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Abstract

The plasmasphere is a dynamic region of cold, dense plasma surrounding the Earth.

Its shape and size are highly susceptible to variations in solar and geomagnetic con-

ditions. Having an accurate model of plasma density in the plasmasphere is impor-

tant for GNSS navigation and for predicting hazardous effects of radiation in space

on spacecraft. The distribution of cold plasma and its dynamic dependence on so-

lar wind and geomagnetic conditions remain, however, poorly quantified. Existing

empirical models of plasma density tend to be oversimplified as they are based on

statistical averages over static parameters. Understanding the global dynamics of the

plasmasphere using observations from space remains a challenge, as existing density

measurements are sparse and limited to locations where satellites can provide in-situ

observations. In this dissertation, we demonstrate how such sparse electron density

measurements can be used to reconstruct the global electron density distribution in

the plasmasphere and capture its dynamic dependence on solar wind and geomagnetic

conditions.

First, we develop an automated algorithm to determine the electron density from

in-situ measurements of the electric field on the Van Allen Probes spacecraft. In par-

ticular, we design a neural network to infer the upper hybrid resonance frequency from

the dynamic spectrograms obtained with the Electric and Magnetic Field Instrument

Suite and Integrated Science (EMFISIS) instrumentation suite, which is then used to

calculate the electron number density. The developed Neural-network-based Upper

hybrid Resonance Determination (NURD) algorithm is applied to more than four

years of EMFISIS measurements to produce the publicly available electron density

data set.

We utilize the obtained electron density data set to develop a new global model of

plasma density by employing a neural network-based modeling approach. In addition

to the location, the model takes the time history of geomagnetic indices and location
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as inputs, and produces electron density in the equatorial plane as an output. It is

extensively validated using in-situ density measurements from the Van Allen Probes

mission, and also by comparing the predicted global evolution of the plasmasphere

with the global IMAGE EUV images of He+ distribution. The model successfully

reproduces erosion of the plasmasphere on the night side as well as plume formation

and evolution, and agrees well with data.

The performance of neural networks strongly depends on the availability of train-

ing data, which is limited during intervals of high geomagnetic activity. In order

to provide reliable density predictions during such intervals, we can employ physics-

based modeling. We develop a new approach for optimally combining the neural

network- and physics-based models of the plasmasphere by means of data assim-

ilation. The developed approach utilizes advantages of both neural network- and

physics-based modeling and produces reliable global plasma density reconstructions

for quiet, disturbed, and extreme geomagnetic conditions.

Finally, we extend the developed machine learning-based tools and apply them to

another important problem in the field of space weather, the prediction of the geo-

magnetic index Kp. The Kp index is one of the most widely used indicators for space

weather alerts and serves as input to various models, such as for the thermosphere,

the radiation belts and the plasmasphere. It is therefore crucial to predict the Kp

index accurately. Previous work in this area has mostly employed artificial neural

networks to nowcast and make short-term predictions of Kp, basing their inferences

on the recent history of Kp and solar wind measurements at L1. We analyze how

the performance of neural networks compares to other machine learning algorithms

for nowcasting and forecasting Kp for up to 12 hours ahead. Additionally, we in-

vestigate several machine learning and information theory methods for selecting the

optimal inputs to a predictive model of Kp. The developed tools for feature selection

can also be applied to other problems in space physics in order to reduce the input

dimensionality and identify the most important drivers.

Research outlined in this dissertation clearly demonstrates that machine learning

tools can be used to develop empirical models from sparse data and also can be used to

understand the underlying physical processes. Combining machine learning, physics-

based modeling and data assimilation allows us to develop novel methods benefiting

from these different approaches.
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Zusammenfassung

Die Plasmasphäre ist eine die Erde umgebende dynamische Region aus kaltem, dichtem

Plasma. Ihre Form und Größe sind sehr anfällig für Schwankungen der solaren und

geomagnetischen Bedingungen. Ein przises Modell der Plasmadichte in der Plas-

masphäre ist wichtig für die GNSS-Navigation und für die Vorhersage gefährlicher

Auswirkungen der kosmischen Strahlung auf Raumfahrzeuge. Die Verteilung des

kalten Plasmas und seine dynamische Abhängigkeit vom Sonnenwind und den geo-

magnetischen Bedingungen sind jedoch nach wie vor nur unzureichend quantifiziert.

Bestehende empirische Modelle der Plasmadichte sind in der Regel zu stark verein-

facht, da sie auf statistischen Durchschnittswerten statischer Parameter basieren. Das

Verständnis der globalen Dynamik der Plasmasphäre anhand von Beobachtungen aus

dem Weltraum bleibt eine Herausforderung, da vorhandene Dichtemessungen spärlich

sind und sich auf Orte beschränken, an denen Satelliten In-situ-Beobachtungen liefern

können. In dieser Dissertation zeigen wir, wie solche spärlichen Elektronendichtemes-

sungen verwendet werden können, um die globale Elektronendichteverteilung in der

Plasmasphäre zu rekonstruieren und ihre dynamische Abhängigkeit vom Sonnenwind

und den geomagnetischen Bedingungen zu erfassen.

Zunächst entwickeln wir einen automatisierten Algorithmus zur Bestimmung der

Elektronendichte aus In-situ-Messungen des elektrischen Feldes der Van Allen Probes

Raumsonden. Insbesondere entwerfen wir ein neuronales Netzwerk, um die obere

Hybridresonanzfrequenz aus den dynamischen Spektrogrammen abzuleiten, die wir

durch die Instrumentensuite Electric and Magnetic Field Instrument Suite (EMFISIS)

erhielten, welche dann zur Berechnung der Elektronenzahldichte verwendet wird. Der

entwickelte Neural-network-based Upper Hybrid Resonance Determination (NURD)-

Algorithmus wird auf mehr als vier Jahre der EMFISIS-Messungen angewendet, um

den öffentlich verfügbaren Elektronendichte-Datensatz zu erstellen.

Wir verwenden den erhaltenen Elektronendichte-Datensatz, um ein neues globales

xxxix



Modell der Plasmadichte zu entwickeln, indem wir einen auf einem neuronalen Net-

zwerk basierenden Modellierungsansatz verwenden. Zusätzlich zum Ort nimmt das

Modell den zeitlichen Verlauf der geomagnetischen Indizes und des Ortes als Eingabe

und erzeugt als Ausgabe die Elektronendichte in der äquatorialebene. Dies wird

ausführlich anhand von In-situ-Dichtemessungen der Van Allen Probes-Mission und

durch den Vergleich der vom Modell vorhergesagten globalen Entwicklung der Plas-

masphäre mit den globalen IMAGE EUV-Bildern der He+ -Verteilung validiert. Das

Modell reproduziert erfolgreich die Erosion der Plasmasphäre auf der Nachtseite sowie

die Bildung und Entwicklung von Fahnen und stimmt gut mit den Daten überein.

Die Leistung neuronaler Netze hängt stark von der Verfügbarkeit von Trainings-

daten ab, die für Intervalle hoher geomagnetischer Aktivität nur spärlich vorhan-

den sind. Um zuverlässige Dichtevorhersagen während solcher Intervalle zu liefern,

können wir eine physikalische Modellierung verwenden. Wir entwickeln einen neuen

Ansatz zur optimalen Kombination der neuronalen Netzwerk- und physikbasierenden

Modelle der Plasmasphäre mittels Datenassimilation. Der entwickelte Ansatz nutzt

sowohl die Vorteile neuronaler Netze als auch die physikalischen Modellierung und

liefert zuverlässige Rekonstruktionen der globalen Plasmadichte für ruhige, gestörte

und extreme geomagnetische Bedingungen.

Schließlich erweitern wir die entwickelten auf maschinellem Lernen basierten Werkzeuge

und wenden sie auf ein weiteres wichtiges Problem im Bereich des Weltraumwet-

ters an, die Vorhersage des geomagnetischen Index Kp. Der Kp-Index ist einer der

am häufigsten verwendeten Indikatoren für Weltraumwetterwarnungen und dient als

Eingabe für verschiedene Modelle, z.B. für die Thermosphäre, die Strahlungsgürtel

und die Plasmasphäre. Es ist daher wichtig, den Kp-Index genau vorherzusagen.

Frühere Arbeiten in diesem Bereich verwendeten hauptsächlich künstliche neuronale

Netze, um Kurzzeit-Kp-Vorhersagen zu treffen, wobei deren Schlussfolgerungen auf

der jüngsten Vergangenheit von Kp- und Sonnenwindmessungen am L1-Punkt beruhten.

Wir analysieren, wie sich die Leistung neuronaler Netze im Vergleich zu anderen Algo-

rithmen für maschinelles Lernen verhält, um kurz- und längerfristige Kp-Voraussagen

von bis zu 12 Stunden treffen zu können. Zusätzlich untersuchen wir verschiedene

Methoden des maschinellen Lernens und der Informationstheorie zur Auswahl der op-

timalen Eingaben für ein Vorhersagemodell von Kp. Die entwickelten Werkzeuge zur

Merkmalsauswahl können auch auf andere Probleme in der Weltraumphysik angewen-

det werden, um die Eingabedimensionalität zu reduzieren und die wichtigsten Treiber
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zu identifizieren.

Die in dieser Dissertation skizzierten Untersuchungen zeigen deutlich, dass Werkzeuge

für maschinelles Lernen sowohl zur Entwicklung empirischer Modelle aus spärlichen

Daten als auch zum Verstehen zugrunde liegender physikalischer Prozesse genutzt

werden können. Die Kombination von maschinellem Lernen, physikbasierter Model-

lierung und Datenassimilation ermöglicht es uns, kombinierte Methoden zu entwick-

eln, die von unterschiedlichen Ansätzen profitieren.
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Chapter 1

Introduction

The plasmasphere is a toroidal region of cold, dense plasma surrounding the Earth and

approximately corotating with it. It is located in the inner magnetosphere and is an

extension of the ionosphere covering the altitudes from ∼1000 km to ∼10,000 – 40,000

km in the equatorial plane. The dynamics and configuration of the plasmasphere are

highly susceptible to variations in solar conditions and geomagnetic activity in the

near-Earth space.

The plasmasphere is host to many complex interactions between charged particles

and electromagnetic fields in the near-Earth space, and therefore knowledge of its

global-scale dynamics is crucial for understanding the flow of mass and energy within

the solar-terrestrial environment. It also plays an important role for a number of

space weather related effects.

Space weather is a collective term used to describe hazardous events in the near-

Earth space environment that can have an effect on humans and technology in space

and can have adverse effects on the ground. In particular, having an accurate model

of plasma density in the plasmasphere is crucial for the navigation of satellites and

for predicting spacecraft charging.

Despite the importance of plasmaspheric modeling, previous models of plasma

density tend to be simplified. They are mostly based on statistical averages, in the

case of empirical models, or use simplified treatments of physical processes, in the case

of physics-based models. Understanding the global dynamics of the plasmasphere

using observations from space remains a challenge, as existing density measurements

are sparse and limited to locations where satellites can provide in-situ observations.

Nonetheless, recent advances in machine learning allow us to create more advanced
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models of plasma density in the plasmasphere based on such sparse observations,

that are capable of capturing the global dynamic dependence of the plasma density

on geomagnetic and solar wind conditions.

In this chapter, we start by introducing the notion of space weather and providing

a general overview of the Earth’s magnetosphere, a cavity in the solar wind where

the plasmasphere is located. We then describe basic physical processes governing the

dynamics of the plasmasphere, observational techniques, and previous models of the

plasmaspheric dynamics. Finally, we outline the employed methodology, concluding

with an overview and major contributions of this dissertation.

1.1 Space weather background

The term “space weather” generally refers to conditions on the Sun, in the solar wind,

and within the Earth’s magnetosphere, ionosphere and thermosphere that can influ-

ence the performance and reliability of space-borne and ground-based technological

systems and can endanger human life or health (definition used by the U.S. National

Space Weather Plan). Adverse conditions in the near-Earth space environment can

cause the disruption of electric power distribution grids, navigation, communications,

and satellite operations, leading to potentially huge socio-economic losses.

The Sun is the source of most of space weather hazards. It constantly emits

large amounts of plasma, called the solar wind, buffeting the Earth’s magnetosphere.

The Earth’s magnetosphere, a region around the Earth dominated by its magnetic

field, partially shields us from this constant stream of particles, as charged particles

cannot easily penetrate the lines of a magnetic field. However, some amount of

energy, mass, and momentum are still transferred from the solar wind to the Earth’s

magnetosphere. The interaction of the solar wind with the Earth’s magnetic field and

the influence of the underlying atmosphere and ionosphere produce various regions

inside the magnetosphere populated by different types of plasma, such as the ring

current, the radiation belts, and the plasmasphere. The next section describes the

magnetosphere system and its interaction with the solar wind in more detail.
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Figure 1.1: A schematic 3D view of the Earth’s magnetosphere with the different
plasma regions and current systems indicated (after Kivelson and Russell (1995)).

1.1.1 The magnetosphere and the Sun-Earth system

The magnetosphere is a complex system encompassing a variety of plasma popula-

tions with different temperatures and energies, a zoo of electromagnetic waves, and

a number of large-scale current systems. Its configuration is shown schematically in

Figure 1.1 illustrating some of these phenomena. Such a configuration of the mag-

netosphere is a result of the interaction between the Earth’s magnetosphere and the

solar wind blowing from the Sun (Cowley, 1996).

The Sun emits large volumes of plasma into interplanetary space at supersonic

speeds (300 to 800 km/s), and this radially outflowing plasma is referred to as the

solar wind (Parker, 1963; Neugebauer and Snyder, 1966). It is comprised mainly of

protons and electrons with a small percentage (< 5%) of alpha particles and heavier

ions. The average electron number density of the solar wind is ∼5 cm−3 and the

average energy is ∼10 electronvolt (eV). Due to the high conductivity of the plasma,

the solar magnetic field is embedded or “frozen in” the solar wind flow and is carried
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outwards from the Sun with it. This magnetic field is known as the interplanetary

field (IMF) and has an average strength of ∼5 nT.

The magnetic field of the Earth (Chapman and Bartels, 1940) is believed to be

generated by electric currents in the Earth’s outer core caused by the convective

motion of charged, molten iron below the surface in this region. The resulting field

can be approximated, to first order, as a dipole with the magnetic axis tilted ∼11◦

from the Earth’s rotation axis. The magnetic field is directed down towards the

surface of the Earth in the northern hemisphere and away from the Earth in the

southern hemisphere. The average strength of the magnetic field on the surface of

the Earth is approximately 50 µT.

The incoming solar wind and IMF distort the approximately dipolar shape of

the geomagnetic field. When reaching the magnetosphere, the solar wind is not able

to easily penetrate the dipole-like geomagnetic field but is instead slowed down and

deflected around it (Chapman and Ferraro, 1931). The kinetic pressure of the solar

wind deforms the outer part of the Earth’s magnetic field, compressing the field on the

dayside and stretching it on the nightside, which results in the characteristic bullet

shape of the magnetosphere. The boundary between the region where the Earth’s

magnetic field is dominant and the IMF is dominant is called the magnetopause. The

dayside magnetopause boundary is typically located at a distance of 8 – 10 Earth

radii at the geomagnetic equator (1 RE = 6378 km), whereas downstream from the

Earth, the magnetotail formed by the solar wind typically extends for several hundred

RE on the nightside. Near the Earth (at radial distances of less than ∼3 – 4 RE),

however, the dipolar shape of the geomagnetic field remains relatively unaffected by

the solar wind flow.

