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Abstract 
 
 
Crustal deformation can be the result of volcanic and tectonic activity such as fault dislocation 
and magma intrusion. The crustal deformation may precede and/or succeed the earthquake 
occurrence and eruption. Mitigating the associated hazard, continuous monitoring of the 
crustal deformation accordingly has become an important task for geo-observatories and fast 
response systems. Due to highly non-linear behavior of the crustal deformation fields in time 
and space, which are not always measurable using conventional geodetic methods (e.g., 
Leveling), innovative techniques of monitoring and analysis are required. 
In this thesis I describe novel methods to improve the ability for precise and accurate mapping 
the spatiotemporal surface deformation field using multi acquisitions of satellite radar data. 
Furthermore, to better understand the source of such spatiotemporal deformation fields, I 
present novel static and time dependent model inversion approaches. Almost any 
interferograms include areas where the signal decorrelates and is distorted by atmospheric 
delay. In this thesis I detail new analysis methods to reduce the limitations of conventional 
InSAR, by combining the benefits of advanced InSAR methods such as the permanent 
scatterer InSAR (PSI) and the small baseline subsets (SBAS) with a wavelet based data 
filtering scheme. This novel InSAR time series methodology is applied, for instance, to 
monitor the non-linear deformation processes at Hawaii Island. The radar phase change at 
Hawaii is found to be due to intrusions, eruptions, earthquakes and flank movement processes 
and superimposed by significant environmental artifacts (e.g., atmospheric). The deformation 
field, I obtained using the new InSAR analysis method, is in good agreement with continuous 
GPS data. This provides an accurate spatiotemporal deformation field at Hawaii, which 
allows time dependent source modeling.  
Conventional source modeling methods usually deal with static deformation field, while 
retrieving the dynamics of the source requires more sophisticated time dependent optimization 
approaches. This problem I address by combining Monte Carlo based optimization 
approaches with a Kalman Filter, which provides the model parameters of the deformation 
source consistent in time. I found there are numerous deformation sources at Hawaii Island 
which are spatiotemporally interacting, such as volcano inflation is associated to changes in 
the rifting behavior, and temporally linked to silent earthquakes. 
I applied these new methods to other tectonic and volcanic terrains, most of which revealing 
the importance of associated or coupled deformation sources. The findings are 1) the relation 
between deep and shallow hydrothermal and magmatic sources underneath the Campi Flegrei 
volcano, 2) gravity-driven deformation at Damavand volcano, 3) fault interaction associated 
with the 2010 Haiti earthquake, 4) independent block wise flank motion at the Hilina Fault 
system, Kilauea, and 5) interaction between salt diapir and the 2005 Qeshm earthquake in 
southern Iran.  
This thesis, written in cumulative form including 9 manuscripts published or under review in 
peer reviewed journals, improves the techniques for InSAR time series analysis and source 
modeling and shows the mutual dependence between adjacent deformation sources. These 
findings allow more realistic estimation of the hazard associated with complex volcanic and 
tectonic systems. 
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Zusammenfassung  
 
 
Oberflächendeformationen können eine Folge von vulkanischen und tektonischen Aktivitäten sein, 
wie etwa Plattenverschiebungen oder Magmaintrusion. Die Deformation der Erdkruste kann einem 
Erdbeben oder einem Vulkanausbruch vorausgehen und/oder folgen. Um damit drohende Gefahren für 
den Menschen zu verringern, ist die kontinuierliche Beobachtung von Krustendeformationen eine 
wichtige Aufgabe für Erdobservatorien und Fast-Responce-Systems geworden. Auf Grund des starken 
nicht-linearen Verhaltens von Oberflächendeformationsgebiet in Zeit und Raum, die mit 
konventionellen Methoden nicht immer erfasst werden (z.B., Nivellements), sind innovative 
Beobachtungs- und Analysetechniken erforderlich. 
In dieser Dissertation beschreibe ich Methoden, welche durch Mehrfachbeobachtungen der 
Erdoberfläche nit satellitengestützem Radar eine präzise und akkurate Abbildung der raumzeitlichen 
Oberflächendeformationen ermöglichen. Um die Bildung und Entwicklung von solchen 
raumzeitlichen Deformationsgebieten besser zu verstehen, zeige ich weiterhin neuartige Ansätze zur 
statischen und zeitabhängigen Modellinversion. 
Radar-Interferogramme weisen häufig Gebiete auf, in denen das Phasensignal dekorreliert und durch 
atmosphärische Laufzeitverzögerung verzerrt ist. In dieser Arbeit beschreibe ich wie Probleme des 
konventionellen InSAR überwunden werden können, indem fortgeschrittene InSAR-Methoden, wie 
das Permanent Scatterer InSAR (PSI) und Small Baseline Subsets (SBAS), mit einer Wavelet-
basierten Datenfilterung verknüpft werden. Diese neuartige Analyse von InSAR Zeitreihen wird 
angewendet, um zum Beispiel nicht-lineare Deformationsprozesse auf Hawaii zu überwachen. Radar-
Phasenänderungen, gemessen auf der Pazifikinsel, beruhen auf Magmaintrusion, Vulkaneruption, 
Erdbeben und Flankenbewegungsprozessen, welche durch signifikante Artefakte (z.B. 
atmosphärische) überlagert werden. Mit Hilfe der neuen InSAR-Analyse wurde ein 
Deformationsgebiet ermittelt, welches eine gute Übereinstimmung mit kontinuierlich gemessenen 
GPS-Daten aufweist. Auf der Grundlage eines solchen, mit hoher Genauigkeit gemessenen, 
raumzeitlichen Deformationsgebiets wird für Hawaii eine zeitabhängige Modellierung der 
Deformationsquelle ermöglicht. 
Konventionelle Methoden zur Modellierung von Deformationsquellen arbeiten normalerweise mit 
statischen Daten der Deformationsgebiete. Doch um die Dynamik einer Deformationsquelle zu 
untersuchen, sind  hoch entwickelte zeitabhängige Optimierungsansätze notwendig. 
Dieses Problem bin ich durch eine Kombination von Monte-Carlo-basierten Optimierungsansätzen mit 
Kalman-Filtern angegangen, womit zeitlich konsistente Modellparameter der Deformationquelle 
gefunden werden. Ich fand auf der Insel Hawaii mehrere, raumzeitlich interagierende 
Deformationsquellen, etwa Vulkaninflation verknüpft mit Kluftbildungen und Veränderungen in 
bestehenden Klüften sowie zeitliche Korrelationen mit stillen Erdbeben. 
Ich wendete die neuen Methoden auf weitere tektonisch und vulkanisch aktive Gebiete an, wo häufig 
die eine Interaktion der Deformationsquellen nachgewiesen werden konnte und ihrer bedeutung 
untersucht wurde. Die untersuchten Gebiete und Deformationsquellen sind 1) tiefe und oberflächliche 
hydrothermale und magmatische Quellen unterhalb des Campi Flegrei Vulkans, 2) 
gravitationsbedingte Deformationen am Damawand Vulkan, 3) Störungsdynamik in Verbindung mit 
dem Haiti Beben im Jahr 2010, 4) unabhängige blockweise Flankenbewegung an der Hilina 
Störungszone, und 5) der Einfluss eines Salzdiapirs auf das Qeshm Erdbeben im Süd-Iran im Jahr 
2005. 
Diese Dissertation, geschrieben als kumulative Arbeit von neun Manuskripten, welche entweder 
veröffentlicht oder derzeit in Begutachtung bei ‘peer-review’ Zeitschriften sind, technische 
Verbesserungen zur Analyse von InSAR Zeitreihen vor sowie zur Modellierung von 
Deformationsquellen. Sie zeigt die gegenseitige Beeinflussung von benachbarten 
Deformationsquellen, und sie ermöglicht, realistischere Einschätzungen von Naturgefahren, die von 
komplexen vulkanischen und tektonischen Systemen ausgehen. 
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Chapter 1 
 
 
Introduction 
 
 
Monitoring of crustal deformation has contributed to our understanding of tectonics, earthquakes, 
volcanism and landslides. Natural disasters, in particular such as volcanic unrest, require a fast 
response system including continous deformation monitoring and analysis scheme. Surface 
deformation measurements are routinely used to constrain the subsurface geometry of magmatic 
sources, active faults and the spatial distribution of coseismic slip. Even more importantly, these data 
provide our primary means for recording aseismic processes such as afterslips, viscoelastic and 
poroelastic adjustments and so-called silent earthquakes. Geodetic measurements provide invaluable 
constraints on the interseismic accumulation of strain that might be released in large and damaging 
earthquakes. Most volcanic eruptions are preceded by inflationary doming and stretching of the crust 
as large volumes of magma migrate from the mantle through the crust. 
The key to understand earthquakes and the eruptive potential of a volcanic system is aided by the 
stress transfer concept i.e. our ability to characterize the actual state of stress of a volcanic system and 
to understand how susceptible the system is to small parameter changes. Therefore the first task 
involves proper monitoring strategies including novel ground and space based observation methods. 
Modern advances in both the global positioning system (GPS) and interferometric synthetic aperture 
radar (InSAR) during the last decade, improved our ability to model these and other crustal processes. 
Having the time series of a deformation field, another important issue is to exploit the full capacity of 
this observation for modeling the dynamic of the subsurface deformation source. This requires an 
inversion approach functioning in semi real time manner as required by fast response systems, 
providing reliable estimation of the source of a deformation field.  
In this desertation I describe several novel methods applicable to volcanic and tectonic processes, 
including a method for InSAR time series analysis and confidenet static and dynamic inverse 
modeling approach. These methods are applied to different volcanic and tectonic regimes and the 
comparison against independent data shows their success for understanding the acting physical 
process. These new methods can be used as components of a fast response system to mitigate the 
hazard associates to natural disasters.    

 

1.1 Geodetic monitoring  
 
Advances in geodesy during the last couple of decades can be outlined by a number of key 
developments. First, there is a broadening of the spatial scales over which measurements can be 
performed. The use of artificial satellites boosted the definition and use of global reference systems 
and enabled the mapping of large areas on earth. Optical remote sensing from spaceborne platforms 
triggered fast developments in geodesy, especially using stereographic techniques, whereas point 
positioning entered a new era using global navigation satellite systems (GNSS) [Hanssen, 2002]. On 
more local scales there is considerable interest in monitoring surface deformations induced by 
earthquakes, volcanoes, glacier dynamics, post-glacial rebound, and anthropogenic deformation due to 
the exploration of mineral resources, geothermal energy, and water. Better understanding of these 
processes requires regular repeat measurements, high accuracy, and a fine spatial resolution. 
The accuracy of geodetic observations marks next development. As a result of the increased number of 
alternative techniques the quality, in terms of the precision and reliability, needs to be balanced with 
the specific goals of the measurement campaign [Hanssen, 2002]. 
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Moreover, in a more indirect way space geodetic observations can contribute to atmospheric physics. 
The influence of atmospheric refraction on the propagation velocity of electromagnetic waves is 
regarded as one of the most important error sources for distance measurement, one of the most 
elementary geodetic observables. Although space-geodetic techniques such as very long baseline 
interferometry (VLBI), radar altimetry, and global navigation systems such as GPS, were not designed 
for atmospheric studies, they contributed considerably to the global understanding of the atmosphere. 
Currently, GPS observations are used on a routine basis by meteorologists, e.g., for the observation of 
water vapor distributions [Hanssen, 2002]. 
Radar interferometry is embedded in this line of geodetic developments, retrieving surface 
deformation by measuring the backscattered signals in the line-of-sight (LOS) of sensor. This 
technique combines the characteristics of large-scale imaging and quantitative observations of 
distances (using phase change measurement). In terms of spatial scales, spaceborne radar 
interferometers are able to collect observations distributed over the entire earth. Quantitative ranging 
observations are currently collected over a swath width in the order of 100-500 km, with a resolution 
of about 2 m. As opposed to optical sensors, the active radar observations can be collected at 
nighttime, over areas with limited contrast, and through cloud cover. Whilst, using a single-pass 
interferometric conFiguration accuracies for elevation observations (e.g. digital elevation model) are 
comparable to the optical techniques [Hanssen, 2002]. 
 
1.1.1 Interferometric synthetic aperture radar 
 
Synthetic Aperture Radar (SAR) are -usually spaceborne- instruments that emit electromagnetic 
radiation and then record the strength and time delay of the returning signal to produce images of the 
ground. The emitted waves can be imagined as a sine wave. Conventional SAR images are made up of 
the amplitude or ‘strength’ of the sine wave. When the sine wave starts to repeat itself (phase angle > 
360 degrees), one cycle of phase has occurred.  
If we collect two separate images from exactly the same satellite position but at different times with 
noting that the target area does not change, one would expect the two sine waves from each image to 
have identical phase. In practice, the position of the satellite between two image acquisitions is never 
identical, and the corresponding difference in the path (distance between satellite and ground) means 
there is a difference in phase between the two signals (i.e. a phase shift). The physical path difference 
can be expressed as an integer number of wavelengths plus the fraction of one wavelength. It can also 
be expressed as a difference in phase angle between the two signals [Ferretti et al., 2007]. 
Interferometric synthetic aperture radar (InSAR) makes use of this phase information by subtracting 
the phase value in one image from that of the other, for the same point on the ground. This is 
generating the interference between the two phase signals and is the basis of interferometry.  
The phase difference for any point on the ground will take a value ranging from zero to 360 degrees. 
Neighboring ground points will yield other values of phase difference owing to changes in the path 
difference [Ferretti et al., 2007]. For a collection of points in a given area of ground, the 360 possible 
degrees of phase difference can be quantized into 256 grey levels and visualized as a fringe of 
differing grey level intensities. An interferogram image is made up of many such fringes [Ferretti et 
al., 2007]. Fringes can be thought of as a collection of contours where each unique grey level within 
and along the fringe corresponds to a constant phase difference. The constant phase difference within a 
fringe is directly related to constant path difference. In turn, path difference is a function of ground 
elevation as this affects the distance to the satellite. Therefore, constant path difference can be related 
to constant elevation. i.e. the phase difference contours within the fringe are indeed height contours, 
regardless of the environmental disturbances such as atmospheric delay  [Ferretti et al., 2007].  
Two distinct types of InSAR processing can be distinguished: additive interferometry and multiplicative 
interferometry. The signal resulting from the former is obtained by the incoherent summing of the 
amplitudes of two input signals. This results in so-called “amplitude” fringes. In multiplicative 
interferometry one is also able to measure the interferometric phase by coherent cross-multiplication of the 
two input signals. The phase data imply a better accuracy, as the fraction of the phase cycle is much easier 
to determine accurately. In 2D applications, a phase-cycle is often referred to as a [Hanssen, 2002]. 
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For the conventional InSAR to work successfully, a degree of similarity or correlation must exist in 
the surface properties between the two image acquisitions. In most parts of the world, particularly 
temperate regions, correlation between images will degrade with time due to changing/moving 
vegetation, differing climatic conditions, termed ‘temporal decorrelation’. Correlation tends to remain 
good in arid, desert regions where little change occurs. Coherence image represents the correlation that 
exists between corresponding pixels of the two images [Ferretti et al., 2007].  
The SAR frequency and bandwidth are used to determine the radar wavelength, and hence its 
sensitivity to surface displacement, topographic height, temporal decorrelation, and range resolution, 
The geodetic applications of spaceborne repeat-pass SAR interferometry can be categorized in roughly 
four disciplines (i) deformation mapping with mm–cm accuracy, (ii) topographic mapping with a 
relative accuracy of 10–50 m, (iii) thematic mapping based on change detection, and (iv) atmospheric 
delay mapping with mm–cm accuracy in terms of the excess path length [Hanssen, 2002]. 
However, the estimation of topography had been the main focus for the early applications of radar 
interferometry, yielding elevation accuracies comparable with optical methods, albeit valuable due to the 
all-weather capability of radar. Nevertheless, the experiments with the repeat-pass conFiguration clearly 
demonstrated an even more spectacular application; deformation monitoring. The relative LOS movement 
of scatterers with respect to a reference location in the image could be measured as a fraction of the 
wavelength, yielding cm to mm accuracies for L-band, C-band, and X-band radars [Hanssen, 2002]. 
A problem in this application is that, for an effective baseline larger than zero, the deformation signal is 
always mixed with topographic signal. A suitable solution to this problem was differential interferometry, 
where the topographic signal obtained from a so-called topographic interferogram (or a reference elevation 
model) was scaled to the baseline conditions of the deformation interferogram and subtracted from it, 
yielding a differential interferogram [Hanssen, 2002]. 
The first demonstration of differential radar interferometry for mapping the displacement field of the 
Landers earthquake was reported by Massonnet et al. [1993], who used a reference elevation model to 
remove the topographic phase signal.  
While conventional InSAR, measuring static deformation field, is a proven, very effective technique to 
detect deformation, almost any interferogram includes large areas where the signals decorrelate and no 
measurement is possible. Where measurement is possible, overprinting of the deformation signal with 
signal due to variation in atmospheric properties is a further issue. Moreover an effective monitoring 
system requires continuous observation strategy beyond the static deformation field obtained by 
conventional InSAR. 
Relatively recent analysis techniques, persistent scatterer (PS) InSAR and small base line sub set 
(SBAS) address both the decorrelation and atmospheric problems of conventional InSAR and provide 
the dynamic map of the deformation field. However, the implementations of PS in original form have 
been mostly limited to applications where there are many bright scatterers, which are usually man-
made structures. In contrast SBAS even shows merits in area where no bright scatterers exist such as 
rural and mountainous area. However both of them require in different stage of processing some 
assumption about the temporal behavior of deformation field. 
In this dissertation, we describe a novel InSAR time series approach, so-called WabInSAR (Wavelet 
based InSAR), that identifies and extracts the 3D map of the deformation field, applicable in areas 
undergoing non-steady deformation, with no prior knowledge of the variations in deformation rate (see 
chapter 2). WabInSAR relays on multi-master interferometry. It employs variety of wavelet based, 
Wiener and Kalman filters to reduce major sources of environmental artifacts. The noise is reduced 
pixel by pixel for all those areas that exhibit reliable interferometric phase changes. Furthermore, 
WabInSAR is strengthened by a novel approach for correcting the effects of satellite orbit error (see 
chapter 3). Further detail, test and validation of WabInSAR are presented in chapters 2, 3, 7, 8 and 9.  
 

1.2 Wavelet based analysis of irregularly sampled time series  
 

InSAR observations are usually sampled irregularly in time. In contrast, most of the mathematical 
transforms, are applicable to evenly sampled data sets [Pollock, 1999]. One way to construct a time 
series of regularly sampled observations within a range of a discrete set of points is to use 
interpolation. Various methods are used for interpolating a discrete set of points, such as linear, 
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quadratic, piecewise cubic Hermite polynomial (PCHP) and cubic Spline (CS) interpolation [Fritsch 
and Carlson, 1980]. PCHP and CS are often preferred because the interpolation error is usually small 
and also avoids an oscillatory behaviour of the interpolator. This may preserve the accuracy of the 
interpolation for monotone and smooth enough signals. The procedure for calculating PCHP and CS is 
similar, but the PCHP only guarantees the continuity of the first derivatives while CS provides a 
continuity condition to the second derivative, too. This means CS is more accurate for smooth data 
while PCHP leads to less oscillation for non smooth data sets [Fritsch and Carlson, 1980]. PCHP is 
generally less expensive to compute and applicable to large data sets.  
Herein we present a new wavelet based approach for analyzing unevenly sampled time series of 
deformation field in a statistical manner (see chapter 4). This technique first estimates the interpolation 
error using a Monte Carlo simulation approach. Later, this error is propagated through wavelet 
transform to the coefficients using error propagation theory. This helps to build a statistical test for 
evaluating wavelet coefficients. 
This approach is applied to a long time series of deformation field over Hilina fault system in Hawaii 
Island to detect hidden block-wise motions (see chapter 4).    
 

1.3 Inverse modeling of volcanic and tectonic dislocation 
source  
 
Modeling approaches can be divided into broad classes of analytic and numeric. Finite element 
modeling (FEM) is a widely used numerical technique for finding approximate solutions of partial 
differential equations (PDE) as well as of integral equations. The solution approach is based either on 
eliminating the differential equation completely (steady state problems), or rendering the PDE into an 
approximating system of ordinary differential equations, which are then numerically integrated. The 
development of FEM approach mostly began by advent of large processing units, because usually 
intensive calculation is required. However FEM usually provides an approximate solution for complex 
problem.  
In contrast, by assuming a predefined parametric solution, analytical modeling approaches try to 
provide a precise solution for the problem. However, the predefined parametric solution is usually a 
very simplified version of the real scenario. This means analytical modeling technique provides a 
precise solution for a simplified problem.  
These analytical models are widely used in volcanic and tectonic studies. Since first that the relation 
between surface deformation and magmatic sources of Japanese volcanoes was investigated via an 
analytical formulation of an inflating point source in an elastic half space [Mogi, 1958], many other 
developments in the field of analytical models and their applications have been achieved to constrain 
magmatic source parameters specifically based on surface deformation data. Okada [1985] presented a 
closed formulation to explain parameters of a rectangular dislocation source causing surface 
deformation in an elastic half space. This model is applicable to volcanic deformation as well and 
earthquake simulation, treating the source as a finite rectangular fault that is either subject to opening 
or subject to strike and dip slip motions. Shortly afterward, Davis [1986] presented an analytical 
expression of an ellipsoidal inflating cavity buried in an elastic half space that causes deformation at 
the surface and enables us to explore the surrounding stress field. This research was ground for other 
developments, such as an analytical expression of finite sphere in half space [McTigue, 1987] and 
pressurized dipping ellipsoidal source [Yang et al., 1988]. Despite their simplicity, these models have 
successfully explained observed deformation fields resulting from volcanic and tectonic activities over 
the past 60 years [Dzurisin, 2006], which together with independent geophysical and geological 
evidence demonstrated the validity of this kind of analytical expression to define the geometrical and 
mechanical parameters of the source of volcanic deformation.  
High resolution mapping of spatiotemporal deformation fields can provide important information 
about earthquake as well as volcanic source geometries and associated physical processes. Retrieving 
the information about the source of observed deformation field, numerical and analytical inverse 
modeling techniques are utilized. For instance, modeling approaches can provide the specific 
characteristics of a magma chamber based on geodetic data. The inferred characteristics of the magma 
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chamber (or “source”) can include diverse geometric parameters such as location, and volume pressure 
and change. These physical variables are especially important for hazard assessment, including 
volcano monitoring or fast response teams. 
The procedure to obtain parameters of an analytical model from an observed displacement field is an 
inverse problem. From a mathematical point of view, there are many different techniques for solving 
an inverse problem, and to investigate magma chambers processes (see chapter 5). A sophisticated 
inversion (optimization) technique requires a balance of robustness and efficiency. Geophysical 
solutions presented in the literature often provide details about the location and/or strength of a 
deformation source without knowing the sensitivity of the data and/or the model, which are directly 
related to the quality of the result. In order to evaluate the robustness of an inversion, the sensitivity of 
source parameters to the observations has to be evaluated first. Moreover, because space geodetic 
datasets are spatially and temporally increasingly large, the handling of this quantity of data together 
with their full variance-covariance matrix reflecting observation quality and relative weight has 
become a major difficulty in optimization problems.  
Moreover, in past years, there has been significant technical development in the detection of 
spatiotemporal surface deformation fields. Dense, continuous Global Positioning System (GPS) 
networks [Segall and Davis, 1997] and Interferometric Synthetic Aperture Radar (InSAR) time series 
[Berardino et al., 2002; Ferretti et al., 2001b] provided valuable information about the temporal 
evolution of deformation fields. These new developments yield daily and monthly deformation 
measurements with millimeter precision over regional scales [Dixon et al., 2006; King et al., 1995; 
Segall and Matthews, 1997; Tizzani et al., 2007]. To investigate the source of the time series of 
deformation field, an inversion scheme is commonly applied to either short or selected periods, and 
therefore provides merely a “snapshot” of a particular stage of a system. Modern developments in the 
field of deformation time series require appropriate progress in the inversion tools to address the full 
spatiotemporal capacity of the observations.   
Inhere, we detail two novel inversion approaches so-called RISC-GA and RISC-SA stands for 
randomly iterated search and statistical competency Genetic Algorithm (GA) and Simulated 
Annealing (SA) dealing with static deformation field. The main limitation of the existing algorithms is 
becoming trapped in a local minimum because, for example, of an inappropriate cooling schedule.  
An improvement is shown by combining the standard SA and GA with a randomly iterative (RI) 
approach. Another important aspect is obtaining a confidence region for the parameters by 
implementing a statistical competency (SC) test. The statistic used here considers observation quality 
and model deficiency together. Combining RI and SC, we presented a sophisticated inversion 
algorithm. These two approaches provide a reliable estimation of the subsurface deformation source in 
a semi real time manner.  
In the following RISC-GA is combined with Kalman Filter (KF) and lead to a new time dependent 
inversion approach provide time consistent deformation source model. The rationale for this 
combination includes the fact that the requirements of a KF are good a priori estimation of the initial 
covariance matrix of the parameters and their initial value. The advantages of our approach are (1) it is 
applicable to nonlinear systems; (2) the ability for handling irregularly sampled observations; (3) the 
capacity to incorporate heterogeneous observations; (4) the recursive manner that allows for efficient 
assessment of new data sets and expanding time series; and (5) the ability to be less sensitive to initial 
values and the requirement of only a rough estimation of search space. 
Further detail, test and validation of these approaches are presented in chapters 5, 6, 7, 9 and 10.  
 

1.4 Forward modeling the volcanic and tectonic stress field  
 
Several triggering mechanisms may govern volcanic and tectonic activities. However, change of the 
state of stress inside the system might be the most effective one and in this case there might be a 
potential for an eruption or earthquake. Thus a major requirement of an early warning system is 
confident characterization of the state of stress of the system on different time scales. Therefore 
improved monitoring techniques together with time dependent modeling approaches help to identify 
the state of the stress in the system as a function of time and may lead to successful forecasting a 
volcanic and tectonic activity.  
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Further detail and tests of the stress models are presented in chapters 9 and 10.  
 

1.5 Contributions 
 
There are five main focuses of this dissertation. First we describe a new Wavelet based InSAR time 
series approach (WabInSAR) that improves our knowledge about the 3D surface deformation field. 
Second, we describe a new wavelet based approach for investigating deformation time series aiming to 
identify hidden signals. Third, we detail a new confident static inversion algorithm as a combination of 
Genetic Algorithm and Simulated Annealing in iterated manner (RISC-GA/SA). Fourth, we present a 
new time dependent inversion algorithm as a combination of RISC-GA and Kalman Filter. Fifth, we 
apply these tools to investigate the deformation field at volcanic and tectonic area to improve our 
understanding about underlying physical process. Below we summarize the contributions of this work:  
a) InSAR time series approach 

1. We design and implement a new algorithm for generating accurate time series of deformation 
field using InSAR. 
2. We design and implement a new algorithm to identify less noisy pixels (i.e. elite pixels) using 
wavelet transform in series of interferogram integrating interferometric phase and amplitude in a 
statistical manner without any assumption about deformation behavior. 
3. We design and implement a new filter to reduce contribution of the topography error in InSAR 
time series using 2D Legendre wavelets. 
4. We design and implement a new filter to reduce effect of atmospheric delay in InSAR time 
series 3D wavelet transforms. 
5. We design and implement a new algorithm for correcting orbital error in repeat pass 
interferometry. 

b) Time series analysis and pattern recognition 
1. We design and implement a new algorithm for hidden component detection in unevenly 
sampled data sets of InSAR time series using wavelet decomposition.  

c) Static and dynamic inversion 
1. We design and implement a new algorithm for confident inversion of the surface deformation 
data using Genetic Algorithm. 
2. We design and implement a new algorithm for confident inversion of the surface deformation 
data using Simulated Annealing. 
3. We design and implement a new algorithm for confident time dependent inversion of the time 
series of surface deformation data using Genetic Algorithm and Kalman Filter. 

d) Geophysical application 
1. We resolved the discrepancy between depths of shallow dislocation source at Campi Flegrei. 
2. We find episodic linear pressure change at Campi Flegrei deformation source associated to 
linear flux into show reservoir. 
3. We obtained first island-wide spatiotemporal deformation field analysis at Hawaii Island. 
4. We obtained first island-wide time dependent deformation field model at Hawaii Island. 
5. We find complex spatiotemporal interplay of deformation field sources at Hawaii Island. 
6. We find that the silent events beneath Kilauea south flank play a significant role in interplay of 
deformation at Hawaii Island.   
7. We find that Damavand volcano is slowly gravitationally spreading. 
8. We resolved the discrepancy between deep aftershocks and concentrated surface deformation 
field of 2005 Qeshm earthquake. 
9. We find that the 2010 Haiti earthquake is affected by aseismic slip prior to the event.         
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1.6 Thesis Roadmap 
 

Chapters 2 to 10 of this thesis are written as independent studies including 9 manuscripts that have 
been already published or are in press or under review in scientific journals. It is therefore possible to 
read each chapter independently without the necessity of reading any previous chapters first. For each 
associated manuscript there are multiple authors, however, the author of this dissertation is the primary 
researcher and author in each case. 

Chapter 2 is primarily concerned with the development of a new InSAR time series 
(WabInSAR) technique based on multi-master interferometry. WabInSAR extract spatiotemporal map 
of the deformation field form those pixel carrying less noise. It employs variety of wavelet based filter 
to reduce the effects of environmental artifacts and retrieve accurate deformation field. For validating 
WabInSAR we apply it on Hawaii Island undergoing very complex volcanic and tectonic deformation. 
This chapter is under review in IEEE Transaction on Geoscience and Remote Sensing. 

Chapter 3 describes a new approach for correcting the orbital error in spaceborne InSAR 
using a combination of wavelet transform and robust regression. This approach is applicable to noisy 
interferograms where the orbital error is obscured by other effects such as deformation signal and 
atmospheric delay. This chapter is under review in IEEE Transaction on Geoscience and Remote 
Sensing. 

Chapter 4 describes a new wavelet based approach for detecting hidden signals in unevenly 
sampled geophysical time series. Inhere we first developed a Monte Carlo approach for estimating 
interpolation error assuming a monotone signal. The estimated error is propagated to the wavelet 
transform coefficients and helps to assess them in a statistical manner. This approach is applied to a 
time series of deformation over the Hilina fault system at the south flank of Kilauea and reveals block-
wise motion at this fault zone. This chapter is under review in Geophysical Research Letters. 

Chapter 5 presents two new robust inversion methods (RISC-GA/SA) as a combination of 
Genetic Algorithm and Simulated Annealing in an iterated a statistical manner. These two approaches 
are thoroughly tested on synthetic and real data sets. These approaches are important elements for a 
fast response system when a timely confident estimation of the source parameters is required. This 
chapter is published in Journal of Geophysical Research.    

Chapter 6 describes a novel time dependent inversion methods for modeling volcanic 
processes that vary in strength, location, and style over time as a combination of Genetic Algorithm 
and Kalman Filter (RISC-GA-KF). This approach is timely and useful since new advances in the filed 
of InSAR time series provides us with valuable spatiotemporal information of the deformation field on 
volcanic area. Exploiting full strength of these data sets requires new time dependent an inverse 
method which is addressed inhere. This chapter is accepted for publishing in Journal of Geophysical 
Research.  

Chapter 7 is concerned with the application of the RISC-GA-KF for dynamic modeling the 
source of deformation field obtained using WabInSAR at Hawaii Island. This study provides first time 
dependent island-wide multiple deformation source models at Hawaii Island. We find that complex 
deforming sources are interplaying over the time and silent earthquakes underneath Kilauea south 
flank play a significant role in type and degree of this mutual relationship. This chapter is under 
review in Journal of Geophysical Research. 

Chapter 8 presents the result of applying WabInSAR to Damavand volcano in northern Iran. 
In this manuscript we showed that the whole volcano is deforming and the most promising scenario 
explaining the observed signal is gravitationally-driven spreading. This chapter is under review in 
Geology. 

Chapter 9 is about application of WabInSAR and RISC-GA to preseismic monitoring of the 
Haiti 2010 earthquake. We find that aseismic slip on the adjacent segment of the coseismic rupture on 
Enriquilo fault zone has affected this earthquake. This chapter is under review in Nature. 
 Chapter 10 is concerned with the application of the RISC-GA to hybrid modeling the 
aftershock data and the coseismic deformation of 2005 Qeshm earthquake in southern Iran. In this 
study we present an alternative model for the coseismic deformation source that resolves discrepancy 
between aftershocks and surface deformation data. This chapter is under review in Society of America 
Bulletin. 
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Chapter 11 provides a summary of the thesis and suggestions for future work. 
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Chapter 2 
 
 
Wavelet based InSAR (WabInSAR): a new advanced time 
series approach for accurate spatiotemporal surface 
deformation monitoring1 
 

 
M. Shirzaei and T. R. Walter 

 
Section 2.1, Dept. Physics of the Earth, GFZ German Research Centre for Geosciences, 
Telegrafenberg, 14473 Potsdam, Germany 

 
 

Abstract 
 
High resolution interferometric synthetic aperture radar (InSAR) allows for the investigation of 
displacements of the ground associated with various geologic processes such as volcanic activity and 
earthquakes. Repeated satellite data acquisitions permit displacement monitoring as a function of time, 
and thus InSAR is increasingly considered as a sophisticated monitoring tool. However, significant 
error sources may contribute to the phase observation and bias the data interpretation in time and 
space. Through the generation of InSAR-time series and the study of the phase signal behavior at 
high-quality pixels, many of these artifacts can be estimated and corrected. 
In this study, we present a new wavelet based (Wab) algorithm that intends to generate, evaluate and 
correct InSAR time series data and, thereby, obtain an accurate spatiotemporal deformation field. 
WabInSAR first statistically approaches the generation of InSAR time series with an emphasis on the 
non-stationary signal behavior. Then to reduce the effects of different artifacts, such as topographic 
error, atmospheric delay and temporal decorrelation noise, we employ a novel suite of wavelet based 
Wiener and Kalman filters.  
We applied the WabInSAR algorithms to a data set of radar images over Hawaii Island known to be 
difficult for use in InSAR studies. The backscattered SAR signal and displacement map was found to 
be contaminated by atmospheric delay and a distorted topography that challenged different aspects of 
the WabInSAR algorithm. We compared the identified artifacts to independent works and validated 
the retrieved the deformation time series against the continuous GPS data. Hence, this work 
demonstrates the capacity of the WabInSAR approach to precisely retrieve the dynamics of displacing 
ground under difficult conditions. 
 

2.1 Introduction 
 
Interferometric synthetic aperture radar (InSAR) is a rapidly developing methodology with increasing 
relevance for the study and monitoring of ground displacements [Ferretti et al., 2007]. InSAR 
normally uses satellite radar images acquired from approximately the same viewing geometry. 
Through complex multiplication of the backscattered phase contribution, maps of deformation or 
digital elevation models are generated. The common difficulties encountered in the conventional 
                                                 
1 MS developed the approach and processed the data. All authors were involved in discussion and writing the 
paper. 
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InSAR techniques include signal decorrelation and environmental contaminants [1]. Because of the 
temporal behavior of environmental contaminants, such as clouds and vegetation, some of the 
difficulties are commonly approached by time series analysis [Ferretti et al., 2007]. Currently, there 
are two main categories of InSAR time series generation; first, the permanent (or persistent) scatterer 
(PS), which is relevant to those approaches that identify good pixels upon their phase stability in time 
and/or space [Ferretti et al., 2001b; Hooper et al., 2004; Kampes, 2005], and second, the small base 
line subsets (SBAS), which are relevant to the approaches that select good pixels based on spatial 
interferometric coherence maps [Berardino et al., 2002; Schmidt and Bürgmann, 2003]. While the PS 
approach uses the single master interferometry, the SBAS approach by definition employs the multi-
master interferometry and, hence, interferograms with small spatial baselines. Several similarities 
regarding signal handling, processing and denoising are present in the PS and SBAS approaches. Both 
favor sparse phase unwrapping to reduce the negative impact of the noisy pixels. Both approaches 
apply filtering routines to reduce the effect of digital elevation model (DEM) errors and of the 
atmospheric delay [Berardino et al., 2002; Ferretti et al., 2001a; Hooper et al., 2007]. The common 
disadvantages of the PS approach are the requirement of a large number of images and its model 
assumption for assessing the temporal deformation behavior. Most SBAS processing approaches, in 
contrast, are free from the assumptions of a deformation model. However, in the SBAS approach the 
associated DEM error filtering relies on models, such as a cubic polynomial model assumption for 
simulating a deformation temporal behavior (see eq. 25 in [Berardino et al., 2002]). The processing 
time for the PS approach is often significantly less than for SBAS because it consumes only a small 
number of interferograms and pixels, while SBAS also considers highly redundant observations that 
help to estimate the contribution of temporal random noise.  
Addressing these limitations and integrating advantages, we herein propose a novel InSAR time series 
method combining these strengths fully free from the assumptions about the temporal behavior of a 
deformation field. We combine these approaches with a suite of spatiotemporal filters for topography, 
atmosphere artifact and temporal decorrelation noise reduction. The core of our approach is based on 
the wavelet theory, which can classify the components of the data in terms of the frequency content in 
time and space and, therefore, perform quality estimation and error reduction. The itinerary of our 
wavelet based InSAR (WabInSAR) time series approach is first to address the issue of the pixel 
identification in a way that integrates all spatial and temporal information (such as phase and 
amplitude stability in time and coherence in space) in a statistical manner. This technique helps to 
identify good pixels and, therefore, may lead to accurate phase unwrapping and data refinement. 
Second, we present novel filters for reducing most of the artifacts relevant to InSAR time series. We 
investigate different wavelet families in an attempt to address the main sources of environmental 
errors, i.e., topographic error and atmospheric delay. The reason for using wavelets is straightforward 
because wavelets bear the capacity for adaptive signal analysis, hidden texture detection and the 
potential for extracting transient components [Chou and Wang, 2004; Gendron et al., 2000; Goswami 
and Chan, 1999; Grossmann et al., 1987; Newland, 1997; Pazos et al., 2003; Rezai and Ventura, 
2002; Zha et al., 2008]. In the simple case, the continuous wavelet transform of a function 

)()( 2 RLxf ∈  is defined by [Daubechies, 1992]: 
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dxx . The discrete wavelet transform is obtained by setting ja ′−= 2  

and jib ′−′= 2 , where Zij ∈′′, . 
Equation (2.1) can be efficiently calculated in the frequency domain [Torrence and Compo, 1998]. As 
described by Torrence and Compo [1998], using numerical methods, we are able to estimate a sort of 
equivalent Fourier frequency, the so-called pseudo frequency, for each scale associated with a 
different continuous and discrete mother wavelet function (see [Torrence and Compo, 1998] and 
references therein).       
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The conceptual advantage of wavelets in comparison to Fourier analysis is that wavelet transforms can 
be very diverse because there is no significant restriction on the selection of the wavelet mother 
function, which makes wavelet based filters very flexible for analyzing signal behavior and 
incorporating different auxiliary information. We apply wavelets in order to combine the strengths and 
overcome the weakness of earlier InSAR time series approaches. 
In the following, after describing the main idea and the steps of InSAR time series generation and 
filtering in the WabInSAR approach, we test it with data from Hawaii Island. Hawaii Island exhibits a 
complex non-linear deformation associated with volcanic activity and faulting, contaminated by 
significant atmospheric artifacts [Foster et al., 2006; Rosen et al., 1996]. To validate WabInSAR for 
this challenging example case, we compare the results to an independent deformation time series 
obtained from the observation of continuous GPS (cGPS) networks.        
 

2.2 Wavelet based InSAR time series (WabInSAR) 
 
2.2.1 Interferogram formation 
 
The formation of interferograms is a standard procedure, which we briefly outline herein for 
completeness. Similar to the SBAS approach, we begin by considering 1+N  images acquired over 
the same area at time steps ),...,,( 10 Nttt . First, we generate a number of k  possible interferograms by 

considering TB and ⊥B  as the maximum temporal and spatial baselines, respectively. The 
topographic phase is simulated and subtracted using satellite ephemeris data and an available digital 
elevation model (DEM). The phase change ( kδϕ ) at a pixel located at a coordinate ),( ηζ  in the k -th 
interferogram may be formulated as follows [Ferretti et al., 2007]: 

),(),(),(),(),( ηζϕηζϕηζϕηζϕηζδϕ k
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where k
defϕ  is the phase contribution due to ground deformation, k

topoϕ  is the phase error due to the 

inaccuracy in the topographic model, k
atmϕ  is the phase error due to atmosphere delay, and k

noiseϕ  is the 

phase noise due to other types of signal decorrelation. Because we are interested in k
defϕ , the other 

phase contributors ( k
topoϕ , k

atmϕ  and k
noiseϕ ) can be considered contaminants and should be reduced to 

achieve a high level of k
defϕ  accuracy.  

Because retrieving the useful information from very noisy pixels is critical and contaminated pixels 
also diminish the accuracy of the unwrapping procedure on other pixels, the algorithm is based on a 
sparse but less noisy group of pixels as detailed in the following section. 
 
2.2.2 Elite interferogram and elite pixel identification 
 
Elite pixels are distinguished as those that are less distorted by decorrelation [Zebker and Villasenor, 
1992]. As further detailed below, an elite interferogram is one that contains a small number of noisy 
pixels, i.e., the pixels are relatively less corrupted by decorrelation and hold higher quality phase 
information. For identifying both elite interferograms and elite pixels, we employ a combination of 
wavelet transforms and a Wiener filter. The Wiener filter was originally designed to reconstruct a 
noise-free signal. However, if the signal and noise are not independent in the frequency domain or if 
the signal is blurred, the Wiener filter works inversely and may even amplify the noise. We overcome 
this limitation by combination with wavelet transforms as follows. We analyze complex phase values, 
comprising  the amplitude and the phase combined [Zha et al., 2008]. We use a family of orthogonal 
wavelets, the so-called Daubechies wavelet, of order L . The Daubechies wavelets have a given 
support width of 12 −L  and a high capacity for detecting localized effects [Daubechies, 1992]. 
Examples of Daubechies mother wavelets at different orders are shown in Figure (2.1), where 
wavelets with lower orders (e.g., db1) have a comparable narrow support, while higher orders (e.g., 
db9) appear smoother at the expense of the associated support width. In other words, the mother 
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wavelets of lower orders appear to be more suitable to detect transient signal components. In contrast, 
higher orders apply to broader components yet may disregard very rapid changes, which means that, 
depending on the application, we may need to use mother wavelets of different orders or – preferably 
– a variety of wavelets.  

 
Figure 2.1. Examples of Daubechies mother wavelets of different orders used together with Wiener 
filter to identify elite pixels. 
 
