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Testing the Hazard Rate Part I

Hannelore Liero
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Abstract
We consider a nonparametric survival model with random censoring. To test whether
the hazard rate has a parametric form the unknown hazard rate is estimated by a
kernel estimator. Based on a limit theorem stating the asymptotic normality of the
quadratic distance of this estimator from the smoothed hypothesis an asymptotic
α-test is proposed. Since the test statistic depends on the maximum likelihood
estimator for the unknown parameter in the hypothetical model properties of this
parameter estimator are investigated. Power considerations complete the approach.

Keywords and phrases: kernel estimator of the hazard rate, goodness of fit, maximum
likelihood estimator, limit theorem for integrated squared difference, censoring,
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1 Introduction and Main Result

This is the first part of a paper on testing the hazard rate in survival models with censored
data. In this part we consider the model without covariates, that is we assume that the
survival times are independent and identically distributed (i.i.d.) random variables. In
the second part we extend our approach to the case that the survival times depend on
covariates.

We start with some notation: Let Y1, . . . , Yn be a sequence of i.i.d. survival times with
absolutely continuous distribution function F . As often occurs in applications the Yi’s
are subject to random right censoring, i.e. the observations are

Ti = min(Yi, Ci) and δi = 1(Yi ≤ Ci)

where C1, . . . , Cn are i.i.d. random censoring times which are independent of the Y -
sequence. The δi indicates whether Yi has been censored or not. The function of interest
is the hazard rate λ which is defined by

λ(t) = lim
s↓0

1
s
P(t < Yi ≤ t + s|Yi ≥ t).

We wish to test whether λ lies in a paramatric class of functions, i.e.

H : λ ∈ L = {λ(·, θ) | θ ∈ Θ ⊆ Rk} versus K : λ 6∈ L.

Since no parametric form of the alternative is assumed we will use a nonparametric
estimator of λ for testing H against K. The idea for the construction of such a non-
parametric estimator goes back to the paper of Watson and Leadbetter (1964), who
considered the case without censoring. To describe the estimation procedure we intro-
duce the distribution function of the observations Ti and the subdistribution function of
the uncensored observations:

H(t) := P(Ti ≤ t) and HU (t) := P(Ti ≤ t, δi = 1).

Since

1 − H(t) = (1 − G(t)) (1 − F (t))

and

HU (t) =
∫ t

0
(1−G(s)) dF (s),

where G is the distribution function of the censoring times Ci, the cumulative hazard
function

Λ(t) :=
∫ t

0
λ(s) ds

can be written as

Λ(t) =
∫ t

0

dF (s)
1− F (s−)

=
∫ t

0

dHU (s)
1−H(s−)

.
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Now, for estimating Λ we replace HU and H by their empirical versions, that is by

ĤU
n (t) =

1
n

n∑

i=1

1(Ti ≤ t, δi = 1) and Ĥn(t) =
1
n

n∑

i=1

1(Ti ≤ t).

The resulting estimator

Λ̂n(t) :=
∫ t

0

dĤU
n (s)

1− Ĥn(s−)
=

n∑

i=1

1(T(i) ≤ t) δ[i]

n− i + 1

is the Nelson-Aalen estimator of Λ. Here T(1) ≤ · · · ≤ T(n) are the ordered observations
and δ[i] = δj iff Tj = T(i).
As estimator of the derivative of Λ we define the kernel smoothed Nelson-Aalen estimator

λ̂n(t) :=
1
bn

∫
K

(
t− s

bn

)
dΛ̂n(s) =

1
bn

n∑

i=1

K
(

t−T(i)

bn

)
δ[i]

n− i + 1
.

Here K is a kernel function and {bn} is a sequence of bandwidths tending to zero with
an appropriate rate.

Several asymptotic properties of this estimator are known. Let us mention here the
papers of Singpurwalla and Wong (1983), Tanner and Wong (1983) and the results
of Diehl and Stute (1988). Diehl and Stute gave an approximation for the difference
between the estimator λ̂n and the smoothed hazard rate by a sum of i.i.d. random
variables. On the basis of this i.i.d. representation asymptotic normality at a fixed
point t and a limit theorem for the maximal deviation were derived. Here, for our test
problem we consider the quadratic deviation. As test statistic we choose the L2-distance
of λ̂n from the hypothesis, that is from a function which characterizes H. To avoid
problems arising from the bias of λ̂n we do not take the distance of λ̂n from an element
of the hypothetical class L, but from a smoothed version of this, which is given by

λ̃n(t, θ) :=
∫

Kbn(t− s)λ(s, θ) ds =
∫

Kbn(t− s) dΛ(s, θ),

where Λ(t, θ) =
∫ t
0 λ(s, θ) ds and Kb(t) = 1

bK(t/b). So, we define

Q0n :=
∫ (

λ̂n(t) − λ̃n(t, θ)
)2

a(t) dt. (1.1)

