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Goodness of Fit Tests of L2-Type

Hannelore Liero
Institute of Mathematics, University of Potsdam

Abstract

We give a survey on procedures for testing functions which are based on quadratic
deviation measures. The following problems are considered: Testing whether a
density function lies in a parametric class of functions, whether continuous random
variables are independent; testing cell probabilities and independence in sparse data
sets; testing the parametric fit of a regression homoscedasticity in a regression model
and testing the hazard rate in survival models with censoring and with and without
covariates.

Keywords and phrases: Density tests, sparse data, testing independence, regression
fit, homoscedasticity, hazard rate under censoring with covariates
AMS subject classification: Primary 62G10, 62G20
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1 Introduction

We give a survey on procedures for testing functions in several nonparametric setups.
The common idea of all considered tests is to express the deviation of the alternative
from the hypothesis by a quadratic distance measure between a nonparametric kernel
type estimator for the function of interest and a smoothed function characterizing the
hypothetical function. Based on limit theorems stating that these quadratic functionals
are asymptotically normally distributed we formulate asymptotic α-tests. Several as-
pects of the application of these test procedures are investigated.
So, in Section 2.1 after introducing a test statistic for checking whether a density function
belongs to a parametric class we discuss the behavior of the power of the resulting test
in detail. In Section 2.2 we apply similar ideas to test independence of two continuous
random variables. Here the main point is to find good estimators for the standardizing
terms in the limit theorem to avoid bias problems in the application of this limit state-
ment for the formulation of the test.
In Section 3 the discrete analogues of the density test problems are considered. For
estimating cell probabilities in sparse multinomial data sets Simonoff (1996) introduced
local polynomial estimators. We use a special case of these kernel estimators to test
hypothetical cell probabilities and compare our approach with the ”classical” test proce-
dure based on frequencies. Furthermore, the connection between testing in sparse data
sets and testing a density is investigated. The case of testing independence in a sparse
contingency table completes these considerations for sparse data.
In the following two sections we consider the nonparametric regression model. In Sec-
tion 4 about testing whether a regression function has a parametric form we review the
results of Härdle and Mammen (1993) to show, that bootstrap methods can be useful
to apply tests of L2-type in practice.
Section 5 deals with testing homoscedasticity in a regression model. Here we show, how
the conditional variance can be estimated nonparametrically. Further, we mention the
problem of estimating the variance in a nonparametric homoscedastic regression model
with random design.
In the last section tests for testing the hazard function in survival models for censored
observations are given. Firstly the case without covariates is investigated; here the main
point is to handle the maximum likelihood estimator for the unknown parameter in the
hypothetical hazard function. In Section 6.2 the model with fixed covariates is studied.
Here, following the approach of Van Keilegom and Veraverbeke (2001), we construct our
test statistic on the basis of a weighted estimator for the hazard function, where the
weights depend on the covariates.

2 Tests for densities

2.1 Testing whether a density has a parametric form

Let Z1, . . . , Zn be independent and identically distributed (i.i.d.) random variables with
Lebesgue density f . We wish to test whether f lies in the parametric class

F = { fϑ = f(·, ϑ) : ϑ ∈ Θ ⊆ Rd }
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against the alternative that f does not belong to F , i.e.

H : f ∈ F against K : f 6∈ F .

The idea of the test procedure is to compare an estimator f̂n, which is ”good for all
possible densities f”, with the hypothetical one. It is well-known that the Rosenblatt-
Parzen kernel estimator

f̂n(t) =
1

nbn

n∑

i=1

K

(
t− Zi

bn

)

is such a good nonparametric estimator. Here K is the kernel function satisfying some
regularity conditions and {bn} is a sequence of bandwidths tending to zero as n tends
to infinity. As deviation measure we choose the weighted L2-distance. This approach
was studied among others by Bickel and Rosenblatt (1973), Ghosh and Huang (1991),
Liero, Läuter and Konakov (1998). Note, that the kernel estimator f̂n is not an unbiased
estimator. Thus, deriving the limiting distribution of this distance one has to handle
the bias. To avoid this problem it seems to be useful to take instead of the difference
between f̂n and a hypothetical fϑ the difference of f̂n from its expectation under H, that
is from

EHf̂n(t) =
1
bn

∫
K

(
t− x

bn

)
f(x, ϑ) dx =

∫
K(x)f(t− xbn, ϑ) dx.

In other words, we compare the smoothed data with a smoothed version of the hypo-
thetical density. Since this expectation depends on the unknown parameter ϑ one has
to replace it by a suitable estimator. Liero et al. (1998) propose to use the maximum
likelihood estimator, say ϑ̂n, which is

√
n-consistent under H. Thus, finally we define

the following test statistic:

Qn =
∫ (

f̂n(t)− en(t, fϑ̂n
)
)2

a(t) dt

with en(t, fϑ̂n
) =

∫
K(x)f(t−xbn, ϑ̂n) dx and a weight function a, which is introduced

to control the region of integration and has to be chosen by the statistician. Before
we formulate the basic limit statement let us introduce some notation, which are used
also in the next sections: For b > 0 we write Kb(t) = 1

bK(t/b). Further, we define
κ2 =

∫
K2(x) dx and the convolution κ∗(z) =

∫
K(u)K(z + u) du. Throughout the

paper we assume

(K) The kernel K is a Lipschitz continuous density function with finite support.

(W) The weight function a is nonnegative, piecewise continuous and bounded on R;
(resp. on R2)

Theorem 2.1 Suppose that (K), (W) and the following assumptions are satisfied: Any
density f ∈ F is bounded on R, Lipschitz continuous and partially differentiable w.r.t.
ϑ; ∇ϑf(·, ·), the vector of the partial derivatives, is bounded and uniformly continuous in
both arguments. The estimator ϑ̂n is

√
n-consistent underH. Further,

∫ |∇ϑf(t, ϑ)|a(t) dt <
∞ for each ϑ ∈ Θ and nbn →∞, bn → 0 and bn(log n)ζ → 0 for some ζ > d/2. Then
under H

nb
1/2
n

σfn
(Qn − µfn) D−→ N(0, 1)
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where

µfn = (nbn)−1κ2

∫
f(t, ϑ̂n) a(t) dt and

σ2
fn = 2

∫
f(t, ϑ̂n)2 a2(t) dt

∫
(κ∗(z))2 dz.