We therefore first decompose the complex interferometric phase into a real ( rx ) and an imaginary 
( ix ) part. We consider the complex interferometric phase as [Hanssen, 2002] 
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where mA  is the amplitude and 1−=j . Resulting from decorrelation and system noise, re  and ie  
denote the zero mean Gaussian variables added to the real and imaginary parts. Therefore, the real and 
imaginary parts are as follows: 
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With the aim to estimate re  and ie , we decompose each part of (2.4) in the wavelet domain using a 
multiresolution analysis [Mallat, 1989]: 
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where Φ  and Ψ  are the smoothing and the mother wavelet function, respectively, v  and w  are the 
smoothing and wavelet coefficients, respectively, J  is the number of wavelet scales and .,.  is a 
functional inner product operator. This multiresolution analysis classifies the enveloping noise and 
signal in different wavelet scales. The wavelet coefficients mostly carry information about the high 
frequency components of the real and the imaginary part, i.e., noise. Given the noisy wavelet 
coefficients, to estimate the noise-free coefficients ( S ) we thereafter may employ a Wiener filter 
[Robinson and Treitel, 1967; Zha et al., 2008]: 
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where Γ×Θ is a local neighborhood window of each pixel and T  is the number of windows. After 
obtaining the denoised wavelet coefficients, we reconstruct the noise-free real ( rx) ) and imaginary 
( ix) ) parts of the complex interferometric phase using equation (2.5). In the following, the real ( re ) 
and imaginary ( ie ) parts of the noise are obtained by 

iiirrr xxexxe )) −=−= ,                                                                                                (2.8) 
For more detail about the use of the window size and tuning parameters in InSAR applications the 
reader is referred to the recent literature on noise reduction in interferograms using wavelet and 
Wiener filtering [Zha et al., 2008].  
The estimation of re  and ie  is directly associated with the decorrelation and system noise. We 
therefore can utilize this information and interpret it as a signal to noise ratio (SNR), applicable for 
any particular pixel in an interferogram.  
The estimated complex interferometric noise for each pixel in k  interferograms is 
{ }i

k
r
k

irir jeejeejee +++ ...,,, 2211 , with a mean value of ),( ir mm  and a standard deviation of ),( ir σσ . 
Assuming statistical independence between real and imaginary parts of the noise, the following 
bivariate normal distribution is found at each pixel: 
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We define the mean error for each interferogram by averaging the estimated phase noise of its pixels 
as ∑

′
′=

MM

p
kMM

p
k e1γ , ( irp ,= ), with a standard deviation of p

kβ , where M and M ′  are the number 

of pixels along the range and azimuth. By defining the total average error as ∑
′

′=
MM

p
MM

p m1μ , 

( irp ,= ), and assuming the statistical expectation of p
kγ  as pμ , we follow Vanicek and Krakiwesky 

[1982] and derive 1D statistics that are applied for both parts, re  and ie  [Vanicek and Krakiwesky, 
1982] as follows: 
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μγ
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where t  is the student probability density function. By specifying a significance level of α  (or 
confidence level α−1 ), the confidence interval for p

kγ  can be expressed as 
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p p

k
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k tt ββ
αα μγμ 1,1, 22 −− +≤≤−   ,  irp ,=                                                           (2.11) 

If this test fails for any of the real ( re ) or imaginary ( ie ) parts, the interferogram is deleted from the 
data set. If the test is successful, the interferogram is considered as an elite interferogram and further 
used in the analysis. The deletion process continues until no temporally isolated subset persists. In 
other words, all interferograms either are connected and/or their subsets temporally overlapped. Using 
this procedure we are identifying k′  elite interferograms, for which we now need to identify elite 
pixels. Similar to the previous step, if the associated complex interferometric noise of each pixel in k′  
elite interferograms is { }i

k
r
k

irir jeejeejee ′′ +++ ...,,, 2211  with an average value of ),( ir mm ′′  and a 

standard deviation of ),( ir σσ ′′ , the bivariate normal distribution in equation (2.8) can be modified as 
follows: 
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Considering the total average noise ∑
′

′ ′=′
MM

p
MM

p m1μ  and the statistical expectation of pm′  as pμ′  

in a statistic way similar to equation (2.10), one may obtain the following 1D statistic: 
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By specifying a significance level of α , the confidence interval for m′  can be expressed as 
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Similar to what was done before, if this test fails for any of the real or imaginary parts, the pixel is 
deleted; otherwise, it is defined as an elite pixel and considered for the rest of the analysis. Therefore, 
in this approach all of the pixels are considered to be elite pixels, which contain a noise history that is 
either close to zero or follow a normal distribution function in both the real and imaginary parts. As a 
result, in comparison to other InSAR time series approaches where the good pixels are those that 
contain less noise only, our approach may identify a much larger group of elite pixels. The approach 
considers the spatial similarity and temporal stability of the complex phase observations in a statistical 
manner. The other advantage of this approach is that it is applicable to a small data set, i.e., a 
minimum number of two interferograms.  
In the following, to retrieve the displacement field (δφ ), a standard operator for unwrapping the 
modulo π2  phase observation is employed [Berardino et al., 2002; Ferretti et al., 2001b]. Phase 
unwrapping (PU) is done in two dimensions using a minimum cost flow approach similar to what was 
used by earlier workers [Costantini, 1998; Costantini and Rosen, 1999], which is not further detailed 
here.  
 
2.2.3 DEM inaccuracy correction   
 
An important step is to reduce the effect of the digital elevation model (DEM) inaccuracy, hΔ , which 
is the difference between the true topography and the DEM used in the InSAR processing routine for 
topographic phase reduction. Earlier workers consider a temporal information and reduced this error 
using a low pass filter in time [Berardino et al., 2002; Ferretti et al., 2001b]. This method requires an 
assumption about the temporal behavior of the deformation field, such as a linear or cubic polynomial 
function that approximates the inflating volcano or moving fault. Such simplified assumptions, 
however, are not fulfilled in many real cases because geologic processes may act on many different 
scales, from instantaneous to periodic to highly non-linear trends. Therefore, in an attempt to reduce 
the DEM error we are using the spatial information where our signal is properly sampled and the 
aliasing effect is reduced. Earlier studies suggested that the most significant contribution to the height 
inaccuracy hΔ  is a high frequency pixel-to-pixel noise (see section 2.5.4 in [Kampes, 2005]). We 
address this hypothesis and identify the phase contribution of hΔ  in the unwrapped phase at a pixel 
located at the coordinate of ),( ηζ  in k th interferogram [Hanssen, 2002] to be 

),(
),(sin),(

4),( ηζ
ηζθηζλ

πηζϕ h
R

B
k

k
k
topo Δ= ⊥                                                                (2.15) 

where λ  is the radar wavelength, kR  is slant range from satellite to pixel ),( ηζ , kB⊥  is the 
perpendicular baseline and θ  is the local incidence angle, which varies in the case of the ENVISAT 
satellite between ~20° and ~45° for different imaging modes and swaths.  
We exploit the spatial information in order to estimate the pseudo spatial frequency properties of the 
DEM error as a result of SAR geometry. To perceive the meaning of pseudo frequency, we employ 
mathematics and simply expand equation (2.15) to Legendre polynomials [Heiskanen and Moritz, 
1967] as follows: 
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where mP  is the Legendre polynomial (LP) of order m . This equation implies that the contribution of 
the DEM inaccuracy can be considered as a power series of the LP scaled with the pixel-to-pixel 
variable amplitude. The argument of the LP is the incidence angle, which is known to vary smoothly 
in radar images, which may mean that the LP is unable to present a distinguishable undulation on a 
short intervals. Fortunately, because LPs are independent base functions for the space domain, they 
can identify variations even on this short interval, even in relatively high orders. Figure (2.2) shows 
normalized LPs of the order 0 - 50 versus 5° changes in the incidence angle, simulated for ENVISAT 
image mode acquisitions. Despite the slight change in the incidence angle, the LPs exhibit significant 
undulations. This mathematical extension corroborates that (a) the DEM error contributes a high 
frequency component in the magnitude of the observed phase, and (b) the DEM error preserves a sort 
of pseudo spatial frequency property.  
 

 
Figure 2.2. Examples of the normalized Legendre polynomials up to an order of 50, showing 
fluctuations of these function versus 5° relevant to the incidence angle change across the radar image 
in ENVISAT strip mode imaging.  

 
In first approximation, any efficient 2D low pass filter may be used for reducing the high frequency 
DEM error. However, we have additional information about the DEM error in the form of the LPs, 
which now allows more sophisticated filtering methods to be applied. Therefore, we design an 
adaptive low pass spatial filter based on Legendre polynomial wavelets (LPWs) [Lira et al., 2003] to 
extract the pixel-to-pixel high frequency components of the DEM error from the unwrapped phase. 
The reason for choosing LPWs is that the wavelet has shown merits when dealing with transient non-
stationary signals. In particular, LPW is sophisticated when the effects are very local, as they are in the 
case of the expected pixel-to-pixel DEM error. The success of a wavelet based filter is high if both the 
analyzing signal and chosen wavelet mother function have a similar shape [Daubechies, 1992; 
Goswami and Chan, 1999]. Further details of the mother wavelets used here for identifying elite pixels 
are given in Table 2.1. We follow earlier works that applied a wavelet based spatial low pass filter [Qu 
et al., ; Yuegang et al., 2007] and perform the following working steps necessary for the DEM error 
correction on the k -th interferogram: 

1- Threshold: We estimate the upper bound of the equation (2.15) by assuming a maximum 
DEM error value. The latter can often be obtained from earlier studies  (see [Gorokhovich 
and Voustianiouk, 2006]).  
2- Multiresolution analysis: We decompose the unwrapped phase by use of LPW. 
3- Filtering: We apply a hard threshold to the wavelet coefficients based on the upper bound 
of equation (2.15). 
4- Noise free signal: We reconstruct the unwrapped phase using filtered coefficients. 
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5- Error estimation: The corrected DEM error is obtained by subtracting the results of the 
step 4 from the original unwrapped phase.     
 

Table 2.1. The coefficients of smoothing function of LPW filter for orders of 1, 2 and 3 
  m=1  m=2  m=3 
h0 

2
2−   16

25−  
256

263−  

h1 
2

2−   16
23−  

256
235−  

h2   
16

23−  
256

230−  

h3   
16

25−  
256

230−  

h4     
256

235−  

h5     
256

263−  

 
Therefore, the main difference between this DEM correction approach and earlier works is that it does 
not rely on a model assumption for the temporal behavior of the expected deformation. Avoiding such 
a model is a major advancement for detection of and quantifying non-linear time series of deformation 
signals that are under-sampled (as they usually are) and where associated aliasing errors exist. Hence, 
the advantage of this approach is that it is applicable to a single interferogram. It is even applicable for 
investigation of InSAR data sets in full resolution where a high resolution DEM is not available and 
also for estimating the time dependent terms of the DEM error, which is significant for urban areas 
(e.g., fast growing cities). 
We further tested the DEM error correction approach based on a synthetic data set (see Appendix A).  
  
2.2.4. Time Series Generation  
 
The mathematical relation between the observations in a time interval of at  and bt  and the 
displacements to be identified were as follows: 

kq
ab ttq ′≤≤−= 1ψψφδ                                                                                              (2.17) 

where [ ]TNψψψ ,...,1= , that is, the vector of N  unknown displacements associated to a pixel at 

coordinates ),( ηζ  and [ ]Tk′= φδφδφδ ,...,1  and the vector of k′  known unwrapped interferograms 
that have been DEM corrected. Equation (2.16) might be expressed in a matrix form by 

φεφδψ −=ˆA                                                                                                                      (2.18)                          

where A  is the design matrix, ε  is observation error and ψ̂  is the estimated deformation time series. 
To solve equation (2.18), we use the best linear unbiased estimate (BLUE) approach [Bjerhammer, 
1973]. BLUE can be applied to a rank deficient (e.g., for isolated but temporally overlapping subsets) 
or to the full rank problem (e.g., for connected network of SAR images without isolated subsets).  
Assuming { } 0=φεE , where {}.E  is the statistical expectation, { } QE T =φφεε  and { }ψψεψ ˆˆˆ E−=  
(the estimated time series error) the following BLUE approach equation (2.18) might be inverted 
according to the following constraints [Bjerhammer, 1973]: 

min
min

ˆˆ

1

→

→−

ψψ εε

εε
T

TQ
                                                                                                                   (2.19) 

Therefore the solution is expressed in [Bjerhammer, 1973] as 
φδψ 1111 )()(ˆ −−−−= QAAQAAAA TTTT                                                                               (2.20) 

The variance-covariance matrix of ψ̂  can hence be expressed as 

{ }TEQ ψψψ εε ˆˆˆ =                                                                                                                      (2.21) 
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and it can estimate the precision of the time series. The advantage of BLUE is that it estimates 
unknowns as an unbiased minimum variance. Therefore, in the absence of systematic errors, this 
approach preserves both accuracy and precision of the time series (for more detail and the 
mathematical proof see [Bjerhammer, 1973]). In brief, the above approach directly considers the 
displacement field time series as an unknown, which is the main difference with the original form of 
the SBAS approach, where the mean phase velocity between acquisitions is estimated following the 
singular value decomposition approach. We note, however, that in the case of connected 
interferograms with no isolated subset, using algebraic calculation these two solutions can be 
converted to each other.      
 
2.2.5 Atmospheric Delay Correction  
 
Interferograms from various regions of interest, especially with significant topographic relief (such as 
at volcanoes), are subject to a significant source of error that results from atmospheric delay of the 
radar waves. Commonly, this process is thought to be the result of a change in the atmospheric 
conditions between two acquisitions [Hanssen, 2002]. Several earlier approaches proposed to reduce 
such atmospheric artifacts using the spatiotemporal information [Ferretti et al., 2001a; Hanssen, 
2002]. Here we essentially follow a similar concept; however, we achieve it using a novel 3D 
spatiotemporal wavelet-based filter. The rationale is that this artifact, while having spatial low 
frequency and temporal high frequency properties, behaves as a non-stationary process [Tatarski, 
1961] because the atmosphere properties (pressure, temperature and humidity) are mostly 
characterized by hourly, daily and seasonal variations. Regarding the radar satellite revisit time (i.e., 
35 day for ENVISAT), the majority of these effects are not retrievable due to aliasing effects. The 
atmosphere, therefore, may introduce a high frequency temporal effect that is found to be comparable 
to random noise [Tatarski, 1961]. However, the seasonal components and spatial decorrelation lengths 
are retrievable and also site dependent.  
In our approach, the spatiotemporal signal is decomposed using wavelet multiresolution analysis (see 
section 2.2.2). The wavelet coefficients at the scales that have a wavelength similar to atmosphere 
spatial decorrelation length and temporal frequency smaller to the assumed temporal frequency of the 
atmospheric delay are discarded.  
The designed filter comprises two distinct parts: a discrete 2D wavelet in space and a continuous 1D 
wavelet in time. The 3D filter is obtained by the tensor product of these two components. The discrete 
2D part is characterized by variable window sizes [Daubechies, 1992]. The window size is twice of 
the root mean square radius (RMSR) of the wavelet function that may be calculated in 1D by 
[Goswami and Chan, 1999] 
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In equation (2.22), .  is the absolute value operator. The window size is different than the spatial 
pattern of the deformation signal but consistent with the spatial decorrelation length of the atmospheric 
artifact. For the 1D temporal part, we use continuous wavelet transforms with a high ability for 
extracting hidden components and time-frequency localization [Daubechies, 1992; Torrence and 
Compo, 1998]. We note that there exists a variety of applicable continuous wavelets such as Morlet 
and derivatives of Gaussian (DOG) with different characteristics and applications [Torrence and 
Compo, 1998]. Herein, to build the 1D temporal filter, we use DOG wavelets, which are localized in 
the time and frequency domains. Moreover, we found that implementing a higher order of the 
derivation provides a better frequency localization for the mother wavelet.   
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In summary, the atmospheric contribution to the apparent deformation field is reduced through 
following steps: 

1-Threshold: We assume a maximum spatial decorrelation length and highest temporal 
frequency of the atmospheric artifacts. 
2-Multiresolution analysis: We decompose the deformation signal using the 3D wavelet filter. 
3-Filtering: We apply a threshold to the detail coefficients of the temporal and spatial wavelet 
decomposition based on step (1). 
4-Noise free signal: We reconstruct the corrected signal using the filtered coefficients.  

Further detail on the 3D spatiotemporal wavelet based filter parameters and adjustment of the 
decorrelation length are given in the chapter 2.3, where we apply WabInSAR to a data set of radar 
images over Hawaii Island. 
  
2.2.6. Temporal Noise reduction  
 
To reduce temporal noise and estimate the linear velocity for each pixel, we use a linear dynamic 
Kalman filter, which does not require any assumption about the deformation behavior. We apply an 
approach that is very similar to the processing method widely used in GPS time series generation 
[Hofmann-Wellenhof et al., 2000]. For the InSAR data, we assume each pixel to be a constantly 
moving vehicle subject to a random acceleration. Moreover, it is assumed that the displacement of the 
pixel at any time 0tt >  is observed (obtained in section 2.5) and that the observation variance is 
known (the variance matrix is obtained from section 2.2.4). The dynamics of the deformation time 
series in our case may be described by 
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In equation (2.23), ψ̂  is the vector of final deformation time series, tΔ is the time difference between 
radar acquisitions, v  is a constant velocity of the deformation time series samples, and w is the vector 
of system noise. The observation model can be expressed as 
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where ψ is the deformation time series obtained after atmospheric correction (see section 2.2.5) and 

te  is the noise of the measurements. After matrix calculation we may express the filtered parameters 

( 1
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In equation (2.25), +
+1tX

)
, +

+1tP , −
+1tX

)
, −

+1tP  and 1+tK  are the posterior estimate and covariance, a priori 
estimate, variance and the Kalman gain matrix, respectively.  
The relative temporal noise level of the data set is therefore reduced. In addition, one can obtain even 
smoother time series by applying further backward and forward Kalman filtering runs. However, the 
user should be aware that by smoothing the time series, some local information may be lost. 
The pixel-wise Kalman filtering may nevertheless produce a spatial high frequency noise, which is on 
the order of time series variance estimated as explained in section (2.2.4). We note that this effect is 
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similar to the contribution of the DEM inaccuracy and can be further reduced by applying the 
approach as described in section (2.2.3). 
 

 
Figure 2.3. WabInSAR Flowchart, for generating InSAR time series of surface deformation and 
reducing significant environmental artifacts. 
 
Here we should emphasis that the use of “Linear Kalman Filter” does not mean that a linear model for 
the temporal signal behavior is assumed. It rather means that the system dynamic from each time step 
to the next one is considered being linear with an uncertainty in the range of observation variance. 
Therefore the initial statement for proposing a fully model free approach is still valid.  
In chapter 2.3, we apply the WabInSAR approach to a SAR data set acquired over Hawaii Island. 
Figure (2.3) presents the flowchart summarizing the steps of the WabInSAR approach for generating 
the time series.   
 

2.3 WabInSAR application and validation: The Hawaii test 
case 
 
As a case study to test WabInSAR we selected Hawaii Island, hosting two of the earth’s most active 
volcanoes, Mauna Loa and Kilauea (Fig. 2.4). It is known that the volcanic and tectonic deformation 
field has a complex spatial and temporal pattern over this island [Amelung et al., 2007; Miklius and 
Cervelli, 2003; Segall et al., 2006]. In addition to the nonlinear and high rate deformation, the large 
decorrelation noise and atmospheric perturbation [Foster et al., 2006; Zebker et al., 1997] make this 
target difficult for conventional interferometry but ideal for assessing the strength of the WabInSAR 
approach.  
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Figure 2.4. Overview of the study areas, Hawaii Island, the Shuttle Radar Topographic Mission 
(SRTM) is used. The white dashed lines mark the approximate location of active faults. The 
information of the used radar images and the type of orbit is shown.  
 
Figure (2.5) shows two examples of generated interferograms (ENVISAT track 200) together with 
associated amplitude and coherence maps over Hawaii Island, spanning almost one year and 2.5 years. 
The topographic phase is calculated and subtracted using precise orbit ephemeris and a reference DEM 
(e.g., SRTM DEM of 90-m resolution). An Increase of the number of the fringes (each fringe equal to 
a ~2.8-cm displacement in LOS) over Mauna Loa and Kilauea may imply the evolution of the 
deformation over time. Moreover, 1-2 fringes are visible elsewhere on the island and might be due to 
surface deformation or due to artifacts. Note that a signal is backscattered in some areas over the ocean 
and also on land where vegetation is dense; it is most likely that the phase observations are distorted 
because the amplitude and coherence maps show very low values. This example illustrates that the 
pixels may carry very noisy information. In this study, we apply the seven steps of interferometry, 
pixel selection and the suite of wavelet-based filters to reduce environmental artifacts as described 
earlier.  
 
2.3.1. WabInSAR processing 
 
a) Interferogram formation: To apply WabInSAR, we employ a data set of 27 radar images acquired 
by the ENVISAT European satellite spanning the period of 2003 - 2008. The data geometry is 
descending orbit, track number of 200 and swath of I2 (i.e., °≈ 23θ ). Using this data set, we formed 
about 190 interferometric pairs with spatial and temporal baseline smaller than an arbitrary chosen 
threshold (here, mB 600max =

⊥  and yrBT 3max = ). The processing was carried out following a multi-
looking step with 4 looks in the range and 20 looks in the azimuth. This multi-looking step leaves us 
with a pixel size of about 80 m × 80 m and enables investigation of many interferograms with a 
reasonable (1 week) computation effort on a conventional PC. The general topographic phase is 
subtracted using satellite ephemeris and an available DEM. Before starting the pixel selection step, to 
reduce the amount of the data we eliminated pixels with coherence below 0.02.  



 21

 

 
Figure 2.5. Two examples of the formed interferograms together with associated amplitude and 
coherence maps, a) spans one year and b) spans about two year and half. 
 
b) Elite interferogram and elite pixel identification: Elite interferograms and elite pixels were chosen 
at the 95% confidence level. We implemented Daubechies wavelet of order 5 (db5) in 3 levels of 
decomposition. Because we are interested also in localized deformation components, the db5 was 
selected. Db 5 presents a balance between effective window width and smoothness; hence, it was 
identified by us to be a good candidate. However, we must note that according to our ongoing 
investigations, applying other wavelets such as Coiflet [Daubechies, 1992] leads to very similar 
results.  
Applying a combined wavelet multiresolution and Wiener filter, the complex interferometric noise 
history for each pixel was obtained. Figure (2.6) shows the estimated total average error and standard 
deviation for this data set for the real and imaginary part of the complex interferometric phase, 
respectively. By applying equations (2.10) and (2.13) we obtained about 170 elite interferograms and 
about 650,000 elite pixels (Fig. 2.6f).  
In the following, phase unwrapping was done in 2D for each interferogram. Afterwards, the 
unambiguous deformation field was obtained and could be used for analysis or further filtering as 
exemplified below.  
c) DEM inaccuracy correction: To reduce errors in the digital elevation model, the LPW wavelet was 
initialized with parameters as used for the synthetic test (see appendix A), except that for the 
maximum DEM error that we considered 15 m here. Figure (2.7a) shows the average corrected DEM 
error. The largest correction was applied to the area of the Kilauea caldera rim and the Kilauea 
northeast rift zone where the topography is frequently modified by eruptions, intrusions and mass 
movements. Figure (2.7b) shows a bivariate plot giving the normalized deformation velocity versus 
the corrected average DEM error. About 93% of these two components are independent, which 
implies that reduction of the DEM error did not induce additional components.  
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Figure 2.6. Estimated phase noise and the associated standard deviation using the wavelet-Wiener 
based filter to identify elite pixels, a, b) total average phase noise for real and imaginary part of phase 
observation, c, d) standard deviation of the phase noise for real and imaginary part of phase 
observation, f) location of the identified elite pixels. 
 
d) Time series generation: Following the DEM error reduction, we inverted the differential 
deformations in each unwrapped and corrected interferogram in order to generate a time series of 
deformation at the location of each pixel using the aforementioned BLUE approach. We estimated, 
moreover, the variance-covariance of the time series, which is an indicator for the precision of the 
result.  
 

 
Figure 2.7. a) the average corrected DEM error b) Bivariate plot, showing the amount of correlation 
between corrected DEM error and deformation velocity filed. 
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e) Atmospheric delay correction: Given the spatial and temporal deformation field history, we reduced 
the effect of atmospheric delay by applying a 3D spatiotemporal wavelet based filter (see 2.5). For 
reducing the atmospheric delay, we chose continuous wavelets. Moreover, for direct comparison 
between temporal wavelet coefficients and assumed frequencies of the atmospheric delay, we 
estimated the pseudo frequencies equivalent to continuous wavelet scales [Torrence and Compo, 
1998]. To make sure that the extracted temporal components result from the atmosphere, we 
considered the spatial information as well, which means the extracted temporal component and 
generated by atmospheric delay was also correlated in space within a certain range. Because 
specifying this range is not trivial and might vary from hundreds of meters to a few kilometers [Zebker 
et al., 1997], we chose Coiflets wavelet [Daubechies, 1992] with 5 levels of decomposition to provide 
an effective window length between 100 m and 5000 m for the pixel size of 80 m. This range covers 
the expected spatial correlation length of atmospheric delay over Hawaii Island [Foster et al., 2006; 
Zebker et al., 1997]. Because we had access to the supporting data for Hawaii Island [Foster et al., 
2006; Zebker et al., 1997], we used DOG order 10 and the Coiflets wavelet with 5 levels of 
decomposition to form temporal filters.  
f) Temporal noise reduction: After applying spatial and temporal filters using a linear dynamic 
Kalman filter, we decreased the temporal noise of the time series and estimated the final variance-
covariance matrix of the deformation field and deformation linear velocity field. The resulting filtered 
result mean displacement map is shown in Figure (2.8) and further described below. 
 
2.3.2 Reference point selection 
 
The temporal pattern of the deformation field is nonlinear, though for illustration purposes we present 
the linear deformation velocity for the Hawaii Island (Fig. 2.8a). The reference point of this 
deformation field is ‘MKEA’ GPS station located at the flank of the Mauna Kea Volcano. Mauna Kea 
is dormant and does not show any sensible deformation activity as seen in the continuous GPS data 
shown in Figure (2.8b) with respect to SNARF (Stable North American Reference Frame). The cGPS 
data used were sampled at rate of 30 seconds, and they were processed by Bernese 5 [Dach et al., 
2007] to solve the daily coordinate of the station. 
Regardless of the linear trend visible in horizontal components resulting from plate tectonic drift, there 
is no significant fluctuation from zero displacement. In the period of 2003 – 2008, the most significant 
seismic activity that might have affected MKEA was the October 15, 2006 Mw 6.7 earthquake 
occurring on the Kohala coast, about 60 km away 
(http://www.agu.org/meetings/fm06/pdf/fm06_lateBreakingSessionSched.pdf). However, at this date 
we see very slight fluctuation falling in the uncertainty range of observation and unlikely resulting 
from the seismic event. Therefore, MKEA might be considered as a suitable stable point.  
 

 
Figure 2.8. a) WabInSAR velocity field, b) cGPS time series of the deformation at MKEA GPS station 
in SNARF reference frame showing that this point is relatively stable to built a local reference frame. 
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2.3.3 Spatiotemporal deformation field and validation over Hawaii Island  
 
With respect to MKEA, four significant deforming areas are visible (Fig. 28a). These were found to be 
located at Mauna Loa summit, at the Kilauea caldera, at the Kilauea east rift zone, and in the region of 
the Islands’ capital Hilo city. The maximum uplift reaches up to 4 cm/yr in LOS. The non-linearity 
and complexity of the signal is found in the data time series. In Figure (2.9), the full spatiotemporal 
time series of the surface deformation obtained over Hawaii Island is shown. This Figure shows 
different episodes of activity at volcanic and tectonic systems.  
The temporal evolution of the surface deformation obtained by WabInSAR agrees with the cGPS data 
available at 9 stations (Fig. 2.10). These cGPS data were processed by Bernese 5 [Dach et al., 2007] in 
the ITRF2005 reference frame. The precise orbit data were obtained from IGS. The adjustment 
approach was a minimum constraint solution [Hofmann-Wellenhof et al., 2000] by fixing the MKEA 
reference station to zero displacement so that the time series of the cGPS data was obtained in a local 
coordinate system established based on an MKEA fixed point, which makes the projected cGPS data 
on the LOS of the satellite comparable to the WabInSAR time series. 
To achieve this comparison, we made a spatial averaging of the WabInSAR data in a circle centered at 
each cGPS station with arbitrary radius (here 250 m). This averaging is done for each data point of the 
time series and results in a WabInSAR time series that can now be compared to – and validated with – 
the cGPS data. In all evaluations, we considered an accuracy of 0.5 - 1 cm for the WabInSAR time 
series, which is in agreement with earlier works. 
Figure (2.10a-j) shows that there is a very good agreement between both the amplitude and the trend 
of the cGPS and our WabInSAR data sets at all stations. To further quantify this, for each station we 
estimated the difference between the cGPS and WabInSAR time series and the associated uncertainty 
(Fig. 2.10k). The average difference between cGPS and WabInSAR data sets for each station is less 
than 0.5 cm, and the average difference for whole data sets is about 0.13 cm. This comparison 
demonstrates the capacity of the WabInSAR to retrieve time series of the deformation at high 
precision.  

 
Figure 2.9. Full time series of the deformation obtained by WabInSAR over Hawaii Island in respect 
to MKEA station and the image acquired at 27 January 2003.   



 25

 

 
Figure 2.10. WabInSAR evaluation, a-j) presents the location of 9 cGPS stations and the comparison 
between cGPS time series (red dot) and WabInSAR time series (black dot), k) quantitative evaluation 
of the difference between WabInSAR and cGPS data sets for each station also the total average error 
considering whole stations which shows the average precision of 0.13 cm for the WabInSAR time 
series.      
 

2.4. Discussion           
 
WabInSAR is an approach that can generate an InSAR time series entirely free of any assumption 
about the temporal behavior of the deformation. It relies on multi-master interferometry and employs a 
variety of wavelet based, Wiener and Kalman filters to reduce major sources of artifacts. Further noise 
can be reduced pixel by pixel for all those areas that exhibit reliable interferometric phase information. 
In this work, we present WabInSAR as a wavelet-based processing package and flowchart, but we 
underline that only parts of the method have merit for other InSAR approaches and advancements. In 
the following, we discuss different aspects of WabInSAR. 
 
2.4.1. Why are wavelets chosen for WabInSAR?  
 
WabInSAR mostly relies on the combination of several filters designed based on wavelet transforms. 
Wavelets are dominant in the transient world and may be considered as base functions for the space 
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domain, generated by scaling and translating a single function [Daubechies, 1992]. In reality, most of 
the geologic phenomena (if not all) have a transient and, consequently, a wavelet structure. In crustal 
deformation processes, low frequency waves are often followed by high frequency components and 
vice versa. The wavelet theory can localize and identify such complex deformation behaviors and 
helps to better understand their reasons. Wavelets enable us to decompose a complicated signal and 
distinguish several simpler segments, each of which can be studied separately. This advantage applies 
not only to the deformation signal but also to elite interferograms and elite pixel selection as well as 
various environmental filtering techniques. Because the wavelet theory is based on a local frequency 
representation, it is different than Fourier and spectral analysis and appears to be more suited for 
InSAR data that are to be analyzed in multiple dimensions. 
 
2.4.2 The user problem 
 
Wavelets provide the user with a very large degree of freedom to choose the mother function, which is 
an advantage for identifying and studying complex signals. However, this large freedom requires very 
careful application of these mathematical transforms. For appropriate implementation of wavelet 
families, the user needs to be aware of 1) the characteristics of the signal that should be analyzed and 
2) the properties of the implemented mother wavelet. These answers help to choose the most suitable 
wavelet families that efficiently deal with a specific part of a desired signal.  
 
2.4.3 Data filtering or data loss? 
 
Careless data filtering in general might by associated with a significant loss of important information. 
Distinguishing the latter from the noise is one of the main aims of our work. For instance, in the elite 
pixel selection step, the Wiener filter used is implemented here in a combination with wavelets for the 
following reason. The Wiener filter alone is designed to be efficient for noise reduction. This 
assumption, however, is valid only as long as the signal is not blurred or the signal and noise spectra 
are independent. In real scenarios these assumptions are usually violated. A combination with 
wavelets can identify both noise and signal and overcome the Wiener filter limitation. Due to the use 
of the wavelet-based approach, the data loss by filtering is therefore reduced rather than enhanced. 
Furthermore, the DEM error correction is achieved using a spatial low pass filter designed based on 
Legendre polynomial wavelets. Earlier workers implemented temporal low pass filters, which require 
an assumption about temporal behavior of the deformation field. These approaches also need to 
consider a constant DEM error at each pixel over the observation period. The wavelet implementation 
led us to apply spatial low pass filters. The wavelet coefficients are simply the value of the cross 
correlation between the signal and the scaled and translated wavelet function. The higher the 
correlation, the more similar the shape of the signal and the wavelet function in the time/space domain 
are. This similarity also allows representation of most of the DEM error using a sum of a finite number 
of wavelet terms, which provides us with an effective low pass filter that can be applied to an 
individual unwrapped interferogram in space. However, we should mention that this filter may extract 
other effects similar to the DEM error such as thermal noise and unwrapping discontinuities. Because 
DEM errors are commonly largest in regions of geologic activity, the DEM error correction has to be 
applied with care. 
 
2.4.4 Atmosphere: Reduction of the largest error source in volcanic and tectonic 
terrains 
 
Assume that the bulk of the atmospheric contribution is introduced by changes over various time 
scales, many of which are shorter than the satellite revisit time. Changes of the pressure, temperature 
and water vapor in the troposphere as well as variances of the total electron contents (TEC) of the 
ionosphere significantly affect the radar signal. Associated errors appear over Hawaii as large as 
several fringes in individual interferograms (see Fig. 2.5). The temporal frequency of atmospheric 
delay might be assessed as follows. Naturally, we may assume that the most of the atmospheric 
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contribution in repeat pass InSAR is introduced by rapid turbulence lasting hours and by gradual 
changes occurring within days and seasons. However, due to the present low satellite revisit times, our 
observations are under-sampled. Therefore, they may influence the deformation time series similar to a 
random temporal noise. The shortest period that we may detect in the Hawaii case has a length of 
about two months (for our ENVISAT data sets). Therefore, we apply a temporal filter to detect 
components with a frequency of about one year and also those with rapid and transient behavior. 
However, the deformation signal sometimes contains a sort of seasonal behavior [Schmidt and 
Bürgmann, 2003]. In this case simply removing the annual component suspected for atmospheric 
delay may lead to a loss of important information. This brief introduction highlights the difficulties we 
face when dealing with atmospheric delay. For reducing the effect of atmospheric delay, we applied a 
filter in a combination of a 2D spatial filter based on discrete Coiflets (in 5 levels) and a 1D temporal 
filter based on continuous DOG wavelets. To test the impact of the spatial part of the filter, we tested 
two scenarios: 1) applying filter using Coiflets wavelet with 3 levels of decomposition and 2) applying 
only the temporal part of the filter. As long as the temporal part (i.e., the continuous wavelet) provides 
a high frequency localization property (DOG of higher order ~30), the results of all applications 
remain very similar at the expense of a higher computation time. It means that in the absence of a 
spatial part, by implementing many temporal decomposition levels, we increased the temporal 
resolution and extract transient components precisely. Therefore, in cases where there is no auxiliary 
information, by spending more time on computation, this algorithm can produce reasonable results.  
 
2.4.5 WabInSAR applied to Hawaii 
 
As a case study, WabInSAR was applied to a data set of radar images over Hawaii Island acquired in 
the period of 2003 - 2008 using the ENVISAT satellite. The majority of the deformation was observed 
at Mauna Loa and Kilauea volcano calderas and their rift zones. Hence, our work confirms earlier 
studies [Amelung et al., 2007; Montgomery-Brown et al., 2009a; Segall et al., 2006; Wright and Klein, 
2006]. Moreover, the trend and amplitude of WabInSAR time series over Hawaii is in good agreement 
with cGPS data with an average error of about 0.13 cm. The geophysical interpretation of the observed 
signal may include dike intrusion events and multiple fault movement, which will be further explored 
in a dedicated publication. The good agreement between our results, earlier work and GPS data 
supports the effectiveness of WabInSAR for the analysis of the deformation associated with volcanic 
and tectonic activities.  
 
2.4.6 Future developments 
 
Most of the concepts of WabInSAR are independent of the number of masters and mostly deal with 
single pairs, so it might be a relevant extension to single master interferometry, which has advantages 
in terms of computation time. Currently, we are working to implement the concept of WabInSAR in 
the framework of single master interferometry to lead to a wavelet based permanent scatterer. 
So far, we implemented standard wavelet families (such as Daubechies and Coiflet), which may fulfill 
the requirement of an InSAR time series analysis. An open question regards the analysis of a non-
stationary deformation time series using adaptive wavelets that are constructed based on the segments 
of the time series considered. This question is key for more realistic and accurate deformation time 
series generation. Answering this question leads to the design of specific wavelet functions dedicated 
to studying individual sites such as volcanic and tectonic sites as well as man-made activities. By 
obtaining the optimum conFiguration of the wavelet filters, a filter selection dedicated to distinct study 
areas is achievable.      
 

2.5 Conclusion 
 
We have presented a new InSAR time series algorithm that is fully free from model assumptions 
concerning the deformation behavior. Because many of the data selection, identification and denoising 
are based on wavelets, we named the approach ‘WabInSAR’.  WabInSAR is an advanced and 
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alternative view to the problem of InSAR time series generation and aims to revise and exploit the 
benefits of traditional time series approaches. As shown in this work, this method can distinguish 
between different components of phase difference, such as volcano surface deformation and 
environmental artifacts. A wavelet based statistical approach can identify elite pixels by utilizing the 
full spatial and temporal information available. Further wavelet based filters were successfully applied 
to reduce the effect of environmental artifacts such as the DEM inaccuracy and atmospheric delay, and 
a Kalman filter was found to be a sophisticated tool for reducing temporal noise.  
This approach can be applied to a few images because, theoretically, pixel selection can be done for a 
minimum of two interferograms (3 radar images), DEM error reduction is done for each interferogram, 
and for precise atmospheric correction using 3D wavelet transforms five images might be enough. 
However, having a larger data set of radar images may help to better simulate and subtract 
environmental artifacts.   
As a case study WabInSAR was applied to a data set of radar images acquired over Hawaii Island 
within 2003 - 2008, exhibiting large nonlinear deformation dynamic contaminated by significant 
atmospheric artifacts. The comparison of the WabInSAR time series and cGPS data proofed the ability 
of the presented approach to retrieve a dynamic deformation field with a precision of a few 
millimeters. 
 
Appendix A: Synthetic test for DEM error correction 
 
Because of the unknown characteristics of the DEM errors for each individual site, the following 
synthetic test considers the DEM error as a pixel-to-pixel high frequency noise with a spatial 
correlation. This scenario simulates the most significant part of the DEM error in InSAR data. Other 
effects such as slope and bias appear to be either negligible or might be considered in terms of orbital 
error and treated separately. We consider a deformation field that is the result of a magmatic inflation, 
simulated as a Mogi-type source [Mogi, 1958] at depth of 5 km with a volume change of 0.01 km3. 
This deformation is shown as an unwrapped phase, which is obtained at a grid with resolution of 80 
m× 80 m (Fig. A2.1.a). To simulate the DEM error in a more realistic way we add a sinusoidal 
component with a long period of 100 km and a random amplitude of up to 1.5 cm, which is equivalent 
to a maximum DEM error of up to 10 m for an interferogram with a perpendicular base line of 500 m, 
formed by radar images acquired by ENVISAT (Fig. A2.1.b). This procedure may allow testing the 
contributions of both spatially correlated and uncorrelated error components in the DEM. The 
unwrapped phase contaminated by the DEM inaccuracy is obtained by superimposition of the panels a 
and b in Figure (A2.1) and demonstrated in Figure (A2.1.c). 
The LPW is initialized with Legendre polynomials of orders 1 to 3 and one level of decomposition at 
each order (in this way the effective window width is in the range of the pixel size, see section 2.2.5). 
Following the multiresolution analysis of the simulated observation, the corrected unwrapped phase 
and extracted DEM error (see above for detailed steps) are retrieved and presented in Figure (A2.1.d, 
e), respectively. To allow a direct comparison between the original and the corrected data, we show 
the difference between these two in Figure (A2.1.f). Clearly the difference is at the level of 0.1 cm, 
which shows the capacity of the LPW filter for reducing DEM error.  
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Figure A2.1: a-f) Synthetic test showing the effectiveness of the LPW for reducing DEM error, a) 
simulated unwrapped phase using an inflating Mogi source, b) simulated DEM error using a 
sinusoidal wave with period of 100 km and random amplitude of 1.5 cm, c) superposition of the 
simulated unwrapped phase and DEM error, d) corrected unwrapped phase, e) corrected DEM error, 
f) separation between corrected unwrapped phase and simulated unwrapped phase. 
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Abstract 
 
Satellite radar data analysis is often performed on the basis of repeated acquisitions. Errors in orbital 
determination, however, transfer to the data analysis and may even entirely obscure resulting 
interpretation. Therefore, orbital error correction approaches have been developed, which may affect 
both, noise and signal, however. Orbital error reduction remained difficult, because, InSAR data may 
contain a large deformation rate, atmospheric delay, topography error, low coherence and orbital error. 
Therefore only a robust approach for estimating the orbital ramp allows discriminating the 
contributions of the other components. In this work, we present a wavelet multiresolution analysis that 
allows, distinguishing between orbital error and other components (e.g. deformation signal). Moreover 
we perform a robust regression that simulates the properties of the 1L -norm minimization for 
estimating the orbital ramp.  
The novel orbital error estimation approach is first explained in theory, and then validated based on a 
synthetic test and finally applied to an interferogram formed over Tehran area in north Iran. The 
validation test shows that the orbital ramp can be estimated by a precision of 1 - 3 mm. therefore 
similar precision may be obtained for a more difficult real data set over Tehran area that shows that the 
signal may partly be filtered out using standard approaches, where the multiresolution and robust 
regression approach succeed. Our approach is moreover suitable for time series application, such as 
persistent scatterers or small base line subset approaches.  
 

