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Assessing Multi-Temporal
Snow-Volume Trends in High
Mountain Asia From 1987 to 2016
Using High-Resolution Passive
Microwave Data
Taylor Smith* and Bodo Bookhagen

Institute of Geosciences, Universität Potsdam, Potsdam, Germany

High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and
glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km ×
25 km) passive microwave assessments of trends in the volume and timing of snowfall,
snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities
in the response of snow to changes in regional climate. Here we use recently developed,
continuous, internally consistent, and high-resolution passive microwave data (3.125 km ×
3.125 km, 1987–2016) from the special sensor microwave imager instrument family to
refine and extend previous estimates of changes in the snow regime of HMA. We find an
overall decline in snow volume across HMA; however, there exist spatially contiguous
regions of increasing snow volume—particularly during the winter season in the Pamir,
Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume
trends through time reveal a large step change from negative trends during the period
1987–1997, to much more positive trends across large regions of HMA during the periods
1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-
water volume exhibit steeper trends than changes in low percentile snow-water volume,
which suggests a reduction in the frequency of high snow-water volumes in much of HMA.
Regions with positive snow-water storage trends generally correspond to regions of
positive glacier mass balances.

Keywords: snow, glacier, climate change, passive microwave, special sensor microwave imager, special sensor
microwave imager/sounder

1. INTRODUCTION

Rivers draining from High Mountain Asia (HMA) are relied upon by more than a billion people for
agriculture, hydropower, and household use (Immerzeel et al., 2010; Bolch et al., 2012; Vaughan
et al., 2013). In much of HMA, snow and glacier meltwaters provide key seasonal water buffers that
help maintain water availability year-round (Barnett et al., 2005; Bookhagen and Burbank, 2010;
Immerzeel et al., 2010; Berghuijs et al., 2014; Lutz et al., 2014; Huss et al., 2017). A large body of
research has identified significant changes in HMA’s cryosphere in recent decades, and in particular,
the retreat of many regional glaciers (e.g., Hewitt, 2005; Déry and Brown, 2007; Scherler et al., 2011;
Bolch et al., 2012; Gardelle et al., 2012; Kääb et al., 2012; Sorg et al., 2012; Kapnick et al., 2014; Wulf
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et al., 2016; Sakai and Fujita, 2017; Smith et al., 2017; Smith and
Bookhagen, 2018; Lievens et al., 2019; Rounce et al., 2019;
Treichler et al., 2019; Shean et al., 2020); however, there exist
large spatial heterogeneities in glacier trends (Hewitt, 2005;
Gardelle et al., 2012; Kääb et al., 2012; Yao et al., 2012; Sakai
and Fujita, 2017; Treichler et al., 2019). Previous work has also
identified spatial and seasonal patterns in snow depth and the
timing of snowmelt in HMA, which are mostly coherent with
changes in glacier mass balances (Smith et al., 2017; Smith and
Bookhagen, 2018; Wang et al., 2018; Treichler et al., 2019;
Notarnicola, 2020; Shean et al., 2020). In-depth analyses of
changes in HMA’s cryosphere are often limited by lack of in-
situ data and rugged terrain which hinders high-resolution data
collection (Bookhagen and Burbank, 2010); estimates of climate
trends from in-situ, satellite, and modeled data often result in
heterogeneous and complex spatial patterns (Smith and
Bookhagen, 2018).

Passive microwave data have long provided the best global
dataset for studying snow depth and snow-water storage (Chang
et al., 1982). However, they are limited by spatial resolution—data
are typically available as 0.25° × 0.25° (∼25 km × 25 km) grid cells
which hinders many analyses. Recently, the National Snow and
Ice Data Center has re-gridded and re-processed the special

sensor microwave imager (SSMI, 1987–2009) and special
sensor microwave imager/sounder (SSMI/S, 2003–2016) to a
3.125 km × 3.125 km (∼10 km2) spatial resolution (Brodzik
et al., 2016). In this study, we leverage this high-resolution,
cross-calibrated, multi-satellite dataset to consider 1.02 million
passive microwave grid cells over 29 complete October-
September water years across HMA (25–45°N, 60–110°E,
1987–2016; Figure 1). The enhanced resolution of this
dataset allows us to more closely examine spatio-temporal
trends in snow-water storage which have previously been
shown to have strong impacts on climate and glacier dynamics
in the region (Zhao and Moore, 2004; Fujita and Nuimura, 2011;
Kapnick et al., 2014; Smith and Bookhagen, 2018).

