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Abstract: Gait analysis is an important tool for the early detection of neurological diseases and for
the assessment of risk of falling in elderly people. The availability of low-cost camera hardware
on the market today and recent advances in Machine Learning enable a wide range of clinical and
health-related applications, such as patient monitoring or exercise recognition at home. In this
study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect
camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a
gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model.
Five young and healthy subjects walked on a treadmill at three different velocities while data were
recorded simultaneously with all three camera systems. An easy-to-administer camera calibration
method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and
the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect
cameras and the reference system was evaluated. In addition, we compared the accuracy of certain
spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated
from the Kinect data, with the gold standard system. Our results showed that the improved hardware
and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy
of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were
found between the temporal parameters. Furthermore, we explain in detail how this experimental
setup could be used to continuously monitor the progress during gait rehabilitation in older people.

Keywords: motion capture; evaluation; human motion; RGB-D cameras; digital health

1. Introduction

Human gait is an important indicator related to different markers of health (e.g., age-related
diseases or early mortality). More specifically, gait speed has been denoted as the sixth vital sense
because it is associated with daily function, late-life mobility, independence, falls, fear of falls, fractures,
mental health, cognitive function, adverse clinical events, hospitalization, institutionalization, and
survival [1]. Accordingly, gait analysis is indispensable for the description of underlying gait patterns,
especially in patients with neurological diseases such as Parkinson’s disease [2]. Spatio-temporal
parameters help to describe the gait pattern of patients quantitatively and objectively. For instance,
reduced step length, prolonged double-stance phases, increased step width can often be found
in Parkinsonian patients [3]. An established gold standard for gait analysis are multi-camera
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motion capturing systems that track retro-reflective markers. Based on the marker positions in
the individual camera images, their 3D positions can be reconstructed using triangulation. In general,
motion capturing systems, such as the well-known Vicon system (Vicon Motion Systems, Oxford, UK),
offer high accuracy [4]. However, these camera systems are expensive and require a large setup in
specialized gait analysis laboratories as well as a time-consuming marker placement on the participants.
In order to be able to take measurements outside the laboratory, the Microsoft Kinect sensor has been
identified as a portable and cost-effective device for gait assessment [5].

The Kinect v1, launched by Microsoft in 2010, has an integrated RGB and an infrared (IR) camera,
capable of tracking users in 3D. This sensor was designed as a gaming controller for the Xbox,
allowing users to interact with games without the use of a controller device. For depth estimation,
the Kinect v1 uses the principle of structured light, in which an IR projector sequentially illuminates the
scene with a known and fixed dot pattern. By observing the dot pattern with an IR camera, the depth
information can be estimated using triangulation techniques, where the baseline between camera
and projector is known [6]. The Artificial Intelligence (AI)-based skeleton tracking uses randomized
decision forests trained on a large data set of labeled depth images [7].

The Kinect v2 was launched in 2014, with improved hardware and skeleton tracking. The depth
estimation method has changed to the time-of-flight (ToF) principle, in which the distance to an object
is determined by the time it takes for the emitted light to reach the object and return to the sensor [8].
The Kinect for Windows SDK 2.0 allows for tracking the 3D positions and orientations of 25 joints of
six users simultaneously [9]. However, Microsoft has stopped the production of the Kinect v2 [10].

In 2019, Microsoft launched the Azure Kinect DK (Developer Kit). It can easily be integrated with
Azure Cognitive Services, a library of various AI applications, such as speech and image analysis [11].
In a 2019 review, Clark et al. [12] were not able to determine whether the Azure Kinect could be used
as a standalone device or only as part of a web platform. However, it turned out, this camera can
still be used as a local peripheral device. The Azure Kinect camera also consists of an RGB camera
and an IR camera, which utilizes the ToF principle, but offers significantly higher accuracy than
other commercially available cameras [13]. In addition, the Kinect camera has an integrated inertial
measurement unit (IMU) and a 7-microphone array, extending the range of possible applications to
other areas. Microsoft has also developed a new body tracking SDK for the Azure Kinect which is
based on Deep Learning (DL) and Convolutional Neural Networks (CNN).

Notably, depth sensors other than the Microsoft Kinect are commercially available, such as the
Intel Realsense, Stereolabs ZED, or Orbbec [14]. By using either the manufacturer’s skeleton tracking
software solutions or other available human pose estimation methods that also work on 2D RGB
images, such as OpenPose [15], DeepPose [16], or VNect [17], these depth cameras also have the
potential to be used for healthcare applications. However, according to Clark et al. [12], the accuracy
of other depth cameras in comparison to the Kinect cameras has not yet been established.

Against this background, the present study investigates whether the Azure Kinect camera can be
used for accurate gait assessment on a treadmill by comparing the collected data to a gold standard
(Vicon 3D camera system). We also evaluate whether its improved hardware and DL-based skeleton
tracking algorithm performs better than its predecessor, the Kinect v2. The structure of this paper is as
follows: Section 2 gives an overview of the related literature and presents applications in which the
Kinect v1 and Kinect v2 cameras were evaluated with respect to clinical use cases. Section 3 introduces
the hardware used and the methods developed. The evaluation results of the human pose estimation
performance and concurrent comparison between both Kinect cameras is presented in Section 4 and
concludes with a discussion in Section 5.

2. Related Work

In recent years, Kinect v1 and Kinect v2 were extensively studied by the research community
to see if these sensors can be used as alternative measurement devices for assessing human motion.
Among these studies, several constellations and configurations were used, such as performing physical



Sensors 2020, 20, 5104 3 of 22

exercises at a static location, walking along a walkway, or walking on a treadmill. In addition,
some studies used multiple Kinect sensors simultaneously and integrated the resulting data into a
global coordinate system, resulting in more robust tracking and extended camera range [18]. However,
since only a single Kinect sensor was used in this study to evaluate the gait, the focus lies on related
literature that studied gait with a single camera.

Wang et al. [19] examined the differences in human pose assessment between Kinect v1 and Kinect
v2 in relation to twelve different rehabilitation exercises. They also evaluated the quality changes
when filming from three different viewing angles. Ultimately, they concluded that Kinect v2 has
overall better accuracy in joint estimation and is also more robust to occlusion and body rotation than
Kinect v1. The study by Galna et al. [20] examined the accuracy of the Microsoft Kinect sensor for
measuring movement in people with Parkinson’s disease. Movement tasks included quiet standing,
multidirectional grasping and various tasks from the Unified Parkinson’s Disease Rating Scale such as
hand gripping and finger tapping. These tasks were performed by nine Parkinsonian patients and
10 healthy controls. It was found that Kinect performs well for temporal parameters, but lacks in
accuracy for smaller spatial exercises such as toe tapping.