The Dungey cycle

The dipolar configuration of the terrestrial magnetic field can be further distorted

by a process known as magnetic reconnection or magnetic merging (Dungey, 1961).

The process of magnetic field line reconnection occurs when the interplanetary and

terrestrial magnetic field lines have opposing directions, i.e., since the terrestrial field

line has a northward direction on the dayside magnetopause, the IMF line should

be directed southwards. This process is schematically shown in Figure 1.2, where

the IMF and terrestrial field lines are labeled 1’ and 1, respectively. When the two

lines meet at the dayside magnetopause, they merge or reconnect in a small diffusion
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region. After merging, the two field lines which previously were closed, i.e., with both

ends connected to the Earth, split into two open field lines (labeled 2 and 2’), having

one footprint on the Earth and the other footprint stretching out into the solar wind

and ultimately reaching back to the Sun. The solar wind drags the merged field

lines across the polar cap (the region in each hemisphere containing the footprints

of the open field lines) down the magnetotail (labeled 3 – 5). Continual loading

of magnetic flux into the magnetotail increases the magnetic pressure, forcing the

open field lines attached to different hemispheres to reconnect again in a diffusion

region located at a distance of ∼100 to 200 RE downtail, reforming closed field lines

(labeled 6). The stretched tail field line begins to move Earthward (labeled 7 – 8)

due to magnetic tension and pressure gradients, and is eventually brought back to

the dayside magnetosphere (labeled 9), where the whole process repeats again. This

large scale motion of the magnetic field and plasma is known as the Dungey cycle and

is most important for various processes and plasma populations in the magnetosphere

(Dungey, 1961).

The basic configuration of the magnetic field resulting from the magnetic field line

reconnection remains the same when the IMF is oriented in an arbitrary direction,

except for when it is directed purely northward, in which case no open field lines exist

(Dungey, 1963; Stern, 1973). The magnetospheric sunward flow of plasma (also called

return flow) is referred to as global magnetospheric convection. This flow generates

an electric field known as the convection electric field that will be discussed in more

detail in section 1.2.4.

Coordinate systems

When describing various magnetospheric phenomena, it is convenient to employ a

coordinate system developed around the geometry of the Earth’s magnetic field. The

focus of this dissertation is on the plasmasphere, the region of the inner magneto-

sphere, which can be roughly defined as a region lying inside the geosynchronous

orbit, located at a geocentric equatorial distance of 6.6 RE. We assume, throughout

this dissertation, that the terrestrial magnetic field in this region can be approxi-

mated by a centered tilted dipole, with the dipole axis tilted by 11◦ with respect to

the geographic rotation axis.

Often, the solar magnetic (SM) coordinate system is used when describing phe-

nomena in the inner magnetosphere (Kivelson and Russell, 1995). The SM coordinate
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Figure 1.2: Schematic illustration of magnetic field line reconnection and the cor-
responding flow of plasma during periods of southward interplanetary magnetic field.
The inset shows the movement of the feet of the field lines in the northern high-latitude
ionosphere and the corresponding high-latitude plasma flows: an anti-sunward flow in
the polar cap and a return flow at lower latitudes (after Kivelson and Russell (1995)).



1.1. SPACE WEATHER BACKGROUND 7

system is a right-handed Cartesian coordinate system, in which the z-axis coincides

with the geomagnetic dipole axis, the y-axis is perpendicular to the Earth-Sun line

and directed towards dusk, and the x-axis completes the right-handed set. The SM

system rotates with both a yearly and daily period with respect to inertial coordi-

nates. The x-axis does not point directly towards the sun, and thus the angle that it

makes with respect to the ecliptic plane changes by 22◦ over a 24-hour period.

Since magnetospheric plasma is strongly ordered by the magnetic field, in prac-

tice, it is more convenient to use another coordinate system with the following three

coordinates: L shell (or L value, L), magnetic latitude (λ), and magnetic local time

(MLT). The L shell parameter was proposed by McIlwain (1986) in order to organize

energetic charged particle data in a realistic magnetic field. Its definition is greatly

simplified within the centered dipole approximation, and it describes the distance at

which a field line crosses the magnetic equatorial plane, in units of Earth radii. For

example, all field lines that cross the geomagnetic equator at 4 RE from the center

of the Earth are described by L = 4. The magnetic latitude λ is measured from

the equatorial plane and describes the position along a given L shell ranging from

−90 to 90◦. Finally, MLT, defines the position of the field line with respect to the

direction of the sun and is measured in decimal hours, where an MLT of 00 is in the

anti-sunward direction (i.e., magnetic midnight), 06 corresponds to dawn, 12 to noon,

and 18 to dusk. The equation of a field line in a dipole magnetic field (Walt, 1994)

can be expressed as:

r = L cos(λ)2. (1.1)

The magnetospheric plasma regions

Several distinct populations of plasmas exist within the magnetosphere (Figure 1.1).

Some of these populations directly affect the plasmasphere, such as the ionosphere

that serves as its source of plasma, and the dynamics of other populations in turn

depend on the dynamics of the plasmasphere, such as the radiation belt and the ring

current. These plasma populations are introduced below.

Ionosphere

The ionosphere is the base of the Earth’s plasma environment. It is located at

altitudes between 70 to 1000 km above the Earth and consists of molecules from the

Earth’s neutral atmosphere that become partially ionized by solar ultraviolet radia-

tion (Appleton and Barnett, 1925; Bilitza and Reinisch, 2008; Bauer, 2012). Another
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source of ionization, although not as significant as the UV radiation, comes from

solar and galactic cosmic rays and also energetic particles from the magnetosphere

that precipitate into the neutral upper atmosphere. This secondary ionization is im-

portant at high latitudes and at night, when photoionization from the Sun halts.

The ionosphere, together with the solar wind, serves as a source for all other plasma

populations in the magnetosphere.

The energy of constituent electrons and ions of the ionosphere is generally less

than several tenths of an electronvolt. The ionospheric electron density peaks in the

F-region of the ionosphere at an altitude of ∼300 km with density of 105 − 106 cm−3

(depending on the time of the day), which is also the region with the highest density

in the whole magnetosphere. The electron density gradually decreases with altitude

and blends into the plasmasphere at ∼1000 km. The transition between the topside

ionosphere and the plasmasphere is characterized by the transition from oxygen as the

dominant ion in the ionosphere to hydrogen as the dominant ion in the plasmasphere.

Unlike other parts of the magnetosphere, the ionosphere is only partially ionized

and also contains neutral air molecules. The density of the latter ones is relatively

high leading to collisions between neutral and charged particles. In other parts of the

magnetosphere, collisions between particles do not occur frequently, and therefore the

plasmas there are treated as collisionless.

Plasmasphere

The plasmasphere is a torus of cold plasma surrounding the Earth and corotating

with it. The source of the plasmaspheric particles is the ionosphere, and the out-

flow of ions and electrons from the ionosphere along mid- and low-latitude field lines

populates the plasmasphere (e.g., Lemaire, 1989). H+ is the dominant ion in the plas-

masphere (∼80%), followed by He+ (∼10 – 20%), O+ (∼5 – 10%) and trace amounts

of heavier ions, with an equal number of electrons preserving the charge neutrality

(Comfort et al., 1988). Temperatures of ions and electrons in the plasmasphere are

on the order of 1 eV, which is on average approximately three times higher than in

the ionosphere, likely due to heating by plasma waves or Coulomb collisions with

photoelectrons slipping away from the ionosphere (Comfort, 1986; Newberry et al.,

1989).

Typical densities in the plasmasphere are on the order of ∼103 electrons per cm3,

which are quite high compared with other regions of the magnetosphere. There is

a sharp drop in density at radial distances ranging from 2 to 6 Earth radii in the
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equatorial plane, depending on the level of geomagnetic activity, which is known

as the plasmapause. The plasmapause is an approximately field-aligned surface at

the outer boundary of the plasmasphere and the density beyond the plasmapause is

typically on the order of ∼10 cm−3. This region of low-density cold plasma is usually

referred to as the plasmatrough (Kivelson and Russell, 1995).

Bulk motion of plasma in the plasmasphere is mainly driven by two flow regimes:

convection and corotation. These flow regimes are caused by the corresponding elec-

tric fields, which are discussed in detail in section 1.2.4. The corotation of plasma

with the Earth is caused by the Earth’s rotation. This regime dominates during quiet

geomagnetic conditions. The convection flow is caused by the magnetic reconnection

of the IMF with the terrestrial magnetic field and dominates during periods of ele-

vated geomagnetic activity. The plasma is stripped away from the plasmasphere and

is transported sunwards by convection, often creating a filament between the plasma-

sphere and the magnetosphere known as a plasmaspheric plume (section 1.2.4); the

plasmasphere shrinks due to the loss of plasma and compression. Once the geomag-

netic activity decreases and the convection electric field subsides, the plasmasphere

expands as it is being refilled from the ionosphere.

Radiation belts and ring current

The radiation belts (Van Allen and Frank, 1959; Vernov and Chudakov, 1960)

are energetic charged particles magnetically trapped in the terrestrial magnetic field.

They reside on magnetic field lines in the range of L = 2 to 7, and extend in energy

from several 100 keV up to 10 MeV for electrons and up to 500 MeV for protons. These

energetic particles undergo a helical gyro-motion around field lines, a bounce motion

between the hemispheres, and a slow drift motion around the Earth (Walt, 1994).

Typically, the radiation belt particles exhibit a two-belt structure comprised of an

inner belt and an outer belt, separated by a local minimum of particle flux known as

the slot region. The inner belt extends from ∼1.2 to 2.5 RE and is mainly composed

of energetic protons produced by cosmic ray albedo neutron decay (CRAND) and

trapped solar protons (Selesnick et al., 2007, 2014). Electrons are also found in the

inner belt region (e.g., Fennell et al., 2015); they originate mostly from injections, as

the CRAND process is not considered to be a significant source of trapped low-energy

electrons (Selesnick, 2015). The outer radiation belt extends from ∼3 to ∼8 RE and

is mostly composed of energetic electrons. It is a highly dynamic region, compared

to the inner belt, and depends strongly on the changing geomagnetic conditions and
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associated processes (Shprits et al., 2008a,b).

As opposed to the cold, low-energy ionospheric and plasmaspheric plasmas, which

are sensitive mostly to electric field-driven drifts, such as E×B drift (section 1.2.4),

the hot, high-energy particles of the radiation belts experience a relatively slow lon-

gitudinal gradient and curvature drifts due to the spatial variations of the terrestrial

magnetic field closer to the Earth. Electrons drift eastwards around the Earth, while

ions drift westwards, which results in a net westward current known as the ring cur-

rent. This opposing motion of ions and electrons also generates a magnetic field, as

prescribed by Ampère’s law, which tends to oppose the intrinsic geomagnetic field

close to the equator. As the strength of the ring current increases, the terrestrial field

is depressed more near the equator (Dessler and Parker, 1959; Sckopke, 1966). The

ring current is located in the region where electrons and ions may complete closed

magnetic drifts around the Earth and, therefore, extends over geocentric distances

between ∼2 and 9 RE (Daglis et al., 1999). All trapped particles in the inner mag-

netosphere contribute to the ring current, however, ions in the medium-energy range

of 10 keV to a few hundred of keV contribute most significantly to the total current

density (Williams, 1987). The contribution of electrons to the net current is usually

small due to their negligible energy density (Baumjohann, 1993; Daglis et al., 1999),

however, during storm times it can reach up to 25% (Liu et al., 2005).

Plasma sheet

The plasma sheet is a sheet-like region of plasma located in the magnetotail in

the nightside magnetosphere. It occupies the region of closed field lines near the

equatorial plane and separates the northern and southern magnetosphere lobes. The

plasma sheet consists of both ions and electrons with energies on the order of a few

keV and number densities on the order of ∼0.1 – 1 cm−3. The material of the plasma

sheet originates from the solar wind, through the magnetic reconnection in the tail,

and from the ionosphere, via the outflow in the polar cap regions. Reconnection

between the IMF and the terrestrial magnetic field governs the behavior of plasma

sheet particles (Knipp et al., 2011). During storms and substorms, disturbances in

the plasma sheet cause its particles to travel along the magnetic field lines and collide

with the neutral atmospheric particles producing the visible aurora (Chamberlain,

1961).
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1.1.2 Geomagnetic disturbances

Geomagnetic disturbances arise from the interaction of the magnetosphere with the

incoming solar wind. The solar wind carries a large amount of energy, mass and

momentum, some of which is transferred to the magnetosphere during the process of

magnetic reconnection (section 1.1.1). The most efficient energy transfer between the

solar wind and the magnetosphere happens when the direction of the interplanetary

magnetic field embedded in the solar wind is opposite to the Earth’s magnetic field

(Burton et al., 1975), i.e., directed southward. The southwardly directed vertical

component of the IMF (Bz < 0) is known to be well correlated with the level of

geomagnetic activity (Murayama, 1982).

The duration of geomagnetic disturbances can span from hours, such as in the

case of substorms (Akasofu, 1964), to days, as in the case of large geomagnetic storms

(Lui et al., 1987). These disturbances generally cause changes in the magnetic field

strength measured at the surface of the Earth, resulting from enhancements in magne-

tospheric and ionospheric current systems. Another way the geomagnetic disturbance

manifests itself is through intensification and expansion to lower latitudes of the vis-

ible aurora.

Geomagnetic storms typically have three phases that can be observed on the

ground, in measurements of the horizontal magnetic field component at the Earth’s

surface close to the equator. During the first, initial phase, the solar wind compresses

the magnetosphere, subsequently strengthening the magnetic field on the dayside and

causing the magnetic disturbance on the ground to be positive. Then, in the main

phase of the storm, the ring current becomes enhanced as plasma sheet particles are

carried Earthward and become trapped in the inner magnetosphere. The ring current

produces a magnetic field that is directed opposite to the Earth’s magnetic field. Thus,

the total field at the Earth’s surface decreases, and the resulting magnetic disturbance

is negative. The main phase is triggered by a sustained period of southward IMF,

allowing continual substorm activity to energize the ring current. The last phase,

referred to as the recovery phase, happens when the IMF weakens or turns northward,

resulting in ring current particles being lost faster than they are supplied. As the ring

current decays, the depression of the geomagnetic field subsides, and geomagnetic

conditions gradually return to the pre-storm state (this happens on timescales on the

order of several days).