3.1 Introduction 
 
The Differential Interferometric Synthetic Aperture Radar (InSAR) is the procedure that interferes two 
overlapped radar images acquired from similar viewing geometry and subtracts the geometrical phase 
contributions using satellite orbital ephemeris and a reference Digital Elevation Model (DEM) 
[Ferretti et al., 2007]. The resulting interferogram contains information about ground displacement. 
However, it may also contain contributions from DEM inaccuracy, atmospheric artifact, the satellite 
state vector error or simply orbital uncertainties [Ferretti et al., 2007].       
The error in the satellite state vector can be attributed to an along track, cross track and a radial 
component [Hanssen, 2002]. The along track component is usually accounted once two radar images 
are coregistered [Hanssen, 2002]. The cross track and radial components both generate orbital fringes, 
                                                 
1 MS developed the approach and processed the data. All authors were involved in discussion and writing the 
paper. 
 



 31

the so-called phase ramp, which is often parallel to the satellite track. In presence of an error in the 
satellite flight velocity, perpendicular fringes  are feasible, too [Massonnet and Feigl, 1998]. The 
orbital error causes an incorrect so-called flat-earth phase to be subtracted [Hanssen, 2002]. Therefore 
in the real case, orbital fringes may have any pattern and orientation.  
For reducing the residual fringes resulted by orbital error, for the case of topography height estimation, 
one way is to use tie-points or ground control point (GCP) for constraining the reference phase at 
certain points in each interferogram [Hanssen, 2002; Massonnet and Feigl, 1998]. To apply this GCP-
approach one should ensure that the observation at the selected points is not tainted by any other 
contributions such as atmosphere and ground motion. Usually, however, the GCPs are affected by 
phase changes, therefore this approach may be too simplified and provide biased results. 
Kohlhase and colleagues suggested to reduce the orbital artifacts using the improved short-arc 
estimates [Kohlhase et al., 2003]. This approach is found applicable to well correlated interferograms 
where orbital fringes are clearly countable. However, the interferograms should not be affected by 
significant topography and atmospheric disturbances; mainly its application is problematic in many 
mountainous or volcanic regions.    
 Another now widely used approach is to approximate this artifact using a planar phase ramp in range 
and azimuth direction [Hanssen, 2002] with the following form; 

ξηξηϕ cbaorbit ++=),(                                                                                                       (3.1) 
where, η  is azimuth and ξ  is range in radar coordinate system. The unknowns a , b  and c  can be 
estimated in the least square sense. In the absence of atmospheric and topographic artifacts and high 
deformation rate using the linear approximation, a maximum phase error of 0.35 rad may remain in the 
interferogram after correction [Hanssen, 2002]. However, in the case that no other component 
contributes to the interferometric phase, a quadratic approximation even performs better, particularly 
for topography generation [Hanssen, 2002]. Nevertheless, in real case our observations remain tainted, 
and applying a quadratic approximation may lead to filtering out the signal, too. 
In practice the observation in an interferogram may be formulated as following [Ferretti et al., 2007]; 

),(),(),(),(),(),(int ξηϕξηϕξηϕξηϕξηϕξηϕ norbittopoatmdef ++++=                         (3.2) 
where, defϕ , atmϕ , topoϕ , orbitϕ  and nϕ  are surface motion, atmospheric delay, topography error, 
orbital error and decorrelation noise contributions to phase observation in an interferogram, 
respectively.  
Approximating the orbital error using equation (3.1) by a least square error approach is valid only if 
other terms of equation (3.2) behave randomly with a normal distribution function [Mikhail, 1976]. 
However, practically, this condition is often not fulfilled. 
In this study we present a new approach for reliably estimating the planar phase ramp in an 
interferogram contaminated by atmospheric and topographic artifacts, decorrelation noise and subject 
to a high deformation rate. 
 

3.2 Method 
 
One may consider a data set with a minimum of two radar aquisation, from which by complex 
multiplication an interferogram is generated. After subtracting the reference geometrical phase 
contribution and unwrapping the phase, first we decompose the unwrapped phase using a 2-D wavelet 
multiresolution analysis [Mallat, 1989]. The purpose of this decomposition is to discriminate between 
components contributed to the observed signal in the interferogram. The orbital error has a relatively 
low spatial frequency that affects the entire interferogram [Hanssen, 2002] while the atmospheric and 
topographic artifact and decorrelation noise may have a much shorter wavelength with different 
amplitude than orbital error (see [Gorokhovich and Voustianiouk, 2006; Hanssen, 2002]). The 
situation for surface displacement may differ, as it may, by chance, show a similar behavior to the 
orbital error with a near constant phase gradient. However, as we are selecting interferograms larger 
than the area subject to deformation, this conflict might be identified before ramp removal.  
We specify the number of levels for wavelet decomposition in the way that the effective wavelet 
window size is about the maximum wavelength of surface deformation, atmospheric delay, 
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topography error and decorrelation noise. This maximum wavelength might be estimated either 
visually or based on independent studies. The effective window size is twice of the root mean square 
radius (RMSR) of the wavelet function that may be calculated via following equation [Goswami and 
Chan, 1999]; 

2
1

22* )()(1
⎥
⎦

⎤
⎢
⎣

⎡
Ω−

Ω
= ∫

∞+

∞−

dxxxxrmsr
                                                                            (3.3) 

∫
+∞

∞−

Ω
Ω

= dxxxx 2
2

* )(1

 
2

1

2)( ⎥
⎦

⎤
⎢
⎣

⎡
Ω=Ω ∫

∞+

∞−

dxx
 

where, .  is the absolute value and Ω  is the wavelet mother function [Daubechies, 1992; Goswami 
and Chan, 1999]. Figure (3.1) shows the wavelet mother function and associated RMSR in five levels 
of decomposition for three different wavelet families, Coiflets (CF), Daubechies (DB) and Symlets 
(SYM) of order 1 till 5. All of these families have a compact support and can be used in a discrete or 
continuous form [Daubechies, 1992]. Coiflets and Symlets both have a symmetric shape while 
Daubechies is a-symmetric [Daubechies, 1992]. The number of vanishing moments and support width 
for Daubechies and Symlets wavelets of order N are of 2N-1 and N, respectively, while similar values 
for Coiflets of order N are 2N-1 and 6N-1, respectively [Daubechies, 1992].  
 

 
Figure 3.1. Comparison between different wavelet family and estimated root mean square radius for 
the pixel size of 80 × 80 m2 in five scales. 

 
Following decomposing the signal and subtracting higher frequency components mostly the orbital 
error contribution remains. Now we are able to apply equation (3.1). But still the requirements for 
applying a least squares approach might not be fulfilled. This is, because a) a variety of unknown 
environmental artifacts may contribute and b) some components which arise from the applied 
processing algorithm may not be taken into account. These contributions act as outliers (or gross 
errors), thus the main assumption of a standard least squares (LSQ) is violated [Mikhail, 1976]. The 
reason is that LSQ tends to distribute errors evenly between observations. This effectively may avoid 
distinguishing the observations that are affected only by orbital error than others. As an alternative, 
using a more robust approach such as the 1L  norm minimization, the sample median is yielded instead 
of the mean (the case for LSQ) [Brown and Bethel, 1991; Fuchs, 1982]. Implementing the 1L  norm 
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requires rigorous mathematical calculations that lead to a linear or quadratic programming problem 
using Gauss-Markov models [Amiri-Simkooei, 2003; Marshall and Bethel, 1996].  
A simpler way to simulate the properties of the 1L  norm is to implement the concepts of a robust 
regression [O'leary, 1990]. This approach employs the iterative weighted least squares, with 
observation reweighing as a bisquare function of the residuals from the previous step [O'leary, 1990]. 
The advantage is that this algorithm allows reducing the weight of those observations that are 
contaminated by an artifact. 
Assuming nA  remains after n  level decomposition of the signal with size of p  and q  along range 
and azimuth, respectively, the mathematical model might be written in terms of matrix algebra as 
following; 

13311 ×××× =+ XBL pqpqpq ε  
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where, ε  is the observation error. The weighted least square solution for equation (3.4) can be 
expressed as following [Mikhail, 1976];  
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where, pqpqP ×  is the diagonal weight matrix. Inhere we define P  using an interferometric coherence 
map as following; 
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where, C  is the coherence map and )(CVec  is an operator that generates a column wise vector with a 
size of 1×pq  by putting the columns of C  under each other. The residuals for observations are 
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−= . To start the iterative reweighted least squares problem we define a new weighting 
function as following; 
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The jW  is the weighting function at iteration of j  and is defined here as following [O'leary, 1990]; 
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where, T  is tuning factor (inhere 2.385 after [Holland and Welsch, 1977; O'leary, 1990]), h  is the 
leverage value, and r  is the degree of freedom [Holland and Welsch, 1977; O'leary, 1990].  
The new parameters can be obtained as following; 
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The statistical properties of this estimation is further detailed in [Huber, 1981]. The procedure of 
calculating the new weight and updating parameters is repeated until a predefined stopping criteria 
reached. The stopping criteria used here is as follows; 
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where, δ  is a small number (e.g. 10-7). Obtaining the optimum parameters, we subtract the plane 
ξη cba ))) ++  from nA  and reconstruct the signal using the corrected component of the multiresolution 

analysis. In this way we more confident that the component extracted is due to orbital error, whereas 
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other phase contributions are not affected by this estimation. In the following section we evaluate this 
approach on a synthetic test.  
 

3.3 Synthetic test 
 
For analogy to our real case study (section 3.4) we generated a simulated scenario with a spatial 
dimension of 100 km × 100 km. We have generated a synthetic interferogram using the superposition 
of the effect of four deflating point sources [Mogi, 1958] at depth of 3, 5, 4 and 6 km and a volume 
change of -0.01, -0.01, -0.03 and -0.04 km3, respectively, in elastic half space medium. For simulating 
a real scenario we added white noise with standard deviation of 50 degree and a colored noise to 
represent a random atmospheric phase signal with maximum correlation length of 2 km following 
[Hanssen, 2002; Hooper and Zebker, 2007]. Figure (3.2a) shows the simulated interferogram. The 
orbital error is simulated using a planar phase ramp (Fig. 3.2b) and the final signal containing large 
deformation amplitude, atmospheric delay, noise and orbital error is demonstrated in Figure (3.2c). 
The used coherence map for the synthetic test is the map shown in Figure (3.3e) for the real case study 
and the areas with coherence less than 0.1 are masked out (marked with arrow in Figure 3.2c). As 
shown in Figure (3.3c) the spatial extend of the area subject to large deformation is about 50 km, 
which is considered to be the maximum wavelength in the data set. 
The multiresolution analysis is done using Daubechies wavelet family of order 5 in 9 level of 
decomposition. The re-weighted least square is applied to the ‘approximate’ component in level 9. 
After 5 iteration the stopping criteria reached. 
 

 
Figure 3.2. Synthetic test, a) simulated surface deformation using a superposition of the effect of four 
deflating point sources at depth of 3, 5, 4 and 6 km and volume change of -0.01, -0.01, -0.03 and -0.04 
km3, and including noise and atmospheric artifact, b) the simulated orbital ramp, c) the examined 
simulated interferogram including orbital ramp, deformation and noise, d) the corrected 
interferogram for orbital ramp using our proposed method of wavelet analysis and robust regression, 
e, f) the corrected interferogram using standard approach for linear and quadratic ramp estimation. 
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The obtained corrected interferogram is presented in Figure (3.2d). As seen the signal associated to the 
surface deformation is preserved while the orbital ramp is corrected. The average orbital error of 0.7 
rad remains after applying our correction, which is equivalent to 1-3 mm error in estimating 
deformation field. For comparison purposes in Figures (3.2e, f) we presented the result of applying a 
standard approaches [Hanssen, 2002] for estimating a linear and quadratic ramp, respectively. As seen 
the standard approach in this case performs much worse than our novel technique. We note that even a 
quadratic approximation does not perform significantly better (Fig. 3.2f). Therefore, this synthetic test 
shows the merits of our approach for reliable estimating the orbital error.  
In the next section we apply this approach to an interferogram formed over an area of Tehran in north 
Iran.               
 

3.4 Case study 
 
We use a data set of two radar images acquired by ENVISAT radar satellite in descending mode over 
Tehran city, the capital of Iran with ~ 13 Mio inhabitants. The information of the interferogram is 
summarized in Table (3.1). This interferogram maps one year of phase difference in the satellites line-
of-sight. Figure (3.3a) shows the study area and in Figure 3.3b the geocoded interferogram overlaid on 
SRTM DEM is presented. In the geocoded interferogram several areas apparently undergo 
deformation in terms of concentrated fringes, affecting western part of Tehran city. Also several sub 
parallel fringes forming a ramp like pattern extending from NE to SW are observed. Figure (3.3c-f) 
illustrates the interferometric phase, amplitude, coherence and unwrapped phase, respectively, in radar 
coordinate system. Clearly the area of the city exhibits high coherence and amplitude, while the area 
subject to rapid deformation is poorly coherent.  
 
Table 3.1. Interferometric parameters of the pair used in the real case study 
Master acquisition date  2003.8.3 

Salve acquisition date  2004.8.22 

Master orbit  7446 

Salve orbit  12957 

Perpendicular base line  96.75 m 

Doppler shift  ‐13.45 Hz 

 
As seen this interferogram encounters a high deformation rate with relatively large spatial coverage, 
decorrelation processes and sort of sub parallel fringes that partly or entirely might be due to orbital 
error. For correcting the orbital error, we apply the same procedure and parameters as we applied to 
the simulated test. The stopping criterion was reached after seven iterations. For illustration purpose, 
we re-wrapped the final corrected interferogram to compare it with uncorrected interferometric phase 
(Fig. 3.3g). As seen in Figure (3.3g) most of the ramps are corrected. Also most of the localized 
deformations are preserved, while other local effects become better visible. However, as marked by 
arrows in Figure (3.3g), one ramp-like fringe left. By comparing to Figure (3.3b) we realize that this 
ramp-like fringe takes place at the intersection of the mountain and the plain, and has a spatial 
frequency property that is different from the other ramps. Therefore this ramp-like fringe may have a 
different origin, where the fringe at the mountain edge may be due to ground displacement. Figure 
(3.3h) presents the corrected orbital ramp.  
 

3.5 Summary and discussion 
 
We have presented a new approach for orbital ramp correction by combining a wavelet multiresolution 
analysis and a robust regression. Wavelet multiresolution allows discriminating between orbital error 
components and other contaminants. Furthermore using a robust regression approach to simulate the 
properties of a 1L -norm minimization, providing a reliable estimation of the orbital ramp. Using this 
approach, only the maximum phase error of 0.35 - 0.7 rad may remain in the interferogram after 
correction. This may cause about 1 – 3 mm error in the estimation of the deformation, which is 
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equivalent to random noise for independent SAR pairs. Therefore combining several corrected 
interferograms and generation of a time series of deformation may further guaranty an even more 
significant reduction of the orbital error and lead to high precision maps of the surface deformation 
field. 
The advantages of this approach are hence; 1) it is applicable to very noisy data containing large 
decorrelation, 2) it is applicable to data set subject to large surface displacement and/or atmospheric 
artifact, 3) there is no need to have countable orbital fringes to identify its contribution and direction. 
However, in the case that surface displacement has a very large spatial wavelength and a low rate (for 
instance in the case of extension tectonics in eastern Africa), which occupy the entire radar image with 
a similar pattern as the likely orbital ramp; applying such techniques may not be useful.      
Our approach classifies the unwrapped phase into its building blocks and only applies ramp estimation 
operator to those classes, which are most likely affected by orbital error. In this way, the orbital ramps 
are not obscured by the existence of large surface motion, atmospheric artifacts, topography error and 
decorrelation noise. Our approach of orbital ramp estimation provides the orbital correction by 1-3 
mm accuracy which is useful to identify slow tectonic processes, applied in special for precise InSAR 
time series generation approaches.         
 

 
Figure 3.3. Real case study Tehran plain, a) study area, b) geocoded interferogram overlaid on SRTM 
DEM, c-f) interferometric phase, amplitude, coherence and unwrapped phase, respectively, g) 
interferogram with corrected orbital ramp, h) extracted orbital ramp.  
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Abstract 
 
The Hilina Fault System (HFS), located on the southern flank of Kilauea volcano, is thought to 
represent the surface expression of an unstable edifice sector. Despite its structural and kinematic 
importance for landslide initiation processes, the fault activity has not been detected by means of 
modern space geodetic data.      
In this study we present surface deformation data obtained by an InSAR time series between 2003 and 
2010 over the HFS. We observe a smooth deformation affecting most of the Kilauea south flank. 
Because more complex and transient signal may be hidden in this deformation pattern, we apply a 
novel decomposition technique. We combine continuous wavelet transforms and piecewise cubic 
hermite interpolation integrated with a Monte Carlo error estimation and variance-covariance matrix 
propagation to carefully qualify wavelet analysis coefficients of the InSAR time series. The wavelet 
analysis reveals that the frequency content of the deformation time series over the HFS is temporally 
and spatially variable. The variability of the wavelet spectrum observed at the southern Kilauea flank 
suggests movements of blocks that are bounded by the segments of the HFS and implies the 
contribution of transient and local movements at this fault zone. Since the HFS is the source of the 
largest earthquakes that occurred at the south flank of Kilauea, our finding may provide new insights 
for a more realistic assessment of the instability process and associated hazards at Hawaii Island. 
 

4.1 Introduction 
 
The recurrence intervals of large earthquakes (M>7) at the Hilina Fault System (HFS) is estimated to 
be ~80 – 260 years [Cannon and Bürgmann, 2001]. In historic time the HFS has experienced several 
major events, the latest large earthquake occurred in 1975, i.e. Ms7.2 Kalapana earthquake [Ando, 
1979], which generated tsunami waves of up to 15 m height [Goff et al., 2006].  
The depth of the HFS is not well constrained, possibly being either a shallow structure (<3 km) that is 
active during major earthquakes [Swanson et al., 1976b], and/or representing the surface trace of a 
major and deep structure connected to the basal decollement at ~9 km depth [Parfitt and Peacock, 
2001]. As most of the recorded seismicity beneath the HFS locates deeper than 5 km [Wolfe et al., 
2007] the shallow segments may be either temporally locked or displacing aseismically. Because the 
unstable flank a) may lead to destructive earthquakes, b) is occurring in association with magmatic 
                                                 
1 MS developed the approach and processed the data. All authors were involved in discussion and writing the 
paper. 
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activity, c) may entirely or partly fail to generate tsunamis, therefore, characterising the deformation 
behaviour of the southern Kilauea flank is of great importance. In the next sections we first briefly 
explain the InSAR deformation time series as well as the tools we develop to analyze the time series, 
followed by a detailed description and discussion of the temporal and spatial occurrence of the fault 
activity and apparent aseismic flank movement.  
  

4.2 InSAR deformation field 
 
To study the spatiotemporal deformation field over the HFS on the southern flank of the Kilauea 
volcano, we used a data set of 44 radar images acquired in the period 2003 - 2010 in descending mode 
(track 200) by ENVISAT satellite. The data catalogue is almost complete; with an average sampling 
rate of 0.16 yr. We generated a dataset including ~520 interferograms with spatial and temporal 
baselines smaller than 450 m and 4 years, respectively. The topographical phase has been simulated 
and removed using satellite precise orbits and a reference Digital Elevation Model (DEM). To obtain 
the unambiguous differential deformation field, each interferogram has been unwrapped using a well 
tested minimum cost flow approach applied to those pixel containing less decorrelation noise 
[Costantini and Rosen, 1999]. The method for identifying less noisy pixels is derived from earlier 
works [Berardino et al., 2002; Hooper et al., 2007] based on interferometric coherence map. The 
unwrapped phase difference values are inverted using the approach of general unbiased estimate 
[Bjerhammar, 1973] to generate a time series of the deformation field [Schmidt and Bürgmann, 2003]. 
Finally, using the spatiotemporal information, which relies on the fact that atmospheric contributions 
are temporally decorrelated and spatially correlated, we apply a high pass filter in time and a low pass 
filter in space [Berardino et al., 2002]. Thus we assume that the effect of atmospheric delay was 
reduced. However, the filtered data are only used for estimation linear velocity as well as visualization 
and further analysis is done based on unfiltered time series to preserve all components (signal, 
systematic error and noise) of the deformation time series.   
Figures (4.1a) shows the linear velocity field. This data displays a rather diffuse deformation region, 
where no local faulting activity is visible at the HFS. However, as we will show further below, a local 
faulting activity may be hidden due to the complexity of the overlaying signal.  
Figures (4.1b, c) demonstrate the non-linearity of the deformation field at several selected points. 
Figure (4.1b) presents the time series of the deformation field at Kilauea caldera and the northeast rift 
dike. As seen, both show a similar behaviour until the dike intrusion occurred at the northeast rift in 
June 2007. The intrusion lasted June 17 - 19 and was accompanied by deflation at the Kilauea magma 
chamber. The physical process of this event has been well studied by several workers [Brooks et al., 
2008; Montgomery-Brown et al., 2009b], thought to be related to combined dislocation of the south 
flank, rift zone and shallow magma chamber.  
Figure (4.1c) shows the InSAR time series of deformation at several points chosen on different fault 
blocks of Hilina. The general trend is movement toward the satellite, possibly as a result of rift 
intrusions and gravitational loading [Denlinger and Okubo, 1995; Dieterich, 1998]. However, several 
local fluctuations are apparent which we investigate in more details in the next sections. 
 

4.3 Signal decomposition 
 
To further explore the “diffuse deformation region” and analyze the hidden signal components in 
irregularly sampled InSAR data, we first develop a scheme relying on interpolation. In this regard we 
estimate the interpolation error and later on we combine this approach with the continuous wavelet 
transform for identifying hidden deformation signals.  
 
4.3.1 Data interpolation and error estimation 
 
InSAR observations are usually irregularly sampled in time. In contrast, most of the mathematical 
transforms are applicable to evenly sampled data sets [Pollock, 1999]. One way to construct a time 
series of regularly sampled observations within a range of a discrete set of points is to use 
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interpolation. Various methods are used for interpolating a discrete set of points, such as linear, 
quadratic, piecewise cubic Hermite polynomial (PCHP) and cubic Spline (CS) interpolation [Fritsch 
and Carlson, 1980]. PCHP and CS are often preferred because the interpolation error is usually small 
and also avoids an oscillatory behaviour of the interpolator. This may preserve the accuracy of the 
interpolation for monotone and smooth enough signals. The procedure for calculating PCHP and CS is 
similar, but the PCHP only guarantees the continuity of the first derivatives while CS provides a 
continuity condition to the second derivative, too. This means CS is more accurate for smooth data 
while PCHP leads to less oscillation for non smooth data sets [Fritsch and Carlson, 1980]. PCHP is 
generally less expensive to compute and applicable to large data sets. Herein we hence concentrate on 
PCHP and try to device a framework for careful applying to time series.  
 

 
Figure 4.1. Kilauea south flank, a) study area and linear velocity field, geological faults and the 
location of the selected point for presenting the deformation time series. Red star depict location of the 
fixed reference point, and yellow box showing the area of HFS. b) InSAR time series of the 
deformation at Kilauea caldera and southeast rift, c) InSAR time series of the deformation at different 
points of the HFS. d) Interpolation error estimated for the HFS zone, e) Global wavelet spectrum 
obtained by analyzing the InSAR time series given in panel (c).  
 
The main concern is the accuracy of the interpolated data sets, an unsolved issue generally without 
external controls. Herein, by employing the concept of “check point” in a statistical manner, we are 
estimating the quality of the interpolation as follows. Assume, given n  irregularly sampled points in 
time NnntT ..1}{ ==  with distinct values of NnnxX ..1}{ ==  there are two PCHP, i.e. TP  and jP , that 

uniquely approximate NnnxX ..1}{ ==  and jnNnnxX ≠== ,..1}{ , respectively. For jP  we excluded the 

j th component (i.e. the check point) from NnnxX ..1}{ ==  and subsequently estimate it using jP  as 
jP

jx . The interpolation error may be stated as jT P
j

P
jj xxe −= . If we repeat the procedure for n′  

random points, a more robust estimate of the interpolation error is obtained via ∑ ′

=′=
n

j jn ee
1

1 .  

Using a Monte Carlo scheme, including a randomly iterated removal, evaluation and restore steps, we 
obtain an error distribution function likely in the Gaussian form. This Gaussian function is 
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characterized by two parameters, mean and variance, that both provide an estimation of the 
interpolation error over the intervals that the time series remains monotone.  For a comprehensive 
validation test the reader is referred to the supplementary material. 
 
4.3.2 Hidden signal detection using wavelet transforms 
 
The continuous wavelet transform (CWT) of a time series NnnxnX ..1}{)( ==  with a time step tδ  can 
be defined via convolution with a scaled normalized wavelet function ( 0ψ ) as following; 

)(*),(),( nXannaW Tψ=                                                                                                                (4.1) 
where a  is a scaling parameter,  ( T ) is the complex conjugate, (*)  is the convolution operator. 
Following Torrence and Compo, [1998] we may write; 
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Equation (4.1) can be re-written in the following form; 
)(),(),( nXannaW Ψ=                                                                                                        (4.3) 

where Ψ  is a nn×  circulant matrix, ψ  is the first row of Ψ and each row vector is rotated by one 
element forward relative to the preceding row vector. 
Equation (4.1) can be efficiently calculated using the convolution theorem in the Fourier domain 
[Torrence and Compo, 1998]. We further explore the linear equation (4.3) in order to propagate the 
full variance-covariance matrix of the time series to the wavelet coefficients. 
Having an time series NnnxnX ..1}{)( ==  with a variance-covariance matrix of xxQ  (including the 
interpolation error) the variance-covariance matrix of a wavelet coefficient at scale a  is expressed as 
following; 
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Substituting equation (4.3) in (4.4) and following some algebraic calculations we obtain; 
T

xxWW anQanQ
aa

),(),( ΨΨ=                                                                                                (4.5) 
This equation presents the variance-covariance matrix of the wavelet coefficients based on a variance-
covariance matrix of the time series.  
The global wavelet spectrum (GWS) at scale a  is defined as following; 
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Regarding the linearity of the equation (4.3), both the wavelet coefficients and the time series have a 
similar probability density function. Therefore by assuming a normal distribution function for the time 
series the following statistics for the GWS is derived from [Vanicek and Krakiwesky, 1982]; 
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where, t  is the t-student probability function and S  is the standard deviation of the wavelet 
coefficients at scale a . This statistic might be used to build a )%1( α−  confidence interval to identify 
an outlier as following; 
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If this test fails, the wavelet coefficient is considered to be an outlier and not further considered.  
This approach for hidden texture detection can be applied to any geophysical time series. Inhere we 
apply these tools to analyze the InSAR time series of the deformation field over the HFS. 
As we mentioned before, we examine the original InSAR time series without applying any 
atmospheric filtering. The atmospheric artefact is independent from other components in terms of their 
spatiotemporal frequency properties. Therefore, the result of InSAR time series wavelet 
decomposition is unaffected by atmospheric filtering. 
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4.4 Application to Hilina fault system deformation time series 
 
The hidden signal detection at the HFS may reveal activity at several associated fault segments. Figure 
(4.1d) shows the interpolation error with the average and maximum values of ~1 cm and 3 cm, 
respectively. The area with larger interpolation error indicates where the InSAR time series violates 
the assumption of being monotone, showing that for most of the south flank the approach is 
appropriate. As seen in Figure (4.1c), the InSAR time series at several points of the volcano flank are 
characterized by various fluctuations, which are better assessable in the global wavelet spectrum 
(GWS) plots (Fig. 4.1e).   
At all data points the GWS plots are obtained by applying equation (4.1) in the Fourier domain using 
the Derivatives of Gaussian (DOG of order 30) as the wavelet function. The covariance matrix was 
obtained by using equation (4.5). A 95% confidence region is considered by implementing equation 
(4.8) to identify reliable wavelet coefficients. Using those reliable coefficients the final GWS is 
calculated and illustrated in Figure (4.1e).  
Figure (4.1e) presents several periods in which the GWS is fluctuating at different sub-regions of the 
Kilauea south flank. To identify the spatial distribution of those frequency-dependent components we 
classified the normalized GWS at different time intervals as shown in Figure (4.2). The variances of 
these intervals are estimated using equation (4.5) and further detailed in electronic appendix. The 
interval with a period of 0 - 0.2 years presents the largest detectable frequency in our data set and is 
interpreted to be due to a very rapid change in the deformation time series e.g. intrusion events. 
Moreover, the period of 0.9 - 1.1 years showing very significant effect that might be associated with 
atmospheric delay based on the assumption that seasonal variability is the main source of change in 
the pressure, temperature and water vapour content of the troposphere. 
Figure (4.2a) shows the effect of very rapid changes in the deformation time series and reveals the 
presence of a high GWS in the southeastern part of the flank, which locally is bounded to geological 
structures. We note, however, that this frequency interval is highly sensitive to the observation noise. 
In Figure (4.2b) two zones of high GWS are visible in the southeast and southwest. We find that both 
of them are clearly bounded by known pre-existing fault traces of the HFS. In the frequency interval 
0.5 - 0.9 years the south-western block is similarly moving (Fig 4.2c), while now the southeastern 
blocks appear stable.  
Figure (4.2d) presents the components that are probably associated with atmospheric delay, which has 
a smooth spatial pattern and is similar to the estimated atmospheric artefacts in other studies [Williams 
et al., 1998; Zebker et al., 1997]. Figures (4.2e, f) show again areas of relatively high GWS, in their 
updip controlled by segments of the HFS. Figures (4.2g, h) demonstrate that the zone of the HFS 
experiences approximately uniform low GWS for the intervals of 2 - 3 years. The last Figure (4.2i) 
presents the longest period considered (i.e. 6-7 years) showing a very low GWS throughout the HFS. 
Larger periods could not be extracted using the available data set.   
In summary, the results of the wavelet decomposition of the InSAR time series reveal that isolated 
areas of the Kilauea south flank deform. These isolated areas are delimited by faults. The faults 
therefore define individual blocks, which are moving at specific frequencies. This suggests a spatially 
and temporally heterogeneous block-wise deformation field, which might be the complex surface 
expression of a continuously seaward movement of the south flank of Kilauea as further discussed 
below.    
 

4.5 Discussion  
 
Motion of the discrete blocks at Kilauea unstable flank have been postulated on a large scale before 
[Bryan and Johnson, 1991]. Our work shows the first InSAR evidence of a block-wise movement at 
the HFS. Using a frequency dependent InSAR analysis, we explore hidden signals in geodetic time 
series. We could find that the HFS segments bound discrete block-wise movements, which is also 
confirming paleomagnetic constraints on fault motions [Riley et al., 1999].   
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Foster and colleagues, using conventional InSAR, observed a deformation at HFS but interpreted it to 
be influenced by atmospheric changes. As noted by the same authors, the atmospheric model MM5 
(NCAR-Penn State Mesoscale Model Version 5) could not explain this signal, however [Foster et al., 
2006]. The reason for the apparent disagreement between the MM5 model and the observation might 
be the resolution and incompleteness of the MM5 model for explaining very local effects, or the 
contribution of hidden deformation signals such as a motion of the HFS blocks. Because the HFS 
consists of several normal faults with scarps up to 500 m height, the influence of both deformation and 
the variable troposphere’s properties should to taken into account [Zebker et al., 1997]. Because, in 
wet regions such as Hawaii Island, a 20% change in the humidity may lead to ~10 cm displacement 
error [Zebker et al., 1997]. Consequently, the segments of the HFS may trap local anisotropies, in 
particular water vapour, and cause a artefactual phase change in the observed radar phase that can be 
mis-interpreted as surface deformation.  
 

 
Figure 4.3. Frequency classification of the global wavelet spectrum, a - i) present the averaged and 
normalized GWS in different frequency classes. 
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The wavelet analysis of a signal deals with transient components as well as elements with mid- and 
long- term periods. Considering any deformation signal to be a result of many different superimposed 
components the wavelet analysis is able to identify and classify the building blocks upon their 
frequency properties.  
The assumption for applying the Monte Carlo interpolation approach is that the signal is monotone. 
This assumption, however, is not always fulfilled. In the case of the fully non-stationary and unevenly 
sampled time series, we emphasis that, there is no confident method yet to fill gaps and estimate the 
associated quality.  
After wavelet analysis of the HFS data set (Fig. 4.2a-f) we found that different frequency classes up to 
2.5 years reveal isolated areas of the HFS to be moving at different scales. The analysis shows 
significant GWS areas bounded by geological structures. As these match with the areas of the HFS 
blocks, this study shows the deformation activity at these faults.  
In contrast as seen in Figure (4.2d) (the components of 1 year interval associated with seasonal effects) 
there are local smooth effects bounded by sharp HFS morphology while being indifferent to the 
internal minor geological structures. Therefore we conjecture that the interpreted deformation is true. 
Because of a lack of seismicity at the shallow zone we may speculate that the faulting activity is 
aseismic.  
This finding has a significant importance for hazard assessment on Hawaii Island, because since the 
last great earthquake occurred in 1975, no geodetic or seismic evidence for activity of these shallow 
faults has been evidenced. As, in particular, the study of the relation between the surface moving 
sequence and the downdip fault geometry is of interest for flank instability assessments; now, this 
study provided new line of evidence for aseismic block-wise movement which similarly can be tested 
and applied to other deforming volcanic and tectonic areas.  
 

4.6 Conclusions 
 
We presented and analyzed a 7-year InSAR time series over the south flank of Kilauea to study the 
local activities at the HFS. The motivation was to extract hidden information probably obscured by 
other signal components. To this aim we developed an approach for wavelet analysis of unevenly 
sampled data. It is based on a Monte Carlo approach for interpolation error estimation and variance-
covariance matrix propagation through the wavelet transforms. We also provide a statistical test for 
evaluating the significance of wavelet coefficients.  
The frequency classification revealed a block-wise movement at the Kilauea south flank, characterized 
by different frequency properties at the HFS segments. As shown at higher frequencies specific fault 
segments are locally active. In the low frequencies, in turn, the entire south flank behaves similarly, 
possibly, influenced by slow flank spreading. The evidences of a frequency-dependent block-wise 
fault movement are of importance because of the lack of seismicity at the shallow fault zone, and the 
requirement for identifying the partially locked or aseismically slipping Hilina segments.  
 

4.7 Auxiliary material 
 
4.7.1 Evaluating Data interpolation and error estimation approach via Synthetic 
test 
 
To evaluate the approach for estimating accuracy of interpolation we employ a synthetic test. Figure 
(S1b) demonstrates the simulated data set in filled black circles and also the original analogue function 
in solid line. Herein, 20=n , 5=′n  and number of iteration is 1000. Figure (S1b) shows the misfit 
histogram for this test that has Gaussian form. The mean and variance for this Gaussian shape 
distribution are -2.3 and 7.1, respectively.   
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Figure S4.1: synthetic test, a) original data set and sub-sampled irregularly spaced data set, b) 
misfithistogram of the Monte Carlo simulation showing the distribution of the interpolation error. 
4.7.2 Global wavelet spectrum variance  
 

 
Figure S4.2. The normalized GWS variances obtained by propagating interpolation error through 
wavelet transform. The classes are the same as Figure (4.3). 
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Abstract 
 
Modern geodetic techniques provide valuable and near real time observations of volcanic activity. 
Characterizing the source of deformation based on these observations has become of major importance 
in related monitoring efforts. We investigate two Random Search approaches, Simulated Annealing 
(SA) and Genetic Algorithm (GA), and utilize them in an iterated manner. The iterated approach helps 
to prevent GA in general and SA in particular from getting trapped in local minima and it also 
increases redundancy for exploring the search space. We apply a statistical competency test for 
estimating the confidence interval of the inversion source parameters, considering their internal 
interaction through the model, the effect of the model deficiency, as well as the observational error. 
Here, we present and test this new Randomly Iterated Search and Statistical Competency (RISC) 
optimization method together with GA and SA for the modeling of data associated with volcanic 
deformations. Following synthetic and sensitivity tests, we apply the improved inversion techniques to 
two episodes of activity in the Campi Flegrei volcanic region in Italy observed by the InSAR 
technique. Inversion of these data allows derivation of deformation source parameters and their 
associated quality, so that we can compare the two inversion methods. The RISC approach was found 
to be an efficient method in terms of computation time and search results, and may be applied to other 
optimization problems in volcanic and tectonic environments. 
 

5.1 Introduction 
 
High resolution mapping of spatiotemporal deformation fields can provide important information 
about earthquake and volcanic source geometries and associated physical processes. Utilizing 
numerical and analytical modeling techniques, detected deformation signals can be theoretically 
reproduced, and, for instance, the specific characteristics of a magma chamber being determined. The 
inferred characteristics of the magma chamber (or “source”) can include diverse geometric parameters 
such as location, and volume pressure and change. These physical variables are especially important 
for hazard assessment, including volcano monitoring or fast response teams. 

                                                 
1 MS developed the approach and inverted the data. All authors were involved in discussion and writing the 
paper. 
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Since the relation between surface deformation and magmatic sources of Japanese volcanoes was 
investigated via an analytical formulation of an inflating point source in an elastic half space [Mogi, 
1958], many other developments in the field of analytical models and their applications have been 
achieved to constrain magmatic source parameters specifically based on surface deformation data. 
Okada [1985] presented a closed formulation to explain parameters of a rectangular dislocation source 
causing surface deformation in an elastic half space. This model is applicable to volcanic deformation 
as well and earthquake simulation, treating the source as a finite rectangular fault that is either subject 
to opening or subject to strike and dip slip motions. Shortly afterward, Davis [1986] presented an 
analytical expression of an ellipsoidal inflating cavity buried in an elastic half space that causes 
deformation at the surface and enables us to explore the surrounding stress field. This research was 
ground for other developments, such as an analytical expression of finite sphere in half space 
[McTigue, 1987] and pressurized dipping ellipsoidal source [Yang et al., 1988]. Despite their 
simplicity, these models have successfully explained observed deformation fields resulting from 
volcanic and tectonic activities over the past 60 years [Dzurisin, 2006], which together with 
independent geophysical and geological evidence demonstrated the validity of this kind of analytical 
expression to define the geometrical and mechanical parameters of the source of volcanic deformation.  
The procedure for obtaining the parameters of an analytical model from an observed displacement 
field is an inverse problem. From a mathematical point of view, there are many different techniques 
for solving an inverse problem, and to investigate magma chambers processes (see Table 5.1). A 
sophisticated inversion (optimization) technique requires a balance of robustness and efficiency. 
Geophysical solutions presented in the literature often provide details about the location and/or 
strength of a deformation source without knowing the sensitivity of the data and/or the model, which 
are directly related to the quality of the result. In order to evaluate the robustness of an inversion, the 
sensitivity of source parameters to the observations has to be evaluated first. Moreover, because space 
geodetic datasets are spatially and temporally increasingly large, the handling of this quantity of data 
together with their full variance-covariance matrix reflecting observation quality and relative weight 
has become a major difficulty in optimization problems. Several algorithms have been proposed to 
downsample such large datasets, including either sophisticated approaches such as Quadtree sampling 
[Jónsson et al., 2002] or simple methods such as uniform sampling. Although these methods 
principally downsample the observation field, some important data may be lost. Therefore, as an 
alternative, improved and faster inversion algorithms may allow use of a more complete or even full 
data set.         
 
Table 5.1. Summary of selected optimization methods used in different branches of geosciences 
Method  Main idea  Application  Advantage  Disadvantage 
Least‐Squares  Gradient based  [Lundgren et al., 2001] 

[Jónsson et al., 2002] 
[Battaglia et al., 2003; 2006] 
[Lanari et al., 2004] 

Very fast for 
convex search 
space 

May get trapped in local minima. 

Monte Carlo  Randomly samples the parameters 
space 

[Keilis‐Borok and Yanovskaja, 
1967] 

Gradient free  Slow. 
May miss the global solution. 

Neighborhood 
Algorithm* 

Generate new samples with density 
function related to pervious step 
samples 

[Sambridge, 1998; 1999a; 
1999b] 
[Amoruso et al., 2007] 

Gradient free  Slows down very significantly when 
the number of parameters increases. 

Simulated 
Annealing* 

Motivated by analogy between 
annealing in solids and 
optimization problems 

[Cervelli et al., 2001b] 
[Chevrot, 2002] 
[Jónsson et al., 2002] 
[Amelung et al., 2007] 

Gradient free, 
fast 

Slows down when the number of 
parameters increases. 
Success depends on the cooling 
schedule. 
May find a solution in the vicinity of 
the global solution. 

Genetic Algorithm*  Motivated by analogy between 
biological evolution and 
optimization problems 

[Currenti et al., 2005] 
[Gottsmann et al., 2006] 
[Carbone et al., 2008] 

Gradient free, 
fast 

Slows down when the number of 
parameters increases. 
May find a solution in the vicinity of 
the global solution. 

* These methods are basically inspired by Monte Carlo search approach and fall into the same class 
 
In this paper, we investigate the robustness and efficiency of optimization techniques with a focus on 
two sophisticated commonly used methods: the Simulated Annealing (SA) and Genetic Algorithm 
(GA). In comparison to other optimization techniques, SA and GA have been shown to be excellent 
methods for finding global solutions in complex search spaces [Sambridge and Mosegaard, 2002], 
which stimulate researchers in various geophysical disciplines to use these methods for optimization 
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(Table 5.1). We evaluate the advantages and disadvantages of these methods and find that GA, in 
general, and SA, in particular, may get trapped in local minima. Therefore, we suggest including a new 
iterative approach and statistical competency test to elude local traps and to estimate the reliability of 
the solution, thus improving the quality of the result.  
The paper is organized as follows. First, in synthetic tests, we consider analytical models of different 
sources as an effective component governing the interaction of observation and inversion parameters. 
The investigated sensitivity allows us to estimate how a model may affect the precision and accuracy 
of inversion results. Second, we explain SA and GA optimization methods and show which parameters 
are important for the algorithm to successfully find a global solution. Third, we apply a randomly 
iterated search approach in order to avoid local minima and reduce the effect of the “cooling 
schedule”. We suggest that a Statistical Competency (SC) approach, considering both observation 
uncertainty and model deficiency, may allow estimation of the source parameters and their quality. We 
finally demonstrate the robustness and efficiency of our improved algorithms via synthetic tests and 
apply the two different methods to periods of uplift (2000-2001) and subsidence (2001-2002) at the 
Campi Flegrei caldera volcano, Italy. 
 

5.2 From data to dislocation model 
 
In the last two decades, the GPS and InSAR technique have provided nearly continuous observation of 
deformation fields in time (case for GPS) and in space (case for InSAR). With precision better than 1 
cm, these techniques have increased the ability to develop a reasonable interpretation of geodetic data 
and also to analyze physical processes. One of the most common applications of these observations is 
to numerically or analytically simulate the source of the deformation. Three widely used analytical 
models for simulating the source of deformation events are the point source [Mogi, 1958], including 
four parameters (two horizontal locations, depth, and strength), the ellipsoidal source [Yang et al., 
1988], including eight parameters (two horizontal locations, depth, semi major and semi minor axes, 
plunge and strike angle of major axis, and pressure change), and the rectangular source [Okada, 1985], 
including ten parameters (two horizontal locations, depth, length, width, dip, strike, and three 
dislocation components). The first two source types are commonly used specifically for volcano and 
reservoir modeling, while the last is applicable to both volcanic and earthquake events. All of these 
models are usually implemented in an isotropic, linear, homogeneous, elastic half space. Despite their 
simplicity, in many examples these models can explain surface deformations very well and are used as 
standards in modern geodesy (Table 5.1). However, their sensitivity has been only partly investigated 
[Dawson and Tregoning, 2007] and for volcanic sources not characterized in detail. In the next 
sections, we will summarize the mathematical relations to obtain model parameters based on surface 
observation and perform a sensitivity analysis to test the effect of the three source parameters on the 
surface deformation field.   
 