Here the weight function a is introduced to control the region of integration and has to be
chosen by the statistician. Since the parameter θ in (1.1) is unknown we have to replace
it by a suitable estimator. We propose to take the maximum likelihood estimator, say
θ̂n. Thus, finally we obtain as test statistic

Q̂0n :=
∫ (

λ̂n(t) − λ̃n(t, θ̂n)
)2

a(t) dt.
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From Theorem 2.1 below it will follow that for all θ ∈ Θ the standardized Q0n is
asymptotically normally distributed if H is true, that is the following limit statement
holds:

nb1/2
n (Q0n − m0n) D−→ N(0, σ2

0) (1.2)

with

m0n = (nbn)−1 κ1

∫
λ(t, θ)

1−H(t)
a(t) dt

and

σ2
0 = 2κ2

∫ (
λ(t, θ)

1−H(t)

)2

a2(t) dt,

where κ1 =
∫

K2(x) dx and κ2 =
∫

(K ∗K)2(x) dx and ”∗” denotes the convolution. Un-
der certain regularity conditions the maximum likelihood estimator θ̂n is

√
n-consistent.

Therefore the limit statement (1.2) remains true for Q̂0n. Furthermore, in the stan-
dardizing terms the unknown distribution function H can be replaced by Ĥn without
changing the limit distribution (see Consequence 3.1). Thus, finally we obtain an asymp-
totic α-test by the rule: Reject H, iff

Q̂0n ≥ zα σ̂0n

nb
1/2
n

+ m̂0n (1.3)

where

m̂0n = (nbn)−1 κ1

∫
λ(t, θ̂n)

1− Ĥn(t)
a(t) dt,

σ̂2
0n = 2κ2

∫ (
λ(t, θ̂n)

1− Ĥn(t)

)2

a2(t) dt,

and Φ(zα) = 1− α.

2 Asymptotic Normality of the Quadratic Functional

In this section we present a theorem stating that the quadratic functional

Qn :=
∫ (

λ̂n(t) − λ̃n(t)
)2

a(t) dt.

is asymptotically normal. This theorem is formulated not only for the behavior under
the null hypothesis, but for general hazard rate λ. We define

λ̃n(t) :=
∫

Kbn(t− s) λ(s) ds.

Further, let TH be the right end point of the distribution H.
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Theorem 2.1 Suppose that

(i) K is a continuous density function vanishing outside the interval [−L,L] for some
L > 0.

(ii) λ and H are Lipschitz continuous.

(iii) The function a is continuous and a(t) ≡ 0 for all t > TH .

(iv) bn → 0 and nb2
n →∞.

Then for n →∞

nb1/2
n (Qn − mn) D−→ N(0, σ2) (2.1)

with

mn = (nbn)−1 κ1

∫
λ(t)

1−H(t)
a(t) dt

and

σ2 = 2κ2

∫ (
λ(t)

1−H(t)

)2

a2(t) dt.

3 The Maximum Likelihood Estimator of the Parameter

Let us now investigate the maximum likelihood estimator of the unknown parameter θ.
The likelihood function is given by

Ln(θ, T1, δ1, . . . , Tn, δn) =
n∏

i=1

L(θ, Ti, δi)

with

L(θ, t, δ)) = (1−G(t))δ (1− F (t, θ))1−δ f(t, θ)δ g(t)1−δ

= λ(t, θ)δ exp(−Λ(t, θ)) (1−G(t))δ g(t)1−δ, (3.1)

where g is the density of the censoring times. Thus, the maximum likelihood estimator
θ̂n is a (measurable) maximizer of

ln(θ) =
n∑

i=1

(δi log λ(Ti, θ) − Λ(Ti, θ)) .

To conclude from Theorem 2.1 to the asymptotic normality of our test statistic we use
the

√
n-consistency of the maximum likelihood estimator. For that purpose we formulate

the following regularity conditions:
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(i) For all t ∈ [0,∞) and all i, j = 1,..., k the second derivatives ∇i∇jλ(t, θ) and
∇i∇jΛ(t, θ) exist and are continuous on Θo, the open kernel of Θ.

(ii) For all θ ∈ Θo and all i, j = 1, . . . , k

∇i

∫
λ(t, θ) dt =

∫
∇iλ(t, θ) dt,

∇i∇j

∫
λ(t, θ) dt =

∫
∇i∇jλ(t, θ) dt.

(iii) For any θ ∈ Θo there exist a ν-neighborhood U(θ, ν) ⊂ Θo of θ, and a measurable
function M(·, ·, θ) with EM(T1, δ1, θ) < ∞ such that

∣∣∇i∇j log L(θ′, ·, ·)∣∣ ≤ M(·, ·, θ) for all θ′ ∈ U(θ, ν)

for all i, j = 1, . . . , k.

(iv) The determinant of the Fisher information I(θ) = (Iij(θ))i,j=1,...,k with

Iij(θ) =
∫
∇iλ(t, θ)∇jλ(t, θ)

(1−H(t, θ))
λ(t, θ)

dt

is nonzero for all θ ∈ Θo.