Applying this limit statement we obtain an asymptotic α-test of H against K by the
rule: Reject H if Qn ≥ µfn + zα σfn/(nb

1/2
n ), where zα is the (1− α)-quantile of the

standard normal distribution.

Some Remarks. 1. This test may be regarded as an analogue of a modified Cramér-
von Mises test for testing whether an unknown distribution function lies in a parametric
family of distribution functions. In contrast to the test for densities the limit distribution
under the null hypothesis of the Cramér-von Mises test statistic with estimated param-
eter depends on the error of the parameter estimation. This is due to the fact that the
normalizing factor n in the Cramér-von Mises test statistic is of the same order as the
square of the rate of consistency of the parameter estimation, while in the density case
this factor is nb

1/2
n which tends to infinity slowlier. Therefore the error of the parameter

estimation can be neglected in the problem presented here.
2. One can show (see Liero (1999)) that the limit statement formulated in Theorem 2.1
holds true if the bandwidth bn is replaced by an adaptively chosen bandwidth b̂n as long
as b̂n/bn

P−→ c for an arbitrary but fixed deterministic bandwidth bn, satisfying the
conditions of Theorem 2.1 and some positive constant c.
3. Theorem 2.1 says nothing about the order of convergence of the distribution of the
standardized test statistic to its limit. Simulations show that the approximation of the
critical values by those of the standard normal distribution may fail for moderate sample
size n. Therefore this limit theorem should be considered more as a theoretical result
which gives an insight into the behavior of the test statistic, but it is not recommended
for the approximate calculation of the critical values.(See also Section 4.)

Power considerations. It is easy to show, that the proposed L2-test is consistent,
that is, if the alternative holds then the probability for rejecting H tends to one. There-
fore, for a characterization of the test and the comparison with other tests it is useful to
investigate the asymptotic behavior of the power under local alternatives. In the litera-
ture there are different approaches to that problem. Here we will follow the “classical”
approach and consider local alternatives of the form

Kn : fn(·) = f(·, ϑ) + ∆n(·)
where {∆n} is a sequence of functions tending to zero and ϑ is arbitrarily fixed. The aim
is to study how the power depends on the convergence behavior of the disturbing function
∆n. Such investigations were done under different aspects by Bickel and Rosenblatt
(1973), Rosenblatt (1975), Ghosh and Huang (1991) and Liero et al. (1998). They
considered the following types of alternatives: The so-called Pitman alternatives, sharp
peak alternatives and alternatives with rapidly oscillating disturbing functions. To derive
the behavior of the power Π(∆n) = PKn

(
Qn ≥ µfn + zασfn(nb

1/2
n )−1

)
, where PKn is
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the probability measure with respect to the local alternative, one has to study the
asymptotic properties of the parameter estimator ϑ̂n under local alternatives. This is
done in the paper of Liero et al.(1998), where an asymptotic expansion of the maximum
likelihood estimator is given.
Generally speaking, the results in the paper mentioned above say that the L2-test is
sensitive against local alternatives Kn, where the weighted L2-norm of the disturbing
function ∆n behaves asymptotically as n−1/2b

−1/4
n , in other words Π(∆n) tends to a

number between α and 1, if n1/2b
1/4
n ‖∆na1/2‖2 → c 6= 0.

In more detail one can prove the following results: 1. The error of the parameter estima-
tion has an influence on the value of the limit of the power under Pitman alternatives
and rapidly oscillating disturbing terms. Under sharp peak alternatives the value of the
power does not depend on that estimation error.
2. Measured in the L2-norm all three types of alternatives tend to the hypothesis at the
same rate of convergence.
3. The highly oscillating disturbing function can be interpreted as a function with a
growing number of peaks. But, here more sharpness of the peaks is compensated by a
larger number of peaks. Thus, the L2-norm of the disturbing function does not depend
on the sharpness of the peaks, and the asymptotic behavior of the power under highly
oscillating alternatives and under Pitman alternatives does not differ qualitatively.
4. If we translate our problem of testing a density function into a problem of testing
distribution functions we get the following results: Pitman alternatives remain Pitman
type alternatives also in the context of distribution functions. Therefore, our L2-density
test is worse than the Cramér-von Mises test, if we compare both with respect to this
type of alternatives. The sharp peak disturbing function yields for distribution functions
a disturbing function of sharp peak type, but with other ”less sharp peaks”. That means
that there exist alternatives of sharp peak type which are detected by the test based
on density estimators, but not by the classical Cramér - von Mises test. The reason is
that integration of the alternative density smoothes the sharp peak away. Integration
of the rapidly oscillating disturbing function leads to the following result: Although the
behavior of the power of the L2-test under Pitman and highly oscillating alternatives
is qualitatively the same, we can find highly oscillating disturbing functions where the
Cramér-von Mises test fails, but the L2- density test does not. The explanation is, that
also these ’infinitely many peaks’ are smoothed away by the translation from density to
distribution function, despite of their growing number.
5. The investigations show that a larger bandwidth improves the power. Heuristically
speaking, this means, that the rate of convergence of the alternative, measured in the
L2-norm, may increase if the variance of the kernel estimator tends to zero faster. This
feature, incidentally, conflicts with the fact discussed before stating that the approxima-
tion of the distribution of the test statistic by the standard normal distribution improves
if the bandwidth tends to zero faster.
6. A test based on the integrated difference of f̂n from the hypothetical fϑ̂n

is discussed
by Liero (1999). Here the additional bias term can lead to an increase or an decrease of
the power.
7. In the paper of Liero et al. (1998) a so-called L∞-test, which is based on the (normal-
ized) maximal deviation of f̂n from EHf̂n(t) is studied. The power considerations carried
out there show that with respect to Pitman alternatives the L2-test behaves better than
the L∞-test. Further, it is proved that there exist local alternatives of sharp peak type
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for which the L∞-test distinguishes between hypothesis and alternative, but the L2-test
does not.