2. DATA AND METHODS

2.1. Study Area and Data Sources
Our study covers the region from 25 to 45°N and from 65 to
105°E, running across some of themost densely populated regions
of the world. Several key watersheds, such as the Indus, Syr Darya,
Amu Darya, Yangtze, Salween, and Ganges/Brahmaputra drain
from HMA (Figure 1A, blue outlines).

FIGURE 1 | Study area (A) topography (B) average annual Tropical Rainfall Measurement Mission precipitation sum [0.25°, 1998–2018 (Huffman et al., 2007)], (C)
average December-January-February (DJF) snow-covered area percentage from MODIS MOD10A [500 m, 2000–2019 (Hall and Riggs, 2016)], and (D) average DJF
snow-water equivalent (SWE) volume from 3.125 km resolution special sensor microwave imager and special sensor microwave imager/sounder (1987–2016). Deep
snow is generally confined to high-elevation regions. Blue outlines on (A) show major watersheds from HydroBASINS (Lehner and Grill, 2013), black lines show
international borders. Labeled boxes indicate sub-areas shown in Figures 4 and 8.
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Precipitation in HMA is driven by three main weather
systems—the Indian Summer Monsoon, the East Asian
Summer Monsoon, and the Winter Westerly Disturbances
(Bookhagen and Burbank, 2010; Cannon et al., 2016b). These
major weather systems interact to bring a heterogeneous mix of
snow and rain to different regions of HMA. Recent changes in the
timing and intensity of precipitation from these major weather
systems have been observed (e.g., Kitoh et al., 2013; Menon et al.,
2013; Vaughan et al., 2013; Cannon et al., 2015; Singh et al., 2014;
Cannon et al., 2016b; Malik et al., 2016; Norris et al., 2020), and
have been shown to impact the timing and volume of snow-water
storage and snowmelt (Kapnick et al., 2014; Smith et al., 2017;
Smith and Bookhagen, 2018).

2.2. Satellite Data Preparation
Snow has been extensively studied with passive microwave
data—albeit at low spatial resolutions (e.g., 0.25° × 0.25°)
(Chang et al., 1987; Kelly et al., 2003; Smith and Bookhagen,

2016; Smith and Bookhagen, 2018). Recent image processing
advances have allowed researchers to take advantage of the
elliptical nature of passive microwave footprints to re-process
the data onto a much finer spatial grid than previous approaches
had allowed. In this study, we use the EASE-grid 2.0 high-
resolution passive microwave product (1987–2016) (Early and
Long, 2001; Brodzik et al., 2012; Brodzik et al., 2016; Long and
Brodzik, 2016), which provides the 19 and 37 GHz passive
microwave frequencies at spatial resolutions of 6.25 and
3.125 km, respectively. This dataset has been carefully cross-
calibrated between the various SSMI and SSMI/S satellite
platforms to provide consistent and homogenized data
through the entire time series (Brodzik et al., 2016).

To produce consistent snow-water equivalent (SWE)
estimates over the entire study region, we further re-grid the
19 GHz passive microwave data to a 3.125 km spatial resolution.
We then remove areas near lakes and areas with shallow or
infrequent snow-cover, as these areas are not suitable for long-

FIGURE 2 | Sample location (approx. 72.06°E, 38.64°N) illustrating the (A) snow-water equivalent (SWE) time series, (B) seasonal signal to be removed, and (C) the
long-term de-seasoned data. Dashed lines on (C) show fitted lines using Sen’s slope estimator over the whole dataset (green), the first decade (black), the second
decade (purple), and the third decade (blue). There are strong oscillations in the fitted SWE trend based on the start and end dates chosen.
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term SWE trend analysis. Finally, following the methodology of
Smith and Bookhagen (2018), we use the computationally
efficient algorithm proposed by Chang et al. (1987) to convert
the passive microwave data to snow depth:

SD � 1.59 × (Tb19V − Tb36V) (1)

