so that data of the two 

loggers were matched based on logging interval of the metrological data.  

CT is best assessed at full canopy stage with high vapor pressure deficit (VPD) conditions 

associated with low relative humidity and warm air temperature (Blum 2009; Tuberosa 2012). 

Therefore, in this study the daily midday VPD was calculated as the median VPD from hourly 

temperature (T(t)) and relative humidity Rh(t) readings between 10 am and 2 pm (Eqn 3, (Sprenger 

et al. 2015)) (VPD data from M. Haas): 

VPD(t) = 0.61365e
17.502T(t)

240.97+T(t) ∙ (1 − Rh(t))                                   (3) 
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2.4 Statistical evaluation 

The effects of experiment, genotype, treatment and the treatment × genotype interaction, genotype 

× year, genotype × treatment × year were tested by analysis of variance (ANOVA) (Eqn 4 and Eqn 

5) with proc glm (see supplementary syntax). Means separation was done based on regwq grouping 

and lsd. Data normality was tested with proc sql and proc univariate (see supplementary syntax). 

In case of proc sql, plus or minus two standard deviations (s.d) was used as cut point for outlier. 

Based on the normally distributed data set, analysis of variance was run for yield parameters (TN, 

TY, SY, ATW), DRYM, canopy parameters (max or mean values) for particular experiment (Equ 

4) as well as combined experiments over years for the respective experimental conditions (Eqn 5 

(FGH or Field).  

Model equation for particular experiment  

𝑅𝐺𝑇 = μ + αG + βT + γGT + ε                                                        (4) 

Where RGT is the data value observed for the sample on levels Genotype (G) and treatment (T), μ  

is the common effect for the whole experiment, αG is the model parameter for factor α on level G,  

βT is the model parameter for factor β on level T, γGT is the interaction term, and ɛ is the error. 

Genotype and genotype by treatment interaction were random factors.   

Model equation for combined experiments over season   

R𝐺𝑇𝑌 = μ + αG + βT + γY + δ1GT + δ2GY + δ3GTY + ε                     (5) 

Where RGTY is the data value observed for the sample on levels genotype (G), treatment (T) and 

year (Y), μ is the common effect for the whole experiment, αG is the model parameter for factor 

α on level G, βT is the model parameter for factor β on level T, γY is the model parameter for 

factor γ on level Y, δ1GT, δ2GY, δ3GTY were interaction terms and ɛ is the error. Genotype, 

treatment and year were random factors. This general equation was used to analysis the data across 

experiments of the same population and experimental condition.  

 

Growth rate 

Growth rate of genotypes was determined by fitting linear (see Eqn 6) and second-degree 

polynomial (Eqn 7) mathematical models to the daily mean values of respective traits with proc 

reg (see supplementary syntax). Morphological parameters were treated as dependent and plant 

age DFP as independent parameters (see Eqn 6 and Eqn 7). The data used for the linear model was 

censored to the range of the approximately linear increase of the respective parameter, whereas for 
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the polynomial model the entire data sets were used in the model. The approximately linear 

increase of the respective parameter was identified from scatter plot graphs of morphological 

parameters against days from planting. Growth rate / rate of change of canopy parameters varied 

with time so that the linear model was fitted to the part of the data that showed linear incase up to 

some point in the plant growth stage (plant establishment until it reaches its biological maximum).  

y = μ + α(DFP)                                                                                            (6) 

y = μ + α(DFP) + β(DFP)2                                                                        (7) 

Where 𝜇 - constant, 𝛼 -linear coefficient, 𝛽 - quadratic coefficients, DFP- days from planting  

Correlation analysis  

The Pearson correlation coefficients were calculated between tolerance index either assessed 

within one experiment (specific tolerance index) or as mean from all screenhouse experiments or 

mean from all experiments (FGH and field) of each treatment with mean tuber parameters (starch 

yield and tuber fresh yield) or canopy parameters (maximum, mean, range of leaf movement, and 

growth rate / rate of change over time) of respective treatment. Parameters measured in optimal 

condition were correlated with DRYM values calculated in long-term stress conditions.   

Data visualization and grouping  

Different data visualizations and groupings were done by using proc factor (PCA), proc hpsplit 

(Decision tree) and proc cluster (homogeneity of merged clusters determined by Centroid 

distance) in SAS (see supplementary syntax). Centroid distance is the Euclidian distance between 

the centroid of the two clusters that are to be joined. 

Multiple linear regressions  

To identify parameters that could predict drought tolerance, multiple regression analysis and 

LASSO regression analysis were performed. Multiple regression analysis was used to determine 

linear combinations of morphological and physiological parameters that predict drought tolerance 

(see Eqn 8). The analysis was performed with proc glmselect (see supplementary syntax), 

selection=stepwise, 10-fold cross validation. Morphological and physiological parameters (see 

descriptive morphological and physiological parameters) were used as independent variable and 

DRYM of pot experiment as dependent variable. A joint evaluation across season or across trial 

conditions (FGH and Field) was calculated based on the mean DRYM of parental median.   
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𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + · · ·  + 𝛽𝑝𝑋𝑝 + 𝜀                                (8) 

Where  

Y - DRYM, X - morphological or physiological parameter, β - regression coefficients, 𝜀 - pooled 

error  

LASSO regression is a type of linear regression that uses regularization. Regularization is a way 

to avoid overfitting by penalizing high-valued regression coefficients. In simple terms, it reduces 

parameters and shrinks (simplifies) the model (James et al. 2017). In this study, LASSO regression 

was performed on standardized data with proc glmselect (SAS) (Eqn 9). All predictor variables 

were standardized to have a mean of zero and a standard deviation of one in proc glmselect. 

Standardized data were randomly split into a training set that included 70% of the observations 

and a test set that included 30% of the observations. This criterion was used for the selection of 

the values for the penalty parameters, based on which the final model was trained.  

�̂�𝑙𝑎𝑠𝑠𝑜 = ∑(𝑦𝑖 − 𝑥�̇� ∗ �̂�)

𝑛

𝑖=1

 2 + ℎ1 ∑|�̂�𝑗|                                              (9)

𝑚

𝑗=1

 

where y denotes the response, �̇� denotes the matrix of covariates, �̂� is the solution to the 

constrained least squares problem, h1 is the penalty parameter  

 

 

 

 

 

 

 

 

 

 

 

https://www.statisticshowto.datasciencecentral.com/shrinkage-estimator/
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3. Results  

3.1 Drought effects on tuber parameters 

The drought tolerance assessment of potato genotypes was based on the determination of tuber 

parameters (TY, SY, TN and ATW) under control and different water stress conditions. These 

parameters were measured for two populations in four screenhouse and four field experiments 

between 2015 and 2018. Data for the 2015 and 2016 trials were obtained from M. Haas. Analysis 

of variance was done for the effects of genotype and treatment and their interaction on TY and SY, 

ATW and TN. The summary tables of the ANOVA results are presented below for each trial in 

the screenhouse (Table 2) and the field (Table 3). Additionally, the analysis was done on pooled 

data of both experiments performed on each population (Table 2 and Table 3). All tuber parameters 

considered in this study were significantly affected by water stress. The responses of genotypes to 

water stress varied from genotype to genotype as indicated by the significant genotype × treatment 

interactions. However, no significant interaction was observed in population B under field 

condition. This was mainly because of the unusually high rainfall during the 2017 experiment and 

the small difference between cc and sc treatments in the 2018 experiment. The significant genotype 

x treatment x year interaction indicated that the response of genotypes to water stress were varied 

between years under field conditions. This suggests that several trials in different years and under 

different environmental conditions are required to obtain a general assessment of a genotype’s 

drought tolerance.  
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Table 2. ANOVA summary: The effect of genotype, treatment and their interaction on tuber yield, 

starch yield, average tuber weight and tuber number in screenhouse experiment in 2015 -2018. F 

values are shown. With the exception of one interaction value (indicated with ns), all main effects 

and their interactions were significant at a p-value of 0.01. ns - non-significant at p-value of 0.05.  

Pop Year  Para Model G T G×T Y G×Y G×T×Y 

A  2015 DF 131 63 1 63    

 TY 2710.2 1373.2 239988 424.7    

 SY 2931.4 870.8 306693 373.4    

 ATW 10.9 14.7 336.08 2.35    

  TN  10.7 11.5 429.38 3.62    

2016 DF 131 63 1 63    

 TY 4539.4 2621.9 389461 369.3    

 SY 3664.6 1516.5 369945 273.6    

 ATW 12.7 18.6 317.14 2.3    

 TN  11.6 11.6 637.08 2.2    

B 2017 DF 90 20 3 60    

 TY 61.8 130.7 853.05 3.6    

 SY 46.4 81.9 744.70 2.5    

 ATW 10.8 33.8 58.41 1.2ns    

 TN  17.2 49.3 144.90 2.2    

2018 DF 86 19 3 57    

 TY 22.2 35.7 360.33 2.0    

 SY 25.3 36.8 443.51 2.5    

 ATW 12.3 31.5 105.29 1.9    

 TN  14.2 27.3 186.97 3.3    

A com DF 258 63 1 63 1 63 64 

 TY 8515.5 5163.5 1035502 901.7 399577 993.5 1123 

 SY 7759.9 3185.1 1171206 840.9 254235 744.2 1353 

 ATW 13.7 28.2 629.45 3.3 557.2 3.55 1.85 

 TN 11.4 19.4 1016.52 3. 94.2 3.18 2.31 

B com DF 170 20 3 60 1 19 60 

 TY 47.3 129.9 1176.92 3.4 1007.3 22.1 2.51 

 SY 49.2 91.0 1138.82 2.9 2011.4 22.2 3.43 

 ATW 12.9 49.1 143.26 1.7 145.4 12.1 1.58 

 TN 16.8 61.1 317.96 2.9 142.4 8.8 3.59 

Where G - genotype, T - treatment, Y - year, Pop - population, com - pooled data from two 

years, para - parameters, and DF - degree of freedom  
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Table 3. ANOVA summary: The effect of genotype, treatment and their interaction on tuber yield 

(TY), starch yield (SY), average tuber weight (ATW) and tuber number (TN) under field 

conditions in 2015 - 2018. F-values and significance levels are shown. ** and * significant at p-

value of 0.01 and 0.05, respectively, and ns - none significant at p-value of 0.05.  

Pop Year  Para Model   G  T G×T Y G×Y G×T×Y 

A 2015 DF 131 63 1 63       

  TY 28.82** 10.21** 2778.08** 4.23**       

  SY 30.02** 10** 2891.92** 4.27**       

  ATW 13.65** 12.62** 833.80** 2.51**    

  TN  15.00** 10.10** 1030.03** 3.52**    

 2016 DF 131 63 1 63       

  TY 24.61** 7.14** 2588.23** 1.70**       

  SY 28.77** 6.94** 3085.53** 2.31**       

  ATW 17.46** 16.33** 1054.62** 2.36**    

  TN  7.13** 10.17** 156.83** 1.68**    

B 2017 DF 84 20 3 60       

  TY 9.73** 11.76** 173.36** 0.97ns       

  SY 9.24** 13.79** 145.10** 1.24**       

  ATW 5.66** 15.59** 24.91** 1.45ns    

  TN 5.52** 11.57** 47.47** 1.20ns    

 2018 DF 84 20 3 60       

  TY 16.42** 4.99** 354.49** 1.08ns       

  SY 18.52** 13.25** 362.45** 1.33ns       

  ATW 8.29** 8.62** 139.73** 1.19ns    

  TN  3.70** 10.84** 6.90** 1.26ns    

A com DF 257 63 1 63 1 63 64 

  TY 27.77** 15.40** 5289.23** 4.76** 15.85** 2.70** 3.65** 

  SY 30.21** 15.23** 5957.59** 5.31** 11.40** 2.33** 2.00** 

  ATW 15.96** 26.98** 1859.36** 3.17** 153.33** 1.52** 1.80** 

  TN  10.99** 16.36** 910.03** 2.91** 161.26** 3.78** 3.88** 

B com DF 168 20 3 60 1 20 63 

  TY 14.91** 11.87** 334.88** 1.00ns 369.86** 8.02** 9.00** 

  SY 14.46** 22.82** 302.68** 1.33ns 270.04** 7.15** 8.48** 

  ATW 7.12** 20.25** 115.07** 1.30** 9.16** 3.30** 3.81** 

  TN 5.94** 18.17** 45.24** 1.43* 156.19** 8.53** 2.10** 

Where G - genotype, T - treatment and Y - year, pop - population, com - pooled data from two 

years, and para - parameters, and DF - degree of freedom 

The trials on both populations contained optimal water supply (cc) and long-term stress (ss) 

(Figure 11 to Figure 14). Additionally, trials on population B contained early stress (sc) and late 

stress (cs) treatments (Figure 11 to Figure 14). Comparisons between all pairs of means were done 

by regwq method. The means comparison between treatments in each experiment are presented in 

Figure 11 to Figure 14. The means of pooled experiments of the respective populations and trial 
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conditions (FGH and Field) are presented in supplementary Figure S7. Among the tuber 

parameters mentioned above, the mean SY values of genotypes are presented for each experiment 

in the FGH (Figure 15. left panel) and the field (Figure 15. right panel). Genotypes in cc condition 

indicated that long-tail distribution below the first quartile. The regwq means comparison of starch 

yield of the genotypes for each experiment is presented in the supplementary Table S2, 

supplementary Table S3 and supplementary Table S4.    

In both populations and trial conditions (FGH, field), long-term stress resulted in significantly 

reduced mean starch and tuber yield (Figure 11 and Figure 12). The experiments on population B 

(Figure 11 and Figure 12) indicated that late stress was more devastating to tuber and starch yield 

than early stress. This trend was clearly observed in both experiments under FGH conditions. 

Almost all yield parameters were significantly affected by time and duration of water stress. In 

terms of tuber and starch yield reduction, late stress was more important than early stage stress. 

 

Figure 11. Mean starch yield (SY) per plant of population A and B in FGH (left) and field (right) 

experiments. Means comparison was done by regwq test. Treatments assigned the same letter are 

not significantly different at a p-value of 0.01. Bars represent mean ± SD of replicates. In the 2017 

field experiment, the cs treatment was affected by rainfall (see supplementary Figure S2).   
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Figure 12. Mean tuber yield (TY) per plant of population A and B in FGH (left) and field (right) 

experiments. Means comparison was done by regwq. Treatments assigned the same letter are not 

significantly different at a p-value of 0.01. Bars represent mean ± SD of replicates.  In the 2017 

field experiment, the cs treatment was affected by rainfall (see supplementary Figure S2). 

 

Figure 13 . Mean average tuber weight (ATW) (g) per plant of population A and B in FGH (left) 

and field (right) experiments. Means comparison was done by regwq. Treatments assigned the 

same letter are not significantly different at a p-values of 0.01. Bars represent mean ± SD of 

replicates.  
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Figure 14 . Mean tuber number (TN) per plant of population A and B in FGH (left) and field 

(right) experiments. Means comparison was done by regwq. Treatments assigned the same letter 

are not significantly different at a p-value of 0.01. In the 2017 field experiment, the cs treatment 

was affected by rainfall (see supplementary Figure S2). Bars represent mean ± SD of replicates.  
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3.2 Drought tolerance in FGH and field trials  

The drought tolerance index (DRYM) was calculated for each genotype, treatment (except control) 

and experiment (FGH and Field). A DRYM value of zero indicates median tolerance, negative 

values indicate sensitivity and positive values indicate enhanced tolerance compared to the median 

of the parent cultivars (DRYMp) or experimental median (DRYM). In population A, DRYMp 

ranged from 0.47 (FGH-2016) and 0.24 (Field-2015) in the most tolerant genotype to -0.25 (FGH-

2016) and -0.09 (Field-2016) in the most sensitive genotype (Figure 16). In population B, the most 

tolerant genotypes had DRYMp values of 0.20 (sc treatment in 2017 and ss treatment in 2018) and 

the lowest DRYMp was -0.27 under cs treatment (Figure 17 and Figure 18) in 2017 FGH 

experiment. In the field experiments, the lowest (-0.21) and the highest (0.28) DRYMp values 

were found in the sc treatment in 2017 and 2018, respectively (Figure 17 and Figure 18). The 

DRYMp values of pooled experiments of the respective populations and trial conditions (FGH and 

Field) are presented in supplementary Figure S8. 

The analysis of variance of tolerance index values of each experiment (DRYMp) (Table 4) and 

combined across years (DRYMp) (Table 5) indicates that the tolerance indices were significantly 

affected by genotypes, treatment, year and trial condition (Field, FGH). In addition, analysis of 

variance across trial conditions indicated that tolerance levels varied from trial condition to trial 

condition as indicated by significant experimental by trial conditions interaction (supplementary 

Table S6). Furthermore, in population B, DRYMp values were different between long-term stress, 

early and late stress (Figure 17 and Figure 18). This indicates the need to take stress timing and 

duration into consideration for tolerance prediction. Therefore, drought tolerance prediction has to 

match the drought pattern in the target environment. 
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Table 4. ANOVA summary of the effect of treatment and genotype on DRYMp values calculated 

on the basis of data from single experiments. F values shown. Effects of model and genotypes 

were significant at 0.01 levels, except where ns is indicated. ns - nonsignificant at a p-value of 

0.05. Pop-population. 

Pop  Year Treatment  Parameter  Model Genotype  

A 2015 ss DF 64 63 

  ss DRYMp 8.86 8.98 

A 2016 ss DF 64 63 

  ss DRYMp 8.30 8.42 

B 2017 cs, sc, ss DF 21 20 

   cs DRYMp 6.57 6.88 

   sc DRYMp 2.81 2.95 

   ss DRYMp 7.49 7.84 

B 2018 cs, sc, ss DF 20 19 

   cs DRYMp 2.18 2.22 

   sc DRYMp 1.38ns 1.43ns 

   ss DRYMp 5.12 1.64 

 

Table 5. ANOVA summary of the effect on genotype (G), treatment (T), year (Y), G×T, G×Y and 

G×T×Y on DRYMp calculated from starch yield data measured in 2015 and 2016 in population A 

and in 2017 and 2018 in population B under screenhouse and field condition. F-values and 

significance levels are shown. ** indicates significance at a level of 0.01, ns - nonsignificant at p-

values of 0.05.  Pop - population. 

Pop  Trial Parameters Model  G  T  G×T Y G×Y G×T×Y 

B FGH DF 128 20 2 40 1 19 39 

  DRYMp  9.98** 7.83** 397.91** 1.79** 26.74** 5.54** 1.78** 

B Field  DF 88 20 2 40 1 20  

  DRYMp  1.62** 2.13** 4.20** 0.89ns 10.25** 2.23**  

A FGH  DF 132 63   1 63  

  DRYMp  10.31** 12.61**   243.64** 4.80**  

A Field  DF 129 63   1 63  

  DRYMp  1.82** 2.16**   0.52ns 1.55**  
 

 

 

 

 



                                                                                                                                       

49 
 

3.3 Laser-scanner phenotyping  

3.3.1 Laser scanner data quality  

The plants were automatically phenotype for about five (2015), ten (2016), eight (2017) and seven 

weeks (2018), yielding 114 (2015), 217(2016), 221(2017) and 180 (2018) thousand data points. 

As an example, raw data of plant height is presented in Figure 19. At an early stage of phenotyping, 

data uniformity was low, presumably because of differences in plant establishment. In the last 

weeks of the observation period, shoots began to log and intermingle. In consequence, it was not 

possible to differentiate between the canopies of adjacent plants. Furthermore, plants logged before 

reaching the final height especially in population A (Figure 19, 2016 experiment). Therefore, short 

data intervals of 27 to 42 DFP (2015) and 29 to 44 (2016) DFP were used for fitting growth curve 

in population A. As an example, the window of long-term stress condition data of PH in 2015 

experiment is presented in Figure 20.  

From continuous data, different traits (maximum, mean, diurnal range, growth rate) was calculated 

for each canopy parameters to analyse their association with the tolerance index DRYM by 

Pearson correlation analysis. 