Under these conditions we have:

Theorem 3.1 Suppose that conditions (i) - (iv) are satisfied and that θ̂n is consistent.
Then under H

√
n

(
θ̂n − θ

) D−→ N
(
0, I(θ)−1

)

for any θ ∈ Θo.

Remark: Very often the consistency of the maximum likelihood estimator can be
verified directly.
Generally one can show that under the following conditions a consistent maximum like-
lihood estimator exists: For all θ, θ′ ∈ Θo

E log
L(θ′, T1, δ1)
L(θ, T1, δ1)

< ∞,

where the expectation is taken with respect to the distribution depending on θ. Further,
assume that the set

An(t1, δ1, . . . , tn, δn) = {θ |∇θ log Ln(θ, t1, δ1, . . . , tn, δn) = 0}
is not empty and the function ∇θ log L(θ, ·, ·) is continuous in θ.
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From Theorem 3.1 it follows that the maximum likelihood estimator θ̂n is
√

n-consistent.
This, together with the

√
n- consistency of the empirical distribution function Ĥn is

sufficient to show that the limit statement (2.1) remains valid for Q̂0n with estimated
standardizing terms, so we have

Consequence 3.1 Suppose that for each θ the vector of the partial derivatives ∇θλ(·, θ)
is uniformly continuous with respect to the first argument and that the conditions of
Theorem 2.1 and Theorem 3.1 are satisfied. Then

nb
1/2
n

σ̂0n

(
Q̂0n − m̂0n

) D−→ N(0, 1). (3.2)

4 Power Considerations

We consider local alternatives of the form

Kn : λ∗n(t) = λ(t, θ) + εn d(t), (4.1)

where θ is arbitrarily fixed, d is a function satisfying some regularity conditions, and {εn}
is a sequence of positive numbers. Let PKn be the probability under the alternative, that
is, when the distribution of the survival times Yi is F ∗

n with

1 − F ∗
n(t) = (1 − F (t, θ)) exp(−εnD(t)), D(t) =

∫ t

0
d(s) ds

and the censoring times are distributed according G. The power of the test proposed by
(1.3) is given by

βn = PKn

(
nb

1/2
n

σ̂0n

(
Q̂0n − m̂0n

)
≥ zα

)
.

Suppose that for each n the function λ∗n satisfies the conditions of Theorem 2.1 in Section
2. Then we have for all zn

∣∣∣ PKn

(
nb

1/2
n

σ∗n
(Q∗

n − m∗
n) ≤ zn

)
− Φ(zn)

∣∣∣ → 0, (4.2)

where

Q∗
n =

∫ (
λ̂n(t) − λ̃∗n(t)

)2
a(t) dt with λ̃∗n(t) =

∫
Kbn(t− s)λ∗n(s) ds,

m∗
n = (nbn)−1 κ1

∫
λ∗n(t)

1−H∗
n(t)

a(t) dt
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and

σ∗n
2 = 2 κ2

∫ (
λ∗n(t)

1−H∗
n(t)

)2

a2(t) dt

with

1−H∗
n(t) = (1− F ∗

n(t))(1−G(t)).

To formulate our theorem about the power βn we need conditions on the behavior of the
parameter estimator under Kn. We assume that there exists a sequence of asymptotically
normally distributed r. v.’s Zn with expectation zero and a nonrandom vector S such
that under Kn the following expansion holds for n →∞

θ̂n − θ = n−1/2Zn + εn S (1 + o(1)). (4.3)

Theorem 4.1 Suppose that the assumptions of Theorem 2.1 are satisfied, that λ∗n and
H∗

n are Lipschitz continuous, that the partial derivatives ∇jλ(·, θ), j = 1, . . . , k are
uniformly continuous with respect to the first argument and that (4.3) holds. If

b−1/2
n εn → 0 or nbnεn →∞ or

∫
d(t)− St∇θλ(t, θ)

1−H(t)
a(t) dt = 0

then the test is asymptotically unbiased, that is, limn βn ≥ α. Furthermore,

lim
n

βn =





α if nb
1/2
n ε2

n → 0,

β if nb
1/2
n ε2

n → c∗ > 0,

1 if nb
1/2
n ε2

n →∞,

where the number β lies between α and 1 and depends on σ2
0,∇θλ(·, θ),H, d, S, a and c∗.