Variations in the horizontal component of the magnetic field are monitored with
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magnetometers at ground-based magnetic observatories located at mid- and equa-

torial latitudes (Dessler and Parker, 1959). These measurements are then used to

construct the disturbance time (Dst) index (Sugiura et al., 1964), which provides

a measure of the global strength of the ring current. Specifically, Dst provides an

estimate of the total energy content of the ring current particles and, therefore, can

be used to monitor geomagnetic storms. Other frequently used geomagnetic indices

include the AE index (Davis and Sugiura, 1966), which measures changes in the au-

roral electrojet current system in the ionosphere and thus indicates the substorm

activity, and the Kp index (Bartels, 1949), a more global index that includes contri-

butions from several current systems. The Kp index is considered to be a particularly

good proxy for the magnetospheric convection (Thomsen, 2004) and is used as an in-

put in a number of models of the global convection electric field (e.g., Grebowsky,

1970; Volland, 1973; McIlwain, 1986; Maynard and Chen, 1975; Chen and Grebowsky,

1974). The Kp index is important for plasmasphere modeling (e.g., Carpenter and

Stone, 1967; Gallagher et al., 1998; O’Brien and Moldwin, 2003) and for many other

applications in space weather, and therefore we describe it below in more detail.

The Kp index

The Kp index (Bartels, 1949) is a measure of the general level of geomagnetic activ-

ity and is widely considered as a proxy for the energy input from the solar wind to

Earth and a good measure of the magnetospheric convection (Thomsen (2004) and

references therein). It is used as an input to many scientific applications, including

the parameterization of ionospheric ion outflow (Yau et al., 2011) and aurora par-

ticle precipitation (Emery et al., 2008) in the ionosphere, thermosphere (Bruinsma

et al., 2018), hot plasma particle density (Korth et al., 1999; Denton et al., 2016),

cold plasma density in the plasmasphere (Maynard and Chen, 1975; Pierrard et al.,

2009; Goldstein et al., 2014), plasmapause location (Carpenter and Anderson, 1992;

O’Brien and Moldwin, 2003), and radiation belt models and wave parameterizations

(Brautigam and Albert, 2000; Shprits et al., 2007b; Orlova et al., 2014; Ozeke et al.,

2014; Agapitov et al., 2015) in magnetospheric physics, among others.

Kp is derived from magnetic field measurements at 13 mid-latitude magnetic ob-

servatories. To derive Kp, first, the maximum fluctuations of the horizontal compo-

nent of the geomagnetic field, H, for a given 3-hour interval are determined. After

the quiet-day variation pattern is subtracted from them, they are transformed to the
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local K index (Bartels et al., 1939), using look-up tables specific to each observatory.

They take values from 0 to 9 in discrete intervals (in the form 0o , 0+, 1-, ... , 9-, 9o)

according to a quasi-logarithmic scale and describe the local disturbance level. These

local K indices are then averaged to obtain the 3-hour global Kp index.

Kp does not attempt to separate the effects of different current systems affecting

its measurements and is a global index. It is used by a number of space weather

agencies to decide whether geomagnetic alerts and warnings need to be issued for users

who may be affected by these disturbances (such as electrical power grid, spacecraft

operators, etc.). Geomagnetic storms are indicated by Kp ≥ 5.

Effects of geomagnetic activity on the plasmasphere

Geomagnetic disturbances strongly affect the configuration of the plasmasphere. The

interplay between the two large-scale plasma flow regimes in the inner magnetosphere,

magnetospheric convection driven by the solar wind and corotation driven by the ro-

tation of the Earth, control the dynamics of the plasmasphere. During the periods

of enhanced geomagnetic activity, the plasmasphere shrinks (e.g., Carpenter and An-

derson, 1992) and may become eroded down to L = 2 during strong storms. During

recovery times, it slowly expands as it is being refilled from the ionosphere and can

expand globally beyond L = 6 after several days of low geomagnetic activity. These

processes and the dynamics of the plasmasphere are described in detail in the next

section.

1.2 The plasmasphere

1.2.1 Geophysical importance of the plasmasphere

The plasmasphere hosts a variety of complex interactions between charged particles

and electromagnetic fields in the magnetosphere, and is important for a number of

physical processes. Its size and shape control the generation and propagation of

plasma waves and influence the interactions of these waves with energetic ions and

electrons, thus greatly affecting distributions of these particles for a wide range of

energies (e.g., Spasojević et al., 2004; Horne et al., 2005; Shprits et al., 2016; Orlova

et al., 2016). Wave-particle interactions play a significant role in the loss of energetic

particles (via precipitation into the upper atmosphere), and can also contribute to
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the acceleration of radiation belt electrons during geomagnetic storms (e.g., Horne,

2002; Kozyra et al., 1997).

The current configuration of the plasmasphere provides an indication of the recent

time history of magnetospheric convection (although in a complex integral sense), an

important global mechanism within the magnetosphere. Furthermore, the plasmas-

phere contains a relatively large amount of mass, and a substantial amount of that

mass is removed during geomagnetic storms (Spasojević and Sandel, 2010; Goldstein

et al., 2019). Some of this plasma can be lost to the solar wind or ionosphere, and

some of it is energized and redistributed within the magnetosphere. In fact, the

plasmaspheric material that is eroded during periods of strong magnetospheric con-

vection is carried sunward and is regularly observed near the dayside magnetopause

(e.g., Chen and Moore, 2006; Lee et al., 2016). The enhanced plasma density at the

dayside magnetopause can limit the rate of reconnection, thus affecting the global

convection pattern (e.g., André et al., 2016; Borovsky and Denton, 2006).

Finally, the plasma density in the plasmasphere is a crucial parameter for a variety

of applications in the field of space weather, such as spacecraft anomaly analysis due

to spacecraft charging (e.g., Reeves et al., 2013) and GPS navigation (e.g., Mazzella,

2009; Xiong et al., 2016). Therefore, knowledge of the global-scale plasmasphere

dynamics and ability to model it accurately is very important in order to better

understand and reliably predict the processes mentioned above.

1.2.2 The discovery of the plasmasphere and early studies

The plasmasphere was discovered in the early 1960s independently, but approximately

simultaneously, by two scientists: Konstantin Gringauz from the USSR (Gringauz,

1963) and Don Carpenter from the USA (Carpenter, 1963). The discovery was made

using different measurement techniques of plasma density.

Gringauz observed an abrupt drop in the magnetospheric plasma density distribu-

tion at an altitude of approximately 4 RE in the in-situ measurements of thermal (∼1

eV) ions from particle detectors onboard the LUNIK 1 and 2 spacecraft. Those were

two Soviet lunar probes that were launched to the Moon in 1959. These observations

led Gringauz to hypothesize the existence of an upward extension of the ionosphere,

what we now know as the plasmasphere. It is worth noting that until the late 1950s,

the traditional methods of probing the upper atmosphere were limited to an altitude
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of ∼1000 km (Lemaire and Gringauz, 1998), and the notion of the magnetosphere

did not even exist yet. It was expected that the Earth’s atmosphere was in direct

equilibrium with the interplanetary medium extending from the Sun. Therefore, at

that time, the discovery of Gringauz was difficult to comprehend and accept as a

physical reality, and it was met with utter skepticism in the Soviet Union.

At approximately the same time, in 1963, Carpenter observed a sharp drop in the

equatorial plasma density distribution in the ground-based observations of plasma

waves called “whistlers” at an altitude of ∼3 – 5 RE (Figure 1.3). The whistler-based

analysis and measurement technique were pioneered by L. R. O. Storey in his PhD

research at Cambridge University (Storey, 1953) and are described in more detail

in section 1.2.3. Storey found that the electron concentration was approximately

400 cm−3 at a distance of 12,000 km from the Earth. Storey (1958) hypothesized,

following the theoretical work of Dungey (1954, 1955), that this plasma was an upward

extension of the ionosphere composed of protons. In later years, Gringauz suggested

the name “geocorona” for this region (Gringauz et al., 1961).

Carpenter built up on the research of Storey and continued the whistler-based

analysis. Carpenter called the sharp drop that he observed in the equatorial electron

density profiles a “whistler knee”, to which in 1966, he gave the name “plasmapause”.

The term “geocorona”, proposed by Gringauz, was replaced by the term “plasmas-

phere”, by analogy with the term “magnetosphere” (Gold, 1959). Carpenter’s orig-

inal analysis also revealed that the plasmapause tends to shrink during periods of

increased geomagnetic activity (Carpenter, 1963). Finally, in 1963, Carpenter and

Gringauz met personally for the first time at the XIVth URSI Assembly in Tokyo,

where they were able to compare and confirm the results of each other.

By the early 1970s, satellite measurements had once and for all confirmed the exis-

tence of the plasmasphere. Using the whistler observations Carpenter (1966) showed

that the plasmasphere not only shrank but also became asymmetric with a bulge in

the dusk sector during periods of geomagnetic activity, while it expanded and ap-

peared to be more circular during quiet times. Later those findings were confirmed

by satellite measurements (Chappell et al., 1971). It was also observed that although

the plasmasphere seemed to corotate with the Earth in the local time sector from 00

to 17 MLT (i.e., moved at the same angular velocity as the Earth), its motion was

mixed and less clear in the dusk to midnight local time sectors. It was later demon-

strated by Grebowsky (1970) in his numerical modeling that there appeared to be a
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Figure 1.3: Initial diagram by Carpenter showing a quiet day profile of equatorial
electron density (solid curve) and various storm-time forms of the density profile
observed using whistler measurements (dashed curves) (after Carpenter (1962)).
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tail of cold plasma in the dusk local time sector extending all the way to the dayside

magnetopause, caused by an enhancement in the magnetospheric convection. In-situ

observations of plasma density from different spacecraft revealed the high-density re-

gions of “detached plasma” that seemed to be separated from the main body of the

plasmasphere by regions of low-density plasma. These observations appeared to be

consistent with plumes connected to the main body of the plasmasphere as shown

by the calculations of Grebowsky (1970) and Chen and Wolf (1972). However, at

that time there was still no definitive observational evidence to distinguish detached

plasma regions from plumes. The existence of plumes connected to the main body

of the plasmasphere was directly confirmed in the early 2000s, using the first global

images of the plasmasphere made with the Extreme Ultraviolet Imager (EUV) instru-

ment onboard the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)

mission (Burch et al., 2001a; Sandel et al., 2001).

1.2.3 Observational techniques

A number of measurement techniques to observe the plasmasphere dynamics exist.

These techniques can be divided into three main categories: in-situ density measure-

ments from satellites, density derived from ground-based observations, and global

imaging of the plasmasphere. These techniques have been successfully used for many

decades to study the plasmasphere and plasmapause region.

Satellites typically provide high-cadence measurements of the electron number

density along the orbit of the satellite. There are numerous ways of how electron

density can be measured on satellites, including direct methods, such as particle de-

tectors or Langmuir probes, and indirect measurement techniques. The latter include

quasi-thermal noise spectroscopy (Meyer-Vernet and Perche, 1989), employing the

spacecraft potential as a proxy for the electron density (Escoubet et al., 1997; Li

et al., 2010), or determining the electron density from intense upper-hybrid band

emissions (Mosier et al., 1973). In-situ density measurements are useful for studying

density structures of various scale sizes (e.g., Moldwin et al., 1995; Carpenter et al.,

2000). However, in-situ density measurements are usually quite sparse due to the

typically long orbital periods of high altitude satellites (> 9 hours). Therefore, it is

difficult to obtain insight into the global dynamics of the plasmasphere using such

sparse measurements. The large data sets produced by satellite missions have been
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employed to develop empirical models of the plasmasphere density and the plasma-

pause location. Examples of such models include the widely used Carpenter and

Anderson (1992) model based partially on the measurements from the International

Sun-Earth Explorer (ISEE-1) mission (in addition to whistler measurements), and

models based on measurements from the Combined Release and Radiation Effects

Satellite (CRRES) mission (Sheeley et al., 2001; Moldwin et al., 2002).

Electron density can also be derived from ground-based observations of plasma

waves called “whistlers”. Whistlers are natural radio waves generated by lightning

flashes. They propagate along the Earth’s magnetic field lines from one hemisphere to

the other through the dispersive plasma environment of the magnetosphere (Helliwell,

1965). Whistler waves are observable on the ground and in space and typically occur

at a frequency range of 1 to 30 kHz. This range overlaps with audio frequencies, and

whistlers can therefore be converted to audio using an appropriate receiver. They usu-

ally produce a gliding high-to-low-frequency sound, or whistle, which occurs because

the reflected high-frequency waves arrive at the receiver earlier than the lower-pitched

signals. Whistlers propagate along the so-called “ducts”, the discrete magnetic field-

aligned paths, which physically are believed to have the form of field-aligned columns

of enhanced ionization (density enhancements) (Smith and Carpenter, 1961). A typ-

ical lightning flash generates a number of discrete field-aligned paths that represent

a range of L values. The dispersion properties of whistlers depend mainly on elec-

tron density and magnetic-field strength along the ducts. Information on the electron

density distribution in the inner magnetosphere can therefore be extracted from the

analysis of the dispersion characteristics of whistler signals (Carpenter and Smith,

1964; Park, 1972). Many of the whistler components exhibit a frequency of minimum

travel time, the so-called “nose” frequency, that is proportional to the minimum value

of the magnetic field along their path. Generally, the nose frequency indicates the ap-

proximate L value of the path, and travel time at that frequency provides a measure

of the integrated electron density along the path (Smith and Carpenter, 1961). The

travel time of a whistler at a given frequency is weighted inversely with the magnetic

field strength. Thus the dispersion properties of whistlers are particularly sensitive to

conditions along the outer, higher-altitude part of their paths (i.e., near the equator),

where variations in the plasma parameters per unit distance along the field lines are

minimal. As a result, whistlers provide a measure of the electron density near the

magnetic equator that is relatively insensitive to the functional form of the plasma



1.2. THE PLASMASPHERE 19

distribution along the field lines used in the calculations (Angerami and Carpenter,

1966). Thus, multi-component whistler measurements can be used to construct in-

stantaneous multipoint equatorial profiles of the electron density. Long observation

periods allow monitoring the changes in equatorial density and total flux tube con-

tent, and as such, whistler measurements provide capabilities to determine cross-L

motions of bulk plasma in a frame of reference rotating with the Earth (Carpenter

and Smith, 2001). Modern whistler research includes efforts on the automatization

of whistlers detection. In particular, Lichtenberger et al. (2008) developed an auto-

mated algorithm for whistler detection: the Automatic Whistler Detector and Ana-

lyzer (AWDA) system. This system was installed at multiple ground stations of the

AWDANet network for plasma density monitoring (Lichtenberger et al., 2010, 2011).

