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Abstract
This thesis aims at presenting in an organized fashion the required basics to
understand the Glauber dynamics as a way of simulating configurations ac-
cording to the Gibbs distribution of the Curie-Weiss Potts model. Therefore,
essential aspects of discrete-time Markov chains on a finite state space are
examined, especially their convergence behavior and related mixing times.
Furthermore, special emphasis is placed on a consistent and comprehen-
sive presentation of the Curie-Weiss Potts model and its analysis. Finally,
the Glauber dynamics is studied in general and applied afterwards in an
exemplary way to the Curie-Weiss model as well as the Curie-Weiss Potts
model. The associated considerations are supplemented with two computer
simulations aiming to show the cutoff phenomenon and the temperature
dependence of the convergence behavior.



Zusammenfassung
Die vorliegende Arbeit verfolgt das Ziel, die erforderlichen Grundlagen für
das Verständnis der Glauber Dynamik auf organisierte Art undWeise darzu-
stellen. Die Glauber Dynamik stellt eine Möglichkeit der Simulation von
Konfigurationen der Gibbs Verteilung des Curie-Weiss Potts Modells dar.
Es werden zunächst die zum Verständnis notwendigen Grundlagen von end-
lichen Markov-Ketten in diskreter Zeit beleuchtet, insbesondere ihr Konver-
genzverhalten und die damit verbundene Mischzeit. Darüber hinaus legt
diese Arbeit einen Schwerpunkt auf eine konsistente sowie verständliche
Darbietung und Analyse des Curie-Weiss Potts Modells. Schließlich wird
explizit die Glauber Dynamik betrachtet und anschließend exemplarisch
auf das Curie-Weiss Modell und auf das Curie-Weiss Potts Modell ange-
wandt. Die dazugehörigen Betrachtungen werden durch zwei Computer-
simulationen ergänzt, welche darauf abzielen, das Cutoff-Phänomen sowie
die Temperaturabhängigkeit des Konvergenzverhaltens darzustellen bzw. zu
verdeutlichen.
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Introduction

1 Introduction
The Potts model was introduced by Renfrey Potts in the context of statistical me-
chanics in 1952. It was meant as a generalization of the well-known Ising model
for more than two possible spin values. Both the Potts and the Ising model aim
to describe the interaction of magnetic moments of atoms in a lattice. These
magnetic moments are referred to as spins and the lattice is decribed by a graph.
In the case of the Ising model, there are q = 2 possible spin values, as opposed
to the q > 2 potential spin values found in the Potts model. [Wu82]

In the context of statistical mechanics, for these systems of interacting particles
there are only few exact solutions found, and these are often quite complicated.
The same is true for the q-state Potts model. Therefore it is convenient to ex-
amine this model using the mean-field approximation which is used in various
areas of physics. In other words, the q-state Potts model is approximated by
a simpler model which, in physics contexts, is called q-state Curie-Weiss Potts
model. [BH19]

To understand the model at hand, we study phenomena regarding arrangements
of spins, so-called configurations. Since we consider systems at thermodynamic
equilibrium, we use the Gibbs distribution to describe these configurations prob-
abilistically. Unfortunately, the computation of the complete distribution is not
easily done when the corresponding graphs become quite large. Therefore, we
want to simulate this Gibbs distribution for the q-state Curie-Weiss Potts model
using a special kind of Markov chain – the Glauber dynamics.

This thesis aims to provide a detailed introduction to the Glauber dynamics, es-
pecially for the Curie-Weiss Potts model. The reader should have prior know-
ledge of linear algebra, basic analysis and probability theory. Additionally helpful
might be some basics of statistical physics, but they do not represent a necessary
condition in order to understand this thesis.

Since the Glauber dynamics is a special kind of Markov chain, we adress finite,
discrete-time Markov chains first. In the course of this, we primarily stick to
the explanations of Levin et al. [LPW09]. We talk about and discuss the prop-
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Introduction

erties of irreducibility, aperiodicity and reversibility of such chains. After this,
we define an appropriate distance between two probability measures using the
total variation distance and prove, on this basis, the Convergence Theorem for
finite, discrete-time Markov chains. Knowing that many Markov chains converge
towards a stationary distribution, we want to measure the rate of convergence. In
this context, we introduce the notion of mixing time. This quantity tells us when
the distance to stationarity of a Markov chain falls below a certain threshold. We
then use Spectral Theory to prove theorems that provide upper and lower bounds
for the mixing time. At the end of this chapter, we introduce an interesting
phenomenon regarding the rate of convergence – the cutoff phenomenon which
describes a sharp drop in the distance to stationarity.

The following chapter gives an overview of many important and interesting as-
pects of the Curie-Weiss Potts model. We start with a description of the Potts
model and introduce the mean-field approximation for the purpose of deriving the
Curie-Weiss Potts model. Afterwards, we define the Gibbs distribution of this
model and examine its zero-temperature limit as well as its infinite-temperature
limit. We then introduce the proportions vector of a configuration. On this basis,
we define the energy density and the entropy density of a configuration. The
interplay of this two quantities is described by the free energy function which
helps us understand phase transition for the model at hand. By introducing an
order parameter, we are able to derive the exact critical temperature at which
this phase transition occurs. We also examine two other interesting temperatures
– the first and the second spinodal temperature – that will help us in the under-
standing of the Glauber dynamics for this model. Finally, we consider the model
in the thermodynamic limit and state the results regarding the distribution of the
proportions vector.

In the final chapter, we combine the results of chapters before to understand the
Glauber dynamics for the Curie-Weiss Potts model. After giving an introduction
to Markov Chain Monte Carlo (MCMC), we define the Glauber dynamics in an
appropriate mathematical way and prove selected properties. Afterwards, we ap-
ply our newly acquired knowledge of mixing times to the Glauber dynamics of the
Curie-Weiss model, the mean-field version of the Ising model. Having done this,
we examine the Glauber dynamics for the Curie-Weiss Potts model. Here we give
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Introduction

a summary of a mixing time analysis accomplished by Cuff et al. in [CDL12].
Finally, we present and discuss two simulations regarding the Glauber dynamics
for our model of interest.

Although we concentrate on this aspect, the Potts model is not only used in
statistical mechanics to model ferromagnets and other spin systems. Indeed, over
the years, the Potts model has found its way into various areas, one famous
example being computational biology. In this field, the so-called Cellular Potts
model was first introduced by F. Graner and J. Glazier to simulate cell sorting in
1992 [GG92]. In 1996, N. J. Savill and P. Hogeweg adapted this model in order to
model morphogenesis for simple cellular systems [SH96]. These days, the Cellular
Potts model is also used to model cellular processes in tumor development [SM13].
Additionally, the Potts model is used in signal and image processing [Geo15], as
well as in the analysis of the properties of complex networks [DGM04]. Further
research regarding the Potts model is therefore essential, since it is acquiring more
and more significance in various applications.
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Markov Chains and Mixing Times

2 Markov Chains and Mixing Times
In this chapter we discuss the essential aspects concerning discrete-time Markov
chains on a finite state space. Despite their simplicity, they are interesting math-
ematical objects that can be used to describe systems evolving in time. A main
goal of this chapter is the proof of the Convergence Theorem which states that
certain kinds of Markov chains converge to their stationary distributions. Based
on this theorem, we will derive statements regarding the time a chain needs to
reach equilibrium. This contemplation will finally lead us to the concept of mix-
ing times. From this point onward, we will use arguments from linear algebra
to arrive at conclusions about bounds on mixing times and the rate of conver-
gence to stationarity. The following aspects are primarily orientated on the book
“Markov Chains and Mixing Times” by Levin et al. [LPW09, chapter 1, 4, 12, 18].

2.1 Basic Properties

We start by summarizing elementary characteristics of finite, discrete-time Markov
chains. In the course of this we will see that the so-called transition matrix plays
a key role in describing such processes.

2.1.1 Definitions

We focus on processes on a finite set Ω. Each element ω ∈ Ω is called a state
and Ω is called the state space. In the course of this thesis, we will be confronted
with a certain class of real square matrices of R|Ω|×|Ω|, the so-called stochastic
matrices.

Definition 2.1. Let P be an |Ω| × |Ω| matrix. We say that P is stochastic if
every row of P is a probability distribution, i.e. all entries are non-negative and

∑
ω′∈Ω

P (ω, ω′) = 1 for all ω ∈ Ω.

Let us denote the set of all probability distributions on the measurable space(
Ω,P(Ω)

)
by M1(Ω), whereby the σ-algebra P(Ω) represents the power set on

Ω. Thus, for each π ∈M1(Ω), the triple
(
Ω,P(Ω), π

)
defines a probability space.
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2.1 Basic Properties Markov Chains and Mixing Times

Lemma 2.2. Let π ∈M1(Ω) and Π ∈ R|Ω|×|Ω| be the matrix with identical rows
π. For all M,M ′ ∈ R|Ω|×|Ω| the following holds:

(i) If M is stochastic, then MΠ = Π.

(ii) If πM = π, then ΠM = Π.

(iii) If M and M ′ are stochastic, then MM ′ is stochastic.

Proof.

(i)
(
MΠ

)
(ω, ω′) =

∑
ζ∈Ω

M(ω, ζ)Π(ζ, ω′) = π(ω′)
∑
ζ∈Ω

M(ω, ζ) = π(ω′) .

(ii) This is a consequence of the definition of matrix multiplication.

(iii)
∑
ω′∈Ω

(
MM ′

)
(ω, ω′) =

∑
ω′∈Ω

∑
ζ∈Ω

M(ω, ζ)M ′(ζ, ω′) =
∑
ζ∈Ω

M(ω, ζ)
∑
ω′∈Ω

M ′(ζ, ω′)

=
∑
ζ∈Ω

M(ω, ζ) = 1 .

The best known class of processes that can be described by stochastic matrices
are discrete-time Markov chains on a finite state space Ω. This kind of stochastic
process moves among the elements of Ω such that the probability of the next
state only depends on the current state. This leads to the following definition:

Definition 2.3. A sequence of random variables (Xt)t≥0 is called a discrete-time
Markov chain with finite state space Ω if for all ω, ω′ ∈ Ω, all t ≥ 1, and all
events Et−1 :=

t−1⋂
i=0
{Xi = ω(i)} that satisfy P(Et−1 ∩ {Xt = ω}) > 0, we have

P(Xt+1 = ω′ | Et−1 ∩ {Xt = ω}) = P(Xt+1 = ω′ | Xt = ω) . (2.1)

Equation (2.1) is often referred to as Markov property. Due to the fact that
the probability of moving from ω to ω′ does not depend on the past, i.e. on
the sequence of states ω(0), ..., ω(t−1) , an |Ω| × |Ω| matrix suffices to describe the
transitions of the process. The entries are given by the probabilities of the new
state ω′ ∈ Ω conditioned on the current state ω ∈ Ω.
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Definition 2.4. Let (Xt)t≥0 be a discrete-time Markov chain with finite state
space Ω. Then the matrix P ∈ R|Ω|×|Ω| with entries

P (ω, ω′) := P(Xt+1 = ω′ | Xt = ω)

is called transition matrix and its entries are called transition probabilities.

Remark 2.5. Let P ∈ R|Ω|×|Ω| be a transition matrix.

1. Then the transition matrix P is obviously stochastic.

2. According to our definition of P , we are forced to consider probability distri-
butions as row vectors. Therefore the ω-th row of P must be a distribution.

3. Hence, when at ω ∈ Ω, the distribution of the next state is given by P (ω, ·) .

Now let the row vector µ0 ∈M1(Ω) be the distribution of X0 (in short form we
write X0 ∼ µ0). Given this initial distribution, the distribution at time t ≥ 1 can
be obtained by simple matrix multiplication as can be seen from the proof of the
following theorem.

Theorem 2.6. Let (Xt)t≥0 be a discrete-time Markov chain with finite state space
Ω and transition matrix P . Let Xt be distributed according to µt (i.e. Xt ∼ µt)
for all t ≥ 0. Then

µt = µ0P
t for t ≥ 1. (2.2)

Proof. Let t ≥ 1. Consider the distribution of the chain at time t + 1. For all
ω′ ∈ Ω, using the law of total probability, we obtain

µt+1(ω′) = P(Xt+1 = ω′)

=
∑
ω∈Ω

P(Xt = ω)P(Xt+1 = ω′ | Xt = ω)

=
∑
ω∈Ω

µt(ω)P (ω, ω′).

Using the definition of matrix multiplication, this is equivalent to µt+1 = µtP

and inductively µt = µ0P
t.
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2.1 Basic Properties Markov Chains and Mixing Times

Remark 2.7. Let P ∈ R|Ω|×|Ω| be a transition matrix.

1. Since P is an element of the matrix ring R|Ω|×|Ω|, P to the power of zero
is given by the identity matrix, i.e. P 0 = I|Ω|. Hence (2.2) is also true for
t = 0.

2. Corollary 2.2 (iii) implies that P t is also stochastic, since P is stochastic.

To summarize, a discrete-time Markov chain is completely described by a finite
state space Ω, a transition matrix P and an initial distribution µ0 (or an initial
state). For the sake of simplicity, when talking about discrete-time Markov chains
with finite state space in the following chapters, we will often refer to them only
as Markov chains

2.1.2 Irreducibility and Aperiodicity

In the following, we turn to some important properties that lots of Markov chains
have, namely irreducibility and aperiodicity.

Definition 2.8. A transition matrix P of a Markov chain is called irreducible if
for all ω, ω′ ∈ Ω there exists t ∈ N such that P t(ω, ω′) > 0.

Intuitively, this definition means that it is possible to get from any state ω ∈ Ω to
any other state ω′ ∈ Ω in a finite amount of time steps. Equivalently, there exists
a sequence of states ω = ω(0), ω(1), . . . , ω(t−1), ω(t) = ω′ in Ω such that the chain
starts in ω and arrives in ω′. We call such a sequence of states a trajectory of the
chain in the state space Ω. Instead of saying a Markov chain has an irreducible
transition matrix, we will simply say that the Markov chain is irreducible.

Definition 2.9. Define T (ω) := {t ∈ N | P t(ω, ω) > 0} as the set of all times
for which the Markov chain with transition matrix P can return to its starting
state ω. Then the period of the state ω is given by gcd T (ω).

Lemma 2.10. If a Markov chain with transition matrix P is irreducible, then
all states have the same period, i.e. gcd T (ω) = gcd T (ω′) for all ω, ω′ ∈ Ω.

7



2.1 Basic Properties Markov Chains and Mixing Times

Fig. 1: Irreducibility implies that we can get from ω to ω′ in a steps, from ω′ to ω in
b steps and from ω to itself in c ∈ T (ω) steps.

Proof. Fixing ω, ω′ ∈ Ω, irreducibility implies that there exist a, b ∈ N such that
P a(ω, ω′) > 0 and P b(ω′, ω) > 0 (see Figure 1). Define m := a + b, then we
have m ∈ T (ω) ∩ T (ω′). For c ∈ T (ω), we have c + m ∈ T (ω′) and hence
c ∈ {n − m | n ∈ T (ω′)}. Since m,n ∈ T (ω′), we have gcd T (ω′) |m and
gcd T (ω′) |n. Therefore, we have gcd T (ω′) |n−m and consequently gcd T (ω′)
divides all c ∈ T (ω). Thus, we obtain gcd T (ω′) | gcd T (ω).
Switching the roles of ω and ω′, we can deduce by an entire parallel argument
that gcd T (ω) | gcd T (ω′) and therefore gcd T (ω) = gcd T (ω′) for all ω, ω′ ∈ Ω.

Lemma 2.10 shows that an irreducible Markov chain has a period common to all
of its states. Therefore, we can make the following definition:

Definition 2.11. An irreducible Markov chain (Xt)t≥0 with state space Ω is called
aperiodic if gcd T (ω) = 1 for all ω ∈ Ω. Otherwise, the chain will be called
periodic.

Lemma 2.12. Let (Xt)t≥0 be an irreducible Markov chain with transition matrix
P that has at least one positive diagonal entry. Then the chain is also aperiodic.

Proof. We assume that P (ω′, ω′) > 0 for one ω′ ∈ Ω. Then we have 1 ∈ T (ω′) and
hence gcd T (ω′) = 1. Since the chain is also irreducible, all states ω ∈ Ω share
the same period according to Lemma 2.10. Therefore, we have gcd T (ω) = 1 for
all ω ∈ Ω and hence the chain is aperiodic.

In order to prove the Convergence Theorem later, we need a result regarding
aperiodic Markov chains and the following number-theoretic lemma to prove it.
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2.1 Basic Properties Markov Chains and Mixing Times

Lemma 2.13. Let M ⊂ N with gcdM = m. Then there exists NM ∈ N such
that for all n ≥ NM we have

nm =
∑
m̃∈M

sm̃m̃

with coefficients {sm̃}m̃∈N ⊂ N.

Proof. See for instance [LPW09, p. 20].

Remark 2.14. Let M be closed under addition with gcdM = 1, then we obtain
n ∈M for all n ≥ NM . Therefore, M must contain all but finitely many positive
integers.

Proposition 2.15. If a Markov chain (Xt)t≥0 with transition matrix P is ir-
reducible and aperiodic, then there exists r ∈ N such that P r(ω, ω′) > 0 for all
ω, ω′ ∈ Ω.

Proof. Let a, b ∈ T (ω), then

P a+b(ω, ω) =
∑
ω′∈Ω

P a(ω, ω′)P b(ω′, ω) ≥ P a(ω, ω)P b(ω, ω) > 0 ,

hence a + b ∈ T (ω) which means that the set T (ω) is closed under addition.
Since P is aperiodic, we have gcd T (ω) = 1 for all ω ∈ Ω. Now Remark 2.14
implies there exists T (ω) ∈ T (ω) such that t ∈ T (ω) for all t ≥ T (ω). Since P
is also irreducible, there exists τ = τ(ω, ω′) ∈ N such that P τ (ω, ω′) > 0. Thus,
for t ≥ T (ω) + τ(ω, ω′), we have

P t(ω, ω′) =
∑
ζ∈Ω

P t−τ (ω, ζ)P τ (ζ, ω′) ≥ P t−τ (ω, ω)P τ (ω, ω′) > 0 .

Finally, if we choose t ≥ t̄ := max
ω∈Ω

T (ω) + max
ω,ω′∈Ω

τ(ω, ω′), we have P t(ω, ω′) > 0
for all ω, ω′ ∈ Ω.

Proposition 2.15 implies that for two arbitrary states ω, ω′ ∈ Ω, it is always
possible to get from ω to ω′ in a finite number of time steps if the chain is
irreducible and aperiodic.

9
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2.1.3 Stationary Distributions

In this section we introduce special distributions of Markov chains. We will see
that these so-called stationary distributions have interesting and useful properties.

Definition 2.16. Let (Xt)t≥0 be a Markov chain with state space Ω and transition
matrix P . Then π ∈M1(Ω) is called stationary distribution for P if

π = πP . (2.3)

Let us consider a Markov chain with stationary distribution π. If we start the
chain in π, i.e. we choose initial distribution µ0 = π, then we have µt = πP t = π

for all t ≥ 0. This is the reason why we call π stationary.

Corollary 2.17. The condition for stationarity (2.3) is obviously equivalent to

π(ω′) =
∑
ω∈Ω

π(ω)P (ω, ω′) for all ω′ ∈ Ω .

Proposition 2.18. Let (Xt)t≥0 be an irreducible Markov chain with state space
Ω and transition matrix P . Then there exists a unique stationary distribution
π ∈M1(Ω) for P .

Proof. Proofs for the existence and the uniqueness of the stationary distribution
are given in [LPW09, p. 12 f., p. 14].

Lemma 2.19. The stationary distribution π ∈M1(Ω) of an irreducible Markov
chain (Xt)t≥0 with transition matrix P is strictly positive.

Proof. Let ω′ ∈ Ω be an arbitrary state. Since π is a probability distribution,
there must exist a state ω ∈ Ω with π(ω) > 0. Irreducibility also implies that
there exists a time t ≥ 0 such that P t(ω, ω′) > 0. Since π is stationary for P , we
have π = πP t. Therefore, for all ω′ ∈ Ω, we have

π(ω′) =
∑
ζ∈Ω

π(ζ)P t(ζ, ω′) ≥ π(ω)P t(ω, ω′) > 0 ,

since π(ω) > 0 and P t(ω, ω′) > 0. Hence π(ω′) > 0 for all ω′ ∈ Ω.

10



2.1 Basic Properties Markov Chains and Mixing Times

Proposition 2.20. Let (Xt)t≥0 be an irreducible Markov chain with state space
Ω and transition matrix P . If π ∈M1(Ω) satisfies the detailed balance equations

π(ω)P (ω, ω′) = π(ω′)P (ω′, ω) for all ω, ω′ ∈ Ω , (2.4)

then π is stationary for P .

Proof. By taking the sum over all ω′ ∈ Ω on both sides of (2.4), we obtain

∑
ω′∈Ω

π(ω′)P (ω′, ω) =
∑
ω′∈Ω

π(ω)P (ω, ω′) = π(ω)
∑
ω′∈Ω

P (ω, ω′) = π(ω) ,

where we used the fact that P is stochastic. According to Corollary 2.17, this is
equivalent to πP = π and hence π is stationary for P .

The detailed balance equations represent an easy way to show that a given dis-
tribution is stationary. We will take use of it in the upcoming chapters. At
last, we introduce another term that is often used in the context of stationary
distributions, the so-called reversibility of a Markov chain.

Definition 2.21. A Markov chain (Xt)t≥0 with state space Ω and transition
matrix P that satisfies the detailed balance equations is called reversible with
respect to π ∈M1(Ω).

11
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2.2 Distance to Stationarity

In this section we discuss the long-term behavior of Markov chains. We will see
that an irreducible and aperiodic Markov chain converges to its unique stationary
distribution. In this case, we intend to quantify the speed of convergence and
therefore need to measure the distance between the chain at a certain time and
its stationary distribution.