Capecci et al. [21] used the Kinect v2 sensor to evaluate rehabilitation exercises for lower back
pain, such as lifting the arms and performing a squat. Angles and joint positions were defined
as clinically relevant features and the deviation was analyzed with respect to a reference motion
capture system. It was concluded that the Kinect v2 captured the timing of exercises well and
provided comparable results for joint angles. Overground walking recorded with Kinect v2 was
evaluated by Mentiplay et al. [22] by studying spatio-temporal and kinematic walking conditions.
There was excellent relative agreement on the measurement of walking speed, ground contact time,
vertical displacement range of the center of the pelvis, foot swing speed as well as step time, length and
width at both speeds, comfortable and fast. However, the relative agreement for kinematic parameters
was described as being poor to moderate.

Xu et al. [23] investigated whether the Kinect v2 sensor could be used to measure spatio-temporal
gait parameters on the treadmill. Using 20 healthy volunteers, they validated gait parameters such as
step time, step time, swing phase, stance phase, and double limb support time as well as kinematic
angles for walking at three different speeds. Their results showed that gait parameters based solely
on heel strikes had lower errors than those based on toe off events. This could be caused by the
camera angle, i.e., test subjects were being filmed from the frontal plane, so that the corresponding
joints were closer to the camera during heel strike. Macpherson et al. [24] evaluated the tracking
quality of a pointcloud-based Kinect system for measuring pelvic and trunk kinematics for treadmill
walking. The three-dimensional linear and angular range of motion (ROM) of the pelvis and trunk
was evaluated and compared with a 6-camera motion capturing system (Vicon). They obtained very
large to perfect within subjects correlation coefficients (r = 0.87–1.00) for almost all linear ROMs of
the trunk and pelvis. However, the authors report less consistent correlations for the angular ROM,
ranging from moderate to large.

3. Materials and Methods

This chapter introduces the hardware used and the methods developed in order to compare the
human pose estimation performance between both Kinect cameras and the Vicon high resolution
motion capturing system.

3.1. Microsoft Kinect v2

The Microsoft Kinect v2 camera consists of a RGB and an IR camera as well as three IR projectors.
The sensor is utilizing the ToF principle for depth estimation. The RGB camera has a resolution of
1920 × 1080 px and the IR camera has a resolution of 512 × 424 px while both cameras deliver frames
at 30 Hz. Data from the sensor can be accessed using the Kinect for Windows SDK 2.0, which allows for
tracking up to 6 users simultaneously with 25 joints each. For each joint, the three-dimensional position
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is provided as well as the orientation as quaternion. The center of the IR camera lense represents the
origin of the 3D coordinate system, in which the skeletons are also tracked, as shown in Figure 1a.
Table 1 provides a more detailed overview of the technical specifications of the Kinect v2 compared to
the Azure Kinect camera.

(a) Kinect v2 (b) Azure Kinect

Figure 1. Both Kinect cameras used for this study with depicted camera coordinate systems.

Table 1. Hardware comparison between Kinect v2 and Azure Kinect.

Property Kinect v2 Azure Kinect

RGB Camera Resolution 1920 × 1080 px 3840 × 2160 px
IR Camera Resolution 512 × 424 px 1024 × 1024 px

Framerate 30 fps 30 fps
Field of View IR Camera 70 × 60 degrees 75 × 65/120 × 120 degrees

Field of View RGB Camera 84 × 53 degrees 90 × 59/90 × 74 degrees

3.2. Microsoft Azure Kinect

The Azure Kinect camera also consists of a RGB camera and an IR camera. The color camera offers
different resolutions, the highest resolution being 3840× 2160 px at 30 Hz. The IR camera has a highest
resolution of 1 MP, with 1024 × 1024 px. This Kinect sensor also utilizes the ToF principle. In addition,
both the RGB and IR cameras support different fields of view. The Azure Kinect also has an IMU sensor,
consisting of a triaxial accelerometer and a gyroscope, which can estimate its own position in space.
For skeletal tracking, Microsoft offers a Body Tracking SDK, which is available for Windows and Linux
and the programming languages C and C++. This SDK is able to track multiple users with 32 joints
each. In contrast to the skeleton definition of the former Kinect generation, the current definition
includes more joints in the face, such as ears and eyes. As its older generations, the SDK provides the
joint orientations in quaternions representing local coordinate systems, as well as three-dimensional
position data. The origin of the 3D coordinate system is also the center of the IR camera, but having
some axes expand into opposite directions, as presented in Figure 1b.

3.3. Experimental Setup and Data Collection

This study was approved by the Ethics Committee of the University of Potsdam
(Application 29/2020). Before the data collection, informed consent was given by the participants.
Five young and healthy adults (average age of 28.4 ± 4.2 years, body mass of 73.4 ± 10.6 kg,
and height of 178.8 ± 7.0 cm) walked on a treadmill (h/p/cosmos, Nussdorf-Traunstein, Germany)
at three different speeds. The experiments were conducted at the lab of the Division of Training
and Movement Science at the University of Potsdam. Speeds were selected according to the study
presented by Xu et al. [23], starting at 3 kmh−1 ≈ 0.85 ms−1 followed by 3.9 kmh−1 ≈ 1.07 ms−1 and
finally 4.7 kmh−1 ≈ 1.3 ms−1. Each subject was asked to perform each trial of a certain speed twice and
to walk 100 steps per side. The participants were equipped with the 39 retro-reflective marker full-body
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Plug-in Gait model [25] with markers corresponding to anatomical landmarks, as shown in Figure 2a.
In addition, the participants walked barefoot, firstly to be able to attach the foot markers precisely and
secondly to avoid movement artifacts through the fabric of the shoes. 3D marker kinematics were
captured at 100 Hz using ten IR cameras (Vicon, Bonita 10 [26]), as shown in Figure 3a. Vicon Nexus
2.10.1. software was used for data recording and post-processing of the data.

(a) Vicon Plug-in Gait model (front and back) (b) Kinect v2 and Azure Kinect skeletons

Figure 2. Marker setups for Vicon and both Kinect cameras.

(a) Overview of the entire setup (b) Kinect camera placement

Figure 3. Experimental setup in the laboratory. Both Kinect cameras were placed in front of the treadmill.

The joints tracked by both Kinect cameras are approximate and anatomically incorrect.
As mentioned above, the Kinect v2 and Azure Kinect cameras track 25 joints and 32 joints, respectively.
Most joints between the Kinect systems are similar. However, the Azure Kinect model contains
additional markers, e.g., for ears, eyes, and clavicles. Figure 2b shows the marker definitions from
Kinect v2 and Azure Kinect together.