3.3.2 Laser scanner parameters   

Continuous measurement of plant parameters (see Materials and Methods) indicated that canopy 

features like leaf angle and plant height varied diurnally (see Figure 21) and with plant age (Figure 

22). Additionally, Figure 22 indicates that some canopy parameters like plant height, leaf area and 

light penetration reached maximum value at a certain plant age, while others like LI and LA 

oscillated around some value throughout plant growth. Generally, continuous data on canopy 

parameters indicated that diurnal change as well as plant age should be considered during tolerance 

prediction.  
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Figure 19. Raw data of plant height in different treatment condition in 2015-2018.  

 

Figure 20. The age window of plant height data in optimal water supply (cc) and the long-term 

(ss) stress treatments used for further analysis in the 2015 experiment.  

 

 

2015 
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Figure 21. Mean diurnal change of leaf angle (o) (upper panel) and plant height (mm) (lower panel) 

of genotypes from 2 to 5 June 2019, old (A)and new (B). At this stage, the water supply under 

treatment cs was the same as under cc, the water supply under treatment sc was the same as under 

ss. The data from Phenospex (http://141.14.246.248/data/accessed on 20 June 2019). 

A 

B 
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Figure 22. Traces of mean morphological trait values over all genotypes of respective treatment 

against plant age in 2018.  
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3.3.3 Descriptive statistics of canopy traits  

Continuous laser scanner data indicated that some of the morphological parameters attained a 

maximum value at some point of the plant age and others oscillated around some value throughout 

the plant age. Therefore, the maximum and mean value was calculated for each canopy trait by 

calculating the maximum (PH, A2D, A3D, DB, LAI and LPD) and mean (LI and LA) for each 

replicate plant and subsequently calculating the mean value for each genotype, treatment and year 

(2015 to 2018). The data normality was checked by Shapiro-Wilk test and presented as a 

supplementary table (supplementary Table S15). Analysis of variance was done for the effects of 

genotype and treatment and their interaction on respective parameters. The summary tables of the 

ANOVA results are presented for data combined over all experiments of each population in Table 

6 and each respective experiment in Table 7. All parameters determined in this study were affected 

by water stress. In population A, the responses of genotypes to water stress varied between 

genotype as indicated by the significant genotype by treatment interactions (Table 7). In population 

B, genotype by treatment interaction was observed on leaf area 3D and LAI (Table 7).  

Table 6. ANOVA summary for combined data analysis over two experiments: The effect of 

genotype, treatment, year and their interaction on the maximum of plant height (PH), leaf area (2D 

and 3D), light penetration depth (LPD), leaf area index (LAI), digital biomass (DB) and the mean 

values of leaf inclination (LI) and leaf angle (LA) in 2015 and 2016 for population A and in 2017 

and 2018 in population B. F-values and significance levels are shown. * - significant at a p-value 

of 0.05 and ns - nonsignificant at a p-value of 0.05. Values not assigned a * or ns were significant 

at p-value of 0.01.  

Pop Parameter Model G T Y G×T G×Y G×T×Y 

A DF 255 63 1 1 63 63 64 

PH  26.84 16.14 5027.20 11.05 3.99 3.06 5.04 

A3D  13.29 17.21 770.47 718.06 2.04 2.08 8.57 

A2D 9.6 11.42 675.90 407.99 2.48 1.97 5.59 

LA  10.68 21.30 204.69 142.91 3.66 3.15 9.48 

B DF 163 20 3 1 60 19 60 

PH  12.31 13.20 295.68 643.32 1.12ns 1.35ns 1.93 

A3D  11.45 43.24 79.92 524.63 1.61 3.90 1.50 

A2D 11.91 38.27 110.34 631.14 1.51 4.52 1.18ns 

LA 146.3 5.86 7.35 22958.3 2.32 4.64 2.29 

DB  5.99 6.16 176.42 0.34ns 0.95ns 1.68* 3.88 

LAI  9.69 42.23 83.38 238.67 1.53 3.71 1.65 

LPD  48.01 9.19 51.40 7123.10 1.01ns 2.14 1.82 

LI  12.15 28.88 245.81 35.72 1.67 6.91 5.91 

Pop - population, G - genotype, T- treatment, Y-year  
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Table 7. ANOVA summary: The effect of genotype, treatment and their interaction on the 

maximum of plant height (PH), leaf area (2D and 3D), light penetration depth (LPD), leaf area 

index (LAI), digital biomass (DB) and the mean values of leaf inclination (LI) and leaf angle (LA) 

in 2015 -2018. F-values and significance levels are shown. * and ns are significant at p-value of 

0.05 and not significant, respectively. Values not assigned by * or ns were significant at p-value 

of 0.01. 

Pop year Parameter  Model G T G × T 

A 2015 DF 255 63 1 63 

  PH  9.68  8.07  1662.92  3.73  

 A3D 3.13  7.82  66.61  2.21  

 A2D 4.05  12.15  31.34  1.98  

 LA 3.76  10.87  23.11  2.28  

A 2016 PH  15.13  9.24  2974.28  3.62  

 A3D 4.86  5.27  689.46  2.11  

 A2D 6.23  7.38  916.19  1.87  

 LA 7.50  13.16  771.39  3.46  

B 2017 DF 210 20 3 60 

PH  4.42  6.10  204.32  0.79ns 

A3D 4.25  29.17  22.05  1.56  

A2D 4.18  26.01  45.05  1.47* 

LA 1.44  4.28  2.47ns 1.84  

DB  3.39  4.88  138.65  0.80ns 

LI  4.12  28.34  22.56  1.49* 

LI 5.10  19.54  139.87  1.60  

LPD  4.34  29.07  31.51  1.09ns 

B 2018 DF 203 19 3 57 

PH  3.42  9.42  98.76  1.51* 

A3D 3.36  15.81  68.01  1.26  

A2D 3.31  15.51  67.31  1.28ns 

LA 2.71  3.00  102.14  1.02ns 

DB  5.78  18.05  208.56  1.30ns 

LAI  3.45  16.00  70.56  1.38* 

LI 5.14  21.03  147.60  1.14ns 

LPD  1.93  3.44  39.23  1.03ns 

                     Pop - population, G - genotype, T - treatment, Y- year  
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The ANOVA, in which all data of population A or B were analysed together, indicated that the 

response of genotypes to water stress varied from genotype to genotype as well as between years 

as indicated by significant genotype x treatment x year interaction (Table 6). 

In population A, the comparison of means (Figure 23) indicated that plants under ss conditions 

had relatively smaller maximum plant height and leaf area (2D and 3D) than plants under optimal 

water conditions. However, leaf angle was higher (more horizontal leaves) in the cc condition than 

ss condition. Data combined over years indicated that maximum plant height, leaf area and mean 

leaf angle were smaller in ss plants than in cc plants (supplementary Table S7).   

In population B and both years, the comparison of means of maximum plant height, leaf area (3D 

and 2D) and digital biomass indicated that higher values were observed under optimal water 

condition than ss condition (Figure 24). On the other hand, LPD was higher under sc condition 

than under optimal condition and ss and cs conditions. The same was true for data combined over 

the years (supplementary Table S7). Data combined over the years indicated that LI was higher 

under ss than other treatments. Among the treatments, late stress (cs) resulted in the smallest 

maximum PH, DB and LPD in 2017 (Figure 24). In both years, maximum leaf area under late 

stress was higher than under early stress, indicating that plants had attained maximum values 

before the onset of stress. On the other hand, maximum plant height under cs was less than under 

sc stress. This indicated that different canopy parameters reached their biological maximum values 

at different times of the plant age. Therefore, considering different stress timing and stress duration 

may be important to predict tolerance.     
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Figure 23. The maximum plant height (PH), maximum leaf area (A2D, A3D), and mean leaf angle 

(LA) in genotypes of population A under optimal water supply (cc) and long-term drought stress 

(ss) in FGH experiment 2015 and 2016. Means comparison was done by regwq. Means with the 

same letter were not significantly different at p-values of 0.05. Bars represent mean ± SD of 

replicates.  
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Figure 24. The maximum plant height (PH), maximum leaf area A3D, maximum light penetration 

depth (LPD), mean leaf angle (LA), mean leaf inclination (LI) and maximum digital biomass (ten 

thousand) in genotypes of population B under four different treatments in FGH experiments 2017 

and 2018. Means comparison was done by regwq. Means with the same letter were not 

significantly different at p-values of 0.05. Bars represent mean ± SD of replicates.  
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The Pearson correlation coefficients between morphological traits measured under the different 

treatment conditions and DRYMp values predicted in respective treatment conditions are 

presented in Table 8. However, morphological traits measured cc conditions were correlated with 

DRYMp calculated in long-term stress condition.  

In population B, light penetration depth was significantly and negatively correlated with DRYMp 

estimated in the respective treatment condition in 2017. In 2017, further negative correlations 

between DRYMp and morphological parameters were observed for maximum plant height under 

cs and ss conditions. On the other hand, mean leaf angles under ss and sc condition were positively 

correlated with respective DRYMp in 2017. Leaf area 2D under cs and sc were positively 

correlated with DRYMp values. In 2018, DRYMp was significantly correlated with leaf angle and 

leaf inclination in treatment ss. The Leaf angle also showed a positive significant correlation with 

DRYMp under cs condition. In data combined over years of population B, the mean LA in ss and 

sc conditions were positively correlated with average DRYMp in FGH treatments. Whereas the 

maximum LPD (in ss, cc and sc) and mean LI (in ss, cc and cs) were negatively correlated with 

average tolerance index in FGH experiments. Among all the parameters considered under ss 

conditions in population B, leaf angle showed the most consistent result thus leaf angle may be a 

promising predictor for drought tolerance under long-term stress conditions.  

In population A, correlations between morphological parameters and DRYMp were either weaker 

or not significant in 2015 (Table 8). One of the probable reasons for lower correlation in population 

A was that plants lodged before they attained the maximum canopy height. In data combined over 

years in population A, the maximum PH in both optimal and long-term stress conditions were 

negatively correlated with average DRYMp in FGH conditions. Altogether, in population A, 

tolerance was related with shorter plant heights.   

Altogether, in population A, tolerance was related with shorter plant heights (2016 and combined) 

and in population B experiments, tolerant genotypes showed more horizontal leaf in long-term 

stress than the susceptible genotypes.  
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Table 8. Pearson correlation coefficient between DRYMp calculated from starch yields of each 

experiment and treatment conditions and average FGH with maximum plant height (PH), leaf area 

(A2D and A3D), digital biomass (DB), leaf area index (LAI), light penetration depth (LPD) and 

the mean of leaf angle (LA) and leaf inclination (LI) for population A and population B of the 

same experiment measured under the conditions given for treatment. DF was 62 (2015 and 2016), 

19 (2017) and 18 (2018). * and ** indicate significance at p-value of 0.05 and 0.01. T- treatment, 

com - combined over years. canopy parameters measured in optimal conditions were correlated 

with DRYMp of long-term stress conditions. Pop - population. 

Pop year T PH A3D A2D LA DB LAI LI LPD 

A 2015 cc -0.21 0.14 0.19 -0.08     

  ss -0.23 0.18 0.22 0.08      

A 2016 cc -0.26* -0.15 -0.06 -0.05      

  ss 0.08 -0.13 -0.08 -0.15     

B 2017 cc -0.30 0.32 0.31 -0.06 0.01 0.32 -0.47* -0.51* 

  cs -0.56** 0.39 0.43* 0.03 -0.19 0.38 -0.22 -0.64** 

  sc -0.41 0.39 0.44* 0.50* 0.27 0.39 -0.33 -0.48* 

  ss -0.48* 0.37 0.40 0.52* -0.07 0.39 -0.37 -0.56** 

B 2018 cc -0.23 -0.01 0.01 0.39 -0.19 -0.02 -0.37 -0.37 

  cs -0.26 0.14 0.25 0.49* -0.04 0.12 -0.36 -0.26 

  sc 0.13 0.02 0.06 0.17 0.35 0.02 -0.14 -0.17 

    ss 0.05 -0.21 -0.10 0.63** 0.10 -0.22  -0.60** -0.36 

B com cc -0.40 0.03 0.05 -0.23 -0.27 0.04 -0.59** -0.49* 

  cs -0.33 0.11 0.12 0.00 -0.06 0.11 -0.50* -0.22 

  sc -0.30 0.13 0.20 0.48* -0.18 0.12 -0.29 -0.51* 

  ss -0.42 0.05 0.10 0.59** -0.26 0.04 -0.71** -0.62** 

A com cc -0.51** -0.04 0.11 -0.15     

  ss -0.31** -0.01 0.09 -0.17     

                                                                                                                                      
Nb. Traits measured under cc conditions were correlated with DRYMp in ss conditions.   
 

The difference between optimal water condition and respective stress treatment of maximum (PH, 

A2D, A3D, DB, LAI, LPD) and mean (LA and LI) were calculated then correlated with DRYMp 

of respective treatment and each experiment. In data combined over years, the difference between 

optimal water and stress values were correlated with average DRYMp of respective population in 

FGH conditions. In specific experiment condition, DRYMp values were significantly correlated 

with difference values between optimal and long-term stress of maximum PH (2015), mean LA 

and mean LI (2018). 
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In data combined over years of population B, the difference between optimal condition and long-

term stress condition of maximum LPD and mean LI were positively correlated with tolerance 

(average DRYMp). In early stress condition, mean LA was negatively correlated with tolerance of 

average DRYMp. In population A, the difference between the optimal and long-term stress of 

maximum plant height was negatively correlated with average tolerance of population A in FGH.   

In both populations, the correlation values between difference values between optimal and stress 

conditions and tolerance index were not showed consistent values so that using values of canopy 

parameter difference between optimal and stress as predictive parameters may not be effective.  

Table 9. Pearson correlation coefficients between difference values between optimal water and 

stress condition of maximum plant height (PH), leaf area (A2D and A3D), light penetration depth 

(LPD), digital biomass (DB), leaf area index (LAI) and mean leaf inclination (LI) and leaf angle 

(LA) with tolerance index (DRYMp) of each experiment. * and ** denote significance at 0.05 and 

0.01 levels, respectively. T- treatment, com - combined over years of respective population (Pop). 

Pop  Year T PH A2D A3D LA DB LAI LI LPD 

A 2015 ss -0.31* -0.08 -0.12 0.05     

A 2016 ss -0.22 0.01 -0.04 0.00     

B 2017 ss 0.27 -0.19 -0.12 -0.30 -0.05 -0.14 -0.08 0.11 

B 2017 sc -0.05 0.15 0.22 -0.27 -0.19 0.22 -0.34 -0.09 

B 2017 cs 0.22 -0.17 -0.18 -0.32 -0.18 -0.18 -0.36 0.27 

B 2018 ss -0.04 0.14 0.18 -0.64** -0.15 0.16 0.69** 0.20 

B 2018 sc 0.12 -0.34 -0.31 -0.17 -0.19 -0.33 0.13 -0.02 

B 2018 cs -0.28 0.00 0.06 -0.06 -0.26 0.11 0.16 -0.18 

B Com  ss 0.25 -0.05 -0.03 -0.42 -0.03 0.02 0.58** 0.47* 

  cs -0.08 0.16 0.12 -0.32 -0.30 0.16 -0.23 -0.02 

  sc -0.22 -0.13 0.01 -0.60** -0.39 0.03 0.06 0.15 

A Com  ss -0.32* 0.01 -0.03 -0.01     
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3.3.4 Initial linear growth rate  

The initial change of morphological traits plotted against plant age was determined by fitting a 

linear regression model for each genotype and year in the data range, in which the respective trait 

increased approximately linearly, thus calculating the initial slope of the growth curve. This value 

is abbreviated as slope of the trait in the subsequent text. 

In population A, the initial slope of leaf area 2D and leaf area 3D were significantly correlated 

with tolerance level in 2015 but not in 2016 (Table 10). In the 2015 experiment, tolerant genotypes 

showed relatively higher slope of leaf area than susceptible genotypes. 

In population B, DRYMp was positively correlated with the slope of leaf inclination under cc and 

ss condition in 2017 (Table 10). Slopes of plant height under cc and cs condition were negatively 

correlated with DRYMp. In addition, the slope of digital biomass under cs and the slope of light 

penetration depth were negatively correlated with DRYMp. In 2018 under cc condition, the slope 

of leaf angle was negatively correlated with DRYMss values. On the other hand, leaf inclination 

slope was positively correlated with DRYMss values. Thus, low leaf angle slopes and high leaf 

inclination slopes under cc condition were associated with high tolerance of genotypes. Since leaf 

inclination slope was consistently correlated with DRYMp under cc condition in both years, it may 

be potential canopy parameters that can be measured under well-watered conditions to predicted 

drought tolerance in potato. Generally, in population B, lower initial slopes of plant height under 

cc and higher slope of leaf inclination under cc or ss condition were associated with drought 

tolerance.  

Generally, in both populations, the correlations of growth rates and DRYMp of genotypes were 

mostly not consistent, which implies that DRYMp prediction from growth rate determined in small 

experiments could be difficult.  
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Table 10. Pearson correlation coefficients between slope of linear regression of plant height (PH), 

leaf area (A2D and A3D), leaf angle (LA), digital biomass (DB), leaf area index (LAI), leaf 

inclination (LI) and light penetration depth (LPD) on plant age determined under different 

treatments with DRYMp of respective experiment. df was 62 (2015 and 2016), 19 (2017) and 18 

(2018) experiment. * and ** denote significance at 0.05 and 0.01 level, respectively. T - treatment.  

Pop year T PH A3D A2D LA DB LAI LI LPD 

A 2015 cc -0.12 0.39** 0.38** -0.22     

  ss 0.07 0.48** 0.49** -0.27     

A 2016 cc -0.16 0.15 0.16 -0.05     

 ss 0.16 0.19 0.21 -0.03     

B 2017 cc -0.46* 0.15 0.14 -0.32 -0.27 0.15 0.49* -0.32 

  cs -0.46* 0.14 0.11 -0.23 -0.47* 0.14 0.31 -0.62* 

  sc -0.42 0.30 0.26 0.05 -0.18 0.30 0.24 -0.16 

  ss -0.41 0.06 0.03 -0.09 -0.31 0.06 0.56** -0.38 

B 2018 cc -0.11 0.35 0.32 -0.47*  0.03 0.32 0.50* -0.19 

  cs -0.14 0.01 0.02 -0.14 -0.03 0.00 0.10 -0.17 

  sc 0.09 -0.21 -0.15 0.10  0.13 -0.16 -0.18 -0.24 

    ss 0.02 0.09 0.09 -0.27 -0.05 0.12 -0.13 -0.40 

                                                                                                                                                                                                                                                                                                                              

3.3.5 Polynomial growth model  

In the polynomial model, the morphological parameters and DFP were used as independent and 

dependent, respectively. In population A in ss condition, linear coefficients and quadratic 

coefficients of leaf area (2D and 3D) were negatively and positively correlated with tolerance 

index of the same experiment in the 2016 experiment, but not in the 2015 experiment (Table 11). 

In population B, the linear coefficients for plant height were negatively correlated with DRYMss 

and long-term stress conditions in 2017 (Table 12). Under cs conditions, linear coefficients for leaf 

area index and light penetration depth were negatively correlated with tolerance index in 2017. 

The other significant correlation was observed between DRYMp values and linear coefficients for 

digital biomass and LPD in 2018 under cc condition (Table 12). 

In population B, the correlation between DRYMp and quadratic coefficient values were mostly 

non-significant. The only significant correlation was observed between DRYMp and quadratic 

coefficient values for plant height (2017) and light penetration depth (2018) measured under cc 

condition (Table 12).  
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In both populations, the result indicates that correlation between linear and quadratic coefficients 

with DRYMp were not consistent between years. Thus, predicting of tolerance from these 

parameters may not be possible. 