2.2.1 Total Variation Distance

In order to measure the distance between two probability measures, we first need
to define an appropriate metric. Therefore, we make the following definition:

Definition 2.22. Let µ, ν ∈ M1(Ω). Then the total variation distance between
µ and ν is defined by

‖µ− ν‖TV := max
A⊂Ω
|µ(A)− ν(A)| .

Remark 2.23. Since µ and ν are two probability distributions, the definition
implies that ‖µ− ν‖TV ∈ [0, 1].

We see that the total variation distance is obtained by looking at the maximum
over all 2|Ω| subsets of our state space Ω. If Ω contains many elements, then this
definition is not always the best way to compute this distance. We will now prove
another characterization of the total variation distance, where we only have to
take a sum over all elements in Ω.

Proposition 2.24. Let µ, ν ∈M1(Ω). Then the total variation distance between
µ and ν is given by

‖µ− ν‖TV = 1
2
∑
ω∈Ω
|µ(ω)− ν(ω)| . (2.5)

12



2.2 Distance to Stationarity Markov Chains and Mixing Times

Proof. Let A ⊂ Ω and B := {ω ∈ Ω | µ(ω) ≥ ν(ω)}. Then we have

µ(A)− ν(A) = µ(A ∩B)− ν(A ∩B) + µ(A ∩BC)− ν(A ∩BC)

< µ(A ∩B)− ν(A ∩B)

≤ µ(A ∩B)− ν(A ∩B) + µ(AC ∩B)− ν(AC ∩B)

= µ(B)− ν(B) .

(2.6)

The first inequality holds because µ(ω′) − ν(ω′) < 0 for any ω′ ∈ A ∩ BC ⊂ BC

and the second inequality is true because µ(ω)−ν(ω) ≥ 0 for all ω ∈ AC∩B ⊂ B.
Analogously, we have

ν(A)− µ(A) ≤ ν(BC)− µ(BC)

= 1− ν(B)−
(
1− µ(B)

)
= µ(B)− ν(B) .

(2.7)

Combining (2.6) and (2.7), we get |µ(A)−ν(A)| ≤ µ(B)−ν(B). By taking A = B,
the left-hand side equals the upper bound on the right-hand side. Therefore, we
obtain

max
A⊂Ω
|µ(A)− ν(A)| = µ(B)− ν(B)

= 1
2
[
µ(B)− ν(B) + ν(BC)− µ(BC)

]
= 1

2

( ∑
ω∈B

(
µ(ω)− ν(ω)

)
+

∑
ω′∈BC

(
ν(ω′)− µ(ω′)

))

= 1
2
∑
ω∈Ω
|µ(ω)− ν(ω)| .

Wementioned that we want to define an appropriate metric. Hence, we prove that
the total variation distance satisfies the properties of a metric, namely identity
of indiscernibles, symmetry and the triangle inequality.

13



2.2 Distance to Stationarity Markov Chains and Mixing Times

Proposition 2.25. The total variation distance defines a metric on M1(Ω).

Proof. Let µ, ν, η ∈M1(Ω).

(i) Identity of indiscernibles holds because

‖µ− ν‖TV = 0 ⇔ 1
2
∑
ω∈Ω
|µ(ω)− ν(ω)| = 0

⇔ |µ(ω)− ν(ω)| = 0 for all ω ∈ Ω

⇔ µ(ω) = ν(ω) for all ω ∈ Ω

⇔ µ = ν .

(ii) Symmetry is obviously true. We have

‖µ− ν‖TV = 1
2
∑
ω∈Ω
|µ(ω)− ν(ω)| = 1

2
∑
ω∈Ω
|ν(ω)− µ(ω)| = ‖ν − µ‖TV .

(iii) Using the triangle inequality for real numbers, we easily see that the total
variation distance satisfies the triangle inequality,

‖µ− ν‖TV = 1
2
∑
ω∈Ω
|µ(ω)− ν(ω)|

≤ 1
2
∑
ω∈Ω

(
|µ(ω)− η(ω)|+ |η(ω)− ν(ω)|

)
= 1

2
∑
ω∈Ω
|µ(ω)− η(ω)|+ 1

2
∑
ω∈Ω
|η(ω)− ν(ω)|

= ‖µ− η‖TV + ‖η − ν‖TV .

14



2.2 Distance to Stationarity Markov Chains and Mixing Times

2.2.2 Convergence Theorem

Knowing the total variation distance is an appropriate metric to measure the dis-
tance between two probability measures, we want to define the distance between
a Markov chain (Xt)t≥0 at time t ≥ 0 and its stationary distribution π. Having
this done, we will prove the Convergence Theorem for irreducible and aperiodic
Markov chains.

The aforementioned distance obviously depends on the initial distribution
µ0 ∈ M1(Ω). Since we normally speak of an initial state ω0 ∈ Ω instead of
an initial distribution, we use the Kronecker delta notation and set µ0 = δω0

defined by

δω(ω′) := δ(ω, ω′) =

1 if ω′ = ω,

0 if ω′ 6= ω,
(2.8)

for ω, ω′ ∈ Ω. In this case, the initial distribution is completely concentrated at a
single state ω0 ∈ Ω. Hence, we obtain the distribution of the chain (Xt)t≥0 with
transition matrix P at time t ≥ 1 by δω0P

t = P t(ω0, ·). Therefore, we can define
the distance to stationary in the following way:

Definition 2.26. Let (Xt)t≥0 be a Markov chain with transition matrix P and
stationary distribution π ∈ M1(Ω). Then the distance to stationarity at time
t ≥ 1 is given by

d(t) := max
ω∈Ω

∥∥∥P t(ω, ·)− π
∥∥∥

TV
. (2.9)

Remark 2.27. In the more general case, the distance to stationarity is given by

d(t) = sup
µ∈M1(Ω)

∥∥∥µP t − π
∥∥∥

TV
.

A proof can be found, for example, in [LPW09, p. 329 f.].

Finally, we give a formulation and a proof of the Convergence Theorem for Markov
chains. We will see that irreducibility and aperiodicity are indeed needed to prove
this theorem.
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2.2 Distance to Stationarity Markov Chains and Mixing Times

Theorem 2.28. Let (Xt)t≥0 be an irreducible and aperiodic Markov chain with
transition matrix P and stationary distribution π ∈ M1(Ω). Then there exist
constants A > 0 and γ ∈ (0, 1) such that the distance to stationarity is bounded
by

d(t) ≤ Aγt .

Proof. Since P is irreducible and aperiodic, Proposition 2.15 tells us there exists
an r ∈ N such that P r(ω, ω′) > 0 for all ω, ω′ ∈ Ω. Let Π ∈ R|Ω|×|Ω| be the matrix
with identical rows π. Define

δ̃ := min
ω,ω′∈Ω

P r(ω, ω′)
π(ω′) ,

then P r(ω, ω′) ≥ δ̃π(ω′) for all ω, ω′ ∈ Ω. For any a ∈ (0, 1), this inequality also
holds for δ := min(δ̃, a) ∈ (0, 1). Let ϕ := 1− δ ∈ (0, 1), then define

Q := ϕ−1P r + (1− ϕ−1Π) .

Obviously, Q is stochastic because P t and Π are stochastic. Rewriting this equa-
tion, we obtain

P r = (1− ϕ)Π + ϕQ .

We will now prove by induction over k ∈ N0 that

P rk = (1− ϕk)Π + ϕkQk (2.10)

holds. The case k = 0 is trivial. Now assume (2.10) is true for k = n (induction
hypothesis), then we have

P r(n+1) = P rnP r

=
(
(1− ϕn)Π + ϕnQn

)
P r

= (1− ϕn)ΠP r + ϕnQn
(
(1− ϕ)Π + ϕQ

)
= (1− ϕn) ΠP r︸ ︷︷ ︸

=Π

+ϕn(1− ϕ)QnΠ︸ ︷︷ ︸
=Π

+ϕn+1Qn+1

= (1− ϕn+1)Π + ϕn+1Qn+1 .
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Therefore, equation (2.10) holds for k = n+1 under the assumption that it holds
for k = n and hence it is true for all k ∈ N0.
Next we multiply (2.10) by P j (j ∈ N0) which yields

P rk+j = (1− ϕk) ΠP j︸ ︷︷ ︸
=Π

+ϕkQkP j = Π + ϕk
(
QkP j − Π

)
,

or equivalently P rk+j − Π = ϕk(QkP j − Π). Fixing ω ∈ Ω and examining the
ω-th row on both sides of this equation, we have

P rk+j(ω, ·)− π = ϕk
(
QkP j(ω, ·)− π

)
.

Thus, using the total variation distance, we obtain
∥∥∥P rk+j(ω, ·)− π

∥∥∥
TV

=
∥∥∥ϕk(QkP j(ω, ·)− π

)∥∥∥
TV

= ϕk
∥∥∥QkP j(ω, ·)− π

∥∥∥
TV

≤ ϕk .

We used the fact that QkP j(ω, ·) is a probability distribution according to Corol-
lary 2.2 (iii) and hence the total variation distance is bounded by 1. Now we
define γ := r

√
ϕ ∈ (0, 1) and A := γ−r > 0. Representing t ≥ 0 using Euclidean

division yields t = rk + j for 0 ≤ j < r. Then we have
∥∥∥P t(ω, ·)− π

∥∥∥
TV

=
∥∥∥P rk+j(ω, ·)− π

∥∥∥
TV
≤ ϕk = γrk ≤ γrkγj−r = γ−rγrk+j = Aγt

which holds for any ω ∈ Ω. Therefore, for all t ≥ 0, we finally obtain

max
ω∈Ω

∥∥∥P t(ω, ·)− π
∥∥∥

TV
≤ Aγt .

Remark 2.29. Since γ ∈ (0, 1), we have d(t) → 0 as t → ∞. Therefore,
every irreducible and aperiodic Markov chain converges to its unique stationary
distribution π which is also called equilibrium distribution.
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2.2.3 Properties of the Distance

We proved that the distance to stationarity goes to 0 as the time t goes to infinity.
In this section, we will prove and mention some properties regarding the distance
to stationarity which might be helpful in the course of the next sections.

Proposition 2.30. The distance to stationarity d(t) is monotonically decreasing
in t, i.e. d(t+ 1) ≤ d(t) for all t ≥ 1.

Proof. Using Proposition 2.5 and the triangle inequality, we can write

d(t+ 1) = max
ω∈Ω

1
2
∑
ω′∈Ω

∣∣∣P t+1(ω, ω′)− π(ω′)
∣∣∣

= max
ω∈Ω

1
2
∑
ω′∈Ω

∣∣∣∣ ∑
ζ∈Ω

P t(ω, ζ)P (ζ, ω′)−
∑
ζ∈Ω

π(ζ)P (ζ, ω′)
∣∣∣∣

= max
ω∈Ω

1
2
∑
ω′∈Ω

∣∣∣∣ ∑
ζ∈Ω

(
P t(ω, ζ)− π(ζ)

)
P (ζ, ω′)

∣∣∣∣
≤ max

ω∈Ω

1
2
∑
ω′∈Ω

∑
ζ∈Ω

∣∣∣P t(ω, ζ)− π(ζ)
∣∣∣P (ζ, ω′)

= max
ω∈Ω

1
2
∑
ζ∈Ω

∣∣∣P t(ω, ζ)− π(ζ)
∣∣∣ ∑
ω′∈Ω

P (ζ, ω′)

= d(t) .

In other situations, it will be convenient to define another distance, i.e.

d̄(t) := max
ω,ω′∈Ω

∥∥∥P t(ω, ·)− P t(ω′, ·)
∥∥∥

TV
. (2.11)

Proposition 2.31. Let (Xt)t≥0 be an irreducible and aperiodic Markov chain
with transition matrix P and stationary distribution π ∈M1(Ω). Let d and d̄ be
the distances defined in (2.9) and (2.11). Then the following identities hold:

(i) d(t) ≤ d̄(t) ≤ 2d(t) for all t ∈ N,

(ii) d̄(s+ t) ≤ d̄(s)d̄(t) for all s, t ∈ N,

(iii) d(ct) ≤ d̄(ct) ≤ d̄(t)c for all c, t ∈ N.

Proof. See for instance [LPW09, p. 53 ff].
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2.2.4 Mixing Times

In order to say something about the speed of convergence, we introduce the
concept of mixing times. The mixing time is a parameter that measures the time
a Markov chain needs for its distance to stationarity to be small (at most ε) in
the worst case. This leads us to make the following definition:

Definition 2.32. Let ε ∈ (0, 1). Then the ε-mixing time equals the number of
time steps until the distance to stationarity d is at most ε, i.e.

tmix(ε) := min{t ∈ N | d(t) ≤ ε} .

By convention, we additionally set

tmix := tmix(1
4) .

Lemma 2.33. Let l ∈ N and ε ∈ (0, 1), then

d
(
l tmix(ε)

)
≤ (2ε)l (2.12)

and in particular
tmix(ε) ≤

⌈
log2(ε−1)

⌉
tmix . (2.13)

Proof. Proposition 2.31 and the definition of the mixing time allow us to write

d
(
l tmix(ε)

)
≤ d̄

(
l tmix(ε)

)
≤ d̄

(
tmix(ε)

)l
≤
(
2d(tmix(ε))

)l
≤ (2ε)l.

Taking ε = 1/4, we obtain d(l tmix) ≤ 2−l. Now let ε̃ := 2−l, then d(l tmix) ≤ ε̃.
Since tmix(ε̃) = min{t ∈ N | d(t) ≤ ε̃}, we achieve the inequality tmix(ε̃) ≤ l tmix.
Rewriting ε̃ = 2−l, we get l = log2(ε−1). Since we are interested in an upper
bound for tmix(ε̃) ∈ N, we set l̃ :=

⌈
log2(ε̃−1)

⌉
∈ N which also satisfies our

inequality and hence completes the proof.

Remark 2.34. The choice of ε = 1/4 in the definition of tmix may seem arbitrary,
but choosing ε < 1/2 is essential in order to make inequality (2.12) non-trivial
and achieve the upper bound in (2.13).
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2.3 Spectral Theory Markov Chains and Mixing Times

2.3 Spectral Theory

In this section, we focus on the eigenvalues and eigenvectors of transition matrices
of Markov chains. On the one hand we will see that the speed of convergence
depends primarily on the biggest eigenvalues. On the other hand, we will be able
to achieve a lower and an upper bound for the ε-mixing time of an irreducible
and reversible Markov chain.

2.3.1 Eigenvalues of the transition Matrix

Since we consider the elements of RΩ as functions from Ω to R, we will sometimes
use the term eigenfunctions when talking about eigenvectors of the transition
matrix P . Firstly, we want to prove some basic facts considering eigenvalues of
transition matrices.

Lemma 2.35. Let (Xt)t≥0 be a Markov chain with transition matrix P .
(i) If λ ∈ R is an eigenvalue of the stochastic matrix P , then |λ| ≤ 1.
(ii) The matrix P has the eigenvalue 1 corresponding to the eigenvector (1, . . . , 1)T .

Proof. (i) Let ‖f‖∞ := max
ω∈Ω
|f(ω)| be the maximum norm. We first show that

‖Pf‖∞ ≤ ‖f‖∞. We have

‖Pf‖∞ = max
ω∈Ω

∣∣∣∣ ∑
ω′∈Ω

P (ω, ω′)f(ω′)
∣∣∣∣

≤ max
ω∈Ω

( ∑
ω′∈Ω
|P (ω, ω′)| |f(ω′)|

)

≤ max
ω∈Ω

(
max
ω′∈Ω
|f(ω′)|

∑
ω′∈Ω

P (ω, ω′)
)

= max
ω′∈Ω
|f(ω′)|

= ‖f‖∞ ,

where we used the triangle inequality for real numbers and the fact that P is
stochastic. Now let ϕ be an eigenfunction with the corresponding eigenvalue λ,
i.e. Pϕ = λϕ. Then we obtain

‖Pϕ‖∞ = ‖λϕ‖∞ = |λ| ‖ϕ‖∞ ≤ ‖ϕ‖∞

and hence |λ| ≤ 1.
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(ii) Since P is stochastic, we have P · (1, . . . , 1)T = (1, . . . , 1)T which proves the
statement.

Let 〈·, ·〉 be the inner product on RΩ defined by 〈f, g〉 := ∑
ω∈Ω

f(ω)g(ω). Addi-

tionally, we define another inner product on RΩ in the following way:

Definition 2.36. For π ∈ RΩ, the inner product 〈·, ·〉π : RΩ×RΩ → R is defined
by

〈f, g〉π :=
∑
ω∈Ω

f(ω)g(ω)π(ω) for f, g ∈ RΩ.

Lemma 2.37. Let (Xt)t≥0 be an irreducible Markov chain with transition matrix
P and stationary distribution π ∈M1(Ω).

(i) The pre-Hilbert space (RΩ, 〈·, ·〉π) has an orthonormal basis of real-valued
eigenfunctions {ϕi}|Ω|i=1 corresponding to real eigenvalues {λi}|Ω|i=1.

(ii) For t ≥ 1, the matrix P t can be decomposed as

P t(ω, ω′)
π(ω′) =

|Ω|∑
i=1

ϕi(ω)ϕi(ω′)λti = 1 +
|Ω|∑
i=2

ϕi(ω)ϕi(ω′)λti . (2.14)

Proof. (i) Since π is a stationary distribution of an irreducible Markov chain, we
have π(ω) > 0 for all ω ∈ Ω. Therefore, we can define the matrix A ∈ R|Ω|×|Ω|

by A(ω, ω′) := π(ω) 1
2π(ω′)− 1

2P (ω, ω′). Using the reversibility of P with respect
to π, we obtain

A(ω, ω′) = π(ω) 1
2π(ω′) 1

2π(ω)P (ω, ω′) = π(ω′) 1
2π(ω) 1

2π(ω′)P (ω′, ω) = A(ω′, ω) .

Therefore, A is symmetric and hence there exists an orthonormal basis for the
inner product space (RΩ, 〈·, ·〉). This basis consists of eigenfunctions {ξi}|Ω|i=1 with
corresponding real eigenvalues {λi}|Ω|i=1. Now we define the set of diagonal matrices
{Dr

π}r∈R by Dr
π(ω, ω′) := δω′(ω)π(ω′)r. Then, we can write A = D1/2

π PD−1/2
π
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because

A(ω, ω′) =
∑
ζ∈Ω

(
D1/2
π P

)
(ω, ζ)D−1/2

π (ζ, ω′)

=
∑
ζ∈Ω

(
D1/2
π P

)
(ω, ζ) δω′(ζ)π(ω′)− 1

2

=
(
D1/2
π P

)
(ω, ω′)π(ω′)− 1

2

=
∑
ζ̃∈Ω

D1/2
π (ω, ζ̃)P (ζ̃ , ω′)π(ω′)− 1

2

=
∑
ζ̃∈Ω

δζ̃(ω)π(ζ̃) 1
2P (ζ̃ , ω′)π(ω′)− 1

2

= π(ω) 1
2P (ω, ω′)π(ω′)− 1

2 .

Let ϕi := D−1/2
π ξi for i ∈ {1, . . . , |Ω|}, then we have

Pϕi = PD−1/2
π ξi = D−1/2

π

(
D1/2
π PD−1/2

π

)
ξi = D−1/2

π Aξi = D−1/2
π λiξi = λiϕi .

Therefore, ϕi is a real-valued eigenfunction of P with corresponding eigenvalue
λi for all i ∈ {1, . . . , |Ω|}. Now we want to show the orthonormality of the set
{ϕi}|Ω|i=1. Since {ξi}

|Ω|
i=1 is orthonormal with respect to the inner product 〈·, ·〉, we

can write

δi(j) = 〈ξi, ξj〉 = 〈D1/2
π ϕi, D

1/2
π ϕj〉 = 〈D1

π ϕi, ϕj〉 =
∑
ω∈Ω

(D1
π ϕi)(ω)ϕj(ω) .

Expanding the matrix multiplication yields

δi(j) =
∑
ω∈Ω

( ∑
ω′∈Ω

D1
π(ω, ω′)ϕi(ω′)

)
ϕj(ω)

=
∑
ω∈Ω

( ∑
ω′∈Ω

δω′(ω)π(ω′)ϕi(ω′)
)
ϕj(ω)

=
∑
ω∈Ω

π(ω)ϕi(ω)ϕj(ω)

= 〈ϕi, ϕj〉 .

Hence, the set {ϕi}|Ω|i=1 is an orthonormal basis of the pre-Hilbert space (RΩ, 〈·, ·〉π).
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(ii) Firstly, we decompose the function δω′ in the the basis {ϕi}|Ω|i=1. Thus, we
obtain

δω′ =
|Ω|∑
i=1
〈δω′ , ϕi〉πϕi =

|Ω|∑
i=1

( ∑
ω∈Ω

δω′(ω)ϕi(ω)π(ω)
)
ϕi

=
|Ω|∑
i=1

ϕi(ω′)π(ω′)ϕi .
(2.15)

Using this and the fact that P tϕi = λtiϕi, we get

P t(ω, ω′) = (P tδω′)(ω)

=
(
P t
|Ω|∑
i=1

ϕi(ω′)π(ω′)ϕi
)

(ω)

=
( |Ω|∑
i=1

ϕi(ω′)π(ω′)P tϕi

)
(ω)

=
( |Ω|∑
i=1

ϕi(ω′)π(ω′)λtiϕi
)

(ω)

=
|Ω|∑
i=1

ϕi(ω)ϕi(ω′)λtiπ(ω′) .

Dividing by π(ω′) 6= 0, we obtain

P t(ω, ω′)
π(ω′) =

|Ω|∑
i=1

ϕi(ω)ϕi(ω′)λti ,

and choosing ϕ1 = (1, . . . , 1)T with corresponding eigenvalue λ1 = 1, we finally
get

P t(ω, ω′)
π(ω′) = 1 +

|Ω|∑
i=2

ϕi(ω)ϕi(ω′)λti .
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2.3.2 Bounding Mixing Times via Spectral Gaps

The so-called spectral gap of a Markov chain has a direct impact on its conver-
gence behavior and therefore on its mixing time. We are interested in bounding
the ε-mixing time using this spectral gap. Firstly, we clarify what is meant by
this term.