5.2.1 Dislocation problem and optimization 
 
The stochastic model relating surface deformation data to dislocation source parameters is:  

)(SFvL =+                                                                                                                          (5.1) 
where L  is deformation observation, F  is a function that provides a mathematical relation between 
deformation data and source parameters S , and v  is the observation residual. As m is the number of 
observations and n  is the number of source parameters, usually nm > . In this case, the number of 
unknowns is nm + , which means that equation (5.1) has many solutions. We are interested in a 
solution that minimizes a function of v . Based on this approach, to estimate the source parameters we 
solve an optimization problem: 

min),( →PvC                                                                                                                      (5.2) 
where 12

0
−= lCP σ  is a weight matrix of the observations, lC  is variance-covariance matrix of the 

observations, 2
0σ  is the primary variance factor, and C  is a function of P  and v  constraining the 
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solution space [Vanicek and Krakiwesky, 1982]. The most frequently used cost function in 
optimization problems is the weighted second norm of the residuals, given by: 

PvvPvC T=),(                                                                                                                      (5.3) 
The advantages of this cost function are an unbiased estimation of the source parameters 
[Bjerhammar, 1973] and chi-square  probability density function of vCv l

T 1− , which may be used for 
evaluating the result [Vanicek and Krakiwesky, 1982]. Because of the latter advantage, a confidence 
interval 2

2/1,
12

2/, αα χχ −−
−

− << mnl
T

mn vCv  in a confidence level of )%1( α−  can be defined. This test 
can be rejected from the right side or left side. Rejection from the right side may mean a defect in the 
model or observation. Left side rejection means the residuals are too small or the model is too good. 
This could be the case in modeling the source of crustal deformation, where the easiest and relatively 
unrealistic way to obtain a small residual is by adding more and more analytical sources (e.g., point 
sources) without any constraints or auxiliary information. In this case, despite having an excellent fit 
to the observations, the analytical model may be completely wrong. For example, a point-wise 
observation of ground displacement (e.g., by GPS) can be perfectly fitted by defining dislocation 
sources of the deformation field at each of the observation points, even though the physical sense of 
such a model is questionable. As a result, during the optimization one should be aware of possible 
model defects as well as observation defects, keeping in mind that the model with the best fit is not 
always the realistic solution. In the following, we use this property to assess the quality of the results 
and the models.  
 
5.2.2 Sensitivity analysis of three different analytical models 
 
The mutual effect of dislocation parameters and deformation field observations is studied by a model 
sensitivity analysis. A sensitivity analysis is herein referred to a study of the two-way relationship 
between observations and parameter variations that are related via an analytical model. Using a Taylor 
series in matrix format, equation (5.1) can be expressed as: 

GSL =ˆ                                                                                                                                   (5.4) 
where vLL +=ˆ  and sFG ∂∂=  is a coefficient matrix reflecting the model effect [Vanicek and 
Krakiwesky, 1982]. The relationship between a change in the parameters SΔ  and a change in the 
observation LΔ  is obtained from SGL Δ=Δ . Using the definition of the generalized inverse and 
norm for matrices, LGS Δ≤Δ − , where −G  is inverse of G . Dividing both sides of the latest 

inequality by L
)

 yields a relation between parameters and observation relative error;   

L
L

GG
S
S

ˆ
Δ

≤
Δ −                                                                                                             (5.5) 

where −GG  is the condition number of the coefficient matrix (considering the Euclidean norm, the 

condition number is equal to the ratio of largest to smallest singular value). Equation (5.5) provides an 
upper bound for the relative error of the parameters or a lower bound for the relative error of the 
observations.  
In other words, when the condition number is small, SSΔ  would be small if LL

)
Δ  is small, 

and, when the condition number is large, SSΔ  can be large even if LL
)

Δ  is small. Equation 

(5.5) shows that observation and parameter error influence each other and also that this mathematical 
relationship may play an important role in the propagation and estimation of the error. Knowing these 
interactions between the model, observations, and parameters, we examine the three aforementioned 
types of analytical dislocation sources having 4, 8, and 10 parameters to be resolved, respectively. For 
this purpose, we assume a reference state for the source parameters (Table 5.2) and study the effect of 
parameter fluctuations on observations through forward modeling. In order to simulate a realistic 
scenario and to compare the results to the real data sets in section 5, observations are displayed along 
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Line of Sight (LOS) of the ERS Radar satellite (descending orbit, incidence angle 23o, azimuth 190o) 
shown along an east-west profile in Figures (5.1-3). By choosing east-west profile we investigate the 
highest level of sensitivity which results from the satellite geometry. The reader can expect less 
sensitivity for directions other than the east-west one.  In each panel, only one parameter is altered, 
and the rest are fixed at the reference value. The relative error of observation (reference value minus 
calculated value divided by reference value) is presented as a function of the parameter relative error 
and distance; i.e., a high percentage of relative change (>50%) means high sensitivity of the 
parameters to observation fluctuation and vice versa.  
 
Table 5.2. Parameters of three different deformation source-types (point, ellipsoidal, and rectangular) 
used in synthetic tests, after Mogi (1958), Yang (1998), and Okada (1985). X, Y = horizontal 
coordinates, Depth = depth to source center (for Mogi and Yang sources) or depth to upper edge (for 
Okada source), Vol. Ch = volume change for Mogi source, Pr. Ch = pressure change for Yang source, 
Op = opening for Okada source, Length = length of Okada plane, Maj. Ax = major axis of Yang 
source, Width = width of Okada plane, Min. Ax = minimum axis of Yang source, Dip = dip angle for 
Okada plane or Plunge angle for Yang source, Strike = strike angle of Okada plane or strike angle of 
Yang source major axis. 

  X 
(km) 

Y 
(km) 

Depth 
(km) 

Strength 
Vol.Ch(km3) 

Pr.Ch(GPa)/Op(m) 

Length Maj.Ax 
(km) 

Width Min.Ax 
(km) 

Plunge (o)  Strike 
(o) 

MOGI 
(point) 

0  0  5  0.01  ‐  ‐  ‐  ‐ 

YANG 
(ellipsoid) 

0  0  5  0.01  2  1  45  45 

OKADA 
(rectangular) 

0  0  5  2  3  2  45  135 

 
For a Mogi-type point source (Fig. 5.1), we find a direct relation between observation and parameter 
changes. A large change of location ),,( ZYX  and a large volume change )(dv  causes large changes 
in the observation and vice versa. This effect is symmetric for Y , Z , and dv ; however, the effect for 
X  appears distorted because of the observation geometry. We found an exception in the result for 

parameter X  (Fig. 5.1a), where large alterations in the X  coordinate (~ -5 km) did not influence the 
LOS observations at distances of about 1.8 km from origin. This poor interaction between the 
parameters and the observations is the result of a defect in the analytical model (poor condition 
number). In another exceptional behavior, observed in Figure (5.1c) where the interaction between 
parameter Z  and observations is investigated, a positive depth alteration (i.e., shallower source) 
significantly influenced the observations located around the origin. This behavior is probably because 
of the invalidity of modeling shallow deformation sources as point sources, which can be categorized 
in terms of model deficiency. The sensitivity test of a Mogi source model thus suggests that, for 
reliable estimation of the parameter locations and volume changes, good coverage of the observation 
field is required in addition to precise and accurate observations. 
For an ellipsoidal Yang-type source (Fig. 5.2), we show the sensitivity test for the eight source 
parameters. We find that most parameters show a direct and almost symmetric relation to observation 
error. Positive errors on depth lead to the same effect as positive errors on the depth of Mogi models 
which may imply that this model is valid for deep sources as discussed by Yang, et al. [1988].  In the 
case of the plunge and strike angle (Fig. 5.2g, h), a change of parameters by about 50% has very little 
effect on the near field observations. The plunge and strike angle can only be constrained by a few 
percent in the far field. The sensitivity test of the Yang-type source thus suggests that a very broad 
observation field is required to reliably estimate the ellipsoidal source parameters, including data from 
the near-field (to constrain location and strength) and the far-field (to constrain plunge and strike). 
Note that the definition of the ‘near field’ region is case dependent; for example, for a deeper source, 
this region will be broader than shown in this example. 
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Figure 5.1. Sensitivity test of the Mogi-type dislocation source parameters to observed deformation 
perturbation in the LOS direction of ERS Radar images in descending mode. We considered a profile 
in the west-east direction and calculate the LOS observation due to relative changes of the selected 
source parameters. In each panel, the x-axis is the horizontal distance from the source, and the only  
parameter  changed while the rest are fixed at the reference value (Table 5.2). Observation relative 
error is presented versus the relative error of the parameters at different distances (ordinate). Shown 
is the mutual effect of LOS displacement change and a) X coordinate perturbation, b) Y coordinate 
perturbation, c) source depth relative perturbation (over/under estimation), and d) source volume 
relative change (over/under estimation). 

 
The sensitivity tests for a rectangular Okada-type source are shown in Figure (5.3). Considering only 
opening mode dislocations leaves us with 8 parameters to be tested for sensitivity. The situation is 
generally similar to the above described Yang-type source, showing a symmetric and direct 
relationship between the observation and parameter error. The parameter width W  (Fig. 5.3e) shows a 
small sensitivity to LOS observation. For the chosen simulations, the strike angle has no effect on the 
near field observation. The sensitivity test for the Okada plane thus shows that good sensitivity is 
obtained for the coordinate, length, opening, and dip angle parameters. Moreover, it suggests that both 
good coverage and observation accuracy are necessary for reliable estimate the source parameters. The 
parameters width and strike cannot be resolved uniquely unless additional datasets (such as far field 
geodetic or seismic data) are included.    
Considering the three sensitivity tests, we can summarize that the source parameters are affected 
differently by the precision and spatial distribution of the observations, which are important in 
qualifying the result. In the sensitivity test, the influence of the observation precision could be drawn 
by considering equation (5.5), where observation precision ( LΔ ) is related to parameters error ( SΔ ). 
By having high precision observation (small LΔ ) we are able to constrain slight changes in 
parameters (small SΔ ), even though the problem is governed by poor condition number. For reliable 
and precise source inversion, therefore, good coverage including both near- and far-field data is 
necessary in order to obtain adequate sensitivity. On the other hand, increasing the number of data, 
e.g., by considering two satellite viewing geometries (e.g., ascending and descending) may only lead 
to somewhat improved results and may leave some of the model parameters non-unique (see electronic 
appendix). With this knowledge of the limitation of simple analytical models, we are able to test the 
influence of different inversion algorithms on source parameter estimation in the following section.  
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Figure 5.2. Sensitivity test of the Yang-type source parameters and observed deformation perturbation 
in the LOS direction of ERS Radar images in descending mode. Profile in the west-east direction 
shows LOS observation for the parameters given in Table 5.2. In each panel, the x-axis is horizontal 
distance from the source, and all parameters but one are fixed at the reference value; i.e., the graphs 
show relative changes with respect to the reference situations. Shown is the interaction of the LOS 
displacement relative change and  a) X coordinate perturbation, b) Y coordinate variations, c) source 
depth relative undulation (over/under estimation), d) source pressure relative change (over/under 
estimation), e and f) source semi-major/minor axis relative variations, g and h) source plunge/strike 
angle relative perturbation 

 
Figure 5.3. Sensitivity test of the Okada-type source parameters and observed deformation. Profile in 
the west-east direction shows the LOS observation for the parameters given in Table 5.2. In each 
panel, the x-axis is the horizontal distance from the source center, and all parameters but one are 
fixed at the reference value, i.e., graphs show relative changes with respect to the reference situations. 
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Shown is the interaction of the LOS displacement change and  a) X coordinate perturbation, b) Y 
coordinate perturbation, c) Source depth relative undulation (over/under estimation), d) Source length 
relative perturbation, e) Source width relative perturbation, f) Source opening relative perturbation, g 
and h) Source dip/strike angle relative perturbation. 
 

5.3 A comparison of sophisticated optimization methods 
 
In the case of early warning and semi-real time hazard assessment of crustal deformation activities, a 
fast and reliable evaluation of deformation sources is very important. Considering this demand, an 
inversion tool that is gradient free (i.e., free from initial values), reliable, efficient, and flexible enough 
to include other complementary information is required. Over the past almost 30 years, the 
optimization methods Simulated Annealing (SA) and Genetic Algorithm (GA) have been used with 
increasing frequency for data inversion purposes (Table 5.1). This is because SA and GA are gradient 
free (i.e. free from initial value), which is important for fast source assessment (case for early warning 
systems), and because of their success in solving a large variety of optimization problems in different 
branches of the geosciences [Sambridge and Mosegaard, 2002]. Apart from those optimization 
methods addressed in Table (5.1), recently many other novel optimization methods have emerged. 
However, among all, the so called Covariance Matrix Adoption Evolutionary Strategy (CMA-ES), 
which is a stochastic method for optimization of non-linear and non-convex functions is showing 
merits for solving optimization equations with few (<100) number of parameters [Igel et al., 2007]. 
However, the choice of initial parameters play a significant role for the success of this method. 
Moreover, the diversity of the search operator to explore the search space critically depends on the 
settings of the normal distribution function, which often is problem dependent.  
In the next section, we briefly explain the concepts and disadvantages of these two most commonly 
used optimization methods, GA and SA and then propose an improved algorithm that allows joint 
estimation of the uncertainty of the parameters. The proposed algorithm may be applied to other 
optimization methods as well. 
 
5.3.1 Simulated Annealing (SA) 
 
This Simulated Annealing (SA) algorithm is motivated by an analogy to annealing in solids 
[Metropolis et al., 1953], which has been applied to optimization problems for the last 25 years 
[Kirkpatrick et al., 1983]. Generally, SA starts with a random initial value of parameters, with an 
associated score based on the cost function, and a cooling schedule that includes the initial 
temperature, the reduction rate of temperature, the number of generated events at each temperature, 
and a final temperature to stop the algorithm [Kirkpatrick et al., 1983]. A commonly used cost 
function has been presented in equation (5.3). The orders of major steps in SA are introduced by 
different temperatures. At each temperature, small random changes are added to the parameters, and 
the resulting change in cost ( cΔ ) is computed. If 0≤Δc , the change is accepted; otherwise, the 
change is treated probabilistically. The Probability Density Function (PDF) of cΔ  at the current 
temperature T , with the Boltzmann coefficient BK , is T

BK
c

ecPDF
Δ−=Δ )(  [Kirkpatrick et al., 1983]. 

If )( cPDF Δ  is greater than a random number uniformly selected in the interval (0,1), then the change 
is accepted.  
The success of SA at finding a global solution critically depends on the cooling schedule [Basu and 
Frazer, 1990; Cervelli et al., 2001a; Rothman, 1985]. Although a slow cooling schedule at the expense 
of computation time might be useful, the difficulty is that the cooling schedule is substantially 
problem-dependent, and it seems impracticable to develop a global remedy for all problems. For 
overcoming those limitations, SA is sometimes combined with other optimization techniques [Cervelli 
et al., 2001a]. Another shortcoming is that an estimation of the parameters’ quality is missing.  
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5.3.2 Genetic Algorithm (GA) 
 
The Genetic Algorithm (GA) was introduced by [Holland, 1975], and further improved by many 
subsequent workers [Davis, 1987; Goldberg, 1989; Rawlins, 1991; Whitley, 1994] that have provided 
comprehensive summaries on the theory and applications.  
In the basic form of GA [Holland, 1975], a key aspect is the binary encoding of the parameters. The 
search begins by defining a cost function and initializing the GA parameters, and it ends when a 
stopping criterion, such as the defined number of iterations, is reached. GA always deals with a set of 
solutions without any special emphasis on a particular solution. So, if the initial population consists of 
m  independent solutions, each solution includes n  variables, and each variable can be presented by 
q  bits, then the initial population is constructed randomly by )( qmn ××  zero/ones. To evaluate the 
cost function, we need the decimal values of the variables obtained by [Haupt and Haupt, 2004]: 

∑=
+−− +=

q

i
ii

q igp
1

)1(22)(                                                                                                     (5.6) 

bbbq llupp +−= )(                                                                                                               (5.7) 

where bl  and bu  are lower and upper limits and p  is the corresponding decimal value of the binary 
variable g . Because in many problems we have prior knowledge about the variables, equations (5.6) 
and (5.7) allow entering this kind of auxiliary information into an inversion procedure by setting the 
limits for the variables during decoding.  
During the algorithm progress, the initial population is subject to several random changes but 
systematically approaches the best solution among many investigated solutions. Selection, Pairing, 
Mating, and Mutation are major GA operators that allow modification of the population to explore 
solution space, and they are thoroughly explained in the literature [Holland, 1975; , 1992; 
Michalewicz, 1994].  
Despite remarkable successes in solving very complex optimization problems, GA does not provide 
any information about the quality of the result. Some researchers have implemented approaches to 
estimate a symmetric PDF of the model variables after optimization [Zhou et al., 1995]. However, the 
assumption of symmetry is true only when the relation between the observation and model parameters 
is linear. In another work, Carbone et al. [2008] used the approach presented by Deb et al. [2000] to 
estimate a confidence region for parameters free of any primary PDF assumptions. Quality estimation 
in this approach relies on the inversion residuals. The success of this approach depends on the freedom 
of the search operator to explore the vicinity of the optimum solution. Therefore, mutation rate and 
population size may play a significant role in the reliability of the result. Additionally, these 
approaches do not consider the effect of a model on the optimization result. Therefore, careful 
assessment of the result quality is still missing. 
In brief, the main shortcomings of the SA and GA are; a) getting trapped in local minima and b) lack 
of estimation of the quality of the parameters. Therefore, in the following, we introduce and test the 
hybrid Randomly Iterated search (RI) and Statistical Competency (SC) approach.   
 
5.3.3 Randomly iterated search (RI)  
 
In order to diminish the importance of the cooling schedule (case for SA) and to increase the freedom 
of the search algorithm to explore the solution space (case for SA and GA), which is a necessity in 
statistical approaches for estimating the confidence interval, we present and apply a Randomly Iterated 
Search. The idea is to repeat the optimization with different initial random values in order to begin the 
search from a starting point close to the global solution. Here, we explain a combination of a 
Randomly Iterated Search (RI) with SA. Via synthetic test, we show the improvement of RI-SA 
compared to the standard SA. We then compare our random approach to the standard SA presented by 
Kirkpatrick et al. [1983]. Both algorithms are initialized with the same cooling schedule. As shown in 
Figure (5.4), the cost function is a mathematical function including many local minima, but only one 
global minimum of 0 at coordinate (0, 0). Using the coordinates (0.6, 0.6) as a starting point, Figure 
(5.4c) shows the trace of the standard SA that is searching for a global minimum but ultimately misses 
it and converges to a local minimum at coordinate (1, 1). In contrast, the RI-SA (Fig. 5.4d) initiates at 
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various random starting points (here 20, Figure 5.4d) with the same cooling schedule and finally 
converges to the global minimum even in this difficult synthetic test. Thus, RI-SA is able to find a 
global solution, while the other solutions in its vicinity can be used for qualifying the solution as 
detailed below. 
 

 
Figure 5.4. Synthetic search space to test local and global minima trapping and advancements of the 
RI approach. Standard SA and Randomly Iterated (RI) SA are both initialized with the same cooling 
schedule. a) 3D mesh of the synthetic search surface which has many local minima but only one global 
minimum of 0 at (0, 0), b) plan view of the search space; the global minima is depicted by blue point 
and color (see color bar), c) the trace of a standard SA test is converging to a local minima at (1, 1) 
and fails to find the global minimum, d) the trace of RI-SA is initialized iteratively at random starting 
points and finally finds the global minimum. 
 
5.3.4 Statistical Competency (SC) 
 
 To test the Statistical Competency (SC) of the result of the SA, the optimization algorithm may be 
repeated p  times starting from p  initial points { }pIII ,...,, 21  selected randomly between a lower and 
upper limit. These limits can be specified based on auxiliary information provided by other disciplines 
such as geologic measurements or earthquake hypocenters. Note that theoretically, the auxiliary 
information only facilitates the speed of convergence but will not affect the final result. In the RIS-SA, 
we save all acceptable solutions with their associated cost. After sorting acceptable solutions based on 
increasingly cost value in each repetition, we select the )...1:( piqi  best solutions to yield p subsets 
{ } { } { }pSSS ,...,, 21  with an average cost of )...1:( pi

isμ  as representative. The threshold can be 
specified either as a certain portion of the observations, based on the chosen cost function, or simply 
as a random number. The solution with the minimum cost among the subsets approaches the global 
solutionμ . Each representative has a standard deviation 

isσ  and { } μμ =
isE   ( E  is expectation 
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operator). In order to construct a confidence interval for μ  when the variance is unknown, we may 
utilize the following statistic [Vanicek and Krakiwesky, 1982]: 

is

s

q
i

i

σ
μμ −

                                                                                                                                (5.8) 

Equation (5.8) has a t-distribution function [Vanicek and Krakiwesky, 1982], and, by specifying a 
significance level α  (or confidence level, α−1 ), the confidence interval for μ  can be expressed as: 
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i σ
μμ
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αα )(,)(, 22 −− +≤≤−                                                                                   (5.9) 

If this test fails, the solution is rejected. If this test is accepted, the solution in the vicinity of the best 
solution is used to construct the confidence interval. After testing all solutions in equation (5.9), the 
accepted solutions contain a confidence interval for unknowns and thus allow evaluation of the result. 
The same successful approach can be also applied to other algorithms, as detailed in the following for 
GA. 
To achieve a Statistical Competency (SC) test of the result of GA, we consider a large population size 
with random members for optimization in p  iterations (Randomly Iterated Search (RIS)) and select 

)...1:( piqi  to be the best solutions in each generation. After satisfying the stopping criteria, there are 
p  sets: { } { } { }pSSS ,...,, 21 . Each set has iq  chromosomes with an average cost of )...1:( pi

is =μ  as a 

representative. The solution with minimum cost among all the subsets is termed μ . Then, each 
isμ  

has a standard deviation 
isσ  and { } μμ =

isE . The rest of the algorithm to build up a confidence 
interval is comparable to equations (5.8) and (5.9). One should note that the statistics is built upon the 
residuals after evaluating in the cost function (equation 5.3), and the required independency for the t-
distribution is preserved by a random error tainted the observations. However, to assure this 
independency and preserve diversity of the solutions in the vicinity of the global solution the mutation 
rate should be large enough (>0.5) and repeated generations are eliminated from each sets.  
In summary, for both RISC-SA and RISC-GA, we simultaneously consider the effects of observation 
variance via a weight matrix and observation blunder, together with model deficiencies through 
defined statistics. In the next section, we shall show that the solution is precise (with small dispersion 
around the average) and accurate (the average is close to the true value).   
 

5.4 Application to synthetic InSAR data  
 
The reliability and efficiency of the described optimization techniques are first investigated in 
synthetic tests (section 5.4) and then applied to real observations (section 5.5). To organize the 
simulated data sets, we consider the same source types as in the sensitivity tests of section (5.2) (point, 
ellipsoidal, and rectangular source). In reality, observations are tainted by different random and 
systematic errors, but, in the current test, we assume that the observations are free of systematic errors. 
To consider the effect of random noise, we add a normally distributed component with a variance of 
0.5 cm to the observation. This variance is comparable to the real variance of modern radar 
interferometric methods [Berardino et al., 2002]. Figure (5.5) shows a synthetic surface deformation 
at 5000 randomly distributed points calculated for a point source (Mogi, Figure 5.5a), an ellipsoidal 
source (Yang, Figure 5.5b), and a rectangular source (Okada, Figure 5.5c). We invert these three data 
sets using the inversion algorithms detailed in section 5.3 and discuss the results. The MATLAB script 
utilized for this test can be found in the electronic data supplement. 
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Figure 5.5. Synthetic test to show the reliability and efficiency of the Randomly Iterative Search and 
Statistical Competency (RISC) SA and GA and to compare their result. Source parameters are given in 
Table (5.2) for three different source-types. The observations are in the LOS direction of the 
descending ERS radar images, and a noise component was added with normal distribution (0, 0.6). 
Left column shows the models, center column shows the residuals of the RISC-SA, and the right 
column shows the residuals of the RISC-GA. a) Mogi type source deformation field, b) Yang type 
source deformation field, and c) Okada type source deformation field. 
 
For the Mogi model (Fig. 5.5a), we run the optimization algorithm in a limited search space to explore 
the solution area. This information can be obtained either from other disciplines like geological and 
seismological data or from some trade-off free equations that give a rough estimate of the parameters 
directly from the observed displacement field. Here, we estimate the relation between volume change 
occurring at the source in elastic half-space (Poisson ratio of 0.25), and observed LOS displacement 
with an incidence angle o23=θ  for a Mogi source according to (see electronic appendix for 
mathematical proof): 

∫∫=Δ
2

72.0
R

LOSdxdyv                                                                                                        (5.10) 

Equation (5.10) is independent of the source depth and provides an estimate of the volume change 
based on LOS observations. In a real case, we would have access only to a small part of the 
displacement field; hence, this estimate might be considered as a lower limit for the volume change in 
the optimization process. 
Based on equation (5.10), the approximate volume change is 6×10-3 km3. The RISC-SA parameters are 
initiated with a starting temperature of 1, temperature reduction of 0.5, maximum iteration and 
maximum success in each temperature of 500 and 200, respectively, and a final temperature of 10-10. 
The RISC-GA parameters are initiated with an initial population size of 40, mutation rate of 0.5, 
selection rate of 50%, and number of iterations of 100. The results of the RISC-SA and GA are shown 
in Table (5.3) and Figure (5.5). The two inversion algorithms produce the original observation almost 
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perfectly, and residuals are in a range of about ±6 mm. We observe a slight difference between the 
estimated confidence intervals, which are systematically narrower for the RISC-SA than for the RISC-
GA. This means that either the precision of the RISC-SA result is higher than RISC-GA or the 
freedom of RISC-SA to explore the vicinity of the global solution is lower than RISC-GA, but, when 
considering the amount of observation noise, both of them are reliable and hence acceptable. To 
compare the computation duration, we tested all calculations in this paper using MATLAB 7.1 
software in a standard windows XP platform and a 3.4 GHz processor. The computation times are 
summarized in Table (5.4) and show that RISC-GA is efficient and able to treat large or even full data 
sets.  
 
Table 5.3. Inversion results of the synthetic deformation field. Estimated parameters of three source-
types (Mogi, Yang, and Okada). The confidence regions are calculated at the 95% confidence level 

Simulated Algorithm  Genetic Annealing   Parameter 
Inversion 
Result 

Confidence interval 
(95%) 

Inversion 
Result 

Confidence interval 
(95%) 

X (km)  ‐0.02  (‐0.14, 0.16)  0.33  (‐0.72, 0.12) 
Y (km)  ‐0.04  (‐0.26, 0.29)  ‐0.02  (‐0.39, 0.45) 

Depth (km)  5.05  (‐0.32, 0.34)  4.93  (‐0.32, 0.64) 

 
MOGI 

 
 

Volume Change (km3)  0.0101  (‐0.0009, 0.0009)  0.0099  (‐0.0016, 0.0023) 

X (km)  0.05  (‐0.44, 0.05)  0.14  (‐0.57, 0.34) 
Y (km)  ‐0.08  (‐0.31, 0.43)  0.18  (‐0.58, 0.4) 

Depth(km)  4.84  (‐0.33, 0.41)  4.95  (‐0.2,  0.53) 
Presure Change (GPa)  0.0138  (‐0.0065, 0.0007)  0.0078  (0, 0.0102) 

Major Axis (km)  1.90  (‐0.37, 0.45)  2.18  (‐0.41, 0.01) 
Minor Axis (km)  0.88  (‐0.005, 0.23)  1.06  (‐0.4, 0) 

Plunge (o)  46.48  (‐10.23, 6.57)  43.33  (‐8.96, 11.51) 

 
 
 

YANG 
 
 
 
 

Strike (0)  51.31  (‐12.08, 2.13)  43.09  (‐5.32, 13.28) 

X (km)  0.23  (‐0.74, 0.13)  0.10  (‐0.51, 0.2) 
Y (km)  0.12  (‐0.43, 0.17)  0.08  (  ‐0.36, 0.3) 

Depth (km)  4.83  (‐0.18, 0.31)  5.1  (‐0.64, 0.1) 
Opening (m)  1.98  (‐0.03, 0.03)  1.99  (‐0.04, 0.02) 
Length (m)  3.02  (‐0.23, 0.09)  2.96  (‐0.26, 0.15) 
Width (m)  2.01  (‐0.3, 0)  2.01  (‐0.4, 0.09) 
Dip (0)  50 .01  (‐8.69, 1.53)  43.11  (‐3.64, 9.01) 

 
 
 

OKADA 
 
 
 
 

Strike (o)  139.38  (‐18.94, 0)  132.65  (‐6.63, 7.25) 

 
Table 5.4. Comparison of the computation time for the synthetic test using RISC-SA and RISC-GA 

Source type  RISC‐SA 
CPU‐time (sec) 

RISC‐GA 
CPU‐time (sec) 

MOGI  832  38 
YANG  1520  393 
OKADA  3982  832 

 
For the ellipsoidal Yang source, we have implemented exactly the same parameters as before and 
show the inversion results in Table (5.3) and Figure (5.5b).  Although we added a high amount of 
noise, the results are considered to be quite good and are close to the initial model value (Table 5.3). 
Additionally, the inversion residuals are within the range of the observation noise. Although we are 
considering a broad deformation area (sides are 10 times the Yang semi-major axis), the confidence 
length of the plunge and strike angle is considerably larger than the others, which shows the high 
uncertainty in estimating these parameters.  
In the third synthetic test, we inverted the surface deformation field caused by a rectangular 
dislocation source. The results are shown in Table (5.3) and Figure (5.5c). Although the inversion 
model reproduces the actual observation well and the inversion residuals are in the range of the 
observation noise, the uncertainty of the strike angle and width is clearly larger than the others. 
To summarize after these three tests: 1) both RISC-algorithms can retrieve the initial model almost 
perfectly, even with the addition of high noise, 2) the presented algorithm for simultaneous confidence 
interval estimation works properly in both algorithms, and 3) for equal conditions, RISC-GA appears 
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to be more efficient in terms of computation time. In the following, we use a real database from one of 
the most actively deforming volcanic system. 
 

5.5 Application to real InSAR data from the Campi Flegrei 
caldera volcano 
 
Campi Felgrei (CF) is a caldera with a long documented history of unrest, and it is also in one of the 
most densely populated regions in Italy, including part of the city of Naples, with about one million 
inhabitants. The historical period of deformation at CF last culminated in 1158 and in 1538 A.D. 
[Bodnar et al., 2007]. The dominant type of historical deformation in CF is subsidence, at a rate of 
1.5-1.7 cm/yr with occasional periods of uplift [Troise et al., 2007]. The last major periods of uplift 
occurred in 1969-1972 and 1982-1984 [Barberi et al., 1984] and have been observed by triangulation 
and trilateration networks [Troise et al., 2007]. After the development of space geodetic techniques, 
especially InSAR, the monitoring value of measuring deformations broadly increased. Subsidence at 
CF was already detected by InSAR method by Avallone et al. [1999], who observed subsidence of up 
to 2.5 cm/yr in the period 1993-1996. By using a gradient-based inversion method for an inflating 
Mogi-type point source, the same authors estimated the depth of the deformation source to be around 
2.7 km. Lundgren, et al. [2001]  studied a longer InSAR time series and found continuing subsidence 
in the period 1993-1998. The estimated  mean subsidence rate in this period is about 3.5 cm/yr 
[Lundgren et al., 2001]. To assess the source of the deformation, Lundgren and colleagues 
implemented a Levenberg-Marquardt nonlinear global optimization algorithm and investigated 
parameters of three different volcanic deformation sources (Mogi, Yang, Okada). They found source 
depths of about 2.5-3.0 km. Subsidence continued until 2000 and then changed to uplift, as shown by 
Lanari et al.[2004]. To model the source of deformation, they adapted a nonlinear least squares 
inversion for ellipsoidal (Yang) and rectangular (Okada) source parameters in an elastic homogeneous 
half-space and estimated a magma chamber depth of about 2.7-3.0 km. In other studies, such as Troise 
et al.[2007] , Battaglia et al. [2006], and Gottsmann et al. [2006], different kinds of geophysical 
observations and inversion methods, such as gradient-based approaches for source parameters in an 
elastic homogenous half-space, have been applied and estimated the deformation source similarly to 
be at a depth of about 2.5-3.0 km. In a recent study, Amoruso et al. [2002] discussed another uplift 
period lasting from 2004-2006 and modeled this phenomenon in a horizontally layered half space. 
They obtained an estimate of 3.5 km depth for a crack type deformation source.  
However, seismic studies suggest a more complex story about the 3D location of the hydrothermal and 
magma chamber. Based on the seismic tomography, two low velocity zones can be inferred at depths 
of 2.7 km and 7.5 km [Zollo et al., 2008]. The shallower zone might be interpreted as a thermo-
metamorphic rock assembly, while the deeper one is interpreted as a magma body with an area of less 
than 30 km2 and thickness of 1.2- 1.5 km [Zollo et al., 2008].   
In the following, we test the two improved RISC methods on the episodes of uplift (2000-2001) and 
subsidence (2001-2002). Utilizing both Genetic Algorithm and Simulated Annealing, we estimate the 
deformation source parameters as well as their uncertainty.  
 
5.5.1 Data set 
 
The data set used here is extracted from the geodetic time series obtained by a Small Base Line Subset 
(SBAS) approach for measuring ground displacement using differential SAR interferometry [Lanari et 
al., 2004]. This SBAS technique selects data pairs with a small baseline to establish differential 
interferograms for achieving time series analysis. The advantages of this method are in overcoming 
spatial decorrelation and in eliminating atmospheric artifacts, as detailed in Berardino et al. [2002]. 
The time series of a long period of subsidence from 1992 until 2002, with a cumulative displacement 
of 25 cm in the center of the caldera, was presented by Berardino et al. [2002]. The subsidence episode 
reversed into uplift in 2000. The uplift episode lasted one year, accumulating about 4 cm of 
displacement. Another subsidence episode followed in 2001 and continued to the end of the time span 
considered here. We now compare the source parameters of the 1 year uplift and 1 year subsidence 
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periods and consider observation error and model deficiency. We calculate a confidence interval for all 
parameters as well as their best estimates.  
 
5.5.2 Model uplift period 2000-2001 
 
To initialize RISC-SA and RISC-GA, we follow the same procedure as detailed in the synthetic 
simulations in section 5.4 and define upper and lower bounds in search space. For both deformation 
periods (uplift and subsidence) and for all types of model sources, the considered bounds of depth 
range is assumed to be somewhere between 2 and 5 km, as suggested in previous publications (e.g. 
[Battaglia et al., 2006; De Natale et al., 1997]). Equation (5.10) allows us to estimate the lower bound 
of the volume change, which is 5×10-4 km3. The Mogi-type source volume change lies between 5×10-4 
and 5×10-2 km3, and the horizontal location could be at any point in the observation plane. Tables (5.5, 
6) summarize the results and computation times for RISC-SA and RISC-GA, and a graphical 
representation is given in Figure (5.6). The Root Mean Square Error (RMSE) for both methods is 
about 0.3 cm (i.e. similar to observation error) and shows that the model reproduces the observations 
very well. The depth and volume change differ slightly in RISC-SA and RISC-GA. However, 
considering their confidence intervals, we note that both inversions are consistent, covering a similar 
range of uncertainty.  
The second source is a Yang-type. As in the previous case, we start with a broad bound for the 
parameters, with an assumed pressure bound between 0 and 0.01 GPa, a semi-axis between 0 and 3 
km, a dip angle between 0 and 90 degrees, a strike angle between 30 and 150 degrees, and the 
horizontal location at any point in observation plane. The RMSE for both RISC-SA and RISC-GA is 
again about 0.3 cm, which shows that the models precisely reproduced the observation field. The best 
fitting source is elongated east-west, and the estimated depth is in the range of 2.5 - 3.3 km.  
As a third model, we consider an Okada-type source. The model parameters are bound by a 0-2 km 
length and width, a 0-90 degrees dip, a 30-150 degrees strike, and a 0-2 m opening. Again, this source 
model can reproduce the deformation field very well, with an RMSE below 0.3 cm. The Okada source 
is elongated east-west, and the associated depth varies between ~2.4 km and ~3.3 km.  
 
Table 5.5. Inversion results of the uplift at Campi Flegrei observed by InSAR over the period 2000-
2001. Parameters of three source-types (Mogi, Yang, and Okada) are estimated. The confidence 
regions are calculated at the 95% confidence level 

2000‐2001 uplift period 
Simulated Algorithm  Genetic Annealing   Parameter 

Inversion 
Result 

Confidence interval 
(95%) 

Inversion 
Result 

Confidence interval 
(95%) 

X (km)  426.20  (‐0.1, 0.08)  426.22  (‐0.36, 0.24) 
Y (km)  4519.45  (‐0.41, 0.31)  4519.65  (‐1.34, 0) 

Depth (km)  2.41  (‐0.3, 0.31)  2.29  (0, 0.92) 

 
MOGI 

 
  Volume Change (km3)  0.00091  (‐0.0002, 0.0003)  0.00073  (0, 0.0007) 

X (km)  426.05  (‐0.3, 0.29)  426.54  (‐1.42, 0) 
Y (km)  4519.80  (‐0.58, 0.37)  4519.66  (‐0.74, 0.57) 

Depth(km)  2.84  (0, 0.5)  2.89  (‐0.36, 0.4) 
Presure Change (GPa)  0.00074  (0, 0.0009)  0.00069  (0, 0.0047) 

Major Axis (km)  2.68  (‐0.75, 0.08)  2.77  (‐0.52, 0.02) 
Minor Axis (km)  1.43  (‐0.18, 0.01)  1.46  (‐0.81, 0) 

Plunge (o)  82.40  (‐14.47, 0)  87.98  (‐19.13, 0) 

 
 
 

YANG 
 
 
 
  Strike (0)  91.71  (‐0.14, 21.49)  113.39  (‐22.12, 0) 

X (km)  426.16  (‐0.96, 0)  425.86  (‐0.31, 0.63) 
Y (km)  4518.17  (‐0.9, 1.17)  4518.47  (‐0.85, 0.53) 

Depth (km)  3.26  (‐0.88, 0)  3.02  (‐0.47, 0.09) 
Opening (m)  1.08  (‐0.45, 0)  0.84  (‐0.12, 0.8) 
Length (m)  0.44  (0, 0.52)  0.69  (0, 0.89) 
Width (m)  1.45  (0, 0.22)  1.51  (‐0.69, 0.04) 
Dip (0)  62.39  (‐3.15, 20.87)  76.29  (‐37.62, 0) 

 
 
 

OKADA 
 
 
 
  Strike (o)  103.86  (‐32.34, 0)  118.52  (‐43.91, 0) 
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Table 5.6. Comparison of the computation time for inverting the uplift period deformation date set 
using RISC-SA and RISC-GA 

Source type  RISC‐SA 
CPU‐time (sec) 

RISC‐GA 
CPU‐time (sec) 

MOGI  283  13 
YANG  677  26 
OKADA  1354  51 

 

 
Figure 5.6. Application of the algorithm to real data from Campi Flegrei caldera, Italy. a) A period of 
uplift occurred from 2000-2001 and is tested herein. b) Uplift observation in the LOS direction of ERS 
Radar images in descending mode wrapped into 2.8 cm fringes, c) residuals for Mogi-type source 
inversion by RISC-SA and RISC-GA, d) residuals for Yang-type source inversion, and e) residuals for 
Okada-type source inversion. All source-types provide very good solutions with residuals below 1 cm. 
(A = the location of local hydrothermal activity in Solfatara) 
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5.5.3 Model subsidence period 2001-2002 
 
To initiate RISC-SA and RISC-GA, we considered a bound between 5×10-4-5×10-2 km3 for a Mogi-
type volume change, and the whole observation plane for horizontal location. The results are provided 
in Table (5.7) and Figure (5.7). The RMSE is about 0.5 cm; thus, the model well reproduces the 
InSAR observations. Because the numbers of observation points and optimization parameters are 
exactly the same as for the uplift case, the computation times remain similar. We use similar parameter 
bounds as in the above described inversion method of the subsidence scenario. 
The estimated depth for the source is between ~2.1 and ~2.4 km for RISC-SA and between ~2.2 and 
~2.8 km for RISC-GA, while the optimum solution is found at 2.3 km depth for both. 
The RMSE for the Yang-type is larger than for the Mogi-type source, which may be due to the low 
sensitivity of the source parameters (section 5.2). The Yang source is elongated east-west and the 
depth range is ~2.4-~2.9 km for both RISC-SA and RISC-GA. Comparing this depth with the uplift, 
the inversion suggests that the source is shallower than for the inflation period.  
The Okada-type results show a better fit than those for the Yang-type source because of the higher 
sensitivity of the Okada parameters. The estimated depth for RISC-SA is between ~2.2 and ~3.0 km 
and between ~2.3 and ~3.1 km for RISC-GA.  
 

5.6 Discussion 
 
In a sensitivity test, we investigated the influence of an analytical model on the quality of the inversion 
result. We find that a poor analytical model may lead to unreliable results. Devising a gradient-free, 
fast and reliable optimization method, which is necessary for semi-real time hazard assessment, we 
consider two sophisticated optimization approaches, simulated annealing (SA) and genetic algorithm 
(GA). We utilize their advantages and suggest a method to overcome their disadvantages, by including 
a hybrid randomly iterated search and statistical competency approach (RISC). To show the reliability 
and efficiency of the RISC-approach, we performed synthetic and real case tests. In the following, we 
discuss different theoretical and practical aspects of the presented approach.  
 