We then convert those snow depth estimates to SWE using a
constant snow density of 0.24 g/cm3, which has been shown to be
a reasonable global average (Sturm et al., 2010; Takala et al.,
2011). In short, the Chang et al. (1987) algorithm uses the
difference between the 19 and 37 GHz passive microwave
channels to estimate snow depth based on a comparison with
extensive snow survey data collected throughout the Canadian
and Russian Arctic (Chang et al., 1982; Chang et al., 1987). This
algorithm is widely used to estimate SWE over diverse terrain,
and has served as the basis for further updates to passive
microwave SWE retrieval algorithms which take advantage of
additional passive microwave channels not carried on SSMI/S to
better constrain the impacts of vegetation cover on SWE
estimates (Chang et al., 1991; Chang et al., 1996; Foster et al.,
2005; Derksen, 2008; Kelly, 2009; Langlois et al., 2011; Smith and
Bookhagen, 2016). In our low-vegetation study area, we rely on
the Chang et al. (1987) algorithm to take advantage of the full
SSMI/S time series.

2.3. Trend Analysis
For parts of the passive microwave time series, there are multiple
overlapping satellite overpasses. For consistency, we aggregate all
night-time overpasses (October 1987–September 2016) into an
average daily SWE estimate over HMA (number of grid cells �
1,027,847) using the median of all available night-time
measurements per day. As the various SSMI satellite platforms
have been carefully cross-calibrated (Brodzik et al., 2016), this step

serves simply to homogenize the temporal sampling of the dataset
over the entire time period. For computational efficiency, we then
further resample each individual daily SWE time series to a
temporal frequency of three days before computing trends; in
our tests this does not significantly modify computed long-term
trends.

Before trend analysis, we first remove the seasonal component
of each individual time series via Seasonal Trend Decomposition
by Loess (Cleveland et al., 1990), using a decomposition window
of 365 days (Figure 2). This method yields a seasonal signal, long-
term signal, and residual short-term signal from a given time
series by removing oscillations at the chosen decomposition time
frequency. We then test the resulting de-seasoned time series for
significant increasing or decreasing trends using the Mann-
Kendall test (Mann, 1945; Kendall, 1948). If there exists a
significant trend, we use Sen’s slope method to capture the
overall trend at that grid cell (Sen, 1968). We thus use a
conservative approach by testing for significance both with the
Mann-Kendall test and via Sen’s slope method. We only present
results from statistically significant (p < 0.05) trends in this study.

3. RESULTS

3.1. Long-Term Snow-Water Equivalent
Trends
Aggregate trends over the entirety of HMA are slightly negative
(sum: −55.5 mm/yr, average: −0.01%) over 3,618 km2× 103 km2,
including only trends with p < 0.05 and areas at least 500 m above
sea level). While the aggregate trends appear to be small, we
emphasize that trends are measured over 9.75 km2 grid cells, and
represent a snow-water storage loss of 5.41 m3 × 105 m3 of water
per year (Figure 3).

FIGURE 3 | Annual snow-water equivalent (SWE) trends (1987–2016) for High Mountain Asia (HMA). There is no spatially coherent SWE trend throughout HMA,
but rather several 100 km2 × 100 km2 or larger regions with similar characteristics (Fujita and Nuimura, 2011; Smith and Bookhagen, 2018; Wang et al., 2018). Large-
scale negative SWE trends are observed in the Tien Shan and Pamir Mountains in western HMA, and at the eastern margin of the Tibetan plateau. The Kunlun Shan,
Karakoram, and western Himalaya are characterized by positive SWEs trends.
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It is clear that SWE trends are spatially diverse—positive SWE
trends are concentrated in the Karakoram, Pamir, Kunlun Shan,
and the high Himalaya (Figures 3 and 4A–D). The most negative
trends are concentrated in the south-eastern Tibetan Plateau
(Figures 4E,F), at the headwaters of the Yangtze, Salween, and

Mekong rivers. There also exist many small-scale features; for
example, there are clear alternating positive-negative SWE trend
patterns along the front of the Himalaya. While there are multiple
possible causes for such small-scale variability, the extreme
topography and the microclimates it creates can drastically