Definition 2.38. Let (Xt)t≥0 be a reversible Markov chain with transition ma-
trix P . Define λ̂ := max{|λ| 6= 1: λ is an eigenvalue of P}, then the absolute
spectral gap is given by

γ̂ := 1− λ̂.

We will often use another quantity that is directly related to the absolute spectral
gap. This quantity is the so-called relaxation time.

Definition 2.39. Let (Xt)t≥0 be a reversible Markov chain with transition matrix
P and absolute spectral gap γ̂. Then the relaxation time trel of this chain is defined
by

trel := 1
γ̂
.

Using the following inequalities, we can bound the mixing time of a Markov chain
if we know the spectrum (the eigenvalues) of its transition matrix.

Theorem 2.40. Let (Xt)t≥0 be an irreducible and aperiodic Markov chain with
transition matrix P and stationary distribution π ∈ M1(Ω). Fix ε ∈ (0, 1) and
define πmin := min

x∈Ω
π(x), then the following holds:

log
( 1

2ε

)
(trel − 1) ≤ tmix(ε) ≤ log

( 1
2επmin

)
trel . (2.16)

Proof. Firstly, we want to derive the lower bound of the mixing time. Therefore,
let ϕ be an eigenfunction of P with corresponding eigenvalue λ 6= 1, i.e. Pϕ = λϕ.
Recall that different eigenfunctions are orthogonal with respect to 〈·, ·〉π and that
(1, . . . , 1)T is an eigenfunction to the corresponding eigenvalue λ = 1. Hence

〈(1, . . . , 1)T , ϕ〉π =
∑
ω′∈Ω

π(ω′)ϕ(ω′) = 0
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and therefore for all ω ∈ Ω, we can write

|λtϕ(ω)| = |(P tϕ)(ω)|

=
∣∣∣∣ ∑
ω′∈Ω

P t(ω, ω′)ϕ(ω′)−
∑
ω′∈Ω

π(ω′)ϕ(ω′)
∣∣∣∣

=
∣∣∣∣ ∑
ω′∈Ω

(
P t(ω, ω′)− π(ω′)

)
ϕ(ω′)

∣∣∣∣
≤
∑
ω′∈Ω
|P t(ω, ω′)− π(ω′)| |ϕ(ω′)|

≤ 2 max
ω∈Ω

∥∥∥P t(ω, ·)− π
∥∥∥

TV
max
ω′∈Ω
|ϕ(ω′)|

= 2 d(t) ‖ϕ‖∞ .

Choosing ω ∈ argmax
ω′∈Ω

|ϕ(ω′)|, we obtain |ϕ(ω)| = ‖ϕ‖∞ and therefore we have

|λ|t ≤ 2d(t). If we take t = tmix(ε), we will get |λ|tmix(ε) ≤ 2d(tmix(ε)) ≤ 2ε.
Setting |λ| = λ̂, we can write

1
2ε ≤

1
λ̂tmix(ε)

⇔ log
( 1

2ε

)
≤ log

(
1

λ̂tmix(ε)

)
= tmix(ε) log

(
1
λ̂

)
,

since the natural logarithm is monotonically increasing. Using the fact that
log(x) ≤ x− 1 for all x > 1, we get

log
( 1

2ε

)
≤ tmix(ε)

(
1
λ̂
− 1

)
= tmix(ε) 1

1/γ̂ − 1 = tmix(ε) 1
trel − 1 ,

and hence
log

( 1
2ε

)
(trel − 1) ≤ tmix(ε) .

In order to derive the upper bound of the mixing time, we rewrite (2.14) using
the Cauchy-Schwarz inequality, i.e.

∣∣∣∣∣P t(ω, ω′)
π(ω′) − 1

∣∣∣∣∣ =
∣∣∣∣∣
|Ω|∑
i=2

ϕi(ω)ϕ(ω′)iλti
∣∣∣∣∣

≤ λ̂t
|Ω|∑
i=2
|ϕi(ω)| |ϕi(ω′)|

≤ λ̂t
( |Ω|∑
i=2

ϕi(ω)2
) 1

2
( |Ω|∑
j=2

ϕj(ω′)2
) 1

2
.

(2.17)
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Using the decomposition (2.15) of δω, we obtain

π(ω) = 〈δω, δω〉π =
〈 |Ω|∑
i=1

ϕi(ω)π(ω)ϕi,
|Ω|∑
j=1

ϕj(ω)π(ω)ϕj
〉
π

= π(ω)2
|Ω|∑
i=1

|Ω|∑
j=1

ϕi(ω)ϕj(ω)〈ϕi, ϕj〉π .

Since 〈ϕi, ϕj〉 = δi(j) we have

π(ω) = π(ω)2
|Ω|∑
i=1

ϕi(ω)2 ≥ π(ω)2
|Ω|∑
i=2

ϕi(ω)2

and therefore
|Ω|∑
i=2

ϕi(ω)2 ≤ 1
π(ω) . (2.18)

Looking at the total variation distance and using (2.5), we see that

∥∥∥P t(ω, ·)− π
∥∥∥

TV
= 1

2
∑
ω′∈Ω
|P t(ω, ω′)− π(ω′)|

= 1
2
∑
ω′∈Ω

π(ω′)
∣∣∣∣∣P t(ω, ω′)
π(ω′) − 1

∣∣∣∣∣
≤ 1

2 max
ω′∈Ω

∣∣∣∣∣P t(ω, ω′)
π(ω′) − 1

∣∣∣∣∣
and hence, using (2.17) and (2.18), we obtain

d(t) ≤ 1
2 max
ω,ω′∈Ω

∣∣∣∣∣P t(ω, ω′)
π(ω′) − 1

∣∣∣∣∣ ≤ 1
2 max
ω,ω′∈Ω

λ̂t√
π(ω)π(ω′)

≤ λ̂t

2πmin
= (1− γ̂)t

2πmin
.

Since (1− γ̂)t ≤ exp(−γ̂t) for all t ≥ 0 and γ̂ ∈ (0, 1), we obtain

d(t) ≤ exp(−γ̂t)
2πmin

.

Setting the upper bound equal to ε ∈ (0, 1), we get d(t) ≤ ε, and hence

tmix(ε) ≤ t ≤ log
( 1

2επmin

)1
γ̂

= log
( 1

2επmin

)
trel .
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2.3.3 Rate of Convergence

In Section 2.2.2, we proved the convergence theorem but we did not get a use-
ful expression to quantify the speed of convergence. In this section, we aim to
obtain an upper bound for the total variation distance using eigenvalues and
eigenfunctions of the transition matrix. As a result, we will get another proof of
the Convergence Theorem for Markov Chains including a quantitative statement
on the rate of convergence.

We will use Jensen’s inequlity which, in the context of probability theory, using
the notion of the expectation of a random variable, is given in the following way:

Proposition 2.41. Let I ⊂ R and let X : Ω → I be a random variable with
finite expectation, i.e. E[X] <∞. If g : I → R is a convex function, then

g
(
E[X]

)
≤ E

[
g(X)

]
. (2.19)

Proof. See for instance [Kle13, p. 152].

Remark 2.42. If g is concave instead, then −g is convex and hence the opposite
inequality g(E[X]) ≥ E[g(X)] holds. In both cases, equality holds if and only if
X constant.

Definition 2.43. Let f : Ω → R be a random variable. For π ∈ M1(Ω) and
p ∈ N, the `p(π)-norm on RΩ is given by

‖f‖p :=
( ∑
ω∈Ω
|f(ω)|pπ(ω)

) 1
p

.

Remark 2.44. Using the expectation Eπ[ · ], we can rewrite the `p(π)-norm as

‖f‖p =
(
Eπ
[
|f |p

]) 1
p

.

27



2.3 Spectral Theory Markov Chains and Mixing Times

Lemma 2.45. For any random variable f : Ω → R, the function p 7→ ‖f‖p is
non-decreasing for all p ∈ N.

Proof. For p ∈ N, we have

‖f‖p+1
p =

(
Eπ
[
|f |p

]) p+1
p

.

Let z := Eπ
[
|f |p

]
≥ 0, and define g(z) := z(p+1)/p. Calculating the second

derivative, we obtain

d2

dz2 g(z) = 1
p

(
1 + 1

p

)
z(1/p)−1 ≥ 0 ,

because z ≥ 0 and p ≥ 1. Therefore g is convex and we can apply Jensen’s
inequality (2.19). Thus, we obtain

(
Eπ
[
|f |p

]) p+1
p

≤ Eπ
[
|f |p+1

]
and after taking the (p+ 1)-th root, we altogether have

‖f‖p =
(
Eπ
[
|f |p

]) 1
p

≤
(
Eπ
[
|f |p+1

]) 1
p+1

= ‖f‖p+1

which finishes the proof.

Theorem 2.46. Let (Xt)t≥0 be an irreducible Markov chain with transition ma-
trix P and stationary distribution π ∈M1(Ω). Let the eigenvalues of P be given
by 1 = λ1 > λ2 ≥ ... ≥ λ|Ω| ≥ −1 with associated eigenfunctions {ϕi}|Ω|i=1,
orthonormal with respect to 〈·, ·〉π. Then the following holds:

∥∥∥P t(ω, ·)− π
∥∥∥2

TV
≤ 1

4

|Ω|∑
i=2

ϕi(ω)2λ2t
i .
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Proof. According to Proposition 2.24, we can write

∥∥∥P t(ω, ·)− π
∥∥∥2

TV
= 1

4

( ∑
ω′∈Ω

∣∣∣∣∣P t(ω, ω′)
π(ω′) − 1

∣∣∣∣∣π(ω′)
)

= 1
4

∥∥∥∥∥P t(ω, ·)
π(·) − 1

∥∥∥∥∥
2

1

≤ 1
4

∥∥∥∥∥P t(ω, ·)
π(·) − 1

∥∥∥∥∥
2

2

in which the inequality holds because of Lemma 2.45. Using (2.14), we obtain

∥∥∥P t(ω, ·)− π
∥∥∥2

TV
≤ 1

4

∥∥∥∥∥
|Ω|∑
i=2

λtiϕi(ω)ϕi
∥∥∥∥∥

2

2

= 1
4

|Ω|∑
i=2

|Ω|∑
j=2

ϕi(ω)ϕj(ω)λtiλtjδi(j)

= 1
4

|Ω|∑
i=2

ϕi(ω)2λ2t
j .

Corollary 2.47. The distance to stationarity of a Markov chain (Xt)t≥0 with
transition matrix P is bounded by

d(t) ≤ Cλ̂t ,

with C ∈ R+ being a constant and λ̂ := max{|λ| 6= 1: λ is an eigenvalue of P}.

Proof. Using (2.46), we have

d(t) = max
ω∈Ω

∥∥∥P t(ω, ·)− π
∥∥∥

TV
≤ max

ω∈Ω

1
2

( |Ω|∑
i=2

ϕi(ω)2λ2t
i

) 1
2

≤ 1
2 max

ω∈Ω

( |Ω|∑
i=2

ϕi(ω)2
) 1

2
λ̂t

= Cλ̂t ,

where we defined C := 1
2 max
ω∈Ω

( |Ω|∑
i=2

ϕi(ω)2
) 1

2
∈ R+.
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Remark 2.48. Since λ̂ < 1 and d(t) ≥ 0 for all t ≥ 0, we see that the distance
to stationarity d(t) converges to zero as the time t goes to infinity, i.e. d(t)→ 0
as t→∞.

We can also use Theorem 2.46 to derive a better upper bound for tmix(ε) than in
Theorem 2.40. This bound is stated in the following Corollary:

Corollary 2.49. Let (Xt)t≥0 be an irreducible and aperiodic Markov chain with
transition matrix P and stationary distribution π ∈ M1(Ω). Then the ε-mixing
time is bounded by

tmix(ε) ≤ log
(

1
2ε√πmin

)
trel ,

with πmin := min
ω∈Ω

π(ω).

Proof. According to Theorem 2.46, we obtain

∥∥∥P t(ω, ·)− π
∥∥∥2

TV
≤ 1

4

|Ω|∑
i=2

ϕi(ω)2λ2t
i ≤

1
4 λ̂

2t
|Ω|∑
i=2

ϕi(ω) ≤ 1
4
λ̂2t

π(ω) ≤
1
4
λ̂2t

πmin
,

where we used the definition of λ̂ and πmin as well as (2.18). Taking the square
root and rewriting λ̂ = 1− γ̂ gives us

d(t) ≤ λ̂t

2√πmin
= (1− γ̂)t

2√πmin
. (2.20)

If we now use the same arguments as in the last step of the proof of Theorem
2.40, we finally obtain

tmix(ε) ≤ log
(

1
2ε√πmin

)
trel .
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2.3.4 Cutoff Phenomenon

In the following, we consider a sequence of irreducible Markov chains (Xt)(n)
t≥0 with

corresponding state spaces Ωn labelled by n ≥ 1. Each such chain is characterized
by its transition matrix Pn and since the chains are always irreducible, there also
exists a stationary distribution πn for each chain. In the following, we denote
such a sequence of chains by (Ωn, Pn, πn)n≥1.

Recalling Definitions 2.26 and 2.32, the distance to stationarity and the ε-mixing
time of the n-th chain are given by

dn(t) = max
ω∈Ωn

∥∥∥P t
n(ω, ·)− πn

∥∥∥
TV

and
t
(n)
mix(ε) = min{t ∈ N | dn(t) ≤ ε} .

Moreover, we defined
t
(n)
mix = t

(n)
mix

(
1
4

)
.

In 1986, D. Aldous and P. Diaconis investigated the question of how many times
a deck of n cards must be shuffled until it is close to random. Therefore, they
considered the top-in-at-random shuffle, i.e. removing the top card and inserting
it back into the deck at a random position. Using the distance to stationarity
in order to answer the given question, they found out that there exists a critical
number of shuffles kn = n log(n) with the following property: shortly before kn,
the distance to stationarity is close to 1 and shortly after kn, it is close to 0. Hence
they concluded that n log(n) shuffles are enough to mix up a deck consisting of
n cards. The two authors denoted this sharp drop in the distance to stationarity
as cutoff phenomenon. [AD86].

In the previous chapters about Markov chains, we were mostly interested in the
limiting behavior of a chain. We proved that the distance to stationarity dn(t)
for an irreducible and aperiodic Markov chain tends to 0 for t → ∞, according
to the Convergence Theorem 2.28. However, this description completely misses
the cutoff phenomenon. A helpful tool for characterizing this phenomenon are
instead mixing times, as we can see in the following definition:
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Definition 2.50. A sequence of irreducible Markov chains (Ωn, Pn, πn)n≥1 is said
to exhibit the cutoff phenomenon if, for any ε ∈ (0, 1

2), we have

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1 . (2.21)

Remark 2.51. The above definition implies that t(n)
mix(ε) and t

(n)
mix(1 − ε) are

asymptotically equivalent, i.e. we can write t(n)
mix(ε) ∼ t

(n)
mix(1− ε). The expression

(2.21) is also equivalent to

lim
n→∞

t
(n)
mix(ε)− t(n)

mix(1− ε)
t
(n)
mix(ε)

= 0 .

This means that the difference of the mixing times t(n)
mix(ε) and t(n)

mix(1−ε) becomes
arbitrary small compared to the mixing time tmix(ε) itself.

There is another equivalent description of the cutoff phenomenon which includes
explicitly the distance to stationarity and only the (standard) mixing time t(n)

mix:

Proposition 2.52. A sequence of irreducible Markov chains (Ωn, Pn, πn)n≥1 ex-
hibits the cutoff phenomenon if, for any ε ∈ (0, 1

2), we have

lim
n→∞

dn
(
ct

(n)
mix

)
=

1 if c < 1 ,

0 if c > 1 .

Proof. See for instance [LPW09, p. 347].

According to this proposition, it is clear that the cutoff phenomenon describes
a sharp drop in the distance to stationarity from close to 1 to close to 0 (see
Figure 2). This sharp drop occurs around the mixing time t(n)

mix in an interval of
time that is of smaller order than t

(n)
mix itself. We call this interval of time the

cutoff window and make the following definition, following [BHP17]:

Definition 2.53. A sequence (wn)n≥1 is called a cutoff window for the sequence
of irreducible Markov chains (Ωn, Pn, πn)n≥1 if wn ∈ o(t(n)

mix) and for all ε ∈ (0, 1
2),

there exists a constant cε > 0 such that for all n ≥ 1, we have

t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ cεwn .
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Fig. 2: For a sequence of Markov chains (Ωn, Pn, πn)n≥1 that exhibit the cutoff phe-
nomenon, the distance to stationarity dn(t) plotted against the time t approaches a
step function on a time-scale of tmix(ε) as n → ∞. In the graphic, the distance dn(t)
is shown for two Markov chains (Ωn1 , Pn1 , πn1) and (Ωn2 , Pn2 , πn2) with n1 < n2. The
dotted lines represent the mixing times t(n)

mix(ε) and t(n)
mix(1− ε) for ε = 1

4 , n ∈ {n1, n2}.

Thus, the cutoff window describes the interval of time in which the distance to
stationary drops from a value close to 1 to one near 0. Additionally, this interval
of time is negligible compared to the mixing time of the chain.

The appearance of the cutoff phenomenon can be connected with some results
from Spectral Theory in Chapter 2.3, in particular by considering the relaxation
time of the n-th chain given by t(n)

rel = (1−λ̂n)−1 with λ̂n being the eigenvalue with
second largest absolute value, i.e. λ̂n := max{|λn| 6= 1: λn is an eigenvalue of Pn}.

Proposition 2.54. Consider a sequence of irreducible and aperiodic Markov
chains (Ωn, Pn, πn)n≥1 with mixing times t(n)

mix and relaxation times t(n)
rel . If

lim
n→∞

t
(n)
mix

t
(n)
rel

<∞ , (2.22)

then the Markov chain does not exhibit the cutoff phenomenon.

Proof. Let ε ∈ (0, 1
2). We recall the first bound from Theorem 2.40 and, for a

fixed n ∈ N, we have (
t
(n)
rel − 1

)
log

( 1
2ε

)
≤ t

(n)
mix(ε) . (2.23)
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Using the fact that ε ∈ (0, 1
2) and (2.23), we can write

t
(n)
mix(ε)

t
(n)
mix(1− ε)

≥ t
(n)
mix(ε)
t
(n)
mix

≥ t
(n)
rel − 1
t
(n)
mix

log
( 1

2ε

)
.

According to the limit (2.22), there exists a constant C > 0 and an N ∈ N such
that for all n ≥ N , we have

t
(n)
rel − 1
t
(n)
mix

≥ C .

Hence we obtain

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

≥ C log
( 1

2ε

)
and letting ε→ 0, we have

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

=∞

which means that, by observing (2.22), there cannot be a cutoff.

Remark 2.55. According to this proposition, the expression

lim
n→∞

t
(n)
mix

t
(n)
rel

=∞ ,

or equivalently t(n)
rel ∈ o(t

(n)
mix), represents a necessary condition for the cutoff phe-

nomenon.

Many families of Markov chains are known to exhibit the cutoff phenomenon but
proving it is often an extremely challenging task [BHP17]. But why are we so
interested in this phenomenon? Suppose we want to simulate a probability dis-
tribution using an MCMC-algorithm (see Section 4.1). Then the largest part of
the running time of the simulation is given by the mixing time of the underlying
Markov chain [Sin93]. Hence knowing that a family of Markov chains exhibits
the cutoff phenomenon is quite useful: It means that in order to get a reasonably
accurate result for the chain (Xt)(n)

t≥0, we have to wait at least t(n)
mix time steps.

Moreover, due to the cutoff phenomenon, we know that it is not efficient to run
the chain any longer after t(n)

mix and thus we can stop the chain.
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We might also ask what causes the cutoff phenomenon. One explanation makes
use of Theorem 2.46, i.e. that for an irreducible Markov chain (Xt)(n)

t≥0 on Ωn with
transition matrix Pn and stationary distribution πn, we have

∥∥∥P t
n(ω, ·)− πn

∥∥∥2

TV
≤ 1

4

|Ωn|∑
i=2

ϕn,i(ω)2λ2t
n,i , (2.24)

where λn,i are the eigenvalues of Pn with associated eigenfunctions ϕn,i orthonor-
mal with respect to 〈·, ·〉πn . This upper bound is quite accurate and serves as a
good approximation for the left side of (2.24). Now consider the eigenvalue with
second largest absolute value, i.e. λ̂n with its associated eigenfunction ϕ̂n. Then
it appears that in many chains the term ϕ̂n(ω)2λ̂2t

n is the most important: Indeed,
it dominates the other terms in the sum and it also determines the final behavior
of the chain, i.e. the exponential decay for t→∞. A possible cause for the cutoff
phenomenon is said to be a high algebraic multiplicity of the eigenvalue λ̂n caused
by a high symmetry of the underlying chain. But there are also examples where
cutoff occurs eventhough the chain is less symmetric. So in order to understand
the cutoff phenomenon of a sequence of chains and to prove it, one needs to have
detailed knowledge about this sequence, that is knowing all its eigenvalues and
eigenfunctions. As mentioned before, this is not an easy task and it is the reason
why other methods (e.g. coupling) are also developed and used to prove this
phenomenon. [Dia96]
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3 Curie-Weiss Potts Model
This chapter aims to give a detailed overview of the most important aspects and
results of the so-called Curie-Weiss Potts model. Topics discussed in this chapter
are, for example, the general Potts model, Gibbs distributions, the free energy
function and phase transitions.

3.1 Introduction to Spin Systems

Firstly, we define the classical Potts model and introduce the Hamiltonian which
plays a fundamental role in the upcoming theory. Moving forward, we discuss the
so-called mean-field approximation and use it to derive heuristically the Curie-
Weiss Potts model later.