Both Kinect cameras were placed at a distance of 3–4 meters in front of the treadmill to stay within
the recommended range for body tracking. Each camera was mounted on a tripod at approximately
one meter above the floor, as shown in Figure 3b. During a pilot experiment, it was found that the
Azure Kinect skeleton tracking generated artifacts such as skeleton jitter and frame loss. These artifacts
disappeared after the Azure Kinect camera was moved closer to the treadmill and the subject. However,
the reason for these initial problems is still unknown. Due to the different distances to the treadmill
of both Kinect cameras, the height of the Azure Kinect was slightly lowered (also noticeable in the
figure) in order to have aligned visible treadmill areas in both camera images. Each Kinect camera
was connected to its own laptop running a customized recording software. The laptop used to run the
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Azure Kinect was equipped with a NvidiaTM GeForce RTX 2060 GPU with 6 GB of graphics memory,
in order to have sufficient power to run the DL model for body tracking, as well as 16 GB of RAM
and an Intel® i7-8750H 2.20 GHz CPU. The software for storing the pose and image data of the Azure
Kinect was implemented using the programming language C++ and the Body Tracking SDK. At the
time this study was conducted, the Body Tracking SDK was available in version 1.0.1.

The Microsoft Kinect v2 camera data was recorded with custom software using the PyKinect2
library for the PythonTM programming language, which is based on the Kinect for Windows 2.0 SDK.
The recording laptop had 16 GB of RAM installed and was running with an Intel® i7-8565U
2.20 GHz CPU.

3.4. Signal Processing and Synchronization

Data post-processing included the reconstruction of the model and the labeling of the markers.
Present gaps in the data were filled manually within the Vicon Nexus software. Data were filtered
using a 4th-order Butterworth filter with a cut-off frequency of 5 Hz.

The Kinect v2 camera has a target sampling rate of 30 Hz, but, during the experiments, it was
found that the frequency was not constant. This was shown by calculating the time difference between
consecutive examples across all experiments, resulting in a sampling rate of 37.73± 25.80 ms. Since the
Kinect v2 data were not sampled constantly, the signal was resampled at a constant sampling frequency
as proposed by Scano et al. [27]. Furthermore, the signal was upsampled to 100 Hz in order to match
the Vicon sampling frequency.

Similar to the Kinect v2, the Azure Kinect also provides a sampling frequency of 30 Hz.
The calculated differences over all measured frames gave a mean value of 34.23 ± 14.92 ms. However,
the recorded time stamps in the data showed that the time differences of the measurements were
constant, but some gaps were present. These gaps were identified in the developed software and filled
using quadratic interpolation. After filling the gaps, the pose data were also upsampled to 100 Hz to
match the Vicon sampling frequency.

The participants were asked to perform three consecutive jumps before and after each trial to
obtain significant peaks in the pose data. During post-processing, the data of both Kinect sensors were
synchronized with the Vicon reference system using cross-correlation of the second derivative of a
central marker in the vertical axes. Therefore, the Sternum marker (STRN) of the Plug-in Gait model
was used, and the Pelvis marker for Kinect v2 and Azure Kinect. Figure 4a shows the unsynchronized
signals from the three camera systems, with both Kinect signals upsampled to 100 Hz and the peaks
from the jumping protocol visible. The final synchronization result using the cross-correlation shift
method is shown in Figure 4b.

3.5. Spatial Alignment of Skeleton Data

To calculate the spatial deviation of the two Kinect cameras and the ground truth data from the
Vicon system, the kinematic data from all three systems were transformed into a global coordinate
system. For both Kinect cameras, the origin of the coordinate system is the center of the IR camera.
The y-axis of the Kinect v2 camera points upwards, while the same axis points downwards in the
Azure Kinect. The x-axes also point in the opposite direction along the camera. The z-axis extends
in the direction of view in both systems (as shown in Figure 1a,b). The Vicon coordinate system was
defined by the triangular calibration wand, which was placed parallel to the treadmill. To transform
each Kinect coordinate system into the global system, the Vicon system, an 8 × 5 checkerboard pattern
with a length of s = 50 mm per square side was used. Four retro-reflective 14 mm markers were placed
at the outer corners of the checkerboard, as shown in Figure 5a. The goal of the calibration method was
to find a transformation to map simultaneously recorded points from one system to another system.
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(a) Unsynchronized signals (b) Synchronized signals

Figure 4. Temporal alignment of Vicon and both Kinect camera signals sampled at 100 Hz. The three
consecutive peaks indicate the jumping procedure.

(a) Identification of intersections (b) Vicon marker extrapolation for Kinect

Figure 5. Camera calibration using four retro-reflective 14 mm markers on the corners of the checkerboard.

As mentioned by Naeemabadi et al. [28], retro-reflective markers, like those of the Vicon system,
appear as noise in the IR images, so their 3D position is unknown to the Kinect sensors. To determine
the 3D position of the Vicon markers, nevertheless, the intermediate intersection points on the
chessboard were identified in the 2D color images using the OpenCV library, followed by the coordinate
mapper functions provided by the Kinect SDKs to obtain the actual 3D positions from the depth camera
space, denoted as points pi in the point set P. A transformation was then found by fitting a grid with
the same dimensions into the point set and using this transformation to extrapolate the known Vicon
marker positions in 3D space. The grid Q consisting of points qi with known distances was generated
as shown in Equation (1), where h and w denote the dimensions of the used checkerboard:

Q =

{x
y
0

 · s ∈ R3 : 1 ≤ x ≤ w, 1 ≤ y ≤ h

}
(1)

To register the two point sets P and Q with known point correspondences, a rigid transformation
must be found, which consists of a rotation matrix R ∈ R3×3 and a translation vector t ∈ R3. Therefore,
a method based on singular value decomposition (SVD) was used [29]. Since the checkerboard data
contained measurement errors, the objective of the algorithm was to find a rigid transformation such
that the least squares error in Equation (2) was minimized:

(R, t) = arg min
R∈R3×3,t∈R3

n

∑
i=1
‖(Rpi + t)− qi‖2 (2)
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To minimize the objective, both point sets of size n were moved to their respective origin by
subtracting for each point set its centroid p̄ and q̄ as shown in Formulas (3) and (4):

p̄ =
1
n

n

∑
i=0

pi q̄ =
1
n

n

∑
i=0

qi (3)

xi := pi − p̄, yi := qi − q̄, i = 1, 2, . . . , n (4)

The next step was to calculate the covariance matrix S ∈ R3×3, where X and Y are matrices that
hold the centered vectors xi and yi in their columns, as shown in Equation (5):

S = XYT (5)

Subsequently, the rotation matrix was obtained by performing a SVD on the covariance matrix
S = UΣVT . The rotation matrix was then calculated as shown in Equation (6), and the final translation
vector was calculated as shown in Formula (7):

R = V

1
1

det(VUT)

UT (6)

t = q̄− Rp̄ (7)

The obtained transformation with R and t was then applied to the Vicon marker locations of the
synthetically generated grid to obtain the real locations with respect to the Kinect coordinate system.
Then, the above algorithm from Formulas (2) to (7) was applied to the extrapolated Vicon markers
for Kinect and the measured Vicon points V to obtain a transformation that maps the Kinect points
into the Vicon coordinate system. Throughout the calibration procedure, the checkerboard was moved
several times in the area to scan enough calibration points. The calibration algorithm was applied for
both Kinect cameras separately.