Table 11. Pearson correlation coefficients between linear and quadratic coefficients of polynomial 

functions of population A of plant height (PH) and leaf area (A2D and A3D) with DRYMp of the 

respective experiment. df was 62. * and ** denote significance at 0.05 and 0.01 level, respectively.  

Experiment  Treatment  Linear coefficient Quadratic coefficient 

PH  A2D A3D PH  A2D A3D 

2015 cc -0.23 0.24 0.22 0.22 -0.20 -0.18 

 ss -0.18 0.16 0.13 0.17 -0.11 -0.09 

2016 cc -0.08 -0.23 -0.22 -0.02 0.21 0.20 

 ss -0.24 -0.36** -0.34** 0.20 0.32** 0.29* 

                                                                                                                   
Table 12. Correlation coefficients between linear and quadratic coefficients of polynomial 

functions of population B of plant height (PH), leaf area (A2D and A3D), digital biomass (DB), 

leaf area index (LAI), and light penetration depth (LPD) with DRYMp calculated from starch 

yields in the respective experiment. df was 19 and 18 in 2017 and 2018 experiments. * and ** 

denote significance at 0.05 and 0.01level, respectively.  

Experiment  Treatment  Linear coefficient 

  PH  A2D A3D DB LAI LPD 

2017 cc -0.46* 0.22 0.20 -0.39 -0.10 -0.11 

 cs -0.40 0.00 0.12 -0.05 -0.51* -0.52* 

 sc -0.39 0.27 0.28 -0.30 -0.11 -0.10 

 ss -0.45* 0.20 0.20 -0.32 -0.24 -0.24 

2018 cc -0.12 0.02 0.01 -0.47* -0.22 0.53* 

 cs -0.17 -0.11 -0.13 -0.20 -0.06 0.19 

 sc 0.06 -0.25 -0.29 -0.13 -0.29 0.11 

 ss 0.02 -0.25 -0.22 -0.35 -0.24 0.36 

  Quadratic coefficient 

2017 cc 0.44* -0.16 -0.14 0.39 -0.07 -0.06 

 cs 0.37 0.08 -0.05 0.06 0.38 0.39 

 sc 0.35 -0.19 -0.20 0.31 -0.01 -0.03 

 ss 0.42 -0.06 -0.06 0.33 0.10 0.09 

2018 cc 0.16 0.06 0.05 0.45 0.31 -0.56* 

 cs 0.14 0.20 0.23 0.18 0.04 -0.28 

 sc -0.04 0.25 0.32 0.40 0.32 -0.15 

 ss 0.03 0.35 0.37 0.42 0.38 -0.36 
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3.3.6 Diurnal leaf movement  

Leaf movements caused diurnal oscillation of morphological parameters estimated from laser 

scanner records. The time windows used for this analysis were between 26-41 (2015), 29-44 

(2016), 14-72 (2017) and 21-73 (2018) DFP. From continuous laser scanner records, the mean of 

the daily range was calculated for each morphological parameter, genotype and treatment 

condition and correlated with DRYMp (Table 13).  

In population A, mean PH ranges in control and stress condition were negatively correlated with 

tolerance index in 2015 but not in 2016 experiment. In combined data over both experiments on 

population A indicated that the range of leaf angle (LA) and leaf area (A2D and A3D) under ss 

condition were negatively (LA) and positively (leaf area) correlated with mean DRYMp values of 

both experiment (Table 13). Ranges for plant height measured under control conditions were 

negatively correlated with average DRYMp values of the genotypes calculated from both 

experiments.  

In population B in 2018, the means of the daily ranges for plant height (PH), leaf angle (LA), leaf 

inclination (LI) and light penetration depth (LPD) measured under ss treatment condition were 

correlated with DRYMp of the same experiment. The correlation coefficient indicated that the 

tolerance index was negatively correlated with PH, LI and LP and positively correlated with leaf 

angle (Table 13). Thus, genotypes that showed higher diurnal variation of leaf angle were tolerant. 

However, these correlations were not found in 2017 experiments. In combined data over both 

population B experiments, leaf angle and leaf inclination in sc condition were negatively correlated 

with average DRYMsc values in two-year experiments.  

In both years, the correlation values between the range of leaf movement with tolerance index were 

not consistent, indicating that using the range of leaf movement measured in small experiments as 

predictive parameter for the drought tolerance index may not be effective. In summary, the range 

of leaf movement was a poorer predictor of DRYMp values than the maximum/mean value of 

morphological traits.  
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Table 13. Correlation coefficients between daily ranges of plant height (PH), leaf area (A2D and 

A3D), leaf angle (LA), digital biomass (DB), leaf area index (LAI), leaf inclination (LI) and light 

penetration depth (LPD) with DRYMp of the respective experiment. DF was 62 (2015 and 2016), 

19 (2017), 18 (2018), combined over year was 126 (population A) and 39 (population B). * and 

** denote significance at 0.05 and 0.01 levels, respectively. T - treatment, com - combined over 

years of respective population. Pop - population.    

Pop year T PH A2D A3D LA DB LAI LI LPD 

A 2015 cc -0.47** -0.23 -0.23 -0.04         

  ss -0.34** -0.22 -0.21 -0.06         

 2016 cc -0.24 -0.20 -0.23 -0.05         

  ss -0.17 -0.19 -0.21 -0.06         

A com cc -0.34** -0.03 -0.02 0.22         

  ss 0.13  0.20* 0.20* -0.20*         

B 2017 cc 0.06 0.07 0.10 0.06 0.04 0.10 -0.16 -0.08 

  cs 0.14 0.25 0.26 0.01 0.18 0.25 -0.03 0.03 

  sc -0.14 -0.08 -0.06 -0.14 -0.09 -0.06 -0.26 -0.21 

  ss 0.02 0.09 0.11 -0.06 0.05 0.11 -0.18 -0.12 

B 2018 cc -0.07 0.01 0.19 0.21 0.09 0.19 -0.21 -0.24 

  cs -0.07 0.04 -0.05 0.33 -0.05 -0.05 -0.31 -0.11 

  sc -0.12 -0.04 -0.12 0.06 0.07 -0.10 -0.07 -0.09 

  ss -0.46* -0.16 -0.22 0.64** -0.36 -0.21 -0.65**   -0.50* 

B com cc 0.04 0.04 0.07 0.00 0.04 0.07 -0.01 -0.08 

  cs 0.18 0.05 0.06 0.31 0.16 0.07 0.31 0.05 

  sc -0.06 0.38 0.36 -0.58** 0.22 0.35 -0.59** -0.08 

  ss -0.07 0.03 0.04 0.01 -0.03 0.04 -0.02 -0.16 

                                                                                                                           

3.3.7 The association of daily canopy structure with tolerance  

In this study, daily mean values of leaf area (2D and 3D), plant height, digital biomass, leaf angle, 

leaf inclination, leaf area index and leaf inclination were correlated with DRYMp of the same 

experiment. There were measurement gaps in 2015 (46-48 DFP) and 2018 (46-49 DFP). The 

correlation was plotted against plant age (Figure 25, Figure 26 and Figure 27).  

In population A under long-term stress conditions, leaf area (2D and 3D) correlated positively and 

leaf angle correlated negatively with DRYMp of the specific experiment (Figure 25). The 

correlation values were mostly significant at reproductive stage; however, the correlations were 

relatively weak.  
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In population B under long-term stress conditions in 2017, daily mean values of leaf area (2D and 

3D), leaf inclination (LI) and leaf angle (LA) measured after 46 DFP were positively correlated 

with DRYMp of the respective experiment, whereas light penetration depth (LPD) and plant height 

(PH) were negatively correlated with DRYMp (Figure 26). In 2017 under late stress conditions, 

DRYMp values were positively correlated with daily mean values of leaf area (A3D and A2D) 

and LAI after 46 DFP, but negatively correlated with mean daily values of LPD (Figure 26).  

In 2018 in long-term stress conditions, daily mean values of leaf angle (LA) and leaf area (A2D 

and A3D) were positively correlated with DRYMp values, whereas light penetration depth (LPD) 

and leaf inclination (LI) were negatively correlated with DRYMp values of specific experiments. 

The correlation values were affected by plant age after 52 DFP, especially the correlation between 

leaf area, LPD and DRYMp values (Figure 27).  

In both populations, tolerant genotypes had a higher leaf area (A3D and A2D) and lower light 

penetration depth (LPD) (population B) under stress conditions. The association of canopy 

parameters and tolerance index was closest in the reproductive stage (since flower initiation), 

especially in ss treatment conditions (Figure 26 and Figure 27).  

Generally, among the traits considered in this study, leaf area (2D or 3D), leaf angle and light 

penetration depth looked promising to predict water stress tolerance under long-term stress 

conditions especially when determined in the reproductive stage. Therefore, tolerance prediction 

in ss stress could be improved from canopy parameter phenotyping since flower initiation to 

maturity.   

 



                                                                                                                                       

67 
 

 
Figure 25. The Pearson correlation coefficients between the daily means of morphological traits 

measured in treatment cc and ss of experiment 2015 or 2016 and DRYMp of the same experiment 

depicted against plant age. DF was 62 in 2015 and 2016 experiments. Significance threshold at a 

p-value of 0.05 is +/- 0.25 and indicated by horizontal broken lines. Measurement gaps (46-48 

DFP) in 2015 experiment present as a gap.  
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Figure 26. The Pearson correlation between the daily means of morphological traits measured in 

treatment cc, cs, sc and ss of experiment 2017 and DRYMp of the same experiment depicted 

against plant age. DF was 19. Significant threshold at p-value of 0.05 is +/- 0.43 and indicated by 

horizontal broken lines. Treatments switch date is indicated by the red vertical broken line. 
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Figure 27. The Pearson correlation between the daily means of morphological traits measured in 

treatment cc, cs, sc and ss of experiment 2018 and DRYMp of the same experiment depicted 

against plant age. Significant threshold at a p-value of 0.05 is +/- 0.45 and indicated by horizontal 

broken lines. DF was 18. Treatments switch date is indicated by the red vertical broken line. 

Measurement gaps (46-49 DFP) in 2018 experiment present as a gap. 

3.4 Tolerance prediction from single morphological parameters 

In this case, genotype DRYMp values were predicted from maximum (PH, A2D, A3D, DB, LAI, 

and LPD) and mean (LI, LA and CTD) morphological and physiological parameters measured 

from the same experiment of respective treatment (Table 14). In population B under long-term 

stress condition, tolerance was predicted from either of the following parameters: LA and LI. In 

2017 experiment, tolerance was predicted from different parameters and treatment conditions. For 

example, under cc, cs and ss conditions, tolerance was predicted from LPD. In addition to LPD, in 

ss and cs conditions tolerance was predicted from PH. Tolerance prediction under sc conditions 

was not effective in population B.  However, tolerance prediction in population A was only 

possible from LA under ss condition in 2016.  
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Generally, in population B, simple linear regression output indicated that DRYMp values could be 

linearly predicted from different canopy traits, but the model R2 values were relatively low (Table 

14). This indicated that tolerance levels of genotypes are not fully explained by any one of the 

single canopy parameters considered in this study.  

Table 14. DRYMp predicted from each canopy traits (mean or maximum) of which were measured 

in the same experiment and treatment condition. * and ** were significant at 0.05 and 0.01 p-

values. Model R2 values were shown. Parameters measured in cc condition was used to predicted 

tolerance in long-term stress conditions.   

Treatment Parameter Year 

2016 2017 2018 

Intercept R2 Intercept  R2  Intercept R2 

cc 

 

LPD   -0.002* 0.18   

LI   -2.668* 0.19   

cs 

 

LPD   -0.002** 0.30   

PH   -0.002* 0.24   

ss 

 

 

LPD   -0.002* 0.29   

LI   -2.368* 0.15 -3.011**  0.47 

LA -0.043* 0.11 0.052** 0.27 0.089**  0.44 

PH   -0.002* 0.22   
 

3.5 Canopy temperature and canopy temperature depression  

3.5.1 Surface temperature 

Surface temperature was measured in population B experiments by infrared thermosensors (IRT), 

which where mounted on the Fieldscan system. The movement of the Fieldscan system was 

controlled by the software that controlled the laser scanner measurements. The raw data of IR 

thermosensor measurements of one scanning cycle is shown in Figure 28. The IRT was programed 

at 3 s scanning interval. The Fieldscan carrier device moved at a speed of 32 mm/s during the 

forward movement whilst the laser scanner measurements were recorded. Fieldscan moved about 

three times as fast during the reverse movement between the measurements cycle (Figure 28). 

After eight scanning and reversing movements, the Fieldscan remained in the parking position for 

32 min before moving forward for the next measurement. Figure 28 illustrates that the plant canopy 

was much cooler than the metal barcodes that were positioned between the plant blocks and ground 

between the blocks without plants and in the parking position. The plant canopy temperature data 

were attributed to the plant metadata based on the time stamp of the IRT data and the time stamp 

of the laser scanner data. The time stamp was corrected for plant position and the time lag of 47 s, 
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which was caused by the physical distance between the IRT sensors and the laser scanner sensors 

on the Fieldscan (see Material and Methods and Figure 7).  

 

Figure 28. Surface temperature measurements during one movement cycle of the Fieldscan in the 

early afternoon of 15 May 2018. The temperatures for the plant canopy, the metal surfaces of the 

barcodes and the ground in the parking position. Fieldscan moved with 32 mm/s during 

measurement and reversed in the parking position with a speed of 82 mm/s.  

3.5.2 IRT data quality  

Three values of canopy temperature were measured for each plant every 30 min between 27 to 73 

DFP (2017) and 24 to 74 DFP (2018). Proc gplot and proc sql were run in SAS (Version 9.4, SAS) 

to check for outliers and data uniformity (supplementary Table S15). If the difference between a 

CT and average CT of a genotype per hour per day was less or greater than two standard deviations 

away from the mean, the value was considered an outlier.  

3.5.3 Effect of drought on mean canopy temperature (CT) and canopy 

temperature depression (CTD) 

In this study, canopy temperature (CT) was observed for nearly seven weeks in the genotypes of 

population B in 2017 and 2018. CTD was calculated as canopy temperature minus air temperature. 

Analysis of variance was done on the effects of genotype, treatment, time and their interaction on 

mean CT and mean CTD (Table 15). For each experiment condition as well as combined over 
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seasons, CT and CTD were significantly affected by water stress. The responses of genotypes to 

water stress varied from genotype to genotype as indicated by the significant genotype × treatment 

interactions (see Table 15). Furthermore, the response of genotypes varied from day to day and 

between years as indicated by the significant genotype x date x treatment interaction and genotype 

x treatment x year interactions (Table 15). This indicated that the interpretation of CT measurement 

depends on additional information on environmental conditions and developmental effects.  

The comparison of means (Figure 29) indicated that stress after flower initiation (cs) affected CT 

and or CTD more than stress before flowering (sc). Mean CT of late stress (cs) plants was even 

higher than CT of long-term stress plants. This may be because of the shock after switching 

treatments or may be because of a higher rate of senescence, especially in lower leaves. Mean CT 

of genotypes in respective experiments and treatment conditions (Figure 30) are presented below. 

Mean separation of CT and CTD of genotypes in respective experiments and treatment conditions 

are presented as supplementary table (supplementary Table S12).    

Table 15. ANOVA summary: The effect of genotype, treatment, day, hour and their interaction 

on daily mean CT and CTD in 2017 and 2018. F-values are shown. All main and interaction effects 

were significant at p values of 0.01. Where exp - experiment, G - genotype, T - treatment, D - day, 

H - hour, P - parameter, Y- year, com - combined over years.  

Exp P Mode

l 

G  T D H GT GD GTD Y GY GT

Y 

2017 DF  3809 20 3 45 23 60 900 2751       

CTD 41 79 2122 1718 1778 31 2 7       

CT 214 26 784 4721 25867 10 1 3       

2018 DF  3789 19 3 49 23 57 931 2700       

CTD 55 36 4339 2320 1747 47 2 10       

CT 225 18 2172 3819 27869 23 1 4.9    

com DF 4449 20 3 53 23 60 1052 3151 1 19 60 

CTD 67 55 5037 2800 3269 22 3 11 1014 40 68 

CT 222 17 1537 2412 35065 6 4 5 19219 12 20 
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Figure 29. Mean CT (upper) and CTD (lower) between 48-70 DFP (2017) and 50-70 DFP (2018) 

of the respective FGH experiment. Old (A) and new (B and C). Mean separation was done by regw 

test and treatments assigned by the same letter are not significantly different at p-values of 0.01. 

Bars represent mean ± SD of replicates.   

 

Figure 30. Distribution of genotypic means of canopy temperature (CT) between 48-70 DFP 

(2017) and 50-70 DFP (2018) in 2017 and 2018 FGH experiments. 

 

C 
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3.5.4 Mean CT and CTD before and after treatment switch  

As indicated in Materials and Methods of this study, there were treatment switches from optimum 

to stress in cs block and from stress to optimum in sc block at 45 (2017) and 38 (2018) days from 

planting. Based on the treatment switch date, data sets were grouped in before and after treatment 

switch. Mean CT and CTD for each genotype were calculated for both before and after treatment 

switch data sets of each experiment. In both years, mean CT (Figure 31) and mean CTD (Figure 

32) of plants after treatment switch were higher in stress blocks than in plants under optimal water 

condition. After treatment switch, CT in cs blocks was higher than mean CT in long-term stress 

blocks. In the before-treatment switch data set, mean CT and CTD was different between optimal 

(cc or cs) and stress block (ss or sc) plants in 2018, but not in the 2017 experiment. Relatively 

cooler air temperature in 2017 experiment, especially for the first seven days after water stress 

initiation, may play its part in reducing the variation between treatments. The means separation of 

CT and CTD of respective treatments in before-treatment and after-treatment switch data are 

presented as Figure (see Figure 31 and Figure 32). 

The summary tables of the ANOVA results are presented in Table 16. Both CT and CTD before 

and after treatment switch were significantly affected by water stress. Furthermore, CT and CTD 

of genotypes varied between days and treatments as indicated by significant interaction between 

genotype x treatment x day. This indicates that CT and CTD for drought tolerance should be 

measured in specific ages of the plant and under specific environmental conditions.  
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Table 16. ANOVA summary: The effect of genotype, treatment, day, hour and their interaction 

on CT and CTD before and after switch treatments in 2017 and 2018. F-values are shown. All 

main and interaction effects were significant at p values of 0.01. ns - nonsignificant at p value of 

0.05. G - genotype, T - treatment, D - day, H - hour, P - parameter, Y- year and GS - treatment 

interval before (B) and after (A) switch of treatments between cs and sc treatments. 

Year  GS P Model G T D H G×T G×D G×T×D 

2017 A  DF 2465 20 3 28 23 60 560 1764 

 CT 190 21 1318 3675 15481 8 0 2 

 CTD 34 63 3753 1433 826 25 1ns 5 

B DF 1373 20 3 16 23 60 320 924 

 CT 234 15 588 5605 10280 4 1ns 1ns 

 CTD 39 31 820 1269 851 9 2 4 

2018 A  DF 2629 19 3 32 23 57 608 1880 

 CT 207 21 2538 3899 17538 13 0ns 4 

 CTD 40 46 5527 1551 778 27 1ns 8 

B DF 1189 19 3 16 23 57 304 760 

 CT 312 8 970 3689 12924 7 1ns 4 

 CTD 67 13 1180 2203 1025 12 2 7 
 

 

 

A 2017 2017 
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Figure 31. Distribution of genotypic means and Mean separation of CT before (left) and after 

(right) treatment switch in population B, 2017 (top) and 2018 (bottom). Old figures: A (2017), B 

(2018) and C (2017(left) and 2018(right)) and new figure D. Means comparison was done by 

regwq test. Means followed by the same letter are not significantly different at p value of 0.01. 

Bars represent mean ± SD of replicates. 