Both satellite and ground-based observations provide local, typically sparse den-

sity measurements within the plasmasphere and cannot provide a global perspective of

the plasmasphere. With the launch of the Imager for Magnetopause-to-Aurora Global

Exploration (IMAGE) mission in 2000 (Burch, 2000), another source for observing the

plasmasphere from a global perspective has become available. The Extreme Ultravi-

olet Imager (EUV) (Sandel et al., 2000) onboard the IMAGE satellite was designed

to study the plasmasphere by imaging the distribution of He+ in the Earth’s plasma-

sphere. Global images of the He+ distribution were produced by detecting resonantly

scattered solar 30.4-nm radiation. UV radiation from the Sun is resonantly absorbed

by ions and atoms in the near-Earth space environment and then re-radiated by them,

generating a glow, which can be imaged. He+ ions, making up a fraction of 10− 15%

of the plasmasphere, are directly detected by imaging of extreme ultraviolet radiation

at 30.4 nm. The rest of the plasmasphere is dominated by H+, which has no optical

emissions. The IMAGE spacecraft operated in a highly elliptical polar orbit with

a period of ∼14 hours. Its initial apogee was 8.22 RE in geocentric radial distance

in the northern hemisphere and its initial perigee was at the altitude of 1000 km in

the southern hemisphere. The spacecraft spun with a 2-minute period, and its spin

axis was perpendicular to the orbital plane. The EUV instrument consisted of three

identical sensor heads with a 30◦ conical field of view. The sensor heads were tilted

by 27◦ relative to each other to cover a fan-shaped field of view of 84◦ × 30◦. As the

satellite spun, the EUV instrument captured an 84◦ × 360◦ swath across the sky. It

integrated the intensity of 30.4-nm emissions over 5 spins of the satellite. To form

one full image, the overlapping fields of view from 3 camera heads were merged every
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10 minutes. EUV collected images for approximately 7− 9 hours out of each 14-hour

orbit. The spatial resolution of EUV was ∼0.1 RE or ∼650 km in the equatorial

plane as seen from apogee (∼8 RE). Such unprecedented measurement capabilities

made it possible for the first time to study the plasmasphere system from a global

perspective.

1.2.4 Dynamics of the plasmasphere

This section describes the basic dynamics of the plasmasphere, starting with plasma

flow regimes governing the bulk plasma motion in the plasmasphere and electric

fields associated with them, and concluding with specific processes pertaining to the

dynamics of the plasmasphere.

E×B drift

Before describing the dynamics of the plasmasphere in more detail, it is useful to

review basic forces that act on charged particles in electric and magnetic fields and

the E × B drift that is experienced by charged particles in the presence of electric

and magnetic fields. We will consider E×B drift in a non-relativistic case.

The motion of a charged particle in the electric and magnetic field is governed by

the action of Coulomb and Lorentz forces. The Coulomb force FC is given by:

FC = qE (1.2)

where q is the charge of the particle, and E is the electric field. It can be seen

from this equation that the charged particle is accelerated along electric fields. A

positively charged particle is accelerated in the direction of the electric field, and a

negatively charged particle in the opposite direction. Charged particles themselves

are the source of an electric field, which points away from protons and points towards

electrons. This causes opposite charges to attract, and charges of the same sign to

repel each other.

The force experienced by a moving charged particle due to a magnetic field is

called the Lorentz force and is given by:

FL = q(v×B) (1.3)
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where v is the velocity of a particle, and B is the magnetic field. Here, the charged

particle is accelerated in the direction perpendicular to both its direction of motion

and the magnetic field, and thus, no work is done. This causes a particle to gyrate

around a magnetic field line. Furthermore, eq. (1.3) depends on the charge of the

particle and therefore results in the clockwise gyration of positive ions, and the anti-

clockwise gyration of electrons. The centre of gyration of a particle is called the

guiding centre. A particle moving completely parallel to B will not experience the

Lorentz force. If a particle has velocity components both parallel and perpendicular

to the magnetic field, it will move along a helical trajectory.

When a particle is placed into both uniform electric and magnetic fields, it expe-

riences both the Coulomb and Lorentz forces. Its equation of motion then becomes

a sum of these forces and is called the Lorentz equation:

m
dv

dt
= q(E + v×B) (1.4)

It can be shown from the Lorentz equation that charged particles drift in the

presence of uniform electric and magnetic fields (e.g., Northrop, 1963). The drift

velocity of the guiding centre of a particle takes the following form:

vE×B =
E×B

B2
(1.5)

This drift is referred to as E × B drift. E × B drift does not depend on the charge

of a particle, and therefore electrons and positive ions drift in the same direction,

resulting in no net electric current.

The E × B drift velocity of particles in uniform E and B fields can be derived

using the Lorentz transformation. For that, we need to move to a reference frame

moving with some constant velocity V relative to the original reference frame and

perpendicular to B:

E′ = E + V×B (1.6)

where E is the electric field that particles sense in the non-moving reference frame,

E′ is the electric field they sense in the moving reference frame, B is the magnetic

field and V is the velocity of the moving reference frame.

We can choose V such that E′ = 0, i.e., the electric field sensed by particles in the

moving system is zero. In that case, V will be the drift velocity of particles in E and
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B fields. Without loss of generality, we also assume that V ⊥ B, since V‖ ×B = 0

in eq. (1.6). By multiplying eq. (1.6) by B from the left we obtain:

B× E′ = B× (E + V×B) =⇒

=⇒ 0 = B× E + B× (V×B)
(using bac-cab rule)

= B× E + V(BB)−B(BV)
(since B ⊥ V)

=

= B× E + VB2 − 0 =⇒ 0 = B× E +B2V =⇒ V =
E×B

B2
.

(1.7)

From eq. (1.6), we can also derive that

E = −V×B (1.8)

where again V is the velocity of the moving system. This equation will be used in

the sections below to describe the bulk motion of particles in the plasmasphere.

Here, we considered the case of uniform electric and magnetic fields. Non-uniform

magnetic fields cause other types of drifts of charged particles, such as gradient and

curvature drifts (Baumjohann and Treumann, 1997). These drifts depend on the

energy of particles as well as their charge. For cold plasma, these drifts are usually

neglected, since due to the low energies they are much smaller than the E×B drift.

Bulk plasma motion

Two main external forces drive the bulk motion of cold plasma within the magneto-

sphere: (1) the daily rotation of the Earth, and (2) the kinetic energy of the solar

wind. These forces lead to the creation of the corotation and convection electric fields,

respectively.

Corotation

The rigidly rotating magnetic field of the Earth induces an electric field directed

perpendicular to the geomagnetic field. This field is usually referred to as the corota-

tion electric field (Baumjohann and Treumann, 1997). In the non-rotating frame of

reference, the corotation electric field is given by (see eq. (1.8):

Ecor = −(ΩE × r)×B, (1.9)

where r is the radial position vector, and ΩE = 7.27 × 10−5 rad s−1 is the angular

velocity of the Earth’s rotation. If we assume that B is a dipole magnetic field
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centered on the rotation axis of the Earth, then Ecor will be directed radially inwards

toward the Earth in the equatorial plane and decrease as 1/r2.

We can use eq. (1.8) and (1.9) to determine the velocity of the charged particles

in the inner magnetosphere moving in this field:

v =
Ecor ×B

B2
= −((ΩE × r)×B)×B

B2
=

B× (ΩE × r)×B

B2

(using bac-cab rule)
=

=
(ΩE × r)B2 −B(B(ΩE × r))

B2

(since B ⊥ (ΩE × r))
= ΩE × r.

(1.10)

This equation implies that the velocity of the charged particles is the same as the

Earth’s rotation, meaning that the cold plasma in the vicinity of the Earth moves

together, i.e., corotates with the Earth. As discussed below, the plasmasphere can

also lag in corotation or exhibit supercorotatation.

The electric corotation potential in the equatorial plane can be obtained from the

following expression:

Ecor = −∇φcor. (1.11)

In the equatorial plane, it can be expressed as

φcor(L) = −ΩEBER
2
E

L
, (1.12)

where the term ΩEBER
2
E equals 92 kV. The corotation potential is radially symmetric

in the equatorial plane, and consists of concentric circles. The distance between those

circles decreases as L−1 (shown in the top right panel in Figure 1.4). These circles

are corotating orbits of plasma.

Convection

The interaction of the solar wind and geomagnetic field results in a plasma flow

across open polar cap field lines (connected to IMF), as discussed in section 1.1.1.

This flow in turn leads to the creation of a large scale electric field E = −Vsw × B

(in the frame of reference of the Earth, see eq. (1.6)), where Vsw is the solar wind

velocity and B is the magnetic field of the Earth. This field is known as the convection

electric field and is directed from dawn to dusk.

In the inner magnetosphere, the electric fields are generally orthogonal to the

magnetic fields, as it consists of a highly conducting plasma. If an electrostatic field

is parallel to the magnetic field in such a plasma, then the positively charged particles

are accelerated in the direction of E‖ and negatively charged particles in the opposite
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Figure 1.4: Equipotential contours for magnetospheric electric fields in the equa-
torial plane (Lyons and Williams, 1984). The convection electric field is assumed to
have a strength of 2.5× 10−4V m−1.
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direction. This produces a charge separation, which in turn can produce an additional

electrostatic field. This field cancels out the original parallel electric field (Kivelson

and Russell, 1995). Therefore, parallel electrostatic fields are rarely found in the

trapping region of the magnetosphere. Consequently, the electric potential lines are

parallel to the magnetic field lines, and the electrostatic potential is assumed to be

constant along the field lines. The polar cap potential, therefore, can be mapped to

the equator along the Earth’s magnetic field lines.

The simplest approximation of the equatorial convection is a spatially uniform

dawn-to-dusk electric field (Stern, 1974):

Econ = E0ŷ (1.13)

where E0 is the magnitude of the field, which is typically less than 1 mV/m. The

equipotentials of such a uniform convection electric field in the equatorial plane are

shown in the top left panel of Figure 1.4. In polar coordinates, the convection potential

in the equatorial plane can be expressed as

φconv = −EconvLRE sin(ψ) (1.14)

where Econv is the uniform convection electric field strength in the equatorial plane,

LRE is the radial distance, and ψ denotes azimuth (Baumjohann and Treumann,

1997).

The bottom panel of Figure 1.4 shows the combined action of the corotation and

convection electric field potentials. In such a configuration of the electric field, the

corotation electric field is dominant close to the Earth, and thus the charged particles

corotate around the Earth, moving on the closed drift paths. The convection electric

field dominates the drift motion at farther distances from the Earth, and the particles

move on the open drift paths from the nightside out through the magnetopause.

Shielding

When the magnetospheric convection is enhanced, the charged particles from the

plasma sheet move in a sunward direction, from the magnetotail towards the Earth.

Energetic electrons drift dawnward and energetic protons drift duskward around the

Earth, due to the magnetic gradient and curvature drifts. A charge separation is

created due to that, which induces a polarization electric field. This field is directed
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from dusk to dawn, and thus acts to shield the inner magnetosphere from the dawn-

to-dusk cross-tail convection electric field (e.g., Jaggi and Wolf, 1973). Due to that,

the convection electric potential in the inner magnetosphere is slightly weaker than

described by eq. (1.14).

It takes a finite time for the shielding to be established, and changes in the con-

vection field or other magnetospheric parameters can cause it to be ineffective for

extended periods. If convection grows faster than the shielding timescale (the char-

acteristic timescale is 1 hour (Kelley et al., 1979)), then “undershielding” occurs, and

a dawn-to-dusk convection electric field is imposed upon the inner magnetosphere

until the shielding adjusts to the new conditions. If, on the other hand, a residual

dusk-to-dawn shielding electric field remains after a sudden decrease in the strength

of convection (such as after a sudden northward turning of the IMF Bz component),

then “overshielding” occurs (Goldstein et al., 2002).

To take the shielding effect into account, the convection potential can be presented

in the following form:

φcs = −Aγ(LRE)γ sin(ψ) (1.15)

where γ is the shielding factor and Aγ is a constant described by Aγ = 0.5∆φ∆y−γ,

with ∆φ denoting the cross-tail potential difference and ∆y half the distance between

the dawn and dusk magnetopause along the ψ = ±90◦ axis. The shielding factor

γ ranges between 2 and 3 under typical geomagnetic conditions. The electric field

amplitude can be calculated from eq. (1.15) and is given by

Ecs = Aγ(LRE)γ−1[(γ2 − 1) sin2 ψ + 1]1/2 (1.16)

The shielding factor γ = 1 provides a uniform electric field. When using a realistic

shielding factor γ ≈ 2 − 3, the electric field amplitude decreases toward the inner

magnetosphere and varies with local time.

General plasmaspheric dynamics

The dynamics and configuration of the plasmasphere is governed by the interplay of

corotation and convection electric fields (Darrouzet et al., 2009; Singh et al., 2011)

described in previous subsections.

During quiet geomagnetic conditions, the corotation regime prevails and the plasma
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material trapped inside the closed magnetic field lines corotates with the Earth (Car-

penter, 1966). In the meantime, the plasmasphere is being refilled from the topside

ionosphere and expands in size up to ∼4 – 7 RE (Goldstein et al., 2003b; Singh and

Horwitz, 1992; Krall et al., 2008). It has a roughly circular shape with a bulge on the

dusk side (Nishida, 1966). However, at farther distances from the Earth where the

equipotential contours are open, the flow of plasma is dominated by the solar-wind in-

duced convection, even under quiet geomagnetic conditions (Axford and Hines, 1961).

Although ionospheric outflow still occurs at those latitudes, the time during which

the open field lines drift in from the magnetotail out to the dayside magnetosphere is

not sufficient for them to be filled to the plasmaspheric levels. It is also worth noting

that during extended periods of quiet geomagnetic conditions a sharp plasmapause

density gradient may not necessarily be present, and instead, the density profile can

decrease gradually with distance.

During periods of elevated geomagnetic activity, the magnetospheric convection

starts to dominate and the plasmasphere is depleted: the closed magnetic field lines

at the dayside magnetopause boundary are torn apart and the plasmaspheric material

is carried sunward. As its outer layers are eroded, the plasmasphere shrinks in size

(Carpenter, 1970; Chappell et al., 1970a; Goldstein et al., 2003b). The stronger

the disturbance, the more the plasmapause contracts (down to 2 RE during severe

geomagnetic storms). The sunward transport of the eroded plasmaspheric material

forms a plasma tail or plume in the afternoon sector extending toward the dayside

magnetopause.

After the disturbance, the corotation regime starts to dominate again and the

plasmasphere is refilled. Due to long refilling times and recurring geomagnetic storm

and substorm activity, the outer plasmasphere is more likely to be in a stage of partial

refilling, while the inner plasmasphere is expected to approach a diffusive equilibrium

with the topside ionosphere (Park, 1974). The plumes formed during the geomagnetic

disturbance wrap around the Earth, as they corotate with it (Goldstein et al., 2002,

2003b; Goldstein and Sandel, 2005; Sandel et al., 2003; Kim et al., 2007)

Refilling

Refilling of the plasmasphere from the ionosphere is dominant during geomagnet-

ically quiet times and storm recovery phases. It is a complex process and is described

here briefly (for more details, see references herein).

The main constituents of the plasmasphere are hydrogen, helium, and oxygen
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ions, with hydrogen being the dominant ion. The main source of hydrogen in the

plasmasphere is the charge exchange reaction H + O+ 
 H+ + O, which happens in

the upper F region of the ionosphere. The F layer is produced by extreme ultraviolet

solar radiation that ionizes atomic oxygen. Protons, formed in that charge exchange

reaction, move into the plasmasphere under the influence of diffusion, electric fields

and pressure gradients.

Ideally, in equilibrium, the plasma pressure along the flux tube will be such that

there would be no flow. During the day, ion production in the topside ionosphere gen-

erally causes an excess of plasma pressure in the topside, which results in the upward

flow of plasma, from the ionosphere into the plasmasphere (Hanson and Patterson,

1963). At night, the solar EUV production decreases, and the plasma pressure in the

equatorial region can exceed that in the topside ionosphere, causing H+ to flow down-

ward, into the topside ionosphere, where it may exchange charge with O to provide a

night-time source of O+ (Park, 1971). This results in a complex interaction between

the ionosphere and the plasmasphere. The total quantity of plasma flowing in dur-

ing the day will equal that flowing out at night. This is not true during geomagnetic

storms, when the electric field convects plasma across field lines (Canuto et al., 1978).