Table 5.7. Inversion results of the subsidence at Campi Flegrei observed by InSAR over the period 
2001-2002. Parameters of three source-types (Mogi, Yang, and Okada) are obtained. The confidence 
regions are calculated at the 95% confidence level 

2001‐2002 subsidence period 

Simulated Algorithm  Genetic Annealing   Parameter 

Inversion 
Result 

Confidence interval 
(95%) 

Inversion 
Result 

Confidence interval 
(95%) 

X (km)  426.54  (‐0.05, 0.05)  426.57  (‐0.46, 0) 

Y (km)  4519.34  (‐0.23, 0.27)  4519.80  (‐0.76, 0.15) 

Depth (km)  2.31  (‐0.2, 0.12)  2.32  (‐0.12, 0.53) 

 
MOGI 

 
 

Volume Change (km3)  ‐0.00106  (‐0.0002, 0.0002)  ‐0.00097  (‐0.0006, 0) 

X (km)  426.03  (‐0.35, 0)  426.31  (‐0.25, 0.47) 

Y (km)  4518.51  (0, 0.14)  4519.53  (‐0.75, 0) 

Depth(km)  2.41  (0, 0.15)  2.38  (0, 0.52) 

Presure Change (GPa)  ‐0.00224  (‐0.0036, 0)  ‐0.00305  (‐0.0023, 0) 

Major Axis (km)  2.43  (0, 0.45)  2.09  (0, 0.38) 

Minor Axis (km)  1.00  (‐0.39, 0)  0.73  (‐0.08, 0.23) 

Plunge (o)  63.50  (0, 11.61)  88.38  (‐23.24, 0) 

 
 
 

YANG 
 
 
 
 

Strike (0)  117.73  (‐23.05, 0)  111.88  (‐17.19, 0) 

X (km)  426.42  (‐0.19, 0.2)  426.44  (‐0.49, 0.16) 

Y (km)  4519.04  (‐0.56, 0.33)  4518.97  (‐0.88, 0) 

Depth (km)  2.66  (‐0.43, 0.31)  2.88  (‐0.56, 0.22) 

Opening (m)  ‐1.51  (‐0.36, 0.49)  ‐1.49  (‐0.14, 0.4) 

 
 
 

OKADA 
 
  Length (m)  0.98  (‐0.41, 0.27)  0.86  (‐0.07, 0.35) 
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Width (m)  0.53  (0, 0.3)  0.70  (0, 0.31) 

Dip (0)  73.97  (‐21.47, 2.62)  73.97  (‐21.47, 2.62) 

 
 

Strike (o)  118.04  (‐19.47, 0)  115.27  (‐18.25, 0) 

 
5.6.1 Sensitivity analysis     
        
In sensitivity tests, we considered the mutual effects of parameters and observation errors (in the same 
geometry as the ERS satellite image in descending mode). We suggest that the reliability of the 
parameters not only depends on the observation quality but is also strongly affected by the observation 
distribution because of model sensitivity. As a result, we recommend in such inversion problems the 
use of an entire data set including near and far field observations with suitable relative weighting. For 
instance, weighting of the far field improves the quality of the plunge angle, whereas weighting the 
near field improves the quality of the pressure change in the case of a Yang-type source.  
 

 
Figure 5.7. Application of algorithm to real data from Campi Flegrei caldera, Italy. a) A period of 
subsidence from 2001-2002. b) Subsidence observation in the LOS direction of ERS Radar images in 
descending mode (cf. Fig. 5.6), c) residuals for Mogi-type source inversion by RISC-SA and RISC-GA, 
d) residuals for Yang-type source inversion, and e) residuals for Okada-type source inversion. All 
panels are wrapped into 2.8 cm fringes. All source-types provide good solutions, with smallest 
residuals for the Okada-type. 
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It has been shown by Dieterich and Decker [1975] that the source geometry and depth using vertical 
deformation data alone can not be reliably resolved and that the full 3D displacement field is needed. 
Because InSAR observations are only a projection of the 3D displacement field, some of the source 
parameters may not be resolved reliably. However very often in the InSAR applications, we are able to 
carry out joint inversions by combining observations obtained from different satellite geometries. To 
see how these extra observations influenced the quality of the parameters, we set up two other 
sensitivity tests, the results of which are illustrated in the electronic appendix. The first test considered 
the ERS satellite image geometry in ascending mode, and the second test considered the norm of the 
3D displacement field obtained, for instance, by combining InSAR, GPS, and leveling data. We find a 
moderate improvement of the sensitivity of the model parameters in comparison with previous results. 
In the case of the Okada-type source, the width and strike angles remain non-unique, while the quality 
of the other parameters is clearly improved. Considering the sensitivity test for ascending and 
descending geometry, together with the norm of the 3D displacement field, we suggest that the 
analytical model sensitivity (termed condition number after equation 5.5) might be a significant 
foundation for occasional poor observations and parameter interactions. Therefore, even though we 
can set up joint inversion of different geometries, good coverage of deformation in the near and far 
field and/or independent geophysical data (seismicity, gravity) still seems necessary. 
 
5.6.2 Advances of the RISC approach 
 
We proposed the RISC approach as a novel technique to answer the demand of practical optimization 
problems for obtaining a reliable and fast solution. Nevertheless, a valid question is whether other 
optimization methods (listed in Table 5.1) are not able to find the optimal solution equally well? From 
mathematical point of view it has been proved that all those optimization techniques are able to reach a 
global solution, though at expense of CPU time (because in many scenarios the computation time 
approaches infinity, and definition of a unique search criteria that is large enough is difficult). In 
practical optimization problems the CPU time is limited, the search criteria are problem-dependent and 
priory information is poorly available. Therefore any of those standard techniques may fail in finding 
the global solution; a failure that is not defined inherent but is rather a result of our poor knowledge 
about search space and CPU time constraint. Therefore in practical cases it seems reasonable to be 
aware of this shortcoming. The herein presented RISC approach is trying to answer the request of 
practical problems for reliable and efficient estimation of the global solution. In the RISC approach, 
the optimization problem can be initialized with reasonable values based on available information and 
user experiences; the algorithm converges to a good approximation of the global solution. In fact the 
RISC approach is not a stand-alone optimization technique, rather further strengthens available search 
techniques, with the aim to improve reliability and efficiency of the optimization process. Herein we 
exemplify a combination with GA and SA but may be adapted as well for any other algorithms such as 
Covariance Matrix Adoption Evolutionary Strategy [Igel, et al., 2007] or Neighborhood approach 
[Sambridge, 1999b].        
The main limitation of the existing algorithms is becoming trapped in a local minimum because, for 
example, of an inappropriate cooling schedule. An improvement is shown by combining the standard 
SA with a randomly iterative (RI) approach. The same approach could be applied to the simple GA, 
especially when dealing with a complex search space. Another important aspect is obtaining a 
confidence region for the parameters by implementing a statistical competency (SC) approach. The 
statistic used here considers observation quality and model deficiency together. Combining RI and SC, 
we presented a sophisticated inversion algorithm. This approach can be applied to any other heuristic 
search algorithm to improve the performance of the search operator. The MATLAB codes for both 
RISC-SA and RISC-GA are included in the electronic appendix.    
 
5.6.3 Model implication for Campi Flegrei volcano 
 
The presented InSAR time series shows a general trend of subsidence from 1992-2002, temporarily 
interrupted by the 2000 uplift period. The uplift reached up to 4 cm between 2000 and 2001 and was 
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followed by subsidence up to 5 cm in 2002. A model that best fits both episodes is obtained by an 
Okada-type source, although also the other models reproduced the observed deformation field well. 
We find that during the subsidence period, the source of deformation is systematically shallower and 
the volume change is larger than during the uplift episode (see Fig. 5.8). The source separation is on 
average about 0.6 km. Regarding our sensitivity test showing 50% change in the average depth 
compromising by almost 200% change in the surface observation, we are confident that this separation 
(~ 0.6 km equivalent to 25% change in the observed deformation field) is not because of poor 
observation precision or the applied inversion method. Moreover this result is similar to what Battaglia 
et al. [2006] obtained based on inverting geodetic and gravity data for uplift period of 1980-1984 and 
subsidence period of 1990- 1995. The source depth in our model, however, is slightly deeper. Table 
(5.6) compares RISC result and other published studies, showing that the independent studies are 
agreeing well. Based on previous sensitivity tests, we note that the location and strength parameters 
are well constrained, whereas the strike and dip parameters can not be uniquely determined.  
Considering model deficiency and observation variance via a statistical approach, we calculated the 
confidence region for the parameters. For instance, the uncertainty of the source depth is between 2.1 
and 3.3 km for the uplift and between 2.1 and 3.0 km for the subsidence period. This range covers 
most of the estimates using the elastic homogeneous assumption in the Campi Flegrei region (Table 
5.8).  

 
Figure 5.8. Synthesis of the Campi Flegrei test. Comparison of the absolute depth, associated 
confidence interval and volume change of different deformation source-types (Mogi, Yang and Okada) 
for the two periods of uplift (2000-2001) and subsidence (2001-2002). The uplift period is 
systematically associated with a deeper source than the subsidence period.   
 
Table 5.8. Comparison between the depths of different deformation sources obtained in this study 
using RISC-SA and RISC-GA approaches and earlier studies 

Source  type  reference  Depth (km)  Inversion method 
Mogi   

This study  2.1‐3.2  RISC‐GA/SA  
[Lundgren et al., 2001]  2.5  Levenberg‐Marquardt 

Yang   
  This study  2.1‐3.2  RISC‐GA/SA 

Spherical source  [Avallone et al., 1999]  2.7  Gradient search 
[Lundgren et al., 2001]  2.1  Levenberg‐Marquardt  
[Lanari et al., 2004]  2.4‐3.2  Least square 

Prolate spheroid  [Battaglia et al., 2006]  1.9‐2.2  Least square 
Okada   

This study  2.4‐3.3  RISC‐GA/SA 
[Lundgren et al., 2001]  2.9  Levenberg‐Marquardt 

 

[Lanari et al., 2004]  2.4‐2.8  Least square 
Penny shaped crack  [Battaglia et al., 2006]  2.5‐3.5  Least square 
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Nevertheless, our estimate is not completely consistent with the seismically inferred reservior, where 
two zones can be inferred at depths of 2.7 km and 7.5 km [Zollo et al., 2008]. This discrepancy might 
be due to material heterogeneity and observation uncertainty or because of an oversimplified base 
model. The effect of reactivated steeply dipping ring faults may explain such a discrepancy [De Natale 
et al., 1997]. Another source of the difference may be found in the simplified half space assumption. 
Amoruso, et al.[2002] studied the unrest period of 1982-1984 at CF caldera using a crack model 
embedded in the layered elastic half space. The obtained PDF for the depth of the best model as a 
quality criterion is between 2 and 5 km. This broad estimate includes the estimated confidence region 
in this paper. Therefore, the slight differences between various models might be due to differences 
either in observation quality or model assumptions. Although our base model is very simple, our 
inversion approach is applicable to more complex or simple scenarios and significantly improves data 
resolution and computation time, and thus the efficiency and robustness of geodetic data 
interpretations.    
 

5.7 Conclusions 
 
We applied a Simulated Annealing and Genetic Algorithm for estimating deformation source 
parameters based on surface displacement data. The work was aimed at developing a fast and reliable 
inversion technique that allows utilization of large datasets with confidence. Therefore, first we 
showed that the important parameters for precision and accuracy of the results are not only the quality 
of the observations but also the distribution of the observations. We further improved the optimization 
methods, by applying a hybrid random iterated search and statistical competency approach (RISC). 
The RISC approach prevents SA from getting trapped in local minima. Moreover, this approach 
allows an estimation of the quality of the results at a certain confidence level. We extend the similar 
idea to the GA for estimating the confidence interval of parameters. Similarly RISC can be applied to 
different optimization methods. To indicate the efficiency and robustness of our methods, we 
performed synthetic tests utilizing three commonly used volcano deformation sources, including 
Mogi, Yang, and Okada sources. We find that the two algorithms can retrieve noisy synthetic field 
parameters as well as a meaningful confidence region for the results. Therefore, the statistical 
approach combined with an inversion algorithm has been shown to be a large improvement to the 
standard techniques commonly used. Considering computational time, we find that GA is much faster 
than SA and also more flexible in accepting limits for parameters, which is useful in hybrid and 
constrained optimization and allows consideration of full InSAR sets.   
We applied the two developed optimization methods to investigate the source of deformation periods 
at Campi Flegrei volcano, Italy. The observations are a time series obtained based on SBAS 
interferometry. The displacement series shows that an uplift period occurred in 2000-2001 and a 
subsidence period occurred in 2001-2002. As a result, for the uplift and subsidence periods the depth 
of the deformation source is constrained between 2.1 and 3.3 km and 2.1 and 3.0 km, respectively. 
Comparing the source parameters for the uplift and subsidence periods shows that the source location 
is systematically deeper for the uplift period. We utilize an approach to validate the model parameters 
considering two different sources of uncertainty, model deficiency and observation errors. 
 

5.8 Auxiliary material 

5.8.1 Relation between observed LOS displacement and volume change of Mogi 
source 

 
Delaney and McTigue (1994) presented a relation between 3D volume change at the surface of elastic 
half space and volume change of the Mogi-type model, which is;  
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                                                                                                                    (A5.1) 
Where ϑ  is Poisson ratio, sv∂  and cv∂   are volume change at the source and at the surface, 
respectively. In perfect elastic material ( 5.0=ϑ ) the volume change at the source is equal to the 
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change at surface. In the common case ( 25.0=ϑ ) the volume change at the source is 1.5 times the 
change at the surface. Knowing a 3D surface displacement field we are able to use this equation, but in 
many cases this formulation is not applicable. For instance InSAR data is an observation that only 
includes the projection of the 3D deformation field on the dimension of the line of satellite (LOS) 
direction. Therefore herein we derive an alternative equation which is applicable to LOS observation.   
The 3D surface displacement due to a point source buried in elastic half space with Poisson ratio ϑ  
can be obtained by following equations (Mogi,1958): 
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Where svΔ  and d  are source volume change and depth and x  and y  are horizontal coordinates, 
respectively. The relation between 3D displacement field and LOS observation field by knowing 
satellite orbit azimuth and incidence angle is (Hanssen, 2002): 

zzyyxx UcUcUcLOS ++=                                                                                               (A5.3) 

Where xU , yU  and zU  are the three components of a displacement field, and xc , yc  and zc  are three 
projection coefficient that may vary by azimuth and incidence angle (Hanssen, 2002). Equation A5.3 
is not reversible which means having only InSAR observation does not allow us to calculate a 3D 
displacement field. Therefore equation A5.1 is not applicable in such cases. So we used a new 
formulation to estimate source volume change directly based on LOS observation.  
The volume beneath LOS surface is calculated by two times integration on x and y: 
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Due to symmetry of xU  and yU , two of the integrals become zero; 
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On the other hand 
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namely independent of depth then 



 67

zs
zs

R

cvcv

LOSdxdy

Δ−=
Δ−

=∫∫

)1(2)1(2

2

ϑ
π
ϑπ

                                                                 (A5.8) 

Finally  can be obtained by 
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5.8.2 Ascending mode sensitivity test of the parameters of three source-types.  
 
Observed deformation perturbation is shown in the LOS direction of ERS Radar images in ascending 
mode. This allows comparison to the sensitivity test shown in Figures (5.1-3). All other conditions are 
the same as Figure (5.1-3).  
 

 
Figure A5.1. Sensitivity test for Mogi-type source 
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Figure A5.2. Sensitivity test for Yang-type source 

 

 
Figure A5.3. Sensitivity test for Okada-type source 
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5.8.3. Sensitivity test of the parameters in a fully constrained 3D deformation 
field, obtained from, for instance, a combination of ascending and descending 
together with GPS and leveling data. We considered the same condition as in 
Figures (5.1-3).  
 

 
Figure A5.4. Sensitivity test for Mogi-type source 

 

 
Figure A5.5. Sensitivity test for Yang-type source 
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Figure A5.6. Sensitivity test for Okada-type source 
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Chapter 6 
 
 

Time-dependent volcano source monitoring using InSAR 
time series: A combined Genetic Algorithm and Kalman 
Filter approach1  
 

 
M. Shirzaei and T. R. Walter 
 
Section 2.1, Dept. Physics of the Earth, GFZ German Research Centre for Geosciences, 
Telegrafenberg, D – 14473 Potsdam, Germany 
 
 

Abstract 
 
Modern geodetic methods allow continuous monitoring of deformation fields at volcanoes. The 
acquired data contributes significantly to the study of the dynamics of magmatic sources prior to, 
during and after eruptions and intrusions. In addition to advancing monitoring techniques, it is 
important to develop suitable approaches to deal with deformation time series.  
Here, we present, test and apply a new approach for time-dependent, nonlinear inversion using a 
combination of a Genetic Algorithm (GA) and Kalman Filter (KF). The GA is used in the form 
presented by Shirzaei and Walter, [2009] and KF implementation now allows for the treatment of 
monitoring data as a full time series, rather than as single time steps. This approach provides a flexible 
tool for assessing unevenly sampled and heterogeneous time series data and explains the deformation 
field using time-consistent dislocation sources.  
Following synthetic tests, we demonstrate the merits of time-consistent source modeling for InSAR 
data available between 1992 and 2008 from the Campi Flegrei volcano in Italy. We obtained multiple 
episodes of linear velocity for reservoir pressure change associated with parabolic surface deformation 
at the volcano. This may be interpreted via differential equations as a linear flux to the shallow 
reservoir and provides new insight into how both the shallow and deep reservoirs communicate 
beneath Campi Flegrei.       
The synthetic test and case study demonstrate the robustness of our approach and the ability to track 
and monitor the source of systems with complex dynamics. It is applicable to time-dependent 
optimization problems in volcanic and tectonic environments in other locations and allows physical 
process to be understood in a temporal and quantitative way.  
 

6.1 Introduction 
 
In past years, there has been significant technical development in the detection of spatiotemporal 
surface deformation fields. Dense, continuous Global Positioning System (GPS) networks [Segall and 
Davis, 1997] and Interferometric Synthetic Aperture Radar (InSAR) time series [Berardino et al., 
2002; Ferretti et al., 2001b] provided valuable information about the temporal evolution of 

                                                 
1 MS developed the approach and inverted the data. All authors were involved in discussion and writing the 
paper. 
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deformation fields. These new developments yield daily and monthly deformation measurements with 
millimeter precision over regional scales [Dixon et al., 2006; King et al., 1995; Segall and Matthews, 
1997; Tizzani et al., 2007].    
Inverse modeling is a strategy used to understand the source of the deformation field. A number of 
different modeling algorithms for inverting deformation data can currently be found in the literature 
(see e.g., Shirzaei and Walter [2009]). However, these are commonly applied to either short or 
selected periods, and therefore provide merely a “snapshot” of a particular stage of a system. Modern 
developments in the field of deformation time series require appropriate progress in the inversion tools 
to address the full spatiotemporal capacity of the observations. To address this issue, a Kalman Filter 
(KF) technique is introduced into the field of deformation time series analysis. This technique is a 
sophisticated advancement from previous, common approaches.  
KF has a recursive formulation that is applicable to irregularly sampled data. In its original form, KF 
is applicable to linear dynamic systems as well [Grewal and Andrews, 2001; Kalman, 1960]. In the 
static case, KF corresponds to a sequential least squares adjustment [Hofmann-Wellenhof et al., 2000].  
In the geosciences, the linear dynamic Kalman filter (LKF) has already been applied to better 
understand spatiotemporal variations in fault slip rates, dike intrusion and fault creep history [Fukuda 
et al., 2004; Ozawa et al., 2004; Segall et al., 2000; Segall and Matthews, 1997]. 
While this linear approach is valid for some problems, many dynamic systems are inherently non-
linear. Non-linearity is especially common in the field of geosciences, with processes such as fault slip 
rates or volcanic deformations. For example, a volcano may be inflating prior to an eruption, undergo 
rapid collapse during an explosion or be affected by periodic flank movement. Therefore, an extension 
of KF to include slightly nonlinear problems has been applied (e.g., [Grewal and Andrews, 2001]). 
One widely used extension requires linearization of the equations about the estimated parameters for 
every time step [Grewal and Andrews, 2001; Welch and Bishop, 2001]. The extended Kalman filter 
has been used for time-dependent estimation of stress field, slip rate, and aquifer modeling [Leng and 
Yeh, 2003; McGuire and Segall, 2003; Miyazaki et al., 2006]. This method only performs well, 
however, if the equations are locally linear. Because of the recursive nature of KF, when this 
assumption is violated the errors may be distributed and this may lead to biased results. 
The Kalman filter technique has been combined with other techniques to overcome this limitation. 
One recent application combines KF with unscented transforms (UT) to propagate the mean and 
covariance information through a nonlinear function [Julier and Uhlmann, 1997; Julier and Uhlmann, 
2004; Wan and Van Der Merwe, 2000]. The result is free from derivatives and relies on the fact that 
approximating a probability distribution is more feasible than approximating an arbitrary nonlinear 
function [Julier and Uhlmann, 2004].  
Recently, Fournier et al. [2009] implemented this idea using dynamic models of the magmatic source 
at the Okmok volcano. The crucial issue to consider, however, is the initialization task and the 
selection of so-called hyperparameters, which are generally problem-dependent and only manageable 
by trial and error ([Julier and Uhlmann, 2004]; personal communication with Fournier [2009] ). The 
power and importance of the KF for time series assessment is well understood, but a sophisticated 
implementation free from assumptions and limitations has unfortunately not yet been elaborated.  
As an alternative to overcome these limitations, combining KF with other tools, such as Monte Carlo, 
artificial neural network and wavelet transforms [Chou and Wang, 2004; Fukuda et al., 2004; Kato et 
al., 2009], is a promising approach.  
Along these lines, this study presents a novel, time-dependent, non-linear inversion tool by combining 
KF and the GA techniques. The KF utilizes the simple form of Kalman [Grewal and Andrews, 2001] 
and the GA is implemented in an iterated manner combined with a statistical competency test 
[Shirzaei and Walter, 2009]. By using a sophisticated confidence estimation, we are able to combine 
the strength of a confident inversion tool with the robustness of a linear Kalman Filter (LKF). The 
implementation of a standard LKF makes this approach relatively easy to apply and makes 
optimization of the algorithm parameters very straightforward. 
We begin by briefly summarizing the GA and LKF approaches. Later, these two methods are 
combined and the capacities of a statistic inversion tool and a time varying filter are combined to 
estimate the dynamics of the system.  
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We demonstrate the robustness of our approach using a synthetic test and apply it to a long 
deformation time series obtained by SBAS-InSAR between 1992 and 2008 at the Campi Flegrei 
volcano in Italy. A new understanding of the physical process of occurring at this volcano is obtained 
and the source of deformation is monitored through time. 
            

6.2 Methods 
 
The concept of both the applied inversion and filtering approaches is described, followed by a 
description of the combination of these two approaches. 
 
6.2.1 Randomly Iterated Search and Statistical Competency Genetic Algorithm 
(RISC-GA) 
 
The Genetic Algorithm (GA) was recently identified as a powerful inversion tool that has the potential 
to process large data sets in full resolution [Shirzaei and Walter, 2009]. The GA was introduced by 
[Holland, 1975] and has been further improved by many subsequent researchers who provided 
comprehensive summaries on the theory and applications (see e.g., [Davis, 1987; Goldberg, 1989; 
Haupt and Haupt, 2004; Rawlins, 1991; Whitley, 1994]). Despite remarkable successes in solving 
extremely complex optimization problems, the original form of the GA does not provide any 
information about the quality of the result. Therefore, several researchers made efforts to determine 
the quality of the parameters optimized by the GA (e.g., [Carbone et al., 2008; Deb et al., 2000; Zhou 
et al., 1995]). Recently, Shirzaei and Walter [2009] introduced a sophisticated extension to the GA. 
This extension is named Randomly Iterated Search and Statistical Competency (RISC), and it that 
allows the quality of the optimized parameters to be estimated. In the RISC approach, the optimization 
algorithm is initialized with reasonable values based on available information. With random 
repetitions, the degree of freedom and  the chance for exploring the vicinity of the optimal solution 
increases. This statistical approach allows probability distributions, therefore, the confidence region 
for selected optimization parameters to be explored. RISC-GA was originally applied in binary format 
[Shirzaei and Walter, 2009]. To speed up the algorithm, however, we implement it here using 
continuous variables (for the GA with continuous variables, see e.g., [Haupt and Haupt, 2004]).  
For the GA with continuous variables, if lob  and hib  are the lower and upper band of unknowns, the 
initial population ( Pop ) is generated by the following equation: 

lornlohi bpbbPop +−= )(                                                                                                       (6.1)  
where rnp  is a random number uniformly chosen in the range [0, 1]. Comparable to the binary version 
of GA, other operators (such as pairing, mating and mutation) will guide the algorithm toward the 
optimum solution (see for details [Haupt and Haupt, 2004; Michalewicz, 1994]). The details for 
implementing the RISC approach with a continuous variable GA are the same as those explained for 
the binary version; the reader is referred to Shirzaei and Walter, [2009] for a more detailed 
explanation.  
 
6.2.2 Linear Dynamic Kalman Filter (LKF) 
 
LKF addresses the problem of estimating the parameters of a linear, stochastic system by using 
measurements that are a linear function of the parameters. According to the original form of the LKF, 
the system dynamic and measurement models, respectively, are formulated as follows [Grewal and 
Andrews, 2001]:  
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where X  and w  are 1×n  vectors of unknowns and the associated noise with Gaussian distribution,; 
Z  and v  are 1×l  vectors of observations and the associated noise with Gaussian distribution; Φ  and 
H  are nn×  and ll×  matrices, respectively [Grewal and Andrews, 2001; Kalman, 1960]. A 
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recursive solution for the system of equations (6.2) might be performed as follows (see Table 4.3; 
Grewal and Andrews, [2001]): 
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In equation (6.3) +
kX
)

is the posterior estimate, +
kP  is the covariance, −

kX
)

 is the priori estimate, −
kP  is 

the variance and kK is the Kalman gain matrix.  
 
6.2.3 Combining RISC-GA and LKF for time-dependent nonlinear inversion 
 
The evaluation of a sophisticated, combined inversion tool using a KF and the GA to explain 
deformation time series and estimate the associated source parameters responsible for the deformation 
is detailed below.  
The approach of a combined RISC-GA and LKF method is best explained by an example. Assume a 
spatiotemporal observation ),( yxLk  is sampled at times Tk ,...,1=  and is simulated by a forward 

model ),...,( 1 n
kk XXF  using the following equation: 

),...,(),(),( 1 n
kkkk XXFyxryxL =+                                                                                      (6.4) 

where, in terms of crustal deformation, F  is an analytical solution for a rectangular dislocation source 
[Okada, 1985], an inflating point source [Mogi, 1958], a pressurized spherical source [McTigue, 
1987], or any combination of those;  ),...,( 1 n

kk XX  are n  time-dependent dislocation source 
parameters; kL  is the surface deformation observation obtained by either continuous GPS data or 
InSAR time series; and kr  is the time-dependent observation error. 

The aim of this method is to reproduce and explain a time series of source parameters,  ( )i
k

i XX ,...,1  
with ni ,...,1= , such that the mean of the squared error is minimized. 
The rationale for our approach combining RISC-GA and LKF is composed of three main steps: 
Step (1): Static, non-linear inversion of the surface observations at each time j  ( kj ,...,1= ) using 
RISC-GA. In this step, equation (6.4) is inverted to obtain the parameters ),...,( 1 n

jj XX , regardless of 
the observations before and after time j . First order information about the parameters is required to 
specify the initial population using equation (6.1) (further detail about RISC-GA initialization may be 
found in Shirzaei and Walter [2009]). After repeating this step T  times (i.e. number of samples), we 
obtain the dislocation source parameters responsible for the observed surface deformation. In addition, 
this statistical approach provides associated confidence intervals at T  time steps. This estimation is 
optimized at each time step in terms of the spatial mean of squared error but not necessarily in terms 
of temporal mean square error. In order to also address the temporal error, a further step is necessary, 
which is detailed below and accomplished based on the LKF method.  
Step (2): To perform LKF, we introduce a system of equations based on the previous inversion step. 
Assuming a time series of the i -th parameter and an associated half-length of the confidence region as 
{ }ikrg

i
rg XX ,...,1  and{ }i

krg
i

rg σσ ,...,1 , respectively, we may establish the dynamic system model as:  
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and the measurements model as 
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where  
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Comparing equation (6.6) with (6.2), it can be seen that the observations are a result of the inversion at 
step 1. Because the system of equations is linear, we are able to use LKF. Each dislocation source 
parameter is considered a particle with constant velocity subject to random velocity perturbations. This 
assumes that the fluctuation of the inversion result over the time is caused by random noise. The new 
solution for the parameters in equations (6.5 - 7) can be obtained via equation (6.3). This new solution 
is obtained such that it minimizes the mean of the squared temporal error. We note, however, that it is 
likely that the new solution may not perfectly replicate surface deformation observations. This means 
that the solution is not optimum in terms of the mean of the squared spatial error, which requires 
another step in the process.  
Step (3): To minimize both the spatial and temporal error, we repeat step (1) with a slight 
modification, namely that the initial population is divided into two parts. Part one is the priori 
population ( prP ) and initialized using the same bounds as step (1). Part two is the posterior population 

( poP ), which is initialized using bounds based on the result of step (2). The bounds are described as: 
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where +i
k

P11  is the posterior variance of the estimated parameter +i
kkf X
)

 and [ ].P  is the normal 

probability density function. Equation (6.8) is defined by the )%1( α−  confidence interval for the 
posterior parameters. We use the assumption of a normal probability distribution with bounds defined 
by the upper and lower limits of the confidence interval. After initialization of the RISC-GA with 
these two subpopulations, the first based on our priori information and the second based on LKF, we 
run the RISC-GA again. The GA control parameters (cross over, pairing and mating) may allow for 
random combinations of population members and lead to a result that minimizes both the spatial and 
temporal mean square errors.  
Steps (1-3) are repeated until specified stopping criteria are reached, which may be defined as: 
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where ε  is a small arbitrary number, .  is the absolute value operator and itr denotes the number of 
iterations. Note that reaching only one of those stopping criteria is sufficient to estimate optimality of 
the solution.  
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6.3 Synthetic test and validation 
 
To examine the abilities of RISC-GA-LKF and to ensure that it can improve the stability of the model 
parameters, we now look at a synthetic test demonstrating its performance. The purpose of the 
synthetic test is simple. The test requires that five parameters of a dynamic, pressurized, spherical 
magmatic source be estimated [McTigue, 1987] in an elastic homogenous half space. The dynamic 
models of source depth (D), radius (R) and pressure change (P) are given as: 
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                                                                             (6.10)   

As seen in Figure (6.1), the synthetic models simulate fully nonlinear deformation dynamics, which 
challenge the ability of RISC-GA-LKF to track such a system. The observation area is a 20×20 km2 
grid with 1 km spacing, and the source location is fixed at coordinate (0,0). To simulate a more 
realistic scenario, we include random noise with a variance of 1 cm as measurement error. The time-
dependent deformation is inverted as follows. 
 

 
Figure 6.1. Evaluating RISC-GA-LKF for a synthetic scenario. This shows the comparison between 
the inversion results (open circles with error bars) and the true values (cross). a) easting, b) northing, 
c) depth, d) radius and e) pressure change of a pressurized, spherical, magmatic source buried in an 
elastic half space. 

 
To start the inversion, the RISC-GA is initialized with a population size of 80, mutation rate of 0.7, 
selection rate of 0.5 and a maximum iteration of 200 (after [Shirzaei and Walter, 2009]). The ratio 
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between priori ( prP ) and posterior ( poP ) population size is chosen randomly such that prP  plus poP  is 
equal to the total population size. We use the second relation shown in equation (6.7),  with 01.0=ε  
as a stopping criterion. The upper and lower bounds were chosen to be (-2 km, 2 km) in the horizontal 
direction, (2 km, 6 km) for depth, (0 km, 2 km) for radius and (-0.2 GPa, 0.2 GPa) for the pressure 
change. These values appear realistic for Silicic magmatic systems.  
The stopping criteria were reached after three iterations of the algorithm. Figure (6.1) shows a 
comparison between the inverted source parameters and the original source parameters. The error bars 
for the estimated parameters are plotted in the 95% confidence interval. We find there is good 
agreement between the original and the estimated parameters. This test shows the merits of RISC-GA-
LKF for both tracking systems with nonlinear dynamics, and also for resolving the trade off between 
source parameters such as source radius, pressure change and depth. Note that the pre-selected 
parameter bounds are merely accelerating the algorithm convergence. If broader bounds are chosen, 
the algorithm iterations increase at the expense of computation time. However, the final result is 
mostly independent from the initialization procedure. This is a significant advantage of the 
optimization technique compared to other approaches. Therefore, the initial conditions have no effects 
on the final result accuracy and lead to correct results. 
 

6.4 Application to InSAR time series at the Campi Flegrei 
volcano 
 
Campi Flegrei (CF) hosts a caldera with a long documented history of unrest. It is also in one of the 
most densely populated regions of Italy, partly including the city of Naples and its approximately one 
million inhabitants. The historical deformation at CF is governed by subsidence at a rate of 1.5-1.7 
cm/yr, with occasional periods of uplift [Troise et al., 2007]. The most recent large-scale uplift 
episodes occurred during 1969-1972 and 1982-1984 [Barberi et al., 1984; Troise et al., 2007].  
The first observation of the deformation using InSAR at CF reported by Avallone et al. [1999] was 
associated with a subsidence rate of up to 2.5 cm/yr during the period 1993-1996. Later, using InSAR 
time series, Lundgren et al., [2001] observed a subsidence rate of 3.5 cm/yr in the period 1993-1998. 
Subsequently, further developments of the InSAR time series Small Base Line Subset (SBAS) 
approach allowed for precise spatiotemporal maps of the deformation field to be obtained [Berardino 
et al., 2002; Lanari et al., 2007]. Later, this deformation time series was extended to late 2008 
[Manconi et al., 2010].  
Various episodes of the deformation at CF have been studied by many different researchers (see 
[Lanari et al., 2007] and references therein). Although the time series data are available, the dynamics 
of the source have never been investigated in a temporal context. Thus, InSAR has remained a 
‘snapshot’ tool. Utilizing long time series of the CF deformation field obtained by both the SBAS 
method [Lanari et al., 2007] and by proposed approach for time-dependent source modeling (see 
above) we study the temporal changes of the reservoir underneath the Campi Flegrei caldera. 
To simulate the source of deformation underneath the caldera, we consider a pressurized spherical 
source in an elastic homogenous half space (as used in synthetic tests) that evolves over time. The time 
series used here was provided by Lanari and colleagues at IREA, Napoli [Lanari et al., 2007]. The 
data spans the period 1992-2008 and comprises 116 observation samples with an average sampling 
rate of 45 days (Fig. 6.2). The deformation field is obtained in the Line of Sight (LOS) of the satellite 
with descending orbit and incidence angle of 23o and azimuth angle of 190o. The data were thoroughly 
validated by comparison to ground truth data, including leveling and GPS data. For data validation, we 
refer the reader to Lanari et al. [2007].  
As seen in Figure (6.2), the general deformation pattern shows subsidence up to 25 cm at the center; 
occasional uplift is apparent mainly from 2001-2002 and 2005-2007.  
For initialization of RISC-GA, we began with 200 iterations, a mutation rate of 0.7, a selection rate of 
0.5 and an initial population size of 100. The other parameters in the RISC-GA-LKF were the same as 
in the synthetic test and the a priori bound for the parameters is provided in Table (6.1) and are based 
on previous studies (see [Shirzaei and Walter, 2009] and references therein).  
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Table 6.1. Priori bounds for the parameters of the pressurized spherical source used for simulating 
the magmatic source underneath CF 

Parameter  X (km)  Y (km)  D (km)  R (km)  P (GPa) 
Lower bound  420  4515  2  0.5  ‐0.1 
Upper bound  435  4525  5  2  0.1 

 
After four iterations of the RISC-GA-LKF, the stopping criteria were reached and the time series of 
the magmatic source parameters was obtained. Figure (6.3) shows the time series of the source 
parameters (to compare this result with time series obtained by applying only RISC-GA see electronic 
appendix). The easting and northing of dislocation source position in the UTM map projection system 
are 425±1 km and 425±1.2 km, respectively.         
Figure (6.3a) shows the root mean square error (RMSE) of the inversion for each data sample with an 
error bar showing the 95% confidence interval. The magmatic source with parameters found using the 
inversion is able to retrieve the observed deformation time series very well.  
The cumulative pressure change time series (Fig. 6.3d) emphasizes the overall deflation period of the 
CF volcano since 1992. Deflation continues until 2000, when the onset of inflation gradually begins 
and lasts until 2001. After the inflation, another deflation period begins and lasts until late 2005. 
Beginning in 2006, the gradual deflation period ends and a period of slow inflation begins. 
Deformation remains positive, with slight undulations, until the end of the time series. 
The magmatic source depth and radius (Fig. 6.3b, c) remain nearly stable at 3.1± 0.4 km and 1.3 ± 0.1 
km, respectively. This is the first model obtained for Campi Flegrei with time-consistent parameters.  
The limitations and further implications of this approach and results are discussed below.            
 

 
Figure 6.2. a) The cumulative displacement of the surface over the study period obtained using the 
SBAS approach in LOS of a satellite with a descending orbit and a 23o incidence angle and azimuth of 
190o [Lanari et al., 2007], b) example of the deformation time-series at the center of the caldera at 
Pozzouli. 
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Figure 6.3. RISC-GA-LKF applied to a deformation time-series at the Campi Flegrei volcano. a) The 
inversion residual (observation - model) for each snapshot of the deformation time series, b) time 
series of the deformation source depth, c) time series of the deformation source radius, and d) time 
series of the deformation source cumulative pressure change. All the error bars are in the 95% 
confidence interval. 
 

6.5 Discussion 
 
We developed and tested a time-dependent, non-linear inverse modeling method using a combination 
of randomly iterated search and statistical competency Genetic Algorithm (RISC-GA) and a linear 
Kalman filter (LKF). This novel approach utilizes advantages of the GA for nonlinear inversion and 
the LKF for estimating dynamic source parameter changes in a volcanic system. After showing the 
merit of RISC-GA-LKF using a synthetic test, we applied it to a deformation time series for the Campi 
Flegrei caldera between 1992 and 2008, which was obtained using InSAR. Different aspects of this 
research might be approached as follows: 
 
6.5.1 Time-dependent modeling as the key for volcano source monitoring 
 
Modern geodetic techniques, such as the Global Positioning System (GPS) and Interferometric 
Synthetic Aperture Radar (InSAR) time series, provide a valuable tool for dynamic monitoring of 
volcanoes. This data, together with model simulations, allows for a better understanding of the 
volcanic process. Most modeling approaches use snapshots of the deformation rather than utilizing the 
full range of the deformation time series.   
To address this question, the Kalman filter (KF) emerged in different forms such as the linear dynamic 
Kalman filter (LKF), the extended Kalman filter (EKF) or was combined with other tools like the 
Unscented Transform (UKF) [Grewal and Andrews, 2001; Kalman, 1960; Welch and Bishop, 2001] 
[Julier and Uhlmann, 1997; Julier and Uhlmann, 2004; Wan and Van Der Merwe, 2000]. Although 
the KF was broadly applied in different forms, specific limitations remained because the LKF is only 
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applicable to linear dynamic systems, the EKF is suitable only for locally linear systems and the 
control parameters are problem dependent for the UKF.   
Our new approach combines the randomly iterated search and statistical competency Genetic 
Algorithm (RISC-GA) and the linear Kalman filter (LKF). The rationale for this combination includes 
the fact that the requirements of a LKF are good a priori estimation of the initial covariance matrix of 
the parameters and their initial value. We note that these inputs can be provided by any sophisticated 
optimization tool, which is able to provide a reasonable confidence interval for the parameters. 
Though we prefer the RISC-GA implemented here, one should be aware that other optimization 
techniques might also be applicable. For instance, instead of GA, other Monte Carlo approaches such 
as Simulated Annealing might be used if a precise assessment of the confidence region for the 
optimum parameters is obtained. In addition, one should ensure that the initial optimization procedure 
(step 1) is not trapped in local minima, which is the case for gradient base approaches.      
The advantages of our approach are (1) it is applicable to nonlinear systems; (2) the ability for 
handling irregularly sampled observations; (3) the capacity to incorporate heterogeneous observations; 
(4) the recursive manner that allows for efficient assessment of new data sets and expanding time 
series; and (5) the ability to be less sensitive to initial values and the requirement of only a rough 
estimation of search space. 
Moreover, RISC-GA-LKF allows for consideration of model deficiency and observation error, which 
may lead to a more realistic estimate of the confidence interval. This is an advantage when RISC-GA-
LKF is compared to other approaches that usually overestimate the quality of the estimated 
parameters. 
The KF implemented here is built based upon the assumption that the measurement and system noise 
behaves randomly. In the presence of colored noise, however, one may replace equation (6.3) with 
those explained by Zimmerman [1969] for the optimum gain, covariance and parameters that assess 
the effect of colored noise in a Kalman filter. 
 
 6.5.2 Applications for monitoring the source under the Campi Flegrei volcano 
 
Using RISC-GA-LKF, we modeled the deformation source responsible for 16 years (1992-2008) of 
unrest underneath CF as a dynamic pressurized spherical source. The average depth and radius of the 
source are about 3 km and 1.3 km, respectively, in agreement with previous studies (see [Shirzaei and 
Walter, 2009] and references therein).  
To estimate the impact of the trade-off between the parameters, we estimated the cross correlation 
coefficient between the source depth, pressure change and radius. Pressure change correlates to depth 
and radius by 2% and 18%, respectively. Radius correlates to depth by 12%. The correlation values are 
relatively low values and imply that the negative effect of trade-off between the source parameters is 
negligible.  
The overall pattern of the cumulative pressure change verifies an apparent contraction period for the 
source. A reason for this contraction might be cooling or draining of a reservoir [Natale et al., 2006]. 
However, the presence of a single shallow reservoir may be too simplistic and may not explain the 
occasional inflations in the area, such as those seen in 2001 and mid-2006. Those uplift periods might 
be explained if hydrothermal activities or recharge of the very shallow reservoir are considered 
[Battaglia et al., 2006; Gottsmann et al., 2006; Zollo et al., 2008]. In our work, we didn’t consider the 
presence of two sources, or layered or non-linear rheologies. Nevertheless, our results provide 
important new insight into how the reservoir pressure evolution works.     
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Figure 6.4. The deformation source pressure change velocity compared to the deformation time 
series. The major episodes of accelerated change are characterized by a linear trend with a similar 
slope; the timing of the magma flux is more easily distinguishable based on pressure change velocity 
than deformation time series. 