D 
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Figure 32. Distribution of genotypic means and Mean separation of CTD before (left) and after 

(right) treatment switch in population B, 2017 (top) and 2018 (bottom). Old figures: A (2017), B 

(2018) and C (2017(left) and 2018 (right)) and new figure D. Means comparison was done by 

regwq test. Means followed by the same letter are not significantly at p value of 0.01. Bars 

represent mean ± SD of replicates. 

D 
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3.5.5 Diurnal change of canopy temperature and CTD   

In both experiments, diurnal changes of CT were clearly observed. As an example, one of the 

parent’s CT before (36 and 38 DFP) and after treatment switch (54 and 59 DFP) in 2018 are 

presented in Figure 33. In all treatments, maximum values of CT were observed between 8:00 

and16:00. Higher values were recorded in stressed plants before flowering in treatment ss and sc 

and after flowering in ss and cs (Figure 33). In line with (Olufay  et al. 1993), canopy temperature 

in stress blocks rises faster before noon than in plants under optimal water. 

3.5.6 CT and CTD change over growth period   

Daily mean CT and CTD of all genotypes are depicted against plant age in Figure 34. The CT (A 

and B) and CTD (C and D) varied from day to day during plant development. Both before and 

after the treatment switch, daily mean CT and CTD was higher under stress conditions than under 

optimal water conditions.  

A few days after the treatment switch in 2017, the CT of cs plants was much higher than in the 

plants of other treatments (Figure 34 A). This suggests that plants in cs treatment were highly 

shocked when switched from optimal water supply to water stress condition. For several days after 

the reduction of the water supply, the loss of leaf turgor was frequently visible on cs plants.  
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Figure 33. Diurnal variations in the mean CT of genotype 858641 before (day 36 and 38) and 

after (Day 54 and 59) treatment switch in four different treatments in 2018. Bars represent mean 

± SE of seven replicates. 
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Figure 34. Daily mean canopy temperature (A and B) and CTD (C and D) of all genotypes plotted 

against days from planting in 2017 and 2018. Treatments switch date is indicated by a vertical 

broken line.  

3.5.7 Relation between CTD and DRYMp  

Pearson correlations were calculated to determine the relationship between daily means of CTD 

of each genotype and the genotype’s DRYMp calculated from the starch yield data of the same 

experiment and stress conditions (late, early or long-time stress). Since the tolerance index cannot 

be calculated for optimal water conditions, CTD in cc conditions was correlated with DRYMp 

calculated under ss conditions. Correlation coefficients are presented in Figure 35 and Figure 36. 

In both experiments, CTD under ss conditions correlated significantly with DRYMp especially 

during tuber bulking (Figure 35). Calculating the Pearson correlation for CTD values in different 

A B 

C D 
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intervals of the diurnal cycle, the best the correlations between CTD and DRYMp were found 

during the afternoon in the 2017 experiment (Figure 36). Significant correlation coefficient values 

were also found for CTD measured in the afternoon of 2018. Therefore, to improve the 

predictability of drought tolerance from CTD, CT should be measured in the afternoon. 

In summary CTD was correlated with drought tolerance (DRYMp) of genotypes under water 

stress conditions, especially during tuber bulking and when CT was measured in the afternoon.
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3.5.8 Mean CTD of tolerant and sensitive group  

Based on DRYMp values of the same experiment and long-term stress conditions, genotypes were 

grouped into the tolerant (DRYMp > 0) and the sensitive (DRYMp < 0) group (Sprenger et al. 

2015). The mean daily CTD of the tolerant group was plotted against selected plant age (Figure 

37). Tuber filling stage was selected as suggested by our study. The CTD of the tolerant group was 

smaller than that of the sensitive genotype (Figure 37), but the difference between tolerance groups 

was small. The mean CTD (7 hr to 21 hr) of a selected tolerant and a selected sensitive genotype 

and the difference between them are plotted against plant age in Figure 38. The difference between 

the highest (sensitive) and lowest (tolerance) CTD of genotypes was between 0.5 to 1.5 oC in 2017 

and between 1 to 2 oC in 2018 (Figure 38). This means genotypes in the tolerant group may keep 

stomata open for longer times and keep the canopy cooler than the sensitive group. 

 

Figure 37. Mean CTD for the group of tolerant (DRYMp > 0, blue) and sensitive (DRYMp < 0, 

red) genotypes under stress conditions (ss) plotted against the measurement day after planting.  

 

Figure 38. Mean CTD of the tolerant genotype with the lowest CTD values (DRYMp > 0, blue) 

and the sensitive genotype with the highest CTD values (DRYMp < 0, red) genotype plotted 

against plant age in selected growth stage, ss treatment in 2017 and 2018. Broken brown line (D) 

indicates daily CTD difference between the two genotypes. 
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3.5.9 CTD rank and tolerance group      

Genotypes were grouped in to tolerant (DRYMp >0) and sensitive (DRYMp < 0) based on relative 

starch yield of the same experiment. To select genotypes based on CTD values, CTD values of the 

respective season were ranked in ascend orders (see Table 17). If we select the top 50% genotypes 

of each year, the efficiency of selection of tolerant genotypes was more than 80%. This implies 

that most tolerant genotypes maintained cooler canopies under stress conditions. However, some 

tolerant genotypes (e.g 899748) showed higher CTD values than the median of the distribution. 

On the other hand, some susceptible genotype (900024 in 2018 experiment) showed lower CTD. 

This could be because different tolerance mechanism could exist in the studied genotypes.   

Table 17. Rank and CTD value of genotypes and their tolerance group (DRYMp >0 and DRYMp 

<0). Where T - tolerant and S - sensitive   

Season  2017 2018 

Rank  genotype CTD Tolerance  genotype CTD Tolerance  

1 900024 -1.41 T 899519 -0.47 T 

2 22497 -1.40 T 872477 -0.45 -- 

3 899922 -1.35 T 899665 -0.30 T 

4 866296 -1.31 T 900024 -0.13 S 

5 899522 -1.31 T 22497 -0.07 S 

6 899486 -1.30 T 858638 -0.05 T 

7 858638 -1.29 T 899486 -0.03 T 

8 899519 -1.28 T 899522 -0.03 T 

9 899834 -1.23 T 866296 -0.01 T 

10 899822 -1.18 T 899834 0.00 T 

11 850136 -1.15 S 899922 0.05 T 

12 899831 -1.11 S 899831 0.07 S 

13 872477 -1.05 S 858641 0.12 S 

14 866303 -1.03 S 866306 0.12 T 

15 899748 -0.99 T 872474 0.16 T 

16 858641 -0.99 T 899748 0.20 T 

17 869004 -0.97 S 866303 0.22 S 

18 899665 -0.93 T 899822 0.33 S 

19 866309 -0.91 T 869004 0.38 S 

20 872474 -0.86 S 866309 0.61 S 

21 866306 -0.76 S    
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3.5.10 Heatmap correlation between CTD and DRYM 

Mean CTD values were calculated from tuber filling plant age intervals and afternoon diurnal time 

range intervals. The DRYMp was calculated for each specific experiment and treatment condition, 

DRYMs were calculated from all FGH experiments and all field experiments. The Pearson 

correlation heat map was produced for correlations between DRYMp values (specific experiment, 

all FGH experiment and all field experiment) and mean CTD over selected growth stages and time 

intervals is presented in Figure 39 and Figure 40. In FGH conditions, CTD in ss treatment was 

better correlated with DRYM values of respective season and DRYM values of ss condition. 

Correlation values between CTD in FGH and DRYM values in field condition were mostly 

nonsignificant, which implies that drought tolerance of genotypes varied from experimental 

condition to experimental condition (FGH and field). This indicated that tolerance predicted in 

FGH condition may not be helpful in field experiment conditions and vice versa. The result is also 

supported by non-significant correlation between SY in field and in FGH conditions 

(supplementary Table S5).  

 

Figure 39. Pearson correlation heatmap of CTD measured in 2017 FGH experiment and DRYMp 

values. CTD values were measured from tuber filling plant age. DRYMcs, DRYMsc and DRYMss 

were DRYMp values in cs, sc and ss treatments, respectively. CTD_cc, CTD_cs, CTD_sc and 

CTD_ss were CTD of respective treatments. f - field trial. fmean and fghmean - DRYMp over 

field and FGH trial, respectively in 2011-2018.  
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Figure 40. Pearson correlation heatmap of CTD measured in 2018 FGH experiment and DRYMp 

values. CTD values were from tuber filling plant age. DRYMcs, DRYMsc and DRYMss were 

DRYMp values in cs, sc and ss treatments, respectively. CTD_cc, CTD_cs, CTD_sc and CTD_ss 

were CTD of respective treatments. f - field trial. fmean and fghmean - mean DRYM over field 

and FGH trial, respectively in 2011-2018.  

3.5.11 Polynomial model to catch diurnal canopy temperature change  

The hourly mean CTD data (5 to 20:00) in ss treatment and selected growth stage was predicted 

from time of the day by using second degree polynomial. Then Pearson correlation was run 

between DRYMp of the same experiment with quadratic and the linear coefficients. The 

correlation coefficients for the correlation between DRYMp and the linear regression coefficients 

were -0.45* (2017) and -0.48* (2018), and 0.43* (2017) and 0.48* (2018) for the quadratic 

coefficient. Thus, tolerance was related with slow change of CT. Diurnal CT change results in a 

graph that opened downward (see sample graph Figure 41) or attained maximum value. To 

estimate the maximum, x-value for the maximum was calculated as liner coefficient / (2 x quadratic 

coefficient). Then the maximum value is calculated by applying the original polynomial function 

to this x-values. The estimated maximum values were correlated with the DRYMp of the same 

experiment. In the 2018 experiment, the estimated maximum values were significantly and 
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negatively correlated (r = -0.52*) with DRYMp values, as expected inverse relationship between 

CTD and tolerance index. However, this result was not confirmed by the 2017 experiment. 

Altogether, linear coefficients, quadratic coefficient and estimated maxima of a polynomial 

regression of CTD on hour are potential predictors for drought tolerance.  

 

Figure 41. Mean CTD of all genotypes in (5:00 to 20:00) and fitted polynomial line ss condition 

in 2018.   

3.5.12 Diurnal time range selection by LASSO model   

In population B, CTD measured in afternoon showed better correlation with tolerance index than 

CTD measured before noon (Figure 36). For this case, DRYMp of the same experiment was 

predicted by using LASSO model from hourly mean CTD measured in the selected growth stage 

under long-term stress conditions. The LASSO model was selected, because CTD of consecutive 

hours were mostly high correlated and it was planned to select a robust diurnal hour to measure 

CT. Among the diurnal time ranges, the LASSO model selected 16:00, 14:00 and 11:00 hours in 

the 2017 dataset and 10:00 and 8:00 hours in the 2018 dataset (Figure 42). The progress of average 

square errors of training and test datasets of the LASSO model is presented in Figure 43. The 

summary statistics and parameter selection are presented as supplementary table (see 

supplementary Table S13 and supplementary Table S14). Even though the selected hours differed 

in two experiments, hours were in line with different reports (Balota et al. 2007; Karimizadeh 

2011; Hirut et al. 2017; Thapa et al. 2018),  which identified CT measurements between late 

morning to afternoon as suitable predictors for drought tolerance.  
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Figure 42. Coefficient progression and parameter selection by the LASSO model in 2017 and 

2018 experiments. hr - hour, numbers before + sign represented parameters order in the model. 

SBC - Schwarz Bayesian information criterion.    
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Figure 43. Progress of average square errors of training and test datasets of LASSO model. hr - 

hour, numbers before + sign represented parameters order in the model.    
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3.5.13 CTD as predictive parameter for DRYMp and starch yield (SY) 

In ss condition, CTD values measured in reproductive plant stage (Figure 35) and afternoon time 

range (Figure 36) showed better correlation with DRYMp calculated from the data of the same 

experiment. In this case, the mean CTD values from selected plant stage and diurnal time intervals 

were correlated with DRYMp of each experiment. In both experiments, mean CTD was 

significantly correlated with DRYMp and SY of the respective experiment. The correlation 

coefficients between DRYMp and mean CTD were -0.52* (2017) and -0.64** (2018) and between 

SY and mean CTD were -0.50* (2017) and -0.56* (2018). In the next part, DRYMp and SY were 

linearly predicted from mean CTD (Figure 44). Linear regression models for both relationships 

were significant and the ANOVA R2 values are shown in the figure below. This indicates that 

mean CTD under ss conditions could be one of the potential predictive parameters for DRYMp 

value (Figure 44 A, C) and SY (Figure 44 B, D). Generally, this study indicated that CTD was one 

of the potential parameters for screening potato genotypes for drought tolerance. 

 

Figure 44. Relationship between DRYMp (A, C) and Starch yield (SY, B, D) and mean CTD of 

genotypes in ss treatment grown under FGH in 2017 (A, B) and 2018 (C, D). 
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3.6 Principal component analysis 

Ahead of predicting tolerance from multiple predictive parameters in a single model, data 

exploration and visualization was done by Principal Component Analysis (PCA). PCA is a 

technique used to emphasize variation and bring out strong patterns in a dataset (Pitchaikani and 

Lipton 2017). As explained before, PCA focused on traits measured on long-term stress conditions. 

The standardize data of mean (LA, LI and CTD) and maximum (PH, Leaf area, DB, LPD and LAI) 

values were used for this analysis.  

In population A, two components accounted for 80% (2015) and 81% (2016) of the total variance 

(Figure 45) and the Eigenvalues are presented in supplementary Table S8. The first component 

had a high positive loading of the variable leaf area (2D and 3D) and high negative loading of the 

variables LA (see supplementary Table S9). This component illustrates the genotypic variation of 

leaf area and leaf angle. The second eigenvector has high positive loadings of PH and a smaller 

positive loading of leaf area of genotypes. LA loading was negative but the values were higher 

(absolute value) in the 2015 experiment than in the 2016 experiment. This component seems to 

visualize the variation in plant height. In population A, leaf area 2D and leaf area 3D were very 

close to each other in the biplot (Figure 45 ). This indicated the presence of a high correlation 

between leaf area 2D and leaf area 3D.   

In population B, two components account for 76% (2017 experiment) and 64% (2018 experiment) 

of the total variance (Figure 46) and three components explain 88% (2017 experiment) and 86% 

(2018 experiment) (Figure 47). Each subsequent component contributes less than 10 percent 

(Figure 47). The eigenvalues (supplementary Table S8) of the PCA vectors for each trial indicated 

that two or three components provided a good summary of the data (Figure 47). 

The first component has high positive loadings of the variables leaf area, LA and LAI and high 

negative loadings of the variables LPD and PH (supplementary Table S9). This component seems 

to illustrate the leaf area and LAI. The second eigenvector has high positive loadings of the 

variables DB and PH (2017 experiment) and CTD and LI (2018 experiment) and higher negative 

loadings of LA (2018 experiment). There is also a small positive loading of CTD in the 2017 

experiment. In 2018, this principal component seems to represent LA, CTD and LI, while during 

2017 it represented DB and PH. In both experiments, leaf area (3D and 2D) and LAI were to 

clustered together. In 2018 experiment, the parameters formed three close groups (Figure 46). The 
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first group contained leaf area and LAI, the second group contained CTD and LPD, PH and LI. 

The third group was LA. In 2017 experiment, CTD close to LPD. This suggests a high correlation 

between some parameters, especially between leaf area 3D, leaf area 2D and LAI. Therefore, 

multicollinearity should be considered when selecting multiple predictive parameters in a tolerance 

prediction model. 
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Figure 47. Variance explained by each principal component under long-term drought stress 

condition in 2015 to 2018  
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3.7 Clustering                            

The goal of clustering is to identify patterns or groups of similar objects within a dataset of interest 

(Madhulatha 2012). In this study, the closeness of two clusters was determined by Euclidean 

distance. Genotype tolerance levels (DRYMp) of the same experiment were color coded (blue- 

tolerant and red-sensitive) for each experiment and - combined over experiments - for each of the 

two populations. 

In population A (2016 experiment), 18 out of 20 genotypes in the top (cluster V) and 12 out of 15 

genotypes in the lower cluster (cluster I) were tolerant. The middle cluster contained around 50% 

susceptible genotypes (15 out of 28 genotypes) (Figure 49). However, this distribution was not 

observed in the 2015 experiment (Figure 48). In combined data from both experiments of 

population A, the lower cluster (I) contained more susceptible genotypes than the top cluster 

(supplementary Figure S9). 

In population B, in the 2017 experiment, clustering result indicated that most of the tolerant 

genotypes clustered in the lower (cluster I) of the cluster (9 out of 12 genotypes) and upper (cluster 

IV) (four out of five genotypes) clusters (Figure 50). In 2018, susceptible genotypes were 

overrepresented in the top (cluster IV) (three out of four genotypes) and tolerant genotypes were 

overrepresented in the bottom (7 out of 11 genotypes) clusters (cluster I and cluster II) (Figure 50). 

In the cluster analysis on combined data of both experiments, seven out of nine genotypes in the 

upper cluster (cluster II -V) were susceptible, but only one in the lower cluster (cluster I) 

(supplementary Figure S10).  

Altogether, the clustering analysis indicated that the cluster analysis on canopy data resulted in 

groups, in which either tolerant or sensitive genotypes were overrepresented. This indicated that 

canopy parameter values varied between tolerant and susceptible genotypes. Thus, tolerance 

prediction from canopy parameters may be possible especially in population B.  
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Figure 48. Cluster analysis for canopy parameters under ss treatment in 2015. Blue and red bars 

in front of the genotype codes represent the DRYMp values greater than zero and less than zero, 

respectively.  
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Figure 49. Cluster analysis for canopy parameters under ss treatment in 2016. Blue and red bars 

in front of the genotypes code represent the DRYMp values greater than zero and less than zero, 

respectively.  The cut point of the cluster was 1.25.  
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Figure 50. Cluster analysis for canopy parameters under ss treatment in 2017 (top) and 2018 

(bottom). Blue and red bars in front of the genotypes code represent the DRYMp values greater 

than zero and less than zero, respectively. The cut point of the cluster was 1.7.   
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3.8 Decision tree  

Decision tree is an advanced method for partitioning sets of items into classes (Nisbet et al. 2009). 

In this study, partitioning of genotypes in two classes of tolerance to long-term stress conditions 

was done for each experiment as well as combined over experiments for each population (Figure 

51 and Figure 52 and Figure 53). Tolerance class was separated based on DRYMp (each 

experiment) and DRYMp (combined over experiments) index, tolerant (DRYMp > 0) and sensitive 

(DRYMp < 0). The final model fit statistics are listed in supplementary Table S10 and the variable 

importance are shown in supplementary Table S11 for each experiment and combined over 

experiments of respective populations.  

The tree classification model was not effective in the separate experiments of population A. 

However, in data combined over years, the final tree model was generated with 4 nodes. The top 

and lower nodes were partitioned by A3D and PH, respectively (Figure 51). Leaf A3D greater than 

or equal to 304468 (node 2) resulted in a class that contained 70 % tolerant genotypes. The class 

with leaf A3D less than 304468 (node 2) and PH less than 436 (node 3) contained 66 % tolerant 

genotypes. The class with leaf A3D less than 304468 (node 1) and PH greater than or equal to 436 

(node 4) contained 58 % sensitive genotypes. The classification result indicated that tolerance may 

be predicted from PH and leaf area. Tolerance was related to shorter plant height and higher leaf 

area.    

In population B, the tree classification model was effective in the separate experiments and in data 

combined over the years. In the 2017 experiment, the final model contained eight nodes (Figure 

52). Nodes were determined by LP and LI. LP less than 218 (node 1) and LI less than 1.42 (node 

3) contained 89 % tolerant genotypes. LP less than 218 (node 1) and LI greater than or equal to 

1.42 (node 4) and LP less than 178 (node 7) contained 81 % tolerant genotypes. LP less than 218 

(node 1) and LI greater than or equal to 1.42 (node 4) and LP greater than or equal to 178 (node 

8) contained 73 % sensitive genotypes. The other node identifying the sensitive group was node 

2. Node 2 indicated that LP greater than or equal to 218 contained 75 % sensitive genotypes.    

In the 2018 experiment, the population was partitioned by LI and the final model contained two 

nodes (Figure 52). LI less than 1.43 (node 1) contained 64 % tolerant genotypes. However, LI 

greater than or equal to 1.43 (node 2) contained 90 % sensitive genotypes (0.90).  

https://www.sciencedirect.com/topics/computer-science/set-partitioning
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In data combined over the years of population B, the final tree model was generated with 6 nodes. 