During quiet geomagnetic conditions, refilling proceeds steadily until the plas-

masphere reaches a density level where a diffusive equilibrium with the ionosphere

is reached. Observations showed that the timescale for the plasmasphere to refill

depends on the L value and is ∼1 day at L = 2.5 and ∼8 days at L = 4 (Park, 1974).

Duskside bulge and plume

Since the time of the first studies of the plasmasphere, large-scale bulges (1 RE or

greater) have been observed in the equatorial plasmapause, particularly in the dusk

local time sector (Carpenter, 1966). In general, the westward edge of the bulge was

found to be rather abrupt with an increase in the plasmapause radius of 0.5 to 2.5

RE within approximately one hour of local time, while the radius on the eastern edge

decreased more gradually with increasing local time. During periods of increased

geomagnetic disturbance, bulges in the dusk sector were observed at earlier local

times, which is assumed to be caused by intense westward flows occurring due to

enhanced convection. During quiet periods, bulges tended to be observed at later

local times (or not at all), which can be interpreted as the result of the increased

influence of the rotation of the Earth during those periods (Carpenter, 1970).

In addition to that, first observations from the Orbiting Geophysical Observatory
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(OGO) spacecraft revealed the regions of high-density cold plasma outside the main

plasmasphere (Chappell et al., 1970b). These regions were found across the entire

dayside magnetosphere during moderate to disturbed magnetic conditions, with a

maximum occurrence in the afternoon-dusk sector. These regions were at first inter-

preted to be detached from the main body of the plasmasphere. They were mostly

located close to the duskside plasmapause and continuously farther away at earlier

local time sectors. Such regions were thought of as being peeled off and therefore

detached from the main plasmasphere near dusk and drifting outward to the dayside

magnetopause. Numerical models have been widely used to understand and explain

the observations near the dusk-side plasmasphere (see section 1.2.5 for the description

of early models). A number of models have been developed that were able to repro-

duce a “teardrop” plasmasphere with a bulge in the dusk sector and additionally they

produced tails of plasma or plumes in the day-to-duskside sector resulting from the

enhanced convection (Grebowsky, 1970; Chen and Wolf, 1972; Chen and Grebowsky,

1974; Kurita et al., 1985). The model by Chen and Grebowsky (1974) demonstrated

that the observations of detached density structures in the noon to dusk sectors may

actually be crossings of satellites through such plumes, and that the “detached” re-

gions may in fact be attached to the main body of the plasmasphere. The existence

of plumes was directly confirmed in the 2000s, when the IMAGE mission provided

the first global images of the plasmasphere (Burch et al., 2001a; Sandel et al., 2001).

Using the EUV images of the plasmasphere, Goldstein and Sandel (2005) found

that plumes are formed and developed in three stages: sunward surge, plume narrow-

ing, and plume rotating. They showed that plumes are developed even with a small

increase of geomagnetic activity. With a significant increase of geomagnetic activity,

the IMF component Bz turns southward and particles that were previously located on

the outermost closed trajectories suddenly become located on open trajectories and

drift toward the dayside magnetopause. This results in an inward movement of the

nightside plasmapause, towards the Earth, while the dayside plasmapause moves out-

ward, towards the Sun and a broad plume directed sunward is formed. The decrease in

geomagnetic activity weakens the plume’s sunward orientation and the plume begins

to rotate eastward with the main plasmasphere and may wrap around it (Goldstein

et al., 2002, 2003b; Goldstein and Sandel, 2005; Sandel et al., 2003; Kim et al., 2007).

More recently, using observations from the MPA instruments onboard the LANL
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Figure 1.5: Examples of structures at the plasmapause observed by the IMAGE
EUV. The direction to the Sun is shown as a yellow dot in each image (figure from
(Darrouzet et al., 2009)).

geosynchronous spacecraft (L = 6.6), Borovsky et al. (2014) reported long-lived plas-

maspheric drainage plumes that sustained for as long as 11 days, which exceeded

the lifetimes expected from refilling. They were observed during high-speed-stream-

driven storms, which usually last for a few to several days. There have been several

theories on where the plasma sustaining these plumes is coming from, but none of

them were able to explain the observed plumes in a satisfactory manner, and the

origin of this plasma is still unknown (Gallagher and Comfort, 2016).

Structures at the plasmapause

In addition to plumes, the IMAGE EUV images revealed various other structures

and irregularities of different scales, such as notches, shoulders, fingers, channels,

crenulations, and plume bifurcations. Figure 1.5 shows several examples of these

structures. They have been studied extensively by the IMAGE team and provided

additional insights into the plasmasphere dynamics.

Notches are typically distinguished by depletion of the radial densities in the outer

plasmasphere (Carpenter et al., 2002). Monitoring of notches for a long time (3060

h) provided evidence that the plasmasphere does not strictly corotate with the Earth

and departs from corotation. Sandel et al. (2003) found that the rotation rates of

notches were between 77% and 93% of strict corotation. A possible explanation for
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the departures from corotation lies in the corresponding motions of plasma in the

ionosphere, where departures from corotation are observed regularly (Sandel et al.,

2003; Burch et al., 2004; Galvan et al., 2008).

Channels of low-density plasma are generally located between the plasmasphere

and the plume. Their formation can be explained by differential rotation of the

western edge of a plume in L and stagnation of the eastern edge (Spasojević et al.,

2003). This may lead to the wrapping of the plume around the plasmasphere.

Shoulders appear in the form of sharp azimuthal gradients and are usually ob-

served during sudden increases in geomagnetic activity (Burch et al., 2001a,b). Gold-

stein et al. (2002) explained the formation of the shoulder by the residual of over-

shielding of the convection electric field following the sudden decrease of convection

during the northward turning of the IMF.

Crenulations are mesoscale variations on the plasmapause surface that are on the

order of a few tenths of an RE and appear to be limited to the local time sector

between dawn and the western edge of the plasmaspheric plume, and they grow while

rotating eastward towards noon (Spasojević et al., 2003; Goldstein and Sandel, 2005).

The latter studies also observed the formation of a double plume (or bifurcation of a

single plume) that similarly to crenulations also occurs in the sunward surge phase.

The second plume may be formed by the rotation of the shoulder into the dusk sector.

Fingers are irregular features observed at the plasmapause, even during deep quiet

geomagnetic conditions. They are considered to arise from resonances of ultra-low

frequency waves (Adrian et al., 2004).

Erosion and loss of plasma

Erosion is the dominant driver of the plasmasphere dynamics during the main

phase of the geomagnetic disturbance and is driven by enhanced magnetospheric con-

vection, transporting cold plasma toward the dayside magnetopause. During this

process, the outer layers of the plasmasphere are stripped away and as a result, the

plasmasphere shrinks. Early observational studies found that the reduction in the

plasmapause radius during storm times occurs mostly in the post-midnight local time

sector. Chappell et al. (1970b) showed, using in-situ ion density measurements, that

the plasmapause location in the night-to-dawn local time sector was strongly cor-

related with the average geomagnetic activity over the previous several hours (2 to

6 hours). The density profile at the plasmapause steepened in that sector and the

plasmapause moved inwards to lower L shells, in response to enhanced geomagnetic
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activity. On the dayside, however, the plasmapause did not change its position imme-

diately and instead depended on the level of geomagnetic activity during the interval

when that region previously corotated through the nightside region (Chappell et al.,

1971). Observations obtained from the IMAGE mission showed that the initial ero-

sion of the plasmasphere starts close to the local midnight and then broadens and

spreads in the eastward and westward directions covering the entire nightside plas-

masphere in several hours (Goldstein and Sandel, 2005; Gallagher and Adrian, 2007).

Removal of plasma occurs at different times for different MLTs, therefore the erosion

propagates with a finite speed from the initial location (Goldstein and Sandel, 2005).

The subauroral polarization stream (SAPS) may aid the global magnetospheric

convection by driving rapid erosion of the plasmasphere in the evening local time

sector. The SAPS refers to the broad poleward-directed electric field driving sunward

plasma convection at sub-auroral latitudes in the evening local time sector (Foster and

Burke, 2002). Enhanced convection injects the ring current energetic particles into

the inner magnetosphere, causing pressure gradients driving field-aligned currents

(FAC) in the ionosphere that subsequently produce the SAPS (Burke et al., 1998;

Anderson et al., 2001; Foster and Burke, 2002). The SAPS region in the ionosphere

is located below the auroral oval, extending ∼3 – 5 degrees in invariant latitude on

average and concentrating mostly in the dusk and pre-midnight local time sectors

(Foster and Vo, 2002). The SAPS can considerably increase the rate at which the

plasma is transported from the duskside plasmasphere to the dayside magnetopause

during intervals of elevated geomagnetic activity (Goldstein et al., 2003b) and may

act to remove the duskside bulge (Goldstein et al., 2007).

Large amounts of plasma can be removed from the plasmasphere during enhanced

geomagnetic activity, as a result of magnetospheric convection peeling off the outer

layers of the plasmasphere. Park and Carpenter (1970) estimated, using whistler

data, that ∼3× 1031 electrons and ions were removed from the plasmasphere during

a magnetic storm on June 15, 1965. This comprised more than half of the plasma

population of the plasmasphere during quiet times, as basically all plasma in the

range of L = 3.5 to 5 was removed from the plasmasphere. IMAGE measurements

of in-situ density using the radio plasma imager (RPI) instrument also showed the

massive loss of plasma along the magnetic field lines. Reinisch et al. (2004) analyzed

the data of the March 31, 2001 storm and showed that outer plasmaspheric layers lost

more than 66% of plasma in less than 14 hours and refilling occurred over a period
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of 10 days. Spasojević and Sandel (2010) estimated using the IMAGE EUV images

that the global loss of He+ ions during moderate disturbance intervals comprised

between ∼0.6 and 2.2 ×1030 He+ ions, constituting between 20% and 42% of the

initial He+ distribution. When the material eroded from the plasmasphere reaches

the dayside magnetopause, it may become trapped in the afternoon-dusk side of the

outer magnetosphere, if convection weakens (Carpenter et al., 1993; Chen and Moore,

2006; Lee et al., 2016). The enhanced plasma density at the dayside magnetopause

can limit the rate of reconnection (Borovsky and Denton, 2006; Borovsky et al., 2014),

thus affecting the global convection pattern (e.g., André et al., 2016; Borovsky and

Denton, 2006).

1.2.5 Models of the plasmasphere

Physics-based models

Early modeling of the plasmasphere dynamics focused on explaining the formation

of the plasmapause, the sharp drop in density observed by the satellites and on the

ground. After first findings on the global structure of the plasmasphere and how

it responds to geomagnetic conditions based on the measurements from whistlers,

Nishida (1966) and Brice (1967) independently proposed models that explained the

formation of the plasmapause as a result of the interplay between the corotation

and convection plasma flow regimes. These models defined the steady state plasma-

pause as the last closed equipotential contour surrounding the Earth (i.e., bottom

panel in Figure 1.4). They also modeled the duskside bulge, which resulted from

the stagnation of the combined flow of corotation and convection in the dusk sector.

Grebowsky (1970) modeled the dynamics of the plasmapause using the ideal magne-

tohydrodynamics (MHD) equations. He also assumed that the initial position of the

plasmapause corresponded to the last closed equipotential in a combined corotation

and convection field, resulting in a “teardrop” shape of plasmasphere, with a bulge

on the duskside. As the strength of convection increased, the bulge rotated west-

ward and the outer parts of the plasmasphere were transported sunward, resulting

in a plasma tail or plume in the afternoon sector (Figure 1.6). Chen and Grebowsky

(1974) used a similar modeling approach to demonstrate that the observations of de-

tached density regions in the afternoon local time sector may be crossings of satellites

through these plumes, and that the “detached regions” could in fact be attached to
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Figure 1.6: Plasmapause location for selected times (0, 1, 2, 6 and 10 hours, labeled)
after the increase of the dawn-dusk electric field component from its initial steady
state value of 0.28 mV/m to 0.58 mV/m (after Grebowsky (1970)).

the main plasmasphere. As the strength of convection decreased, the modeled plume

or bulge rotated eastward and wrapped around the main plasmasphere (e.g., Chen

and Wolf, 1972; Kurita et al., 1985). It should be noted that the resulting temporal

development of the plume may vary in different models and depends strongly on the

assumed initial shape of the plasmasphere and the model of the convection field.

More recently, Goldstein et al. (2003b) developed a model of the plasmapause

dynamics using the so-called test particle simulation approach. In this “plasmapause

test particle” (PTP) model, the dynamics of the plasmapause are modeled by assum-

ing that the plasmapause boundary is comprised of test particles subject to E × B

drift. The evolution of the plasmapause in a time-dependent convection electric field

is then modeled by the changing shape of the curve defined by the aggregate of the test

particles. In their model, they employed the Volland (1973) and Stern (1975) convec-

tion electric field driven by solar wind data and the Kp geomagnetic index, which is

representative of the traditional convection-based picture. Using the PTP model and

the IMAGE EUV images of He+ abundance, Goldstein et al. (2003b) demonstrated
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that in addition to convection, the subauroral polarization stream played a major role

in the plasmasphere dynamics during erosion, in particular, the SAPS flow channel

can dominate the duskside when convection was weak. Subsequently, Goldstein et al.

(2005a) developed a model of the SAPS electric potential, parameterized by the Kp

index and based on the study of Foster and Vo (2002) that provided average char-

acteristics of the SAPS. This model significantly altered the flow paths of plasma in

the dusk sector (see Figure 1.7) and provided good agreement with the plasmasphere

observations from the IMAGE EUV instrument. Goldstein et al. (2014) updated the

PTP model by including a simple treatment of refilling, and compared it to plume

encounters derived from the Van Allen Probe in-situ density measurements. The

model showed a good agreement with observations which provided yet more evidence

that the E × B paradigm produces good quantitative predictions for plasmaspheric

dynamics. They found that the greatest discrepancies between the model and obser-

vations occurred during the quietest geomagnetic conditions. They concluded that

“while E×B drift may dominate during strong convection, there are numerous weaker

processes such as plasma interchange (Lemaire and Kowalkowski, 1981; Pierrard and

Lemaire, 2004; Pierrard et al., 2009) or neutral wind coupling (Burch et al., 2004)

that may contribute during storms and may be dominant during recovery and quiet

interval”.

In addition to modeling the plasmapause dynamics, a number of physics-based

plasma density models have been developed in recent years. Pierrard and Stegen

(2008) used the kinetic exospheric approach to model the dynamics of the plasma-

sphere. Jordanova et al. (2006) coupled their ring current-atmosphere interactions

model (RAM) with a 3-D equilibrium code (SCB) and a cold plasma model (CPL).