FIGURE 4 | Regional zoom maps (see Figure 1 for locations). Average December-January-February (DJF) snow-water equivalent (SWE) (left column) and annual
SWE trends (1987–2016, right column) for the (A,B) Karakoram-Pamir, (C,D) Kunlun Shan, and (E,F) Eastern Tibetan regions. Regional SWE trends show clear
differences in magnitudes and directions: high SWE areas in the (A) Karakoram and Pamir Mountains have a wide range of trends, but overall more negative trends in
high SWE areas. The (B) Kunlun Shan has lower average SWE, but stronger positive trends. (E) Eastern Tibet has high SWE with overall strongly negative SWE
trends.
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alter snow-loading and snow-water storage on nearby
slopes—particularly when there are large differences in the sun
exposure and overall aspect of neighboring slopes (Supplemental
Figures S1–S5).

3.2. Seasonal Snow-Water Equivalent
Trends
When the SWE data are further divided into seasonal
components, clear differences in trend direction and
magnitude appear (Figure 5). Strong positive winter
(December-January-February) trends are visible in most of the
highest peaks of HMA—running along the Himalaya, into the
Pamir-Karakoram-Kunlun Shan region, as well as through
the Tien Shan. These positive trends are visible through the
spring (March-April-May) and fall (September-October-
November) seasons as well; the only region, however, to
maintain positive trends through the full year and in each
seasonal slice is the Karakoram-Kunlun Shan region, which
has been noted for glacier stability and growth in recent years
(Hewitt, 2005; Kääb et al., 2012; Kapnick et al., 2014; Treichler
et al., 2019; Shean et al., 2020). These positive trends are offset by
large negative SWE trends in lower-elevation regions of HMA
and along the eastern edge of the Tibetan Plateau which has seen

rapidly decreasing SWE—particularly in the December-January-
February and September-October-November periods (Figure 5).

3.3. Magnitude Variations in Snow-Water
Equivalent Trends
To further explore the dynamics of SWE trends in HMA, we have
performed a second set of regressions using monthly SWE
percentiles (Figure 6). In short, we calculate the 10th, 25th,
50th, 75th, and 90th percentile SWE value at each pixel over
each month using daily-averaged SWE data (October
1987–September 2016), remove the long-term monthly mean
value for each given month to reduce the impacts of seasonality,
and perform regressions through each SWE percentile separately.
This yields a set of SWE trend results based on only the lowest
(e.g., 10th percentile) or highest (e.g., 90th percentile) SWE value
for each month.

When the SWE trend magnitudes at each percentile are
compared, differences between high- and low-percentile trends
are apparent (Figure 6). In almost all cases, the trends in high-
percentile SWE are steeper than those in low-percentile SWE. In
positive SWE-trend regions, this indicates that high SWE amounts
are becoming relatively more frequent. For example, along the
border of India and Pakistan, positive SWE-trend regions (see

FIGURE 5 | Seasonal components of snow-water equivalent (SWE) trend (1987–2016). (A) December-January-February (DJF), (B) March-April-May (MAM), (C)
June-July-August (JJA), and (D) September-October-November (SON) trends all have distinct spatial patterns. Note that the magnitude scaling of the seasonal trends is
three times as large as that of the annual trends (see Figure 3). The Karakoram-Kunlun Shan is the only region to maintain large-scale positive SWE trends in the summer
months.
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Figure 3) have a more than six-fold higher trends in 90th
percentile monthly SWE than in 10th percentile SWE,
indicating a drastic increase in monthly high-SWE day
frequency or magnitude. This could be due to the increased
strength of the Winter Westerlies, which has been previously
reported (Cannon et al., 2016b). In contrast, positive SWE-trend
areas in the Pamir have higher 10th percentile magnitudes than
90th, indicating a that positive SWE trends are driven by increases
in low-magnitude SWE rather than in high-magnitude SWE.

In the majority of HMA, however, SWE trends are negative
(Figure 3). Thus, the high 90th/10th (75th/25th) percentile trend
ratios indicate that declines in SWE have been steeper in the
higher end of the monthly SWE distribution, and that high-SWE
values are becoming less common overall. This agrees well with
previous research, which points to overall increasing
temperatures in HMA, particularly on the Tibetan Plateau
(e.g., Wang et al., 2018).