The nodes were partitioned by LI (node 1 and node 2), LP (node 3 and node 4) and DB (node 5 

and node 6) (Figure 53). LI greater than or equal to 1.43 (node 2) contained 76 % sensitive 

genotypes. LI less than 1.43 (node 1) and LP less than 207 (node 3) contained 88 tolerant 

genotypes. LI less than 1.43 (node 1) and LP greater than or equal to 207 (node 4) and DB less 

than 40230178 (node 5) contained 81 % tolerant genotype. LI less than 1.43 (node 1) and LP 

greater than or equal to 207 (node 4), DB greater than or equal to 140230178 (node 6) contained 

54 % sensitive genotypes.   

In both populations, the output of the decision tree indicated that a tree model with only 2 or 4 

leaves provides a high degree of accuracy for classification. Generally, leaf area and PH 

(population A) and LI, LPD and PH (population B) were the most important parameters to 

differentiate between sensitive and tolerant genotypes. Therefore, considering these parameters 

during phenotyping for drought tolerance may be helpful.  
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Figure 51. Decision tree model on canopy parameters from genotypes cultivated under long-term 

stress conditions in 2015 and 2016. Where 1 - sensitive group (DRYMp < 0), 2 - tolerant group 

(DRYMp > 0), a3dmax - maximum leaf area 3D, phmax - maximum plant height.        
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Figure 52. Decision tree model on canopy parameters from genotypes cultivated under long-term 

stress conditions in 2017 or 2018. Where 1 - sensitive group (DRYMp < 0), 2 - tolerant group 

(DRYMp > 0), lpmax - maximum light penetration depth, limean - mean leaf inclination.      
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Figure 53. Decision tree model on canopy parameters from genotypes cultivated under long-term 

stress conditions in 2017 and 2018. Where 1 - sensitive group (DRYMp < 0), 2 - tolerant group 

(DRYMp > 0), limean - mean leaf inclination, lpmax - maximum light penetration depth, db - 

digital biomass.   
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3.9 Predicting tolerance from multiple parameters 

In the final step, I have attempted to improve drought tolerance prediction by integrating several 

independent morphological and physiological variables in one model to predict drought tolerance. 

Since most of the morphological and a physiological variable were mostly predictive under long-

term stress conditions, tolerance prediction from multiple variables focused on trait phenotypes 

under long-term stress conditions. For this purpose, DRYMp was predicted through multiple linear 

regression with stepwise variable selection (stepwise model) and with application of the Least 

Absolute Shrinkage and Selection Operator (LASSO model). LASSO regression is a type of linear 

regression that uses regularization. 

3.9.1 DRYMp values in specific trial’s, 2015-2018  

In this case, genotype tolerance was predicted from the means of morphological and physiological 

values per genotype of the respective experiment and combined over years of the respective 

population. In population B, LI and LPD (2017) and LI (2018) were maintained by the model as 

predictive parameters for tolerance (Table 18). In population A (2016 experiment), LA was used 

as predictive parameter for tolerance. However, tolerance prediction in the 2015 experiment was 

not effective.  DRYMp values across experiments were predicted from PH and LA in population 

A and from LI in population B (Table 18). The model’s adj R2 values of respective year and 

combined over years were higher for population B than for population A. Generally, tolerance was 

negatively correlated with PH and LA in population A and with LI and LPD in population B.  

Table 18. Genotype tolerance prediction from multiple parameters determined under ss condition, 

2015-2018. Int - intercept, para - parameter, est - estimate. 
 

Year (s) Para Est R2 Adj R2 

2016 Int. 0.02   

 LA -0.04 0.12 0.11  

2017 Int.  4.39   

 LI -2.77 0.33  

 LPD -0.05 0.58 0.53 

2018 Int. 4.27   

 LI -3.01 0.50 0.47 

2015-2016 Int. -0.02   

 PH -0.04 0.06  

 LA -0.02 0.10 0.09 

2017-2018 Int. 0.04   

 LI -0.05 0.27 0.25 
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3.9.2 Prediction of mean tolerance in different environments  

Finally, I tested whether the drought tolerance calculated from starch yields in different 

environments can be predicted from morphological and physiological parameters measured in 

experiments that were performed in the FGH. For this purpose, average DRYMp values were 

calculated from relative starch yields in drought stress experiments in the FGH and on different 

field sites in 2011 – 2018. Data were obtained from the projects VALDIS and TROST. Only a 

limited number of genotypes are represented in all experiments. The results of the tolerance 

prediction from average morphological and physiological values are shown in Table 19. Among 

the predictive parameters, PH (population A) and PH and LI (population B) were selected as main 

predictors for average tolerance in FGH and (FGH and Field) conditions. This result indicated that 

PH and LI were potential predictors for a wider range of genotypes. The model R2 was higher in 

population B than population A (Table 19).  

Altogether, drought tolerance prediction under long-term conditions across different test 

conditions (FGH, Field) and wider genotypes could be possible from LI and PH. Therefore, 

measuring LI and PH during drought tolerance evaluation may be helpful to predict tolerance and 

variety selection.  
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Table 19. Predicting average tolerance in FGH plants and (FGH and Field) plants, mean of 

morphological parameters 2011-2018. Pop - population, Int - intercept, para - parameter. 

Pop  Experiment  Model Entered R2 Adj r2  Para. Estimate 

A FGH Stepwise  Int. 0.00    

   PH 0.11 0.09 PH -0.05 

A  LASSO Int. 0.00    

   PH 0.11 0.09 PH -0.05 

A FGH and Field Stepwise Int. 0.00  Int. -0.01 

   PH 0.10 0.08 PH -0.03 

A  LASSO Int. 0.00    

   PH 0.09 0.07 PH -0.02 

B FGH Stepwise Int. 0.00  Int. 0.03 

   PH 0.46  PH -0.07 

   LI 0.62  LI -0.05 

   DB 0.68 0.55   

B  LASSO Int. 0.00  Int. 0.01 

   PH 0.26  PH -0.04 

   LI 0.46 0.36 LI -0.02 

B FGH and Field Stepwise Int. 0.00  Int. 0.02 

   PH 0.52  PH -0.06 

   LI 0.70 0.65 LI -0.03 

B  LASSO Int. 0.00  Int. 0.01 

   PH 0.28  PH -0.04 

   LI 0.56  LI -0.01 

   LPD 0.69 0.48   
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4. Discussion 

4.1 Yield and drought tolerance  

In potato, water stress is most detrimental to tuber initiation, tuber bulking and thus tuber yield 

(Schafleitner 2009; Obidiegwu et al. 2015; Hirut et al. 2017). The yield reduction results from 

decreased leaf area, decreased photosynthetic rates and reduced partitioning of assimilate to tubers 

(Obidiegwu et al. 2015; Dahal et al. 2019). Yield reduction under water stress depends on the 

tolerance of genotypes to insufficient water supply. Drought tolerance variation between potato 

genotypes has been reported for European, Indian, USA and African potato cultivars (Stark et al. 

1991; Sprenger et al. 2015; Gerhards et al. 2016; Mahmud et al. 2016; Hirut et al. 2017). In this 

study, tolerance data of 71 potato genotypes from two test populations were used; these data were 

based on yield and yield related traits on plants grown under screenhouse and field conditions 

(Table 1). The genotypes were genotyped by Prof. R. Horn at the University of Rostock as part of 

the collaborative project VALDIS Trost.  In both populations, genotypes varied significantly in 

tuber yield, starch yield, tuber number, and average tuber weight under control and different water 

stress conditions. The stress condition included early stress (stress until flowering), late stress 

(stress since flowing) and long-term stress.  

Higher reduction of tuber and starch yield was found after long-term water stress compared to 

shorter early water stress and control. Long-term stress resulted in a lower number of tubers and 

lower average tuber weight (Figure 10) compared to control conditions. The fact that yield 

reduction under drought results from decreased tuber numbers and reduced average tuber weight 

has been reported before (Schafleitner et al. 2007a; Obidiegwu et al. 2015; Hirut et al. 2017; 

Aliche et al. 2018). The effect of drought on potato depends on the timing of the drought in the 

developmental cycle (van Loon 1981; Obidiegwu et al. 2015). In this study, tuber and starch yield 

were more reduced by late stress during tuber bulking than by early stress during the vegetative 

stage. Rudack et al., (2017) found that many physiological traits respond more sensitively during 

tuber bulking than in earlier stages. Thus, insufficient water supply during tuber bulking results in 

an inhibition of tuber bulking. This hypothesis is supported by our observation that average tuber 

weight was not affected by early stress. The more detrimental effect of long-term and late stress 

compared to early stress was found in both screenhouse and field (2018) experiment, suggesting 

that the sensitivity of the tuber bulking stage was apparent in both test environments. 
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Early stresses had no effect on average weight per tuber. This implies that yield reduction under 

early stress may have resulted from a lower number of tubers produced. (Aliche et al. 2018) and 

(Dahal et al. 2019) found that drought during early growth stage suppresses tuber initiation 

substantially. According to (Struik 2007a), tuberization occurs between 15-65 days from planting 

so any stress between this time range may inhibit tuber initiation and finally reduce the number of 

tubers. However, in our studies the effect of early stress on tuber number was too variable between 

years to come to a straight conclusion. Even though the effect of early stress on tuber number was 

not consistent in this study, early stress resulted in reduced final tuber and starch yield compared 

with control conditions. Different reports indicate that early stress affects plant establishment and 

final yield in potato (Obidiegwu et al. 2015; Sprenger et al. 2015; Dahal et al. 2019). The total 

tuber and starch yields were least reduced by early stress and most by long-term stress. Thus, our 

results confirm that duration and timing of drought affect tuber yield and starch yield.  

4.2 Drought tolerance index  

Drought indices provide a measure of drought tolerance of a genotype based on the loss of yield 

under drought-conditions in comparison to optimal water supply conditions (Mitra 2001; Sprenger 

et al. 2015). Different yield-based drought tolerance indices SSI, SST and GMP (Fischer and 

Maurer 1978; Rosielle and Hamblin 1981; Fernandez 1992) were used in different crops to 

quantify tolerance. In the present study, drought tolerance of genotypes were quantified by 

calculating the tolerance index DRYM, which is the deviation of relative yield from the overall 

median (DRYM) (Sprenger et al. 2015). Since its values centered at zero, interpretation of DRYM 

values is simple. DRYM value of zero indicates average tolerance, negative values indicate 

sensitivity and positive values indicate tolerance. In addition to the easy interpretation of the 

values, the DRYM is more powerful than SSI or GMP to distinguish tolerant and sensitive lines 

independent of the yield potential (Sprenger et al. 2015).  

In the present study, analysis of variance on DRYMp of the genotypes indicated that there was a 

significant variation in drought tolerance of genotypes of both populations under screenhouse and 

field conditions. The analysis of variance indicated that tolerance levels of genotypes varied 

between years, stress timing (early, late and long-term stress) and test environments (screenhouse, 

field) (Table 4 and Table 5). Generally, the results suggest that more than four experiments and a 

range of experimental conditions are required to predict drought tolerance under variable 

agricultural conditions.  
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4.3 Laser scanner automatic phenotyping  

Different automatic phenotyping platforms have been used for different crops and objectives 

(Chen et al. 2014; Li et al. 2014; Humplik et al. 2015). In this study, plants were phenotype by 

laser scanner, which provides repeated, non-destructive measurements of the canopy surface. 

Through segmentation and different algorithms of 3D point cloud extraction of canopy surface, 

we obtained six estimates of canopy parameters for each day. Canopy parameters generated in this 

study were leaf area, plant height, digital biomass, leaf area index, and leaf angle and leaf 

inclination.  

4.3.1 Laser scanner data quality control and data deconvolution 

The plants were automatically phenotyped for about five, ten, eight and seven weeks in 2015, 

2016, 2017, and 2018 respectively. The data of all years were downloaded from the database of 

the scanner software and proc gplot and proc univariate were run in SAS to check for outlier and 

data uniformity. At an early stage of phenotyping, data uniformity was low as a result of 

differences in plant establishment. Plant establishment is affected by the type of planting material 

(tuber vs tissue culture plantlets) and the size or weight of seed tubers planted (Lommen and Struik 

1994; Hossain et al. 2011). In population B, tubers seed were used for planting. As weights were 

not exactly equal that may have caused variation in plant establishment especially between 

replicated plants. In population A, tissue culture plantlets were used as plant material. Canopy 

structure was substantially changed in early plant establishment, which may result from the 

adaptation of the plantlets to the big pots. Around the end of the observation period, shoots started 

to log and intermingle so that data quality was reduced again at the late stage of observation. In 

addition to the problems above, shoots logged before attaining maturity especially in population 

A (Figure 19). These problems required restricting the time window for evaluation to 15 days in 

population A, while more than 30 days could be used for the fitting of the growth curves and the 

calculation of the mean values in population B.  

4.3.2 Estimation of parameters from continuous data  

From continuous measurements I estimated mean, maximum, diurnal range and initial growth rate 

(by fitting different growth curves) of canopy parameters for individual genotypes, treatments and 

experimental conditions. Maximum values were determined for parameters that have maximum 

biological limits in the phenology of the plants, like plant height. For these parameters, maximum 

values of genotypes were determined for each genotype and treatment as mean of maximum values 
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of the replicates. In contrast, leaf angle and leaf inclination were calculated as mean of all 

observations because values of these parameters oscillated without a clear trend in the age window, 

during which the measurements were performed. 

Many studies indicate that canopy parameters are related to water stress tolerance and yield of 

different crops (Stolf-Moreira et al. 2010; Chen et al. 2014; Obidiegwu et al. 2015). In this study, 

the association of the given canopy parameters (see above) with the tolerance index calculated 

from tuber starch yield data of respective experiments was determined by Pearson correlation 

analysis and multivariate analysis after quality control and outlier removal, followed by the 

calculation of descriptive values (traits) (see canopy traits in Materials and Methods).  

Average and Maximum values  

The maximum value of leaf area, plant height, digital biomass, leaf area index and mean values of 

leaf angle and leaf inclination values varied significantly among genotypes. The significant 

genotype x treatment interaction effects on several parameters found in all experiments implied 

that the drought treatments affected shoot development differently in different genotypes. 

Different studies indicate that water stress reduces plant height (Deblonde and Ledent 2000; 

Anithakumari et al. 2012; Hirut et al. 2017), ground cover (Deblonde and Ledent 2000; Hirut et 

al. 2017), and leaf growth (Deblonde and Ledent 2001; Souza et al. 2014).  

The correlation analysis in population B indicated that tolerant genotypes under stress conditions 

showed lower plant height, shorter light penetration depth, higher leaf area 2D, and higher leaf 

angle (more horizontal leaf) than sensitive genotypes. This may be because larger leaf area 

increases interception of solar radiation and increase the efficiency of dry matter accumulation. 

According to (Lommen and Struik 1994; Boyd et al. 2002), intercepted radiation levels are 

determined by leaf area. Previous studies (Deblonde and Ledent 2000; Schafleitner et al. 2007a; 

Hirut et al. 2017) show that groundcover, which is strongly related to leaf area index and biomass, 

is correlated with tuber yield under both drought and well-watered conditions. In line with this, 

(Stolf-Moreira et al. 2010) indicate that tolerant soybean cultivars exhibit a larger leaf area than 

less tolerant cultivars. In addition to larger leaf area, compact canopy under stress condition may 

help to modify micro-climate of the canopy and reduce evapotranspiration. According to (Huang 

1985), a compact canopy reduces evapotranspiration from the soil and lower leaf surface.  

The leaf angle affects the light interception by the leaf and greatly modifies the leaf energy balance 

and canopy microclimate (Ehleringer and Forseth 1990). In this study, a higher leaf angle (more 
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horizontal leaves) was related to high tolerance in population B. Leaves that are more horizontal 

may improve solar light interception and consequently photosynthesis of a plant and thus improve 

dry matter accumulation. However, different studies indicate that erect leaf posture is associated 

with reduced susceptibility to photoinhibition and reduced risk of overheating (Pastenes et al. 

2005; Burgess et al. 2017). Among all the traits (descriptive parameters) considered in population 

B, mean leaf angle under long-term stress showed the most consistent correlation with the 

tolerance index calculated from data of the same experiment. Thus, leaf angle may be a promising 

predictor for drought tolerance under long-term stress.  

In population A, plants lodged prematurely before they reached the maximum canopy development 

during 2015 and 2016. This may have contributed to the low reproducibility of parameters between 

years. As a result, tolerance prediction from maximum and mean canopy parameters in population 

A may not be effective.   

Diurnal leaf movements 

Diurnal leaf movements occur in a variety of plants in response to the sun’s movement across the 

sky (Zhu et al. 2015; Feng et al. 2016), growth stage (Luo et al. 2013) and environmental stress 

(Haile 2000; Pastenes et al. 2005; Zhu et al. 2015). Under soil water stress, the leaves or leaflets 

increase their leaf angle until they are almost vertical at midday (Ehleringer and Forseth 1990). 

Changes in leaf orientation in response to moisture stress result in architectural modification of the 

canopy (Haile 2000). In this study, leaf movements caused diurnal oscillation of morphological 

parameters under all treatment conditions. However, the calculated daily range of the 

morphological parameters of genotypes did not show any significant correlation with the tolerance 

level. This may be because different genotypes use different adaptation mechanisms to drought. 

Some genotypes may have responded by changing the leaf orientation and consequently reduce 

heat load to the leaf (Haile 2000) , and others may have responded to drought stress with epinasty 

or with the leaves curving downwards (Romero et al. 2017). Others may have responded 

physiologically (Obidiegwu et al. 2015; Rudack et al. 2017). One or a combination of the above 

mechanism may affect the correlation between tolerance and leaf movement. Therefore, drought 

tolerance prediction from diurnal leaf movement may not be successful. 

4.3.3 Daily canopy structure and tolerance  

Canopy structure refers to the volume and distribution of above-ground plant parts. Different 

studies indicate that canopy structure is affected by growth stage (Luo et al. 2013; Feng et al. 
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2016). In this study, the association between daily mean canopy parameters and respective 

experimental drought tolerance index (DRYMp) was calculated by Pearson correlation.  

In population A under long-term stress conditions, mean leaf area (2D and 3D) and mean leaf 

angle were significantly correlated with DRYMp especially during the reproductive stage (Figure 

25). According to (Obidiegwu et al. 2015) the reproductive stage includes tuber initiation, tuber 

filling and tuber maturing. However, the correlation values were relatively weak. In population B, 

under long-term stress conditions, mean leaf area index and mean leaf angle were positively 

correlated with DRYMp (Figure 26 and Figure 27). On the other hand, mean light penetration 

depth was negatively correlated with DRYMp values. Most of the above correlations were found 

in late stress conditions in the 2017 experiment. Maintaining leaf area (Boyd et al. 2002; Stolf-

Moreira et al. 2010) and developing a compact canopy (Huang 1985) help plants to increase 

photosynthetic efficiency and consequently increase assimilate production. Therefore, in this 

study, higher leaf area and lower light penetration may help tolerant plants to produce more 

assimilates to bulk the tubers than susceptible plants, especially in the reproductive stage.  

In both populations the association between canopy parameters and DRYMp was relatively higher 

in the reproductive stage than vegetative stage of the plant. This could be because of genotype 

difference between the populations and/or environmental differences. Another potential source of 

variation for low correlation coefficients in population A could be because of lodging of the plants 

before they attained the biological maximum value of canopy parameters.   