The RAM-SCB-CPL model calculates the cold electron density in the equatorial

plane by following the motion of individual flux tubes, using a model of electric

field which includes a corotation potential and a convection potential that is cho-

sen from either semi-empirical models (Volland, 1973; Stern, 1975; Weimer, 2005),

or a self-consistently calculated electric potential (Yu et al., 2015), mapped to the

equatorial plane along the SCB field lines. Krall et al. (2016) coupled this model

with SAMI3 (Sami3 is Also a Model of the Ionosphere) Huba et al. (2008) to model

the plasmasphere dynamics during two events in 2001. De Pascuale et al. (2018)

used RAM-CPL to simulate equatorial plasmaspheric electron densities during two

storm events in 2013, and compared them to in-situ measurements from the Van
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Figure 1.7: Equatorial SAPS potential model for (left) Kp = 5 and (right) Kp = 6+.
A gray circle is drawn at geosynchronous orbit (6.62 RE). (a) Volland-Stern model
plus corotation (4 kV potential spacing). Note the large flow stagnation region near
dusk. (b) SAPS model (2.5 kV spacing), a narrow westward flow channel. (c) Volland-
Stern and SAPS combined (4 kV spacing). Duskside sunward flows are significantly
enhanced (after Goldstein et al. (2005a)).
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Allen Probes (Radiation Belt Storm Probes). Huba and Krall (2013) used the first-

principles physics-based model SAMI3 to model the plasmasphere in 3D. The 3D

ionospheric SAMI3 model is based on the 2D ionospheric code SAMI2 (Sami2 is

Another Model of the Ionosphere) Huba et al. (2000). SAMI3 takes into account

wind-driven dynamo electric fields, which is solved as a two-dimensional electrostatic

potential equation based on current conservation (∇·J = 0). To model the dynamics

along the field lines, SAMI3 solves the continuity and momentum equations for seven

ion species and the temperature equation for three ion species (H+, He+, O+) and

for the electrons. SAMI3 includes 21 chemical reactions and photodeposition Huba

et al. (2000). Cross-field transport is included as E × B drifts. The magnetic field

is assumed to be dipole, aligned with the spin axis of the Earth so geographic and

geomagnetic coordinates are the same. Using this assumption, the corotation po-

tential can be easily incorporated into the model, although as this assumption is an

idealization, seasonal/longitudinal effects are not captured. Huba and Krall (2013)

incorporated the neutral wind dynamo potential, the corotation potential, and a time-

dependent potential from Volland (1973), Stern (1975) and Maynard and Chen (1975)

to model the convection potential for an idealized magnetic storm. Krall and Huba

(2013) used SAMI3 also to simulate the plasmasphere refilling for an idealized storm

and found that SAMI3 refilling rates are in agreement with empirical refilling rates

generally within a factor of two, except at L = 5, where the difference reaches a factor

of five. In that region, SAMI3 shows slower refilling rates than the empirical results.

An overview of various other physics-based models of the plasmasphere based on the

fluid and the kinetic approaches is given in Pierrard et al. (2009).

One important element of the physics-based models mentioned above is the elec-

tric field. The magnetospheric convection electric field plays a key role in existing

theories of the plasmapause formation Pierrard et al. (2008). It is therefore important

to have a reliable electric field model of the inner-magnetospheric region. Various em-

pirical and mathematical models of the electric field have been developed in the past

decades. One of the first models of the electric field that is still often used is that

of Volland (1973) and Stern (1975). In this mathematical model, a uniform dawn-

dusk convection electric potential distribution is applied across the magnetosphere.

The magnetospheric electric field is derived from a scalar potential and there is no

induced electric field resulting from time-dependent magnetic field variations. Stern

(1975) derived the electric field from the Euler potential for the dipole magnetic field.
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Maynard and Chen (1975) obtained the Kp dependence for this empirical model from

the radius at the midnight of the equipotential shell passing through the dusk stagna-

tion point, which was assumed as the plasmapause position. Plasmapause positions

were determined from the OGO3 and OGO5 satellite observations. Another popular

model is the E5D model built by McIlwain (1986) from ATS5 and ATS6 particle flux

measurements at geosynchronous orbit. The E5D electric potential was adjusted to

fit the dynamical energy spectra of electrons and protons in the range from 1 keV to

100 keV, injected after substorms and observed in the equatorial region. This model

was constructed for the periods when Kp was smaller than 6 and remained nearly

constant, and its main goal was to represent the distribution of the electric field right

after a substorm injection. Similarly to the previous model, the E5D model also de-

pends on the Kp index. Later, Weimer (1996) developed an electric field model for

the high-latitude ionosphere based on ionospheric measurements from DE-2, ISEE-3,

and IMP-8 satellites. The model does not include Kp dependence and instead is

driven by the solar wind parameters, in particular by the interplanetary magnetic

field magnitude, solar wind velocity, and also the dipole tilt angle. The electric po-

tential of the Weimer model is given by an expansion of the polar cap potential in

terms of spherical harmonics. Weimer (2001) extended the model by adding terms

for solar wind electric field and dynamics pressure. The updated model was based

on the same satellite measurements. Matsui et al. (2008) used data from the Cluster

mission for more than five years to construct the innermagnetospheric electric field

model. In addition to measurements from Cluster, they also used data from ground

radars and an ionospheric spacecraft. This model depends on the interplanetary elec-

tric field (IEF) and is valid for 2 < L < 10 and all magnetic local times. The data

used to build this model were mostly obtained during periods of quiet or moderate

geomagnetic activity. Matsui et al. (2013) extended this model by including Cluster

electric field data from the Electron Drift (EDI) and the Electric Field and Wave

(EFW) instruments during periods of high activity as well. This updated model is

organized either by the IEF or by the Kp index.

Empirical models

A number of empirical models of plasma density have been developed in recent decades

as well. Carpenter and Anderson (1992) used measurements of electron density de-

rived from radio measurements made with the sweep frequency receiver (SFR) on
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board the International Sun-Earth Explorer (ISEE-1) spacecraft and ground-based

whistler measurements to develop an empirical model of plasma density. They se-

lected 40 density profiles that corresponded to the relatively quiet conditions rep-

resenting a “saturated” plasmasphere, and constructed piece-wise models describing

the plasmasphere and plasmatrough densities and the plasmapause location. As such,

this model is representative of the saturated plasmaspheric densities and was intended

for applications in cases when global magnetic conditions have been slowly varying

or relatively steady in the preceding ∼20 hours. The model covers the range from

2.25 to 8 in L-shell, and the interval of 0−15 MLT (magnetic local time). It provides

the mean value of density at different L-shells. Gallagher et al. (2000) developed the

Global Core Plasma Model (GCPM), which combined several previously developed

models (such as (Carpenter and Anderson, 1992) and (Gallagher et al., 1998)) by

means of transition equations, in order to provide a more comprehensive description

of the inner-magnetospheric plasma. Using density measurements obtained from the

swept frequency receiver onboard the CRRES by identifying the upper hybrid res-

onance frequency, Sheeley et al. (2001) developed models of the plasmasphere and

plasma trough. These models provide statistical averages of density based on those

measurements and cover all local times and 3 ≤ L ≤ 7. Moreover, Sheeley et al.

(2001) also provide the standard deviation of density for both the plasmasphere and

trough models to describe depleted and saturated density levels for various L-shells

and MLT sectors for the trough.

The above-mentioned empirical density models provide statistically averaged val-

ues and generally treat the radial density profile and azimuthal shape of the plasma-

pause as gradually varying. However, the plasmasphere has been found to be highly

irregular on a wide range of scale sizes. These models also do not account for the

changing geomagnetic conditions, and therefore, are not able to produce reliable es-

timates of density during extreme geomagnetic events, whereas density is known to

vary substantially during periods of strong geomagnetic activity (e.g., Park and Car-

penter, 1970; Park, 1974; Moldwin et al., 1995). Therefore developing more advanced

models of plasma density is still of continuing interest.
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1.3 Modeling methodology

This section provides a general overview of the methodology employed in this disser-

tation. The description here intends to provide a general context around the methods

used, while the implementation details of each particular method are given in the cor-

responding chapters. The description provided here may partially overlap with the

description provided in the following chapters.

1.3.1 Brief background on neural networks

In this dissertation, we use artificial neural networks to solve a number of regression

problems ranging from reconstruction of electron density from either satellite mea-

surements or from solar wind parameters and geomagnetic indices, to prediction of

the Kp index based on the recent time history of solar wind parameters.

Artificial neural networks are a family of mathematical models effective at solving

problems of function approximation, pattern recognition, classification and clustering.

They were inspired by biological neural networks in the brain in an attempt to mimic

them in a very simplified manner (e.g., McCulloch and Pitts, 1943; Hebb et al., 1949;

Marr et al., 1976).

Neural networks are composed of simple computational blocks called artificial

neurons. An artificial neuron has a body, in which computations are performed, a

number of inputs and one output, similar to a real biological neuron. Simply put, a

neuron receives an input signal and then computes an output for it. Figure 1.8a shows

a scheme of an artificial neuron with N inputs. Each input has a weight associated

with it; the larger the weight, the greater impact the corresponding input has on

the output. A neuron also has a bias, which for convenience can be considered as

an additional input to the neuron, x0. The corresponding input is always equal to 1

and has the weight identical to the value of the bias, w0 = b. Additionally, a neuron

has an activation, or transfer, function that defines a neuron’s type. While there are

numerous choices for the activation function, the most common ones are the sigmoid,

the hyperbolic tangent, binary and linear functions. After the signal is applied to

the neuron, it first computes the sum of inputs multiplied by their weights and then

applies the activation function, f , to the resulting sum: y = f(S), S =
∑N

j=1 wjxj+b.

An artificial neuron is one of the first computational models developed in the

research area of artificial neural networks (McCulloch and Pitts, 1943; Rosenblatt,
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Figure 1.8: A scheme of an artificial neuron, a building block of a neural network.
Artificial neurons can be used to solve linear problems.

1957). A single neuron can be used to solve a limited number of problems, such as

linear regression and classification of two linearly separable subsets. However, a single

neuron cannot be used to solve more complex, nonlinear problems. Fortunately, such

problems can be solved by neural networks, which are composed of multiple neurons.

The main concept of artificial neural networks is that an output signal from one

neuron can be used as an input to other neurons.

The way neurons are connected into a network defines the topology or architec-

ture of a neural network. Throughout this dissertation, we use a feedforward neural

network architecture (FNN). An FNN is one of the most basic and widely used neural

network architectures and is effective at solving multivariate nonlinear regression and

classification problems. FNNs have displayed state-of-the-art performance in a num-

ber of applications (e.g., Salakhutdinov and Hinton, 2009; Krizhevsky and Hinton,

2011; Glorot et al., 2011; Mohamed et al., 2012). The topology of an FNN is shown

in Figure 1.9a. Neurons in an FNN are arranged in layers. There are three types

of layers: input, output, and hidden layers. The input layer is composed of inputs

to the network and no computations are performed in this layer. Hidden layers are

located between input and output layers and are composed of any number of neurons

arranged in parallel. The network can have several hidden layers. The neurons of the

same layer are not connected to each other but only to the neurons of the preceding

and the subsequent layers; an output of one hidden layer serves as an input to the

following layer. The output layer, and hence the network output, is formed by a

weighted summation of the outputs of the last hidden layer. Neurons of one layer

have the same activation function, while different layers can have different activation
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functions. Formally, an FNN with L hidden layers can be defined as a superposition

of L activation functions f1, ..., fL. The neural networks with at least one hidden layer

can solve nonlinear regression or classification problems (Cybenko, 1989).

Figure 1.9: A scheme of a feedforward neural network. Circles denote artificial
neurons. Feedforward neural networks arrange neurons in a layered configuration
and can be used to solve nonlinear problems.

The description above assumes that weights and biases of the neural network are

known. In practice, the weights and biases are not given, but they can be determined

using a training data set, i.e., a set of data for which both inputs and outputs are

known. Determining weights and biases is usually referred to as training and reduces

to an optimization problem of minimizing a given cost function. The cost function

is defined based on the type of a problem we are attempting to solve. Specifically

for neural networks, a number of backpropagation algorithms are used to solve the

optimization problem of determining the weights (Williams and Hinton, 1986).

1.3.2 Physics-based modeling of the plasmasphere dynamics

Another approach to model the dynamics of the plasmasphere that we employ in this

dissertation is physics-based modeling. To be able to use this approach, a number of



1.3. MODELING METHODOLOGY 43

physical processes needs to be taken into account, such as the configuration of the

Earth’s magnetic field and electric fields, refilling, etc. (see section 1.2).

The electron density in the plasmasphere can be modeled by assuming that cold

particles in the plasmasphere undergo E×B drift in azimuthal and radial directions.

The evolution of the electron density in the equatorial plane can then be described

by the following equation:

∂n

∂t
+ vφ

∂n

∂φ
+ vR

∂n

∂R
= S − L (1.17)

This equation describes azimuthal and radial motion of particles due to E×B drift,

where n denotes the plasma density, φ is the MLT, R is the radial distance in the equa-

torial plane, vφ and vR are drift velocities in MLT and radial distance, respectively, S

is the source of charged particles, and L includes loss processes. The second and third

terms describe the transport of the plasmaspheric particles due to the E × B drift.

Refilling is taken into account by the source term S, and the loss term L accounts for

the loss of the particles into the interplanetary medium.

To solve this equation, we need to make assumptions about the structure of mag-

netic and electric fields. In this dissertation, we assume that the Earth’s magnetic

field can be approximated by a dipole and that the electric field is a superposition

of co-rotation, convection, and subauroral polarization stream (SAPS)-driven electric

fields. Using these assumptions, we calculate E×B drift velocities. We use the Kp-

dependent Volland-Stern electric field model (Maynard and Chen, 1975; Stern, 1975;

Volland, 1973) to calculate the convection electric field, and the Kp-dependent model

of the SAPS electric field developed by Goldstein et al. (2005a). We also account

for refilling by using refilling rates of equatorial electron density from Denton et al.

(2012). The use of these models, as well as the treatments of saturation of the plas-

masphere density and loss of particles into the interplanetary medium, are described

in detail in Chapter 4.

1.3.3 Data assimilation

A part of this dissertation is devoted to combining a physics-based and a neural

network-based empirical model of plasma density in an optimal way. This is moti-

vated by the need to improve the performance of the neural networks during strong

geomagnetic storms as the latter are generally underrepresented in the available data.
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The performance of neural networks strongly depends on the amount of training data,

and the amount of data corresponding to storms is not sufficient for neural networks

to efficiently learn from them. The physics-based model described above is employed

to overcome this limitation, as it demonstrates a more reliable performance during

such intervals. At the same time, as it is based on simplified assumptions, it has a

lower accuracy compared to the data-driven neural network-based model. To combine

the advantages of both models and blend them in an optimal way, we employ data

assimilation.

Data assimilation is a mathematical tool designed for combining a model with typ-

ically sparse observations in an optimal way (Kalman, 1960). In data assimilation,

the information provided by both the physical model and the available observations is

used to find the most likely estimate of the unknown true state of a dynamic system,

while taking into account their uncertainties. The sequential Kalman filter (Kalman,

1960) is one popular algorithm of data assimilation. It uses predictions and available,

typically sparse, observations in a recursive manner to improve the system measure-

ments. The Kalman filter combines the predictions of a model with observations in

order to obtain a prediction that is closest to the truth in the least squares sense,

given the information about the model and observation uncertainties. It has numerous

applications in technology including the navigational system on Global Positioning

System devices and the Apollo mission (Grewal and Andrews, 2010), image process-

ing (Salti et al., 2014; Bresson et al., 2015), ocean modeling, operational weather

forecasting (Kalnay, 2003; Lahoz et al., 2010; Sorenson, 1985), and reconstruction of

the global state of the radiation belts (e.g., Shprits et al., 2007a, 2013).