3.1.1 Planar and standard Potts Model

The original model was proposed by C. Domb to his research student R. B. Potts
as the topic of his Ph.D. thesis. It was meant as a generalization of the Ising
model for more than two possible spin values. Potts actually studied two such
models in his thesis: the planar Potts model, as it was suggested by Domb, and
the so-called standard Potts model. [Wu82]

Before describing these two models, we need to summarize the most important
notions and concepts of spin systems. We denote the set of possible spin values
(sometimes called colors) by Q = {1, . . . , q} and hence speak of a q-state Potts
model. First of all, this model of interacting spins is defined on a finite lattice
where a spin is assigned to each site. For convenience, we identify each such
lattice with a finite graph G = (Λ,E ), where Λ denotes the set of vertices (sites)
and E represents the set of all edges {i, j}, where i, j ∈ Λ are adjacent vertices.
We define a configuration ω on Λ as an element of the state space Ω = QΛ, so
that a configuration ω ∈ Ω is of the form ω = (ωi)i∈Λ. Now, the essential quantity
concerning a configuration is its total energy which is given by the Hamiltonian
H : Ω → R. We will see that, for all ω ∈ Ω, the total energy H(ω) depends
only on the interaction of adjacent spins and the temperature of the system.
Therefore, we define the inverse temperature β ∈ (0,∞) which is, as its name
suggests, inversely proportional to the absolute temperature.
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The planar Potts model can be regarded as a true generalization of the Ising
model. In the Ising case, in fact, we have two possible parallel spin values pointing
in opposite directions, namely +1 and −1. We generalize this by taking q two-
dimensional unit vectors that point in equally spaced directions. These spin
vectors are clearly determined by their angle ϑ from a well-selected axis. For
simplification, we set Q = {1, . . . , q} and associate with each spin ωi ∈ Q its
angle ϑ(ωi) = 2π

q
ωi. The interaction energy of adjacent spins is then proportional

to their scalar product, and hence the Hamiltonian for the planar Potts model
can be written as

H(ω) := −Jβ
∑
{i,j}∈E

cos
(2π
q

(ωi − ωj)
)
,

where J ∈ R \ {0} is an interaction constant.

Additionally, Potts suggested a different model which is nowadays known as the
(standard) Potts model. In this model only two different energies of interaction
exist: Two adjacent spins contribute to the total energy only if they are equal.
Hence the Hamiltonian of the (standard) Potts model is given by

H(ω) := −Jβ
∑
{i,j}∈E

δ(ωi, ωj) , (3.1)

where δ(· , ·) is the Kronecker delta defined in (2.8) and J is as above. We call
the standard Potts model ferromagnetic if J > 0 and antiferromagnetic if J < 0.
In the ferromagnetic case, the spins tend to align locally with one another in
order to minimize their total energy, i.e. to minimize the Hamiltonian (3.1).
We will soon see that configurations with lower energy are more likely to be
found than configurations with higher energy. Therefore, the spins form clusters
(magnetic domains) when considering the model on a lattice (see Figure 3, left).
Regarding the antiferromagnetic model, the Hamiltonian (3.1) is minimized for
configurations where neighboring spins are different so that such configurations
have a higher probability to be observed. To avoid a misunderstanding regarding
this terminology, note that the term “ferromagnetic” does not necessarily imply
that the model always behaves like a ferromagnet (the same goes for the term
“antiferromagnetic”). [Wu82]
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Fig. 3: Simulations of typical configurations for the 3 - state standard Potts model on
a square lattice using the Metropolis algorithm. Each spin state is represented in a
different color. Left: ferromagnetic model (J = 1, n = 100 × 100, β = 100). Right:
antiferromagnetic model (J = −1, n = 20× 20, β = 10). From [Tsc18, p. 41, 43].

Additionally, we can include an external magnet field to this model. In this case,
the Hamiltonian contains an extra term resulting from the interaction of the spins
as magnetic moments with the magnetic field. In the case of the planar Potts
model, one might define the magnetic field as a vector h ∈ R2 and the resulting
interaction energy between a spin and the field as the scalar product between
these two. Considering the standard Potts model, there exist different possibili-
ties to define the interaction energy. Most of them are defined in such a way that
exactly one spin variable is favored over the others as in [CS09].

In the following sections, we will consider the ferromagnetic (J = 1) standard
Potts model without external magnetic field which we will only refer to as Potts
model from now on.

38



3.1 Introduction to Spin Systems Curie-Weiss Potts Model

3.1.2 Mean-field Models

Mean-field theory is used in various areas of physics. In statistical mechanics, it
is often used to approximate a lattice model by a simpler one in order to make
explicit computations possible. [BH19]

Deduced results from mean-field model may be used as an indicator for properties
that one can expect from the original model [FV17]. In the case of the mean-field
Potts model, an explicit computation of the free energy (a thermodynamic po-
tential) is possible, allowing for an in-depth description of phase transitions. This
simplified analysis is obtained by replacing the interactions between the spins by
an average magnetic field that acts on every single spin [Cra07]. Nevertheless,
this approximation will be unreliable if one wants to obtain accurate results, such
as the exact value of the critical temperature or the order of the existing phase
transition [BBL83]. For example, we will see that the Curie-Weiss Potts model,
as the mean-field approximation of the Potts model, exhibits a first-order phase
transition for all q > 2. However, for the two-dimensional Potts model, Baxter
proved the existence of a first-order phase transition only for q > 4 and derived
a transition of higher order for q ≤ 4 [Bax73]. Nevertheless, the description of
the phase transition of the mean-field model is useful because one can prove that
lattice spin systems in sufficiently high dimensions or with long-range interactions
show the same kind of phase transition as their mean-field version [GRW10].

The most commonly known mean-field spin model is the Curie-Weiss model, as
the mean-field counterpart of the Ising model. In the following, we will give an
insight in the analysis of the Curie-Weiss Potts model as the mean-field version
of the Potts model. Hence this model can also be seen as a generalization of the
Curie-Weiss model to more than two possible spin values.
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3.2 Basic Definitions

We introduce the Hamiltonian and the Gibbs distribution of the Curie-Weiss
Potts model in the following. Additionally, we examine the infinite-temperature
limit as well as the zero-temperature limit of this distribution.

3.2.1 Gibbs Distribution

Let us consider the Hamiltonian of the Potts model on the graph G = (Λ,E ) as
in (3.1) with J = 1 and Q = {1, . . . , q}. We label the elements of Λ by {1, . . . , n}
and denote the state space by Ωn := QΛ. Additionally, for every vertex i ∈ Λ, we
define the set of its nearest-neighbors by Ni := {j ∈ Λ | {i, j} ∈ E }. Using this,
we can rewrite the Hamiltonian as

H(ω) =
∑
i∈Λ
−β|Ni|

( 1
|Ni|

∑
j∈Ni

δ(ωi, ωj)
)

for any configuration ω ∈ Ωn. Now, for each i ∈ Λ, the term in the brackets
describes the average contribution of the neighbors of i ∈ Λ to the total energy
up to a multiplicative constant. This contribution to the Hamiltonian depends on
i ∈ Λ, therefore it varies locally. We make the mean-field assumption that each
local averaged contribution can be replaced with the global averaged contribution.
Instead of only averaging over all neighbors of i ∈ Λ, we average over all sites,
i.e. over Λ. Therefore, by replacing Ni by Λ and defining the modified inverse
temperature β′ := β|Λ|, we obtain

H(ω) =
∑
i∈Λ
−β′

( 1
|Λ|

∑
j∈Λ

δ(ωi, ωj)
)
.

For convenience, we only write β instead of β′ and since |Λ| = n, we can make
the following definition:

Definition 3.1. The Curie-Weiss Potts Hamiltonian for a configuration ω ∈ Ωn

at inverse temperature β > 0 is defined by

Hn,β(ω) := − β
n

n∑
i,j=1

δ(ωi, ωj) . (3.2)
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3.2 Basic Definitions Curie-Weiss Potts Model

It is also possible to derive a Hamiltonian in the form (3.2) by considering (a
slightly different) version of the standard Potts model on the complete graph
Cn. The graph Cn consists of n vertices that are all connected with each other,
hence it consists of

(
n
2

)
= n(n−1)

2 edges (see Figure 4). Since in (3.2) each spin
also interacts with itself, the Hamiltonian on Cn would also differ by an additive
constant, i.e. a shift in energy. Nevertheless, this would not change the behavior
of our model under the special probability distribution on Ωn that we consider
(see Remark 3.3 below).

We are interested in computing the probability of observing a given configuration
ω ∈ Ωn. To describe the phenomenology of large systems, such as our spin
systems, we are going to use the Gibbs distribution. This distribution is well
suited to describe systems at thermodynamic equilibrium at fixed temperature
T (at fixed inverse temperature β). As mentioned earlier, the probability of
observing a system in a microstate ω ∈ Ωn depends on the energy Hn,β(ω) of this
microstate as can be seen in the following definition [FV17]:

Definition 3.2. The Gibbs distribution µn,β on Ωn at inverse temperature β > 0
is given by

µn,β(ω) = exp(−Hn,β(ω))
Zn,β

, (3.3)

with Hamiltonian Hn,β and normalization constant Zn,β.

Fig. 4: The complete graphs C8 (left) and C21 (right): every pair of distinct vertices is
connected by a unique edge.
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3.2 Basic Definitions Curie-Weiss Potts Model

In the context of statistical mechanics, we denote the normalization constant Zn,β
as partition function. By examining (3.3) for a constant inverse temperature β,
we see that configurations with higher energy are less observed (small probability)
than configurations with lower energy (high probability).

Remark 3.3. For all configurations ω ∈ Ωn, the Hamiltonians Hn,β(ω) and
Ĥn,β(ω) = Hn,β(ω) + C for C ∈ R will lead to the same Gibbs distribution, i.e.
µn,β(ω) = µ̂n,β(ω). This is a direct consequence of the exponential function in
the numerator of (3.3) and the normalization.

Applying Definition 3.2 to the Curie-Weiss Potts Hamiltonian gives us the fol-
lowing distribution as in [CDL12]:

Definition 3.4. The (finite-volume) Gibbs distribution of the q-state Curie-Weiss
Potts model on Ωn at inverse temperature β > 0 is given by

µn,β(ω) = 1
Zn,β

exp
(
β

n

n∑
i,j=1

δ(ωi, ωj)
)
, (3.4)

where the partition function is given by

Zn,β =
∑
ω∈Ωn

exp
(
β

n

n∑
i,j=1

δ(ωi, ωj)
)
.

Remark 3.5. In the course of this chapter, we will also focus on infinite-volume
Gibbs states, i.e. we are going to consider the limit n → ∞. In our context, we
refer to this limit as the thermodynamic limit.

Recalling the Hamiltonian of the Curie-Weiss Potts model, we ask for those con-
figurations ω ∈ Ωn that minimize the total energy. By looking at (3.2), we see
that the Hamiltonian is obviously minimized by those configurations where all
spins have the same color.

Definition 3.6. A configuration ω(k) ∈ Ωn with all spins having the same color
k ∈ Q, i.e.

ω
(k)
i := k for all i ∈ {1, . . . , n}

is called ground state of the Curie-Weiss Potts model.

42



3.2 Basic Definitions Curie-Weiss Potts Model

One goal of the next sections is to understand how the Gibbs distribution of the
Curie-Weiss Potts model depends on the (inverse) temperature. To approach this
question, we consider two limiting situations of the model, i.e. the case of zero
temperature and the case of infinite temperature. The following theorem states
amongst other things that the ground states play an important role in our model,
especially when we consider the zero-temperature limit.

Theorem 3.7. Let µn,β be the Gibbs distribution of the Curie-Weiss Potts model
on Ωn = Qn at inverse temperature β > 0. Then the following statements hold:

(i) In the infinite-temperature limit, the Gibbs distribution converges to the
uniform distribution on Ωn, i.e. for all ω ∈ Ωn, we have

lim
β→0

µn,β(ω) = 1
|Ωn|

.

(ii) In the zero-temperature limit, the distribution of µn,β is concentrated on the
ground states, i.e.

lim
β→∞

µn,β(ω) =


1
|Q| if ω ∈ {ω(k)}k∈Q,

0 otherwise .

Proof. Firstly, we consider the infinite-temperature limit (β → 0). By setting
β = 0 in (3.4), we get

lim
β→0

µn,β(ω) = µn,0(ω) =
( ∑
ω∈Ωn

exp(0)
)−1

exp(0) = 1
|Ωn|

.

The zero-temperature limit (β →∞) requires more effort. Let ω 6∈ {ω(k)}k∈Q be
any configuration of Ωn that is not a ground state. Then there exists at least one
pair of vertices {p, q} ⊂ {1, . . . , n} with ωp 6= ωq. Hence, for such a configuration
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ω and any ground state ω(k), we have

Hn,β(ω)−Hn,β(ω(k)) = −β
n

n∑
i,j=1

(
δ(ωi, ωj)− δ(ω(k)

i , ω
(k)
j )

)

= β

n

n∑
i,j=1

(
1− δ(ωi, ωj)

)
≥ 2β

n
.

Since the probability µn,β(ω(k)) of the system being in a ground state ω(k) at finite
inverse temperature β > 0 is always positive, we obtain

µn,β(ω)
µn,β(ω(k)) = exp

(
−
(
Hn,β(ω)−Hn,β(ω(k))

))
≤ exp

(
− 2β

n

)
β→∞−→ 0 .

Hence lim
β→∞

µn,β(ω) = 0 for all ω 6∈ {ωk}k∈Q. Additionally, all the probabilities of

the ground states are equal, i.e. µn,β(ω(k)) = µn,β(ω(k′)) for all k, k′ ∈ Q. Since
there are |Q| such ground states and the distribution is completely concentrated
on these ground states, we have µn,β(ω(k)) = 1/|Q| for all k ∈ Q which finishes
the proof.

Remark 3.8. One can show that the family of spin variables {ωi}i∈{1,...,n} is
independent and identically distributed in the infinite-temperature case. On the
other hand, in the low-temperature regime, the spins become more and more
dependent. In the limit of zero temperature, the Gibbs distribution freezes the
system in one of its ground states. [FV17]

Theorem 3.7 provides some suggestions what we might expect for intermediate
values of the temperature. For high temperatures, we anticipate that in a typ-
ical configuration the spins are nearly equally distributed. As the temperature
decreases, there might arise a critical temperature at which the system starts to
favor a certain spin color. In the next sections, we introduce the necessary tools
to answer the question whether such a critical temperature exists and to possibly
determine it.

44



3.2 Basic Definitions Curie-Weiss Potts Model

3.2.2 Proportions Vector and Entropy

We introduce the proportions vector which will be a useful tool in the analysis
of our model at hand. After that, we will take a deeper look at a quantity called
entropy. This quantity plays a major role in many different areas like informa-
tion theory or thermodynamics. A similar quantity that we define at the end of
this chapter will also help us later on in the analysis of phase transitions in the
Curie-Weiss Potts model.

Another way of describing a configuration is to refer to the fractions of spins
that have the same color. This idea leads naturally to the following definition
according to [CDL12]:

Definition 3.9. For each ω ∈ Ωn, the vector x(ω) =
(
x1(ω), . . . , xq(ω)

)
with

components

xk(ω) := 1
n

n∑
i=1

δ(ωi, k)

is called proportions vector of the configuration ω ∈ Ωn.

This vector includes the fractions of spins equal to k for all k ∈ Q. Therefore,
this vector is also called fractions vector. We see that, up to a permutation of the
vertices, each configuration ω ∈ Ωn is clearly described by its proportions vector
x(ω).

Remark 3.10. The proportions vector x(ω) takes values in the set of probability
vectors

S :=
{
x ∈ Rq

+

∣∣∣∣ q∑
i=1

xi = 1
}
.

Therefore, the function x : Ω→ S is an S - valued random variable.

Before introducing the concept of entropy, we define the distribution of the frac-
tions vector. We will later study this distribution in the thermodynamic limit
which will lead to the phenomenon of phase transition.

Definition 3.11. The distribution of the proportions vector x under the (finite-
volume) Gibbs measure µn,β is given by σn,β := µn,β ◦ x−1 : S → [0, 1], i.e. for
any s ∈ S we have

σn,β(s) = µn,β(x = s) .
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In the following, we introduce the entropy as defined by C. E. Shannon [Sha48].
Even though he defined it in the field of information theory, we can adapt it to
our statistical mechanics setting.

Definition 3.12. Let µ ∈ M1(Ω) be a probability distribution on Ω. Then the
Shannon entropy S : M1(Ω)→ R is defined by

S(µ) := −
∑
x∈Ω

µ(x) log µ(x) .

Remark 3.13. For µ(x) = 0, the term log µ(x) diverges; by convention we set
0 · log(0) := 0. This can be justified by observing the following limit and applying
L’Hôpital’s rule: in fact

lim
x→0+

x log(x) = lim
x→0+

log(x)
1/x = 0 ,

since
lim
x→0+

(log(x))′
(1/x)′ = lim

x→0+

1/x
−1/x2 = lim

x→0+
−x = 0 .

In the following, we establish some properties of the entropy, and see that this
quantity may be used to characterize probability distributions.

Remark 3.14. An easy application of Jensen’s inequality (2.19) shows that
S(µ) ≥ 0 for all µ ∈ M1(Ω). Using the fact that f(x) := − log(x) is convex,
since f ′′(x) = 1/x2 > 0 for x ∈ (0, 1], and Remark 3.13, we can write

S(µ) = Eµ[− log µ] ≥ − logEµ[µ] = − log
( ∑
ω∈Ω

µ(ω)2
)
≥ − log

( ∑
ω∈Ω

µ(ω)
)

= 0.

Lemma 3.15. The Shannon entropy S : M1(Ω)→ R is concave.

Proof. Setting g(x) := −x log(x), we rewrite the entropy as S(µ) = ∑
ω∈Ω

g(µ(ω)).
Since µ(ω) ∈ [0, 1], we also have x ∈ [0, 1]. Now the second derivative of g with
respect to x is given by g′′(x) = −1/x. Hence the function g is concave, because
g′′(x) < 0 for all x ∈ (0, 1] and lim

x→0+
−1/x = −∞ < 0. Since the sum of concave

functions is also concave, we obtain that S is concave.
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Proposition 3.16. The uniform distribution on Ω maximizes the Shannon en-
tropy S, and the Dirac mass at ω ∈ Ω minimizes it, i.e.

argmax
µ∈M1(Ω)

S(µ) = {UΩ} and argmin
µ∈M1(Ω)

S(µ) = {δω}ω∈Ω .

Moreover, the Shannon entropy is bounded: for all µ ∈ M1(Ω), we have
S(µ) ∈ [0, log |Ω| ].

Proof. Let µ ∈M1(Ω) and define again g(x) := −x log(x). Using the notation of
the expectation, we can write

S(µ) = |Ω|
∑
ω∈Ω

1
|Ω|g

(
µ(x)

)
= |Ω|EUΩ

[
g(µ)

]
.

We already know that g is concave. Therefore, we can apply Jensen’s inequality
(Remark 2.42) and obtain

S(µ) ≤ |Ω| g
(
EUΩ [µ]

)
= |Ω| g

( ∑
ω∈Ω

1
|Ω|µ(ω)

)
= − log

( 1
|Ω|

)
= S(UΩ) .

Equality holds if and only if µ(·) is constant, hence if µ = UΩ. Considering
the second part of Proposition 3.16, Remark 3.14 tells us that S(µ) ≥ 0 for all
µ ∈M1(Ω). Additionally one does easily see that S(δω) = 0 for all ω ∈ Ω which
completes the proof.

Proposition 3.16 also tells us that the entropy can be used to measure how far
from being uniform a probability distribution is. The closer the entropy is to
zero, the more the distribution is concentrated on a few outcomes. If the entropy
is close to its maximum value log |Ω|, then all outcomes are nearly identically
distributed. [FV17]

At this point, let us frame the proportions vector in the context of the Curie-Weiss
Potts model. This vector x = x(ω) ∈ S tells us the relative frequency by which
a color q ∈ Q appears in a fixed configuration ω ∈ Ωn. This frequency can be
interpreted as a probability distribution on the possible spin states. Hence, we can
assign an entropy value to each proportions vector x = (x1, . . . , xq). Therefore,
we define the following quantity analogous to the Shannon entropy:
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Definition 3.17. The entropy density of the q-state Curie-Weiss Potts model is
the function S̃ : S → [0, log(q)] defined by

S̃(x) = −
q∑
i=1

xi log(xi) .

3.2.3 Mean-field Free Energy Function

In statistical mechanics, many phenomena are described by an interplay between
two quantities, one favoring disorder, the other favoring order. In our model,
these quantities are the entropy and the energy, both depending on the tempera-
ture. We will see that this interplay is well described by the free energy function
which will be derived in the course of this chapter.

Using the concept of the proportions vector, we derive an alternative representa-
tion of the Curie-Weiss Potts Hamiltonian describing the energy of a configura-
tion.

Lemma 3.18. Let ω ∈ Ωn be a configuration and let x(ω) ∈ S be its proportions
vector. Then the Hamiltonian of the q-state Curie-Weiss Potts model can be
rewritten as

H
(
x(ω)

)
= −nβ

q∑
r=1

xr(ω)2 .

Proof. Using Definition 3.9, we can write

H(ω) = −β
n

n∑
i,j=1

δ(ωi, ωj)

= −β
n

q∑
r=1

(
n∑
i=1

δ(ωi, r)
n∑
j=1

δ(ωj, r)
)

= −nβ
q∑
r=1

(
1
n

n∑
i=1

δ(ωi, r)
)2

= −nβ
q∑
r=1

x2
r .
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Since Lemma 3.18 tells us that the energy of a configuration ω ∈ Ωn only depends
on the different proportions of possible spin values, we consider the Hamiltonian
as a function of the proportions vector x = x(ω) ∈ S for now. We will see that
it is also convenient to introduce the energy density H̃(x) = H(x)/n. In analogy
to the entropy density S̃, we make the following definition using Lemma 3.18:

Definition 3.19. The energy density of the q-state Curie-Weiss Potts model is
the function H̃ : S → R given by

H̃(x) := −β
q∑
r=1

x2
r .