 
Estimating the velocity of the pressure change indicates four major periods of accelerated change at 
the magmatic source (Fig. 6.4). The first major period starts from the beginning of the observation 
period and lasts until mid-1993. The second period of accelerated change occurred between 1995 and 
mid-1996. Both of these episodes are attributed to expedited subsidence at the surface. The next two 
periods of accelerated pressure change are associated with uplift episodes and took place between 
1999 and 2001 and during 2006. These last two episodes of accelerated pressure changes are 
immediately followed by seismic swarms. For example, the micro seismic survey of the 2006 
acceleration period shows a cluster of seismic events that occurred at 1.5-2.5 km [Saccorotti et al., 
2007]. Because the seismicity location is somewhat shallower than the inferred reservoir source, one 
may speculate whether they are due to reactivation of existing faults above a pressurized reservoir. 
Most interestingly, the major episodes of accelerated change are characterized by constant velocity 
change (i.e., constant acceleration), which exhibits a linear acceleration of about 4.5 – 7 kPa/yr2 during 
the major periods of activity (Fig. 6.5a).  
A similar linear magma flux was reported from in situ volcano observatory data. For instance, the 
Kupaianaha vent on the east rift zone of Kilauea showed a linear magma flux that was found to be 
associated with a parabolic change in surface deformation [Denlinger, 1997]. To investigate whether 
the Campi Flegrei episodes of linear velocity are associated with parabolic surface deformation, we fit 
a parabolic function to the deformation time series in a piece-wise manner, which is shown in Figure 
(6.5b). There is very good agreement between the deformation time series and the parabolic functions, 
which might imply that the periods of linear pressure change at the reservoir resulted in parabolic 
surface deformation. Assuming V  is the reservoir volume and B  is the bulk modulus, the following 
relation between reservoir pressure change dP  and volume change dV  holds [Denlinger, 1997]: 
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Figure 6.5. a) The linear velocity of the pressure change together with the estimated constant 
acceleration, b) piece-wise parabolic fit to the time series of the surface deformation at CF, c) 
conceptual model explaining the relation between the deep and shallow reservoirs underneath CF.    
 

BVdP
dV =                                                                                                                       (6.11) 

Assuming an occasional linear flux of bt  into the shallow reservoir underneath CF at time t  and a 
constant supply of 0bta =  at time 0t , the change in the reservoir pressure might be written as follows: 
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Solving this differential equation for P yields: 
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where 0P  is the reservoir pressure at time 0t . Equation (6.13) shows that a linear flux into the 
reservoir through a feeder may cause a parabolic pressure change with linear velocity. Because the 
surface deformation is a linear function of the pressure change, it also follows a parabolic function. 
Therefore, the dynamics of long- and short-term uplift and subsidence periods may be controlled by a 
volume flux, possibly coming from a deeper reservoir into the shallow hydrothermal source.  
Seismic tomography underlined the existence of a shallow reservoir and a deep magma chamber 
beneath CF [Zollo et al., 2008]. However, the way that these two reservoirs communicate was not well 
understood. Our study suggests that the shallow reservoir at CF is occasionally fed through a vent by a 
linear flux of material and that the vent might be connected to a deeper reservoir. Figure (6.5c) 
presents a conceptual model visualizing this hypothesis. This model implies that the pulses of fluid, or 
magma flux, from the deeper source to the shallow reservoir are associated with the linear velocity of 
the pressure change and the parabolic surface deformation at the summit. The trigger might be an 
external source such as tectonic loading, or an internal component such as a pressure change at the 
deep magma chamber. Our observations are the consequence of these triggering mechanisms. This 
demonstrates that monitoring of surface processes may successfully lead to monitoring the source 
parameters as a function of time only if changes in the source parameters are physically well 
understood. New efforts for hazard assessment and early warning may emerge from this.   
 

6.6 Conclusion 
 
We developed and tested a new approach for time-dependent inverse modeling. This approach is a 
combination of Genetic Algorithm and Kalman Filter. Therefore, it encompasses the advantages of 
both in terms of efficiency and robustness. This integration allows for the consideration of very 
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heterogeneous observations, complex and nonlinear dislocation sources and efficient processing time 
that may also be applicable for early warning purposes. 
Validation tests were successfully performed and demonstrated based on a synthetic example. This 
simulation highlighted the capabilities of this approach for dynamic modeling of volcano-tectonic 
deformation sources. 
Following the validation test, we applied this approach to a deformation time-series obtained at the 
Campi Flegrei caldera between 1992 and 2008 [Lanari et al., 2007]. The most striking results of this 
study are the discovery of an approximately fixed source radius (~1.3 km) as a function of time. Upon 
inversion, the source pressure change is found to be responsible for a variable deformation field, 
which often shows different episodes of linear inflation and deflation associated with parabolic 
deformation at the surface. This linear pressure change and parabolic deformation, was interpreted 
using differential equations as a linear flux into the shallow reservoir from a deeper magma chamber. 
This provides new insight into how the deep and shallow reservoirs at Campi Flegrei communicate.   
Consequently, we argue that the method presented here has advantages for time-series modeling, and 
it is well suited for source monitoring and further applications in volcanic and tectonic fast response 
systems.  
 

6.7 Auxiliary material 
 
 

6.7.1 Inversion result for the time series of deformation at Campi Flegrei using 
RISC-GA 

 
 
 



 84

6.7.2 Spatiotemporal distribution of the inversion residuals at selected time steps 
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Chapter 7 
 
 

Interplay of deformation sources at Hawaii Island 
investigated through InSAR time series and time-
dependent modeling1 
 

 
M. Shirzaei and T. R. Walter 
 
Section 2.1, Dept. Physics of the Earth, GFZ German Research Centre for Geosciences, 
Telegrafenberg, D – 14473 Potsdam, Germany 
 
 

Abstract 
 
Volcanoes are known to closely interact with the tectonic environment. For instance they may be 
controlled by active regional-tectonic faults and erupt after earthquakes. Similarly, adjacent volcanoes 
interact with each other in time and space, as suggested for the Hawaiian volcanoes Kilauea and 
Mauna Loa. As shown herein by new satellite radar data, this interplay on Hawaii is even more 
complex than previously thought. It involves magma chamber pressure changes, dike intrusions, slow 
earthquakes and ground subsidence. The affected regions are the Mauna Loa and Kilauea volcano 
summits, their active rift zones, the island’s unstable southeast flank and even the city of Hilo. Using 
data acquired by the European satellite ENVISAT, we present a five-year spatiotemporal InSAR 
analysis of the deformation signals recorded between 2003 and 2008. The data suggest that most of the 
deformation sources are acting in chorus. Magma intrusions at the Mauna Loa chamber and the 
intrusions into the Kilauea rift are correlated in time, and they also change with gravity-driven flank 
movement events. Some of the events occur silently underneath the Kilauea south flank, such as slow 
earthquakes that may largely affect all of the active magmatic systems and reverse their sign of 
correlation. This study of the interplay between multiple deformations shows that the sources are 
correlated, providing a better understanding of Hawaiian volcano activity. It may also lead to new 
methods for assessing the hazards that arise during volcano-tectonic activities elsewhere.  
 

7.1 Introduction 
 
Modern monitoring techniques, such as the Global Positioning System (GPS) and Interferometric 
Synthetic Aperture Radar (InSAR) time series, can provide a high precision map of the ground 
deformation field, and so hold great potential for detecting volcanic activity precursors. In 
combination with model simulations, such geodetic data allow a better understanding of, e.g., 
volumetric changes, intrusions and fracture propagations under active volcanoes [Dzurisin, 2006]. 
High precision volcano monitoring has also been used to investigate coupling, between magmatic and 
tectonic activity. For instance, complex interaction with tectonic earthquakes which may trigger the 
unexpected awakening of dormant volcanic systems [Amelung et al., 2007; Darwin, 1840; 

                                                 
1 MS developed the approach and processed and inverted the data. All authors were involved in discussion and 
writing the paper. 
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Eichelberger and Izbekov, 2000; Hildreth and Fierstein, 2000; Nostro et al., 1998]. In some cases, the 
coupling of a volcano to its surroundings also involves neighbouring volcanoes, which show 
correlating activity changes or even erupt in chorus [Walter, 2007]. At Hawaii Island (Fig. 7.1), one of 
the most active and intensively studied of volcanic complexes, previous work suggests various modes 
of interaction, such as between the adjacent rift zones [Jaggar and Finch, 1929], between flank 
movements and eruptions [Swanson et al., 1976a], between the volcanoes Mauna Loa and Kilauea 
[Miklius and Cervelli, 2003], or between earthquakes and rift zone intrusions [Walter and Amelung, 
2006]. 
 

 
Figure 7.1. Overview of the study area, Hawaii Island, and its main volcanic and tectonic systems. 

 
In this paper, we analyze the 2003-2008 Hawaii Island activity and deformation sources. First, we 
investigate the dynamics of each individual magmatic and tectonic source. Second, we explore the 
type and degree of mutual interaction between these sources. To achieve these goals, we utilize a high 
number of interferometric synthetic aperture radar data to generate a spatiotemporal time series of the 
deformation field. Using a time-dependent modeling approach, we then locate and quantify the 
dislocation sources responsible for the observed surface deformation. We thereby elucidate 
spatiotemporal details of the various adjacent deformation sources in Hawaii with the aim of better 
understanding magma dynamics and possibly even, identifying precursors for volcanic activity. 
 

7.2 Tectonic and magmatic activity at Hawaii Island 
 
Hawaii Island hosts five volcanoes (Fig. 7.1) with two of them, Mauna Loa and Kilauea, being 
amongst the most active volcanoes worldwide. The Island’s southeastern flank is gravitationally 
unstable; the substratum is the location of intermittent large earthquakes.  
Deformation at Kilauea and Mauna Loa was regularly measured already since the appearance of 
leveling and triangulation techniques and rapidly this observation became an important parameter for 
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routine monitoring [Decker et al., 1966] by the U.S. Geological Survey at the Hawaiian Volcano 
Observatory [Dzurisin, 2006]. The potential for use of geodetic techniques as tools for forecasting was 
first shown through repeated electronic distance measurements across the Kilauea Caldera that 
demonstrated and quantified magma reservoir inflation prior to eruptions [Decker et al., 1966]. These 
inflations were due to the interplay of magma intrusions at magma chamber and fissure eruptions, 
where, by intrusion first causes expansion of a magma reservoir before propagating into the rift zones. 
Improving time series resolution allowed demonstration that these events are associated and possibly 
temporally related to instability and the lateral movement of the southern flank of Kilauea [Dvorak et 
al., 1983]. To increase and refine the data set, Dvorak and colleagues considered leveling, tilt and 
electronic distance measurement (EDM) data in joint dislocation inversion models, pointing to an 
interaction of the local deformation sources with earthquake activity or episodic block movements. 
The occurrence of the 1975 magnitude 7.2 Kalapana earthquake vividly demonstrated that flank 
instability may impact upon hazard potential, by releasing accumulated stress, by disrupting shallow 
magma pathways, and by influencing storage location, ascent rates, intrusion and eruption volumes 
[Dvorak et al., 1994].  
The emergence of space-based geodetic techniques since the mid 1990s has increased the 
understanding of the interplaying deformation processes. GPS data induced that the southern flank 
may be dislocating as individual segments [Owen et al., 1995]. A significant improvement of the 
vertical deformation component was shortly afterwards achieved with satellite radar data, whereby 
interferograms of the reflected phase contribution yield a near complete data observation field with up 
to > 1 Million of observation points as defined by the pixel size [Rosen et al., 1996]. The interaction 
between volcanism and tectonic events could be identified and investigated in much greater detail 
using these novel techniques [Amelung et al., 2007; Cervelli et al., 2002; Owen et al., 2000; Segall et 
al., 2001; Segall et al., 2006]. Whilst, Individual periods of eruptions and earthquakes on Mauna Loa 
and Kilauea have been investigated, a complete InSAR-based time series study of the different sources 
as well as their correlation remained to be made. 
 

7.3 Methods 
 
To investigate the deformation pattern, the responsible dislocation sources and their temporal 
correlation on Hawaii Island we applied (a) an InSAR time series with new filtering techniques that 
allow yielding high precision observations, (b) deformation data comparison to reliable and 
continuous GPS stations, (c) time dependent dislocation model simulations using Genetic Algorithm 
and Kalman filtering technique, and (d) a cross correlation analysis that shows directivity and 
temporal proximity of related events. 
 
7.3.1 Wavelet based InSAR time series  
 
Hawaii’s deformation field was obtained by time series of InSAR images that measures differences in 
the phase of the electromagnetic waves returning to a satellite [Ferretti et al., 2007]. The InSAR 
technique can measure sub-centimeter rate changes of the ground motion over time spans of days to 
years [Hanssen, 2002].  
So far, two broad categories of InSAR time series methods have been introduced: Permanent 
Scatterers (PS) [Ferretti et al., 2001a] and Small Baseline Subset (SBAS) [Berardino et al., 2002; 
Schmidt and Bürgmann, 2003]. The PS method refers to the category that uses a single master 
interferogram and identifies individual pixels that are of high quality (so-called elite pixels) on the 
basis of their phase stability in time or space. In contrast, the SBAS method employs multi-master 
interferometry with a small spatial baseline and recognizes elite pixels based on spatial phase 
coherence. Both methods favor a sparse unwrapping approach to reduce the negative impact of noisy 
pixels and a filtering approach for reducing topographic and atmospheric artifacts [Berardino et al., 
2002; Ferretti et al., 2001a; Hooper et al., 2007]. Both time series methods allow investigation 
temporarily varying activities. Disadvantages are, however, that parts of the processing chains are 
based on an a priori model, which may introduce systematic artifacts in the displacement observation, 
and that a relatively large number of images are required. In the following, we employ the advantages 
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of PS and SBAS but we overcome systematic biases and wavelike disturbances by utilizing new 
filtering approaches. These new approaches are briefly summarized herein and are further detailed in 
the electronic appendix and fully explained and validated in Shirzaei and Walter, [2010b].  
The applied suites of filters include spatiotemporal wavelets and Kalman-based approaches that we 
adjusted to reduce the error contributions from inaccuracy in the digital elevation model (DEM), from 
atmospheric delay and from temporal decorrelation noise. Wavelets have been shown to be 
sophisticated for recognizing hidden patterns in signal [Kumar and Foufoula-Georgiou, 1997; Mallat, 
1989; Torrence and Compo, 1998]. In addition, we could evaluate the signal adaptively. For example 
for noise reduction, the wavelet filter parameters may be adjusted by using criteria obtained directly 
from the signal [Donoho and Johnstone, 1994].  
The wavelets were used herein to identify elite pixels by statistically integrating all spatial and 
temporal information. The pixel selection step begins by estimating the noise of each pixel in all 
interferograms through a combination of Wiener filter and wavelet multi-resolution analysis [Zha et 
al., 2008]. Having a noise history for each individual pixel allows probabilistic evaluation of the 
quality of individual pixels in respect to the population of all other examined pixels. This identifies 
less noisy (i.e. elite) pixels. Although the definition of elite pixels is relative, this approach helps to 
identify less corrupted pixels, leads to more accurate phase unwrapping and results in data refinement. 
Following identification of elite pixels, a sparse phase unwrapping approach is applied to estimate 
absolute phase values [Costantini and Rosen, 1999].  
Other sources of environmental errors, such as DEM inaccuracy and atmospheric delay, were reduced 
by considering the problem as a non-stationary process. Therefore, we investigate different wavelet 
based filters. The contribution of DEM inaccuracy hΔ  in phase observation at a pixel located at a 
given coordinate ),( ηζ  in an interferogram k  may be formulated as following [Hanssen, 2002]; 
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where mP  is the Legendre polynomial of the order m . Equation (7.2) shows that the DEM error not 
only affects the amplitude of observed deformation, but also has a frequency property in space. By 
applying a 2D filter based on Legendre polynomial wavelet, one can extract and even eliminate 
components with similar spatial frequency properties (for more detail see [Shirzaei and Walter, 
2010b]).  
To reduce the contributions of atmospheric delay, we developed a 3D filter as a tensor product of 2D 
discrete and 1D continuous wavelet transforms. We exploit the fact that the atmospheric delay holds a 
certain spatial and temporal decorrelation length while it is a non stationary process. This allows 
application of an adaptive wavelet-based filter with a variable window size and with the ability to 
extract such specific spatiotemporal components. Similarly, for an atmospheric correction, the 3D 
deformation field is decomposed with the 3D wavelet transform and the components that have specific 
spatial correlation length and temporal frequency [Shirzaei and Walter, 2010b].  Applying above 
mentioned filtering scheme assures us that most of environmental artifacts are reduced and only the 
temporal noise may remain. We treat that by implementing a Kalman Filter similar to the approach 
used in continuous GPS data processing [Hofmann-Wellenhof et al., 2000].  
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Figure 7.2. Flowchart of the wavelet-based InSAR approach, applied for generating a deformation 
time series and filtering significant environmental artifacts. 
 
In summary, Figure (7.2) presents the flowchart summarizing the steps of our InSAR time series 
approach named ‘WabInSAR’. WabInSAR stands for Wavelet Based InSAR and comprises five major 
steps, beginning with standard interferogram generation, pixel selection and sparse phase unwrapping 
[Costantini and Rosen, 1999]. The phase unwrapping achieved here using two dimensional minimum 
cost flow [Costantini, 1998]. Then we apply the filter based on Legendere wavelets for DEM error 
correction. To generate a time series of the deformation field in the following stage, the unwrapped 
phase corrected for DEM error is inverted by using best linear unbiased estimate approach 
[Bjerhammar, 1973] applicable to full rank or rank deficient problems. The last two filtering steps are 
made to correct atmospheric delay and to reduce the temporal noise by using a Kalman filter 
[Hofmann-Wellenhof et al., 2000] (further details are presented in [Shirzaei and Walter, 2010b]).        
 
7.3.2 GPS processing 
 
The continuous GPS (cGPS) data used in this study (Fig. 7.3b, c) are all provided by UNAVCO, a 
non-profit, membership governed research consortium dedicated to supporting and promoting high-
precision measurement techniques. 
The cGPS data are sampled at the rate of 30 seconds. We used the Bernese 5 software [Dach et al., 
2007] to solve the daily coordinate of the cGPS stations in ITRF2005 reference frame. The precise 
orbit data are obtained from IGS. To generate a time series of the displacement field for each GPS 
station we use a Kalman filter [Hofmann-Wellenhof et al., 2000]. In Figure (7.3b), c each GPS 
displacement point is the average coordinate of the station within 3 days that temporally spans the 
WabInSAR observation point and was projected to satellite’s Line of Sight (LOS) for comparison with 
InSAR time series.   
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Figure 7.3. The deformation of Hawaii Island as seen from space. Main image shows the average 
change in the line-of-sight radar acquisition obtained via a five-year InSAR time series. The warmer 
colors show a movement of the ground towards the satellite at a rate of up to 4 cm/year. The satellite 
geometry is descending (azimuth ≈190o) with an incidence angle of 23o. a, b) InSAR time series at 
location of the cGPS stations are available. c-e) examples of InSAR time series at areas with 
significant displacement. All of the error bars reflect a 95% confidence level.    

 
7.3.3 Time dependent inverse modeling 
 
To understand the causes of the observed deformation, we developed a time-dependent non-linear 
inverse model simulation. This method consists of two main operators: (i) a non-linear inversion 
method, Genetic Algorithm (GA), as a minimum spatial mean error estimator [Shirzaei and Walter, 
2009]; and (ii) a recursive filter, Kalman Filter (KF), to generate time series of the deformation source 
parameter as a minimum temporal mean square error estimator [Grewal and Andrews, 2001; 
Hofmann-Wellenhof et al., 2000]. These two operators are combined in an iterative manner [Shirzaei 
and Walter, 2010a].  
To relate observation to deformation source parameters, the mathematical model comprises several 
laterally connected rectangular dislocation planes [Okada, 1985] mimicing the rift zones at Mauna Loa 
and Kilauea. In addition, two pressurized spherical sources [McTigue, 1987] are considered as magma 
chambers located underneath the caldera of Mauna Loa and Kilauea. Slip along the basal decollement 
beneath Kilauea’s east flank and compaction underneath Hilo city was simulated using two sub-
horizontal rectangular dislocation planes [Okada, 1985]. We assumed a homogeneous elastic half-
space and initialized all model source parameters based on earlier works [Amelung et al., 2007; 
Cervelli et al., 2002; Okubo et al., 1997; Segall et al., 2006].  
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7.3.4 Cross correlation 
 
After obtaining a time series of the dislocation source parameters, we estimate the linear correlation 
between two source parameters x  (e.g. magma chamber pressure change) and y  (e.g. dike intrusion 
volume) with associated variance-covariance matrix of xQ  and yQ , respectively, by calculating the 

cross correlation coefficients ( xyC ) as follows [Meyer, 1970]; 
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,where, [ ].E  is the statistical expectation. The obtained value reflects the strength of a linear relation 
between each data pair and helps to understand their relationships in future. 
To assess the quality of the correlation coefficients, we may reduce the problem to identifying the 
slope of a best fitting line to each data pair as follows; 

baxy +=                                                                                                                              (7.4) 
,where, a  is slope and b is the y  axis intersection. For instance, a1tan−  with values of 45o, 90o and 
135o is equivalent to xyC with values of 1, 0 and -1, respectively. 
The main difference to the standard least square (SLS) regression is that inhere a method should be 
applied that takes the uncertainty of both the x  and y axes into account. This problem is in a general 
way already formulated by [Deming, 1943], who suggested to minimize following cost function; 
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where )(xExrx −= , )(yEyry −= , 1−= xx Qp  and 1−= yy Qp .  The problem of finding a  and b  
with uncertainty in both x  and y is the so-called Total Least Square Problem (TLSP) [Krystek and 
Anton, 2007]. In TLSP, minimizing equation (7.5) is equivalent to minimizing the orthogonal distance 
of the fitting line to both axes. More details of the concepts of TLSP, the analytical solution for the 
parameters a  and b , and the associated variance-covariance matrix is given in [Krystek and Anton, 
2007; Schaffrin and Wieser, 2008]. Analyzing TLPS allows us to assess the uncertainty of the 
correlation coefficient by considering the uncertainty of abscissa and ordinate data sets at the same 
time.    
In the following, we are therefore able to analyze the results obtained for Hawaii Island, in terms of its 
deformation pattern, source parameters and source interplay analysis as a function of time. 
 

7.4 Results 
 
The European environmental satellite ENVISAT flies and acquires radar images over Hawaii Island 
every 35 days. For this study, we utilized 27 radar images acquired between 2003 and 2008 to process 
about 170 interferograms for generating a spatiotemporal map of the surface deformation. The 
obtained time series shows variations in the deformation velocity in the satellite’s line of sight (LOS) 
as seen in Figures (7.3, 4).  
 
7.4.1 Deformation field and data validation 
 
Validation tests were performed by comparing InSAR time series and available cGPS data sets. To 
achieve this comparison, we made a spatial averaging of the WabInSAR data in a circle centered at 
each cGPS station with radius of 250 m. This averaging is done for each snapshot of the time series 
and results in a WabInSAR time series comparable to cGPS data.  
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Figure 7.4. Spatiotemporal evolution of the deformation field over Hawaii Island, as obtained using 
WabInSAR. Each image presents the cumulative displacement since beginning of the time series in 
respect to the MKEA GPS station (filled circle) located at coordinate of (-155.45, 19.80).  For better 
illumination, the color-bar is saturated between -10 cm (i.e. away from satellite) and +10 cm (i.e. 
toward the satellite). 
 
The average of n  samples { }nlll ,...,, 21  with variance of σ  is l  with variance of 

n
σσ = , hence is 

an unrealistically small value here, because of the high number of redundant observations for 
estimating σ  and the large number of pixels in the vicinity of the cGPS station. Therefore, in all 
evaluations, we have considered an uncertainty of 0.5 - 1 cm for the WabInSAR time series. These 
errors are considered by us to be more realistic than standard error propagation analysis. The precision 
of cGPS data is better than a few millimeters [Dach et al., 2007]. Nevertheless, after projecting 
components of the 3D displacement field into LOS, we may consider an uncertainty of 1-1.5 cm in the 
95% confidence region for cGPS data set.  
The observations at the cGPS station AHUP, which is located south of the Kilauea caldera (Fig. 7.3a), 
show a small amount of deformation over the first three years and a pronounced uplift period at AHUP 
between 2006 and 2007. The time series of WabInSAR selected at the vicinity of AHUP site agrees 
well with the cGPS time series (Fig. 7.3a). Similarly, the other time series of WabInSAR is consistent 
with the cGPS observations (Fig. 7.3b). Assuming that the cGPS measurements provide the true 
values, the average accuracy of the InSAR time series is better than 0.5 cm (see [Shirzaei and Walter, 
2010b]).  
Thus, the main advantage of the satellite radar technique applied in this study is that we obtain 
deformation data from about 650,000 coherent pixels with a resolution of 80 m × 80 m and an 
accuracy of <0.5 cm. The obtained deformation time series enables us to further investigate Hawaii’s 
deformation episodes. For instance, significant uplift was detected near the two central regions of 
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Mauna Loa and Kilauea (Fig. 7.3, 4), causing inflation in the volcano summits that increased during 
2005 and 2006 (Fig. 7.4). Moreover, an unexpected finding was the continuous subsidence of the city 
of Hilo at the rate of 0.8 cm/yr (Fig. 7.3e, 4). In the next section, we describe the time dependent 
modeling designed to explore the causes of this complex deformation field. 
 
7.4.2. Time dependent modeling of the deformation sources  
 
For time dependent source modeling, the dislocation model parameters are constrained by using the 
parameters summarized in Table (7.1). The Genetic algorithm is initialized by population size of 100, 
iteration number of 500, mutation rate of 0.65 and selection rate of 50% (for detail see [Shirzaei and 
Walter, 2009]). By simulating the strength, geometry and location of the dislocations as a function of 
time, the InSAR and GPS displacement data at all pixels and stations could be reproduced with a 
spatial root mean square error better than 0.5 cm (Fig. 7.5b).  
 
Table 7.1. The initial bounds for dislocation source parameters 

 Parameter Lower bound Upper bound 
Coordinates (km)* Rift trace – 5 Rift trace + 5 

Depth (km) 6 14 
Width (km) 6 14 Rift dikes 

Dip (deg) 70 110 
Depth (km) 2 7 
Radius (km) 0.1 Depth lower bound Magma 

chamber Horizontal location (km)* Maximum deformation location - 5 deformation location + 5 
Coordinates (km) Rift trace – 10 Rift trace + 10 

Depth (km) 6 14 
Width (km) 10 30 

Basal 
decollement 

Dip (deg) -10 10 
Coordinates (km)* Subsidence area – 5 Subsidence trace + 5 

Depth (km) 1 6 
Width (km) 1 6 Hilo plane 

Dip (deg) -10 10 
*the location was constrained approximately, and freedom of ±5 km was allowed for the source 

 
The deformation occurring at the volcano summits of Mauna Loa and Kilauea was best explained by 
magma chambers located 4±0.5 km and 3.8±0.8 km below the surface, respectively. Similar reservoir 
depths have been constrained by earlier studies based on other independent data. The reservoir depth 
under Kilauea is thought to be between 2.5 and 5 km depth [Cervelli and Miklius, 2003; Johnson, 
1992; Okubo et al., 1997; Rowan and Clayton, 1993; Wright and Klein, 2006; Yang et al., 1992]. 
Under Mauna Loa, earlier GPS and InSAR studies constrained the depth to the range of 3.5 – 5 km 
[Amelung et al., 2007; Okubo et al., 1997], being slightly offset from the summit caldera to the 
southeast. Thus our results on source locations and depths are well in agreement with these earlier 
findings.  
Additionally, we found that the rift zones opened at a depth between 1 and 10±2 km. At this stage, we 
did not consider distributed slip models. The plan view of the geometry of the segmented rift zone in 
the model follows the morphological expression of the rift zone. Although being simplified, the rift 
zone model results are again well in agreement with previous works and suggest rift zone activity from 
the surface down to the lower depth of the edifice at 8-12 km [Amelung et al., 2007; Segall et al., 
2006]. Furthermore, we reproduced the movement of the south flank by slip along a decollement plane 
located at an average depth of 10±1 km, which is again in agreement with independent studies [Rowan 
and Clayton, 1993; Segall et al., 2006]. The subsidence of the city of Hilo was simulated by 
considering a compacting layer; the location of this layer was found by the inversion technique, and 
the average depth was 3.7±1.5 km, in agreement with the depths of the soft hyaloclastite layers 
identified by a deep scientific borehole near the city (ICDP website, Hawaii Scientific Drilling Project, 
http://hawaii.icdp-online.org).  
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Figure 7.5. Evolution of source parameters for the modeled magma chambers, rift zone dikes, flank 
slip and city subsidence. a) schematic view of the position of simulated dislocation sources, b) 
inversion residuals and root mean square error for each date of the time series and c-h) the strengths 
of the deformation source parameters obtained by non-linear time-dependent data inversion. Here, we 
used a mathematical formula that relates the simulations to the measurements and we consider several 
laterally connected dike-like dislocation planes [Okada, 1985], following the rift zone strike directions 
at Mauna Loa and Kilauea. The spherical pressurized sources [McTigue, 1987] correspond to the 
Mauna Loa and Kilauea magma chambers. Moreover, sub-horizontal dislocation planes [Okada, 
1985] were employed to simulate the possible basal decollement slip at Kilauea and the substratum 
compaction underneath Hilo city. All of the simulations were performed in a linear elastic half-space 
with a Poisson’s ratio of 0.25 and a shear modulus of 10 GPa. All of the error bars reflect a 99% 
confidence level. 

 
7.4.3 Identifying volcanic and tectonic interactions on Hawaii Island 
 
All of the detected magmatic and tectonic deformation sources showed temporal variations (Figs. 
7.5c-h). At the Mauna Loa rift dike, large fluctuations in the volume flux were found (Fig. 7.5c), 
possibly related to dike opening (2005-2006) and dike closure (2006-2007). At the same time, the 
Mauna Loa magma chamber displayed a nearly linear increase in pressure (Fig. 7.5d). Thus, at first 
glance, it appears that the sources were acting independently. However, by examining shorter periods 
and the temporal distribution of the rate changes, we found that most of the sources were acting 
together. For instance, the 2007 pressure increase of the Mauna Loa magma chamber occurred at the 
same time as the pressure increase of the magma chamber beneath Kilauea, which may imply the 
beginning of an augmented phase of magmatic activity at both of the Hawaiian volcanoes. As induced 
by our models, the total volume of intruded magma at the Kilauea rift dike was almost 20 times the 
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volume at the Mauna Loa rift dike, while the volume of magma in the magma chamber was 4 times 
smaller. A comparison of the relative intruding volumes hence shows that the magma chamber at 
Mauna Loa currently plays a more important role in magma storage than the Kilauea magma chamber. 
To study the relationship between the different deformation sources, we investigated their linear cross 
correlation and associated uncertainty (Fig. 7.6a, b). A correlation coefficient with an absolute value 
close to 1 indicates a significant correlation and the uncertainty close to 0 means the high precision of 
the estimation. This statistical test shows that the Kilauea rift dike intrusions are correlated in the long-
term (over the five years) with both Mauna Loa magma chamber inflation and basal slip underneath 
the Kilauea flank (Fig. 7.6a). Hence, the long-term correlation test confirms interactions between both 
Mauna Loa and Kilauea [Miklius and Cervelli, 2003] and the rift dikes and flank movement [Cayol et 
al., 2000; Dieterich et al., 2000]. 
 

 
Figure 7.6. Correlation analysis suggesting interplaying sources. a) Long-term cross-correlation 
coefficients indicating the degree of linear dependency between the strengths of the sources; b) the 
cross-correlation coefficients’ uncertainty obtained via TLSP analysis in 95% confidence region, c) 
bivariate plots of the relationships between the strengths of the sources as a function of time, which 
also indicate the degree and pattern of the relationship. The coordinate of each point represents two 
values; for instance, the abscissa represents the normalized volume of magma intruding into the 
Kilauea dike system (RDK), and the ordinate represents the normalized pressure change in the Mauna 
Loa magma chamber (MCM). We use a color scale to assign a date to each point. In each panel, the 
image acquired immediately after the silent earthquake (31/1/2005) is marked by a square. Since the 
silent earthquake often appears as a reversal point (opposite slopes before and after the square), the 
long-term and short-term correlations may be different and may even reach zero.  
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In order to investigate the correlation on shorter time scales (< 2.5 year), we estimated the sign and 
degree of the correlation via bivariate plots (Fig. 7.6c). An increasing trend with time means that the 
correlation is positive (e.g., the magma volume is increasing at both sources), whereas a negative trend 
indicates an anti-correlation (e.g., the volume of one system is increasing, whereas that of the other 
system is decreasing). The results show that the magma chamber inflation periods are anti-correlated 
with dike intrusion periods (Fig. 7.6b). For instance, in 2007, Mauna Loa began to undergo an 
augmented period of inflation that was related to a rapid pressure increase within the magma chamber. 
Then, by mid-2007, the pressure dropped within the chamber, which was associated with a new 
intrusion into the Mauna Loa rift zone (see Fig. 7.5). This observation is in agreement with previous 
report on the deformation of the Kilauea volcano [Dvorak et al., 1983], In which intrusions of magma 
into the rift zone appeared to be preceded by summit inflation. Similarly, a strong correlation is 
observed for the magma chamber pressures and the amount of decollement slip. Furthermore, the rate 
of subsidence at Hilo city occasionally appears to be affected by volcanic activity and movements of 
the unstable volcano flank, implying the presence of a system that is sensitive to very small 
fluctuations in the crustal deformation field.  
 

7.5 Discussion 
 
In this study, we investigated the spatiotemporal deformation field over Hawaii Island as obtained by a 
new wavelet-based InSAR (WabInSAR) time series method. Following the time-dependent inverse 
source modeling and cross correlation coefficient estimation, we investigated the behavior of 
deformation sources individually and in chorus. The main sources of deformation in this period are 
interpreted as (a) dikes that opens or close and are located along the rift axes of Mauna Loa and 
Kilauea volcano, (b) magma chambers that inflate and deflate and are located beneath or slightly offset 
from the summit calderas, (c) a basal decollement that accomodates south-directed slip of the Kilauea 
flank and that is located at the interface between the volcano edifice and the oceanic crust, and (d) a 
compacting layer underneath Hilo city. All model sources are well constrained and explain the data 
well. Our study showed that all of these sources also partially interact with each other. We hereafter 
discuss different aspects of these findings.   
 
7.5.1 Improvements and limitations of WabInSAR 
 
The major improvements of WabInSAR are: 1) freedom from model assumption, and 2) requirement 
of relatively smaller number of images. For instance, a polynomial assumption for simulating a 
deformation behavior to reduce possible topography error is not required. WabInSAR is an effort to 
overcome such limitations and to improve the accuracy of existing deformation time series methods. 
The approach treats signals by using the available information directly associated to its building 
blocks, i.e. surface deformation, atmospheric delay, DEM inaccuracy and decorrelation noise. For 
instance, artifacts that resulted from inaccuracy in the DEM can be treated using Legendre wavelet 
filters, because of their specific characteristics that resemble the spatial behavior of Legendre 
polynomials.  
To reduce or even eliminate atmospheric artifacts, information about the spatiotemporal behavior of 
the troposphere pressure, temperature and humidity might be required, although using the default 
values may lead to a reasonably good result (for more detail see [Shirzaei and Walter, 2010b]). The a 
priori information comprises a spatial and temporal decorrelation length of atmospheric delay, which 
is incorporated into our 3D wavelet filter via spatial and temporal window sizes. In other words, 
various root mean square radii of wavelet mother functions are utilized at different wavelet scales 
[Goswami and Chan, 1999] (for more detail see [Shirzaei and Walter, 2010b])   
Regarding limitations of the current version of WabInSAR, implementation of a 3D unwrapping 
algorithm is required. However, by the time we prepared this manuscript, we have developed a new 
approach for 3D phase unwrapping based on combination of artificial intelligence and minimum cost 
flow and will be available in a separate publication soon. Moreover, to obtain accurate results, a 
careful application of the wavelet concept is required. The wavelets provide a very large variety of 
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analyzing functions with different advantages and limitations. Misuse of them may lead to filtering out 
of part of the signal.             
 
7.5.2 Time dependent modeling 
 
Most modelling studies of volcano deformation processes consider individual events or averaged data. 
A deformation time series, as presented herein, requires time dependent modeling approaches that 
provide (analytical) source solutions that may be variable in strength but consistent in time. For 
instance, an active fault can not jump laterally by many kilometers as the deformation proceeds. Such 
temporal undulations in the source parameters are usually produced by model deficiency and/or data 
deficiencies. The approach devised here for inverting the deformation time series incorporates the 
advantages of the Genetic algorithm [Shirzaei and Walter, 2009] and the robustness of the Kalman 
filter [Grewal and Andrews, 2001]. This approach integrates the entire spatial and temporal 
information to generate a time series of the dislocation source parameters. This inversion approach has 
the further advantage of handling irregularly sampled observations while preserving nonlinearity of 
the observations. It is also capable incorporating heterogeneous observations. Moreover, because the 
Kalman filter is implemented recursively, it allows for considering new data sets in efficient manner 
which suites for early warning systems  (for more detail see [Shirzaei and Walter, 2010a]).  
We note, again, that the dislocation sources are simulated in an elastic homogeneous half space 
medium, which is a simplification of the real space. In other studies it was shown that mechanical 
heterogeneity and the effect of topography may influence the inferred depth of magma chambers 
[Manconi et al., 2007] or of a basal decollement by few kilometers [Montgomery-Brown et al., 2009a]. 
Nevertheless, the position of all dislocation sources described by us is in agreement with earlier works.      
Although we had access to about 10 GPS station, we used only InSAR data for time dependent 
modeling. This is because, whilst incorporating more data may increase the accuracy of the result, the 
issue of relative weighting of GPS data at few stations in respect to thousands of InSAR points is not 
yet fully solved. Future works will need to test the effect of integrating independent datasets on the 
model result. 
 
7.5.3 Deformation source correlation  
 
Our results show that the long-term source correlations differ from the source correlations in shorter 
time scale. Some of the observed relations might be useful as precursors for future eruptions. The 
relation between a silent earthquake and the Kilauea magmatic activity has been explored for the dike 
intrusion event of 17- 19 June 2007 [Brooks et al., 2008]. However, a closer investigation of the 
bivariate plots suggests that silent earthquakes at the Kilauea south flank, such as the 26-27 January 
2005 slow slip event [Segall et al., 2006], have a much broder affect on the most of magmatic systems 
at Hawaii Island. Following the 2005 silent earthquake, the sign of the correlation between the 
magmatic sources reversed (Fig. 7.6c). For instance, the magmatic process at Kilauea correlates 
negatively with magmatic activity at Mauna Loa magma chamber before the 2005 silent earthquake, 
while after the event the type of their correlation shifted to a significant positive value. Furthermore, 
additional reversal points occur at the same time as silent earthquakes, e.g., in 7/2007 [Montgomery-
Brown et al., 2009a]. To validate this relationship, we calculated the cross-correlation coefficient and 
associated uncertainties for the time series before and after the large silent earthquake that occurred in 
2005 (Fig. 7.7a, b). Both periods show that the magmatic sources were strongly correlated, either 
before or after the 2005 silent earthquake. This observation emphasizes the impact of flank movements 
and, especially, silent earthquakes acting together with the magmatic sources, as well as the need to 
investigate the time series of a volcano in order to understand the physical processes and activity 
changes. Comprehension of the dynamic interactions is of importance for evaluating hazards at the 
volcano itself and associated with flank failure and tsunami generation.  
Other correlating processes on short time are as follows: magma chamber at Kilauea correlates with 
magma chamber at Mauna Loa and rift dike at Kilauea, also basal decollement slip is correlates with 
magmatic activity at Mauna Loa.   
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Figure 7.7. a, b) Graphical representations of the short-term source strength cross-correlations for 
2003-2005 and 2005-2008 together with the cross-correlation coefficients’ uncertainty obtained via 
TLSP analysis in a 95% confidence region. The abbreviations are explained in Figure (7.6).   

 
Three main conceptual models can be used to explain the correlations observed in this study. First, it 
has already been proposed that small changes in the shallow crustal stress field trigger the interaction 
between the Kilauea rift dike intrusions and decollement slip events [Cayol et al., 2000; Dieterich et 
al., 2000]. Second, the short-term correlation between the magma chamber pressure changes and the 
dike intrusions is in agreement both with a hydraulic connection model [Dvorak et al., 1983] and 
related past eruptive activities that indicate competition for the same magma source [Klein, 1982]. 
Third, an external source, such as meteorological forcing may change loading and friction condition of 
faults, and even triggers flank movements [Cervelli et al., 2002]. Since most of the changes to the 
mutual interaction process over time occurred in relation to the south flank slip events, this study 
implies that the flank mobility is an important proxy. Future work will need to address the reasons for 
this interaction, and explore the quantity and directivity of stress changes as a function of time and 
space. In particular, the timing of silent slip events need to be considered as an important occurrence 
during which most, if not all, of the other deformation sources on the island alter in both the long-term 
and short-term.   
 
7.5.4 Hilo Subsidence 
 
We discovered various spatial and temporal deformation patterns affecting not only the volcanic 
centers rift dikes, magma chambers and a basal decollement are the main sources of deformation. In 
addition, we discovered an important subsidence signal of 0.8 cm/yr underneath Hilo city. Hilo city is 
known to subside at a rate of 0.4 ± 0.5 mm/yr with respect to Honolulu on the Oahu Island. 
[Caccamise II et al., 2005], but the rate observed here is much faster (~20 times). The difference 
between these two values may have several reasons. Our observation is obtained with respect to the 



 99

location of MKEA GPS station in a local coordinate system. In contrast, earlier estimations considered 
the great Pacific fixed reference frame and obtained in respect to Honolulu on Oahu Island. As Oahu 
Island is unstable, we consider the local reference frame to be a better choice. The reference chosen 
here, MKEA GPS station, is a member of IGS (international GNSS network), and its precision and 
reliability has been repeatedly validated (see the station information at 
http://igscb.jpl.nasa.gov/network/site/mkea.html). This station is located at the flank of Mauna Kea 
volcano, and daily solutions of the station position show only very slight fluctuations (see also 
electronic appendix and [Shirzaei and Walter, 2010b]). 
The factors that may have affected the magnitude of this observed subsidence mainly are unwrapping 
error and uncompensated orbital error. As seen in Figure (7.3,4) the pixels over the Hilo are isolated 
from the rest of data set. This might imply existence of a phase jump, leading to an improper phase 
unwrapping. However, closer investigation of the interferograms makes us confident that our 
interpretation is valid for two reasons: 1) there is a local phase gradient (concentration of fringes) over 
Hilo city that proves a local deformation gradient at the given scale; and 2) a phase change over the 
nearby area displays a smooth pattern, that makes existence of a phase jump unlikely. As a result, we 
consider the unwrapping solution presented here to be valid. Also, we rule out an uncompensated 
orbital error for the following reason. The general pattern of orbital error (orbital ramps) is reduced 
using a planar assumption (see for instance [Hanssen, 2002; Kampes, 2005]). The uncompensated part 
is expected to have a random pattern in time and to be much smaller in amplitude than the observed 
subsidence. However, as the presented Hilo trend is large and systematic, we also rule out the 
significant contribution of orbital ramps. In this way, we argue that this new line of evidence for 
accelerated subsidence underneath Hilo city is robust. 
Nevertheless using tide gauge data, Moore and Fornari [1984] suggested an absolute subsidence rate 
of ~3 mm/yr for Hawaii Island. Moreover other researchers using the Small Base Line Subset (SBAS) 
approach have observed a similar subsidence rate at Hilo [Bertran Ortiz et al., 2009]. This observed 
subsidence rate might be an indicator for a) sinking Honolulu, or b) a reference frame that is not really 
fixed and encounters a slight motion that may influence observations, or c) simply that Hilo’s sinking 
rate has increased. 
 