3.6. Gait Parameter Calculation

Since the aim of this study was to evaluate spatio-temporal gait parameters, i.e., step length,
step time, step width and stride time, these parameters were calculated based on the method presented
by Zeni et al. [30]. The authors proposed an algorithm to automatically detect heel strike and toe off
events in kinematic data and to derive swing and stance phases from it. It was shown that this method
determines the timing of gait events with an error of 1/60 s compared to a vertical ground reaction
force (GRF).

In this method, the anterio-posterior direction (e.g., the x-axis) of the foot marker trajectory is
plotted over time which results in a sinusoidal curve as the treadmill belt constantly pulls back the
foot after every heel strike [30]. Thus, the heel strikes at a given time tHS were determined by finding
the maximum peaks within the 1D heel marker signal xheel , while toe off events at a given time tTO
were identified as the valleys of the toe markers xtoe, also in the anterio-posterior direction. In addition,
the foot markers were normalized with respect to the sacrum marker xsacrum, resulting in the signal
being centered around the origin, as shown in Equations (8) and (9):

tHS = (xheel − xsacrum)max (8)

tTO = (xtoe − xsacrum)min (9)

As thresholds for the peak detection algorithm, the mean value of the anterio-posterior marker
signals were used. Since the Plug-in Gait marker model does not include a marker at the sacrum,
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the average position of the right and left posterior superior iliac markers (RPSI and LPSI) was calculated
to represent a virtual sacrum marker. For the Kinect cameras, the Spine-Base and Pelvis markers were
used for Kinect v2 and Azure Kinect, respectively.

Based on the identified gait events, the spatio-temporal gait parameters were calculated as
proposed in the study by Eltoukhy et al. [31]. The description of the gait parameter calculation for
the Vicon and Kinect systems is presented in Table 2. Since the timing of the gait events is crucial for
the accuracy of the calculated spatio-temporal gait parameters, the frame differences of the identified
peaks between the Kinect and Vicon signals were evaluated at 100 Hz.

Table 2. Calculation of spatio-temporal gait parameters for Vicon and both Kinect sensors. LANK and
RANK stand for the left and right ankle markers [31].

Parameter Vicon Calculation Kinect Calculation

Step Length Distance between LANK and RANK
markers during heel strike event

Distance between both ankle joints
during heel strike event

Step Time Time between consecutive heel strikes
of left and right foot

Same as Vicon

Step Width Distance along the medio-lateral axis
between LANK and RANK markers

Distance along the medio-lateral axis
between left and right ankle markers

Stride Time Time between two consecutive heel
strikes of the same foot

Same as Vicon

3.7. Statistical Analysis

The first goal of our experiment was to investigate spatial agreement of the corresponding joint
coordinates between both Kinect cameras relative to the Vicon reference system. In order to calculate
the accuracy of the Kinect markers, the three different marker models have to be mapped. Using the
approach proposed by Otte et al. [32], a subset of the Vicon retro-reflective markers was mapped to
the corresponding markers of the respective Kinect skeleton. This was achieved either by assigning
individual Vicon markers that were closest to the corresponding Kinect landmark or, if several Vicon
markers were present, by averaging the markers. Table A1 in the Appendix A presents the complete
marker mapping in detail. Since the Vicon markers were applied to the participant’s skin while
both Kinect cameras track the joints approximately within the user’s body (as shown in Figure 2a,b),
an offset of the corresponding marker positions would cause a systematic bias when directly comparing
the joint positions. In order to compare the joint trajectories in all three directions, this systematic bias
was removed by subtracting the mean value of each axis of each joint [32]. These signals are referred to
as zero-mean shifted signals, where similar movements should now have a high degree of agreement
when moving in a certain direction.

After the marker models were mapped, the 3D Euclidean distance between the zero-mean shifted
signals of corresponding joints were calculated over all N captured frames of all participants and
trials and for each Kinect camera individually. The overall tracking accuracy was then assessed as
mean and standard deviation of the Euclidean distances [32]. As this study included five participants,
the non-parametric paired Wilcoxon test was performed using the mean values of the distances of all
trials. Differences in tracking quality were found to be significant for p-values smaller than p < 0.05
and p < 0.01, respectively.

In addition to the paired Wilcoxon test, Pearson’s correlation coefficients were used to assess
reliability [33]. The correlation was assessed of zero-mean shifted signals over all N captured frames of
all subjects and trails. Pearson’s r-values were calculated for the three axes separately, in the following
referred to as the anterio-posterior (AP), medio-lateral (ML), and vertical (V) axes [32,34]. The levels
of agreement were set to poor (r < 0.4), moderate (0.4 ≤ r < 0.7), good (0.7 ≤ r < 0.9) and excellent
(r ≥ 0.9) [32,35].
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The agreement of the spatio-temporal gait parameters generated by the three camera systems was
compared and evaluated over a range of individual treadmill velocities. Therefore, the average values
of the Vicon gait parameters and the two Kinect sensors were calculated first.

Absolute ea (shown in Equation (10)) and relative errors er (shown in Equation (11)) were assessed
for each spatio-temporal gait parameter in order to obtain an average absolute magnitude of the
differences between the systems as well as a directional magnitude of the differences [31]. Additionally,
the root mean squared error (RMSE) between gait parameters calculated from the Vicon system and
those of the Kinect sensors was determined:

ea = |Kinect−Vicon| (10)

er = Kinect−Vicon (11)

To assess the statistical significance between the three camera systems, we performed the
non-parametric paired Wilcoxon test on the the pooled data of five subjects by using the mean
values of the according gait parameter of individual trials. A significant difference for gait parameters
was defined for p-values with p < 0.01.

4. Results

In this section, the evaluation of the motion tracking performance of the Azure Kinect sensor is
presented and compared with the Kinect v2 camera with respect to the Vicon gold standard system.
The evaluation is performed by utilizing the statistical metrics presented in Section 3.7 over all subjects
and trials. It is important to note that one trial was excluded from the analysis as the laptop which
was operating the Kinect v2 sensor was frozen for a short period of time during the recording session
without notice.