In both populations especially under long-term stress conditions, the association between tolerance 

and canopy parameters was improved in the reproductive stage than vegetative stage. Off course, 

this stage was identified by different studies (van Loon 1981; Obidiegwu et al. 2015; Rudack et 

al. 2017; Dahal et al. 2019) as one of the most important stages in drought tolerance. Therefore, 

water stress tolerance prediction from canopy parameters looks promising, especially during the 

reproductive stage in long-term stress conditions.    

4.3.4 Initial growth rate and/or average morphological values  

Plant growth follows a sigmoidal growth curve (Damgaard and Weiner 2008; Chen et al. 2014). 

The advances in plant growth modelling have allowed a deeper understanding of relationships 

between plants and their abiotic environment (Paine et al. 2012). In this study, we used time-lapse 

phenotypic data to model and predict plant growth under control and different water stress 

conditions. We used linear models for approximately linearly increased part of the data and 
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polynomial model for the whole part of the data set.  Confounding effect of climate data for model 

prediction were not considered because of technical limitations.   

Linear initial growth  

The rate of change of morphological parameters over time was determined by linear regression.   

For Population B in 2017, lower growth rates of plant height under control and late stress 

conditions were associated with drought tolerance. This agrees with results found for barley (Chen 

et al. 2014) which suggest that breeding for higher drought tolerance could simultaneously select 

lower plant height. Plant size is inversely related with growth reduction and directly related with 

osmotic adjustment during osmotic stress (Blum et al. 1997). (Boyd et al. 2002) show that 

genotypes that exhibit less reduction in growth and carbon assimilation rate under stress exhibit 

less tuber yield reduction. This pattern fits with results found for population A (experiment 

performed in 2015), where tolerant lines had larger growth rate of leaf areas as compared to 

sensitive lines. Therefore, the inconsistency of results in two populations may result from different 

genetic backgrounds of the populations and/or from environmental effects like higher VPD in the 

2018 experiment. The genetic background of the two populations differ as population B contained 

commercial varieties that were not present in population A.    

Average leaf inclination affects light interception by the leaf and greatly modifies the leaf energy 

balance and canopy microclimate (Ehleringer and Forseth 1990). In this study, leaf inclination 

changes with plant age under control (2017 and 2018) and long-term stress (2017) conditions and 

was positively correlated with tolerance level (DRYMp) of each trial under long-term stress 

conditions. The parameter leaf inclination considers leaf orientation plus leaf area (see material 

and methods). This could have improved the association of tolerance with leaf inclination 

compared to leaf angle. A more vertical leaf angle (low value of leaf angle) results in a higher 

value for leaf inclination. The average leaf angle changes with plant age under control condition 

(2018) was negatively correlated with DRYMp. According to (Falster and Westoby 2003), steeper 

leaf angels potentially lead to an improvement in whole day carbon gain by enhancing light 

absorption at low solar angles. In line with this, tolerant genotypes presented more upright leaves 

under control condition than sensitive genotypes. Since average leaf inclination per plant age under 

control conditions showed a consistent relationship with drought tolerance, it may be a useful 

parameter for tolerance prediction. Measurements under control conditions are preferable to those 
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under stress conditions as optimal soil water content is easier to maintain in managed trials than 

drought stress conditions (Stark et al. 1991). 

Polynomial regression 

In contrast to the linear model that was fitted for the early growth period, the polynomial model 

was estimated for the entire growth period until plants attained maximum canopy parameters. 

Generally, tolerance levels showed significantly negative correlations with linear coefficients, and 

positive correlations with the quadratic coefficients of the model. A lower growth rate seems to be 

related with tolerance. This fits with the observation that tolerant genotypes showed lower average 

plant heights, digital biomass and leaf area index in population B and lower growth rates of leaf 

area in 2016 in population A. The result was not consistent across populations and seasons, which 

implies that tolerance prediction from fitted polynomial growth functions could be difficult to 

generalize.  

4.3.5 Tolerance prediction from single morphological parameters  

Different reports indicate that tolerance index could be linearly predicted from single or multiple 

plant parameters. In wheat, (Mason and Singh 2014) predict yield from canopy temperature and 

covariate of plant height and days to heading. (Frels et al. 2018) also predict agronomic and 

nitrogen use (NU) traits from vegetation indices. In potato, (Hirut et al. 2017) predict drought 

tolerance from tuber yield and number of days from planting to 50 % flower bud formation. (Stark 

et al. 1991) predicted drought tolerance from canopy temperature depression. In this part of the 

study, DRYMp in a particular experiment was linearly predicted from average or maximum values 

per genotype of each single independent morphological trait. In population A, tolerance prediction 

was only possible in the 2016 experiment from mean LA under long-term water stress. In 

population B, tolerance under long-term stress conditions were predicted from either mean LA or 

mean LI. In 2017, tolerance was also predicted from PH and LPD. Additionally, tolerance 

predictions under cc (LPD or LI) and cs (LPD or PH) conditions were possible in 2017. This 

indicated that tolerance in the FGH could be predicted from different single independent predictors 

especially under long-term stress conditions. Therefore, considering these parameters during 

tolerance evaluation may be helpful. However, the model adj R2 values of most traits were small 

especially in population A (Table 14). This indicated that tolerance prediction from single traits 

may not be sufficient. According to (Ekanayake 1989; Luo 2010), tolerance results from a 
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combination of different mechanisms, therefore tolerance prediction from a single parameter is 

rarely successful. Therefore, in the next step, tolerance was predicted from different morphological 

and physiological traits in a single model. Multivariate predictive models are discussed in detail in 

section 4.8 below. However, tolerance prediction from single morphological and physiological 

traits was only possible (e.g. CTD) or improved (e.g. LPD) for long-term stress data, therefore 

multiple regression, visualization and clustering analysis focused on long-term stress data sets.  

4.4 Canopy temperature (CT) and canopy temperature depression 

(CTD) 

4.4.1 Quality control and data convolution 

In 2017 and 2018, CT was measured once every 30 min between 27 to 73 DFP (2017) and 24 to 

74 DFP (2018) by IRT. The CT of a particular plant was selected from the continuous 

measurements of IRT based on the timestamps of the plantEye data. Therefore, any problems with 

the timestamps of the laser scanner data will affect the data quality of IRT data. For example, in 

the 2017 experiment the speed of the laser scanner varied throughout the measurement periods, 

which made timestamp calculation for particular plant positions difficult. This resulting data 

integration was time consuming and prone to error. As a solution, timestamps were calculated 

based on daily scanning speed and plant position. In addition, they were crosschecked with the 

start time of the continuous scanning data (Figure 28). The start time of each scan was clearly 

visible from continuous scanning data.  

Finally, all data are available in database. A few data points are missing as a result of technical 

problems. The data set outliers were trimmed at plus or minus two standard deviations, 

but Shapiro-Wilk test indicated that the data set was not normally distributed (supplementary 

Table S15). This could be explained by the high CT difference betweeen genotypes (tolerant and 

sensitive group) (Figure 30). Therefore, the final data analysis was done after outlier removal 

without data transformation. This may have reduced the power of the analysis.  

4.4.2 CT as a drought tolerance marker  

There is a close inverse relationship between canopy temperature and transpiration cooling, which 

makes leaf canopy temperature a reliable indicator of plant water stress (Stark et al. 1991; Blum 

2009; Ahmed et al. 2011). Different studies in alfalfa and turfgrass (Blonquist et al. 2009), wheat 

(Blum et al. 1982; Thapa et al. 2018), potato (Mahmud et al. 2016; Hirut et al. 2017), cotton 
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(Hatfield et al. 1987), durum wheat (Guendouz et al. 2012), and sorghum (Olufay  et al. 1993) 

found that plants show higher canopy temperature under stress conditions. This relationship results 

from stomata closure of plants that experienced decreased water uptake due to soil water depletion. 

This reduces transpiration and increases canopy temperature. Likewise, in our experiments the 

mean CT was higher for plants under stress conditions than for plants under optimal water 

conditions (Figure 29).  

In our study, mean VPD ((Figure 8 and Figure 9), CT and CTD (absolute values) were higher in 

2018 than in 2017, indicating that plants were potentially under more stress in 2018 than in 2017. 

This matches the larger reduction in tuber and starch yield in 2018 compared to 2017 (Figure 11 

and Figure 12). The yield reduction was observed in all treatments, which implies that another 

environmental stress enhanced drought effects in 2018. One of the potential environmental stresses 

in the 2018 experiment was high air temperature (supplementary Figure S5). As potato grows 

optimally at 14 - 22o C (Struik 2007b), the relatively higher temperature values in the 2018 

experiment may have led to heat stress and/or enhanced the effects of drought stress. Heat stress 

effects were reported for potatoes that grow at a temperature of 29 oC and above (Lafta and 

Lorenzen 2015; Krystyna 2017). In 2018, air temperature in the afternoon (12:00 -19:00) were 

frequently above 30 oC especially in the late stage (after 67 DFP) of the plant (supplementary 

Figure S5). According to (Krystyna 2017), heat stress during the growing season has a negative 

effect on the final yield. The effect is strongest when heat affects plants during flowering.  

In both years, genotypic variance was significant for CT and CTD under all treatment conditions. 

CTD variation in potato genotypes has been reported for European, Indian and African potato 

populations (Stark et al. 1991; Gerhards et al. 2016; Mahmud et al. 2016; Hirut et al. 2017). In the 

present study, higher mean canopy temperatures under long-term drought stress conditions were 

associated with yield reduction (supplementary Table S12). High mean canopy temperatures 

indicate that sensitive genotypes were not able to maintain adequate transpiration rates and 

therefore transpiration cooling was reduced. Lower transpiration is linked to a reduction in 

photosynthetic rates and therefore reduction in yields. Similar results have been reported for potato 

(Gerhards et al. 2016; Mahmud et al. 2016), wheat (Blum et al. 1982) and sorghum (Mutava 2012).  

Different reports suggest canopy temperature depression (CTD) as a potential predictor for drought 

tolerance. However, there are different opinions on the condition of CT measurements and the 
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determination of CTD. (Blum et al. 1982; Gardner et al. 1986) propose to measure CTD under 

drought stress to identify cooler canopies, because higher transpiration rates associated with high 

CTD indicate more growth and yield. In contrast, others have suggested measuring CTD under 

well-watered conditions to identify warmer canopies because smaller transpiration rates associated 

with warm canopies indicate greater water conservation and therefore more water for growth and 

reproduction later in the season (Pinter et al. 1990; Stark et al. 1991; Hirut et al. 2017). In the 

present study, DRYMp calculated from individual experiments correlated with CTD measured 

under long-term stress condition in the reproductive stage of plant, but not under control 

conditions.   

4.4.3 Effect of developmental stage on CT and CTD 

Potato developmental stage is classified into five distinct growth phases (Obidiegwu et al. 2015). 

The exact timing of these growth phases depends on many environmental factors, among them 

water supply. In this study, the effect of water stress on the relation between CT and developmental 

stage was assessed from CT measured throughout different plant growth stages.    

In line with other reports (Blum et al. 1982; Reynolds et al. 2001; Mainassara et al. 2011; Talebi 

2011), our tolerant potato genotypes showed a cooler (1.5 oC in 2017 and 2 oC in 2018) canopy 

under long-term stress conditions than the sensitive genotypes. This may be because tolerant 

groups may keep the stomata open for longer times and keep the canopy cooler than susceptible 

group. This was especially the case during tuber bulking. During this stage, tolerant genotypes 

maintain photosynthesis and transpiration to produce assimilates that bulk the tubers.  

Different studies indicate that growth stage affects the association between CTD, yield and 

tolerance index in different crops. In wheat (Reynolds et al. 2001; Bilge et al. 2008; Abdipur et al. 

2013), the association between CTD, yield and tolerance index is strongest during anthesis and the 

milky stage of grain development. In contrast, (Epure et al. 2017) suggest that the effect of growth 

stage on the association between CTD and yield of wheat is location dependent. In chickpea 

(Purushothaman et al. 2015), selection for grain yield through CTD is most efficient two weeks 

after the mean flowering time. Our result confirms that the growth stage has to be considered when 

measuring CTD as tolerance prediction parameter.  
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4.4.4 Effect of diurnal cycle on CT and CTD 

CT varies through the 24-hour cycle. CT follows the diurnal cycle of the air temperature, solar 

radiation and vapor pressure deficit (Olufay  et al. 1993; Balota et al. 2007; Thapa et al. 2018). 

CTD depends on the light-depend change in photosynthesis and thus stomatal transpiration. 

Photosynthesis is furthermore influenced by the internal circadian rhythm of the plant. In this 

study, the highest correlations between CTD and tolerance index were observed at and after noon. 

This may be because tolerant genotypes may continue photosynthesis and thus transpiration 

cooling longer in the afternoon than susceptible genotypes. Numerous reports indicate that self-

cooling is often mostly effective at or after midday. In Artemisia ordosica, self-cooling is most 

effective between 9:00-16:00 (Yu et al. 2017). (Mason and Singh 2014) found highest CTD 

between 1:00 pm and 7:00 pm for sorghum. In wheat, (Amani et al. 1996; Abdipur et al. 2013) 

found remarkably high correlations between grain yield and CTD at or after midday. For potato, 

best correlations between CTD and tolerance index were found at 13:00 (Mahmud et al. 2016) and 

between 11:00 and 15:30 (Gerhards et al. 2016).  

Furthermore, significant correlations between CTD and tolerance index were also observed during 

nighttime, especially in the 2018 experiment. The preliminary result of (Ramirez et al. 2017) 

indicates the presence of nighttime transpiration in potato. Nighttime transpiration has also been 

described in wheat (Richards et al. 2002; Balota et al. 2007) and other C3 and C4 species (Snyder 

et al. 2003; Caird et al. 2007) in low-humidity environments. In potato, nocturnal transpiration is 

linearly correlated with tuber yield (Ramirez et al. 2017). To our knowledge, there are no other 

reports in the literature of consistent genotypic differences for CTD during the night in potato. 

4.4.5 Effect of micro-climate on CT and CTD 

CTD is affected by many physiological factors, which makes it a powerful integrative trait. 

However, CTD is sensitive to many environmental factors like soil water status, air temperature, 

relative humidity, and incident radiation (Reynolds et al. 2001). In line with this, high correlation 

values between CT and average midday (10-14) VPD, daily mean RH, and air temperature were 

observed in this study (supplementary Figure S6). According to (Blum et al. 1982) and (Amani et 

al. 1996), CTD is best determined at high vapor pressure deficit conditions associated with low 

relative humidity and warm air temperature conditions. In this study, the correlations between 

CTD and tolerance index were higher in the 2018 than the 2017 experiment. This may result from 
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the higher average VPD in 2018 (Figure 9). Therefore, it is important to consider the micro-climate 

when deciding when to measure CT in order to estimate CTD as a predictor for drought tolerance.  

4.4.6 Conclusion on CTD measurements for marker development  

Under long-term stress conditions, tolerance of genotypes can be linearly predicted from CTD. 

The variation in DRYMp explained by our linear regression model was about 0.27 (2017) and 0.40 

(2018). Different studies in wheat (Epure et al. 2017), chickpea (Purushothaman et al. 2015), 

potato (Gerhards et al. 2016), and sorghum (Mutava 2012) suggest that CTD can be used to predict 

yield or tolerance in different crops. This study thus confirms that the best prediction for drought 

tolerance in potato is to perform CT measurements around noon during tuber-bulking stage in 

drought-stressed plants. 

4.5 Principal component analysis 

Principal component analysis (PCA) is a technique used to visualize variation and strong patterns 

in a dataset. PCA is often used as an explorative tool to generate hypotheses. In this study, PCA 

was performed on morphological and physiological parameters measured under long-term stress 

conditions. The total variance explained by the first two components was higher than 75% and 

together with the third component they explained more than 97% (in population A) and 86% (in 

population B). This indicted that two or three components provided a good summary of the data. 

The first component contained the variance of leaf area and LAI. The second component depicted 

the variance of PH, LA, CTD and LI. Highly correlated phenotypic components pointed in roughly 

the same direction. Nearby points in the biplot represented samples with similar patterns (Han et 

al. 2019). In this study, LAI and leaf area (A3D and A2D) were close to each other. The other 

group showing a similar pattern was observed between CTD, LPD and LI. There may be high 

multicollinearity between these parameters, which has to be considered during the fitting of 

multiple regression models.  

4.6 Clustering 

Genotypes were clustered based on morphological and physiological parameters for each 

experiment and combined across experiments for each population. In population B, tolerant and 

susceptible genotypes were allocated to different clusters. This indicted tolerant genotypes of 

population B were morphologically and physiologically more similar to each other than they were 
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to the sensitive genotypes. In 2017, tolerant genotypes were allocated to two different clusters 

suggesting that the group of tolerant genotypes is not uniform under all environmental conditions.  

In population A, there was no clear relationship between the allocation to clusters and the drought 

tolerance. This implies that tolerance prediction from morphological and physiological parameters 

may be less effective in population A than in population B.  

4.7 Decision tree 

Decision trees are the most sophisticated methods for partitioning sets of items into classes (Nisbet 

et al. 2009). In this study, the tolerance classes sensitive (DRYMp <= 0) and tolerant (DRYMp > 

0) were predicted from canopy parameters in a decision tree model.  

 In population A, no decision tree could be generated for the separate datasets in 2015 and 2016. 

When a decision tree was fitted on the data from both years, PH and leaf area were selected as 

discriminating parameter for tolerance classes. In population B, the tree model selected different 

discriminating parameters in each experiment and for the combined dataset of both years. In 

respective experiment dataset LPD, LI and PH (2017) and LI (2018) were selected as 

discriminating parameters. In combined 2017 plus 2018 data set, LI, LPD and DB were selected 

as discriminating parameters. Decision trees for each experiment as well as for the combined data 

set indicated that LI was consistently used as discriminating parameter between tolerant and 

sensitive groups.          

Generally, discriminating tolerance and sensitive groups by decision tree was more efficient in 

population B than population A. This difference could be due to the additional canopy parameters 

measured in population B, the longer observation period or the higher genotypic variability in 

population B. In both populations, the tolerant class showed larger leaf area, shorter plant height, 

more compact canopies and more horizontal leaves under long-term stress conditions. Therefore, 

considering these parameters may be helpful to identify tolerant genotypes under long-term stress 

conditions.  

4.8 Prediction of DRYMp from different parameters in a model  

In the final step, I have tried to improve drought tolerance prediction by integrating several 

independent morphological and physiological variables in one model to predict drought tolerance 

by multiple linear regressions with either stepwise selection or Least Absolute Shrinkage and 

Selection Operator (LASSO) to determine the optimal number of independent variables.  

https://www.sciencedirect.com/topics/computer-science/set-partitioning
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Prediction of DRYM values under long-term stress conditions (FGH, 2015-2018) 

The DRYMp value of a specific experiment or calculated for data of several experiments was 

predicted from maximum (PH, A2D, A3D, DB, LPD and LAI) and mean (LA and LI, CTD) values 

per genotype. In population A, the stepwise model identified LA (2016) as tolerance predictor. In 

data combined over the years in FGH experiments, tolerance was predicted from maximum PH 

and mean LA.  

For population B, the stepwise model selected mean LI and maximum LPD (2017) or mean LI 

(2018). For the dataset that combines both years, the stepwise model selected mean LI as predictor. 

Relatively, the model efficiency was higher in population B than population A. This may result 

from differences in genotypic variation and environmental conditions between the two populations 

as well as from the use of more predictive parameters in population B.  

In population B, the final multiple regression model maintained very few parameters; however, 

different canopy parameters were identified as tolerance predictors by simple linear regression 

models (Table 14). This may be because multiple linear regression models omitted some predictive 

parameters from the final model because of multicollinearity. For example, in the 2018 

experiment, the final model maintained or removed CTD depending on the presence or absence of 

LI in the input model. If LI was in the input in the model, the final model maintained only LI. If 

LI was not in the input model, the final model maintained CTD and LA. The variation explained 

by CTD and LA was almost equivalent with that of a model containing only LI. This indicated that 

CTD and LA are both together could be an alternative predictor for tolerance. As handheld infrared 

thermometers are low cost and easily available, CTD can be measured more easily than other 

potential predictor like LI, LPD and LA. Therefore, for practical simplicity and applicability at 

any level (manual to automatic), CTD is one of the promising predictive traits for tolerance 

breeding in potato.  