2.2 Testing independence

Let (U1, V1), . . . , (Un, Vn) be a sample of i.i.d. (R × R)-valued random variables with
density f . We wish to test whether Ui and Vi are independent, that is the test problem
has the form

H : f = g · h against K : f 6= g · h,

where g and h are the marginal densities of Ui and Vi, respectively. Again we will use a
kernel estimator for the construction of our test statistic. It is defined by

f̂n(s, t) =
1

nb2
n

n∑

i=1

K

(
Ui − s

bn
,
Vi − t

bn

)
.

Here K : R2 −→ R is the kernel function and bn is the bandwidth sequence. We take a
kernel of product form, i.e.

K(x, y) = K1(x)K2(y) with
∫

Kj(x) dx = 1 for j = 1, 2. (1)

The estimators of the marginal densities are given by

ĝn(s) =
1

nbn

n∑

i=1

K1

(
s− Ui

bn

)
and ĥn(t) =

1
nbn

n∑

i=1

K2

(
t− Vi

bn

)
.

The formulation of the test procedure goes back to Rosenblatt (1975). His idea was to
compare a kernel estimator of f with the estimator of f under the hypothesis, that is
with the product of kernel estimators of the marginal densities. This leads to the test
statistic

In =
∫

(f̂n(s, t) − ĝn(s) · ĥn(t))2a(s, t) dsdt,

where a is again a suitable weight function and the integration is taken over R2. Let us
denote the expectations of f̂n, ĝn, and ĥn, by fn, gn and hn, respectively. Further, define

ξfn = (nb2
n)−1D1n − (nbn)−1D2n

with

D1n =
∫ ∫

K2
1 (u)g(s− ubn) du

∫
K2

2 (v)h(t− vbn) dv a(s, t) dsdt

D2n =
∫ (

g2
n(s)

∫
K2

2 (v)h(t− vbn) dv

+h
2
n(t)

∫
K2

1 (u)g(s− ubn) du

)
a(s, t) dsdt,

and

τ2
f = 2

∫
g2(s)h2(t)a2(s, t) dsdt

∫
(K1 ∗K1)2(r) dr

∫
(K2 ∗K2)2(v) dv.

With these notations we can formulate:
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Theorem 2.2 Suppose that the marginal densities g and h are Lipschitz continuous and
bounded. Let the kernel K be of product type (1). The Kj’s (j = 1, 2) satisfy condition
(K) and the weight function a condition (W). If f = g · h, then

nbn (In − ξfn) D−→ N(0, τ2
f ) (2)

as bn → 0 and nb2
n →∞.

To apply limit statement (2) for the construction of the test procedure we have to replace
the unknown terms D1n and D2n by estimators which are consistent with a certain rate
of convergence. To avoid bias problems we do not follow the proposal of Rosenblatt
(1975), who replaced the unknown functions g and h by the kernel estimators ĝn and
ĥn. Observe, that

D1n = b−2
n

∫
Ω1n(s)Ω2n(t) a(s, t) dsdt and

D2n = b−1
n

∫ (
[gn(s)]2 Ω2n(t) +

[
hn(t)

]2 Ω1n(s)
)

a(s, t) dsdt

where Ω1n(s) = EK2
1

(
s−U1

bn

)
and Ω2n(t) = EK2

2

(
t−V1
bn

)
.

We estimate these quantities by

Ω̃1n(s) =
1
n

n∑

i=1

K2
1

(
s− Ui

bn

)
and Ω̃2n(t) =

1
n

n∑

i=1

K2
2

(
t− Vi

bn

)
.

and obtain as estimator for D1n

D̃1n = b−2
n

∫

A
Ω̃1n(s) Ω̃2n(t) a(s, t) dsdt,

which is consistent and unbiased under H. Estimators of D2n and τ2
f are given by

D̃2n = b−1
n

∫

A

(
[ĝn(s)]2 Ω̃2n(t) + [ĥn(t)]2 Ω̃1n(s)

)
a(s, t) dsdt and

τ̃2
fn = 2

∫
ĝ2
n(s) ĥ2

n(t) a2(s, t) dsdt

∫
(K1 ∗K1)2(u) du

∫
(K2 ∗K2)2(v) dv.

Set ξ̃fn = (nb2
n)−1D̃1n − (nbn)−1D̃2n. It is easy to verify that the limit statement

formulated in Theorem 2.2 remains valid if the unknown terms ξfn and τfn are replaced
by these estimators. Thus, an asymptotic α-test is provided by: Reject H, if In ≥
ξ̃fn + zα τ̃fn/(nbn).

Some remarks. 1.) In difference to the approach of Rosenblatt (1975) we propose
another estimator of the standardizing terms in the limit theorem for In. The advantage
of our method is, that this estimator is unbiased. So we do not need additional assump-
tions on the smoothness of the underlying densities to ensure that the limit theorem
remains valid with the estimated standardizing terms.
2.) The behavior of the power of this test is qualitatively very similar to that of the
L2-test considered in Section 2.1. As there one can show that the power tends to a
nontrivial limit, i.e. a number between α and 1, if

√
nbn||∆na1/2||2 → c 6= 0, where the

disturbing function ∆n describes the deviation from independence.
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3 Tests for sparse data sets

In the classical case the number of cells, say k, in a multinomial distribution or a con-
tingency table is assumed to be fixed. But there are data sets where the total number of
observations is moderate in comparison to the total number of cells. Consequently the
number of observations falling in each cell is rather small. We describe such sparseness
mathematically by assuming k = kn → ∞ as n tends to infinity. It is known that for
sparse data nonparametric smoothing techniques provide estimators of the cell probabil-
ities, which have a better asymptotic performance than the frequency estimators, see for
example Aerts et al. (1997) and Simonoff (1996). Here we use such smoothed estimators
to define a test statistic of L2-type.