In order to describe the interplay between the energy (density) and the entropy
(density), we introduce the free energy function fβ in a similar way as in [FV17] .
We will see that this is an auxiliary function that allows for a different approach
to the phenomenon of phase transition. This free energy function is defined by
fβ : S → R, fβ(x) := H̃(x)− S̃(x). Regarding the Curie-Weiss Potts model, this
leads to the following definition:

Definition 3.20. The free energy function fβ : S → R of the q-state Curie-Weiss
Potts model on Ωn at inverse temperature β > 0 is given by

fβ(x) :=
q∑
r=1

(
− βx2

r + xr log(xr)
)
. (3.5)

Using results from Large Deviation theory, one can show that typical values of
the proportions vector x ∈ S are those that minimize the free energy function
fβ [FV17]. The free energy function fβ is shown for q = 3 in Figure 5 on the
next page. We see that the occurrence of local or even global minima is directly
connected with the inverse temperature β > 0. Before we take a closer look at
the different regimes depending on the inverse temperature, we want to clarify
some terminology following [ENR80]:

Definition 3.21. Let ω ∈ Ωn be a configuration, x(ω) ∈ S its proportions vector
and fβ : S → R the free energy function. If x(ω) corresponds to a global (local)
minimum of fβ, then the configuration ω ∈ Ωn is called a stable (metastable)
state.
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Remark 3.22. If there is only a unique global minimum of the free energy
function fβ, then we say we consider a pure phase. If there are multiple global
minima, then the system is in a mixed phase.

Fig. 5: Free energy function fβ : S → R for the Curie-Weiss Potts model with q = 3
colors as a function of the proportions vector x. The domain S is mapped into the XY -
plane by (x1, x2, x3) 7→ (x1, x2, 1 − x1 − x2). The form of the surface graph strongly
depends on the inverse temperature β > 0. The lower the free energy fβ(x) of a pro-
portions vector x ∈ S, the higher is the probability σn,β(x) to observe this proportions
vector [CDL12].
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At this point, we want to examine the graph of the free energy function in more
detail. We refer to Figure 5 showing the case q = 3 but keeping in mind that
the situation is qualitatively the same for all q ≥ 3 [LPW09]. The advantage of
considering q = 3 lies in the fact that the free energy function can be represented
as a three dimensional plot.
We start with the high-temperature regime, i.e. the plot in the upper-left cor-

ner titled β < βs1 . We see that there is only one global minimum at the center,
i.e. for a proportions vector with equal proportions of each color. This minimum
corresponds to a pure phase. Additionally, the Curie-Weiss Potts Gibbs distribu-
tion is supported almost completely on configurations ω ∈ Ωn with approximately
equal proportions for each color q ∈ Q.
Increasing the inverse temperature, we arrive βs1 , the first spinodal inverse

temperature. At this inverse temperature, q other local minima begin to appear.
This is shown in the upper right plot. So in the regime βs1 < β < βc, we have q
metastable states, each with one color dominating, and still one stable state at
the center.
By increasing the inverse temperature β even more, we come about a point,

where the q local minima become global minima – this happens at the critical
inverse temperature βc, as can be seen in the center plot – so that we have (q+ 1)
global minima, corresponding to a mixed phase. At criticality, the ordered and
the disordered phase coexist. Moreover, the behavior of the system changes at
βc: We have seen that for β < βc, the typical configurations ω ∈ Ωn are those
whose proportions vectors x(ω) have roughly equally distributed colors.
For inverse temperatures βc < β < βs2 , the Gibbs distribution is supported

almost completely on the configurations ω ∈ Ωn where one of the q colors is
dominating – as depicted in the plot in the bottom left corner. So we have q
stable states corresponding to global minima and one metastable state which
corresponds to the local minima in the center.
If we increase the inverse temperature even more, the local minimum in the

center disappears. The threshold value for the inverse temperature at which this
happens is called the second spinodal inverse temperature βs2 . So the graph of
the free energy function fβ has q global minima, each corresponding to a stable
state where one color q ∈ Q dominates. This situation is shown in the plot in the
bottom right corner.
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Now we introduce a thermodynamic potential, the so-called free energy. As one
might expect, we will see that this quantity is connected with the free energy
function fβ. We make the following definitions according to [FV17]:

Definition 3.23. The finite-volume free energy Ψn : (0,∞) → R of the q-state
Curie-Weiss Potts model is given by

Ψn(β) := − 1
βn

logZn,β ,

where Zn,β denotes the partition function of the model.

To make this quantity independent of the size of the system n, we consider the
thermodynamic limit. We will soon see that this has another advantage regarding
possible non-analyticities.

Definition 3.24. The infinite-volume free energy Ψ : (0,∞)→ R of the q-state
Curie-Weiss Potts model is given by

Ψ(β) := lim
n→∞

Ψn = − lim
n→∞

1
βn

logZn,β ,

where Zn,β denotes the partition function of the model.

We say that our model exhibits a phase transition at some inverse temperature
β > 0 if the free energy in the thermodynamic limit Ψ is not analytic in β. It is
necessary to consider the thermodynamic limit because it is the only way that a
non-analyticity can arise. Indeed, let us for a moment consider the free energy of
the finite system, i.e.

Ψn = − 1
βn

logZn,β = − 1
βn

log
( ∑
ω∈Ωn

exp
(
β

n

n∑
i,j=1

δ(ωi, ωj)
))

.

Since the partition function Zn,β is a polynomial in the variable exp(β/n) with
non-negative integer coefficients, the free energy Ψn must be real analytic in β

and hence cannot exhibit a phase transition. The only way for non-analyticity
to occur is in the thermodynamic limit n→∞, i.e. in an infinitely large system.
One may ask how this corresponds to our everyday experience of phase transi-
tions. Of course, real systems are always finite and hence the thermodynamic
properties are always analytic. However, if we consider very large systems, then
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their behavior is well approximated by the behavior of an infinitely large system.
In fact, experimentally, one cannot distinguish between the behavior of a large
finite and that of an infinitely large system. [FV17]

The following theorem provides the connection between our auxiliary free energy
function fβ and the (infinite-volume) free energy Ψ (see [EW90, p. 62]) by way of
a variational principle.

Theorem 3.25. The infinite-volume free energy Ψ(β) of the q-state Curie-Weiss
Potts model corresponds to a global minimum of the free energy function fβ(x),
i.e.

βΨ(β) = min
x∈S

fβ(x) + log(q) . (3.6)

Proof. A proof using results from the theory of Large Deviations can be found in
[OO18].

Since the infinite-volume free energy might not be analytic in some β > 0, there
must be a way that a non-analyticity can occur on the right-hand-side of (3.6).
The only way for this to happen is due to the minimum function. So instead of
examining the thermodynamic limit of the free energy, we will study minima as
well as the minimizers of the free energy function fβ.
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3.3 Results

Firstly, we introduce the order parameter which will help us in the following
analysis of the Curie-Weiss Potts model. Having done this, we examine the critical
inverse temperature of the model that is directly connected with the phenomenon
of phase transition. In addition, we study two other interesting temperatures,
namely the first and the second spinodal inverse temperature. Finally, we consider
the distribution of the proportions vector in the thermodynamic limit.

3.3.1 Order Parameter and Self-Consistency Equations

The first step in our analysis is to determine the states that minimize the free
energy function fβ. More precisely, we want to find the proportions vectors x ∈ S
that minimize fβ. Therefore, we consider

fβ(x) :=
q∑
r=1

(
− βx2

r + xr log(xr)
)
.

Since we intend to find local minima of fβ under the equality constraint

g(x) :=
q∑
r=1

xr − 1 = 0 , (3.7)

we use the method of Lagrange multipliers according to [KMS54]. The Lagrangian
function L with Lagrange multiplier λ is then given by

L (x, λ) = fβ(x)− λg(x)

=
q∑
r=1

(
− βx2

r + xr log(xr)
)
− λ

( q∑
r=1

xr − 1
)
.

The condition ∇x,λL (x, λ) = 0 yields

− 2βxr + 1 + log(xr)− λ = 0 (3.8)

for all r ∈ {1, . . . , q} and of course the constraint g(x) = 0. By rewriting (3.8) as
xr = exp(2βxr− 1 +λ) and substituting this into (3.7), we see that the Lagrange
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multiplier λ is given by

λ = 1− log
( q∑
r=1

exp(2βxr)
)
.

By substituting this back into (3.8) and rearranging terms, we obtain

xr = exp(2βxr)
( q∑
r=1

exp(2βxr)
)−1

(3.9)

for all r ∈ {1, . . . , q}. These equations represent conditions that a proportions
vector x ∈ S must satisfy in order to be a local minimum of fβ.

Lemma 3.26. Equation (3.8) has at most two roots α1, α2 ∈ [0, 1].

Proof. Let us consider h(xr) := −2βxr + 1 + log(xr) − λ = 0. Suppose that
h(xr) = 0 has three or more roots. Then Rolle’s theorem claims that h′(xr)
has at at least two roots. But we have h′(xr) = −2β + 1/xr = 0 if and only if
xr = 1/(2β). Therefore our assumption is false and h(xr) must have at most two
roots.

We assume w.l.o.g. that α1 ≥ α2. Then we have

x1 = . . . = xj = α1 and xj+1 = . . . = xq = α2 .

Due to [KMS54], only the state corresponding to j = 1 leads to a global minimum
of the free energy function fβ. Hence for the rest of this thesis, we will only
consider this case. We define the order parameter ξ = α1 − α2 ∈ [0, 1]. In
this case, we only have (at most) two different conditions in the form of (3.9).
Subtracting those conditions from each other and using the definition of the order
parameter, after some straightforward computation, we obtain the following self-
consistency equation for the Curie-Weiss Potts model:

ξ =
(

exp(2βξ)− 1
)(

exp(2βξ) + q − 1
)−1

. (3.10)

This equation describes implicitly how the order parameter ξ ∈ [0, 1] depends on
the inverse temperature β. Obviously, ξ = 0 is always a solution, but for higher
inverse temperatures β, there is another solution ξ > 0. Unfortunately, we cannot
solve this equation analytically for ξ in general. However, we will later investigate
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a special case, where we are able to obtain exact solutions.

Let us consider a different approach to finding minimal solutions of fβ using the
order parameter. We have

x1 − ξ = x2 = . . . = xq

and by using (3.7), after some calculations, we obtain

x1 = 1
q

(
1 + (q − 1)ξ

)
,

xk = 1
q

(1− ξ) for k ∈ {2, . . . , q} .
(3.11)

Due to the simple structure of the possible solutions x = (x1, . . . , xq), we see that
the issue of finding them reduces to an one-dimensional optimization problem
[GRW10].

By inserting (3.11) in the expression of the free energy function (3.5), we can
express fβ as a function of the order parameter, i.e. we have fβ : [0, 1]→ R with
ξ 7→ fβ(ξ). For simplicity, we then define f̃β(ξ) := fβ(ξ)− fβ(0) and, after some
straightforward computations, obtain

f̃β(ξ) = 1 + (q − 1)ξ
q

log
(
1 + (q − 1)ξ

)
+ q − 1

q
(1− ξ) log(1− ξ)− q − 1

q
βξ2 ,

with fβ(0) = −β/q − log(q). This equation describes the dependence of the free
energy function fβ of the order parameter ξ. It will play a central role in the
upcoming analysis of the Curie-Weiss Potts model, in particular for determining
the critical point of its phase transition.

Considering the representation of the proportions vector x in (3.11), we are now
interested in finding the order parameter ξ that minimizes the free energy function
fβ. Therefore, we consider the first derivative of fβ with respect to ξ, i.e.

d
dξ fβ(ξ) = q − 1

q

(
log

(
1 + (q − 1)ξ

)
− log(1− ξ)− 2βξ

)
. (3.12)

A necessary condition to have a local minimum in ξ is for (3.12) to be equal to
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zero. Imposing this equality and rearranging the terms, we end up again with
the self-consistency equation of our model as we could have expected.

Remark 3.27. In our model, the order parameter ξ depends on the inverse tem-
perature β. In general, it is defined to be zero in the unordered phase and finite
in the ordered one. We will later see that this is consistent with our definition of
the order parameter. [BH19]

3.3.2 Critical and Spinodal Inverse Temperatures

We have already mentioned three important values of the inverse temperature
β > 0 in Section 3.2.3 about the free energy function. In particular, we saw that
the value of β has a direct impact on the shape of the graph of the free energy
function fβ. In the following, we examine these special inverse temperatures even
more and try to derive their exact values depending on the number of colors q.

When we spoke about phase transitions near the end of Section 3.2.3, we men-
tioned that there is often a critical inverse temperature βc that separates the
ordered (β > βc) from the disordered phase (β < βc). Especially at criticality
(β = βc), we will see that both phases coexist which implies that the free energy
function fβ has global minima corresponding to each phases. We can define the
critical inverse temperature βc according to [KMS54] as follows:

Definition 3.28. Let fβ : [0, 1]→ R, ξ 7→ fβ(ξ) be the free energy function of the
q-state Curie-Weiss Potts model. The unique inverse temperature βc(q) at which
fβc has two global minima is called critical inverse temperature.

The next theorem states the exact value of this critical inverse temperature (as
given in [CDL12]). Both for this Theorem and for Proposition 3.33 below, we
provide only a sketch of the proofs which highlights the central ideas and tries
to give a dynamical understanding how the graph of fβ transforms for varying
inverse temperatures β > 0.
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Theorem 3.29. The critical inverse temperature of the q-state Curie-Weiss Potts
model for q ≥ 3 is given by

βc(q) = (q − 1) log(q − 1)
q − 2 .

Proof. We want to determine the order parameter ξ that minimizes the free en-
ergy function fβ. So we are interested in the global minima of the free energy
function for different inverse temperatures β (see Figure 6). These order param-
eters ξ minimizing the free energy function will depend on β and we can expect
some kind of discontinuity. By looking at the solutions of d

dξfβ(ξ) = 0, i.e.

q − 1
q

(
log

(
1 + (q − 1)ξ

)
− log(1− ξ)− 2βξ

)
= 0 ,

we see that ξ = 0 is always a solution. However for certain values of β, there
are other solutions which yield an even lower value of the free energy function
than ξ = 0 (see Figure 6 on the next page). We want to determine this critical
inverse temperature βc at which this shift in the order parameter occurs. As a
byproduct, we will obtain the order parameter ξc at criticality. So βc and ξc must
solve the system of equations


d
dξfβ(ξ) = 0 ,

fβ(ξ) = fβ(0) .

The first equality assures the existence of a local extremum for βc in ξc, while
the second equality provides the condition that this local extremum is a global
minimum as well as the one at ξ = 0. It is not possible to solve this system of
equations by elementary tools but it is an easy task to verify that

ξc = q − 2
q − 1 and βc = (q − 1) log(q − 1)

q − 2

is a solution for this system of equations.

We mentioned earlier that at criticality, we have coexistence of phases. So it is
natural to ask what these coexisting phases look like.
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Fig. 6: For q = 3, the function f̃β(ξ) = fβ(ξ)−fβ(0) is plotted for different values of β.
Since the term fβ(0) only shifts each graph more downward depending on β, the global
minima of f̃β correspond to those of the free energy function fβ. Left: Hence for small
β, the free energy function fβ is always minimized for ξ = 0. But if β exceeds a critical
value βc, a new global minimum emerges at ξ(β) > 0. Right: The function f̃β is plotted
at criticality (β = βc). We see two global minima: the one at ξ = 0 corresponding to
the ordered phase and the one at ξ = 0.5 corresponding to the disordered phase.

Remark 3.30. At inverse temperature βc(q), the free energy function fβc has
two global minima. The minimum in ξ = 0 corresponds to the unordered phase,
while the minimum in ξ = ξc corresponds to the ordered phase. By substituting
the two order parameters that minimize the free energy function at criticality, i.e.
ξ = 0 and ξ = ξc, back into (3.11), we obtain

x(0) =
(1
q
, . . . ,

1
q

)
=: q̂

and
x(ξc) =

(
1− 1

q
,

1
q(q − 1) , . . . ,

1
q(q − 1)

)
=: x̂βc(q),q .

So in the unordered phase, we have evenly distributed proportions, while in the
ordered phase, the fraction of spins of a certain color is clearly dominating. In
this case, we say that the symmetry is broken following [FV17]. Since no color
is special, we can exchange the first and the k-th component of x(ξc) for k ∈
{2, . . . , q} in order to obtain the other configurations that minimize the free energy
function fβ. Hence at criticality, we have q+ 1 global minima, one corresponding
to the disordered phase and q representing ordered states.
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Next, we want to derive some information about the concrete location of the first
and second spinodal inverse temperatures. For small inverse temperatures β, the
free energy function fβ has only one local minimum. Above a certain inverse
temperature βs1 , there are q new local minima that begin to appear [CDL12] (see
Figure 5 for the case q = 3). Using the order parameter ξ in the same way as
above, we can define this first spinodal inverse temperature as follows:

Definition 3.31. Let fβ : [0, 1] → R, ξ 7→ fβ(ξ) be the free energy function
of the q-state Curie-Weiss Potts model. The threshold value βs1(q) such that for
β > βs1(q) a local minimum of fβ begins to appear in ξ 6= 0 is called first spinodal
inverse temperature.

There is a similar behavior at high values of β at which the local minimum corre-
sponding to the unordered phase ceases to exist [CDL12] (see the two lowermost
graphs in Figure 5). This gives rise to the following definition:

Definition 3.32. Let fβ : [0, 1] → R, ξ 7→ fβ(ξ) be the free energy function of
the q-state Curie-Weiss Potts model. The threshold value βs2(q) such that for
β > βs2(q) the local minimum of fβ in ξ = 0 disappears is called second spinodal
inverse temperature.

Proposition 3.33. The first and the second spinodal inverse temperatures of the
q-state Curie-Weiss Potts model for q ≥ 3 are given by

βs1(q) = min
ξ∈(0,1)

{
β(ξ) > 0 | β(ξ) = 1

2ξ log
(

1+(q−1)ξ
1−ξ

)}
and βs2(q) = q

2 .

Proof. Firstly, we want to determine the threshold value of β at which the second
local minima (next to ξ = 0) of fβ(ξ) begins to appear. Therefore, we consider

d
dξ fβ(ξ) = q − 1

q

(
log

(
1 + (q − 1)ξ

)
− log(1− ξ)− 2βξ

)
!= 0 . (3.13)

We have seen that ξ1 = 0 is always a solution, hence a local extremum. If we
examine Figure 6, then we expect that, for β big enough, for at least one other
solution ξ2(β) > 0 that corresponds to a local minimum to appear. We denote
by βs1 the smallest β > 0 for which such a ξ2(β) exists. For ξ 6= 0, we can solve
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(3.13) for β and obtain

β(ξ) = 1
2ξ log

(1 + (q − 1)ξ
1− ξ

)
(3.14)

in which ξ must correspond to the position of the other local extremum since
ξ 6= 0. In Figure 7, we can see the graph of (3.14) for some values of q. For a
better understanding, it might be helpful to change the axes as in Figure 8 on
the next page. We see that there is an inverse temperature gap on the left side
of the graph. Then, for β > βs1 with

βs1(q) = min
ξ∈(0,1)

{
β(ξ) > 0 | β(ξ) = 1

2ξ log
(

1+(q−1)ξ
1−ξ

)}
, (3.15)

the free energy function fβ has another local minimum next to the one in ξ = 0
and of course a local maximum in between. Hence (3.15) is our desired first
spinodal inverse temperature. By looking at the blue branch in Figure 8, we see
that the position of the minimum converges to ξ = 1 for β → ∞. In contrast
to this behavior, we see that the red branch, i.e. the position of the local max-
imum, intersects ξ = 0 in βs2 . We conclude that the original local minimum of
fβ in ξ = 0 “fuses” with the local maximum and becomes a saddle point for inverse
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Fig. 7: Graphical representation of equation (3.14) for different numbers of colors q.
Then minimum value of each curve β(ξ) (marked by a black dot) corresponds to the
threshold value of the inverse temperature at which local extrema of fβ next to the one
at ξ = 0 begin to appear.
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Fig. 8: Graphical representation of (3.14) for q = 5. For β ∈ (βs1 , βs2), the free energy
function has two local extrema (a minimum and a maximum) next to the minimum
in ξ = 0. The blue branch corresponds to the position of the minimum and the red
branch represents the maximum’s position. For β > βs2 the local minimum in ξ = 0
becomes a saddle point.

temperatures β ≥ βs2 . In this case, we have

βs2(q) = lim
ξ→0+

β(ξ) = lim
ξ→0+

1
2ξ log

(1 + (q − 1)ξ
1− ξ

)
.

Since this is the limit of an indeterminate form, we can apply L’Hôpital’s rule
which yields

lim
ξ→0+

(
log

(
1+(q−1)ξ

1−ξ

))′
(2ξ)′ = lim

ξ→0+

q

2(1 + (q − 1)ξ)(1− ξ) = q

2 .

Therefore, we obtain the second spinodal inverse temperature given by

βs2(q) = lim
ξ→0+

β(ξ) = q

2 .
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Proposition 3.34. Let βc(q), βs1(q) and βs2(q) be the critical inverse temperature
as well as the first and the second spinodal inverse temperatures. For q ≥ 3 we
have that

0 < βs1(q) < βc(q) < βs2(q) .

Proof. See for instance [CDL12, p. 448].