4.1. Joint Position Agreement

The first subject of the evaluation was the spatial agreement between the systems when walking
on the treadmill. Therefore, the position data were first segmented for the walking parts and then
the 3D Euclidean distance between the joints was calculated. As shown in Figure 2b, most of the
landmarks in the skeleton definition of Kinect v2 and Azure Kinect are located at the same position,
but Azure Kinect introduces additional joints, which means they can not be mapped to the previous
skeleton definition. Therefore, the clavicle joints were evaluated without a direct comparison with
Kinect v2. With regard to the spinal joints, Azure Kinect provides a joint in the abdomen region,
the so-called Spine Naval, where there is no counterpart in Kinect v2. Although the markers on the
chest are named differently by the two Microsoft SDKs, they are considered to be the same joints in
this study due to their proximity. As there were no Vicon markers present at fingertips and in the face,
these Kinect markers were all omitted.

The errors of the two Kinect sensors with respect to the Vicon ground truth system are
presented in Figure 6, with the errors accumulated over all trials and provided as mean and standard
deviation. In addition, the significant differences between each pair of joints were assessed using the
non-parametric paired Wilcoxon test, where two levels of significance were defined and reported as
(*) for p < 0.05 and (**) for p < 0.01. The assessment of spatial agreement for the three individual
treadmill velocities is given in the Appendix A in Figures A1–A3.
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Figure 6. Spatial agreement of the Microsoft Kinect v2 and Azure Kinect cameras with respect to the
Vicon system. Errors are represented as means and standard deviation of the 3D Euclidean distances
between according joints.

Notably, the foot markers were tracked by the Azure Kinect sensor at all speeds with significantly
higher accuracy. The Kinect v2 also showed a higher variance regarding the foot marker position.
The differences of ankle markers between the systems were smaller, with only the markers on the left
ankle showing a significant difference. However, the Kinect v2 camera showed better performance on
upper body joints such as hip, spinal joints, head and shoulders. A higher error was found for both
lower and upper extremities with both sensors, probably due to their faster movements and wider
range of motion compared to, for example, hip joints.

In addition, Pearson correlation coefficient r for the anterio-posterior (AP), medio-lateral (ML)
and vertical (V) directions were assessed. Pearson r values were calculated for each trial over all
frames and the mean values and standard deviations were assessed. Table 3 shows that both Kinect
cameras achieved excellent agreement for all joints in the AP direction. In the ML direction, Kinect v2
achieved more excellent r values than Azure Kinect. The lowest level of agreement was achieved in the
V direction for both sensors. In particular, the r values showed a poor agreement for both foot markers
for Kinect v2 with only r = 0.11 and r = −0.01. These values improved for the Azure Kinect camera
where the agreement ranged from moderate to good. The Azure Kinect also had only moderate and
good agreement for the V direction, where Kinect v2 had three poor values.

Table 3. Pearson’s correlation coefficient r in the AP, ML, and V direction. The last three joints are only
present in the Azure Kinect skeleton definition and thus marked as not present (n.p.) for Kinect v2.

Kinect v2 Azure Kinect

AP ML V AP ML V

Foot Left 0.93± 0.03 0.80± 0.09 0.11± 0.11 0.97± 0.01 0.72± 0.10 0.71± 0.10

Foot Right 0.94± 0.02 0.82± 0.12 −0.01± 0.11 0.95± 0.03 0.76± 0.07 0.69± 0.10

Ankle Left 0.97± 0.02 0.95± 0.03 0.76± 0.14 0.97± 0.01 0.85± 0.06 0.89± 0.04

Ankle Right 0.97± 0.02 0.97± 0.01 0.78± 0.09 0.96± 0.02 0.81± 0.06 0.84± 0.06

Knee Left 0.98± 0.02 0.95± 0.02 0.41± 0.21 0.97± 0.01 0.87± 0.04 0.74± 0.06

Knee Right 0.98± 0.02 0.93± 0.03 0.35± 0.20 0.98± 0.01 0.94± 0.03 0.73± 0.13
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Table 3. Cont.

Kinect v2 Azure Kinect

AP ML V AP ML V

Hip Left 0.98± 0.02 0.95± 0.02 0.80± 0.13 0.99± 0.01 0.89± 0.05 0.60± 0.17

Hip Right 0.98± 0.01 0.96± 0.02 0.78± 0.11 0.98± 0.02 0.91± 0.05 0.68± 0.09

Pelvis 0.99± 0.00 0.94± 0.03 0.86± 0.10 0.99± 0.01 0.96± 0.02 0.67± 0.12

Spine Chest 0.99± 0.01 0.98± 0.01 0.88± 0.07 1.00± 0.00 0.96± 0.02 0.75± 0.13

Head 0.99± 0.01 0.99± 0.01 0.94± 0.03 0.96± 0.06 0.96± 0.02 0.62± 0.15

Shoulder Left 0.99± 0.01 0.99± 0.01 0.92± 0.04 0.99± 0.01 0.97± 0.01 0.66± 0.11

Shoulder Right 0.99± 0.01 0.99± 0.01 0.92± 0.05 0.99± 0.01 0.97± 0.02 0.63± 0.19

Elbow Left 0.99± 0.01 0.99± 0.01 0.62± 0.22 0.97± 0.02 0.89± 0.14 0.62± 0.13

Elbow Right 0.99± 0.00 0.98± 0.01 0.50± 0.22 0.99± 0.01 0.95± 0.05 0.64± 0.18

Wrist Left 0.99± 0.01 0.98± 0.01 0.96± 0.01 0.95± 0.05 0.79± 0.19 0.70± 0.22

Wrist Right 0.99± 0.01 0.97± 0.01 0.95± 0.03 0.97± 0.03 0.81± 0.09 0.73± 0.15

Hand Left 0.98± 0.01 0.97± 0.02 0.95± 0.03 0.95± 0.04 0.76± 0.12 0.68± 0.24

Hand Right 0.98± 0.01 0.97± 0.02 0.94± 0.04 0.91± 0.07 0.68± 0.17 0.58± 0.20

Neck 1.00± 0.01 0.98± 0.01 0.65± 0.27 0.99± 0.01 0.97± 0.02 0.70± 0.13

Spine Naval n.p. n.p. n.p. 0.99± 0.01 0.97± 0.01 0.70± 0.13

Clavicle Left n.p. n.p. n.p. 0.99± 0.01 0.97± 0.02 0.74± 0.11

Clavicle Right n.p. n.p. n.p. 0.99± 0.01 0.97± 0.02 0.75± 0.13

4.2. Gait Event Timing

As explained in Section 3.6, the calculation of spatio-temporal gait parameters is based on heel
strike and toe off events, which are automatically identified within the pose data. Given that the
identification of these events is crucial for the calculation process, the identified gait events within
the Kinect data were compared with those found within the Vicon signal. The errors of the gait event
identification were expressed as differences of the frames between the identified peaks. To calculate
the spatio-temporal gait parameters, the Kinect data were upsampled to 100 Hz in order to match the
sampling frequency of the Vicon signal.