From Theorem 4.1 it follows that the power of the test tends to a nontrivial limit if
nb

1/2
n ε2

n converges to a positive number, or in other words, if the squared weighted L2-
norm of the deviation from the hypothesis ||εn d a1/2||22 converges to c > 0. The local
alternative (4.1) is a very simple one, more general alternatives are for example

λ∗n(t) = λ(t, θ) + dn(t) (4.4)

where dn tends to zero in a certain sense. The investigation of the behavior of the
power under such alternatives requires more technical conditions (Lipschitz condition
for dn with constant depending on n, behavior of θ̂n under (4.4)). But the main result,
namely that the convergence of the squared weighted L2-norm of the disturbing function
is essential for the distinguishability of the test, remains valid also under (4.4). So, we
do not consider the technically more complicated alternatives.
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5 Proofs

Proof of Theorem 2.1: The proof consists of two parts. In the first part we show that
the difference

Vn(t) = λ̂n(t) − λ̃n(t)

can be approximated by the sum of i.i.d. random variables

Vn1(t) = n−1
n∑

i=1

Zi(t, bn)

with

Zi(t, bn) =
Kbn(t− Ti)δi

1−H(Ti)
−

∫
1(Ti ≥ s) Kbn(t− s)

(1−H(s))2
dHU (s)

In the second step the asymptotic normality of the approximating integral∫
V 2

n1(t) a(t) dt

is proved.

Lemma 5.1 Suppose that (i) and (ii) are satisfied. Then for all T < TH

sup
0≤t≤T

|Vn(t) − Vn1(t)| = O

(
log log n

n
+

(
bn log n

n

)1/2
)

a.s. (5.1)

Proof of Lemma 5.1: Standard computations lead to

Vn(t) − Vn1(t) =
∫

Kbn(t− s)(Ĥn(s)−H(s))2

(1− Ĥn(s))(1−H(s))
dHU (s)

+
∫

Kbn(t− s)(Ĥn(s)−H(s))
(1− Ĥn(s))(1−H(s))

d(ĤU
n (s)−HU (s)) (5.2)

To estimate this difference we use that for all T̃ < TH

sup
0≤t≤T̃

|Ĥn(t)−H(t)| a.s.= O
(
n−1/2(log log n)1/2

)
.

Consider the first summand in (5.2). Since K has a bounded support we have for
sufficiently large n and for some T ′ < TH

sup
0≤t≤T

|
∫

Kbn(t− s)(Ĥn(s)−H(s))2

(1− Ĥn(s))(1−H(s))
dHU (s))|

≤ sup
0≤t≤T

sup
0≤s≤T ′

(Ĥn(s)−H(s))2

(1− Ĥn(s))(1−H(s))

∫
Kbn(t− s) dHU (s)

≤ 1
(1− Ĥn(T ′))(1−H(T ′))

sup
0≤t≤T

∫
Kbn(t− s) dHU (s) · O

(
n−1 log log n

)

= O
(
n−1 log log n

)
a.s. .
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Now, let us investigate the second summand in (5.2). We take a partition of the interval
[0, T ] into intervals [ti, ti+1) of length Lbn, i = 1, . . . , kn, kn = [ T

Lbn
]. Then with

ψn(t) =
(Ĥn(t)−H(t))

(1− Ĥn(t))(1−H(t))

we have

sup
0≤t≤T

|
∫

Kbn(t− s)(Ĥn(s)−H(s))
(1− Ĥn(s))(1−H(s))

d(ĤU
n (s)−HU (s))|

≤ max
1≤i≤kn

sup
ti≤t<ti+1

|ψn(ti)
∫

Kbn(t− s) d(ĤU
n (s)−HU (s))| (5.3)

+ max
1≤i≤kn

sup
ti≤t<ti+1

|
∫

(ψn(s)− ψn(ti)) Kbn(t− s) dĤU
n (s)| (5.4)

+ max
1≤i≤kn

sup
ti≤t<ti+1

|
∫

(ψn(s)− ψn(ti)) Kbn(t− s) dHU (s)|. (5.5)

Since sup0≤t≤T |
∫

Kbn(t − s) d(ĤU
n (s) − HU (s))| a.s.= O

(
(nbn)−1/2(log n)1/2

)
we obtain

that the summand (5.3) is almost surely of order O
(
n−1b

−1/2
n (log n log log n)1/2

)
.

Note that sup0≤t≤T

∫
Kbn(t− s) dĤU (s) and sup0≤t≤T

∫
Kbn(t− s) dĤU

n (s) are (almost
surely) bounded. Thus the summands (5.4) and (5.5) are bounded by

max
1≤i≤kn

sup
s:|t−s|≤Lbn
ti≤t<ti+1

|ψn(s) − ψn(ti)| ·O(1). (5.6)

Furthermore set

ψ̃n(t) =
(Ĥn(t)−H(t))

(1−H(t))2
.