Some (numerically) computed values of these important inverse temperatures can
be found in Table 1. We see that the interval (βs1 , βc) is very small for q = 3 and
it is only slowly increasing for bigger values of q. In contrast to that behavior,
the length of the interval (βc, βs2) is growing much faster.

q 3 4 5 6 7 8 9 10
βs1 1.373 1.609 1.782 1.918 2.030 2.125 2.207 2.280
βc 1.386 1.648 1.848 2.012 2.150 2.270 2.377 2.472
βs2 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Table 1: Critical inverse temperature βc and both spinodal inverse temperatures βs1
and βs2 for different values of q for the Curie-Weiss Potts model.

63



3.3 Results Curie-Weiss Potts Model

3.3.3 Phase Transition

After our analysis, we are able to conclude that the Curie-Weiss Potts model
for q ≥ 3 undergoes a first-order (or discontinuous) phase transition at critical
inverse temperature

βc(q) = (q − 1) log(q − 1)
q − 2 (3.16)

since the order parameter ξ(β) that minimizes the free energy function fβ has a
jump discontinuity at βc (see Figure 9).
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Fig. 9: Jump discontinuity of the minimizing order parameter ξ(β) for different values
of q. Since the order parameter jumps from zero to ξc = (q−2)/(q−1), the corresponding
width of the gap is given by ξc. Therefore, the graph approaches a step function for
increasing values of q because ξc(q)→ 1 for q →∞.
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This jump discontinuity in the order parameter is directly connected with a jump
discontinuity in the entropy density S̃ at the critical inverse temperature βc (see
Figure 10 on the next page). At this transition point, we can calculate the so-
called latent heat L. Following [KMS54], the latent heat of the q-state Curie-Weiss
Potts model is defined by

L := 1
βc

(
S̃(q̂)− S̃(x̂βc(q),q)

)
,

where βc(q) denotes the critical inverse temperature and S̃ is the entropy density
of this model. The proportions vectors at the beginning (x = x̂βc(q),q) and at the
end (x = q̂) of the transition are given in Remark 3.30. Hence the latent heat can
be explicitly computed and we obtain the following result according to [KMS54]:

Proposition 3.35. The q-state Curie-Weiss Potts model undergoes a first-order
phase transition for q ≥ 3 because the latent heat L of the transition is non-
vanishing.

Proof. We calculate the latent heat L and show that it is not zero for all q ≥ 3.
Since q̂ is the uniform distribution on Q = {1, . . . , q}, Proposition 3.16 tells us
that it maximizes the entropy density, i.e. S̃(q̂) = log(q). Additionally, we have

S̃(x̂βc(q),q) = −
(

1− 1
q

)
log

(
1− 1

q

)
− (q − 1) 1

q(q − 1) log
( 1
q(q − 1)

)
= −1

q

(
(q − 1)

(
log(q − 1)− log(q)

)
− log(q)− log(q − 1)

)
= −1

q

(
(q − 2) log(q − 1)− q log(q)

)
= −q − 2

q
log(q − 1) + log(q) .

Using (3.16), we obtain

L = 1
βc

(
S̃(q̂)− S̃(x̂βc(q),q)

)
= (q − 2)2

q(q − 1) .

We see that L 6= 0 for all q ≥ 3. In that case, the latent heat is non-vanishing
which is directly connected with a jump in the entropy density and in the order
parameter. Therefore, we have a first order phase transition.
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Fig. 10: Entropy density S̃(β) of the Curie-Weiss Potts model for q = 3 states as a
function of the inverse temperature β > 0. The entropy density in the unordered phase
is maximal. Between the ordered and the disordered phase, there is a discontinuity (a
jump in entropy).

At this point, we want to discuss this first-order phase transition from a Physics
perspective. Imagine we start in the ordered phase; we continuously pump energy
into the system which causes the temperature to rise (i.e. β decreases). But the
temperature only increases until we reach the critical temperature (which is in-
directly proportional to βc). At this point, all the energy we put into the system
is used to transform the ordered phase into the disordered one. During this tran-
sition between phases, the temperature stays constant. The temperature of the
system will increase again as soon as the system is completely in the unordered
phase. The amount of energy that is needed to transfer the phases into each
other is called latent heat. We calculated it in the proof of Proposition 3.35. We
have to put this amount of energy into the system when going from the ordered
phase to the disordered one. When going the opposite way, the system releases
this energy when crossing the phase boundary.
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3.3.4 Limiting Distribution of the Proportions Vector

At the end of this chapter, we take a closer look at the thermodynamic limit.
More precisely, we describe the behavior of the proportions vector x ∈ S and its
distribution σn,β(·) = µn,β(x ∈ ·) when the underlying graph becomes infinitely
large, i.e. for n→∞.

We will soon see that the free energy function fβ : S → R again plays a central
role. Therefore, we look at the structure of its global minima. We already
calculated the global minimum points for the case β = βc when we tried to
understand the phase transition of the model. Obviously, the position of these
global minima depends on the inverse temperature β and the number of colors
q. We denote the set of global minimizers of fβ by Γβ,q and state its structure
following [CDL12]:

Proposition 3.36. Let βc(q) be the critical inverse temperature of the q-state
Curie-Weiss Potts model. Then the set of global minimizers Γβ,q of the free energy
function fβ : S → R is given by

Γβ,q =


{q̂} if β < βc(q) ,

{q̂,T1x̂βc(q),q, . . . ,Tqx̂βc(q),q} if β = βc(q) ,

{T1x̂β,q, . . . ,Tqx̂β,q} if β > βc(q) ,

with Tk : S → S interchanging the first and the k-th component, and

x̂β,q =
(1 + (q − 1)ξ

q
,
1− ξ
q

, . . . ,
1− ξ
q

)
.

Proof. The general form x̂β,q of the global minimizers was derived in Section
3.3.1 and is given in (3.11). The set of global minimizers at criticality is stated
in Remark 3.30. The missing parts of the proof can be found in [EW90].

Remark 3.37. Let x = (x1, . . . , xq) ∈ S be a global minimizer of fβ and let
Q = {1, . . . , q}. Then the following statements are true:

(i) The inequality min
i∈Q

(xi) > 0 holds.

(ii) The proportions vector x has at least (q − 1) times the same component
min
i∈Q

(xi).
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(iii) The value of ξ needed to obtain x̂β,q is known in implicit form given by the
self-consistency equation (3.10).

(iv) In particular for β = βc, we have, next to the trivial solution ξ = 0, another
exact solution ξc = (q − 2)/(q − 1) of (3.10). Hence we have

x̂βc(q),q =
(

1− 1
q
,

1
q(q − 1) , . . . ,

1
q(q − 1)

)
.

Proof. A proof of (i) and (ii) can be found in [GRW10].

If we know the location of the global minima of fβ, it is easy to compute the free
energy Ψ(β) of the system in the thermodynamic limit according to (3.6) (see
Figure 11).

The following theorem following [EW90] states that the limiting distribution of
the sequence (σn,β)n≥1 depends completely on the location of the global minima
of the free energy function, i.e. on the set of global minimizers Γβ,q. We consider
the weak convergence of measures and write σn,β ⇒ σβ for n→∞.
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Fig. 11: Free energy Ψ(β) = β−1
(

min
x∈S

fβ(x)+log(q)
)
in the thermodynamic limit (n→

∞) of the q-state Curie-Weiss Potts model for different values of q. The function has
a kink at the critical inverse temperature βc(q) which corresponds to a non-analyticity
and hence a phase transition.
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Theorem 3.38. Let σn,β be the distribution of the proportions vector for the
q-state Curie-Weiss Potts model. Then we have

(i) for 0 < β < βc that
σn,β ⇒ δq̂ as n→∞ ,

(ii) for β > βc that

σn,β ⇒
1
q

q∑
k=1

δTkx̂β,q as n→∞

(iii) and for β = βc that

σn,β ⇒ aδq̂ + 1− a
q

q∑
k=1

δTkx̂βc(q),q as n→∞

with a ∈ (0, 1).

Proof. A proof can be found in [EW90].

Theorem 3.38 summarizes some findings that we made in the course of this thesis.
For high temperatures, i.e. for small β, the system always chooses configurations
which proportions vector is close to uniformly distributed. For small tempera-
tures, i.e. for high β, the system is always in an ordered state with one color
dominating over the others. We also see that each ordered state has the same
probability 1/q to appear. The special case appears at criticality. Here the sys-
tem chooses either the one unordered state with probability a or one of the q
ordered phases with probability (1− a)/q. Hence the distribution of the propor-
tions vector of the Curie-Weiss Potts model is completely described by the set of
global minimizers Γβ,q of the free energy function fβ. This and the statement of
the theorem is summarized in the following corollary.

Corollary 3.39. Let σn,β be the distribution of the proportions vector and let fβ
be the free energy function of the q-state Curie-Weiss Potts model. Then the set
of global minimizers of fβ is the support of the limiting distribution σβ, i.e.

supp(σβ) = Γβ,q .

Proof. This is a direct consequence of Theorem 3.38.
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4 Glauber Dynamics
We start by giving a short introduction to Markov Chain Monte Carlo (MCMC)
methods as a way to sample from a given probability distribution. We then
focus on the Glauber dynamics as a special MCMC-method and apply it to the
Curie-Weiss model as well as to the Curie-Weiss Potts model. Additionally, two
simulations regarding the Curie-Weiss Potts model are presented and discussed.

4.1 Introduction to Markov Chain Monte Carlo

In Section 2.2.2, we saw that a given Markov chain (Xt)t≥0 with irreducible and
aperiodic transitions matrix P converges to its unique stationary distribution π.
At this point we want to consider the inverse problem. Given any probability
distribution π̃ ∈M1(Ω), can we construct a Markov chain that has π̃ as its sta-
tionary distribution?

When being concerned with this question, one might also ask why we are inter-
ested in constructing such a chain. Therefore, let us consider an example from the
context of statistical mechanics, e.g. the standard nearest-neighbor q - state Potts
model on a graph G = (Λ,E ). If we want to sample from the Gibbs distribution
µ of this model, we have to calculate the partition function, that is of the form

Z =
∑
ω∈Ω

exp
(
−H(ω)

)
,

where H denotes the Hamiltonian of the model. This is a sum over |Ω| = q|Λ|

exponential terms and one has to consider that there is also a sum over |E | terms
included in the Hamiltonian. In order to measure the computational efficiency of
an algorithm (here a computation), we want to know the number of elementary
operations (e.g. arithmetic operations) that are performed as a function of the
input [AB07]. So suppose our underlying graph G is the complete graph Cn with
n vertices and n(n−1)/2 edges. Then our input is given by the number of vertices
n. So in order to compute the partition function, there are at least

qn · n(n− 1)
2 ∈ O(qn)

elementary operations required. Hence the computational efficiency of computing
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the partition function is of exponential order. In concrete terms: for n = 100 and
q = 3 we have approximately 2.55 ·1051 required arithmetic operations which is of
unthinkable magnitude. If we even consider some realistic system of macroscopic
size (n ≈ 1023), then the evaluation of the partition function Z seems impossible
even for any computer with an extremely high level of performance in reasonable
times [Bax07].

So for large values of n, the state space Ω is even larger and the distribution
µ cannot be easily generated because of the form of its normalization constant.
The idea is then to construct a Markov chain (Xt)t≥0 that has the desired distri-
bution µ as stationary distribution. If the constructed chain is also irreducible
and aperiodic, then Theorem 2.28 tells us that the chain will converge towards
its stationary distribution. Hence, if we wait long enough, i.e. for large enough
t ≥ 0, then the distribution of Xt will be close to µ. [Kle13]

This described strategy of sampling from a given probability distribution using
Markov chains is called Markov Chain Monte Carlo (MCMC). These methods
also play a significant role not only in statistical mechanics but also in Bayesian
inference and optimization theory. Let us suppose we want to generate samples
from the distribution π ∈ M1(Ω), because these samples cannot be drawn di-
rectly. If we can evaluate π(x) for all x ∈ Ω up to a normalization constant,
then MCMC is the method of our choice. The irreducible and aperiodic Markov
chain with stationary distribution π we construct is called MCMC- sampler. The
problem is normally not to construct such a sampler but to design it in a way
that it converges quickly to the desired distribution. [AdF03]

The Metropolis-Hastings algorithm represents one popular realization of the
MCMC -method. We intend to generate samples from the distribution
π ∈ M1(Ω). Let us suppose we have an irreducible Markov chain with tran-
sition matrix Q, state space Ω and an arbitrary stationary distribution different
from π. Now this algorithm is based on modifying this chain in a way that it con-
verges to the desired target distribution π. According to [LPW09], the transition
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matrix P of the Metropolis chain is given by

P (x, y) :=


Q(x, y) min

(
π(y)Q(y,x)
π(x)Q(x,y) , 1

)
if y 6= x ,

1− ∑
z∈Ω\{x}

Q(x, z) min
(
π(z)Q(z,x)
π(x)Q(x,z) , 1

)
if y = x ,

with x, y ∈ Ω. It can be shown that this transition matrix defines a reversible
Markov chain with stationary distribution π ∈M1(Ω) (see e.g. [BZ20, p. 73]).
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4.2 Single-Site Glauber Dynamics

Given a probability distribution π ∈M1(Ω), we consider another method instead
of the aforementioned Metropolis-Hastings algorithm to construct a Markov chain
with given stationary distribution π. This MCMC -method is called Glauber
dynamics and is used if the state space Ω is of the form QΛ where Q is a finite
set and Λ denotes the vertex set of a graph.

4.2.1 Definition

The Glauber dynamics is based on the idea to adjust the current state of the
Markov chain locally (at a single site) to the desired stationary distribution
π ∈ M1(Ω) [Kle13]. We are then especially interested in those configurations
that only differ from a given configuration in at most one vertex. Therefore, we
make the following definition according to [LPW09]:

Definition 4.1. Let ω ∈ Ω be a configuration and i ∈ Λ be a vertex. Then

Ωi(ω) := {ω′ ∈ Ω | ωi = ω′j for all j 6= i}

is defined as the set of all configurations in Ω that are identical to ω ∈ Ω except
in i ∈ Λ.

Lemma 4.2. Let ω, ω′ ∈ Ω and i ∈ Λ. If we have ω ∈ Ωi(ω′), then we also have
ω′ ∈ Ωi(ω) and consequently Ωi(ω) = Ωi(ω′) for a fixed i ∈ Λ.

Proof. Since ω ∈ Ωi(ω′) we have have that the configurations ω and ω′ only differ
in the i-th component. This is obviously the same statement as ω′ ∈ Ωi(ω).
So in total we have ωi = ω′i for all i 6= j and due to Definition 4.1 we obtain
Ωi(ω) = Ωi(ω′).

Now we describe the (single-site) Glauber dynamics for the target distribution
π ∈M1(Ω) whose support is Ω following [LPW09]. This Markov chain updates
a configuration ω ∈ Ω in the following way:

(1) Choose a vertex i ∈ Λ according to a probability distribution ν ∈ M1(Λ)
with ν(i) > 0 for all i ∈ Λ.
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(2) Choose a new configuration ω′ ∈ Ω according to the the distribution π

conditioned on the set Ωi(ω) of all configurations that are equal to ω except
in i.

According to this rule for updating a configuration, we can of course construct a
corresponding transition matrix P ∈ R|Ω|×|Ω|. This (stochastic) matrix is given
in the next theorem.

Theorem 4.3. Let ν ∈ M1(Λ) and π ∈ M1(Ω) be two probability distributions
with supp(ν) = Λ and supp(π) = Ω. Then the (single-site) Glauber dynamics for
π is the irreducible, aperiodic and reversible Markov chain (Xt)t≥0 with transition
matrix

P (ω, ω′) =
∑
i∈Λ

ν(i)π(ω′ | Ωi(ω)) (4.1)

and stationary distribution π.

Proof. Firstly, we realize that we can rewrite the conditional probability in (4.1)
using the indicator function:

P (ω, ω′) =
∑
i∈Λ

ν(i)
π
(
{ω′} ∩ Ωi(ω)

)
π
(
Ωi(ω)

) =
∑
i∈Λ

ν(i) π(ω′)
π
(
Ωi(ω)

)1Ωi(ω)(ω′) . (4.2)

Before we prove the important properties of this chain, we show that the matrix
P defined by (4.1) really is stochastic. This is indeed the case since

∑
ω′∈Ω

P (ω, ω′) =
∑
ω′∈Ω

∑
i∈Λ

ν(i) π(ω′)
π
(
Ωi(ω)

)1Ωi(ω)(ω′)

=
∑
i∈Λ

ν(i)
∑

ω′∈Ωi(ω)

π(ω′)
π
(
Ωi(ω)

)
= 1 .

We now are ready to prove (i) irreducibility, (ii) aperiodicity and (iii) reversibility
with respect to π. We do this in the given order starting with irreducibility.

(i) According to Definition 2.8, we have to show that for all ω, ω′ ∈ Ω there
exists some k ∈ N such that P k(ω, ω′) > 0. Let ω, ω′ ∈ Ω and let 1 ≤ k ≤ |Λ| be
the number of vertices i ∈ Λ with ωi 6= ω′i ; we will show that P k(ω, ω′) > 0.
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Without loss of generality, we assume that the components of ω and ω′ are la-
belled by 1, . . . , |Λ| in a way such that the first k components of ω and ω′ are
different. Then, we can construct a sequence of states (ω(i))ki=0 in Ω starting in
ω and ending in ω′ where at each step one component is changed, i.e.

ω(0) = (ω1, . . . , ω|Λ|) = ω

ω(1) = (ω′1, ω2, . . . , ω|Λ|)

ω(2) = (ω′1, ω′2, ω3, . . . , ω|Λ|)
...

ω(k) = (ω′1, . . . , ω′k, ωk+1, . . . , ω|Λ|) = ω′ .

Then for all j ∈ {0, . . . , k − 1}, we have

P (ω(j), ω(j+1)) =
|Λ|∑
i=1

ν(i) π(ω(j+1))
π
(
Ωi(ω(j))

)1Ωi(ω(j))(ω(j+1)) .

By construction of the sequence (ω(i))ki=0, we see that

1Ωi(ω(j))(ω(j+1)) =

1 if i = j + 1 ,

0 if i 6= j + 1 ,

and hence we obtain

P (ω(j), ω(j+1)) = ν(j + 1) π(ω(j+1))
π
(
Ωj+1(ω(j))

) > 0

where we used that Ωi(ω) ⊂ Ω = supp(π) and supp(ν) = Λ. Using this result,
we finally obtain

P k(ω, ω′) ≥
k−1∏
j=0

P (ω(j), ω(j+1)) > 0 , (4.3)

and hence P is irreducible.

(ii) According to Lemma 2.12, we only have to show that the matrix P has
at least one diagonal entry P (ω, ω) > 0 for ω ∈ Ω since we already know that P
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is irreducible. We have

P (ω, ω) =
∑
i∈Λ

ν(i) π(ω)
π
(
Ωi(ω)

)1Ωi(ω)(ω) =
∑
i∈Λ

ν(i) π(ω)
π
(
Ωi(ω)

) > 0 ,

where we used the same arguments as in (4.3). Thus, in our case, all diagonal
elements are positive. Hence P is aperiodic.

(iii) Lastly, we have to show that P is reversible with respect to π. Therefore, we
show that π satisfies the detailed balance equations

π(ω)P (ω, ω′) = π(ω′)P (ω′, ω)

for all ω, ω′ ∈ Ω. As a direct consequence, we obtain that π is also stationary
for P . Let ω, ω′ ∈ Ω. We consider three different cases. The first case ω =
ω′ is trivial. In the second case, we assume that ωi 6= ω′j for more than one
i ∈ Λ. Hence the indicator function in (4.2) is always zero, consequently we have
P (ω, ω′) = P (ω′, ω) = 0 and the detailed balance equations are satisfied. For
the third and final case, we assume that ωi 6= ω′i for exactly one i ∈ Λ. Hence
ω ∈ Ωi(ω′) and according to Lemma 4.2 we have that Ωi(ω′) = Ωi(ω′). Then we
have

π(ω)P (ω, ω′) = π(ω)ν(i) π(ω′)
π
(
Ωi(ω)

) = π(ω′)ν(i) π(ω)
π
(
Ωi(ω′)

) = π(ω′)P (ω′, ω) ,

so the detailed balance equations are also satisfied.

Since the constructed chain is irreversible and aperiodic, it will converge to its
stationary distribution according to Remark 2.29.

Remark 4.4. When we construct a chain using the Glauber dynamics, we nor-
mally pick a vertex i uniformly at random from Λ at each step. So in the following,
we set ν = UΛ and have ν(i) = 1/|Λ| for all i ∈ Λ. Hence, the transition matrix
for the Glauber dynamics is in general given by

P (ω, ω′) = 1
|Λ|

∑
i∈Λ

π(ω′)
π
(
Ωi(ω)

)1Ωi(ω)(ω′) .
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4.2.2 Example: Curie-Weiss Model

Before we examine the Glauber dynamics for the Curie-Weiss Potts model, we
consider the simpler Curie-Weiss model. This is the mean-field approximation of
the classical Ising model and it corresponds to the Curie-Weiss Potts model with
q = 2 colors.

We denote the two colors with +1 and −1. Then, for |Λ| = n vertices, the state
space of the Curie-Weiss model is given by Ωn := {±1}n. Since the Curie-Weiss
model is a special case of the Curie-Weiss Potts model, their Hamiltonians are the
same. Nevertheless, we denote the Curie-Weiss Hamiltonian by HCW

n,β in order to
remind the reader that only two different kind of spins exist, i.e. that ωi ∈ {±1}
for any i ∈ Λ.

Definition 4.5. The Curie-Weiss Hamiltonian for a configuration ω ∈ Ωn at
inverse temperature β > 0 is given by

HCW
n,β (ω) := − β

n

n∑
i,j=1

δ(ωi, ωj) . (4.4)

In order to describe configurations of the Curie-Weiss model, we introduce two
additional quantities following [FV17]:

Definition 4.6. The magnetization density m ∈ [−1, 1] of a configuration
ω ∈ Ωn of the Curie-Weiss model is given by

m(ω) := M(ω)
n

,

where M(ω) :=
n∑
i=1

ωi denotes the total magnetization of ω ∈ Ωn.