4. DISCUSSION

4.1. Comparison With Previous Work
Previous work by Smith and Bookhagen (2018) used data at
0.25° × 0.25° spatial resolution from only the SSMI-series of

satellites (1987–2009) to establish trends in SWE over HMA.
The higher spatial resolution data used in this study yields only
slight differences in SWE trend when the same period (e.g.,
1987–2009) is considered. However, there are clear differences
in the trends presented by Smith and Bookhagen (2018) and
those shown in Figure 3, which are due to the difference in
analysis time window. To test the sensitivity of SWE trends to
the analysis window, we first break our dataset into three
decade-long slices, as seen in Figure 7.

It is clear that SWE trends are highly variable in time. The
long-term reversal from negative to positive SWE trends seen in
Figure 7, however, is supported by analysis of other related
climate variables. Previous work has noted changes in regional
precipitation and temperature patterns (e.g., Archer and Fowler,
2004; Yao et al., 2012; Palazzi et al., 2013; Lutz et al., 2014;
Cannon et al., 2016a, Cannon et al., 2016b; Zhang et al., 2017;
Wang et al., 2018; Treichler et al., 2019; Norris et al., 2020) and
increases in high-elevation snowcover (Kapnick et al., 2014; Tahir
et al., 2015) in recent years. Furthermore, Treichler et al. (2019)
showed that increasing lake levels on the Tibetan Plateau are
strongly correlated with regions of increased precipitation;
modeled precipitation data suggest stepwise increases in mean
annual precipitation on the Tibetan Plateau between the
∼1980s–1990s and 2000s–onwards (e.g., Kääb et al., 2018).

FIGURE 6 | Ratios of trends in (A,B) 90th/10th percentile snow-water equivalent (SWE) and (C,D) 75th/25th percentile SWE. Panels (B,D) show zoom in box over
the Karakoram, with 100 mm average December-January-February SWE contour line in thick black. Positive (e.g., blue to green) values indicate that the trend in 90th
(75th) percentile SWE values is larger than the trend in 10th (25th) percentile SWE values, and that both trends have the same direction. Orange and red areas have higher
10th (25th) percentile trends than 90th (75th). Black areas indicate a reversal of trend between the 90th/10th (75th/25th) percentiles. The vast majority of High
Mountain Asia—in both positive and negative SWE trend areas (see Figure 3)—has steeper trends in high-percentile SWE than in low-percentile SWE.
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Recent analysis also indicates that the timing of the snowmelt
season has changed over the past decades (Smith et al., 2017).
While the long-term trends (1987–2016) were found to be
generally negative (e.g., earlier and more rapid snowmelt),
recent trends (e.g., 2004–2016) were found to be much more
positive (later and slower onset of snowmelt) (Smith et al., 2017).
It is therefore possible that there has been a reversal of the long-
term losses in SWE storage in HMA; however, it is not clear if this
is a temporary or long-term shift in the snow dynamics of HMA.

4.2. Sliding Window and Spatio-Temporal
Trend Analysis
The timing and magnitude of SWE trend variability can be
further explored by performing the same trend analysis on a
set of time windows and start dates. We use time windows of 5,
10, 15, 20, 25, and 29 years, along with each possible combination
of start years (e.g., 1987–2011) to examine changes in SWE trends
through time (Figure 8).

Long-term (>25 years) SWE trends are generally negative;
these trends also correspond to a particularly negative period
of short-term trends starting in the late 1980s (Figure 8). More
recent trends (e.g., 15–20 years) are generally positive starting in
the early 1990s. One possible explanation for this phenomena is
the previously proposed large-scale changes in regional
precipitation over the past decades (e.g., Kääb et al., 2018).
However, the impacts of changes in temperature cannot be
ruled out—increasing regional temperatures can have highly
variable positive and negative impacts on snow-water storage,
for example, by enhancing atmospheric water content, snow
density, and snowmelt rates.

There also exist strong regional variations in windowed trends
(Figures 8B–D), driven by differences in climatic conditions,
major weather systems, snow accumulation and ablation regimes,
and dust and aerosol melt forcing between regions (Fujita, 2008;
Kaspari et al., 2014; Sarangi et al., 2019). Generally positive SWE
trends in the Kunlun Shan region are contrasted by mixed trends
in the Karakoram, and majority negative trends in Eastern Tibet
(Figures 3 and 4).