3.1 Testing cell probabilities in sparse multinomial data

Let pn = (pn1, . . . , pnkn)t be the vector of cell probabilities of a kn-cell multinomial
distribution, where n is the total sample size. The simplest test problem is to test

H : pni = πni for all i = 1, . . . , kn against K : pni′ 6= πni′ for some i′, (3)

where πn = (πn1, . . . , πnkn)t is a vector of given cell probabilities. To formulate the
test procedure we start with the definition of the estimators of the cell probabilities
pni , i = 1, . . . , kn. As smoothed estimators we propose local constant estimators, which
are the simplest local polynomial estimators introduced by Simonoff (1996). For the
definition of these estimators let xnj = (j − 1

2)/kn be equidistant design points on the
interval [0, 1] and denote the relative frequency of cell i by p∗ni. The data (xnj , p

∗
nj) can

be considered as regression type data. Following the idea of smoothing in the regression
set-up we estimate the cell probability pni by

p̂ni =

kn∑

µ=1

K
(

xnµ−xni

bn

)
p∗nµ

kn∑

µ=1

K
(

xnµ−xni

bn

) ,

where K is a kernel function and bn is a sequence of bandwidths introduced already in
the previous section. For simplicity of writing we skip the subscript n in the notation of
the cell probabilities and the design points; furthermore we write

p̂i =
1

knbn

kn∑

µ=1

Li

(
xµ−xi

bn

)
p∗µ with Li(u) = K(u)

1
knbn

Pkn
µ=1 K

�
xµ−xi

bn

� .

As test statistic we propose the sum of squared differences between the estimators and
their expectations under the hypothesis:

Tn =
kn∑

i=1

(p̂i − EHp̂i)
2 with EHp̂i =

1
bnkn

kn∑

j=1

Li

(
xj − xi

bn

)
πj .

Set

µπn =
1

nk2
n

kn∑

i=1




kn∑

j=1

L2
i,bn

(xj − xi) πj −



kn∑

j=1

Li,bn(xj − xi) πj




2
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where Li,b(u) = 1
bLi(u

b ), and

σ2
πn = 2k2

nbn

kn∑

l=1

kn∑

m=1

C2
lmπlπm with Clm = k−2

n

kn∑

i=1

Li,bn(xl − xi)Li,bn(xm − xi).

The following limit theorem shows that Tn is asymptotically normal under H.

Theorem 3.1 Assume (K) and |πni − πnj | ≤ Lk−1
n |xni − xnj | for all i, j and some

constant L. If bn → 0, bnkn →∞ and nbn →∞ as n →∞, then under H

nkn

√
bn

σπn
(Tn − µπn) D−→ N(0, 1).

Under the assumptions of Theorem 3.1 we get the test: Reject the hypothesis H if
Tn ≥ µπn + zα σπn/(nkn

√
bn).

Comparison to the ”classical” approach. Another possibility to test (3) is the
quadratic deviation of the unsmoothed estimators of the cell probabilities, that is to use
the test statistic

Sn =
kn∑

i=1

(p∗i − πi)
2 .

Applying results proved by Holst (1972) and Burman (1987) one can show that this
statistic, properly standardized, is also asymptotically normally distributed. The asymp-
totic α-test based on this limit statement has the following form: Reject the hypothesis
H, if Sn ≥ EHSn + ρπn zα/(n

√
kn) , where EHSn = 1

n

(
1 − ∑kn

i=1 π2
i

)
, and ρ2

πn =

2kn
∑kn

j=1 π2
j is a sequence of positive numbers tending to a positive constant.

To compare both test procedures we consider the behavior of the power under local
alternatives of the form: Kn : pi : = πi + δi with

∑k
i=1 δi = 0.

Let us denote the power of the test based on the (unsmoothed) frequency estimators by
β1n, and that of the test based on the p̂ni’s by β2n. Then under mild conditions on the
disturbing terms δi in Liero (2001) it is proved that

lim
n→∞

β1n

β2n
≤ 1,

where ”=” holds if nkn

√
bn

∑kn
i=1 δ2

i → 0 or n
√

kn
∑kn

i=1 δ2
i →∞.

That means, roughly speaking, the test based on the quadratic deviation of the local
polynomial estimator is better than the test based on the frequency estimators. Only
in the case that the square of the L2-norm of the disturbing terms, i. e.

∑
i δ

2
i , is very

large, the power of both tests tends to one; and in the case that the bandwidth bn is
very small, i.e. we smooth only ”a little bit”, both tests behave poorly.
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Connection to the goodness-of-fit test using densities. Suppose that the cell
probabilities pi and πi are generated by latent densities f and f0, respectively, which are
defined on [0, 1]:

pi =
∫

Ii

f(x) dx, πi =
∫

Ii

f0(x) dx where Ii = [(i− 1)/kn, i/kn].

Then the test problem (3) corresponds to the simple problem

H : f = f0 against K : f 6= f0. (4)

Furthermore it follows from results proved by Augustyns (1997) that

µπn = (nknbn)−1(κ2 + o(1)) and lim
n→∞σ2

πn = 2
∫

f2
0 (x) dx

∫
(κ∗(z))2 dz.

Thus we have the following correspondence between the test for the cell probabilities
and the modified test for testing (4) (where the weight function a is the indicator of
[0, 1]):
kn Tn = kn

∑kn
i=1 (p̂i − EHp̂i)

2 corresponds to Qn =
∫

(f̂n(t) − EHf̂n(t))2 dt,

knµπn to µfn = (nbn)−1κ2
∫ 1
0 f0(t) dt and the variance term σ2

πn to σ2
fn =

2
∫ 1
0 f2

0 (t) dt
∫

(κ∗(z))2 dz.

Moreover, let us consider the behavior of the power from the viewpoint of the exis-
tence of a latent density. For that purpose we write the local alternative in the form
K′n : fn : = f0 + ∆n. Suppose that

∑kn
i=1 δ2

i ∼ 1
kn

∫ 1
0 ∆2

n(u) du. Then, expressed in
terms of densities, the power of the second test tends to a nontrivial limit, if the square
of the L2-norm of the disturbing function ∆n is asymptotically equivalent to (n

√
bn)−1.

Note, that this is the same rate of convergence as in the problem of testing a density
obtained before.