Let us recall the proportions vector x ∈ S as given in Definition 3.9. For the
Curie-Weiss model, i.e. for q = 2, this vector takes the form

x(ω) =
(
x+1(ω), x−1(ω)

)
=
( 1
n

n∑
i=1

δ(ωi,+1), 1
n

n∑
i=1

δ(ωi,−1)
)
.

We observe that, for ωi ∈ {±1}, the identity ωi = δ(ωi,+1) − δ(ωi,−1) holds.
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Using this, we can write

x+1(ω)− x−1(ω) = 1
n

n∑
i=1

(
δ(ωi,+1)− δ(ωi,−1)

)
= 1
n

n∑
i=1

ωi = m(ω) ,

i.e. there is a relation between the proportions vector and the magnetization
density defined above. So instead of using the magnetization density, we could
also use the proportions vector.

Let us go one step further. Therefore, we consider the Gibbs distribution
µn,β : Ωn → [0, 1] for the Curie-Weiss model on Ωn given by

µn,β(ω) =
exp(−HCW

n,β (ω))
Zn,β

with supp(µn,β) = Ωn for every finite β > 0. Our aim is to sample from this
distribution using the Glauber dynamics.

Proposition 4.7. Let µn,β be the Gibbs distribution for the Curie-Weiss model
on Ωn. Then the entries of the transition matrix P ∈ Rn2×n2 of the Glauber
dynamics for µn,β are given by

P (ω, ω′) = 1
n

n∑
i=1

1
1 + exp

(
2β
n
(1−M(ω′)ω′i)

) 1Ωi(ω)(ω′) (4.5)

with ω, ω′ ∈ Ωn.

Proof. For ωi, ωj ∈ {±1}, we easily verify that

δ(ωi, ωj) = 1 + ωiωj
2

holds. Hence, we can rewrite the Hamiltonian (4.4) using the total magnetization
which yields

HCW
n,β (ω) = −β

n

n∑
i,j=1

(1 + ωiωj
2

)
= −nβ2 −

β

2n

n∑
i=1

ωi
n∑
j=1

ωj = −nβ2 −
β

2nM(ω)2 .
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According to Theorem 4.3, we have to calculate µn,β(ω′ | Ωi(ω)). We have

µn,β
(
ω′ | Ωi(ω)

)
= µn,β(ω′)∑

ω̃∈Ωi(ω)
µ(ω̃) 1Ωi(ω)(ω′)

=
Z−1
n,β exp

(
nβ
2 + β

2nM(ω′)2
)

∑
ω̃∈Ωi(ω)

Z−1
n,β exp

(
nβ
2 + β

2nM(ω̃)2
) 1Ωi(ω)(ω′)

=
exp

(
β
2nM(ω′)2

)
∑

ω̃∈Ωi(ω)
exp

(
β
2nM(ω̃)2

) 1Ωi(ω)(ω′) ,

(4.6)

where we see that the partition function Zn,β and some other terms cancel out.
In the next step, we examine what elements ω̃ are contained in the set Ωi(ω) to
rewrite the sum in the denominator of (4.6). Since this is only of interest if the
indicator function in (4.6) is non-zero, we already know that ω′ ∈ Ωi(ω). So we
are interested in all configurations ω̃ ∈ Ωn that are identical to ω′ except in i.
Since there are only the two possibilities +1 and −1 for the spin in i, this implies
that Ωi(ω) only consists of the two elements

ω̃(1) = (ω′1, . . . , ω′i, . . . , ω′n) = ω′ ,

ω̃(2) = (ω′1, . . . ,−ω′i, . . . , ω′n) .

Therefore, the squared total magnetizations are given byM
(
ω̃(1)

)2
= M(ω′)2 and

M
(
ω̃(2)

)2
=
( n∑
j=1

ω′j−2ω′i
)2

= M(ω′)2−4ω′iM(ω′)+4 = M(ω′)2+4
(
1−M(ω′)ω′i

)
.

Hence the denominator in (4.6) reduces to

∑
ω̃∈Ωi(ω)

exp
(
β

2nM(ω̃)2
)

= exp
(
β

2nM(ω′)2
)

+ exp
(
β

2n
(
M(ω′)2 + 4(1−M(ω′)ω′i)

))

= exp
(
β

2nM(ω′)2
)(

1 + exp
(

2β
n

(
1−M(ω′)ω′i

)))
.

Substituting this expression back into (4.6), we see that one exponential term
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cancels out and we obtain

µn,β(ω′ | Ωi(ω)) = 1
1 + exp

(
2β
n
(1−M(ω′)ω′i)

) 1Ωi(ω)(ω′) .

We recall Remark 4.4 and acquire the expression

P (ω, ω′) = 1
n

n∑
i=1

1
1 + exp

(
2β
n
(1−M(ω′)ω′i)

) 1Ωi(ω)(ω′)

for an entry of the transition matrix P of the Glauber dynamics for µn,β.

Next, we determine some information about the speed of convergence of the
Glauber dynamics for µn,β. Hence, we try to find bounds for the distance to
stationarity d(t) and for the ε-mixing time tmix(ε). In order to do so, we use some
results from section 2.3 about spectral methods for Markov chains. Therefore,
we are interested in the eigenvalues of the transition matrix P of the Glauber
dynamics. Unfortunately, determining these eigenvalues is not an easy task. For
demonstration, we consider the Glauber dynamics for the Curie-Weiss model with
only n = 2 vertices. Then the spate state consists of only 4 elements, i.e.

Ω2 = {(+1,+1), (+1,−1), (−1,+1), (−1,−1)} .

This is the simplest non-trivial case but finding the eigenvalues of the transition
matrix requires some exhausting calculations.

Proposition 4.8. The eigenvalues λ of the transition matrix P with entries given
in (4.5) for the Curie-Weiss model on Ω2 are given by

λ1 = 0 , λ2 = 1
eβ +1 , λ3 = eβ

eβ +1 and λ4 = 1 .

Proof. Since we consider n = 2 vertices, the transition matrix is on the set R2×2.
Using (4.5), we can directly write down the transition matrix P . We have

P =


eβ

eβ +1
1
2

1
eβ +1

1
2

1
eβ +1 0

1
2

eβ
eβ +1

1
eβ +1 0 1

2
eβ

eβ +1
1
2

eβ
eβ +1 0 1

eβ +1
1
2

eβ
eβ +1

0 1
2

1
eβ +1

1
2

1
eβ +1

eβ
eβ +1

 = 1
eβ +1


eβ 1

2
1
2 0

1
2 eβ 1 0 1

2 eβ
1
2 eβ 0 1 1

2 eβ

0 1
2

1
2 eβ
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where we additionally wrote P in the form P = aP̃ with a := (eβ +1)−1 and P as
above. To determine the eigenvalues, we calculate the zeroes of the characteristic
polynomial χP . To simplify further calculations, we write

χP (λ) = det(P − λI4) = det(aP̃ − aλ̃I4) = a4 det(P̃ − λ̃I4) = a4 χP̃ (λ̃)

with λ := aλ̃ and characteristic polynomial χP̃ . We obviously have χP (λ) = 0
if and only if χP̃ (λ̃) = 0. Hence we calculate the solutions λ̃ of χP̃ (λ̃) = 0, and
consequently, we obtain indirectly our wanted eigenvalues λ. We have

χP̃ (λ̃) = det(P̃ − λ̃I4)

= det


eβ −λ̃ 1

2
1
2 0

1
2 eβ 1− λ̃ 0 1

2 eβ
1
2 eβ 0 1− λ̃ 1

2 eβ

0 1
2

1
2 eβ −λ̃



= (eβ −λ̃) det


1− λ̃ 0 1

2 eβ

0 1− λ̃ 1
2 eβ

1
2

1
2 eβ −λ̃

− 1
2 eβ det


1
2

1
2 0

0 1− λ̃ 1
2 eβ

1
2

1
2 eβ −λ̃



+ 1
2 eβ det


1
2

1
2 0

1− λ̃ 0 1
2 eβ

1
2

1
2 eβ −λ̃



= (eβ −λ̃) det


1− λ̃ 0 1

2 eβ

0 1− λ̃ 1
2 eβ

1
2

1
2 eβ −λ̃

− eβ det


1
2

1
2 0

0 1− λ̃ 1
2 eβ

1
2

1
2 eβ −λ̃


where we used Laplace expansion along the first column and the fact that the
determinants of the second and third sub-matrix are the same. Now, we apply
the Rule of Sarrus and obtain

χP̃ (λ̃) = (eβ −λ̃)
(
(1− λ̃)2(eβ −λ̃)− 1

2(1− λ̃) eβ
)
− eβ

(
1
2(1− λ̃)(eβ −λ̃)

)
= (1− λ̃)2(eβ −λ̃)2 − eβ(1− λ̃)(eβ −λ̃)

= −λ̃(1− λ̃)(eβ −λ̃)(eβ +1− λ̃)
!= 0 ,
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hence the eigenvalues of P̃ are given by

λ̃1 = 0 , λ̃2 = 1 , λ̃3 = eβ and λ̃4 = eβ +1 .

Using the transformation λ = aλ̃, we obtain the wanted eigenvalues.

Remark 4.9. If we consider the zero-temperature limit (i.e. β → ∞), then the
matrix P is not irreducible. In this case, for n = 2, we have

P∞ := lim
β→∞


eβ

eβ +1
1
2

1
eβ +1

1
2

1
eβ +1 0

1
2

eβ
eβ +1

1
eβ +1 0 1

2
eβ

eβ +1
1
2

eβ
eβ +1 0 1

eβ +1
1
2

eβ
eβ +1

0 1
2

1
eβ +1

1
2

1
eβ +1

eβ
eβ +1

 =


1 0 0 0

1/2 0 0 1/2
1/2 0 0 1/2
0 0 0 1

 ,

and we can see that the ground states ω(+1) = (+1,+1) and ω(−1) = (−1,−1)
trap the chain which implies that the matrix P∞ is reducible. Hence, it will not
converge necessarily to its stationary distribution (1

2 , 0, 0,
1
2) ∈ M1(Ω2) given in

Theorem 3.7. In fact, for an arbitrary initial distribution ν = (ν1, ν2, ν3, ν4) ∈
M1(Ω), we have

νP t
∞ = νP∞ =

(
ν1,

1
2(ν1 + ν4), 1

2(ν1 + ν4), ν4
)

for all t ≥ 1 ,

since P∞ is idempotent, i.e. P 2
∞ = P∞. Thus, the chain will never converge to its

stationary distribution for β →∞.

Now, we are interested in the speed of convergence of the Glauber dynamics for
the Curie-Weiss Potts model with n = 2 vertices. Therefore, we consider the dis-
tance to stationarity d(t) and the ε-mixing time tmix(ε) of this Markov chain. Of
special interest is the dependency of this quantities on the (inverse) temperature.

In Section 2.3.2, we found out that the distance to stationarity is in particular
determined by the eigenvalues of the transition matrix P of the corresponding
Markov chain. Especially we derived an upper bound for the distance to station-
arity given in (2.20). Adapting this bound to our context, we obtain

d(t) ≤ λt3

2
√

min
ω∈Ω2

µ2,β(ω)
,
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with stationary distribution µ2,β and the second-largest eigenvalue λ3 of the tran-
sition matrix P given in Proposition 4.8. In order to get the minimum in the
denominator, we need to compute the partition function of our model. Since the
state space Ω2 consists of only 4 elements, this is easily done:

Z2,β =
∑
ω∈Ω2

exp
(
β

2

2∑
i,j=1

δ(ωi, ωj)
)

=
∑
ω∈Ω2

exp
(
β
(
1 + δ(ω1, ω2)

))
= 2 e2β +2 eβ .

Hence the entire distribution of µ2,β is given by

µ2,β(+1,+1) = µ2,β(−1,−1) = eβ
2(eβ +1) ,

µ2,β(+1,−1) = µ2,β(−1,+1) = 1
2(eβ +1)

and therefore we have min
ω∈Ω2

µ2,β(ω) = µ2,β(+1,−1). Using this and the exact value
of λ3 from Proposition 4.8, we obtain for the distance to stationarity

d(t) ≤
√

eβ +1
2

(
eβ

eβ +1

)t
.

We see that this bound depends on the inverse temperature β. Therefore, we can
suspect that the actual distance to stationarity also depends on β. This is actually
true, as can be seen in Figure 12 (left). We see that, for high temperatures
(i.e. small values of β), the distance to stationarity drops rapidly to zero. In
contrast, for low temperatures (i.e. high values of β), the distance approaches
zero much slower. In order to obtain a quantitative statement about the speed
of convergence, we consider the mixing times of the chain for different values
of β > 0. Firstly, we try to bound this mixing time using Theorem 2.40 and
Corollary 2.49, i.e. we have

log
(

1
2ε

)
(trel − 1) ≤ tmix(ε) ≤ 1

2 log
(

eβ +1
2ε2

)
trel

with relaxation time trel = eβ +1. In this case, we do not consider the standard
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mixing time (ε = 1/4) and rather choose ε = 1/10, because our system is quite
small (only n = 2 vertices) and therefore mixes quite fast. So we obtain the
following bounds for the mixing time:

log(5) eβ ≤ tmix(1/10) ≤
eβ +1

2 log
(

50(eβ +1)
)
. (4.7)

These bounds are plotted for varying inverse temperatures β in Figure 12 (right).
Additionally, the exact mixing times are plotted as well. We can see that the
lower bound is quite accurate and might be a good approximation in contrast to
the upper bound.

To summarize, it is quite a challenging task to obtain (good) bounds for the
mixing times, let alone compute exact values. Even for a simple system of just
two vertices and two possible spin states, we needed a computer to help us with
the exhausting computations in order to obtain exact values for the mixing time.
Nevertheless, we found out that the mixing time strongly depends on the (inverse)
temperature. The system exhibits fast mixing for high temperatures and slow
mixing for low temperatures. In the next sections, we will focus on this aspect
more as well as how the mixing time depends on the system size n and on the
number of colors q regarding the Curie-Weiss Potts model.
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Fig. 12: Temperature dependence of Glauber dynamics for the Curie-Weiss model
on Ω2. Left: Distance to stationarity d(t) for different values of β > 0. The actual
distances are only the data points in the plot. The dashed line signals the (mixing)
time for which d(t) drops below 1/10. Right: Mixing times tmix(1/10) for different values
of β > 0 as well as the lower and upper bound given in (4.7). The distances and the
mixing times were computed using a Python program which will be presented later on.
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4.3 Glauber Dynamics for the Curie-Weiss Potts Model

Finally, we examine the Glauber dynamics for the q-state Curie-Weiss Potts
model. We start with summarizing the most important results regarding mixing
times. We then derive the transition matrix of this Markov chain and finally
discuss two computer programs aiming to simulate the Glauber dynamics for the
model at hand.

4.3.1 Mixing Time Analysis

In this section, we summarize some recent results regarding the mixing times of
the Glauber dynamics for the Curie-Weiss Potts model. These results are primar-
ily taken from the paper “Glauber Dynamics for the Mean-Field Potts Model”
by Cuff et al. [CDL12].

Imagine we want to simulate the q-state Curie-Weiss Potts model on Ωn for large
values of n using the Glauber dynamics. We might ask ourselves whether the
corresponding distance to stationarity dn(t) shows the cutoff phenomenon. The
following theorem answers this question:

Theorem 4.10. Let βs1(q) be the first spinodal inverse temperature of the q-state
Curie-Weiss Potts model for q ≥ 3. If β < βs1(q), then the Glauber dynamics for
this model exhibits the cutoff phenomenon at mixing time

t
(n)
mix ∼

1
2

(
1− 2 β

q

)−1

n log(n)

with cutoff window wn ∈ O(n).

Proof. The proof of this theorem is a major contribution of [CDL12].

Additionally, one might wonder whether the cutoff phenomenon also occurs for
q = 2, i.e. in the Glauber dynamics for the Curie-Weiss model. There are some
major differences between the models considering the critical inverse temperature
βc(q) and the spinodal inverse temperatures βs1(q) and βs2(q). For the Curie-
Weiss Potts model (q ≥ 3), we mentioned that βs1(q) < βc(q) < βs2(q) (see
Proposition 3.34), whereas in the Curie-Weiss model (q = 2), there exists a
critical inverse temperature βc(2) but the spinodal points are absent [CDL12].
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Additionally, the Curie-Weiss model exhibits a second-order (or continuous) phase
transition [BH19], while on the contrary we proved a first-order phase transition
for the Curie-Weiss Potts model.

Remark 4.11. The Glauber dynamics for the Curie-Weiss model (q = 2) also
exhibits the cutoff phenomenon if β < βc(2) = 1. In particular, the cutoff
phenomenon occurs at mixing time

t
(n)
mix ∼

1
2(1− β) n log(n)

with cutoff window wn ∈ O(n) [LLP08]. For β ≥ βc(2), there is no cutoff
phenomenon. Hence the situation is qualitatively the same as in the Curie-Weiss
Potts case. The only difference is the exact threshold value which depends on the
number of colors q.

The following theorem states what happens for q ≥ 3 if we consider an inverse
temperature β ≥ βs1(q):

Theorem 4.12. Let βs1(q) be the first spinodal inverse temperature of the q-state
Curie-Weiss Potts model for q ≥ 3. Then the following hold:

(i) For any β > βs1(q), there exist constants C1, C2 > 0 such that for all n ≥ 1,
the mixing time of the Glauber dynamics is bounded by

t
(n)
mix ≥ C1 exp(C2n) .

(ii) If β = βs1(q), then there exist constants C̃1, C̃2 > 0 and N ∈ N such that
for all n ≥ N , the mixing time of the Glauber dynamics satisfies

C̃1 n
4/3 ≤ t

(n)
mix ≤ C̃2 n

4/3 .

In particular, for β ≥ βs1(q), there is no cutoff phenomenon.

Proof. The proof of this theorem is also a major goal of [CDL12].
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According to Theorem 4.10 and Theorem 4.12, the mixing time t(n)
mix is at most

polynomial in n for β ≤ βs1(q) and at least exponential in n for β > βs1(q). In
the first case, we say the Markov chain mixes rapidly and in the second case, we
say the Markov chain mixes slowly. The reason for this slowdown depending on
the inverse temperature β > 0 are states that trap the Markov chain. These are
the metastable states, i.e. local minimizers of the free energy function fβ which
begin to appear for β > βs1(q) (see Figure 5).

For β < βs1(q), i.e. in the absence of metastable states,
when only one global minimum of the free energy func-
tion fβ exists, the mixing is rapid. For n→∞, we know,
according to Theorem 3.38, that the distribution of the
proportions vector σn,β converges weakly to the uniform distribution δq̂. Hence
the proportions vector of the Glauber dynamics converges in a short amount of
time towards the global minimizer of the free energy function fβ (see Figure 15,
left).

Next let βs1(q) < β < βc(q). Then there exists one global
minimum and q additional local minima. Now consider
an initial configuration ω ∈ Ωn which has a proportions
vector x(ω) that is close to a local minimizer. Starting
the Glauber dynamics from this configuration, it will spend a time that is expo-
nential in n in the neighborhood of this minimizer before escaping to the global
minimizer (see Figure 15, right). Since the definition of the mixing time (espe-
cially the distance to stationarity) involves the worst case initial distribution, the
existence of metastable states will result in (exponentially) slow mixing.

At criticality, i.e. for β = βc, we observed that the or-
dered and the disordered phases coexist. In total, the
free energy function fβ has q+ 1 global minima, one cor-
responding to the unordered phase, and the other q cor-
responding to the ordered phases. This coexistence implies slow mixing because
in order to get from one phase to another, one must pass through many states
which are exponentially unlikely.
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In the inverse temperature regime βc(q) < β < βs2(q), we
also have slow mixing because of the aforementioned rea-
sons: getting from one ordered phase to another requires
passing through many exponentially unlikely states. In
particular, the dynamics of the system might get trapped in the local minimum
of the free energy function at the center.

For β > βs2(q), the situation is qualitatively the same
as at criticality. Instead of q + 1, we have exactly q

global minima, each corresponding to an ordered phase.
There are no metastable states that might trap the chain.
Again, the reason for slow mixing is the fact that the chain must pass through
states with exponential low probability to get from one phase to another.

We might also ask how the mixing behavior changes with temperature for the
Glauber dynamics of the Curie-Weiss model, i.e. q = 2. To answer this question,
we look at the graph of the free energy function fβ for this model given in Fig-
ure 13. For all β > 0, there are no local minimizers of the free energy function in
which the Markov chain might get trapped. Hence there are no spinodal inverse
temperatures. For β ≤ βc(2), there exists only one global minimum, hence the
mixing is fast. For β > βc(2), two phases coexist, i.e. there are two global minima
of the free energy function which implies slow mixing. [LLP08]
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Fig. 13: Free energy function fβ for the Curie-Weiss model as a function of the pro-
portions vector x = (x1, x2). We used the map (x1, x2) 7→ (x1, 1 − x1) to plot fβ as a
one dimensional function of x1 ∈ [0, 1] and shifted the graph by min

x1∈[0,1]
fβ(x1).
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4.3.2 Derivation of the Transition Matrix

Since we intend to reproduce some of the results given in the theorems of Section
4.3.1 using simulations, we need to derive an explicit formula for the transition
matrix of the Glauber dynamics for the q-state Curie-Weiss Potts model. We will
see that the proportions vector introduced in Section 3.2.2 plays a similar role
to that of the magnetization in the last section and can be used to simplify the
expression of the transition probabilities.

Theorem 4.13. Let µn,β be the Gibbs distribution for the q-state Curie-Weiss
Potts model on Ωn with Q = {1, . . . , q} and β > 0. Then the transition matrix
Pn ∈ Rnq×nq of the Glauber dynamics for µn,β is given by

Pn(ω, ω′) = 1
n

n∑
i=1

exp
(
2βxω′

i
(ω)

)
q∑

k=1
exp

(
2βxk(ω)

)1Ωi(ω)(ω′) , (4.8)

where xk, k ∈ Q, denotes a component of the proportions vector x.