4.3. Relationship to Regional Glacier
Changes
Many recent studies have investigated changes in HMA’s glaciers
using a range of satellite (Bolch et al., 2012; Kääb et al., 2012;
Loomis et al., 2019; Treichler et al., 2019; Shean et al., 2020) and
modeling (Kapnick et al., 2014; Rounce et al., 2019) approaches to
derive spatial patterns in glacier gains and losses. Using the
Randolph Glacier Inventory (Arendt et al., 2015), we can
measure the areal extent of glaciers within each passive
microwave pixel, and—where glaciers are large enough—derive
SWE trends over only glaciated areas, defined here as areas with at
least 10% glacier coverage (Figure 9).

In general, SWE trends over glaciated terrain are negative,
outside of parts of the Tien Shan, Karakoram, and Kunlun Shan.
Areas with positive SWE trends agree well with regions of positive
glacier mass balance, as presented by Shean et al. (2020) and
Treichler et al. (2019).While there are many factors that influence
glacier dynamics, it is likely that changes in snowfall are one of the
key drivers of glacier mass gain and loss over HMA (Fujita, 2008;
Fujita and Nuimura, 2011; Kapnick et al., 2014).

4.4. Data Caveats
It is important to mention caveats to the trend analysis presented
in this study. The largest caveat is that passive microwave SWE
estimates are often uncertain—especially over large and complex
regions such as HMA (Kelly, 2009; Takala et al., 2011; Smith and
Bookhagen, 2016). We also cannot rule out the impacts of both

FIGURE 7 | Annual snow-water equivalent (SWE) trends from (A)
1987–1997, (B) 1997–2007, and (C) 2006–2016. There are stark differences
in the spatial distribution of SWE trends depending on the decade chosen. In
particular, the trends in the early part of the time series (1987–1997) are
significantly more negative than SWE trends over the past two decades. Note
that the magnitude scaling of the decadal trends is three times as large as that
of the long-term annual trends (1987–2016, see Figure 3).
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FIGURE 8 | Impact of window length on measured annual snow-water equivalent (SWE) trends. Trends calculated over (A) the entire study area, (B) the Pamir-
Karakoram, (C)Kunlun Shan, and (D) Eastern Tibetan regions (seeFigures 1 and 4). Each dot represents averaged trends over a single window size (5–29 years) and start year
(1987–2011) combination. Only statistically significant trends (p < 0.05) are included in this analysis. Larger dots indicate positive or negative trends larger than 1 × 10−2 mm/yr,
very small dots indicate trends below 0.5 × 10−2 mm/yr. SWE trend direction is highly variable over short (e.g., 5 years) time spans, but growsmore stable over longer time
frames. Trends starting in the 1980s are generally more negative; there is a distinct change in the early 1990s where SWE trends become generally positive.

FIGURE 9 | Snow-water equivalent (SWE) trends and glacier areas aggregated into 50 km × 50 km boxes. Positive (negative) trends are symbolized as circles
(squares), and sized logarithmically by total glacier area within each 50 km × 50 km aggregation window, from 1 to 1,500 km2. Blue outlines show major watersheds
(Lehner and Grill, 2013). There are clear positive SWE trends over the heavily glaciated Karakoram-Kunlun Shan region, which are contrasted by negative SWE trends
throughout much of the rest of High Mountain Asia.
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natural seasonality and regional temperature changes on snow
densities, which could also modify passive microwave SWE
estimates over the course of our time series, and thus are part
of the trends that we present as changes in SWE in this study
(Judson and Doesken, 2000; Chen et al., 2011; Dai et al., 2012).
The impact of seasonal oscillations in snow density is somewhat
mitigated by removing the seasonal cycle from our data before
trend fitting, as some of the seasonality in SWE estimates will be
driven by changes in snow density. However, without a more in-
depth understanding of snow-density evolution in HMA, we
cannot fully constrain this part of our analysis.