3.2 Testing independence in sparse contingency tables

We consider a two-dimensional contingency table with kn = ln ·mn cells, where ln →∞
and mn → ∞. The (joint) cell probabilities are denoted by pnij , the marginal cell
probabilities by qni and rnj . To test independence we have to check the hypothesis

H : pnij = qni rnj for all (i, j) against K : pni′j′ 6= qni′ rnj′ for some (i′, j′).(5)

For testing (5) we will use

Mn =
mn∑

i=1

ln∑

j=1

(
p̂nij − q̂ni · r̂nj

)2
,

where p̂nij , q̂ni and r̂nj are the local constant estimators of pnij , qni and rnj . Following
the ideas presented in the previous sections these estimators have the following form (we
skip the n in the subscript if appropriate):

p̂ij =

mn∑

µ=1

ln∑

ν=1

K
(

xµ−xi

bn
,

yν−yj

bn

)
p∗µν

mn∑

µ=1

ln∑

ν=1

K
(

xµ−xi

bn
,

yν−yj

bn

) =
1

mnlnb2
n

mn∑

µ=1

ln∑

ν=1

Lij

(
xµ−xi

bn
,

yν−yj

bn

)
p∗µν ,
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where xµ = (µ− 1
2)/mn and yν = (ν− 1

2)/ln are equidistant design points on the interval
[0, 1]× [0, 1], p∗ij is the relative frequency of cell (i, j) and

Lij(u, v) =
K(u, v)

1
mnlnb2n

∑mn
µ=1

∑ln
ν=1 K

(
xµ−xi

bn
,

yν−yj

bn

) .

Again we take a kernel of product type. Then as estimators of the marginal cell proba-
bilities qi =

∑
j pij and rj =

∑
i pij we obtain straightforward

q̂i =
1

knbn

mn∑

µ=1

L1i

(
xµ−xi

bn

)
q∗µ and r̂j =

1
lnbn

ln∑

ν=1

L2j

(
yν−yj

bn

)
r∗ν

with weight functions

L1i(u) =
K1(u)

1
mnbn

∑mn
µ=1 K1

(
xµ−xi

bn

) and L2j(v) =
K2(v)

1
lnbn

∑ln
ν=1 K2

(
yν−yj

bn

) ,

and marginal frequencies q∗µ and r∗ν .
To formulate the asymptotic normality of Mn under H we make use of the following
notation: pij , qi, and rj , are the expectations of p̂ij , q̂i, and r̂j , respectively. Define

ξpn = (nmnlnb2
n)−1 d1n − (nmnlnbn)−1 d2n

with

d1n = (mnln)−1b2
n

mn∑

i=1

mn∑

µ=1

K2
1i,bn

(xµ − xi)qµ

ln∑

j=1

ln∑

ν=1

K2
2j,bn

(yν − yj) rν

d2n = bn


m−1

n ln

ln∑

j=1

r2
j

mn∑

i=1

mn∑

µ=1

K2
1i,bn

(xµ − xi)qµ

+ l−1
n mn

mn∑

i=1

q2
i

ln∑

j=1

ln∑

ν=1

K2
2j,bn

(yν − yj)rν




and

τ2
pn = 2mnln

mn∑

i=1

ln∑

j=1

q2
i r2

j

∫ ∫
(K ∗K)2(x, y) dxdy.

The basis of our test is the following theorem:

Theorem 3.2 Suppose that the marginal probabilities satisfy for all i, µ, j and ν, and
some constants L1 and L2

|qi − qµ| ≤ L1 m−1
n |xi − xµ| and |rj − rν | ≤ L2 l−1

n |yj − yν |.
Further, the kernel K is of product type (1), and the Kj’s (j = 1, 2) satisfy (K). If the
hypothesis H holds, then

nmnlnbn

τpn
(Mn − ξpn ) D−→ N(0, 1)

as bn → 0, mnlnb2
n →∞ and nb2

n →∞.
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To apply this limit statement for the construction of an asymptotic α-test we have to
replace the unknown terms d1n and d2n in ξpn by suitable estimators. To avoid bias
problems we choose

d̃1n = (mnln)−1b2
n

mn∑

i=1

mn∑

µ=1

K2
1i,bn

(xµ − xi) q∗µ
ln∑

j=1

ln∑

ν=1

K2
2j,bn

(yν − yj) r∗ν ,

which is an unbiased
√

n-consistent estimator of d1n. The second term is estimated by
the consistent estimator

d̃2n = bn


m−1

n ln

ln∑

j=1

r∗j
2

mn∑

i=1

mn∑

µ=1

K2
1i,bn

(xµ − xi)q∗µ

+ l−1
n mn

mn∑

i=1

q∗i
2

ln∑

j=1

ln∑

ν=1

K2
2j,bn

(yν − yj)r∗ν


 ,

and the variance term can be replaced by

τ̃2
pn = 2mnln

mn∑

i=1

ln∑

j=1

q∗i
2 r∗j

2
∫ ∫

(K ∗K)2(x, y) dxdy.

It is easy to verify that under H

b−1
n

(
d̃1n − d1n

)
P−→ 0, d̃2n − d2n

P−→ 0 and τ̃2
pn − τ2

pn
P−→ 0.

Thus, with ξ̃pn = (nmnlnb2
n)−1d̃1n − (nmnlnbn)−1d̃2n an asymptotic α-test is provided

by: Reject H, if Mn ≥ ξ̃pn + zα τ̃pn/(nmnlnbn).

4 Parametric versus nonparametric regression fit

Härdle and Mammen (1993) investigated the problem of testing whether a regression
function has a parametric form. Let us shortly review their results. We have the following
model: The pairs (Xi, Yi), i = 1, . . . , n, are i.i.d. (R × R)-valued random variables
satisfying

Yi = r(Xi) +
√

v(Xi) εi, i = 1, . . . , n, (6)

with the unknown regression function r(·) = E(Y1|X1 = ·) and the conditional variance
v(·) = E

(
(Y1 − r(X1))2|X1 = ·). Conditionally on X1, . . . , Xn the errors εi are inde-

pendent and identically distributed with expectation zero and variance one. The test
problem is:

H : r ∈ {r(·, ϑ) : ϑ ∈ Θ ⊆ Rd} against K : r 6∈ {r(·, ϑ) : ϑ ∈ Θ ⊆ Rd},
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and as test statistic Härdle and Mammen propose the L2-distance

Rn(rϑ̂n
) =

∫
(r̂n(t)−Kn rϑ̂n

(t))2a(t) dt.