The Kalman filter consists of two steps: the forecast step and the analysis step.

These steps are repeated in cycles. In the forecast step, the model is used to issue

predictions at the current time step tk, using the previous state of the system, if

available. The output of this step is called the forecast of the system. In the analysis

step, this forecast is updated in an optimal way given the observations at time tk.

The output of this step is called the analysis. At this point, the cycle of the Kalman

filter is finished and the next iteration can start at time tk+1.

We adapt the Kalman filter technique to optimally combine the predictions of

two models of the plasmaspheric electron density, the neural network-based model

developed in Chapter 3 and the physics-based model developed in Chapter 4. For

this purpose, we consider the physics-based model as a model that propagates a state



1.4. CONTRIBUTIONS OF THE DISSERTATION 45

of the system in time. The output of the neural network-based model, in turn, is

used as “observations”. Such a setup allows us to choose the “observations” on any

desirable grid, which provides a huge advantage over typical situations when the data

are very sparse. Here, we use the same grid for both the model and the “observations”

in order to make the blending more efficient.

1.4 Contributions of the dissertation

The scope of this dissertation is a development of new tools and models aimed at the

reconstruction of electron density in the plasmasphere from various sources ranging

from satellite measurements, geomagnetic indices, and solar wind data to those based

on first principles.

In Chapter 2, we develop an algorithm based on feedforward neural networks to

automatically derive the upper-hybrid resonance frequency from electric field mea-

surements obtained from the Van Allen Probes mission. The derived frequency is

used to calculate electron density and to subsequently produce a publicly available

data set of electron density covering nearly four years of measurements. The results

presented in this chapter are based on the publication Zhelavskaya et al. (2018).

We employ this large electron density data set to develop a new global empirical

model of plasma density parameterized by solar wind and geomagnetic indices in

Chapter 3, also using feedforward neural networks. The model is extensively validated

by comparing its output to in-situ density measurements from Van Allen Probes

withheld from the training set, and also by comparing its global output to the images

of He+ distribution from the IMAGE EUV instrument. This chapter is based on the

results from Zhelavskaya et al. (2017).

In Chapter 4, we explore the limitations of this global neural network-based model

and develop an approach allowing to improve its performance during extreme geo-

magnetic storms, underrepresented in the data available for training. This is achieved

by combining the neural network-based model with a physics-based model of plasma

density in an optimal way by means of data assimilation. Such a blend allows achiev-

ing optimal performance for quiet, disturbed, and extreme geomagnetic conditions.

The results presented in this chapter are based on the findings of Zhelavskaya et al.

(2020a).

In Chapter 5, we extend the developed machine learning-based tools and apply
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them to another important problem in the field of space weather, the prediction of

the geomagnetic index Kp. Additionally, we investigate various machine learning and

information theory methods for feature selection and apply them to select optimal

inputs to a predictive model of Kp. This chapter is based on the Zhelavskaya et al.

(2019) study.

The main contributions of this dissertation can be summarized as follows:

1. The plasmasphere:

1. Developed the first automated neural network-based algorithm for recon-

struction of plasma density from satellite electric field measurements.

2. Developed a new global empirical model of plasmaspheric electron density

based on geomagnetic and solar wind parameters capable of accurately

capturing the dynamic evolution of the plasmasphere.

3. Quantified the influence of different groups of solar wind parameters, geo-

magnetic indices and their times histories on the model performance.

4. Identified the critical combination of geomagnetic and solar wind parame-

ters and their time history that determine the evolution of the cold plasma.

5. Developed a new approach for combining a neural network-based empirical

model and a physics-based model of the plasmaspheric electron density in

an optimal way, allowing optimal performance during quiet, disturbed, and

extreme geomagnetic conditions.

2. The Kp index:

1. Developed new tools for predicting the Kp geomagnetic index for up to 12

hours ahead.

2. Determined the most important solar wind drivers to predict the Kp index

by using feature selection algorithms.

3. Analyzed the prediction accuracy that is set by using solar wind measure-

ments at L1 as input to a Kp predictive model.
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Reconstruction of plasma electron

density from satellite

measurements via Artificial Neural

Networks

Note

The following work is published as a book chapter in Machine Learning Techniques

for Space Weather, Elsevier:

Zhelavskaya I. S., Y. Y. Shprits and M. Spasojević (2018). Chapter 12 - Recon-

struction of Plasma Electron Density From Satellite Measurements Via Artificial

Neural Networks, in Machine Learning Techniques for Space Weather, edited by En-

rico Camporeale, Simon Wing and Jay R. Johnson, Elsevier, pp. 301-327, ISBN

9780128117880, https: // doi. org/ 10. 1016/ B978-0-12-811788-0. 00012-3 .

Abstract

This chapter presents a new approach to reconstruction of plasma electron density

from satellite measurements in an automated fashion using artificial neural networks.

We design a feedforward neural network to derive the upper hybrid resonance fre-

quency, fuhr, from satellite measurements that is subsequently used to calculate the

electron density. In previous studies, the reconstruction of fuhr was either performed
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manually or by semi-automated techniques. In this study, we use 2.5 years of electric

and magnetic field measurements collected with the Electric and Magnetic Field In-

strument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van

Allen Probes mission to train, validate, and test a neural network. We then apply it to

more than 4 years of EMFISIS data and produce the publicly available electron den-

sity data set. We describe the aspects of neural network design and implementation

and perform analysis of the obtained electron density distribution.

2.1 Overview

Plasma electron density is a crucial parameter in space physics simulations and model-

ing and is important for predicting and preventing hazardous effects of space weather,

such as satellite damage or even complete breakdown due to enhanced solar wind ac-

tivity. Measuring plasma density accurately, however, has always been a challenge.

One of the most accurate methods of measuring plasma electron density is to derive

it from the satellite measurements of the upper-hybrid resonance frequency. The

upper-hybrid resonance frequency is often associated with the most pronounced res-

onance band in dynamic spectrograms, which display electric power spectral density

measured by a satellite as a function of frequency and time. In previous missions,

upper-hybrid resonance bands were manually identified in the dynamic spectrograms,

although such manual determination is a very tedious and time-consuming process.

Moreover, as new satellites for scientific exploration are being launched and more

data become available, manually identifying upper-hybrid resonance frequency be-

comes unfeasible. Research has been done in the past to automate the process of

upper-hybrid resonance band extraction, but the developed algorithms still require

significant manual intervention and correction.

In this chapter, we present an alternative approach for automated electron density

determination based on artificial neural networks. The method employs feedforward

neural networks to derive the upper-hybrid resonance bands from the dynamic spec-

trograms, and hence electron density, in an automated fashion. Neural networks are a

powerful tool for finding the multivariate nonlinear mapping from input (in this case,

dynamic spectrograms and other geophysical parameters) to output parameters (the

upper-hybrid frequency). Neural networks inherently require a training data set, i.e.,
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a data set for which both inputs and outputs are known. We use electric and mag-

netic field measurements produced by the two satellites of NASA’s Van Allen Probes

mission, currently the golden standard of measurements in space weather research,

as input, and a large data set of upper-hybrid frequency measurements produced by

another recently developed semi-automated technique as output in our training data

set.

The chapter is organized as follows. First, we provide the necessary background on

the space weather aspects of this study related to plasma density and its importance

in space physics research and delve deeper into the motivation behind this application.

Then, we give a brief overview of feedforward neural networks, the type of artificial

neural networks used for this application, with a focus on the importance of model

validation. Next, we describe the algorithm implementation in detail and demonstrate

the results. We also discuss how the developed plasma electron density data set can

be used to develop a global empirical plasma density model that does not depend on

satellite measurements, also using neural networks.

2.1.1 Space weather-related aspects and motivation

Plasma density and the plasmasphere

Plasma electron density is a parameter characterizing a number of particles in a

unit volume in space (measured in cm−3) (Cohen, 2007). The electron density is

a fundamental parameter of plasma. The focus of this study is the density of cold

particles in the near-Earth space environment. These cold particles (of temperature

∼ 1 eV) are trapped by the closed magnetic field lines of the Earth, forming a bubble-

shaped region around the Earth. This region is called the plasmasphere (Lemaire and

Gringauz, 1998). The plasmasphere is a relatively dense region of plasma compared

to other regions in space (density of 10− 104 cm−3). The plasmasphere extends from

the topside ionosphere (∼ 1000 km above the ground) out to a boundary called the

plasmapause that ranges from 2 to 7 Earth radii, RE (1 RE = 6, 371 km), depending

on geomagnetic conditions (Gringauz, 1963; Carpenter, 1963; Grebowsky, 1970). The

region outside the plasmapause is called the plasma trough, and it is a low-density

region.

The plasmasphere is very dynamic, and its shape and size strongly depend on so-

lar and geomagnetic conditions (O’Brien and Moldwin, 2003; Chappell et al., 1970b).
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Two mechanisms, sunward convection and corotation with the Earth, determine

the configuration of the plasmasphere (Darrouzet et al., 2009; Singh et al., 2011).

The corotation regime dominates during quiet geomagnetic times; plasma material

trapped inside the closed magnetic field lines corotates with the Earth (Carpenter,

1966). Meanwhile, the plasmasphere is refilled with ions from the topside ionosphere

and expands up to ∼ 4 − 7 RE (Goldstein et al., 2003b; Singh and Horwitz, 1992;

Krall et al., 2008); its shape is roughly circular with a bulge on the dusk side (Nishida,

1966). In contrast, during periods of high geomagnetic activity, the sunward mag-

netospheric convection starts to dominate and erodes the plasmasphere: the closed

magnetic field lines at the dayside magnetopause boundary are torn apart and the

plasmaspheric material is carried sunward. Due to that, the outer layers of the plas-

masphere are eroded and plasmapause contracts (Carpenter, 1970; Chappell et al.,

1970a; Goldstein et al., 2003b). The stronger the disturbance, the more the plasma-

pause contracts (down to 2 RE during severe geomagnetic storms).

Plasma density of the plasmasphere is a critical parameter in a number of impor-

tant space weather applications such as GPS navigation (e.g., Mazzella, 2009; Xiong

et al., 2016) and analysis of spacecraft anomalies due to spacecraft charging (e.g.,

Reeves et al., 2013). Plasma density is also a critical input parameter for quantifying

wave-particle interactions necessary for modeling the formation and decay of Earth’s

radiation belt, a donut-shaped region around the Earth, hazardous for satellites elec-

tronics and crew in space (e.g., Spasojević et al., 2004; Thorne et al., 2013; Orlova

et al., 2016; Shprits et al., 2016).

Plasma electron density can be measured on satellites using several methods.

They include measuring the density directly with particle counters (e.g., Geiger and

Müller, 1928), determining it using the spectral properties of waves (e.g., Trotignon

et al., 2003) or deriving it from the spacecraft potential (e.g., Escoubet et al., 1997).

A number of empirical models of plasma electron density have been developed using

electron density measurements from previous missions.

The most widely used empirical models in recent years are those developed in the

studies of Carpenter and Anderson (1992), Gallagher et al. (2000), and Sheeley et al.

(2001). The model of Carpenter and Anderson (1992) is based on electron density

measurements derived from radio measurements made with the sweep frequency re-

ceiver (SFR) onboard the International Sun-Earth Explorer (ISEE-1) spacecraft and

ground-based whistler measurements. This model presents the mean electron density
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values for different L after several days of refilling, which means that it is applicable

only for quiet geomagnetic activity. The model is valid for L shells from 2.25 to 8

RE and local times between 0 and 15 MLT (here, L can be roughly considered as

the distance from the center of the Earth, and MLT stands for magnetic local time

and can be considered as an angular distance around the Earth from the local mid-

night). The Global Core Plasma Model (GCPM) by Gallagher et al. (2000) combines

several previously developed models (including Carpenter and Anderson (1992) and

Gallagher et al. (2000)), using transition equations in order to obtain a more com-

prehensive description of the plasma in the inner magnetosphere. The plasmasphere

and plasma trough density models of Sheeley et al. (2001) present statistical density

averages based on density measurements obtained using the Combined Release and

Radiation Effects Satellite (CRRES) swept frequency receiver. The models are valid

for L shells between 3 and 7 and all local times. The Sheeley et al. (2001) study

provides the mean and the standard deviation of density in the plasmasphere and the

trough to represent depleted and saturated density levels for different L (and MLT

for the trough).

Despite the extensive use of these empirical density models in space physics simu-

lations, they do not provide reliable electron density estimates during extreme events,

such as geomagnetic storms, since they are parameterized only by static geomagnetic

parameters such as L and MLT. The described models do not include the dynamic de-

pendence of plasma density on geomagnetic and solar conditions, and plasma electron

density is known to be highly variable during elevated geomagnetic activity (Park and

Carpenter, 1970; Moldwin et al., 1995). Therefore, collecting reliable electron density

measurements during varying geomagnetic conditions is still of continuing interest.

Determining the Electron Density from Upper-Hybrid Band Resonance

Frequency

One of the most reliable techniques to measure the electron density is to use the

upper-hybrid resonance frequency to derive it (Mosier et al., 1973). This method will

be further employed in this study.

The upper-hybrid resonance frequency is a combination of the electron plasma

frequency and the electron cyclotron frequency:

fuhr =
√(

f 2
ce + f 2

pe

)
. (2.1)
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The electron plasma frequency and the electron cyclotron frequency are given as:

fpe =
1

2π

√
q2

ene

meε0
, fce =

|qe|B
2πme

, (2.2)

where B is the magnetic field strength, ne is electron density, qe is the charge of

electron, ε0 is the permittivity of free space, and me is the mass of an electron.

The upper boundary of the upper hybrid emission is generally the most pronounced

feature in spacecraft plasma wave data. Mosier et al. (1973) found that the upper-

hybrid resonance can often be observed visually as the brightest emission band in the

dynamic spectrograms, displaying spectral properties of the electric field (see Figure

2.1 for more details). In this study, we use the plasma wave data measured on the

Van Allen Probes satellites.

Van Allen Probes is a dual-spacecraft NASA mission launched in August 2012, and

its scientific objective is to explore the dynamic evolution of the Van Allen radiation

belts (Mauk et al., 2013). The satellites have a highly elliptical orbit in a near-

equatorial plane (inclination 10 degrees) with the apogee 30, 414 km and perigee

618 km. A number of science instruments are deployed on the satellites. One of

them is the Electric and Magnetic Field Instrument Suite and Integrated Science

(EMFISIS) (Kletzing et al., 2013). The instrument performs routine measurements

of the electric field in the frequency range of 10 to 487 kHz, thus providing the

capability to determine the upper hybrid resonance band, and hence to accurately

estimate the electron density. An example of measurements from the High Frequency

Receiver (HFR) of the EMFISIS instrument on board Van Allen Probe A for one

orbital pass #1612 for 25 April 2014, is illustrated in Figure 2.1. Figure 2.1a shows

the power spectral density of the electric field as a function of frequency and time,

where color indicates the spectral density, as noted in the color bar. Such a plot is

referred to as a dynamic spectrogram. Dynamic spectrograms are a tool to explore

spectral properties of waves and resonances in plasma. Figure 2.1b shows the same

spectrogram but with the upper-hybrid resonance frequency indicated with black.