By analyzing the frame error of both gait events for each of the two Kinect cameras, it was shown
that the detection of heel strike events generally has smaller errors compared to toe off events in both
cameras. The Kinect v2 achieved a mean error of −2.8± 2.0 frames, which is equal to −28± 20 ms
across all treadmill velocities, while the Azure Kinect camera had a mean error of −2.6± 2.2 frames or
−26± 22 ms. The frame error distribution is shown in Figure 7a for the Kinect v2 camera, with Kinect
gait events detected earlier for negative values and Kinect gait events detected later for positive values.
The results for the Azure Kinect sensor are shown in Figure 8a.

In identifying toe off events, the Kinect v2 achieved a mean error of −9.8 ± 2.7 frames
or −98 ± 27 ms, while the Azure Kinect sensor had a mean error of −8.8 ± 3.4 frames or
−88 ± 34 ms. The distribution of errors for toe off events for each treadmill velocity are shown
in the Figures 7b and 8b for Kinect v2 and Azure Kinect, respectively.

The results presented here are in accordance with the study conducted by Xu et al. [23].
These authors also detected a smaller frame error in heel strike events. Overall, it was found that, for
heel strike and toe off events identified within the upsampled Kinect data, the errors were within an
acceptable range in order to calculate spatio-temporal gait parameters based on these gait events.
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(a) Heel Strike (b) Toe Off

Figure 7. Gait event timing of Kinect v2 with respect to the Vicon reference system.

(a) Heel Strike (b) Toe Off

Figure 8. Gait event timing of Azure Kinect with respect to the Vicon reference system.

4.3. Spatio-Temporal Gait Parameters

In this section, we present the evaluation of the spatio-temporal gait parameters of interest,
i.e., step length, step width, step time, and stride time, using the metrics defined above. For step
length and step width, additional correlation plots are provided for all treadmill speeds including a
linear regression. The correlation plot for the step length parameter is shown in Figure 9a for Kinect
v2 and in Figure 9b for the Azure Kinect, with the three colors representing the different treadmill
speeds. The x-axes represent the calculated parameters coming from the Vicon system, while the
y-axes represent the parameters calculated for each of the Kinect cameras. The graphs show that the
three systems measure the increasing step length when increasing the treadmill speed. The regression
line for the Azure Kinect camera is very close to the ideal line with having a slope of one and a small
negative intercept. In contrast, the regression line of Kinect v2 has a larger offset, which is indicated by
the negative intercept. The RMSE, calculated from the step lengths of Vicon and each of the Kinect
cameras, confirms that the Azure Kinect sensor provided a higher accuracy compared to the previous
Kinect model, measured over all treadmill velocities.

The evaluation of the step length parameter for individual treadmill velocities is shown in Table 4.
It was found that the Azure Kinect camera performed better than Kinect v2 at all treadmill speeds,
as indicated by the smaller absolute and relative error values, as well as the smaller RMSE values.
The low p-values of the paired Wilcoxon test indicate a significant difference between the systems for
all treadmill speeds.
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(a) Kinect v2 (b) Azure Kinect

Figure 9. Step Length for Kinect v2 and Azure Kinect aggregated over all three speeds.

Table 4. Step length gait parameter evaluation.

3.0 kmh−1 3.9 kmh−1 4.7 kmh−1

Vicon Mean (m) Kinect v2 0.48± 0.03 0.55± 0.04 0.61± 0.03
Azure Kinect 0.48± 0.03 0.55± 0.04 0.61± 0.03

Kinect Mean (m) Kinect v2 0.44± 0.06 0.50± 0.07 0.55± 0.08
Azure Kinect 0.48± 0.05 0.55± 0.05 0.60± 0.06

Absolute Error (m) Kinect v2 0.06± 0.03 0.06± 0.04 0.07± 0.05
Azure Kinect 0.03± 0.02 0.03± 0.02 0.03± 0.03

Relative Error (m) Kinect v2 −0.05± 0.05 −0.05± 0.06 −0.05± 0.06
Azure Kinect 0.00± 0.03 0.00± 0.04 0.01± 0.04

RMSE Kinect v2 0.07 0.08 0.08
Azure Kinect 0.03 0.04 0.04

p-value 0.005 0.008 0.005

The evaluation of step width over all treadmill speeds is also shown as a correlation plot with a
linear regression for the Kinect v2 camera in Figure 10a and for Azure Kinect in Figure 10b. It was
found that, for the Azure Kinect, more measurements were closer to the ideal line, although the larger
R2 indicated a better fit of the measurements for Kinect v2. The smaller RMSE value confirms the
increased accuracy in the Azure Kinect sensor.

Table 5 presents the results for step width and shows that the Azure Kinect camera outperformed
the Kinect v2 camera at all treadmill velocities. It can be seen that the Azure Kinect achieved smaller
absolute and relative mean errors and smaller RMSE values compared to its predecessor. For the speeds
3.0 kmh−1 and 4.7 kmh−1, the p-values were above the significance level, indicating a significant
difference in the measured parameters.

For the step time parameter, it can be noticed that both Kinect camera generations performed
very similar by delivering similar error values. Table 6 shows that, for the absolute error, the exact
same values were achieved by both Kinect systems. For the relative error and the RMSE, both systems
achieved almost similar values, except for Azure Kinect performing slightly better at 3.9 kmh−1.
The p-values indicate that no significant differences were identified between the two systems.
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(a) Kinect v2 (b) Azure Kinect

Figure 10. Step Width for Kinect v2 and Azure Kinect aggregated over all three speeds.

Table 5. Step width gait parameter evaluation.

3.0 kmh−1 3.9 kmh−1 4.7 kmh−1

Vicon Mean (m) Kinect v2 0.21± 0.03 0.20± 0.02 0.20± 0.02
Azure Kinect 0.21± 0.03 0.20± 0.02 0.21± 0.02

Kinect Mean (m) Kinect v2 0.14± 0.03 0.14± 0.03 0.14± 0.02
Azure Kinect 0.17± 0.03 0.16± 0.03 0.17± 0.03

Absolute Error (m) Kinect v2 0.07± 0.02 0.07± 0.02 0.06± 0.02
Azure Kinect 0.04± 0.02 0.04± 0.02 0.04± 0.02

Relative Error (m) Kinect v2 −0.07± 0.02 −0.07± 0.02 −0.06± 0.02
Azure Kinect 0.04± 0.03 0.04± 0.03 0.04± 0.03

RMSE Kinect v2 0.07 0.07 0.06
Azure Kinect 0.05 0.05 0.05

p-value 0.005 0.011 0.005

Table 6. Step time gait parameter evaluation.