Here r̂n is the Nadaraya-Watson kernel estimator with bandwidth bn, and Kn rϑ̂n
denotes

its smoothed version under H, ϑ̂n is a suitable parameter estimator. It is proved that
the properly standardized test statistic is asymptotically normal. The main point of the
paper is to investigate different bootstrap procedures for the approximation of the critical
values of the test. As already pointed out, the convergence of the distribution of an
ISE-type statistic to the normal distribution is very slow (see Remark 3 in Section 2),
therefore quantiles of the normal distribution are not appropriate for testing in practice.
Since this problem arises not only in the context of regression testing it seems to be
useful to think about, whether it is possible to apply similar bootstrap approaches also
in other setups.
Suppose that (X∗

i , Y ∗
i ), i = 1,..., n, is a bootstrap sample, then create R∗n(rϑ̂∗n

) like
Rn(rϑ̂n

) by the squared deviation between the parametric fit rϑ̂∗n
and the nonparamet-

ric fit r̂∗n (both computed from the bootstrap sample). The conditional distribution of
R∗n(rϑ̂∗n

) under the (Xi, Yi) can be approximated by Monte Carlo simulations. From
this Monte Carlo approximation (1 − α) quantile q̂α is defined, and one rejects H if
nb

1/2
n Rn(rϑ̂n

) > q̂α. Härdle and Mammen show that the naive resampling does not
work. The same is true for the so-called adjusted residual bootstrap. As an alternative
they propose the wild bootstrap. The idea is to construct a bootstrap sample (X∗

i , Y ∗
i ),

i = 1,..., n, such that E∗(Y ∗
i |X∗

i ) = rϑ̂n
(X∗

i ), where E∗ denotes the conditional ex-
pectation E(·|(Xi, Yi), i = 1,..., n). In simulation studies Härdle and Mammen consider
parametric models of polynomials of different degree. It turns out that in all cases wild
bootstrap estimates the distribution of nb

1/2
n Rn(rϑn) quite well. The normal approxi-

mation with estimated standardizing terms is totally misleading. The inaccuracy of the
normal approximation increases with the dimension of the parametric model. Moreover,
the authors give Monte Carlo estimates for the power of the test with bootstrapped
quantiles and consider the influence of the bandwidth on the level of the test.

5 Testing homoscedasticity in nonparametric regression

Again, assume model (6). Now, we wish to check whether the model is heteroscedastic,
that is, we wish to test the hypothesis

H : v(t) = v for some v > 0 and all t ∈ [0, 1] against
K : v(t) 6≡ v for all v > 0.

In the paper of Liero (2003a) the following approach is proposed: As test statistic we
take the L2- distance between a nonparametric kernel estimator of v in the underlying
heteroscedastic model (6) and an estimator of the conditional variance in the hypothetical
homoscedastic model

Yi = r(Xi) +
√

v εi, i = 1, . . . , n, (7)
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with v ∈ R+. To avoid bias problems in the limit theorem we modify this difference and
use the following statistic:

Vn =
∫

(v̂n(t) − ηnv(t))
2 a(t) dt

The estimator v̂n has the form

v̂n(t) =
n∑

i=1

n∑

j=1,i 6=j

1
2
(Yi − Yj)2 Wnij(t,X1, . . . , Xn)

with weights

Wnij(t,X1, . . . , Xn) =
K

(
t−Xi

bn

)
K

(
t−Xj

bn

)

∑n
µ=1

∑n
ν=1,ν 6=µ K

(
t−Xµ

bn

)
K

(
t−Xν

bn

) ,

and the term ηnv is defined by

ηnv(t) = v +
n∑

i=1

n∑

j=1,i 6=j

1
2
(r(Xi)− r(Xj))2 Wnij(t,X1, . . . , Xn).

Liero (1999) showed that Vn (properly standardized) is asymptotically normally dis-
tributed. But to apply this limit result for the construction of a test it is necessary to
replace the unknown terms r and v > 0 by suitable estimators. This leads to the problem
of estimating the variance in a homoscedastic regression model (7). For the fixed design
model this problem is investigated by several authors. For the present random design
model three different estimators for v are given by Liero (1999). It turns out that these
estimators are

√
n-consistent under the hypothesis, which is sufficient to use them for

the construction of the desired asymptotic α-test. Furthermore, it seems to be useful to
replace the unknown regression function r in the term ηnv by a Nadaraya-Watson ker-
nel estimator with a suitable bandwidth. The question of an appropriate choice of this
bandwidth is discussed in Liero (2003a). Moreover, power considerations with respect
to different types of local alternatives complete the approach presented there.

6 Testing the hazard function under censoring

6.1 Survival model without covariates

Firstly we consider a survival model without covariates, that is: Let Y1, . . . , Yn be a
sequence of i.i.d. survival times with absolutely continuous distribution function F . As
often occurs in applications the Yi’s are subject to random right censoring, i.e. the
observations are

Ti = min(Yi, Ci) and δi = 1(Yi ≤ Ci)

where C1, . . . , Cn are i.i.d. continuous random censoring times which are independent
of the Y - sequence. The δi indicates whether Yi has been censored or not. The function
of interest is the hazard rate λ which is defined by

λ(t) = lim
s↓0

1
s
P(t ≤ Yi ≤ t + s|Yi ≥ t).
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We wish to test whether λ lies in a parametric class of functions, i.e.

H : λ ∈ L = {λ(·, ϑ) |ϑ ∈ Θ ⊆ Rd} against K : λ 6∈ L.

Since no parametric form of the alternative is assumed we will use a nonparametric esti-
mator of λ for testingH against K. The idea for the construction of such a nonparametric
estimator goes back to the paper of Watson and Leadbetter (1964), who considered the
case without censoring. The censored case was investigated, for example by Lo and Singh
(1986) and by Diehl and Stute (1988). To describe the estimation procedure we intro-
duce the distribution function of the observations Ti and the subdistribution function of
the uncensored observations:

H(t) := P(Ti ≤ t) and HU (t) := P(Ti ≤ t, δi = 1).

Since

1 − H(t) = (1 − G(t)) (1 − F (t)) and HU (t) =
∫ t

0
(1−G(s)) dF (s),

where G is the distribution function of the censoring times Ci, the cumulative hazard
function Λ(t) :=

∫ t
0 λ(s) ds can be written as

Λ(t) =
∫ t

0

dF (s)
1− F (s−)

=
∫ t

0

dHU (s)
1−H(s)

.