Proof. As in (4.2), we can write the transition probabilities as

Pn(ω, ω′) = 1
n

n∑
i=1

µn,β(ω′)
µn,β(Ωi(ω))1Ωi(ω)(ω′) , (4.9)

where µn,β denotes the Gibbs distribution of the Curie-Weiss Potts model. For
convenience, we denote Λ := {1, . . . , n}. For now, let us suppose that ω′ ∈ Ωi(ω)
for some i ∈ Λ. We can then rewrite the numerator in (4.9): we have

µn,β(ω′) = 1
Zn,β

exp
(
β

n

∑
u,v∈Λ

δ(ω′u, ω′v)
)

= 1
Zn,β

exp
(
β

n

∑
u,v∈Λ\{i}

δ(ω′u, ω′v) + 2β
n

∑
u∈Λ

δ(ω′i, ω′u)−
β

n
δ(ω′i, ω′i)

)
.

Using the fact that ω′ ∈ Ωi(ω) and the definition of the proportions vector, we
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obtain

µn,β(ω′) = 1
Zn,β

exp
(
β

n

∑
u,v∈Λ\{i}

δ(ωu, ωv) + 2βxω′
i
(ω)− β

n

)

= 1
Zn,β

exp
(
β

n

∑
u,v∈Λ\{i}

δ(ωu, ωv)−
β

n

)
exp

(
2βxω′

i
(ω)

)

= 1
Zn,β

Θ(ω) exp
(
2βxω′

i
(ω)

)
,

where
Θ(ω) := exp

(
β

n

∑
u,v∈Λ\{i}

δ(ωu, ωv)−
β

n

)
.

We can now use this expression to rewrite the fraction in (4.9) for the case ω′ ∈
Ωi(ω), yielding

Pn(ω, ω′) = 1
n

n∑
i=1

Θ(ω) exp
(
2βxω′

i
(ω)

)
∑

ζ∈Ωi(ω)
Θ(ω) exp

(
2βxζi(ω)

) = 1
n

n∑
i=1

exp
(
2βxω′

i
(ω)

)
q∑

k=1
exp

(
2βxk(ω)

) .

So in general, for all ω, ω′ ∈ Ωn, we obtain

Pn(ω, ω′) = 1
n

n∑
i=1

exp
(
2βxω′

i
(ω)

)
q∑

k=1
exp

(
2βxk(ω)

)1Ωi(ω)(ω′) .

In the next section, we are interested in computing the distance to stationarity for
the Glauber dynamics of the q-state Curie-Weiss Potts model on Ωn for different
values of n and q. Since this includes an enormous amount of computations, it
will be done by a computer simulation. A central part of this simulation is the
computation of the transition matrix Pn which is easily done by using (4.8).
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4.3.3 Simulations and Results

Within the framework of this thesis, two simulations of the Curie-Weiss Potts
model were programmed using the programming language Python. In this sec-
tion, we describe the two computer programs, present their results and suggest
possibilities for further improvement. The source code of the two computer pro-
grams can be found in the Appendix.

The first computer program (see Appendix A.1) aims to compute the distance
to stationarity dn(t) for the Glauber dynamics for the q-state Curie-Weiss Potts
model on Ωn with Gibbs measure µn,β as stationary distribution. The program
works in the following way:
The input parameters are the size of the system n ≥ 1, the number of colors
q ≥ 2, the inverse temperature β > 0, a minimal distance to stationarity dmin

and a maximal number of time steps tmax for the chain to move forward.
Firstly, the entire state space Ωn = {1, . . . , q}n is generated. This is needed to
construct the transition matrix Pn in the next step. Therefore all q2n transition
probabilities Pn(ω, ω′) are computed using Theorem 4.13, i.e. for ω, ω′ ∈ Ωn, we
have

Pn(ω, ω′) = 1
n

n∑
i=1

exp
(
2βxω′

i
(ω)

)
q∑

k=1
exp

(
2βxk(ω)

)1Ωi(ω)(ω′) , (4.10)

with x denoting the proportions vector.
After the transition matrix Pn is completely constructed, the entire Gibbs distri-
bution µn,β is also computed since we are interested in the distance to stationarity
dn(t) for successive times t. This will be done using Proposition 2.24, i.e. we use

dn(t) = max
ω∈Ωn

∥∥∥P t
n(ω, ·)− µn,β

∥∥∥
TV

= 1
2 max
ω∈Ωn

∑
ω′∈Ωn

∣∣∣P t
n(ω, ω′)− µn,β(ω′)

∣∣∣ . (4.11)

This procedure is done for t = 1, then the resulting distance to stationarity dn(1)
is written in a TXT file. After that, the program goes one time step further, i.e.
we obtain the new transition matrix P t

n by simple matrix multiplication:

P t
n = P t−1

n · Pn ,

91



4.3 Glauber Dynamics for the Curie-Weiss Potts Model Glauber Dynamics

where P t−1
n denotes the transition matrix of the previous time step. The dis-

tance to stationarity of the current time step is then calculated again. All this
is repeated until the current distance to stationarity dn(t) is smaller than the
threshold dmin or the number of time steps t exceeds the input parameter tmax.
At the end, we have a TXT file consisting of a sequence of distances to station-
arity for a certain system size n, number of colors q and inverse temperature β.

Theoretically, we should be able to see the cutoff phenomenon using this program.
We chose β = 1 and considered q ∈ {2, . . . , 5}. Looking at Table 1, we see that
β < βs1(q) for q ∈ {3, 4, 5}. Hence Theorem 4.10 tells us that we can expect to
see the cutoff phenomenon for large enough n. For q = 2 on the other hand, we
have β = βc(2) and according to Remark 4.11, there will be no cutoff phenomenon.

The results of the simulation are presented in Figure 14 on the next page. The
computed distances to stationarity were saved in a TXT file and afterwards plot-
ted using MATLAB. By looking at the plots, we clearly see that no cutoff phe-
nomenon appears for any value of q. In fact, due to the enormously large running
time of this program, we were only able to produce graphs of the distance to
stationarity dn(t) for relatively small values of n. Indeed, there are several large
sums and the transition matrix also becomes quite large for increasing values of
n and q. As an example, let us suppose, we have n = 20 vertices and consider
q = 3 colors. Then the cardinality of the state space is given by

|Ωn| = qn ≈ 3.49 · 109 .

So the first sum in (4.10) and the sum in (4.11) would contain approximately 3.49
billion summands. Additionally, the transition matrix P20 would have |Ωn|2 ≈
1.22 · 1019 entries. Hence matrix multiplication is connected with a huge compu-
tational effort. All this results in the long running time of this program for bigger
values of n. If we could run the program longer, i.e. for large values of n, then
we should be able to see the cutoff phenomenon if the appropriate conditions are
satisfied.
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Fig. 14: Distance to stationarity dn(t) for a sequence of Glauber dynamics
(Ωn, Pn, µn,β)n≥2 of the q-state Curie-Weiss Potts model at inverse temperature β = 1
for selected values of q. Due to the enormous computational effort, only the distances
dn(t) for small n could be determined. Keep in mind that dn(t) is only defined for
integer values of t, i.e. the data points are only connected for a better visibility.

The second computer program (see Appendix A.2) aims to visualize the time-
evolution of the proportions vector x ∈ S for the Glauber dynamics for the
Curie-Weiss Potts model. In Section 4.3.1, we saw that the speed of convergence
of the Glauber dynamics is connected to the free energy function fβ, in particular
with the location of its local minima. Considering the case q ≥ 3, we have rapid
mixing if β < βs1(q) and slow mixing for β ≥ βs1(q). We want to see whether
the simulation of the Glauber dynamics yields this same result. This simulation
works in the following way:

Firstly, the input parameters are specified, i.e. we choose the number of vertices
n, the number of colors q, the inverse temperature β > 0 and a maximal number of
time steps tmax. Additionally we must specify an initial q-dimensional proportions
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vector x0. According to this proportions vector, the computer program constructs
an initial configuration ω0 ∈ Ωn with proportions vector x(ω0) equal (or at least
close) to x0. Starting with ω = ω0, our program (and in particular the Glauber
dynamics) proceeds as follows:

(1) Choose a vertex i ∈ {1, . . . , n} uniformly at random.

(2) Choose a new configuration ω′ ∈ Ωn according to the probability distribu-
tion

µn,β
(
ω′ | Ωi(ω)

)
=

exp
(
2βxω′

i
(ω)

)
q∑

k=1
exp

(
2βxk(ω)

)1Ωi(ω)(ω′) .

(3) Compute the proportions vector x(ω′) and the free energy function fβ
(
x(ω′)

)
.

Save these results in a TXT file.

This sequence of commands is repeated tmax times after which the computer pro-
gram terminates.

For our simulations, we chose q = 3 so that we are able to portray the propor-
tions vector x = (x1, x2, x3) and the value of the free energy function fβ(x) in
the same plot. Additionally, only every tenth proportions vector and value of
the free energy function is saved in order to reduce the total amount of data.
As mentioned before, we ran two simulations: one for β < βs1(3) (subcritical
regime) and one for β > βs1(3) (supercritical regime) in order to show rapid and
slow mixing. The results are shown in Figure 15 on the next page using MATLAB.

We can see that, for β = 1 < βs1(3), the dynamics converges quickly towards
the global minimizer (Figure 15, left). In the other case, i.e. for an inverse
temperature βs1 < β = 1.381 < βc(3), the Markov chain starts close to a local
minimizer according to the initial proportions vector x0 = (0.2, 0.2, 0.6). Hence
the dynamics gets trapped near this metastable state and spends lots of time
there before finally escaping to the global minimizer in the center (see Figure 15,
right). So the simulations show exactly the behavior that we expected and talked
about in the last sections.
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Fig. 15: The colored surface represents the free energy function fβ of the 3-state
Curie-Weiss Potts model as function of the proportions vector x ∈ S. The black curve
marks the time-evolution of the proportions vector x of the Glauber dynamics for
µ500,β. Left: In the subcritical regime (here β = 1), the proportions vector x reaches
the global minimizer very fast, in fact t ≈ 5000 time steps are needed starting from
x0 = (0.2, 0.1, 0.7). Right: In the supercritical regime (here β = 1.381), the proportions
vector x spends a great amount of time near a local minimizer before reaching the
global minimizer. In the plot, n ≈ 55000 time steps are shown with initial proportions
vector x0 = (0.2, 0.2, 0.6).
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A Python Programs

A.1 Program 1: Distance to Stationarity

1 # −∗− coding : utf −8 −∗−
2 " " "
3 Distance to S t a t i o n a r i t y
4 o f the Glauber Dynamics
5 f o r the Curie−Weiss Potts Model
6 " " "
7

8 import numpy as np
9 import random as rand

10 import copy
11 import i t e r t o o l s
12

13 global n , q , beta , d_min
14

15 def kronecker_delta (x , y ) :
16 i f x==y :
17 return 1
18 else :
19 return 0
20

21 def in_possible_Omega (x , i , y ) :
22 l=True
23 for j in range (n) :
24 i f j != i :
25 i f x [ j ] != y [ j ] :
26 l=Fal se
27 break
28 return l
29

30 def prop_vector ( omega , i ) :
31 count=0
32 for j in range (n) :
33 count=count+kronecker_delta ( omega [ i ] , omega [ j ] )
34 return count /n
35

36 def probs_q ( omega , i ) :
37 prob_distr =[ ]
38 omega_bar=copy . deepcopy ( omega )
39 for k in range (1 , q+1) :
40 omega_bar [ i ]=k
41 prob_distr . append ( np . exp ( beta ∗2∗ prop_vector ( omega_bar , i ) ) )
42 N=sum( prob_distr )
43 for p in range ( len ( prob_distr ) ) :
44 prob_distr [ p]= prob_distr [ p ] /N
45 return prob_distr
46

47 def t rans i t i on_prob (x , i , y ) :
48 i f in_possible_Omega (x , i , y )==False :
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49 return 0
50 else :
51 r=probs_q (x , i )
52 return r [ int ( y [ i ] −1) ]
53

54 def state_space ( ) :
55 Q=np . arange (1 , q+1)
56 l =[p for p in i t e r t o o l s . product (Q, repeat=n) ]
57 l=np . array ( l )
58 return l
59

60 def t rans i t ion_matr ix_entry (x , y ) :
61 p=0
62 for i in range (n) :
63 p=p+trans i t i on_prob (x , i , y )
64 return p/n
65

66 def t rans i t i on_matr ix (Omega) :
67 P=[]
68 for x in Omega :
69 P_0=[ ]
70 for y in Omega :
71 P_0. append ( trans i t ion_matr ix_entry (x , y ) )
72 P. append (P_0)
73 return P
74

75 def gibbs_measure (Omega) :
76 l =[ ]
77 for omega in Omega :
78 count=0
79 for i in range (n) :
80 for j in range (n) :
81 count=count+kronecker_delta ( omega [ i ] , omega [ j ] )
82 l . append ( np . exp ( beta /n∗ count ) )
83 s=sum( l )
84 for k in range ( len ( l ) ) :
85 l [ k]= l [ k ] / s
86 return l
87

88 def tvd (Omega , omega_0 , P,mu) :
89 P=np . array (P)
90 a=0
91 for omega in Omega :
92 i=Omega . index ( omega )
93 a=a+abs (P. item ( (Omega . index (omega_0) , i ) )−mu[ i ] )
94 return 0 .5∗ a
95

96 def d i s t a n c e (Omega , P,mu) :
97 l =[ ]
98 Omega=Omega . t o l i s t ( )
99 for omega_0 in Omega :

100 l . append ( tvd (Omega , omega_0 , P,mu) )
101 return max( l )
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102

103 def d i s t a n c e _ t i m e l i n e (Omega , P,mu, t_max , f i l e ) :
104 A=P
105 for t in range (1 , t_max+1) :
106 i f t==1:
107 h=d i s t a n c e (Omega ,A,mu)
108 f i l e . wr i t e ( str (h)+’ \n ’ )
109 else :
110 A=np . matmul (A,P)
111 h=d i s t a n c e (Omega ,A,mu)
112 f i l e . wr i t e ( str (h)+’ \n ’ )
113 i f h<=d_min :
114 break
115

116 f i l e=open( " r e s u l t s . txt " , " a+" )
117 n=5
118 q=3
119 beta=1
120 d_min=0.1
121 t_max=50
122 f i l e . wr i t e ( ’ \n ’+’n=’+str (n)+’ \n ’ )
123 f i l e . wr i t e ( ’ q=’+str ( q )+’ \n\n ’ )
124 f i l e . wr i t e ( ’ beta=’+str ( beta )+’ \n\n ’ )
125

126 Omega=state_space ( )
127 P=trans i t i on_matr ix (Omega)
128 mu=gibbs_measure (Omega)
129 d i s t a n c e _ t i m e l i n e (Omega , P,mu, t_max , f i l e )
130 f i l e . c l o s e ( )
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A.2 Program 2: Time-Evolution of the Proportions Vector
1 # −∗− coding : utf −8 −∗−
2 " " "
3 Time Evolut ion o f the Proport ions Vector
4 f o r the Curie−Weiss Potts Model
5

6 " " "
7

8 import numpy as np
9 import random as rand

10 import copy
11 import i t e r t o o l s
12

13 global n , q , beta , beta_n
14

15 def i n d i c a t o r _ f c t (x , y ) :
16 i f x==y :
17 return 1
18 else :
19 return 0
20

21 def random_in i t i a l_con f igurat ion ( ) :
22 omega=np . z e r o s (n)
23 for i in range (n) :
24 omega [ i ]=rand . rand int (1 , q )
25 return omega
26

27 def i n i t i a l _ c o n f i g u r a t i o n ( p r o p o r t i o n s ) :
28 omega =[ ]
29 for k in range (1 , q ) :
30 for l in range ( int (n∗ p r o p o r t i o n s [ k −1]) ) :
31 omega . append ( k )
32 for m in range (n−len ( omega ) ) :
33 omega . append ( q )
34 return omega
35

36 def counter ( omega , v ) :
37 count=0
38 for i in range (n) :
39 count=count+i n d i c a t o r _ f c t ( omega [ i ] , omega [ v ] )
40 return count
41

42 def probs_q ( omega , v ) :
43 prob_distr =[ ]
44 omega_bar=copy . deepcopy ( omega )
45 for q_i in range (1 , q+1) :
46 omega_bar [ v]=q_i
47 prob_distr . append ( np . exp ( beta_n ∗(2∗ counter ( omega_bar , v ) ) ) )
48 N=sum( prob_distr )
49 for k in range ( len ( prob_distr ) ) :
50 prob_distr [ k]= prob_distr [ k ] /N
51 return prob_distr
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52

53 def glauber_dyn ( omega ) :
54 v=rand . c h o i c e s ( np . arange (n) )
55 r=rand . c h o i c e s ( np . arange (1 , q+1) , probs_q ( omega , v ) )
56 omega [ v]= r [ 0 ]
57 return omega
58

59 def prop_vec ( omega ) :
60 prop_vec =[ ]
61 for i in range (1 , q ) :
62 count_i=0
63 for j in range (n) :
64 i f omega [ j ]== i :
65 count_i=count_i+1
66 prop_vec . append ( count_i )
67 prop_vec . append (n−sum( prop_vec ) )
68 return np . array ( prop_vec ) /n
69

70 def f ree_energy ( prop_vec ) :
71 f=0
72 for s in prop_vec :
73 i f s==0:
74 k=0
75 else :
76 k=s ∗np . l og ( s )
77 f=f+k−beta ∗ s ∗ s
78 prop_vec [−1]= f
79 return prop_vec
80

81 n=500
82 q=3
83 beta =1.381
84 beta_n=beta /n
85 t_max=100000
86 x_0 = [ 0 . 2 , 0 . 2 , 0 . 6 ]
87

88 X=open( " res_X . txt " , " a+" )
89 Y=open( " res_Y . txt " , " a+" )
90 F=open( " res_F . txt " , " a+" )
91 omega=np . array ( i n i t i a l _ c o n f i g u r a t i o n (x_0) )
92 for i in range (t_max) :
93 i f i %10==0:
94 p_v=free_energy ( prop_vec ( omega ) )
95 X. wr i t e ( str (p_v [ 0 ] )+’ \n ’ )
96 Y. wr i t e ( str (p_v [ 1 ] )+’ \n ’ )
97 F . wr i t e ( str (p_v [ 2 ] )+’ \n ’ )
98 omega=glauber_dyn ( omega )
99 X. c l o s e ( )

100 Y. c l o s e ( )
101 F . c l o s e ( )
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B Nomenclature

AB set of all functions from A to B
|A| cardinality of A
a | b a divides b
argmax, argmin argument of the maximum, minimum
β inverse temperature
βc critical inverse temperature
βs1 , βs2 first spinodal and second spinodal inverse temperature
Cn complete graph with n vertices
χA characteristic polynomial of the square matrix A
detA determinant of the square matrix A
gcdM greatest common divisor of all m ∈M ⊂ N
δω Dirac mass at ω
δω(ω′) = δ(ω, ω′) Kronecker delta
d(t) distance to stationarity at time t
exp natural exponential function
E[X], Eπ[X] expectation of X (according to π ∈M1(Ω))
fβ free energy function
G = (Λ,E ) graph G with vertex set Λ and edge set E
Γβ,q set of global minimizers of fβ
γ̂ absolute spectral gap
Hn,β Hamiltonian, total energy
H̃ energy density
log natural logarithm
In identity matrix of size n
J interaction constant
λ eigenvalue
λ̂ = max{|λ| 6= 1: λ is an eigenvalue of P}
M total magnetization
m magnetization density
max, min maximum, minimum
M1(Ω) set of all probability measures on (Ω,P(Ω))
µn,β Gibbs distribution
N, N0 N = {1, 2, 3, . . .}, N0 = N ∪ {0}
Ni set of nearest neighbors of i ∈ Λ(
n
k

)
binomial coefficient

∇f(x) =
(
∂f
∂x1

(x), . . . , ∂f
∂xn

(x)
)
, nabla, gradient of f

O(f(n)), o(f(n)) asymptotic Landau notation
Ω,Ωn state space (depending on n)
ω, ω′, ζ state (configuration), i.e. an element of the state space
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P(A) probability of the event A
P(A|B) probability of A conditioned B
P (ω, ω′) transition probability from state ω to state ω′
P(A) power set of A
ϕ eigenvector (eigenfunction)
π (in most contexts) stationary distribution
Ψ free energy in the thermodynamic limit
Ψn finite-volume free energy
Q set of all colors, in general Q = {1, . . . , q}
R set of real numbers
R+ set of positive real numbers, i.e. {x ∈ R | x ≥ 0}
Rn×n set of real square matrices of size n
L latent heat
L Lagrangian function
S = S(µ), entropy of the probability measure µ ∈M1(Ω)
S̃ entropy density
S set of probability vectors
supp(µ) support of the measure µ
σn,β distribution of the fractions vector x under µn,β
T absolute temperature
tmix(ε) ε-mixing time
tmix = tmix(1/4)
trel relaxation time
T (ω) = {t ∈ N | P t(ω, ω) > 0}
UΩ uniform distribution on Ω
wn cutoff window of the n-th Markov chain
x = x(ω) proportions vector
(Xt)t≥0 discrete time Markov chain
ξ order parameter
Zn,β partition function

1A(ω) indicator function
| · | absolute value
d·e rounded up
〈·, ·〉 standard inner product
〈·, ·〉π inner product with respect to π ∈M1(Ω)
µn ⇒ µ weak convergence of measures
X ∼ µ the law of X is µ
f(n) ∼ g(n) f and g are asymptotically equivalent
‖ · ‖p `p(π)-norm
‖ · ‖∞ maximum norm
‖µ− ν‖TV total variation distance of µ, ν ∈M1(Ω)
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