7.6 Conclusion 
 
We have presented first island wide InSAR spatiotemporal map of the deformation, spanning 5 years 
of activity over the Hawaii Island. A complex spatiotemporal deformation field at all of the volcanic 
and tectonic systems has been revealed. To explain the sources contributing to the deformation field 
we have developed a time dependent inverse modeling approach by combining a Genetic algorithm 
and a Kalman filter. This approach provides a unique time series of the dislocation source parameters 
as a minimum spatial and temporal variance component. The statistical analysis of the time series of 
the source’s parameters reveals different states of interaction over Hawaii Island between volcanic and 
tectonic systems at different time scales. Moreover, we found that the interaction between silent or 
slow earthquakes at the Kilauea south flank and magmatic systems is much more complex than it was 
thought before. The silent events have significant impact on the magmatic systems and alter the type 
of correlation between them. This finding may lead to new methods for assessing the hazards that arise 
during volcano-tectonic activities. 
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Abstract 
 
The detection and monitoring of volcano spreading is of vital importance for understanding volcanic 
hazard. This however has been achieved geodetically at several large active volcanoes. In this study, 
we present a first InSAR deformation time series at a dormant volcano Damavand in northern Iran 
over the periods of 2003 through 2008. Our data show a lateral extension of the volcano at the relative 
rate of up to ~8 mm/yr accompanied by a subsidence at the rate of up to ~5 mm/yr at the volcano 
summit. Lateral motion of the east flank is more significant than that of the west flank. Our 
observations supported by understanding from spreading volcanoes elsewhere therefore reveal a first 
line of evidence that Damavand volcano is undergoing slow, probably gravity-driven, spreading. As 
gravitational spreading may episodically accelerate can control the location of sector collapses and 
flank eruptions, the detection and study of this effect might therefore be a key element in realistic 
hazard assessment at Damavand volcano. 

 

8.1 Introduction 
 
Volcano deformation commonly results from the inflation or deflation of magmatic bodies. These 
processes produce uplift and outward flank motion or subsidence and inward flank motion, 
respectively [Dzurisin, 2006]. Other processes causing volcano deformation may be entirely or partly 
gravity driven, and include landslides, sector collapses, and edifice spreading. The latter of these is 
characterized by subsidence of the volcano summit, lateral extension of the upper flanks, as well as 
lateral contraction and uplift of the volcano’s lower flanks [Borgia, 1994]. Spreading may lead to 
flank failure and debris avalanche generation [Van Wyk de Vries and Francis, 1997]  and it may cause 
(or be caused by) magmatic and volcanic activity [Froger et al., 2001; Siebert, 1992]. 
Geodetic methods have long been used to reveal deformation induced by magmatic bodies at many 
volcanoes around the world [Dzurisin, 2006]. In only a handful of instances, however, have such 
methods have revealed deformation associated with gravity driven processes like volcano spreading. 
Moreover, these instances have been restricted to historically-active volcanoes whose hazard potential 
is consequently well-advertised. 
As this study shows, gravity-driven processes may also characterize deformation at volcanoes thought 
to be dormant or inactive. Surface displacement data that we have obtained by advanced InSAR time 
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series approaches reveal previously undetected but ongoing deformation at the ostensibly dormant 
Damavand volcano in Iran. We argue that this deformation field primarily reflects a gravity-driven 
slow spreading process. In the following we discuss different sources that may contribute in the 
observed process such as topographic and (un)buttressing effects, a weak core, dipping substrata, deep 
flexure or some combination of these. Our results highlight the possibility of long-lived hazard from 
gravity-driven processes at dormant or inactive volcanoes and underscore the importance of remote 
sensing and other geodetic techniques in their detection and monitoring. 

 

8.2 Damavand tectonic setting and volcano geology  
 
Damavand volcano is located in the Central Alborz Mountains of northern Iran (Fig. 8.1a), and it lies 
50 km north of Tehran, the capital city with ~13 Mio inhabitants. This large snow-capped volcanic 
edifice (~ 400 km3) reaches an elevation of 5,670 m above sea-level and is the highest peak in the 
Middle East (Fig. 8.1b). Damavand is also of great significance in Persian mythology (the ‘Persian 
Mount Olympus’).  
At Damavand area, the regional slope is about 0.5°-2.5° to the East and the basement under Damavand 
volcano comprises Palaeozoic-Mesozoic siliciclastic, carbonate and evaporite sequences, overlain by 
Palaeogene-Neogene tuffs, lavas, and sediments [Allenbach, 1966]. These units are deformed within 
an east-west trending structural grain of large folds and major thrusts and/or strike-slip faults. 
Presently these faults accommodate ~5 mm/yr north-south shortening and ~4 mm/yr left lateral west-
east motion [Vernant et al., 2004a] and have generated several destructive earthquakes [Ambraseys 
and Melville, 1982]. 
The edifice of Damavand volcano is mainly made of trachy-andesite lavas, as well as several 
compositionally-identical fall-out tuffs and at least one ignimbrite [Allenbach, 1966; Davidson et al., 
2004]. Geochronological and field evidence indicates an older cone constructed since at least 1.8 Ma 
and a younger cone constructed since 0.6 Ma [Davidson et al., 2004]. The youngest preserved eruptive 
products are lava flows dated to c. 7 ka.  Damavand is thought to be dormant, although fumarolic 
activity still occurs near the summit  [Davidson et al., 2004].  
 

 
Figure 8.1. a) Photo of Damavand, as viewed from south, taken by Shreyans Bhansali on 10 January 
2007. b) An oblique view of the topography of the Damavand area in northern Iran. The location of 
the Polor city and Haraz River are depicted. 
 
The Haraz River flows south-to-north along the eastern side of the volcano (Fig. 8.1b). In this area, the 
spatial developments of the river and volcano are thought to be intertwined. The river erodes the 
eastern volcano flank and the adjacent topography; the volcano’s growth has locally altered the river’s 
course [Davidson et al., 2004]. The volcanic history indicates potential hazard from eruption, sector 
collapses, debris avalanches and mud flows. Evaluation of such risks at this volcano, which is now 
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very poorly monitored, is therefore of great importance. In the next section, we present evidence that 
Damavand volcano is actively deforming.              

   

8.3 Deformation field at Damavand volcano  
 
To detect and characterize the deformation field at Damavand volcano, we used multiple radar images 
acquired by the European Space Agency satellite ENVISAT. The data set includes 20 images in 
descending orbit (track 106) and 25 images in ascending orbit (track 285), and it spans the period of 
2003 through 2008. Using these data sets, we generated 153 and 77 interferograms in ascending and 
descending mode, with maximum spatial and temporal baselines of 450 m and 4 years, respectively. 
To obtain unambiguous phase changes, we unwrapped the modulo π2  phase observations of each 
interferogram using a 2D minimum cost flow algorithm [Chen and Zebker, 2001; Costantini, 1998]. 
Phase unwrapping is applied only to those pixels exhibiting low decorrelation noise [Costantini and 
Rosen, 1999]. The algorithm for identifying low-noise pixels was derived from earlier works 
[Berardino et al., 2002; Ferretti et al., 2001b; Hooper et al., 2007]. The differential phase changes of 
the interferograms were inverted [Bjerhammar, 1973] to generate a time series of the deformation at 
each pixel [Schmidt and Bürgmann, 2003]. The filter for reducing the atmospheric phase screen is 
derived following Ferretti et al. [2001b] and was applied by using a time frequency analysis 
[Daubechies, 1992]. 
Figure (8.2a, b) shows maps of the linear velocity field as seen in the satellite’s ‘Line-Of-Sight (LOS)’ 
viewing geometry for the descending and ascending orbits.  At the vicinity of the Damavand summit, a 
slight displacement of +2 mm/yr is detected in the descending viewing geometry (Fig. 8.2a), whereas a 
maximum displacement of -15 mm/yr is seen in ascending viewing geometry (Fig. 8.2b). 
To validate the results of the InSAR time series and to estimate their accuracy, we compared this data 
against independent data sets. In the study area there are two continuous GPS stations equipped with 
Ashtech ICGRS receivers and choke ring antennas (‘PLOR’ and ‘ABSD’ in Fig. 8.2a, b). These two 
high-quality stations are members of Iranian Permanent GPS Network (IPGN), which is maintained by 
the Iranian National Cartographic Center (NCC), and they are sampled every 30 s. Their daily 
observations are jointly adjusted with the observations of surrounding IGS stations using GAMIT and 
IGS precise orbits. GLOBK is used to combine daily solutions and generate time series of the 
deformation field by using a Kalman Filter approach [Hofmann-Wellenhof et al., 2000].To reduce 
most of the regional effects whilst preserving the local components of the deformation at Damavand 
volcano, we considered the PLOR station to be fixed at zero displacement and referred other geodetic 
data to this point.  
As seen in Figure (8.2c, d), the validation test presents a good agreement between InSAR time series 
and GPS data sets in both ascending and descending geometry, with an accuracy of ~ 2 mm and a 
precision of 0.5 mm/yr. Note that to make the InSAR and GPS data comparable, the GPS time series 
was projected onto the satellite LOS. Moreover, we considered an uncertainty of 1 cm for the 
projected cGPS time series in the 95% confidence region. This yields a high-precision time series of 
the deformation field at ~100,000 pixels.  
The different viewing geometries of the radar satellites enable us to constrain the West-East (W-E) and 
Vertical (V) components of motion at Damavand volcano (Fig. 8.2e, f). Since the satellites’ orbits are 
near-polar, the north-south component could not be measured. As its LOS projected component is 
smaller than 0.5 mm/yr, the N-S regional-tectonic shortening across the Alborz [Vernant et al., 2004a] 
is below the method’s precision and is thus considered to have a negligible contribution to the 
calculation of the E-W and vertical components. 
In general, the W-E component shows a pattern characterized by extension of the volcanic edifice 
either side of a line trending roughly NNE-SSW (Fig. 8.2f). The eastern flank moves eastward at an 
average velocity of 4 mm/yr, whilst the western flank moves westward at an average velocity of less 
than 1 mm/yr. In detail this pattern is not smooth, however. On the eastern flank of the volcano, for 
instance, the area immediately south of a prominent topographic scarp has a locally higher eastward 
velocity of up to 10 mm/yr (see arrow in Fig 8.2e). There are also some areas that represent anomalies 
to the general pattern.  These are marked by letters (a), (b) and (c) in Figure (8.2e) and they show 
motion opposite to the general movement of the sector they occur in. The area marked by (c) at the 
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northern margin of Damavand may be an extension of areas further north-east and the area marked by 
red triangle in Figure (8.2a, b) are known to be subject to very rapid land slide [Peyret et al., 2008], 
which generates significant decorrelation noise. The V component (Fig. 8.2f) shows a relatively 
smoother pattern characterized by an average subsidence of ~5 mm/yr at the summit. On the western 
flank the subsidence declines at a low rate towards the volcano base. On the eastern flank the 
subsidence declines at a faster rate towards the volcano base, where locally V becomes positive (i.e. 
there is uplift). 
 

 
Figure 8.2. a, b) deformation field velocity in LOS direction of the satellite as obtained in descending 
and ascending viewing geometries, respectively. Area of Damavand volcano is marked by a black 
dashed line and the locations of the GPS stations at Polor city (PLOR) and (ABSD) depicted. The red 
triangles indicate areas subject to rapid land slide. c, d) comparison between InSAR time series and 
GPS time series at the ABSD GPS station. e, f) E-W and V velocity field. An area of rapid eastward 
motion is marked by the arrow in panel e. Letters (a), (b) and (c) denote anomalies to the general 
trend in the displacement field. 
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To better visualize the deformation field with respect to the volcano morphology, a west-east cross 
section is shown in Figure (8.3a). The profile pases just north of the prominent scarp on the volcano’s 
eastern flank (Fig. 8.2). The displacement vectors at the profile surface are those measured from our 
InSAR data set. The western side of the profile shows a predominant subsidence and a slight westward 
component of motion. The eastern side shows a more heterogeneous deformation profile, and a main 
feature is the stronger component of horizontal motion (toward the east). At 22-25 kilometers on the 
cross section, step like features occur in volcano topography (Fig. 8.3a), where the sense of motion 
shifts from subsidence to uplift. 

 

8.4 Discussion 
 
At Damavand volcano, from an advanced InSAR deformation time series, we have observed a broad 
subsidence that decreases from the volcano summit area toward the flanks, toward the base of which 
there is localized uplift. This subsidence is accompanied by outward-directed lateral motions that are 
more pronounced on the eastern flank.  
The surface displacements revealed here are not immediately compatible with any simple inflation or 
deflation of a magmatic body. Inflating(deflating) deformation sources generally cause a pattern of 
outward(inward) directed motion but with a broad uplift(subsidence), which is not observed at 
Damavand volcano. Even a vertically-elongated inflating body, such as a dyke, may generate the 
summit subsidence. However, the accompanied broad uplift on the flanks again is not observed, 
inhere.  
The best scenario explaining the observed displacement field at Damavand volcano is a slow gravity-
driven spreading that is more pronounced toward the east. Surface displacement fields associated with 
volcano spreading have been isolated and quantified in laboratory-based analogue models. Whether 
induced by a weak substratum or a volcano core [Cecchi et al., 2005; Delcamp et al., 2008], and 
directed by dipping substratum [Wooller et al., 2004] or by direction of the regional slope [Francis 
and Wells, 1988] or by (un)buttressing [Borgia et al., 1992] or by lateral inhomogeities in the edifice 
or in its basement [Cecchi et al., 2005], the displacement patterns for model volcano spreading are 
generally very similar, and characterized by subsidence with a maximum around the summit region 
and horizontal extension with a maximum around the volcano’s mid or upper flanks (see Fig. 12 of 
Delcamp et al. [2008]).  
Overall therefore, the surface displacements patterns associated with slow gravity-driven spreading, as 
constrained by controlled experiments as well by geodetic and structural data from volcanoes known 
to be actively spreading, closely mimic those detected asymmetric of the deformation at Damavand 
volcano in this study (Fig. 8.2e, f). This reveals first evidence of geodetically detected spreading at a 
dormant volcano while earlier evidence of spreading was observed geodetically at historically and 
currently active volcanoes, such as Mt Etna whereas the geodetic signals also contain contributions 
from magmatic sources [Froger et al., 2001]. 
The asymmetric nature of the deformation at Damavand volcano, with more pronounced spreading on 
the eastern flank, might be induced by dipping weak substrata, regional slope, (un)buttressing of an 
edifice or a combination of those similar to Mt Etna [Borgia et al., 1992]. At Damavand, there appears 
to be topographic buttressing to the west and ‘erosional unbuttressing’ to the east caused by the 
powerful Haraz River (cf. Fig. 8.1b) , which down-cuts at a rate of ~1 km per Myr [Davidson et al., 
2004]. 
This asymmetry is a feature observed in many other spreading volcanoes. One exception is 
Nicaragua’s Conception volcano where shown by structural mapping and GPS campaigns to be 
subject to radial symmetric spreading [Borgia and Van Wyk de Vries, 2003]. Partial spreading is more 
commonly observed at other active volcanoes, for instance at Kilauea [Morgan et al., 2003], and Etna 
[Froger et al., 2001], where only a discrete flank reveals significant movement.  
Structures typically associated with an unstable volcano flank include normal faults on the upper 
flank, a main decollement underneath the flank, and basal thrusts and/or strike slip faults at the base of 
the flank [Borgia and Van Wyk de Vries, 2003; Merle and Borgia, 1996]. Although the presence of 
such structures is as yet unconstrained at Damavand volcano, a linear interpolation of the surface 
deformation field on a grid inside the volcano cone reveals the location of a potential decollement 
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where the displacement vectors become sub-horizontal (Fig. 8.3b). This occurs at a depth of about 2 
km, which closely corresponds to the geologically-defined base of Damavand volcano [Allenbach, 
1966]. 

 

 
Figure 8.3. a) West-east profile of the observed deformation field with respect to volcano topography. 
This profile highlights that the volcano is slowly spreading eastward. b) Conceptual model obtained 
by interpolation deformation field inside the volcano. Possible driving mechanisms for the 
deformation are numbered and discussed further in the main text. Internal deformation includes 
effects such as weak core, magmatic cooling, hydrothermal activity, etc. 
 
The irregular or more localized deformation within the general pattern of flank movements at 
Damavand volcano (see arrow and letters in Figure 8.2e) is reminiscent of heterogeneity within 
displacement fields of Mt Etna and Hawaii [Froger et al., 2001]. Such heterogeneity at these 
volcanoes is linked to structured displacement of individual blocks within the moving flank. The 
displacement field heterogeneity at Damavand volcano may similarly relate to localized slip on block-
bounding faults. Small slip events on regional fault segments and the activity of fast deforming 
mechanisms, such as land sliding, could also play a role, however. 
Although we argue that asymmetric spreading plays the dominant role in the deformation field at 
Damavand, we cannot entirely preclude additional influences from other mechanisms. For instance, 
the dominant subsidence pattern could also contain contributions from internal deformation sources. 
There could potentially be an influence from lithospheric flexure caused by a dense body beneath 
Damavand volcano as detected in a past seismic receiver functions study [Sodoudi et al., 2009]. 
Furthermore, a general limitation of the InSAR viewing geometry is that it does not allow us detect the 
south-north component of the deformation field and hence to resolve the full 3D displacement field. 
To overcome such limitations, and to better understand the dynamics of deformation at this volcano, 
supplementary GPS, tilt-meter, gravimeter, seismic and field observations observations are required. 
This study and new data will ultimately help evaluate the hazard potential of Damavand volcano. 
Volcano spreading may lead to sector collapses and debris avalanches, which may be accompanied by 
eruptions [Lipmann and Mullineaux, 1981; Siebert, 1992]. At Damavand volcano there is evidence for 
at least one large sector collapse that dammed regional drainage [Davidson et al., 2004]. In addition to 



 106

affecting local population centres and those downstream along the Haraz river, the recurrence of such 
an event could pose major problems for populations further afield, specifically in Tehran city (~13 
Mio inhabitants) much whose water is sourced from dams along the Harez river. 

 

8.5 Summary and conclusion  
 
In this study, we used InSAR time series to detect and characterize a deformation field for the first 
time at the dormant Damavand volcano in north Iran. We observed subsidence of the summit and 
predominantly eastward-directed spreading of the flanks. Several reasons, possibly combined, may 
explain these observations, including a dipping weak substratum,  a weak volcano core, volcano base 
flexure, topographic buttressing in the west, and erosional unbuttressing in the east. Our results 
illustrate the potential for long-lived hazard from gravity-driven processes at dormant or inactive 
volcanoes and the importance of geodetic techniques in their detection and monitoring. 
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On 12 Jan 2010 a destructive strike slip earthquake (Mw 7.1) occurred in the oblique 
convergence zone of Hispaniola. Over 222,000 were killed, most in Port au Prince, the capital 
city of Haiti at ~80 km eastward distance to the mainshock. The earthquake ruptured along a 50 
km trace, which is only a part of the much larger Enriquillo Fault Zone (EFZ) that last broke in 
1751 along a length of ~150 km. Assuming an average slip rate of 5-9 mm/yr[Manaker et al., 
2008] the amount of slip deficit accumulated at the entire EFZ is estimated to be on the order of 
1.5 – 2.5 meters[Ali et al., 2008]. This may imply that a much larger portion of the EFZ is ready 
for earthquake occurrences. Here we present results of a deformation field investigation in the 
period of 2004-2009 using ScanSAR data. The data and models reveal that the fault segment to 
the west of the 2010 earthquake was aseismically slipping for years, with a rate being similar as 
the interseismic long term slip rate. Therefore, this study shows that the accumulating stress was 
partly released by aseismic slip. Coulomb stress calculations suggest that this may have 
enhanced the occurrence of the 2010 earthquake disaster, similar as now another fault segment 
further to the east is stressed. The observed relation between aseismic slip and the 2010 
earthquake confirmed the importance of aseismic slip in earthquake understanding and for 
seismic hazard mitigation.                    
Surface deformation observations suggest that aseismic slip may occur in the shallow crust along 
strike slip faults such as at the San Andreas or the Hayward Faults[Bürgmann et al., 2000; Rolandone 
et al., 2008; Schmidt et al., 2005]. The occurrence of aseismic slip may be explained by velocity 
strengthening fault friction[Barbot et al., 2009; Scholtz, 1998], sometimes lasting for years or even 
decades[Bürgmann et al., 2000; Rolandone et al., 2008; Schmidt et al., 2005]. The occurrence and 
dimension of aseismic slip at active faults is important to quantify, as it may trigger large earthquakes 
or, reversely, act as a slip barrier[Linde and Silver, 1989; Thatcher, 1982] .  
In Haiti, the 2010 earthquake was the first to occur after 259 years of apparent silence at this fault, 
partially releasing a significant slip deficit. Hence, although a magnitude ~7 earthquake was not a 
surprise to geoscientists[Manaker et al., 2008], a vital question now remain to be answered: Why did 
only a this relatively small segment of the EFZ ruptured in 2010 although the slip deficit is thought to 
have accumulated everywhere along this fault? 
We studied the large scale deformation field using a data set of 43 ScanSAR radar images acquired in 
the period 2004-2009 by the European Space Agency satellite ENVISAT (see methods). Since the 
satellite radar images are obtained in different viewing geometries, by using a principal component 
decomposition approach we are able to retrieve the West-East (WE) and Vertical (V) long term 

                                                 
1 MS developed the approach and processed and inverted the data. All authors were involved in discussion and 
writing the paper. 
 



 108

deformation rate (Fig. 9.1a, b). The WE component indicates aseismic eastward movement at a ~50-
km-long fault segment located just to the west of the 2010 fault rupture. We observe an average slip 
rate that is comparable to the long term interseismic rate[Manaker et al., 2008] (the velocity field 
quality in terms of the formal variance is shown in Fig. S9.2). The deformation amplitude decreases 
with normal distance from the fault trace, implying that the slip is occurring in the shallow brittle zone 
of the lithosphere. The surface data shows that the lateral transition boundary between slip deficit and 
aseismic slip is not spatially clear. The vertical component rather shows no significant perturbation 
from zero displacement except at the city of Port au Prince, there mainly illustrating a local subsidence 
(see ‘A’ in Fig. 9.1). Similar deformations in urban areas have been observed elsewhere[Dixon et al., 
2006], but maybe affected by data errors[Ghiglia and Pritt, 1998], too. 
To investigate the kinematics of the aseismic slip we modeled the deformation field using a 
dislocation fault model[Okada, 1985]. The optimal location, dip, strike and depth of the fault model 
are obtained following a uniform slip model inversion. The best fitting model suggests an E-W 
trending sub-vertical sinistral strike slip fault extending to the depth of ~20 km. The geometry is in 
agreement with geological data and the downdip extent is comparable to inferred locked 
zone[Manaker et al., 2008]. The fault area is then subdivided into a regular grid of 50 km² patches. 
Our model inversion provides us with the creep distribution prior to the 2010 Haiti earthquake (Table 
S9.2). Although this single fault model explains over 98% of the satellite radar data with a total root 
mean square error of 2 mm/yr, further associated fault branches or material heterogeneities may have 
locally contributed to the deformation signal (Fig. S9.4). At the fault we estimated up to 9 mm/yr 
dislocation with an average value of 6.5 mm/yr. Because during the same period no significant seismic 
energy was released, one may assume that most of the slip occurred slowly and aseismically. As our 
results imply that no slip deficit has accumulated along this segment, the loading that occurred was 
negligible too. Assuming that aseismic slip has continued since the last earthquake in 1751, it is 
explaining why this patch did not rupture in the 2010 seismic event, hence providing a pronounced 
segment boundary. Observation of the 2010 coseismic rupture revealed that it stopped where the 
aseismic segment begin to creep, probably interrupting even further westward rupture propagation. 
The role of such barriers are now well understood in terms of the initialization and stopping of an 
earthquake rupture[Aki, 1979; Halldorsson and Papageorgiou, 2005].      
To further test the hypothesis whether the 2010 event has been affected by the aseismic slip, we 
calculate the Coulomb stress change[King et al., 1994] on the EFZ (Fig. 9.1d), hypothesizing that the 
aseismic slip is constant over the time[Rolandone et al., 2008] and that the receiver fault 
parameters[Ali et al., 2008] are valid. The model implies that the aseismic slip increased the Coulomb 
failure stress along the EFZ by ~6 bars, which is a significant stress change. Maximum stress increase 
is found at the location of the 2010 earthquake zone, which confirms that the aseismic slip brought this 
segment closer to failure and even may have triggered the earthquake disaster. A similar stress 
increase may have occurred due to the 2010 earthquake[2010; Showstack, 2010], which may be a hint 
that the next event might be further to the east again. Therefore another earthquake, possibly reaching 
or even exceeding the 2010 event rupture, may occur near to the area of Port au Prince.   
These results also have implications for realistic seismic hazard assessment in other areas, such as at 
the San Andreas and Hayward Fault where at the central part significant aseismic slip is 
measured[Bürgmann et al., 2000; Rolandone et al., 2008]. Such aseismic slip is locally reducing 
loading and earthquake potential[Bürgmann et al., 2000]. Although the presence of an aseismically 
slipping fault segment locally relieves the stress, this study shows that adjacent fault segments receive 
a stress increase affecting the earthquake occurrence and dimension. 
 

9.1 Methods 
 
9.1.1 Satellite radar data 
 
 In a fast response the European Space Agency (ESA) provided satellite radar images on a virtual 
archive free to use (http://supersites.unavco.org/). In ScanSAR mode the satellite transmits so-called 
bursts including limited radar pulses and scans back and forth among five swaths (I2-I6) to image an 
area of 400km×400km. We used this dataset to explore phase changes by generating 35 radar 
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interferograms[Ferretti et al., 2007] with spatial baselines smaller than 650 m and at least 30% burst 
synchronization. Further details are given in the supplementary material. 
 
9.1.2 Principal component decomposition 
 
Having ),( yxLk

ij  the phase change between time it  and jt  at a pixel located in the coordinates of 

),( yx  in each k -th interferogram, the principal component decomposition can be presented as 
[Aubrey and Emery, 1983; Savage, 1988; , 1995]; 
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where eu  and zu  are west-east and vertical velocity at each pixel, ec  and zc  are the unit vectors 
projecting the 3D displacement field to the radar’s line-of-sight, 1+N  is the number of individual 
modes, A  and B  are the constant amplitudes for each mode and C  and S are the sine and cosine 
functions defined at a discrete time t . The first mode is the long term horizontal and vertical slip rate, 
respectively, and the 2nd, 3rd and 4th modes constant periods of 0.5, 1 and 2 years are considered taking 
into account possible semi annual, annual and biannual effects (e.g. atmospheric delay). Each mode is 
the best approximation of the data after stripping off the contribution of the previous mode[Aubrey 
and Emery, 1983; Savage, 1988]. Inhere the first mode is the most important one and since it is 
obtained in a way similar as obtained during common data stacking we are confident that the 
atmospheric delay does not have a significant impact[Ferretti et al., 2007]. The assumption is that the 
north-south component of velocity field is negligible. To first approximation this assumption is valid 
for an east-west trending strike slip fault (such as EFZ). However, the occurrence of local deformation 
types such as due to landslides processes are yet unlikely to influence the general pattern of the 
observed signal inhere. Further detail on decomposition approach is given in the supplementary 
material.    
 
   

 
Figure 9.1. Haiti deformation field study based on ScanSAR satellite radar data. 
a) West-East deformation velocity field shows a localized region of ground motion (reddish pixels) 
bounded by geologically inferred faults (solid black lines), implying horizontal fault motion. b) 
Vertical velocity field shows no major tectonic influence, implying that dip slip fault motion is inferior. 
Note subsidence in the city area of Port au Prince. c) Insert shows a cross-sectional view onto the 
fault. Left-lateral strike slip obtained in a distributed slip model inversion explains >98% of the 



 110

deformation signal. d) Coulomb stress change induced by the aseismic slip model on sub-parallel 
receiver faults suggests largest stress increase at the fault to the east. Red colors mean that fault is 
brought closer to failure. In all panels the approximate location of the Enriquillo Fault Zone (EFZ) is 
marked (source: www.bme.gouv.ht).        
 

9.2 Auxilary material 
 
9.2.1 ScanSAR interferometry 
 
To generate a large map of the deformation field we consider a large data set of 43 ScanSAR images 
acquired by the ENVISAT radar satellite between 2004 and 2009 and generated 35 interferograms 
(Table S9.1). The major steps before interferogram generation are azimuth scanning pattern 
synchronization, spectral shift filtering and Doppler centroid estimation[Holzner and Bamler, 2002]. 
To increase the interferometric correlation we corrected misalignments for each ScanSAR 
acquisition[Holzner and Bamler, 2002]. In order to reduce the data quantity, we process the data at 
320 m × 320 m pixel resolution. The topographical phase has been simulated and removed using 
satellite precise orbits and a reference Digital Elevation Model (DEM). To obtain the unambiguous 
differential deformation field, each interferogram has been unwrapped using a well tested minimum 
cost flow approach[Costantini, 1998] applied to those pixel[Costantini and Rosen, 1999] showing 
correlation larger than 0.4 in at least 65% of generated interferograms.  The possible orbital ramp for 
each unwrapped interferogram is estimated and removed using a planar approximation[Hanssen, 
2002]. 
The reference point utilized for calibrating the observed deformation field is (-73.908 , 18.136), 
located far from the deforming area. This selection allows studying the local effects such as urban 
subsidences, slow landslide and segment-wise creep at the EFZ.  
We note that the eastward movement of the Port au Prince city (see ‘A’ in Figure 9.1a,b) should not be 
overinterpreted, as the same region has been the site of significant constructions and man made 
elevation changes, making the InSAR methodology difficult to apply if no independent data is 
available. 
 
Table S9.1. interferometric parameters of the generated ScanSAR interferograms 

Orbit No. Master Slave 
Master Slave 

Track No. 
Year Mon Day Year Mon day 

Perb. Baseline (m) 

11745 34791 Dsc-168 2004 5 16 2008 10 29 -513.86 
11788 34834 Dsc-211 2004 6 1 2008 10 28 -634.93 
12812 28844 Asc-233 2004 8 6 2007 8 19 -305.03 
28593 33603 Dsc-483 2007 8 3 2008 8 7 140.83 
28593 34104 Dsc-483 2007 8 3 2008 9 12 175.9 
28593 34605 Dsc-483 2007 8 3 2008 10 19 120.36 
28300 33811 Asc-190 2007 7 22 2008 8 27 122.76 
28300 34312 Asc-190 2007 7 22 2008 9 30 -223.15 
28300 34813 Asc-190 2007 7 22 2008 10 31 -37.38 
28343 33854 Asc-233 2007 8 12 2008 9 21 103.79 
28343 34355 Asc-233 2007 8 12 2008 9 25 -383.99 
28343 34856 Asc-233 2007 8 12 2008 10 30 -34.27 
26525 38549 Asc-419 2007 3 15 2009 7 15 -100.81 
33603 34104 Dsc-483 2008 8 7 2008 9 12 34.88 
33603 34605 Dsc-483 2008 8 7 2008 10 19 -20.47 
34104 34605 Dsc-483 2008 9 12 2008 10 19 -55.86 
33582 34083 Asc-462 2008 8 2 2008 9 6 373.42 
33582 34584 Asc-462 2008 8 2 2008 10 11 -127.23 
34083 34584 Asc-462 2008 9 6 2008 10 11 -501.32 
33746 34247 Dsc-125 2008 8 13 2008 9 17 -280.52 
33746 34748 Dsc-125 2008 8 13 2008 10 22 105.14 
34247 34748 Dsc-125 2008 9 17 2008 10 22 385.7 
33789 34290 Dsc-168 2008 8 20 2008 9 25 -119.42 
33789 34791 Dsc-168 2008 8 20 2008 10 29 75.24 
34290 34791 Dsc-168 2008 9 25 2008 10 29 195.3 
33811 34312 Asc-190 2008 8 27 2008 9 30 -346.23 
33811 34813 Asc-190 2008 8 27 2008 10 31 -160.47 
34312 34813 Asc-190 2008 9 30 2008 10 31 185.38 
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33832 34333 Dsc-211 2008 8 19 2008 9 23 -31.96 
33832 34834 Dsc-211 2008 8 19 2008 10 28 36.99 
34333 34834 Dsc-211 2008 9 23 2008 10 28 68.98 
33854 34355 Asc-233 2008 9 21 2008 9 25 -488.11 
33854 34856 Asc-233 2008 9 21 2008 10 30 -138.39 
34355 34856 Asc-233 2008 9 25 2008 10 30 349.18 
34061 34562 Dsc-440 2008 9 4 2008 10 9 68.43 

 
9.2.2 Principal component decomposition 
 
Principal component decomposition (PCD) is a widely used technique for identifying patterns in data. 
PCD computes the most meaningful basis to re-express a data set, in order to filter out the noise and 
reveal hidden dynamics[Aubrey and Emery, 1983]. Herein the basis are chosen as linear and sinusoidal 
functions and the observation is the unwrapped, corrected and calibrated displacement field at those 
pixels that preserve a higher quality in all interferograms.  
For solving equation (9.1) it is required to calculate the constant ec  and zc  per each pixel. These 
constant are functions of satellite heading and local incidence angles. Since the incidence angle varies 
significantly through the ScanSAR image (~ 20° – 45°), this value was calculated for each pixel in all 
interferograms. Because incidence angle varies only linearly along range in radar coordinate system, 
this calculation is straightforward. Therefore, by having incidence angles in near and far range, the 
average value per each pixel can be obtained. 
After calculating the constant unit vectors solving equation (9.1) for different modes is proceeding by 
steps. Each successive mode is the best approximation to the data with contribution of the previous 
modes subtracted. For estimating the first mode (i.e. linear approximation) equation (9.1) can be 
expressed in the matrix form as follows; 
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where ii

k ttt −=Δ  is the temporal baseline of each interferogram and V  is the observation residual. 
The data availability (i.e. the number of interferogram available per each pixel) is shown in Figure 
(S9.1), showing a large data set in the central and western part of the study area, and a poorer data 
coverage in the eastern part. 
 

 
Figure S9.1:  Schematic view of the number of available interferogram per each good pixel used in 
PCD. 
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For estimating linear velocity the equation (A9.1) is solved subject to the following condition; 
min→PVV T                                                                                                 
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Where ),( yxCi  is the interferometric coherence for each pixel and df
PVV T

=2
0σ  ( 2−= kdf , is 

degree of freedom). The solution of the equation (A9.1) subject to (A9.2) as well as the unknown’s 
variance-covariance matrix can be obtained in an iterated manner[Mikhail, 1976]. Figures (9.1) and 
(S9.2) show the linear velocity field and the associated variance, respectively.  
 

 
Figure S9.2: the formal variance obtained following principal component decomposition for the 
horizontal (a) and vertical (b) deformation velocity field. The area with few data coverage shows 
larger uncertainty. The approximate location of the Enriquillo Fault Zone (EFZ) is marked (source: 
www.bme.gouv.ht). 

 
Having the horizontal and vertical velocity field one can estimate the velocity field in the line-of-sight 
of the radar satellite which is shown in Figure (S9.3).  
 

 
Figure S9.3: the linear velocity field in the Line-Of-Sight of satellite in descending (a) and ascending 
(b) orbit geometry. The approximate location of the Enriquillo Fault Zone (EFZ) is marked (source: 
www.bme.gouv.ht). 
 
The other modes can be estimated in similar way after stripping off the contribution of the previous 
modes. The PCD implementation allows modeling more than 90% of the signal using a linear, semi 
annual, annual and biannual basis. 
In this study we do not consider any covariance between observations. The covariance may facilitate 
the propagation of systematic errors from one interferogram to another one. Therefore uncorrected 
error may affect the estimated deformation time series. However, this is only the case if the sign of the 
error (for instance atmospheric delay) remain unchanged in the entire data set[Mikhail, 1976]. 
Fortunately this is not the case for many artifacts that encounter InSAR processing[Ferretti et al., 
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2007]. This allows precise estimation of the mean velocity (i.e. data stack) without considering any 
covariance between observations. To reduce the effect of the observations corrupted by outliers and 
gross errors (such as significant atmospheric delay, unwrapping error and so on) a standard statistical 
test (so-called “Barda test”) has been applied[Vanicek and Krakiwesky, 1982].  
 
9.2.3 Inverse modeling 
 
To understand the kinematics of the aseismic slip we employ inverse modeling in two steps, 1) 
uniform slip inversion without any constraint, 2) slip distribution inversion with fixed fault geometry 
from first step. 
The general location of the EFZ based on geology is not very well known. In the northwestern area of 
the aseismically slipping segment, about coordinate of (-73.127 , 18.413) as shown in recent geologic 
maps, a graben is expressed with a width of 2-4 km bounded to two faults in north and south. These 
faults can be either two deep parallel faults or a shallow expression of a deep fault. For constraining 
the general fault location and geometry we started the inversion procedure with a uniform slip model 
which provides us with the best dislocation source explaining most of the observed signal. The 
optimization method is the Genetic algorithm following the earlier works[Shirzaei and Walter, 2009]. 
Following the uniform slip model inversion, the optimum fault plane has the dip angle of 80.5 ± 2°, 
the width of 17.7 ± 1.5 km and the location precision of ± 3 km. These parameters however provide a 
good approximation for the EFZ depicted by geology and seismology. 
The next modeling step to investigate the distribution of the slip is done following the earlier works at 
the San Andreas Fault[Rolandone et al., 2008] by fixing the geometry of the EFZ upon the uniform 
slip model. At the San Andreas Fault, GPS data was inverted to retrieve the shallow aseismic creep as 
well as the deep interseismic strain accumulation. These authors showed that the deep interseismic slip 
varies by a few millimeters at the aseismic zone from the long term slip rate and differs slightly from 
the estimated shallow creep. Therefore the influence of the model resolution and data uncertainty is of 
great importance to validate this result.  
We discretize the fault plane into patches of 50 km2 down to depth of 20 km. We have tested the effect 
of patch size by considering finer grid. However it did not lead to better fit to data set. Furthermore we 
achieved a sensitivity analysis using an approach followed earlier works[Shirzaei and Walter, 2009] to 
tested the model resolution for the patches at depth larger than 20 km. we find, regarding the 1-2 
mm/yr surface deformation precision, that the slip at these deep patches can not be constrained with 
precision better than 3-4 mm/yr. Table (S9.2) provide the slip distribution model. 
 
Table S9.2: the parameters of the slip distribution rate together with geometry and location of each 
patch     
Lon.start(°) Lat.start(°) Lon.end(°) Lat.end(°) Slip 

(mm) Dip(°) Top.depth(km) Bot.depth(km) 

-73.223 18.481 -73.114 18.480 0.000 80.611 0.400 5.522 
-73.223 18.473 -73.114 18.473 0.000 80.611 5.522 10.644 
-73.223 18.466 -73.114 18.465 6.541 80.611 10.644 15.766 
-73.223 18.458 -73.114 18.457 0.000 80.611 15.766 20.888 
-73.114 18.480 -73.005 18.480 3.362 80.611 0.400 5.522 
-73.114 18.473 -73.005 18.472 4.020 80.611 5.522 10.644 
-73.114 18.465 -73.005 18.464 4.710 80.611 10.644 15.766 
-73.114 18.457 -73.005 18.457 0.000 80.611 15.766 20.888 
-73.005 18.480 -72.896 18.479 9.578 80.611 0.400 5.522 
-73.005 18.472 -72.896 18.471 3.459 80.611 5.522 10.644 
-73.005 18.464 -72.896 18.463 6.987 80.611 10.644 15.766 
-73.005 18.457 -72.896 18.456 8.100 80.611 15.766 20.888 
-72.896 18.479 -72.786 18.478 6.355 80.611 0.400 5.522 
-72.896 18.471 -72.786 18.470 7.227 80.611 5.522 10.644 
-72.896 18.463 -72.787 18.462 9.210 80.611 10.644 15.766 
-72.896 18.456 -72.787 18.455 5.335 80.611 15.766 20.888 
-72.786 18.478 -72.677 18.477 6.884 80.611 0.400 5.522 
-72.786 18.470 -72.677 18.469 0.000 80.611 5.522 10.644 
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-72.787 18.462 -72.677 18.461 0.000 80.611 10.644 15.766 
-72.787 18.455 -72.677 18.454 5.957 80.611 15.766 20.888 
-72.677 18.477 -72.568 18.476 0.000 80.611 0.400 5.522 
-72.677 18.469 -72.568 18.468 0.000 80.611 5.522 10.644 
-72.677 18.461 -72.568 18.460 0.000 80.611 10.644 15.766 
-72.677 18.454 -72.568 18.453 0.000 80.611 15.766 20.888 

 
Moreover, the inversion residual (observation - model) are given in Figure (S9.4). The residual 
analysis shows that about 98% of the data could be explained by such a simple model.  

 
Figure S9.4. The residual velocity map (InSAR - Model) obtained following slip distribution inversion. 
The residual RMSE is ~2mm/yr. We note that there are some areas of locally higher residual signal, 
which might be because of environmental and processing artifacts or the slip at other fault systems 
nearby the EFZ. The approximate location of the Enriquillo Fault Zone (EFZ) is marked (source: 
www.bme.gouv.ht). 