Now, for estimating Λ we replace HU and H by their empirical versions, that is by

ĤU
n (t) =

1
n

n∑

i=1

1(Ti ≤ t, δi = 1) and Ĥn(t) =
1
n

n∑

i=1

1(Ti ≤ t). (8)

The resulting estimator

Λ̂n(t) :=
∫ t

0

dĤU
n (s)

1− Ĥn(s−)
=

n∑

i=1

1(T(i) ≤ t) δ[i]

n− i + 1

is the Nelson-Aalen estimator of Λ. Here T(1) ≤ · · · ≤ T(n) are the ordered observations
and δ[i] = δj if Tj = T(i). As estimator of the derivative of Λ we define the kernel
smoothed Nelson-Aalen estimator

λ̂n(t) :=
1
bn

∫
K

(
t− s

bn

)
dΛ̂n(s) =

1
bn

n∑

i=1

K
(

t−T(i)

bn

)
δ[i]

n− i + 1
, (9)

where K is a kernel function and {bn} is a sequence of bandwidths tending to zero at
an appropriate rate. As before we choose as test statistic the L2-distance of λ̂n from the
”smoothed version of the hypothesis”

en(t, λϑ) :=
∫

Kbn(t− s) λ(s, ϑ) ds =
∫

Kbn(t− s) dΛ(s, ϑ),

where Λ(t, ϑ) =
∫ t
0 λ(s, ϑ) ds. Since the parameter ϑ is unknown we have to replace it

by a suitable estimator. We propose to take the maximum likelihood estimator. The
likelihood function is given by

Ln(ϑ, T1, δ1, . . . , Tn, δn) =
n∏

i=1

L(ϑ, Ti, δi)
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with

L(ϑ, Ti, δi)) = (1−G(Ti))
δi (1− F (Ti, ϑ))1−δi f(Ti, ϑ)δi g(Ti)1−δi

= λ(Ti, ϑ)δi exp(−Λ(Ti, ϑ)) (1−G(Ti))
δi g(Ti)1−δi , (10)

where g is the density of the censoring times. Thus, the maximum likelihood estimator
ϑ̂n is a (measurable) maximizer of

ln(ϑ) =
n∑

i=1

(δi log λ(Ti, ϑ) − Λ(Ti, ϑ)) .

The test statistic is given by

Ln :=
∫ (

λ̂n(t) − en(t, λϑ̂n
)
)2

a(t) dt.

To formulate the test procedure we state the following limit theorem, proved in Liero
(2003b). Let TH be the right end point of the distribution H and fix an arbitrary point
T ′ < TH . Further set

µn(λϑ) = (nbn)−1 κ2

∫
λ(t, ϑ)

1−H(t)
a(t) dt,

σ2(λϑ) = 2
∫ (

λ(t, ϑ)
1−H(t)

)2

a2(t) dt

∫
(κ∗(z))2 dz.

Theorem 6.1 Suppose that the kernel satisfies (K), that the weight function a fulfills
(W) and vanishes outside [0, T ′] and that the distribution function H is Lipschitz contin-
uous. Further, let any hazard rate λ ∈ L be bounded, Lipschitz continuous and partially
differentiable w.r.t. ϑ; ∇ϑλ(·, ·) is bounded and uniformly continuous in both arguments.
If bn → 0 and nb2

n →∞, then under H we have for all λ ∈ L

nb1/2
n

(∫ (
λ̂n(t)− en(t, λϑ)

)2
a(t) dt − µn(λϑ)

)
D−→ N(0, σ2(λϑ)). (11)

To conclude from Theorem 6.1 to the asymptotic normality of our test statistic we use
the consistency of the maximum likelihood estimator. For that purpose we formulate
the following regularity conditions:

(i) For all t ∈ [0,∞) and all i, j = 1,..., k the second derivatives ∇i∇jλ(t, ϑ) and
∇i∇jΛ(t, ϑ) exist and are continuous on Θo, the open kernel of Θ.

(ii) For all ϑ ∈ Θo and all i, j = 1, . . . , k

∇i

∫
λ(t, ϑ) dt =

∫
∇iλ(t, ϑ) dt,

∇i∇j

∫
λ(t, ϑ) dt =

∫
∇i∇jλ(t, ϑ) dt.

(iii) For any ϑ ∈ Θo there exist a νϑ-neighborhood U(ϑ, ν) ⊂ Θo of ϑ, and a measurable
function M(·, ·, ϑ) with EM(T1, δ1, ϑ) < ∞ such that

∣∣∇i∇j log L(ϑ′, ·, ·)∣∣ ≤ M(·, ·, ϑ) for all ϑ′ ∈ U(ϑ, ν)

for all i, j = 1, . . . , k
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(iv) The determinant of the Fisher information I(ϑ) = (Iij(ϑ))i,j=1,...,k with

Iij(ϑ) =
∫
∇iλ(t, ϑ)∇jλ(t, ϑ)

(1−H(t, ϑ))
λ(t, ϑ)

dt

is nonzero for all ϑ ∈ Θo.

Under these conditions we have: Suppose that ϑ̂n is consistent under H, then
√

n
(
ϑ̂n − ϑ

) D−→ N(0, I(ϑ)−1)

for any ϑ ∈ Θo. That is, the maximum likelihood estimator ϑ̂n is
√

n-consistent. There-
fore the limit statement (11) remains true for Ln. Furthermore, in the standardizing
terms the unknown distribution function H can be replaced by Ĥn. Thus, finally we
obtain an asymptotic α-test by the rule: Reject H, if Ln ≥ µλn + zα σλn/(nb

1/2
n ) , where

µλn = (nbn)−1 κ2
∫ λ(t,ϑ̂n)

1−Ĥn(t)
a(t) dt and σ2

λn = 2
∫ (

λ(t,ϑ̂n)

1−Ĥn(t)

)2
a2(t) dt

∫
(κ∗(z))2 dz.

6.2 Survival model with fixed covariates

Now, let us extend the previous approach to survival models with covariates. That is,
at fixed design points x1 ≤ x2 · · · ≤ xn we have nonnegative survival times Y1, . . . , Yn.
For simplicity we assume that the support of the covariates xi is the interval [0, 1].
Consequently, from the mathematical point of view, the Yi’s are no longer identically
distributed. We define analogously to section 6.1

Fxi(t) = P(Yi ≤ t), Hxi(t) := P(Ti ≤ t), HU
xi

(t) := P(Ti ≤ t, δi = 1) and

Λxi(t) :=
∫ t

0
λxi(s) ds =

∫ t

0

dHU
xi

(s)
1−Hxi(s)

.