Prediction of DRYM values for different test environments 

This study suggests that tolerance prediction from yield data of single, small experiments may not 

be effective. To get a more robust estimate, tolerance estimates from the projects TROST and 

VALDIS, which were based on multiple pot and field trials in 2011 - 2018 were used to develop 

prediction models based on morphological and physiological parameters. The average tolerance 
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(FGH or all test conditions) was predicted from canopy parameters by stepwise regression and 

LASSO model. The number of parameters maintained by the final model in the stepwise selection 

and LASSO models were more or less the same. This indicated that parameter shrinking in the 

LASSO model was not sufficient to reduce the parameters. However, the coefficients of the 

LASSO output were lowers compared to those the stepwise selection method indicating that 

shrinkage parameters were different from zero.   

In both populations, the average tolerance in FGH condition and average tolerance in both test 

conditions (FGH and Field) were predicted by similar traits. However, the regression coefficients 

were different. In population A, maximum PH was selected as predictive trait. In population B, 

maximum PH and mean LI were selected by stepwise selection as predictive parameters for 

average tolerance. This indicates that similar parameters were important in both test conditions 

(FGH and Field), suggesting that tolerance can be predicted for both test environments from 

canopy parameters measured under screenhouse conditions, but the model has to be trained for 

each environment.  
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5. Conclusion on laser scanner and IR phenotyping as a source 

for drought tolerance markers 
In both populations, water stress tolerance was affected by genotype, treatment, environmental 

conditions and their interaction. This suggests that several experiments in different years and under 

different environmental conditions are required to obtain a general assessment of a genotype’s 

drought tolerance. Water stress reduced leaf area, DB, PH, LAI and LPD. However, water stress 

increased LI, CTD and LA (more vertical leaf).    

The association between tolerance and canopy parameters was improved in the reproductive plant 

age especially in long-term stress conditions. Of course, this stage is identified by different studies 

(van Loon 1981; Rudack et al. 2017) as one of the most important stages in drought tolerance. 

Because of this, drought tolerance marker identification was focused on canopy parameters 

measured in the reproductive stage and long-term stress. Marker identification was done through 

liner regression and a decision tree.   

In population A, the stepwise regression model selected PH and LA as tolerance predictive 

parameters in pooled data of both experiments. However, tolerance prediction in specific 

experiments was only possible from LA in 2016. The decision tree model was effective only in 

combined data over the years. The nodes in the tree model were determined by leaf A3D and PH. 

Both regression and decision tree identified PH as potential tolerance predictor in population A. 

Furthermore, the stepwise regression model chosen PH as average tolerance predictor over the 

wider dataset (2011 to 2018) in FGH experiments and in joint FGH and field dataset. This indicated 

that PH is one of the potential markers to predict tolerance in wider data sets. However, the model 

R2 was smaller than in population B. 

In population B, the stepwise regression model selected mean LI as a predictive parameter in the 

combined data set over the year. However, the decision tree model selected LI, LPD and DB to 

discriminate between the tolerant and susceptible groups. In a specific experimental year, LPD and 

LI (2017) and LI (2018) were maintained by the final model. Similarly, LPD and LI (2017) and LI 

(2018) determined the nodes in the decision tree model. As stepwise regressions as well as the 

decision tree model identified mean LI as predictors, LI was one of the potential tolerance predictor 

markers in the population B dataset. Additionally, the stepwise regression model selected LI and 

PH as average tolerance predictor across the wider dataset (2011 to 2018) in the FGH dataset and 
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in the joint FGH and field dataset. Together, mean LI could be a potential tolerance marker across 

different backgrounds. 

As indicated by the simple linear regression model, CTD was one of the potential physiological 

parameters used to predicted tolerance under long-term stress, but it was not maintained in the 

final multiple linear regression model outputs. This was mainly because of the presence of 

multicollinearity problems, especially in the 2018 experiment. Therefore, from practical simplicity 

using CTD as an alternative tolerance predictor to LI may be important. CTD measured during the 

late morning and afternoon was the best predictor. Generally, this study confirms that the best 

prediction for drought tolerance in potato is made from the measurement of PH (population A and 

population B) and LI or CTD (population B) during the tuber-bulking stage in drought-stressed 

plants.  
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7. Appendix  
Supplementary Table S1. Genotypes and tolerance level from projects TROST 

 (Sprenger et al. 2015) and VALDIS TROST (unpublished data from Manuela Haas).  

Pedigree or 

Genotype 

Sample ID Varity and  

groupa 

Tolerance 

group  

TROST 

projectb 

Population  

A         B 

Albatros (A)  866296 Parent t x x x 

Euroresa (E)  869004 Parent s x x x 

Ramses (R)  858641 Parent s x x x 

AxR 899484 SP1 t  x  

AxR 899491 SP1 t  x  

AxR 899522 SP1 t  x x 

AxR 899596 SP1 t  x  

AxR 899664 SP1 t  x  

A xR 899665 SP1 t  x x 

AxR 899710 SP1 t  x  

AxR 899719 SP1 t  x  

ExA 899445 SP1 t  x  

ExA 899822 SP1 t  x x 

ExA 899905 SP1 t  x  

ExA 899922 SP1 t  x x 

ExA 899960 SP1 t  x  

ExA 899968 SP1 t  x  

ExA 900024 SP1 t  x x 

AxR 899486 SP1SP2 t  x x 

AxR 899584 SP1SP2 t  x  

AxR 899648 SP1SP2 t  x  

AxR 899659 SP1SP2 t  x  

AxR 899748 SP1SP2 t  x x 

AxR 899756 SP1SP2 t  x  

ExA 899446 SP1SP3 t  x  

ExA 899815 SP1SP3 t  x  

ExA 899891 SP1SP3 t  x  

AxR 899464 SP2 t  x  

AxR 899519 SP2 t  x x 

AxR 899530 SP2 t  x  

AxR 899569 SP2 t  x  

AxR 899620 SP2 t  x  

AxR 899626 SP2 t  x  

AxR 899646 SP2 t  x  

AxR 899660 SP2 t  x  
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Pedigree  Sample ID Varity  Tolerance project A B 

AxR 899663 SP2 t  x  

AxR 899704 SP2 t  x  

AxR 899708 SP2 t  x  

AxR 899717 SP2 t  x  

AxR 899732 SP2 t  x  

AxR 899745 SP2 t  x  

ExA 899788 SP2 t  x  

ExA 899834 SP2 t  x x 

ExA 899847 SP2 t  x  

AxR 899518 SP3 s  x  

ExA 899440 SP3 s  x  

ExA 899457 SP3 s  x  

ExA 899460 SP3 s  x  

ExA 899814 SP3 s  x  

ExA 899831 SP3 s  x x 

ExA 899852 SP3 s  x  

ExA 899871 SP3 s  x  

ExA 899872 SP3 s  x  

ExA 899914 SP3 s  x  

ExA 899925 SP3 s  x  

ExA 899932 SP3 s  x  

ExA 899933 SP3 s  x  

ExA 899934 SP3 s  x  

ExA 900012 SP3 s  x  

ExA 900029 SP3 s  x  

ExA 900033 SP3 s  x  

ExA 900039 SP3 s  x  

ExA 900040 SP3 s  x  

Desiree  22497 Varity   t x x X 

Milva 850136 >>  s x  x 

Eldena 872474 >> s x  x 

Eurostarch 872477 >> s x  x 

Maxi 866306 >> s x  x 

Karlena 866309 >> t x  x 

Pirol 866303 >> t x  x 

Priamos 858638 >> s x  x 

Nb: a- VALDIS project (in 2014), SP1- tolerant genotype based on stress index, SP2- tolerant by 

MAS (GC-MS and QRT-PCR) and SP3-sensitive by MAS (unpublished manuscript Haas et al.) 

and b-TROST project (2011-2013), t - tolerant and s - sensitive (Sprenger et al. 2015).  
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Supplementary Table S2. Mean starch yield (g per plant) of genotypes in control and long-term 

stress in FGH and Field, 2015-2016. Means comparison was done by regwq test. Treatments 

assigned the same letter are not significantly different at a p-value of 0.05. Id – Genotype Id   

 

Id Genotype FGH    Field     

 2015  2016  2015  2016  

 cc ss cc ss cc ss cc ss 

1 22497 200H-J 77M-R 167C-K 96B-J 94K-M 34C-F 135G-J 71A-E 

2 858641 243B-J 69P-R 149F-K 75F-T 291A-D 73A-E 236A-F 78A-E 

3 866296 253B-J 102C-R 194A-I 95B-K 230A-I 66A-E 250A-F 76 A-E 

4 869004 288A-G 92F-R 183A-J 77E-T 285A-E 69A-E 231A-H 92A-D 

5 899440 261A-J 117A-O 173A-K 57O-U 88LM 39B-F 131H-J 45DE 

6 899445 285A-H 79K-R 174A-K 74G-T 266A-H 75A-E 301A 89 A-E 

7 899446 262A-J 91G-R 168C-K 99A-I 101J-M 34C-F 198B-I 52C-E 

8 899457 280A-I 137A-G 220A-C 98A-J 193C-L 57A-E 198B-I 71A-E 

9 899460 267A-J 74N-R 158D-K 70I-U 350A 83AB 259A-F 82A-E 

10 899464 258B-J 64QR 157D-K 52Q-U 184C-L 43A-F 210A-I 54C-E 

11 899484 188J 91G-R 137I-L 54P-U 51M 10F 97J 28E 

12 899486 268A-J 125A-L 176A-K 88C-O 203C-L 51A-F 224A-I 78A-E 

13 899491 262A-J 78L-R 196A-H 76E-T 2218B-J 47A-F 210A-I 82 A-E 

14 899518 280A-I 130A-I 158D-K 67I-U 277A-F 80A-D 272A-E 65B-E 

15 899519 275A-I 124A-M 182A-J 99A-I 273A-G 66A-E 225A-I 79 A-E 

16 899522 297A-G 147A-C 229AB 128A 235A-I 65A-E 212A-I 63B-E 

17 899530 238D-J 103B-Q 169C-K 72H-T 209B-L 47A-F 207A-I 55B-E 

18 899569 193IJ 88H-R 149F-K 67I-U 167D-M 37B-F 167F-J 55B-E 

19 899584 270A-J 142A-E 188A-J 98A-J 158E-M 32D-F 167F-J 64B-E 

20 899596 247B-J 82J-R 151F-K 38U 203C-L 54A-F 211A-I 70A-E 

21 899620 231F-J 84I-R 184A-J 49R-U 180C-L 64A-E 213A-I 93A-D 

22 899626 267A-J 99D-R 171B-K 74F-T 220B-J 77 A-E 193B-I 74A-E 

23 899646 243B-J 139A-F 204A-G 117A-D 221B-J 65A-E 216A-I 78A-E 

24 899648 229F-J 146A-D 192A-I 107A-F 221B-J 55A-F 203A-I 93A-D 

25 899659 263A-J 131A-I 171B-K 86D-P 154F-M 47A-F 196B-I 72A-E 

26 899660 321A-D 107B-Q 179A-K 93B-L 219B-J 58A-E 224A-I 97A-D 

27 899663 327A-C 101C-R 179A-K 92B-M 263A-H 43A-F 206A-I 62B-E 

28 899664 277A-I 139A-F 180A-K 108A-E 166D-M 40A-F 184C-J 67A-E 

29 899665 290A-G 126A-K 187A-J 92B-M 225A-J 60A-E 234A-G 108A-C 

30 899704 276A-I 95E-R 179A-K 83E-Q 273A-G 82A-C 248A-F 94A-D 

31 899708 252B-J 73O-R 190A-J 72H-T 289A-D 76A-E 178D-J 79A-E 

32 899710 293A-G 89H-R 170C-K 77E-T 268A-H 71 A-E 258A-F 62B-E 

33 899717 274A-J 92F-R 159D-K 59N-U 289A-D 74A-E 294AB 90A-D 

34 899719 277A-I 120A-O 195A-I 90C-N 222B-J 68A-E 247A-F 95A-D 

35 899732 243B-J 157A 195A-I 93B-M 222B-J 68 A-E 222A-I 77A-E 

36 899745 269A-J 112A-P 176A-K 103A-H 273A-G 74 A-E 257A-F 94A-D 

37 899748 300A-G 92F-R 207A-F 84E-Q 298A-C 80A-D 211A-I 90A-D 

38 899756 329AB 157A 211A-E 97A-J 223B-J 61A-E 236A-F 82A-E 

39 899788 277A-I 109B-Q 155D-K 60M-U 242A-I 57A-E 253A-F 78 A-E 
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Id. Genotype cc ss cc ss cc ss cc ss 

40 899814 264A-J 119A-O 182A-J 79E-S 200C-L 52A-F 167F-J 74 A-E 

41 899815 259A-J 91G-R 168C-K 84E-Q 147G-M 48A-F 180D-J 72A-E 

42 899822 297A-G 128A-J 196A-H 86C-P 236A-I 62 A-E 248A-F 89A-E 

43 899831 261A-J 129A-J 202A-G 94B-K 183C-L 68A-E 231A-H 89A-E 

44 899834 291A-G 132A-H 222A-C 122AB 217B-K 70 A-E 198B-I 68A-E 

45 899847 303A-F 98E-R 191A-I 66I-U 301A-C 82A-C 285A-C 95A-D 

46 899852 280A-I 96E-R 166C-K 61L-U 151F-M 60A-E 185C-J 60B-E 

47 899871 327A-C 142A-E 215A-D 82E-R 141H-M 69A-E 190C-J 73A-E 

48 899872 266A-J 88H-R 174A-K 82E-Q 222B-J 54A-F 246A-F 89A-D 

49 899891 290A-G 132A-H 231A 106A-G 221B-J 69A-E 216A-I 62B-E 

50 899905 296A-G 134A-H 166C-K 81E-S 230A-I 65A-E 211A-I 75A-E 

51 899914 242B-J 106B-Q 166C-K 72H-T 221B-J 64A-E 190C-J 72A-E 

52 899922 300A-G 131A-I 206A-F 118A-C 208C-L 52A-F 191C-J 54C-E 

53 899925 249B-J 93F-R 146G-K 66J-U 277A-G 80A-D 226A-I 95A-D 

54 899932 219F-J 69P-R 167C-K 63K-U 235A-I 67A-E 262A-F 126A 

55 899933 235D-J 142A-E 90L 86C-P 188C-L 33D-F 197B-I 57B-E 

56 899934 302A-F 125A-L 205A-G 104A-H 134I-M 40A-F 199B-I 54C-E 

57 899960 262A-J 105B-Q 185A-J 66J-U 181C-L 64A-E 172E-J 82A-E 

58 899968 240C-J 79K-R 142H-L 54P-U 251A-I 70A-E 224A-I 73A-E 

59 900012 257B-J 95E-R 203A-G 48S-U 299A-C 69A-E 255A-F 93A-D 

60 900024 345A 150AB 200A-H 77E-T 203C-L 65A-E 254A-F 75A-E 

61 900029 319A-E 106B-Q 203A-G 84E-Q 269A-H 88A 222A-I 72A-E 

62 900033 232E-J 105B-Q 151E-K 72H-T 303A-C 85AB 276A-D 116AB 

63 900039 282A-H 55R 123KL 49S-U 337AB 88A 236A-F 92A-D 

64 900040 213G-J 121A-N 131J-L 45TU 84LM 31EF 126IJ 44DE 

 Mean  268 109 178 81 219 61 217 76 
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Supplementary Table S3. Mean starch yield (g per plant) of genotypes in control and different 

water stress condition in FGH, 2017 and 2018. Means comparison was done by regwq test. 

Treatments assigned the same letter are not significantly different at a p-value of 0.05. Id – 

genotype ID.  
 

ID  Genotype 2017    2018    

  cc cs sc ss cc cs sc ss 

1 22497 129DE 81C-E 108E-G 69BC 58EF 25E-G 37E-G 12F-H 

2 850136 125DE 55G-I 97GH 27FG     

3 858638 121DE 70D-G 114D-G 67BC 113A-C 50B 62B-D 39A-D 

4 858641 128DE 77D-F 97GH 56C-E 80DE 28D-G 52B-F 16E-H 

5 866296 119DE 67E-H 103FG 54C-E 98B-D 42B-D 67B-D 31B-E 

6 866303 154A-D 81C-E 119C-G 55C-E 99B-D 40B-E 63B-D 22D-G 

7 866306 78F 27J 58IJ 20FG 49F 16G 37E-G 15E-H 

8 866309 167A-C 90A-D 143A-D 82AB 58EF 28D-G 32FG 7GH 

9 869004 96EF 38IJ 72HI 34E-G 61EF 23FG 50C-G 4H 

10 872474 128DE 49HI 106FG 42D-F 84C-E 27D-G 46D-G 21E-H 

11 872477 70F 20J 41J 19G 37F 14G 28G  

12 899486 177AB 103AB 149AB 93A 109A-D 45BC 74AB 31B-E 

13 899519 141B-D 74D-G 120B-G 63B-D 93B-D 37B-F 69B-D 41A-C 

14 899522 171A-C 108A 170A 96A 135A 66A 92A 50A 

15 899665 120DE 74D-G 105FG 67BC 100B-D 33C-F 60B-E 25C-F 

16 899748 156A-D 87B-E 132B-F 74A-C 111A-D 34C-F 63B-D 29C-F 

17 899822 121DE 58F-I 106FG 52C-E 93B-D 23FG 48C-G 17E-H 

18 899831 136CD 73D-G 108-G 53C-E 92B-D 32C-F 62B-D 22D-G 

19 899834 185A 89A-E 148A-C 82AB 123AB 41B-D 73A-C 47AB 

20 899922 153A-D 98A-C 137B-E 80AB 93B-D 45BC 63B-D 29C-F 

21 900024 129DE 75D-G 113E-G 64BC 101B-D 38B-F 60B-E 13F-H 

 Mean  132 70 109 60 89 34 57 26 
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Supplementary Table S4. Mean starch yield (g per plant) of genotypes in control and different 

water stress condition in Field, in 2017 and 2018. Means comparison was done by regwq test. 

Treatments assigned the same letter are not significantly different at a p-value of 0.05. 

 

Genotype 

 

2017 2018 

cc cs sc ss cc cs sc ss 

22497 108C 96C 86C 69A-D 129BC 60B 122E 54F 

850136 169A-C 175A-C 149A-C 27FG 135A-C 92AB 120E 68C-F 

858638 175A-C 175A-C 148A-C 67A-D 135A-C 77AB 125DE 67D-F 

858641 189A-C 195AB 155AB 56C-F 161A-C 81AB 147B-E 81B-E 

866296 172A-C 205AB 147A-C 54C-F 167A-C 92AB 174A-C 83B-D 

866303 199A-C 189A-C 153A-C 55C-F 153A-C 80AB 154A-E 67C-F 

866306 254A 230AB 129BC 20G 173A-C 97AB 164A-E 81B-E 

866309 166A-C 165A-C 106BC 82A-C 141A-C 75AB 134C-E 73B-F 

869004 197A-C 222AB 165AB 34E-G 166A-C 96AB 189AB 94A-C 

872474 195A-C 167A-C 143A-C 42D-G 105C 69AB 129C-E 55EF 

872477 242AB 261A 202A 19G 182A-C 103AB 159A-E 112A 

899486 220AB 199AB 158AB 93AB 168A-C 87AB 154A-E 77B-F 

899519 177A-C 176A-C 112BC 63B-E 179A-C 99AB 165A-E 85B-D 

899522 156A-C 160BC 154AB 96A 215A 104AB 189AB 90A-D 

899665 163A-C 186A-C 114BC 67A-D 164A-C 103AB 134C-E 91A-D 

899748 185A-C 204AB 140A-C 74A-C 183A-C 79AB 136C-E 79B-F 

899822 205A-C 248AB 171AB 52C-F 172 A-C 113A 184AB 96AB 

899831 220AB 219AB 164AB 53C-F 161A-C 73AB 185AB 88A-D 

899834 165A-C 183A-C 111BC 82A-C 150 A-C 77AB 146B-E 67C-F 

899922 144BC 161BC 130BC 80A-C 150A-C 91AB 170A-D 80B-F 

900024 159A-C 183A-C 166AB 64B-E 209AB 114A 197A 90A-D 

Mean  180 186 140 60 160 87 156 79 

 

Supplementary Table S5. Pearson correlation of SY and DRYMp between FGH and Field in 

2015-2018. Where * significant at p values of 0.05. T - treatment. 