Since

sup
0≤s≤T

|ψn(s)− ψ̃n(s)| a.s.= O
(
n−1 log log n

)

it is enough to consider max1≤i≤kn sup s:|t−s|≤Lbn
ti≤t<ti+1

|ψ̃n(s) − ψ̃n(ti)|. For some constant C

we have

max
1≤i≤kn

sup
s:|t−s|≤Lbn
ti≤t<ti+1

|ψ̃n(s) − ψ̃n(ti)|

≤ C max
1≤i≤kn

sup
s:|t−s|≤Lbn
ti≤t<ti+1

|Ĥn(s)−H(s)− Ĥn(ti) + H(ti)|

+O
(
n−1/2(log log n)1/2

)
·O(bn).
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To estimate the difference in the first summand we introduce the intervals Ji = [ti −
Lbn, ti +Lbn] and take a subpartition of these intervals into intervals [tij , tij+1) of length
n−1/2(bn log n)1/2, j = 1, . . . , rn. We have:

max
1≤i≤kn

sup
s:|t−s|≤Lbn
ti≤t<ti+1

|Ĥn(s)−H(s)− Ĥn(ti) + H(ti)|

≤ max
1≤i≤kn

sup
s∈Ji

|Ĥn(s)−H(s)− Ĥn(ti) + H(ti)|

≤ max
1≤i≤kn

max
1≤j≤rn

sup
tij≤s<tij+1

|Ĥn(s)− Ĥn(tij)| (5.7)

+ max
1≤i≤kn

max
1≤j≤rn

|Ĥn(tij)−H(tij)− Ĥn(ti) + H(ti)| (5.8)

+ max
1≤i≤kn

max
1≤j≤rn

sup
tij≤s<tij+1

|H(s)−H(tij)|. (5.9)

The summands (5.7) and (5.9) are of order O

((
bn log n

n

)1/2
)

. It remains to investigate

(5.8). The term Ĥn(tij)−H(tij)− Ĥn(ti) + H(ti) is a sum of i.i.d. (bounded) random
variables with expectation zero and variance

Var(Ĥn(tij)− Ĥn(ti)) ≤ Cn−2 max
1≤j,k≤rn

|tij − tik| = O
(
n−2bn

)
.

From a lemma about strong uniform consistency (see Liero (1999)) it follows that for all
constants ρ > 0 there exists a constant Cρ such that for all C ≥ Cρ

P

((
n

bn log n

)1/2

|Ĥn(tij)−H(tij)− Ĥn(ti) + H(ti)| > C

)
≤ n−ρ. (5.10)

By a suitable choice of ρ it follows from (5.10) that

max
1≤i≤kn

max
1≤j≤rn

|Ĥn(tij)−H(tij)− Ĥn(ti) + H(ti)| a.s.= O

((
bn log n

n

)1/2
)

and the proof is complete.

2

Lemma 5.2 Suppose that the conditions of Theorem 2.1 are satisfied. Then

nb1/2
n

(∫
V 2

n1(t) a(t) dt − mn

)
D−→ N(0, σ2). (5.11)

Proof of Lemma 5.2: To investigate the distributional behavior of
∫

V 2
n1(t) a(t) dt it

is useful to introduce the covariance function Cn(t, s) = Cov(Vn1(t), Vn1(s)). Straight-
forward computations yield

Cn(t, s) = (nbn)−1

∫ K(z)K
(

s−t
bn

+ z
)

λ(t− zbn)

1−H(t− zbn)
dz. (5.12)
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The integral of interest can be decomposed into
∫

V 2
n1(t) a(t) dt =

n− 1
n

Un + Sn, (5.13)

where

Un =
2

n(n− 1)

∑

1≤i<

∑

j≤n

ηn(Ti, δi, Tj , δj)

is a U -statistic of degree 2 with kernel

ηn(Ti, δi, Tj , δj) =
∫

Zi(t, bn)Zj(t, bn) a(t) dt (5.14)

and

Sn =
1
n2

n∑

i=1

ηn(Ti, δi, Ti, δi).

At first we investigate the term Sn. With the help of the covariance function we get

ESn =
∫

Cn(t, t) a(t) dt

= (nbn)−1

∫ ∫
K2(z)λ(t− zbn)
1−H(t− zbn)

a(t) dz dt.

Since H and λ are Lipschitzian this leads to

ESn = (nbn)−1

∫
λ(t)

1−H(t)
a(t) dt

∫
K2(z) dz + O(n−1)

= mn + O(n−1).

Similarly one verifies that the variance of Sn is of order O(n−3b−2
n ), therefore by the

Chebyshev inequality we have

nb1/2
n (Sn − mn) = oP (1)

and in (5.13) Sn can be replaced by mn, or in other words, it is sufficient to show that
the distribution of nb

1/2
n Un tends to N(0, σ2). To do that, we apply the method proposed

by Hall (1984) and recall his Theorem 1. (We formulate it in the notation used here.)

Theorem (P. Hall) Assume ηn is symmetric, E(ηn(T1, δ1, T2, δ2)|T1, δ1) = 0 almost
surely and E(η2

n(T1, δ1, T2, δ2)) < ∞ for each n.
Set Gn(t1, ν1, t2, ν2) = E(ηn(T1, δ1, t1, ν1) ηn(T1, δ1, t2, ν2)).
If

EG2
n(T1, δ1, T2, δ2) + n−1Eη4

n(T1, δ1, T2, δ2)
(Eη2

n(T1, δ1, T2, δ2))2
→ 0 (5.15)
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for n →∞, then Un is asymptotically normally distributed with zero mean and variance
given by 2n−2Eη2

n(T1, δ1, T2, δ2).