The problem of nonparametric estimation of λ, the survival function 1 − F and the
hazard λ has been studied by several authors. We mention here: Gonzalez-Manteiga and
Cadarso-Suarez (1994) and Van Keilegom and Veraverbeke (1997, 2001, 2002). Roughly
speaking, the main aim of these papers is to approximate the distance between the
function of interest and its nonparametric estimator by a sum of independent random
variables. Based on such an approximation consistency properties are established and
asymptotic normality at fixed points t and x is derived. A modification of a result proved
by Van Keilegom and Veraverbeke (2001) leads to a limit statement for the quadratic
deviation. First, let us define the estimators. The idea is the same as before - Λ is
estimated by a Nelson-Aalen type estimator. But to take into account the covariates we
take instead of the empirical distribution functions (8) weighted empirical distribution
functions:

Ĥxn(t) =
n∑

j=1

wnj(x)1(Tj ≤ t), ĤU
xn(t) =

n∑

j=1

wnj(x)1(Tj ≤ t, δj = 1).

Following Van Keilegom and Veraverbeke (2001) we will use Gasser-Müller type kernel
weights wnj(x). They are defined as

wnj(x) =
1

cn(x)

∫ xj

xj−1

1
an

W

(
x− z

an

)
dz with cn(x) =

∫ xn

0

1
an

W

(
x− z

an

)
dz.
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Here x0 = 0, W is a symmetric kernel function and an is a sequence of bandwidths.
Then a nonparametric estimator of Λx(t) is given by

Λ̂xn(t) :=
∫ t

0

dĤU
xn(s)

1− Ĥxn(s−)
=

n∑

i=1

1(T(i) ≤ t) δ[i] wn[i](x)

1−∑i−1
k=1 wn[k](x)

.

Now, further smoothing with a kernel K and bandwidth bn leads to the estimator of the
hazard function:

λ̂xn(t) =
1
bn

∫
K

(
t− s

bn

)
dΛ̂xn(s)

=
1
bn

n∑

i=1

K

(
t− T(i)

bn

)
δ[i]

wn[i](x)

1−∑i−1
k=1 wn[k](x)

.

Note that if we take the weights all equal to n−1 then the estimator becomes the estimator
defined in (9) for the case without covariates. Now, consider the problem of testing the
simple hypothesis

H : λx(t) = λo
x(t) for all t, x against K : λx′(t′) 6= λo

x′(t
′) for some t′, x′

As test statistic we propose the following quadratic deviation:

Wn =
1
n

n∑

i=1

∫ (
λ̂xin(t) − en(t, λo

xi
)
)2

a(t) dt,

where

en(t, λo
xi

) =
∫

Kbn(t− s) λo
xi

(s) ds.

To formulate the limit theorem for this functional we introduce the following quantities.

ζn(λ) = (n2anbn)−1κ2ω2
n∑

i=1

∫
λxi(t)

1−Hxi(t)
a(t) dt, (12)

ρ2
n(λ) = 2n−1

n∑

i=1

∫ (
λxi(t)

1−Hxi(t)

)2

a2(t) dt

∫
(κ∗(z))2 dz

∫
(ω∗(z))2 dz,

where ω∗ denotes the convolution of the kernel W . For the design points set sn =
min1≤i≤n(xi−xi−1) and sn = max1≤i≤n(xi−xi−1). Further define rn = (nanbn)−1 log n+
(b1/2

n + a2
nb−1

n )(nan)−1/2(log n)1/2 + a4
nb−1

n .
The following assumptions are used:
(i) xn → 1, sn = O(n−1), sn − sn = o(n−1)
(ii) The derivatives ∂2H

∂x2 , ∂2H
∂t2

, ∂2H
∂x∂t and ∂3H

∂x2∂t
exist and are continuous in the interval

[0, 1]× [0, T ′].
(iii) The derivatives ∂2HU

∂x2 , ∂2HU

∂t2
and ∂2HU

∂x∂t exist and are continuous in the interval
[0, 1]× [0, T ′].
With these assumptions we can state the following theorem:
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Theorem 6.2 Suppose that the kernels K and W satisfy (K). If assumptions (i)-(iii)
and (W) are fulfilled and r2

nn(anbn)1/2 → 0, rn(anbn)−1/2 → 0, then under H

n(anbn)1/2

ρn(λo)
(Wn − ζn(λo)) D−→ N(0, 1).

The only unknown function in the standardizing terms is Hx. We replace Hx by its con-
sistent estimator Ĥxn. If ((nan)−1/2(log n)1/2 + a2

n)(anbn)−1/2 → 0, then the estimation
error tends to zero fast enough such that the limit statement remains valid with the
estimated distribution function. So, finally we get the rule:
RejectH, if Wn ≥ ζ̃n(λo) + zα ρ̃n(λo)/(n(anbn)1/2) . Here ζ̃n(λo) and ρ̃n(λo) are defined
as in (12), where Hx is replaced by Ĥxn.

Some remarks. 1.) The investigation of the power of this test requires more technical
effort than that carried out in Section 2, but roughly speaking it leads to the same
conclusion. Namely that the power tends to a nontrivial limit, if the squared L2-norm
of the disturbing function tends to a nonnegative constant with a rate n(anbn)1/2.
2.) It seems to be not very difficult to extend the presented approach to the problem
of testing, whether the unknown hazard rate λx lies in a parametric class. A more
complicated problem is to test a semiparametric hypothesis. For example, suppose that
the hypothetical class of hazard functions is the class of proportional hazard functions
with unknown baseline hazard function α(·) and a parametric function describing the
influence of the covariates. For the construction of the test statistic one has to estimate
both functions. Using the partial likelihood method one obtains a suitable estimator for
the parametric part. To estimate the baseline function it seems to be useful to apply
an approach via the Breslow estimator for the cumulative baseline hazard. But for this
estimator rates of convergence are not derived. That means, it is not clear whether the
estimation error tends to zero fast enough such that the limit theorem remains valid
with the estimated hypothetical hazard function.
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