3.0 kmh−1 3.9 kmh−1 4.7 kmh−1

Vicon Mean (s) Kinect v2 0.64± 0.04 0.56± 0.03 0.52± 0.03
Azure Kinect 0.64± 0.04 0.56± 0.03 0.52± 0.03

Kinect Mean (s) Kinect v2 0.64± 0.05 0.56± 0.04 0.52± 0.04
Azure Kinect 0.64± 0.04 0.56± 0.04 0.52± 0.04

Absolute Error (s) Kinect v2 0.02± 0.02 0.02± 0.02 0.02± 0.02
Azure Kinect 0.02± 0.02 0.02± 0.02 0.02± 0.02

Relative Error (s) Kinect v2 0.00± 0.03 0.00± 0.03 0.00± 0.03
Azure Kinect 0.00± 0.03 0.00± 0.02 0.00± 0.03

RMSE Kinect v2 0.03 0.03 0.03
Azure Kinect 0.03 0.02 0.03

p-value 0.959 0.066 0.721
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The evaluation of stride time is illustrated in Table 7. It can be seen that, again, both Kinect
sensors achieved similar absolute error values, but Azure Kinect delivered slightly better relative
errors and RMSE values for all three treadmill velocities. The Wilcoxon test indicated no significant
differences for this temporal gait parameter. In general, the estimated mean values from the Kinect
sensors for the spatio-temporal gait parameters are comparable to those obtained in the study
conducted by Xu et al. [23].

Table 7. Stride time gait parameter evaluation.

3.0 kmh−1 3.9 kmh−1 4.7 kmh−1

Vicon Mean (s) Kinect v2 1.28± 0.07 1.12± 0.06 1.04± 0.05
Azure Kinect 1.28± 0.07 1.13± 0.06 1.04± 0.05

Kinect Mean (s) Kinect v2 1.28± 0.07 1.12± 0.07 1.04± 0.06
Azure Kinect 1.28± 0.07 1.12± 0.07 1.04± 0.06

Absolute Error (s) Kinect v2 0.02± 0.02 0.02± 0.02 0.02± 0.02
Azure Kinect 0.02± 0.02 0.02± 0.02 0.02± 0.02

Relative Error (s) Kinect v2 0.00± 0.03 0.00± 0.03 0.00± 0.03
Azure Kinect 0.00± 0.02 0.00± 0.02 0.00± 0.02

RMSE Kinect v2 0.03 0.03 0.03
Azure Kinect 0.02 0.02 0.02

p-value 0.017 0.051 0.169

5. Discussion

In this study, the human pose estimation performance of the Azure Kinect camera was evaluated
and compared to its predecessor model Kinect v2 in terms of gait analysis on a treadmill. The evaluation
subject was the spatial agreement of joint locations as well as the quality of spatio-temporal gait
parameters. A Vicon motion capturing system and the 39 marker full-body Plug-in Gait model were
used to evaluate the parameters coming from both Kinect systems.

5.1. Results

The results of this study show that the tracking accuracy of the foot marker trajectories is
significantly higher for the Azure Kinect camera over all treadmill velocities (3.0 kmh−1, 3.9 kmh−1,
and 4.7 kmh−1) compared to the previous model Kinect v2. However, the Kinect v2 performed
better than the Azure Kinect in the mid and upper body region, especially in the upper extremities.
The newly added joints (clavicles, spine chest) of the Azure Kinect camera achieved a reasonable
tracking error of about 11.5 mm. Regarding the gait parameters, it was shown that, for spatial
parameters, i.e., step length and step width, the Azure Kinect camera delivered a significantly higher
accuracy than Kinect v2. One possible reason for this could be the improved tracking quality of the
foot markers of the Azure Kinect. However, for temporal gait parameters, i.e., step length and stride
length, no significant differences were found between the two Kinect camera systems. Furthermore,
the calibration method presented here is a tool that can be used in future similar studies for further
evaluation of the cameras.

5.2. Study Limitations

Our results are specific to a population of young and healthy participants with normal,
i.e., unpathological, gait patterns who walked at average walking speeds. The main objective of
this pilot study was to demonstrate the technical feasibility of using the novel skeleton tracking
algorithm of the Azure Kinect camera and to compare it with the previous model, Kinect v2. Therefore,
no clinical research question was addressed in this study and a smaller sample size was regarded
as sufficient.
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Although a multi-camera motion capture system was considered the gold standard for evaluating
human motion in this study, it is important to note that these systems have potential sources of
error. The main drawback of retro-reflective marker-based systems, such as the Vicon system, is that
each marker must be seen by at least two cameras at any time in order to be correctly interpolated.
The study conducted by Merriaux et al. [36] examined the accuracy of the Vicon system for both static
and dynamic setups with a 4-axis motor arm and a fast-moving rotor, respectively. These mechanical
setups provided accurate ground truth data that was compared to the tracked Vicon data. They found
that the Vicon system for the static mechanical setup had an average absolute positioning error of
0.15 mm and a variability of 0.015 mm, indicating high accuracy and precision. For fast dynamic
movements of the markers, a mean position error of less than 2 mm was determined, whereas the
variability in the static setup was lower.

Unlike passive tracking systems that use markers with reflective material, active marker systems
use light emitting diodes (LED) that can be tracked by the individual cameras. These LEDs can be
assigned to individual identifiers so that the system can easily identify markers after they have been
lost, for instance due to occlusion. In passive marker systems, marker confusion in the tracking
software is a common problem, especially if the markers move at higher speeds [37]. The confusion of
markers can lead to more holes in the data and therefore requires manual effort to clean up the data in
the software with interpolation strategies that introduce artificial artifacts into the data. In our study,
we have used a 10-camera Vicon system and resulting holes in the data were filled using the Vicon
Nexus software, which eventually introduced noise in the reference data.