It is easy to see, that the first three assumptions of this theorem are satisfied by the
U -kernel defined in (5.14). Let us now compute Eη2

n(T1, δ1, T2, δ2). We have

Eη2
n(T1, δ1, T2, δ2)

= n2

∫ ∫
C2

n(t, s) a(t) a(s) dsdt

= b−2
n

∫ ∫ ∫ ∫ K(z) K
(

s−t
bn

+ z
)

K(w) K
(

s−t
bn

+ w
)

λ(t− zbn)λ(t− wbn)

(1−H(t− zbn)) (1−H(t− wbn))
× a(t) a(s) dz dw dsdt

= b−1
n

∫ ∫ ∫ ∫
K(z) K(s + z) K(w) K(s + w) λ(t− zbn)λ(t− wbn)

(1−H(t− zbn)) (1−H(t− wbn))
× a(t) a(t + sbn) dz dw dsdt

= b−1
n

∫ (
λ(t)

1−H(t)

)2

a2(t) dt

∫
(K ∗K)2 (s) ds + O(1)

= b−1
n σ2/2 + O(1).

With

EG2
n(T1, δ1, T2, δ2) = n4

∫ ∫ ∫ ∫
Cn(t1, t2)Cn(t2, t3)

× Cn(t3, t4)Cn(t4, t1)a(t1)a(t2)a(t3)a(t4) dt1 dt2 dt3 dt4

the term EG2
n can be handled similarly, and we get

EG2
n(T1, δ1, T2, δ2) = O(b−1

n ).

Furthermore, we have

Eη4
n(T1, δ1, T2, δ2) = O(b−3

n ).

Thus, condition (5.15) is satisfied, and the desired limit statement follows by the theorem
of Hall.

2

To complete the proof of Theorem 2.1 we have to show that
∫

V 2
n a and

∫
V 2

n1a have the
same asymptotic behavior. By the Cauchy-Schwarz inequality we get

nb1/2
n

∣∣∣
∫

(V 2
n (t) − V 2

n1(t)) a(t) dt
∣∣∣

= nb1/2
n

∣∣∣
∫

(Vn(t) − Vn1(t))2 a(t) dt + 2
∫

Vn1(t) (Vn(t) − Vn1(t)) a(t) dt
∣∣∣

13



≤ nb1/2
n

∫
(Vn(t) − Vn1(t))2 a(t) dt

+ 2nb1/2
n

√∫
(Vn(t) − Vn1(t))2 a(t) dt

√∫
V 2

n1(t) a(t) dt.

By Lemma 5.1 we have that the first summand is of order O(b3/2
n log n). Lemma 5.2

implies
√∫

V 2
n1(t) a(t) dt = OP

(
(nbn)−1/2

)
.

Therefore the desired difference is of order oP (1).

2

Proof of Theorem 3.1: The proof of the asymptotic normality is based on well-known
results about efficiency of maximum likelihood estimators. The conditions stated here
correspond Theorem 6.35 in Witting and Müller-Funk (1995). Using partial integration
one can verify that assumptions (A1) to (A4) formulated there for a density f are satisfied
by the likelihood function L defined in (3.1). So the proof is omitted.

2

Proof of Consequence 3.1: Let θ be arbitrarily fixed. By definition we have

nb
1/2
n

(
Q̂0n − m̂0n

)

σ̂0n
=

σ0

σ̂0n


nb

1/2
n

(
Q0n −m0n

)

σ0
+

3∑

j=1

ξnj




where

ξn1 =
nb

1/2
n

σ0

∫ (
λ̃n(t, θ)− λ̃n(t, θ̂n)

)2
a(t) dt

ξn2 =
2nb

1/2
n

σ0

∫ (
λ̂n(t)− λ̃n(t, θ)

)(
λ̃n(t, θ))− λ̃n(t, θ̂n)

)
a(t) dt

and

ξn3 =
nb

1/2
n

σ0
(m0n − m̂0n)

To prove the statement it is enough to show that σ0/σ̂0n
P−→ 1 and ξnj

P−→ 0 under H.
Replacing λ(·, θ̂n) by λ(·, θ) +∇θλ(·, θ̃)T (θ̂n − θ), where θ̃ is a point between θ̂n and θ,
and applying Theorem 3.1 we obtain:

σ0/σ̂0n
P−→ 1 , ξn1 = OP

(
b1/2
n

)
and ξn3 = OP

(
(nbn)−1/2

)
.
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Consider now term ξn2: We have for all fixed ε > 0

P (|ξn2| ≥ ε) ≤ P
(
n1/2νn | θ̂n − θ | ≥ τ

)

+ P

(
2nb

1/2
n

σ0
sup

θ′∈Un(θ)
|
∫ (

λ̂n(t)− λ̃n(t, θ)
)

×
(
λ̃n(t, θ)− λ̃n(t, θ′)

)
a(t) dt| ≥ ε

)
(5.16)

with Un(θ) = {θ′ : |θ− θ′| ≤ n−1/2 ν−1
n τ}, where {νn} is a sequence of positive numbers

tending to zero specified later, and τ > 0 is fixed.