Year  2015 2016 2017 2018 

T cc ss cc ss cc cs sc ss cc cs sc Ss 

SY 0.2 -0.2 0.1 0.1 -0.48* -0.54* -0.4 -0.4 0.2  0.1 0.3 -0.0 

DRYMp  0.1  -0.1  -0.0  0.4 -0.0  -0.1 0.1 -0.2 
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Supplementary Table S6. Combined ANOVA summary over trials (FGH and field) in population 

A and B. Where * and ** significant at p values of 0.05 and 0.01, para - parameter. 

 

P Para Model  G T Y E   G*

Y 

G*

T 

G*

E 

G*Y*

E 

G*T*

Y*E 

A DF 260 63   1 1 63   63 64  

 DRYMp 6** 5**   99** 10** 3**   6** 3**  

B DF 254 20  2 1 1  20  40 20 20  81 

 DRYMp  5** 2** 49** 8** 35** 3** 1ns 2** 2.77* 3** 
Late stress (2017) in field experiment was excluded from combined analysis. Where, P – population, G - 

Genotype, T - Treatment, Y - Year and E - Experiment (FGH or Field).   

 

Supplementary Table S7. Summary of the maximum plant height (PH), leaf area (A2D, A3D), 

digital biomass (DB), leaf area index (LAI), light penetration depth (LPD) and mean leaf angle 

(LA) and leaf inclination (LI) of population A and population B in different treatments (T) under 

in FGH experiments 2015 to 2018. Means with the same letter were not significantly different at 

p value of 0.05. Pop - population, T - treatment, com - combined over experiments of respective 

population. 

P year T PH 

(mm)  

A3D 

(mm2)  

A2D 

(mm2) 

 LA 

(o)   

DB 

(mm3) 

LAI 
 

LPD 

(mm) 

LI 
 

A 2015 cc 401A 252061A 2077A 20A     

  ss 365B 248812B 2040B 20A     

A 2016 cc 409A 237252A 1968A 18B     

  ss 400B 213882B 1774b 20A     

B 2017 cc 625A 329820A 240373A 71AB 179A 1.01A 184C 1.37C 

  cs 494C 322598B 236541A 70B 144D 0.99A 175D 1.39B 

  sc 625A 309352C 221852B 71AB 170B 0.95B 203A 1.41A 

  ss 529B 311942C 222145B 72A 150C 0.96B 191B 1.41A 

B 2018 cc 673A 301409A 216157A 47A 176A 0.96A 468B 1.37D 

  cs 611B 300831A 214447A 46C 167B 0.96A 430C 1.42A 

  sc 693A 275531B 196588B 46B 156C 0.88B 520A 1.39C 

  ss 617B 277347B 196555B 46C 142D 0.88B 447BC 1.41B 

A com cc 631A 309548A 2570A 19B     

    ss 486B 291789B 2445B 20A     

B com cc 651A 316715A 229168A 59A 178A 0.99A 323B 1.37D 

  cs 551C 311801B 225333B 58B 156c 0.98B 302C 1.40B 

  sc 659A 293559C 209761C 59A 164b 0.92C 360A 1.39C 

  ss 573B 294433C 209163C 59A 147d 0.92C 319B 1.41A 

DB (in ten thousand), LAI (mm2/mm2) and LI (mm2/mm2)  
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Supplementary Table S8. Eigenvalues of the correlation matrix of respective trial, 2015-2018. 

P- principal value. Pop - population. 

Pop A  2015 2016 

 P Eigen

value 

Differ

ence 

Propo

rtion 

Cumul

ative 

Eigenv

alue 

Differ

ence 

Propo

rtion 

Cumul

ative 

 1 2.30 1.37 0.58 0.58 2.39 1.52 0.60 0.60 

 2 0.94 0.24 0.23 0.81 0.88 0.20 0.22 0.82 

 3 0.70 0.63 0.17 0.98 0.68 0.63 0.17 0.99 

 4 0.06  0.02 1.00 0.05  0.01 1.00 

Pop B  2017 2018 

 1 4.87 2.91 0.54 0.54 3.20 0.61 0.36 0.36 

 2 1.95 0.86 0.22 0.76 2.59 0.61 0.29 0.64 

 3 1.09 0.43 0.12 0.88 1.98 1.04 0.22 0.86 

 4 0.66 0.36 0.07 0.95 0.95 0.76 0.11 0.97 

 5 0.29 0.22 0.03 0.98 0.18 0.11 0.02 0.99 

 6 0.07 0.01 0.01 0.99 0.07 0.06 0.01 1.00 

 7 0.06 0.05 0.01 1.00 0.02 0.01 0.00 1.00 

 8 0.01 0.01 0.00 1.00 0.01 0.01 0.00 1.00 

 9 0.00  0.00 1.00 0.00  0.00 1.00 

 

Supplementary Table S9. Eigenvectors of PC of respective trial, 2015-2018. 

Year   para Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 Prin9 

2015 PH -0.24 0.94 0.22 -0.04 

 A3D 0.63 0.12 0.25 0.73 

 A2D 0.61 0.03 0.42 -0.68 

 LA -0.43 -0.3 0.84 0.12 

2016 PH -0.30 0.94 -0.12 0.10 

 A3D 0.60 0.30 0.25 -0.70 

 A2D 0.60 0.16 0.34 0.70 

 LA -0.43 -0.01 0.90 -0.05 

2017 PH -0.24 0.54 -0.29 -0.12 0.22 -0.55 0.29 0.33 0.00 

 A2D 0.43 0.14 0.04 0.23 -0.21 -0.39 0.36 -0.64 -0.09 

 A3D 0.43 0.17 0.06 0.13 -0.25 -0.07 -0.14 0.32 0.76 

 DB 0.07 0.69 -0.13 0.01 0.20 0.33 -0.48 -0.35 -0.02 

 LPD -0.37 0.32 0.05 0.25 -0.49 0.47 0.48 0.05 0.04 

 LA 0.40 -0.05 -0.18 0.22 0.60 0.40 0.46 0.14 0.02 

 LAI 0.43 0.17 0.07 0.16 -0.28 -0.01 -0.16 0.49 -0.64 

 CTD -0.26 0.04 0.53 0.70 0.31 -0.19 -0.15 0.05 0.01 

 LI 0.13 0.23 0.75 -0.54 0.14 0.07 0.22 0.02 -0.01 

2018 PH -0.25 0.26 0.53 -0.07 0.35 0.67 -0.07 -0.04 -0.03 

 A2D 0.52 0.19 0.01 0.09 -0.20 0.20 0.23 -0.74 0.03 

 A3D 0.50 0.28 -0.03 0.04 0.08 0.04 -0.07 0.36 -0.73 
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  para Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 Prin9 

 DB 0.04 0.26 0.62 -0.10 0.19 -0.69 0.07 -0.12 0.02 

 LPD -0.26 0.40 0.19 0.46 -0.70 0.01 -0.06 0.15 0.01 

 LA 0.18 -0.44 0.30 0.48 0.08 0.08 0.61 0.27 0.05 

 LAI 0.49 0.28 -0.03 0.03 0.10 0.08 -0.20 0.39 0.68 

 CTD -0.19 0.27 -0.34 0.66 0.53 -0.14 -0.07 -0.18 0.00 

 LI -0.20 0.48 -0.29 -0.32 0.03 0.01 0.72 0.16 0.06 
 

Supplementary Table S10. Model-based fit statistics for selected tree of population A and 

population B. com A - combined over years of population A, com B - combined over years of 

population B dataset. 

Year  Model-Based Fit Statistics for Selected Tree of population A and Pop B 

N  ASE Mis-class Sensitivity Specificity Entropy Gini RSS AUC 

2017 4 0.14 0.17 0.71 0.89 0.63 0.27 35.54 0.81 

2018 2 0.21 0.32 0.32 0.97 0.87 0.42 53.69 0.64 

Com B  6 0.16 0.22 0.54 0.92 0.71 0.32 82.54 0.82 

Com A 3 0.23 0.37 0.72 0.55 0.94 0.46 327.5 0.64 

Mis-class - Misclassification, AUC - Area under the Curve for Binary Classification Trees 

Supplementary Table S11. Variable importance for selected tree of population A and B. com A 

- combined over years of population A, com B - combined over years of population B dataset. 

Year 2017 2018 Com B Com A 

Variable LP LI PH LI LI LP DB A3D PH 

Importance  4.05 2.10 1.96 3.15 4.05 2.98 2.81 4.40 2.56 

 

Supplementary Table S12. Genotype’s mean starch yield (SY) (g/plant), CT (oC) and CTD (oC) 

under ss condition in 2017 and 2018. Means comparison was done by regwq test.Means followed 

by the same letter are not significantly different at p value of 0.01. 

Genotype 2017 2018 

SY CT CTD SY CT CTD 

22497 67B-C 22.0M -0.9L 12G-I 23.3GH -0.07HI 

850136 25FG 22.3H-K -0.6HI     

858638 66B-D 22.2KL -0.7K 37A-D 23.3GH -0.05G-I 

858641 52DE 22.5C-G -0.4C-E 11G-I 23.5D-F 0.12C-E 

866296 55DE 22.3H-L -0.6IJ 35B-E 23.4G -0.01F-H 

866303 61D 22.4D-H -0.5GF 25C-H 23.6B-D 0.22C 

866306 13G 22.7AB -0.3B 16E-I 23.5D-F 0.12C-E 

866309 85AB 22.7AB -0.3B 4I 24.0A 0.61A 
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 SY CT CTD SY CT CTD 

869004 23FG 22.5CD -0.4CD 7HI 23.7B 0.38B 

872474 35EF 22.7A -0.2A 22DI 23.5DE 0.16CD 

872477 14G 22.4D-H -0.5EF   22.9J -0.45K 

899486 96A 22.2L -0.7K 40A-D 23.3G -0.03F-I 

899519 58D 22.5C-E -0.4DE 44A-C 22.9J -0.47K 

899522 99A 22.2I-L -0.7KJ 56A 23.4G -0.03F-I 

899665 62CD 22.6BC -0.3CB 30C-G 23.1I -0.30J 

899748 72CD 22.5C-F -0.4C-E 34B-F 23.6CD 0.20C 

899822 54DE 22.3G-J -0.6GH 18E-I 23.7BC 0.33B 

899831 52DE 22.3E-H -0.6GH 18E-I 23.4E-G 0.07D-F 

899834 82AB 22.3F-I -0.6GH 51AB 23.4FG 0.00F-H 

899922 81A-C 22.2L-K -0.7KJ 28C-G 23.4FG 0.05E-G 

900024 61D 22.1M -0.9L 14F-I 23.2H -0.13I 

 

Supplementary Table S13. Summary statistics of lasso model in 2017 and 2018.                            

 

AIC - Akaike’s information criterion, AICC - Corrected Akaike’s information criterion, SBC - 

Schwarz Bayesian information criterion, ASE - average square error  

Supplementary Table S14. Selection of the diurnal time interval by LASSO model, 2017 and 

2018. 

Parameter Year 

2017 2018 

Intercept 0.010 0.050 

  8:00  -0.016 

10:00  -0.015 

11:00 -0.028  

14:00 -0.017  

16:00 -0.045  

 

 

 

Summary 

statistics 

Year 

2017 2018 

Root MSE 0.10 0.09 

Mean 0.02 0.02 

R-Square 0.15 0.12 

Adj R-Sq 0.13 0.10 

AIC -375.68 -356.20 

AICC -375.07 -355.76 

SBC -471.10 -446.50 

ASE (Train) 0.01 0.01 

ASE (Test) 0.01 0.01 
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Supplementary Table S15. Normality Test by Shapiro-Wilk for maximum/mean canopy 

parameters in 2015-2018. 

 

Year Treatment 
A2d A3D LA PH 

Test p Value Test p Value Test p Value Test p Value 

2015 cc 0.99 0.18 0.98 0 0.99 0.31 0.99 0.16 

2016 cc 0.99 0.01 0.99 0.27 0.99 0.24 0.99 0.03 

2017 cc 0.95 <0.0001 0.93 <0.0001 0.54 <0.0001 0.98 0.03 

2018 cc 0.99 0.29 0.99 0.18 0.99 0.92 0.93 <0.0001 

2017 cs 0.96 0 0.96 <0.0001 0.63 <0.0001 0.98 0.06 

2018 cs 0.99 0.91 0.99 0.65 0.99 0.59 0.99 0.28 

2017 sc 0.98 0.01 0.98 0.01 0.99 0.73 0.99 0.14 

2018 sc 0.99 0.43 0.99 0.46 0.99 0.81 0.85 <0.0001 

2015 ss 0.98 <0.0001 0.99 0.01 0.99 0.05 1 0.66 

2016 ss 0.98 0 0.99 0 0.99 0.01 1 0.72 

2017 ss 0.98 0.03 0.98 0.1 0.99 0.29 0.99 0.36 

2018 ss 0.98 0.03 0.98 0.03 0.99 0.61 0.97 0.01 

       DB       LAI LI        LP 

2017 cc 0.99 0.47 0.93 <0.0001 0.96 0 0.96 0 

2018 cc 0.99 0.61 0.98 0.02 0.99 0.43 0.98 0.14 

2017 cs 0.99 0.51 0.96 <0.0001 0.99 0.25 0.99 0.08 

2018 cs 0.99 0.45 0.99 0.78 0.98 0.02 0.98 0.07 

2017 sc 0.99 0.43 0.97 0 0.98 0.04 0.99 0.40 

2018 sc 0.99 0.37 0.99 0.40 0.99 0.63 0.99 0.42 

2017 ss 0.98 0.08 0.98 0.10 0.97 0 0.99 0.19 

2018 ss 0.99 0.87 0.98 0.03 0.99 0.65 0.99 0.29 

      CTD       
2017 cc 0.95 <0.0001       
2018 cc 0.98 0.02       
2017 cs 0.97 0       
2018 cs 0.97 0       
2017 sc 0.97 0       
2018 sc 0.98 0.05       
2017 ss 0.96 0       
2018 ss 0.98 0.06       
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Supplementary Figure S1. Amount of rainfall water received by plants in cc (population A and 

B), cs (2017) and sc (2018) treatment. 
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Supplementary Figure S2. Daily amount irrigation water applied to different treatments (cc, sc, 

ss and cs) and rainfall (see supplementary Figure 1) received by plants per days from planting 

(DFP) in the field experiments 2015-2018.  
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Supplementary Figure S3. Daily mean soil temperature of treatments in FGH experiments 2015 

- 2018. Vertical broken line indicated stress initiation date. 
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Supplementary Figure S4. Daily mean soil temperature of treatments under field condition in 

2015 - 2018. Vertical broken line indicated stress initiation date. 

 

Supplementary Figure S5. Daily mean air temperature (12:00-19:00) in FGH experiment 2017 

– 2018 
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Supplementary Figure S6.  Pearson correlation values of mean VPD (10-14hr) with CTD, CT, 

Air temperature, and RH in FGH experiments 2017 - 2018. 
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Supplementary Figure S7. Mean tuber yield (TY), starch yield (SY), average tuber weight 

(ATW) and tuber number (TN) per plant of population A (top) and B (bottom) in screenhouse 

(FGH) and field experiments. Mean separation was done by regwq. Treatments assigned the same 

letter were not significantly different at P values of 0.01. Pop A - Population A and Pop B - 

Population B.
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Supplementary Figure S9. Cluster analysis for canopy parameters combined over season under 

ss treatment 2017 - 2018. Blue and red bars in front of the genotypes code represents the DRYMp 

values greater than one (blue) and less than one (red).  
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Supplementary Figure S10. Cluster analysis for canopy parameters combined over season under 

ss treatment 2017 - 2018. Blue and red bars in front of the genotypes code represents the DRYMp 

values greater than one (blue) and less than one (red). Vertical broken line indicates a Centroid 

distance of 1.75.  

 

Supplementary Figure S11.  Genotype color code  
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Syntax  

proc univariate normal plot data=example; var canopy parameter; 

histogram canopy parameter /normal (color=red w=5); 

run; 

 

proc sql; 

create table outliers as 

select *, std(canopy parameter) as std, mean(canopy parameter) as avg, 

    case when ((canopy parameter - calculated avg)/(calculated std) < -2.0) or ((canopy parameter 

- calculated avg)/(calculated std) > 2.0) then 'Outlier' 

    else 'Normal' 

    end as outlier_status  

from data 

group by Genotype*treatment*replication;  

quit; 

 

proc glm data=data; 

class genotype treatment; 

model yield/canopy parameters=genotype treatment genotype*treatment; 

random genotype genotype*treatment;  

means genotype /regwq; 

means treatment/regwq; 

run; 

 

proc means mean std max min range  data=data noprint;                                                                                                            

   by genotype treatment replication;                                                                                                                              

   var canopy parameter / yield;                                                                                                                             

   output out=meansout  mean=mean min=minimum max=maximum STD=STD range=range 

stderr=stderr;                                                                                          

run;      

 

proc corr data=data pearson spearman sscp cov;  by class ; 

   var canopy parameters and yield; 

run; 

 

proc reg outest=test2 rsquare; 

      by genotype treatment plant_position; 

model 1 canopy parameters=dfp; 

model 2 canopy parameters =dfp dfp*dfp; 

run; 

ods graphics on; 

 

proc factor data=data  
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priors =smc msa residual  

rotate =promax reorder 

outstat =fact_all  

plots =(scree initloadings preloadings loadings); 

run; 

ods graphics off; 

 

ods graphics on; 

 

proc hpsplit data=data cvmethod=random(10) seed=123 intervalbins=500; 

   class Tolerance; 

   grow gini; 

   model Tolerance = canopy parameters; 

   prune costcomplexity; 

run; 

 

proc cluster noeigen method=centroid rsquare nonorm out=tree data=o; 

id genotype; 

var canopy parameters; 

run; 

quit; 

 

proc surveyselect data=data out=traintest seed=130 

samprate=0.7 method=srs outall; 

run; 

proc glmselect data=traintest plots=all seed=130; 

partition role=selected(train='1' test='0'); 

model DRYMp=canopy traits /selection=stepwise slentry=.05;  

run; 

proc glmselect data=traintest plots=all seed=130 ; 

partition role=selected(train='1' test='0'); 

model DRYMp = canopy traits  / selection=lasso(stop=none choose=sbc); 

run; 

r scripts  

> library(ggplot2) 

> library(ggfortify) 

> df <- data[c(ci---cn)] 

> autoplot(prcomp(df)) 

> theme <- theme(panel.background = 

element_blank(),panel.border=element_rect(fill=NA),panel.grid.major = 

element_blank(),panel.grid.minor = 

element_blank(),strip.background=element_blank(),axis.text.x=element_text(colour="black"),axi
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s.text.y=element_text(colour="black"),axis.ticks=element_line(colour="black"),plot.margin=unit

(c(1,1,1,1),"line")) 

 

> p <-  autoplot(prcomp(df), data = data, colour = 'Tolerance', shape = FALSE, label.size = 6, 

          loadings = TRUE, loadings.colour = 'blue', 

          loadings.label = TRUE, loadings.label.size = 6) 

> p <- p+theme 

> p 
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