 
9.2.4 Cumulative Coulomb stress model 
 

To identify the area capable for the next earthquake[2010] we estimated the cumulative 
Coulomb stress change induced by both the aseismic segment and the 2010 coseismic rupture. For the 
coseismic rupture we used the latest distributed slip provided by USGS (event id: us2010rja6). This 
model is only a first approximation and more precise coseismic fault model and slip distribution 
requires rigorous investigation of all available data, such as GPS, InSAR, seismic and geological data 
which can be subject of an independent study and out of scope of this article. However, the model 
simulation, assumes a ~100 km long fault dislocation, further transferring stress sideways (Fig. S9.5). 
Two zones of significant stress increase are found, one to the west of the aseismic segment and one to 
the east of the 2010 coseismic rupture. The eastern branch, in specific, is very close to the city centre 
of Port au Prince, underlining the area capable for the next left-lateral strike slip event. As noted by 
other researchers[2010; Showstack, 2010] and now supported by our data, though there was a 
destructive earthquake, yet, the EFZ is a major seismic threat. The eastward progression direction, 
starting from the creeping segment and followed by the 2010 rupture may be a hint that the next event 
might be further to the east again. Our data and model simulations thus suggest that another 
earthquake, possibly reaching or even exceeding the 2010 event rupture, may occur near to the area of 
Port au Prince.   
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Figure S9.5. Cumulative Coulomb stress change induced by combined aseismic slip and the 2010 
earthquake suggest even further eastwardly directed stress increase, now being close to Port au 
Prince. Red colors mean that fault is brought closer to failure. The approximate location of the 
Enriquillo Fault Zone (EFZ) is marked (source: www.bme.gouv.ht). 
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interpretation1 
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Abstract 
 
The Zagros Fold Belt in southern Iran is subject to intense tectonic activity and deep basement 
faulting, as well as shallow folding and salt diapirism. On November 27th, 2005, a poorly understood 
thrust earthquake with a magnitude of Mw 5.9 occurred beneath Qeshm Island. Here we use (1) an 
extended InSAR data set acquired by different satellite viewing geometries, (2) a rapid response 
aftershock campaign dataset that contains about 1000 relocated events, (3) detailed Coulomb stress 
model simulations that were used to test the occurrence and focal mechanisms of the largest 
aftershocks, and finally (4) satellite optical images that suggest the earthquake events to be located 
beneath the surface expression of a fold or diapir structure. We test two interpretations, and find that a 
simple fault model is explaining InSAR data alone, and one more complex multi-patch fault model is 
explaining also geologic and geophysical data. Through stress field modelling we evaluate the two 
models, and find that a single fault model is causing a negative Coulomb stress change at the 
aftershock locations. The more complex fault model, in contrast, is well supported by the stress 
models. Our preferred data interpretation is hence that the earthquake triggered an upper circular 
deformation source that may geometrically resemble a fold or salt diapir structure. Important 
implications arise from this study, as it may show that diapir deformation can be triggered by tectonic 
events. 
 

10.1 Introduction 
 
The interaction of active tectonic faults with their environment has been the subject of a number of 
recent studies [Rundle et al., 2006; Scholz, 2002; Walter, 2007]. Earthquakes and fault slips cause a 
transfer of the crustal shear stress, and hence interact with other fault zones [King et al., 1994], 
volcanoes [Eggert and Walter, 2008; Walter, 2007], potential landslides areas [McGuire, 1996] and 
ice sheet loading or unloading [Hampel and Hetzel, 2008]. Also, the long term interaction between 
fault zones and salt diapirs has been shown to play an important role in nuclear storage systems 
[Jackson et al., 1994]. However, the short term relationship between a tectonic earthquake and a 
deformed salt diapir has been poorly documented and understood. 

                                                 
1 MS developed the approach and processed InSAR the data and achieved hybrid inversion of InSAR and 
seismic data. FZ and AG processed seismic data. All authors were involved in discussion and writing the paper. 
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The Zagros region is one of the most active tectonic areas in the world, hosting numerous active faults 
and shallow fold and diapir structures. In this paper we investigate an earthquake-deformation 
sequence and test possible physical and conceptual models. This paper is structured as follows: we 
begin with a short introduction of the study area; then we present the seismic and space geodetic data 
(InSAR) that we used to develop the models. We find that the InSAR data alone may be approximated 
by a single fault dislocation model. The aftershock data, however, suggests a more complex model as 
does the evaluation of stress transfer models. In the discussion section we elaborate the potential and 
limits of these modelling approaches as well as their interpretations.  
 
10.1.1 The area of the November 27th, 2005 earthquake on Qeshm Island 
 
The crustal deformation found in Iran is the result of plate convergence between Arabia and Eurasia 
[Jackson and McKenzie, 1984; 1988]. GPS studies show shortening at a rate of 22 mm/yr towards 
N8oE from south to north Iran due to the northward motion of the Arabian plate relative to the 
Eurasian plate [Vernant et al., 2004b]. Zagros Mountain in southern and southwest Iran accommodates 
approximately 10 mm/yr of this shortening [Tatar et al., 2002; Vernant et al., 2004b]. Although this is 
one of the most seismically active regions in the Alpine-Himalayan belt, the majority of the 
deformation in the Zagros belt is still aseismic; i.e., the ratio of the seismic strain to geodetic strain is 
small [Jackson et al., 1995; Masson et al., 2005]. Due to the lack of surface evidence, it has been 
proposed that large tectonic earthquakes (> 5) occur on blind active thrust faults located  [Berberian, 
1995]. Apart from some events [Talebian and Jackson, 2004], the majority of large tectonic 
earthquakes are thought to occur beneath a sedimentary layer within the crystalline basement 
[Berberian, 1995]. The basement depth of the Zagros belt has been estimated by various studies; 
aeromagnetic studies estimated its upper limit to be at 16 km [Kugler, 1973; Morris, 1977], while 
microseismic data suggest a depth of about 11 km [Tatar et al., 2004]. The sedimentary package 
overlaying this basement not only hosts blind faults and shallow folding, but also evaporite layers that 
gave rise to salt diapir formations [Bruthans et al., 2006; Kent, 1970; Talbot et al., 2000]. Presently, as 
seen in Figure (10.1) about 200 salt diapirs are known to be located in the Persian Gulf region 
[Bruthans et al., 2006; Kent, 1970], some of which may have played a role in the recent Qeshm 
earthquake sequences.  

 
Figure 10.1. The Qeshm Island and Iranian coast, located in the tectonic collision zone of the Iranian 
and Arabian plate (upper left inset). The Landsat (band 742) image depicts the location of salt diapirs 
and the main geological features. The focal mechanisms are obtained using the Global CMT fault 
plane solution and correspond to the mainshock and the largest aftershock. The white box gives the 
area of the deformation, and aftershock observations are highlighted in Figure (10.2).     
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On November 27th, 2005 at 10:22 UTC, a Mw 5.9 earthquake occurred beneath Qeshm Island. The 
hypocenter was located at 26.66oN and 55.80oE (CMT catalog event 200511271022A). The 
corresponding seismic moment for this event was 1.03×1018 Nm. This mainshock event was followed 
by another large Mw 5.5 earthquake at 16:30 UTC located at 26.65N and 55.89E (CMT catalogue 
event 200511271630A). The Global CMT fault plane suggests a different mechanism for this 
aftershock than the mainshock: a strike slip along a vertical fault. The corresponding seismic moment 
of the event was 2.13×1017Nm.  
Deformation associated with these events was analyzed by means of InSAR data, showing an 
elliptically uplifted region [Nissen et al., 2007]. Inverse source modelling as well as body wave 
modelling suggests a single shallow fault (4-8 km depth). As we will show below, more recent data 
and coulomb stress modelling suggest a possibly more complex fault system to be responsible for the 
2005 events.    
 

10.2 Data sets used for the conceptual models 
 
First we considered the seismic fault plane solution and the moment of the mainshock and largest 
aftershock. Figures (10.1, 2a) illustrate the CMT solution for the mainshock (Mw=5.9, 10:22 UTC) and 
the largest aftershock (Mw=5.5, 16:30 UTC). The mainshock occurred along a thrust, while the 
aftershock was a strike slip event; both events show a non-double couple component that may imply a 
curved fault plane.  
The aftershocks were observed by a local seismological network, including 17 three-component 
seismic stations that were temporarily setup during the 80-day period from December 2005 to 
February 2006 [Gholamzadeh, 2009]. During this observation period, 1082 events were recorded and 
analyzed. The relative locations were calculated by HypoDD software [Waldhauser and Ellsworth, 
2000], and the velocity model is given in Table (10.1). Removing all teleseismic, regional and 
explosion events for the data set leaves us with 902 seismic events. Form this data set we selected 
those events with hypocentral errors less than 2 km and recorded by at least 8 stations having 
horizontal and vertical locating error less than 2 km, azimuthal gap less than 180° and RMS values 
less than 0.2 s. This provide us with 648 seismic event with location precision better than 2 km.  
 
Table 10.1. Velocity model used for locating aftershock events 

Depth (km)  Vp (km/s)  Vs (km/s) 
0  5.50  2.97 
8  5.90  3.19 
12  6.20  3.35 

 
Figure (10.2a) shows the spatial distribution of the aftershocks of the November 27th, 2005 Qeshm 
earthquake, locations of the stations and the focal mechanisms of the selected events which represent 
the general pattern of the event’s mechanism in each zone. The plan view of the aftershock distribution 
shows three patches arranged in a half-ring that is open to the northwest. The aftershocks were mainly 
located at a depth of 10 to 20 km (Fig. 10.2b,c) and thus mostly located within the assumed brittle 
basement. 
The deformation on Qeshm Island was mapped by interferograms formed from SAR images provided 
by European Space Agency’s (ESA) ENVISAT satellite. Figure (10.3) summarizes the investigated 
data set, which was acquired between March 2004 and February 2006, spanning the earthquake event. 
The average perpendicular baseline is 75 m. We selected interferograms with two geometries 
(ascending, image modes 6 and descending, image modes 2) to better constrain the displacement field, 
the source parameters and also to reduce atmospheric artefact by averaging the source parameters. All 
of the interferograms are coseismic including the effect of the mainshock and largest aftershock due to 
occurrence in the same day. In four of the interferograms, the master image was acquired 1-1.5 years 
before the mainshock, while one interferogram spans shortly before and after the mainshock, and one 
interferogram spans shortly before and about 8 months after the mainshock.  
We processed the SAR data using ENVI Sarscape software (http://www.sarmap.ch) and used 20 cm 
precision orbital information that is provided by the University of Delft [Scharoo and Visser, 1998]. 
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The topographic contribution to the slant range changes is simulated and removed using a SRTM 90 m 
digital elevation model.  
Figure (10.4) shows six interferograms presented in a fringe format, with one fringe showing a 2.8 cm 
displacement in the line of sight (LOS). The general pattern of the displacement in the interferograms 
was characterized by an ellipse elongated in the east-west direction with a diameter of about 10 km for 
the long axis for the period from 2004 to 2006. Interferograms (10.4a-d) were formed from descending 
orbit tracks (images mode I2), and they show 6-7 fringes that are equivalent to 18-20 cm of 
deformation in the LOS toward the satellite. Interferograms (10.4e-f) were formed by ascending orbit 
tracks (images mode I6), and they show 4-5 fringes that are equivalent to 15 cm of displacement in the 
LOS toward the satellite.  
 

 
Figure 10.2. a) The spatial distribution of the aftershock data (red dot), the location of seismologic 
stations (green triangles) and the focal mechanisms provided by the Global CMT solution and the 
focal mechanism of the representative aftershocks, b) the distribution of the depth of the aftershock 
events, c) The projection of the 3D location of aftershocks along the profile BB’ on a surface of 
constant latitude; most of the seismicity is located under the sharp topography change. 
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Figure 10.3. A summary of the Envisat SAR images used to produce interferograms. The horizontal 
bars represent the temporal baseline of the interferograms, and the vertical dashed line represents the 
time of main earthquake.  

 

10.3 A single fault plane solution 
 
To explain the source of the observed surface deformation data we use inverse modelling to estimates 
the parameters of a rectangular dislocating source [Okada, 1985] in elastic homogeneous half space 
medium. The same method was already used for the same earthquake by Nissen et al. [2007], though, 
herein we use a much larger InSAR data set from different viewing geometries. In analogy to previous 
work [Nissen et al., 2007] we use a single fault plane as responsible for the observed deformation and 
only use the InSAR data sets. During optimization, the source depth, width and dip angle were 
constrained at ranges of (2 km, 7 km), (2 km, 7 km) and (40o, 120o), respectively. The source location 
can be any point in the observation plane. To find the optimum source parameters, we use a binary 
constrained genetic algorithm (GA) in an iterative procedure [Shirzaei and Walter, 2009]. The InSAR 
data are sub-sampled uniformly to grid size of 400 m to decrease the amount of handled data. 
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Figure 10.4. The interferograms used for this study, which show the displacement field. All of the 
panels are wrapped with adjacent fringe differencing by 2.8 cm along the LOS and overlaid on SRTM 
DTM. a-d) Interferograms formed from descending orbit images; mode 2. e-f) Interferograms formed 
from ascending orbit images; mode 6. For better illustration, a median filter with window size of 5 × 5 
pixel has been applied to all panels.   
 
The optimum solution for the fault plane has a width of 6.0±0.62 km, length of 9.03±1km, depth of 
4.3±1 km, slip of 0.98±0.19 m, dip of 55o±12 and rake angle of 92.4o and strike angle of 254o±10. The 
uncertainties are presented in 95% confidence region. Figure (10.5a, b) present the optimum model 
interferogram and the associated residuals (observed data minus modelled data). The equivalent 
moment release is 1.59×1018Nm and thus consistent with energy release of an earthquake with 
magnitude of Mw= 6.07. Considering the uncertainty range of the parameters our result is in good 
agreement with the fault plane solution obtained by Nissen et al. [2007] as responsible for the 
mainshock event. Comparing to Nissen et al. [2007], including more data sets with different viewing 
geometry did not improve significantly the result.   
In the residual plots about 0.5-1.5 fringes equivalent up to 4 cm misfit are visible (Fig. 10.5c-h). A 
similar misfit has been discussed by Nissen and colleague to be due to atmospheric artefact, or 
necessary model simplifications because use of elastic homogeneous medium and uniform dislocation 
[Nissen et al., 2007]. 
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Figure 10.5. The inversion result for single fault plane solution. a, b) obtained model interferogram in 
descending and ascending orbit. c-h) The residuals (observed minus modelled) of the inversion, in 
descending orbit (c-f) and ascending orbit (g and h). All of the panels are wrapped with adjacent 
fringe differencing by 2.8 cm along the LOS. For better illustration, a median filter with window size 
of 5 × 5 pixel has been applied to all panels. i) Coulomb stress change induces by simple dislocation 
model at the location of the representative aftershock events and receiver parameters are obtained 
using calculated focal mechanisms.   

 
As shown by Nissen et al. [2007], body wave modelling is not sensitive to minor depth variations. 
Therefore the uncertainty range of depth estimation using body wave modelling might be in the range 
of 6 – 9 km or even beyond. As a result the estimated depth using InSAR is in agreement with body 
wave modelling. We elaborated the locations of 902 aftershocks and find a significant disagreement 
between the single fault model and the aftershocks. As seen in Figure (10.2), most of the aftershocks 
are accommodated at large depth of 10 – 20 km. This depth is significantly deeper than the single fault 
plane determined by InSAR data. To test the possible link between the mainshock and the observed 
aftershocks we elaborated the static Coulomb failure stress [King et al., 1994]. We calculated the 
Coulomb stress change associated with the mainshock fault, utilizing with the parameters that we 
obtained by InSAR data set inversion. The considered receiver faults were the fault plane of the largest 
aftershock and the focal mechanisms of the representative aftershocks (shown in Fig. 10.2a). The 
parameters of this plane are estimated by Nissen et al. [2007] using body wave modelling (see Table 
10.3 in Nissen et al. [2007]). However the location of this event based on CMT solution is not well 
constrained, nonetheless, because most of the event at the south-western side have very similar 
mechanism and depth to the largest aftershock we assume that this event occurred there. The effective 
coefficient of friction is assumed to be 0.4.  
We obtain at depths of 11 km (i.e. the depth obtained by body wave modelling) and depth of 13 km 
(i.e. the depth of aftershock accumulation) mostly negative values of Coulomb stress changes (Fig. 
10.5i). This may imply that the either the mainshock model is not satisfactory, or the aftershocks are 
wrongly located, or that the Coulomb stress concept does not apply here. As we will see in the next 
section, more complex fault geometry may explain these independent geophysical dataset and it is also 
consistent with Coulomb stress change model. 
 

10.4 A complex dislocation source solution  
 
By investigating the InSAR data with seismic constraints, we can estimate the source and type of 
deformation with even more complex pattern. We test a data interpretation scheme, based on a 
combination of Okada planes for investigating the source of the surface deformation data. Considering 
the available information on the parameters and the linearity of the elastic half space, the optimum 
source parameters are obtained using a Genetic Algorithm (GA) [Shirzaei and Walter, 2009].  
 
10.4.1 Geometric arrangement of faults 
 
An estimation of the approximate shape of the source and number of dislocation segments is 
necessary. For this purpose, we are considering three patches at depth of 8-20 km in agreement with 
the depth and pattern of aftershocks (Fig. 10.6a, b). This arrangement forms a half ring open to the 
NW (Fig. 10.6a). However, we obtain a very long wavelength in the simulated deformation field, thus 
are not able to reproduce the data by using deep dislocation planes: either the deformation field can not 
be explained or the seismic data remains questionable.    
To resolve this discrepancy, for the next step, we expanded the half ring fault to shallower depth, 
which is reducing the deformation wavelength accordingly. This was achieved by placing a second 
half ring above the first ring at a depth of 0-8 km, thus extending the faults from 20 km depth to the 
surface. 
During inversion all parameters of these dislocation patches have reasonable degree of freedom. The 
coordinates of the edges of each dislocation plane is preconditioned by the aftershock locations, but 
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allowed to be variable within a circle of radius of 3 km. The dip angle can vary from 30°-90°. The 
sense of slip was allowed to simulate both strike slip and dip-slip faulting.  
The optimum dislocation sources are presented in Figure (10.6c-f). The Root Mean Square Errors 
(RMSEs) of the InSAR pairs for the dates (2004.03.04, 2006.03.09), (2004.03.04, 2006.05.18), 
(2005.01.05, 2006.01.25), (2005.02.17, 2006.02.02), (2005.9.7, 2006.07.19) and (2005.11.24, 
2005.12.29) are 1.1 cm, 2.6 cm, 2.8 cm, 1.4 cm, 1.3 cm and 1.5 cm, respectively. The optimal model 
determined from constrained inversion is consistent with the seismic data. We found that this model 
explains more than 90% of the geodetic signal.  
We compared the parameters of the dislocation planes to available data (Table 10.2, 3). The location, 
depth, strike and dip of the deep fault patches are in agreement with the aftershock pattern. By 
comparison of the inversion result to the solution from the Global CMT fault plane and body wave 
modelling, we find that the fault plane parameters are consistent. The geodetic moment (1.3×1018), 
however, is larger than the seismic moment (1.0×1018), which could be due to aseismic and time 
delayed deformations, material heterogeneity and the propagation of slip from other segments.  
Table (10.3) shows the optimized geometry and uniform slip of the aseismic shallow structure for the 
0-8 km range. Although this shallow structure apparently behaved aseismically, we find that a large 
part of the deformation signal (~47%) can be explained by these shallow dislocation sources.  
 
Table 10.2. Fault plane solution for the seismogenic structure located at a depth of 8-16 km.  The 
solution was found using the hybrid inversion of the InSAR and aftershock data. The structure was 
modeled as three segments: (a) the mainshock , (b) the largest aftershock,  and (c) a third rupture 
plane;  these segments were consistent with the aftershock pattern. For comparison, the Global CMT 
solutions are presented for the two largest earthquakes (a, b). The strike, dip and rake are defined in 
the study by Aki and Richards [1980]; top refers to the depth taken from the upper edge of the fault, 
and centroid gives the depth provided by Global CMT solver (main shock number  200511271022A 
and aftershock number 200511271630A) 

Model  Strike 
(o) 

Dip 
(o) 

Rake 
(o) 

Slip 
(m) 

Top 
(km) 

Width 
(km) 

Length 
(km) 

Moment 
(Nm) 

Hybrid 
inversion 

241  55  101  0.87  9  6.7  7.4  1.3×1018 a. Mainshock plane 
(central plane) 

CMT  257  39  83  ‐  ‐  ‐  ‐  1.03×1018 

Hybrid 
inversion 

324  84  140  0.72  8.4  5.1  3.5  3.9×1017 b. Aftershock plane 
(southwest plane) 

CMT  308  88  183  ‐  ‐  ‐  ‐  2.1×1017 

c. Third eastern plane 
(northeast plane) 

Hybrid 
inversion 

147  80  20  0. 34  9  6.5  7.6  5.1×1017 

 
 

Table 10.3. The optimized dislocation parameters [Okada, 1985], producing  shallower, aseismic 
structure at a depth of 0-8 km. Top refers to the depth to the top edge of the fault. 

 
 

Model  Strike 

(o) 

Dip 

(o) 

Rake 

(o) 

Slip 

(m) 

Top 

(km) 

Width 

(km) 

Length 

(km) 

Moment 

(Nm) 

Central plane  236  87  39  1.27  4.4  4.6  6.3  1.1×1018 

Northeast plane  151  62  13  0.50  3.8  4.4  7.0  4.5×1017 

South west plane  325  69  122  0.8  4.4  5.2  3.0  3.9×1017 
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Figure 10.6. Complex multi source inversion model initialization (a, b), and the ultimate optimized 
model (c- f). The model setup conFiguration is based on the seismic and morphologic data, two 
distinct half rings are shown: one is shallower than 8 km, and the other is deeper than 8 km. a) The 
horizontal view with aftershocks and b) the vertical view along the profile BB’.  A plan view of the 
optimized uniform slip model, where c) and d) illustrate the strike and dip slip motion at the aseismic 
half ring (<8km); e) and f) show the strike and dip slip motion at the seismogenic half ring (>8 km). 
The dots indicate the locations of the aftershocks. g, h) distributed dip slip and  strike slip models at 
the interface of the aseismic shallow half ring in a perspective view from the north. 
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10.4.2 Slip distribution 
 
To obtain more information about the mechanism of the rupture located at a shallow depth, we 
evaluate the slip distribution around the shallower structure at a depth of 3-9 km. We use the boundary 
element code Poly3D, which employs a set of planar triangular elements of constant slip to model 
complex fault surfaces [Maerten et al., 2005], in order to represent the half-ring-like fault. For this 
purpose, we use the approximate fault geometry that was obtained in the previous step. To make a 
mesh of triangles and to avoid edge effects, we enlarge the fault plane laterally, down-dip by 20% and 
discretize the area into 484 triangles, as determined by the Delaunay triangulation algorithm. The 
problem of slip distribution estimation is a linear inversion problem. All of the elements can have 
strike slip (left or right lateral) and dip slip motion, and to avoid an unreasonable slip pattern at the 
border elements, the slip is set to zero.  
Figure (10.6g, h) shows the dip slip and strike slip distribution obtained for the shallow structure. In 
comparison with the uniform slip inversion model, the RMSE improves by about 30%, 35%, 42% and 
40% for the pairs of dates (2004.03.04, 2006.05.18), (2005.01.05, 2006.01.25), (2005.02.17, 
2006.02.02) and (2005.11.24, 2005.12.29), respectively. The RMSE becomes worse by 18% for the 
pair (2004.03.04, 2006.03.09), and for the interferogram (2005.09.07, 2006.07.19), there is no 
improvement in the RMSE. Compared to the uniform slip distribution solution (Fig. 10.6c, d), the 
general distributed slip pattern (Fig. 10.7a, b) shows similar amounts and locations of maximum slip 
located in the western and south-western parts of the half-ring structure. The maximum dip slip is 0.9 
m and it is located in the western and south-western areas. The strike slip motion has two signs: 
positive (i.e., right lateral) and negative (i.e., left lateral). The magnitude of the maximum left lateral 
strike slip is 0.7 m in the south-eastern area, whereas the magnitude of right lateral strike slip is 0.9 m 
in the western and south-western areas.  
The modelled interferogram in descending and ascending viewing geometry and residuals 
(observation minus model) shows that 95% of the signal was removed by the model (Fig. 10.7a-h). 
Although the residuals are generally  less than 1 cm along the LOS, some of the residuals might be due 
to material heterogeneity that is not considered herein and/or observations that are tainted by other 
deformations (pre- and/or post-seismic) or atmospheric artifacts. 
 

10.5 Did the tectonic earthquake trigger the shallower 
structures? 
 
To address how the seismic dislocation and the aseismic dislocation interacted, we calculate their 
stress transfers based on calculated slip distributions. We assume that elastic medium was loaded by 
the mainshock and largest aftershock. Herein we compute the associated shear transfer. The Coulomb 
stress change can be calculated at any point along the aseismic dislocations [King et al., 1994]. Each 
receiver fault has individual dip and strike angles. The associated rake angle is based on the type of 
slip distribution: 0o (or 180o) for left (or right) lateral strike slip motion and 90o for dip slip motion 
[Aki and Richards, 1980]. We repeated the calculations for different effective friction coefficients, 
ranging between 0 and 0.4. Changing the friction coefficient only slightly alters the result, which 
means that the shear stress is the effective part of the induced stress. Therefore, in Figure (10.7i, j), we 
only show the calculated shear stress for the dip slip and strike slip receiver faults. In our Figures, the 
positive and negative values of the stress are normalized to the maximum stress. The value of 
maximum positive stress for the dip and strike slip receiver faults are 3.2 bar and 7.0 bar, respectively, 
and the corresponding values for the negative stress are 2.9 bar and 3.5 bar, respectively. The models 
show very good agreement between the calculated shear stress and the fault patch displacement. 
Moreover, at points of zero slip the stress model predicts a negative shear stress change. Therefore, the 
displacement at the aseismic shallow ring fracture can be fully explained by the coulomb stress 
changes associated with the earthquake sequence. We find that most of the boundary elements confirm 
the results of the estimated slip distribution, as discussed in section 10.4.2. The mainshock sequence, 
therefore, probably triggered the displacement of the shallow aseismic half-ring structure. 
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As will be discussed in the following section, both, a single shallow and a complex half ring-like fault 
geometry may explain the geodetic data. Aftershocks, Coulomb stress transfer and geologic evidence, 
however, are supporting the half ring-like fault geometry. 
 

 
 
Figure 10.7. a,b) Modelled interferogram in descending and ascending orbits, c-h) residuals 
(observed minus modelled) of the slip distribution inversion for the complex dislocation inversion, 
descending orbit images; mode 2 geometry (c-f), ascending orbit images; mode 6 geometry (g,h) . All 
of the panels are wrapped with adjacent fringe differencing by 2.8 cm along the LOS displacement. 
For better illustration, a median filter with window size of 5 × 5 pixel has been applied to all panels. I, 
j)  shear stress on a dip slip receiver fault and strike slip receiver fault, respectively. The receiver dip 
and strike angle are fixed based on the geometry of the interface, and the rake angle is obtained based 
on the calculated slip distribution. The positive and negative values of stress are normalized by the 
maximum positive (red) and negative (blue) values. 

 



 128

10.6 Discussion 
 
In this paper, we presented two very different source models to explain the 2005 earthquake on Qeshm 
Island. In the following, we discuss some of the advantages and limitations associated with these data 
and model interpretations. We show that, while simple models are generally favourable in geophysics, 
likely a complex fault architecture may explain the available geodetic, morphologic and seismic and 
interaction data.   
 
10.6.1 The dataset 
 
The used data in this study includes 3D location of aftershock data, CMT fault plane solution, body 
wave modelling, morphological and field observation and InSAR data.  
The fault plane parameters obtained from CMT solution is in good agreement with body wave 
modelling result [Nissen et al., 2007]. We note that these teleseismic methods are not able to precisely 
identify the depth of the earthquake event. As reported by Nissen et al. [2007] fixing the depth at a 
known value (6 km) or estimating the depth as a free parameter (the optimum value was 9 km) during 
body wave modelling leads to a similar fit to the observation. This means the depth obtained by body 
wave modelling is not well constrained. 
Considering the result of CMT solution and body wave modelling the range of the estimated depth 
was between 6 and 12 km. This broad range agrees with the results obtained from both inversions of 
InSAR data for single fault plane solution and also for the complex multi source solution.  
The aftershock data, however, accommodated at the range of 10–20 km. This depth is much deeper 
than the inferred depth by inversion of InSAR data for single fault plane. To reconcile between these 
two depths, three hypothesises may be considered; 
1) The depth of aftershock data is biased because of an improper velocity model used for aftershock 
locations. This problem was tested by implementing different velocity models [Gholamzadeh, 2009]. 
It was found that, although the depth varies upon the different velocity model, the depth undulations 
never exceed 2-3 km, thus remains deeper than 7km. Moreover, the horizontal location and half ring 
pattern always remains similar. Therefore we herein are sure that the reported depth of the aftershock 
is generally valid. 
2) The second hypothesis is that the aftershocks are not necessarily occurring at the mainshock fault 
plane. Aftershocks may be occurring at the fault plane, stressed by the mainshock event rupture [King 
et al., 1994]. This possibility is assessed by calculating the Coulomb failure stress, induced by 
mainshock at the receiver fault plane characterized by the parameters obtained via body wave 
modelling for the largest aftershock [Nissen et al., 2007] and the representative aftershock 
mechanisms. Using a single fault model, we obtained mostly negative Coulomb stress changes. This 
means the hypothesis of the aftershock triggered by the mainshock is not supported or that alternative 
fault model geometry has to be considered.  
3) The third hypothesis to be considered is the assumption that aftershocks identify the location, depth 
and geometry of the mainshock fault plane. If true, this supports a deeper complex dislocation source 
as presented in this work as an alternative solution. 
In addition to the available seismic data, we considered morphology and surface fissures which were 
reported to be associated to the seismic events [Gholamzadeh, 2009; Nissen et al., 2007; 
Shahpasandzadeh and Hesami, 2007]. Although, the mainshock might have occurred at the aftershock 
depth (~13 km) its relatively small magnitude (Mw~6) disfavour apparent surface ruptures. Therefore 
it is feasible to assume these surface cracks are mostly secondary and resulted by triggering effect of 
the mainshock at the shallower structures. Surface morphology (Fig. 10.1, 2a) exhibits a folded half 
ring structure with a margin that appears to be delineated by the aftershock pattern. Therefore, we 
conjecture that dislocation sources broadly limit the folded surface and the aftershocks at depth >8km.         
The interferograms are used to determine the coseismic deformation. Although their temporal 
baselines are different, the pattern and amplitude of the deformation are similar. This suggests that the 
effects of the time-dependent deformation occurred either in short time spans or they are included in 
less than one fringe (2.8 cm). We note, however, these used data sets are unable to address the 
problem of the contributions from the pre- and post-seismic components of the deformation field.   



 129

 
10.6.2 Inversion 
 
Through geodetic data inversion, we aim to test two different data interpretations; 1) for standard 
single fault plane solution, 2) for complex multi source solution. The first result was in agreement with 
those reported by Nissen et al. [2007], body wave modelling and CMT solution. But, as we discussed, 
that result could not explain the aftershocks and Coulomb stress data. 
The complex multi plane fault solution was achieved in two-step inversion procedure: 1) inversion of 
the geodetic constrained with seismic data aim to estimate uniform slip for the dislocation sources. 
This constraint was used to approximate the initial geometry and location of the dislocation sources, 
and 2) a slip distribution inversion was employed to provide additional information on the rupture 
pattern for the shallow, aseismic region.  
The complex multi source model provides only a slightly better fit to the observed InSAR data. It 
might seem obvious that more dislocation source with more parameters better simulates the 
observations and we are aware that the herein presented model might not be the unique solution. One 
should note, that when accomplishing a free inversion all source parameters are free. In the complex 
model case, both the geometry and location of the dislocation sources are constrained by available 
data. 
The inferred geodetic moment is somewhat larger than the seismic moment for a number of reasons. 
The most significant reason might be the contribution of post-seismic components. However, other 
factors, such as the assumption of purely linear elastic half-space rheology, the reference Poisson ratio 
of 0.25, the propagation of the slip from other dislocation patches and atmospheric artefacts, cannot be 
ruled out. 
To obtain more information about how a rupture progresses in a shallow aseismic zone, we resolved 
the slip distribution at a depth of 3-9 km. Given the fixed geometry, we were left with a linear 
optimization problem where the type of slip was the only parameter. For this problem, there was a 
trade-off between the geometry and slip: selecting an incorrect geometry may affect the slip model. 
However, the pattern of the slip distribution model was very similar to the pattern obtained from the 
uniform slip inversion model, suggesting that the inferred base geometry in the uniform slip inversion 
model is a good approximation.  
Coulomb stress modelling allows verifying the strike, dip and rake of the investigated faults. The 
complex model is in full agreement with these stress models and thus supports the stress interaction 
concept. 
 
10.6.3 Salt-tectonics systems and Earthquake-salt diapir interaction (two-way) 
 
The location of the earthquake-aftershock sequence studied is also an area of intense local salt-
tectonics, which my have played a role.  
Evaporite diapirs are major storage systems for hydrocarbon, sulfur and salt [O'Brien, 1965], while 
also serving as nuclear waste isolators. A salt-tectonic system is generally composed of a layer of rock 
salt overlying a basement and overlain by sedimentary overburden  [Jackson et al., 1994]. Salt 
typically deforms into a buoyant and viscose fluid with a viscosity ranging between 1017-1019 Pas 
[Jackson et al., 1994; Van Kenen et al., 1993]. The average Young’s Modulus of 24-31 GPa, makes 
them much softer than common crustal rocks, which have an average Young’s Modulus of 50-100 
GPa [Hansen et al., 1984]. On one hand, the deformation of salt is controlled by basement faults 
[Alsop et al., 1996], but on the other hand, salt forms shear zones in the overburden material during 
rapid strain rates [Jackson et al., 1994]. Moreover, for a rapid stress change the deformation occurs 
elastically, and thus the assumption of elasticity is appropriate, where the elastic constants are 
independent of stress [Fossum and Fredrich, 2002].   
Salt diapirs are the result of both (a) horizontal compression and (b) gravitational instability [O'Brien, 
1965], where the density contrast commonly confines the diapir to the uppermost crust [Jackson et al., 
1994]. The average uplift rate of the crest of subsurface salt diapirs is about 2–4 mm/yr [Gera, 1972], 
this is to slow to be detected by two-pass InSAR method. However, the salt diapirs are affected on a 
more short-term scale, as this study may suggest.  As shown in Figure (10.1), there are about ten 
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diapirs in the area surrounding Qeshm Island; the diameter of these salt diapirs usually varies between 
1 and 15 km [Bruthans et al., 2006].  
Based on our observations and models, we have developed some guidelines that may describe the 
interaction between a tectonic earthquake and a salt diapir. First, we summarize what we learned from 
this study: 

1- The study area contains several extruded and embedded salt diapirs. 
2- The surface morphology indicates a folded crest above the epicentre. 
3- There is no primary crack or fissure observed at surface as result of the 2005 earthquake 

mainshock, all are considered to be secondary. 
4- The 2005 earthquake deformation pattern is fairly concentrated, suggesting that either the 

deformation source is shallow or the deformation field is controlled by shallower faults or 
other anisotropies. 

5- The 2005 mainshock and its aftershocks are located deeper than 8 km, implying that the 
seismic source is located deeper than 8 km as well. 

6- Almost 50% of the moment was released aseismically at a depth shallower than 8 km. 
7- A shallow half ring-like part interacted with a deeper part via shear stress transfer; the normal 

stress did not play a significant role. 
Salt diapirs are often born and grown on the shoulder of tectonic faults [Alsop et al., 1996]. When 
there is a rapid stress change during an earthquake, these faults can generate shear zones in the soft 
overburden material [Jackson et al., 1994] and thereby amplify the total deformation field.  
Considering this information, the complex inversion model may geologically and dynamically suggest 
the existence of a salt diapir at shallow aseismic depth, which has a shape that is controlled by deeper 
tectonic faults. We suggest a conceptual model, where in 2005 this salt diapir affected the deformation 
field. Figure (10.8a) shows the observed and calculated results, and Figure (10.8b) illustrates our 
interpretation of how a fault-diapir system interacts via stress transferring. It is also plausible that a 
rising diapir affects the shear condition of underlying faults. Therefore, we expect that tectonic 
earthquakes may be more common in regions of intense salt diapir deformation. In particular, the 
location of the 2005 diapir rise might be the location of a future tectonic earthquake. Indeed, in 2008 
an Mw 6.1 earthquake (CMT catalog 200809101100A) occurred nearby, and might represent roughly a 
similar behaviour. 
The response of salt to a rapid stress change is more elastic than the steady state response, which is 
mostly viscous [Fossum and Fredrich, 2002]. In our study, the slip value at the interface of the 
inferred salt diapir is about 50% of the total estimated dislocation. The total released geodetic moment 
is equivalent to an earthquake with a magnitude of Mw = 6.3.  
 

 
Figure 10.8. This Figure presents a summary of this study. a) The observed seismicity and inferred 
dislocation model, which is a result of the inversion of the geodetic and seismic data along an east-
west profile. b) Our interpretation of the result based on the rheology, morphology and tectonic 
setting of the area, which suggest the existence of a salt diapir, which may have been reactivated via 
stress transfer.   
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Understanding the deformation response of salt diapirs after an earthquake is important for several 
related disciplines; in particular, diapirs and reservoirs subject to exploitation for oil and gas or nuclear 
waste deposits may be strongly affected by tectonic earthquakes. Although, we herein emphasize the 
non-uniqueness of the model and its interpretation, we find its consideration to be of vivid importance, 
as it is providing an early warning for an earthquake for such regions. Additionally, the interaction 
between the salt’s rapid response and the surrounding material can cause a significant change to the 
stress in rocks nearby, which may increase the risk of drilling failure in the vicinity of a salt diapir 
[Fredrich et al., 2003]. 
 

10.7 Conclusion 
 
In this paper, we developed a hybrid inversion model for the aftershock and InSAR data obtained for 
the November 27th, 2005 Qeshm Island earthquake events. The thrust earthquake mainshock had a 
magnitude of Mw = 5.9, and it was followed by a strike slip aftershock with a magnitude of MW = 5.5 
and numerous aftershocks at a depth of 8-20 km. The aftershock data were recorded by a local 
temporary network, and they suggest a deep ring structure at a depth of 8-20 km. This deep 
seismogenic ring is in contrast to the surface deformation data, which suggest significant deformation 
at depths shallower than 8 km. we herein explored two data interpretations, one relaying on InSAR 
data alone, and one explaining also seismic and morphologic data as well as Coulomb stress transfers. 
We propose that the seismogenic zone (>8 km) is overlain by a salt diapir (<8 km) that may have been 
reactivated. Through modelling, we show that the shallow deformation was induced by the deep 
earthquake. These two distinct depth regions (0-8 km, 8-16 km) are each simulated as three fault 
segments that are geometrically constrained by the aftershock and geological data. The model’s 
solution for the mainshock and largest aftershock is in agreement with the Global CMT fault plane 
solution. A large part of the deformation is found to occur along a ring fracture, resembling the walls 
of a salt diapir. To understand the details of this deformation, we resolved the slip distribution at the 
shallow (0-8 km) ring fracture. We find that the change in the sheer stress at the diapir ring fracture is 
in agreement with the inferred slip pattern, suggesting that the diapir deformation was initiated by a 
stress change induced by the tectonic earthquake. Furthermore, the salt diapir rise may have unloaded 
other buried deep basement faults, so new earthquakes are expected to occur in the seismogenic 
region.  
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Chapter 11 
 
 
Summary and outlook 
 
Conventional Interferometric synthetic aperture radar (InSAR) has proven to be an effective tool for 
measuring crustal deformation. However, occurrence of decorrelation and interference of 
environmental artifacts may cause no measurement possible or lead to mi-interpretation of the signal. 
To improve the applicability of the InSAR, time series analysis developed. The current InSAR time 
series analysis methods usually rely on presumption of the temporal model for deformation behavior 
which is usually unknown.    
I describe in this dissertation a new InSAR time series analysis method (WabInSAR) that over comes 
most limitation of the earlier approaches. This approach uses verity of wavelet based, Kalman and 
Wiener filters for identifying a network of stable pixels and reducing environmental artifacts. The key 
element of WabInSAR is the pattern recognition procedure based on wavelet transform that allows 
identifying hidden component in time and space domain. 
Validation against ground truth data has proven that the WabInSAR approach provides a precise and 
accurate map of the spatiotemporal crustal deformation field, which allows better understanding the 
volcanic and tectonic process through inverse modeling. However the inversion methods usually 
require initially a good approximation of the solution and despite may still trap in local minima.  
To overcome this limitations a novel inversion method (RISC-GA/SA) as a combination of the 
Genetic Algorithm and Simulated Annealing in an iterative manner accompanied with a statistical 
competency approach is presented in this dissertation. The RISC-GA/SA is applicable to static data 
inversion and prior knowledge of the approximate solution is not required.  
The extension of the RISC approach for modeling the source of the time dependent crustal 
deformation is demonstrated as a combination with the Kalman Filter. This new dynamic modeling 
method estimate source parameters as a function of time by minimizing spatial and temporal mean 
square error.  
The applications to verity of the volcanic and tectonic area and comparison with ground truth dada and 
independent studies have proven the ability of these inversion methods for accurate and efficient 
modeling the source of crustal deformation field.     
Therefore the advancements in this thesis provided significant tools for volcanic and tectonic 
deformation source monitoring, in particular in remote and hazardous area. These tools also suite to a 
fast response system where a continuous deformation monitoring and reliable deformation source 
modeling approaches are required.  
 

11.1 Future Directions 
 
The WabInSAR is using a 2D phase unwrapping approach which is not however exploiting entire 
spatiotemporal information to retrieve unambiguous phase change map. While the current version of 
WabInSAR showed merits for precise deformation field mapping, a 3D phase unwrapping operator is 
still required. This we may achieve by combining artificial intelligence and Kalman Filter into well-
known minimum cost flow (MCF) algorithm. MCF is originally developed for 2D phase unwrapping 
now we are going to extend it in a step-wise manner to 3D problem. We look into the problem of 3D 
phase unwrapping as a filtering problem. Where, the 2D information is refined by a time consistent 
approach in statistical manner. There exist several 3D unwrapping approach but none of them are 
suitable when the deformation rate is high and we are dealing with temporal aliasing problem. We 
therefore aim to develop an approach which also takes this issue into account. 
WabInSAR approach is designed based on multi-master interferometry. It is, however, 
computationally more intensive than approaches relaying on single master interferometry. As seen, 
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most of the steps performed in WabInSAR are independent from number of masters considered. It is 
therefore relevant to apply those filters to a single master interferometry scheme and generate a 
wavelet based algorithm for single master interferometry (i.e. permanent scatterer InSAR). This 
approach so-called Wavelet based permanent scatterer InSAR (WaPSI) is now under development and 
would be published in soon future. 
The RISC approach provides an estimation of the source parameters together with their quality. It 
however does not provide any information about the covariance between unknowns. This covariance 
is of importance for investigating the correlation between parameters and also systematic error 
propagation into the optimization result. This might be overcome by combining RISC with Unscented 
transforms which propagate the full variance-covariance matrix through the nonlinear functions. 
The modeling scheme we used here is based on simple analytical models and the aim in our modeling 
was to retrieve the spatiotemporal amplitude of the deformation. However, the deformation field is 
obtained by superimposing the effect of several deforming sources which may have different spatial 
frequency properties. Integrating these frequency properties may help to retrieve more realistic source 
for the observed deformation field. This might be performed by combining the wavelet multiresolution 
analysis and optimization algorithms such as RISC.    
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