Since θ̂n is
√

n-consistent the first summand on the right hand side of (5.16) tends to
zero. Divide the smallest cube containing Un(θ) into ln subcubes Ĩr of equal volume and
choose in each subcube Inr(θ) = Ĩr ∩ Un(θ) a point θr, r = 1,..., ln. Then the second
summand on the right hand side of (5.16) is bounded by

P
(2nb

1/2
n

σ0
max

1≤r≤ln
sup

θ′∈Inr(θ)
|
∫

(λ̂n(t)− λ̃n(t, θ))(λ̃n(t, θr)− λ̃n(t, θ′)) a(t) dt| ≥ ε

2

)

+ P
(2nb

1/2
n

σ0
max

1≤r≤ln
|
∫

(λ̂n(t)− λ̃n(t, θ))(λ̃n(t, θ)− λ̃n(t, θr)) a(t) dt| ≥ ε

2

)
.

(5.17)

Using the Cauchy-Schwartz inequality and Theorem 2.1 we get for the first summand of
(5.17)

(∫
(λ̂n(t)− λ̃n(t, θ))(λ̃n(t, θr)− λ̃n(t, θ′)) a(t) dt

)2

≤
∫

(λ̂n(t)− λ̃n(t, θ))2a(t) dt

∫
(λ̃n(t, θr)− λ̃n(t, θ′))2 a(t) dt

= OP

(
(nbn)−1

) ·O((|θ′ − θr|)2) = OP

(
(nbn)−1

) ·O
(
l−2/k
n ν−2

n n−1
)

.

Hence,

nb1/2
n max

1≤r≤ln
sup

θ′∈Inr(θ)
|
∫

(λ̂n(t)− λ̃n(t, θ))(λ̃n(t, θr)− λ̃n(t, θ′)) a(t) dt

= OP

(
l−1/k
n ν−1

n

)
. (5.18)

Consider the second summand of (5.17). With the notation introduced in the proof of
Theorem 2.1 we have

∫
(λ̂n(t)− λ̃n(t, θ))(λ̃n(t, θ)− λ̃n(t, θr)) a(t) dt

=
∫

Vn1(t)(λ̃n(t, θ)− λ̃n(t, θr)) a(t) dt + Rn(θ, θr),
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where the remainder term Rn(θ, θr) can be estimated by the Cauchy-Schwartz inequality
and Lemma 5.1 as follows:

nb1/2
n |Rn(θ, θr)| ≤ nb1/2

n

(∫
(Vn(t)− Vn1(t))2a(t) dt

)1/2

×
(∫

(λ̃n(t, θ)− λ̃n(t, θr))2a(t) dt

)1/2

= OP

(
bnν−1

n (log n)1/2
)

. (5.19)

Using the covariance function Cn(t, s) one shows that

Var

∫
Vn1(t)(λ̃n(t, θ)− λ̃n(t, θr)) a(t) dt = O(n−2ν−2

n )

and get by the Chebyshev inequality

P

(
nb1/2

n max
1≤r≤ln

|
∫

(λ̂n(t)− λ̃n(t, θ))(λ̃n(t, θ)− λ̃n(t, θr)) a(t) dt| ≥ ε′
)

≤
∑

r

P

(
nb1/2

n |
∫

(λ̂n(t)− λ̃n(t, θ))(λ̃n(t, θ)− λ̃n(t, θr)) a(t) dt| ≥ ε′
)

= O
(
ln · bn · ν−2

n

)
, (5.20)

By a suitable choice of νn and ln (for example νn = b
1/(3(k+3))
n and ln = [ν3

nb−1
n ]) equations

(5.18), (5.19) and (5.20) imply ξn2
P−→ 0 and the proof of Consequence 3.1 is complete.

2

Proof of Theorem 4.1: Similarly as in the proof of Consequence 3.1 we have

nb
1/2
n

(
Q̂0n − m̂0n

)

σ̂0n
=

σ∗n
σ̂0n


nb

1/2
n

(
Q∗

n −m∗
n

)

σ∗n
+

6∑

j=4

ξnj




where

ξn4 =
nb

1/2
n

σ∗n

∫ (
λ̃∗n(t)− λ̃n(t, θ̂n)

)2
a(t) dt,

ξn5 =
2nb

1/2
n

σ∗n

∫ (
λ̂n(t)− λ̃∗n(t)

)(
λ̃∗n(t)− λ̃n(t, θ̂n)

)
a(t) dt

and

ξn6 =
nb

1/2
n

σ∗n
(m∗

n − m̂0n) .
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Since Theorem 2.1 holds also under the alternative, that is nb
1/2
n /σ∗n(Q∗

n−m∗
n) is asymp-

totically normally distributed, it remains to examine the terms ξnj . First consider ξn4.
By assumption (4.3) and the continuity of d and ∇θλ one obtains

ξn4 =
nb1/2

σ∗n

∫ (
εn d(t)−∇θλ(t, θ)t(n−1/2Zn + εnS)

)2
a(t) dt (1 + oP (1))

=
1
σ∗n

∫ (
n1/2b1/4

n εn (d(t) − ∇θλ(t, θ)tS)

− b1/4
n ∇θλ(t, θ)tZn)

)2
a(t) dt (1 + oP (1)).