Passive microwave signal saturation could bias the presented
SWE trends in deep-snow areas, as previous work has suggested
that passive microwave SWE estimates saturate around 200 mm
of SWE (Takala et al., 2011; Vander Jagt et al., 2013; Dozier et al.,
2016). In examining our dataset, we find that the vast majority of
HMA is not severely impacted by passive microwave signal
saturation (Figure 10); however, it is likely that passive
microwave signal saturation still biases some of our trend
results. In our percentile regressions, we find that SWE trends
generally maintain a consistent direction between high- and low-
percentiles, indicating that saturation biases don’t drastically
influence SWE trend direction (Figure 6).

The third caveat is that trends are somewhat biased by the first
and last values of the time series—this could also play a role in the
trend reversals seen between previous studies of SWE trends in
HMA (e.g., Smith and Bookhagen, 2018; Wang et al., 2018) and
this study (Figures 3 and 7). We attempt to minimize this effect
by using Sen’s slope estimator, which is less sensitive to the first
and last values of the time series (Sen, 1968). We further attempt
to mitigate the impact of the time window over which the trend is
calculated by using multiple overlapping time windows and
window lengths (Figure 8). Finally, we compare our results to
a percentile-regression approach and find that while the
magnitudes of the trends vary between percentiles and
between the de-seasoned trend and percentile approaches, the
trend directions found are consistent. However, snowfall can have
high inter-annual variability, and we do not preclude the

possibility that variations in the timing of large snowfall events
between years, or shifts in the timing of snowfall and snowmelt
(Smith et al., 2017) could impact estimated annual and seasonal
SWE trends.

Lastly, it is important to emphasize that the trends presented
here are relative to the SWE time series as estimated, and are not
calibrated by in-situ measurements. While the SWE algorithms
used here have been extensively validated throughout the world
and have been shown to be generally reliable in low-vegetation
areas (Chang et al., 1982; Chang et al., 1987; Chang et al., 1991;
Chang et al., 1996; Armstrong and Brodzik, 2002; Foster et al.,
2005; Derksen, 2008; Kelly, 2009; Langlois et al., 2011; Dai et al.,
2015; Smith and Bookhagen, 2016), the complex topography and
inaccessibility of HMA poses unique challenges for in-situ data
collection. Unfortunately, calibration data of sufficient spatial and
temporal resolution to properly assess our SWE estimates and
trend results is not currently available in our study region. Future
work could consider other approaches to constraining the
estimated SWE trends, for example, by using watershed-level
snowmelt runoff measurements across HMA.

5. CONCLUSIONS

The increased fidelity and spatio-temporal resolution of newly re-
processed passive microwave data allows for important updates
to analyses of trends in snow-water storage over HMA. While
overall trends are negative, there exist large spatial and seasonal
heterogeneities in snow-water storage trends. High variability in
year-to-year snowfall means that trends are strongly influenced
by the start and end years of any trend analysis. By using multiple
overlapping time windows, we show that while long-term snow-
water storage trends are majority negative, recent (e.g., past
20 years) trends are more positive. Furthermore, by using a
percentile regression approach, we show that trends in high-
percentile monthly SWE are generally steeper than those in low-
percentile, indicating that there have been spatially diverse
changes in the magnitude distributions of SWE across HMA.

FIGURE 10 | Percentage of days with snow-water equivalent (SWE) above (A) 150 mm and (B) 200 mm (1987–2016). While some areas—particularly in the Tien
Shan—are impacted by SWE signal saturation, the majority of the study area should not see large signal saturation effects. Many regions where there are saturation
effects also do not yield statistically significant SWE trends, and are thus not considered in our discussion of SWE trends (see Figure 3).
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Snow-water storage trends over glaciated regions generally
align with previous estimates of glacier mass balance—those
glaciers that are growing are highly correlated with regions of
positive snow-water storage trends. However, snow-water storage
trends are distinct between regions and watersheds, and can vary
greatly over small distances. As the combined meltwaters from
both snow and glaciers are essential to year-round water
provision in the densely populated regions surrounding HMA,
any changes in water storage must be considered in local and
regional water planning. The high resolution and long time series
data presented here allows for new and improved estimates of
changes in snow-water storage that can be used to inform
regional and local analyses of future water availability and
watershed-level management plans.
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