With marker-based motion capture systems, the correct placement of active or passive markers on
the subject is crucial for the quality of the kinematic data. The study conducted by Tsushima et al. [38]
investigated the test–retest and inter-test reliability of a Vicon system. Kinematic data of the lower
extremities were recorded using a repeated measurement protocol of two test sessions on two different
days. Two trained experts placed 15 markers on the pelvis and lower body according to a predefined
marker model. Across both testers and six unimpaired participants, the authors received high
coefficients of multiple correlation (CMC) values for the sagittal plane (Ra = 0.971–0.994), the frontal
plane (Ra = 0.759–0.977) and the transverse plane (Ra = 0.729–0.899), excluding the pelvic tilt. From
this, the authors conclude that the reduction of variability is possible if standardized marker placement
methods are used.

In addition, soft tissue artifacts are a potential source of error in motion capture systems.
These artifacts are caused by the movement of markers on the skin, which therefore no longer match the
underlying anatomical bone landmarks. Lin et al. [39] quantified the effect of soft tissue artifacts in the
posterior extremity of canines using a fluoroscopic computed tomography system with simultaneous
acquisition of Vicon data using retro-reflective markers. It was found that the thigh markers and crus
markers had a large peak amplitude of 27.4 mm and 28.7 mm, respectively. In addition, flexion angles
were underestimated, but adduction and internal rotation were overestimated once the knee was
flexed more than 90 degrees. Given this, it is likely that the recorded data in our study were also
susceptible to soft tissue artifacts that led to more unstable data and results.

In gait analysis, the accurate detection of heel strike and toe off events is important as
timing information is needed for the exact calculation of the temporal gait parameters and for the
normalization of the data per gait cycle. The common gold standard method for the exact determination
of these events are force plates [40]. O’Connor et al. [40] and Zeni et al. [30] presented algorithms for
calculating these gait events based on kinematic data. However, the calculation of these events using
motion capture data are flawed compared to force plate data. The so-called foot velocity algorithm for
overground walking, as presented by O’Connor et al. [40], has an error of 16 ± 15 ms for heel strike
and 9 ± 15 ms for toe off events and was verified on a data set containing gait of 54 normal children
recorded with a force plate and a motion capture system. The method proposed by Zeni et al. [30]
for detecting gait events on the treadmill was verified on a data set that included seven healthy
and unimpaired participants as well as seven multiple sclerosis and four stroke patients. In healthy
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participants, the algorithm correctly identified 94% of gait events with a 16 ms error. In impaired
participants, 89% of treadmill events were identified with a 33 ms error. Since we used the algorithm
presented by Zeni et al. [30] for our study, it can be assumed that the error of their method is also
reflected in our results, since we used the temporal gait parameters obtained from Vicon as a reference.

5.3. Practical Application

The experimental setup of this camera evaluation study presented here offers many advantages
that could also be transferred to a real-life scenario. Since the two Kinect cameras do not
require time-consuming placement of markers, systems using these cameras could be operated by
individuals/patients living in remote or rural areas who do not have access to medical services.
Findings from our study appear to be relevant for this type of tele medicine or tele rehabilitation
approach, particularly for patients with neurological disorders, such as in stroke survivors who
are in need of gait retraining. In addition, walking on a treadmill allows data recording even
in homes with limited space, as well as recording a large amount of data in just one session.
Von Schroeder et al. [41] have investigated how the gait of stroke patients can change over time.
Therefore, data were collected from 49 stroke patients and 24 control subjects using a portable
step analyzer (B & L Engineering, Santa Fe Springs, CA, USA). They found that the evaluated
gait parameters improved over time, with the greatest change occurring within the first 12 months.
With a home setup using tele medicine, similar to the setup shown in Figure 3a, which consists of only
one treadmill and a single Kinect camera, it would be possible to record gait parameters that provide
important insights into changes in gait performance. The algorithm described in Section 3.6 could
serve as a basis to obtain more important gait parameters.

Besides the above presented concrete use case, such single-based Kinect camera systems could
also be used in different environments, where the use of more complex systems, e.g., multi-camera 3D
motion capturing systems, is not feasible. These include physiotherapy, rehabilitation clinics, field test
conditions, and fitness centers.

5.4. Future Work

At the time of conducting this pilot study, the Azure Kinect Body Tracking SDK was in its
most recent version (version 1.0.1.) and will most likely be subject to further changes in the future,
which could lead to improvements in the tracking quality. At this stage, however, a pilot evaluation
study was necessary to assess the tracking quality that can be achieved with the improved hardware
and DL-based skeleton tracking algorithm to date.

Future research should validate that the Azure Kinect camera could also be used for measurements
among different age groups and individuals with gait abnormalities (Parkinsonian gait, stroke, etc.),
using a larger number of participants. Various aspects of human movement such as body weight
exercises or overground walking should also be further investigated with the Azure Kinect camera.
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Appendix A

Table A1. Skeleton mapping of the 25 joints Kinect v2 and 32 joints Azure Kinect model to the 39 marker
Vicon Plug-in Gait model.

Index Kinect v2/Azure Kinect Joints Vicon Markers to Kinect v2 Vicon Markers to Azure Kinect

1 Foot Left LTOE LTOE
2 Foot Right RTOE RTOE
3 Ankle Left LANK LANK
4 Ankle Right RANK RANK
5 Knee Left LKNE LKNE
6 Knee Right RKNE RKNE
7 Hip Left LASI LASI
8 Hip Right RASI RASI
9 Spine Base/Pelvis RASI, LASI, LPSI, RPSI RASI, LASI, LPSI, RPSI

10 Spine Middle/Spine Chest CLAV + (RASI, LASI, LPSI, RPSI) STRN
11 Spine Shoulder/Spine Naval CLAV T10
12 Head RFHD, LFHD, RBHD, LBHD RFHD, LFHD, RBHD, LBHD
13 Shoulder Left LSHO LSHO
14 Shoulder Right RSHO RSHO
15 Elbow Left LEBL LEBL
16 Elbow Right REBL REBL
17 Wrist Left LWRA + LWRB LWRA + LWRB
18 Wrist Right RWRA + RWRB RWRA + RWRB
19 Hand Left LFIN LFIN
20 Hand Right RFIN RFIN
21 Neck C7 C7
22 Hand Tip Left - -
23 Hand Tip Right - -
24 Left Thumb - -
25 Right Thumb - -

26 Clavicle Right n.p. CLAV + LSHO
27 Clavicle Left n.p. CLAV + RSHO
28 Eye Left n.p. -
29 Eye Right n.p. -
30 Ear Left n.p. -
31 Ear Right n.p. -
32 Nose n.p. -

Figure A1. Spatial agreement between Microsoft Kinect v2 and Azure Kinect for 3.0 kmh−1.
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Figure A2. Spatial agreement between Microsoft Kinect v2 and Azure Kinect for 3.9 kmh−1.

Figure A3. Spatial agreement between Microsoft Kinect v2 and Azure Kinect for 4.7 kmh−1.
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