For ξn6 we get with the same expansions

ξn6 =
b
−1/2
n

σ∗n
κ1

∫
εn d(t)−∇θλ(t, θ)t(n−1/2Zn + εn S)

1−H(t)
a(t) dt (1 + oP (1))

=
b
−1/2
n εn

σ∗n
κ1

∫
d(t) − ∇θλ(t, θ)tS

1−H(t)
a(t) dt (1 + oP (1)).

And since σ∗n/σ0 → 1 we have

ξn4 + ξn6 = σ−1
0

(
ε2
nnb1/2

n

∫
(d(t)−∇θλ(t, θ)tS)2 a(t) dt

+ εn b−1/2
n κ1

∫
d(t) − ∇θλ(t, θ)tS

1−H(t)
a(t) dt

)
(1 + oP (1)).

It remains to investigate the term ξn5. With the notation used in the proof of Conse-
quence 3.1 it can be written as

ξn5 =
nb

1/2
n

σ∗n

∫
V ∗

n (t)
(
λ̃∗n(t) − λ̃n(t, θ̂n)

)
a(t) dt

and decomposed into

ξ
(1)
n5 =

nb
1/2
n

σ∗n

∫
V ∗

n1(t)
(
λ̃∗n(t) − λ̃n(t, θ̂n)

)
a(t) dt (5.21)

ξ
(2)
n5 =

nb
1/2
n

σ∗n

∫
(V ∗

n (t)− V ∗
n1(t))

(
λ̃∗n(t) − λ̃n(t, θ̂n)

)
a(t) dt. (5.22)

Further, the term (5.21) is the sum of

ξ
(11)
n5 =

nb
1/2
n εn

σ∗n

∫
V ∗

n1(t)
∫

K(s)
(∇θλ(t− sbn, θ)t S + d(t− sbn)

)
ds a(t) dt

× (1 + oP (1))

and

ξ
(12)
n5 =

nb
1/2
n εn

σ∗n

∫
V ∗

n1(t)
∫

K(s)
(
∇θλ(t− sbn, θ)t (θ̂n − θ − Sn)

)
ds a(t) dt

× (1 + oP (1))
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where Sn is the deterministic part of the expansion given by (4.3), i.e. Sn = θ̂n − θ −
n−1/2Zn.
The leading term of the expression ξ

(11)
n5 is a sum of i.i.d. r.v.’s. Using the formula for

the covariance function given in (5.12) we get that this term has a variance of order
O

(
nbnε2

n

)
. Thus we have

ξ
(11)
n5 = OP

(
(nbn)1/2εn

)
= OP

(
(nb1/2

n ε2
n)1/2b1/4

n

)
. (5.23)

Applying the same method of proof as in the investigation of term ξn2 in the proof of
Consequence 3.1 we get

ξ
(12)
n5

P−→ 0. (5.24)

The difference in the approach here is that instead of the neighborhood Un(θ) the neigh-
borhood {θ′ : |θ′ − θ − Sn| ≤ n−1/2ν−1

n τ} has to be chosen. For the leading term in
(5.22) we get by Lemma 5.1

ξ
(1)
n5 = OP

(
(n log n)1/2bnεn

)
= OP

(
(nb1/2

n ε2
n)1/2b3/4

n log n)1/2
)

. (5.25)

From (5.23) to (5.25) it follows that the term ξn5 is always asymptotically dominated
by the term ξn4 and we have

lim
n

βn = lim
n

(Φ(cn − zα))

with

cn = σ−1
0

(
nb1/2

n ε2
n

∫ (
d(t)− St∇θλ(t, θ)

)2
a(t) dt

+ κ1b
−1/2
n ε

∫ (
d(t)− St∇θλ(t, θ)

)
a(t) dt

)
.

Under the conditions formulated in Theorem 4.1 the limit of cn is nonnegative, thus
limn βn ≥ α. If nb

1/2
n ε2

n → 0, then cn → 0 and βn → α. If nb
1/2
n ε2

n → ∞, then cn → ∞
and βn → 1. And finally, if nb

1/2
n ε2

n → c∗ > 0, then

lim
n

cn = σ−1
0 c∗

∫ (
d(t)− St∇θλ(t, θ)

)2
a(t) dt > 0

and βn → β > α.

2
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