The upper hybrid resonance frequency is often associated with the most pronounced

band in dynamic spectrograms, as found by Mosier et al. (1973). The background

magnetic field strength, B, is measured by the magnetometer on board the spacecraft,

and therefore, fce can be determined directly; it is indicated on the spectrogram as

the dashed curve.
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Several processes and phenomena that might at times impose challenges on the

upper-hybrid resonance identification are denoted with white in Figure 2.1b. The

plasmapause, the outer border of the plasmasphere, is usually identified by a sharp

density gradient and can be monitored via the sharp drop in the upper-hybrid fre-

quency. The electron density (hence, the upper-hybrid frequency) might have a com-

plex structure in the vicinity of the plasmapause, and the density gradient is not

always smooth but may sometimes have jumps. Accurately identifying those sudden

changes in density may be challenging for some automated routines. Another phe-

nomenon is the banded emissions, also referred to as “(n + 1
2
)fce” emissions. These

emissions are often observed between the harmonics of electron cyclotron frequency,

fce, but not necessarily exactly in the middle between them (LaBelle et al., 1999),

in the plasma trough (the low-density region). In some cases, emissions at fuhr are

not observed with the banded emissions (Benson et al., 2001); this brings uncertainty

in the process of identification of the upper-hybrid resonance and presents challenges

for making definite determination of fuhr without performing an appropriate visual

spectral interpretation. Instrument contaminations can also present challenges for au-

tomated routines of fuhr identification. They are usually observed as horizontal lines

of roughly identical spectral density and might have intersections with the upper-

hybrid resonance.

Figure 2.1: An example of the EMFISIS HFR spectral data for one orbit pass
(a) with various parameters and phenomena denoted (b). Upper hybrid frequency
is shown with the black curve; electron cyclotron frequency, fce, is shown with the
white dashed curve.

Previously, the upper-hybrid resonance band has been manually derived from
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dynamic spectrograms (e.g., LeDocq et al., 1994) and there have been several semi-

automated techniques developed. Research on the development of semi-automated

routines began in the ISEE-1 era (Trotignon et al., 1986) and still continues (Trotignon

et al., 2010; Denton et al., 2012; Kurth et al., 2015). Determination of the electron

density in Trotignon et al. (2010) was conducted using the active and passive wave

spectra measured with the Waves of High frequency and Sounder for Probing of

Electron density by Relaxation (WHISPER) instrument onboard the Cluster mis-

sion. The electron density in the work of Denton et al. (2012) was derived from the

passive radio wave observations obtained from the Radio Plasma Imager (RPI) instru-

ment onboard the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration)

spacecraft. The Automated Upper hybrid Resonance detection Algorithm (AURA)

developed by Kurth et al. (2015) is based on the Van Allen Probes’ EMFISIS HFR

data and is a semi-automated algorithm to derive the upper hybrid resonance band

in dynamic spectrograms. The algorithm searches a peak in the spectrum for every

time step while assuming that each successive spectrum contains a peak associated

with fuhr near the previously determined peak. An operator then visually inspects the

dynamic spectrogram for each orbital pass and corrects the resulting fuhr profile iden-

tified by AURA where it is necessary. AURA significantly facilitates the processing

of the HFR spectral data but still requires manual intervention.

In this chapter, we present an alternative algorithm for automated determination

of fuhr, hence electron density, from the satellite measurements using artificial neural

networks, which is also described in Zhelavskaya et al. (2016). Neural networks are one

of the most commonly used tools for a broad range of nonlinear approximations and

mappings. In this application, we use feedforward neural networks (FNNs). FNNs

are very efficient in solving nonlinear multivariate regression problems. The neural

networks are “tuned” to a specific problem during the training using the training data

set. The training data set is a data set for which both inputs (in our case, satellite

measurements and geophysical parameters) and outputs (fuhr) are known. We use

electric (HFR spectra) and magnetic field (fce) measurements from Van Allen Probes

as inputs in our training set, and the database of fuhr measurements developed using

AURA (courtesy of W. Kurth and the EMFISIS team) as output. The training data

set covers 1, 091 orbital passes, i.e., represents a significant set of example data. After

the neural network passes the training, validation and testing stages, it can be used

in practice and be applied to a data set for which the fuhr is not known. The neural
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network is applied to a database of 3, 750 orbital passes and its output is then used

to produce a database of electron number density. The performance of the resulting

neural network model is assessed by comparing the derived density to the density

obtained in Kurth et al. (2015). The resulting density distribution is also analyzed

and compared to the empirical density models of the plasmasphere and trough by

Sheeley et al. (2001).

2.1.2 Brief background on neural networks

This part provides a brief overview of artificial neural networks and discussion on

important aspects of training and validation. The notions introduced here might be

useful for further understanding the application described in this chapter. For more

details on neural networks, the reader should refer to the works cited herein.

Basic concepts related to neural networks

Artificial neural networks are a family of models effective at solving problems of

function approximation, pattern recognition, classification, and clustering. Artificial

neural networks were inspired by biological neural networks (in the brain) and are an

attempt to mimic them in a very simplified manner (e.g., McCulloch and Pitts, 1943;

Hebb et al., 1949; Marr et al., 1976).

Neural networks are composed of multiple simple computational blocks called arti-

ficial neurons. An artificial neuron has a body in which computations are performed,

and a number of input channels and one output channel, similar to a real biological

neuron. Simply put, a neuron receives an input signal and then computes an output

on it. Figure 2.2a shows the construction of an artificial neuron with N inputs. Ev-

ery input has a weight associated with it; the larger the weight, the more impact the

corresponding input channel has on the output. A neuron also has a bias, which for

convenience can be considered as an additional input to the neuron, x0, that is equal

to 1 and has the weight identical to the value of the bias, w0 = b. Additionally, a

neuron has a transfer or an activation function that defines the type of neuron. The

activation function can be arbitrary; the most commonly used functions are sigmoid,

hyperbolic tangent, binary, and linear. After the signal is applied to the neuron, it

first computes the sum of inputs multiplied by their weights and then applies the

transfer function to the resulting sum.
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Figure 2.2: A scheme of an artificial neuron (on the left), a building block of a neural
network. Artificial neurons can be used to solve linear problems. Simple examples of
such problems for regression and classification are shown on the right.

An artificial neuron is one of the first computational models developed in the

research area of artificial neural networks (McCulloch and Pitts, 1943; Rosenblatt,

1957). A single neuron can be used to solve a limited number of problems, such as

linear regression and classification of two linearly separable subsets. Two toy examples

related to these problems are shown in Figures 2.2b and 2.2c. Figure 2.2b illustrates

a simple case of a linear regression problem with one dependent and one independent

variable. The given data are plotted with red markers, where independent variable

x1 is plotted on the x-axis vs dependent variable y on the y-axis. The regression task

consists in finding a mapping from x1 to y. The gray line shows a linear fit to the

data found by a single neuron. The neuron has a single input in this case. Figure 2.2c

shows a simple case of the classification problem. Here, the given data consists of two

classes shown with red and blue markers correspondingly. There are two independent

variables, x1 and x2. They are plotted on x and y axes correspondingly, and the

single dependent variable y is represented by color (numerically it can be represented

as 0 and 1, or −1 and 1, for example). The classification task is to identify the

class of each data point, given x1 and x2. This task can be solved by building a

separation border between two classes. The gray line shows a separator found by a

neuron. The neuron has two inputs in this case. These scenarios are intentionally

oversimplified for demonstration purposes and can be expanded to more dimensions

(hence, more inputs to the neuron). However, a single neuron cannot be used to

solve more complex, nonlinear problems. Fortunately, such problems can be solved

by neural networks, which are composed of multiple neurons. The main concept of

artificial neural networks is that an output signal from one neuron can be used as an
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input to other neurons.

The way neurons are connected into a network defines the topology or architecture

of a neural network. In this work, we use a feedforward neural network architecture

(FNN). An FNN is one of the most basic and widely used neural network archi-

tectures and is effective at solving multivariate nonlinear regression and classification

problems. FNNs have displayed the state-of-the-art performance in a number of appli-

cations (e.g., Salakhutdinov and Hinton, 2009; Krizhevsky and Hinton, 2011; Glorot

et al., 2011; Mohamed et al., 2012). The topology of an FNN is shown in Figure

2.3a. Neurons in an FNN are arranged in layers. Three types of layers exist: input,

output, and hidden layers. The input layer is composed of inputs to the network

and no computations are performed in this layer. Next, follow hidden layers that

are composed of any number of neurons arranged in parallel. The network can have

several hidden layers. The neurons of the same layer are not connected to each other

but connected to the neurons of the preceding and the subsequent layers; an output

of one hidden layer serves as an input to the following layer. The output layer, and

hence the network output, is formed by a weighted summation of the outputs of the

last hidden layer. Neurons of one layer have the same activation function. Different

layers can have different activation functions. Formally, an FNN with L hidden layers

can be defined as a superposition of L activation functions f1, ..., fL.

Figure 2.3: (a) A scheme of a feedforward neural network. Circles denote artificial
neurons. Feedforward neural networks arrange neurons in a layered configuration and
can be used to solve nonlinear problems. (b, c) Simple examples of such problems for
regression and classification.
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The neural network with at least one hidden layer can solve nonlinear regression

or classification problems (Cybenko, 1989). Simple illustrations related to regression

and classification are shown in Figures 2.3b and c. The x and y axes are the same

as in Figures 2.2b and c, correspondingly. The neural network can fit the nonlinear

function to given data (in the case of regression, Figure 2.3b) and determine a non-

linear separator between classes (in the case of classification, Figure 2.3c). The given

examples are idealized and can be expanded to more dimensions.

The explanation above assumes that weights and biases of the neural network are

known. In practice, the weights and biases are not given; however, they can be deter-

mined using a training data set, i.e., a set of data for which inputs and outputs are

known. Determining weights and biases is usually referred to as training and reduces

to an optimization problem of minimizing a given cost function. The cost function

is defined based on the type of application or problem we are attempting to solve.

Specifically for neural networks, a number of backpropagation algorithms are used

to solve the optimization problem of determining the weights (Williams and Hinton,

1986). In this study, we employ the scaled conjugate gradient backpropagation algo-

rithm (SCG) (Møller, 1993). This algorithm is based on conjugate gradient methods

(CG), a class of optimization techniques. It works faster than most of the other algo-

rithms for neural networks of large sizes and has relatively modest computer memory

requirements (Mathworks.com, 2015).

Neural network design flow

The neural network design flow consists of three main stages: training, validation,

and testing. Consequently, the set of data for which the output is known is split into

three parts, training, validation, and test data sets, in a ratio defined by a user.

The goal of the training stage is to find the weights of the neural network, which

minimize the difference between the output of the training data set and the output

of the neural network. An optimization algorithm is run in order to determine such

weights. Before performing the training procedure, the internal parameters of the

neural network such as the number of hidden layers, the number of neurons in each

hidden layer, and activation functions in each layer have to be selected. Typically,

multiple neural networks with different internal parameters are trained, and in the

validation stage, the model having the minimal validation error is selected for further

use.
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The main objective of the validation stage is to check the neural network ability

to reconstruct the relation between inputs and outputs on the data it has not seen

yet, i.e., data not used for training. This is usually called the generalization ability of

a neural network. In this stage, we measure the performance of every neural network

obtained during the training stage on the validation data set and select the model

with the best performance (by comparing the output of the models to the known

output of the validation set). The importance of the validation stage is described in

the next subsection.

Finally, in the testing stage, the performance of the optimal model determined in

the validation stage is assessed on the test set. The calculated error of the neural

network is then treated as the resulting error of the model. After the neural network

is tested and the obtained results are satisfactory, it can be used on the data for which

the output is not known.

Importance of validation

Although neural networks are a powerful tool for building accurate multivariate non-

linear approximations, they are also inherently easy to overfit. Overfitting occurs

when the model becomes too complex for the given task and therefore becomes ca-

pable of fitting the training data excellently but does not produce a reliable output

on the unseen data. The more hidden layers and neurons the model has, the more

complex it is. The ultimate goal of building a practical model is to find the optimal

internal network parameters. The optimal internal network parameters are the pa-

rameters producing a model that generalizes well and avoids overfitting the training

data, at times at the cost of a slightly reduced accuracy of the model. The optimal

model has similar errors on both training and unseen data and is acceptable for the

given application.

To demonstrate this, let us consider three possible scenarios that might occur in

practice: overfitting, underfitting, and desirable model performance. Underfitting is

directly opposite to overfitting: the model is too simple and cannot produce a reliable

fit to the given data; its errors on the training and validation data are similar, but

at the same time are very high. Figure 2.4 shows toy illustrations corresponding to

these scenarios for the case of simple nonlinear regression problem. Here, similar to

the illustrations in Figures 2.3b and c, the given data has one independent variable, x1

(one input) and one dependent variable, y (one output), to be modeled. The variables
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x1 and y are plotted on the x and y axes correspondingly. The red markers denote

the training data points, which are used to find the mapping from x1 to y; the blue

markers denote the validation data points that are not shown to the network during

the training. The gray curve in each plot shows the resulting fit to the training data

produced by the corresponding neural network. In the overfitting scenario (Figure

2.4a), the model is too complex and produces a fit that passes through every point of

the training data set. Therefore, the model has a poor performance on the validation

set and is unacceptable for use in practice. In contrast, in the case of underfitting

(Figure 2.4b), the model is too simple and fits a straight line to the parabolic shape

of the given data. The errors of the model both on the training and validation sets

are unacceptably high, which is also not desirable in practice. Ideally, the model has

an optimal complexity for the given data and learns the general dependency of the

input, x1, on the output, y, although it might have some error due to the presence of

noise in data.

Figure 2.4: Toy illustrations of three different scenarios that can occur after the
training: (a) overfitting, (b) ideal case, and (c) underfitting. Red points represent the
data to be fitted with a function. Gray curves show the functions fitted to the data
in these three different scenarios.

In practice, the number of inputs to the model can be much larger, reaching

hundreds or even thousands of input parameters for some applications, as well as

the size of the training set (reaching hundreds of thousands or millions data points).

Visualization of the results in a manner shown in Figure 2.4 becomes impossible,

and the quantitative assessment of the results is the only way of assessing the model

performance. Such quantitative assessment is performed in the validation stage by

measuring the error of the model on the training and validation sets and comparing

them. If the training error is small while the validation error is large, then the model

is likely to overfit the data. The contrary, when both errors are too large although
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they are similar, might be a sign of underfitting. Ideally, the training and validation

errors should be similar and acceptable for the given application. The same applies

to classification.

2.2 Implementation of the algorithm

In this section, we describe the details of the application of feedforward neural net-

works to the plasma wave data. The inputs to the network include electric field

spectral properties obtained from the satellite measurements, location of the satel-

lite, and the parameter characterizing geomagnetic activity (Kp index). The network

has a single output, the upper-hybrid frequency, from which plasma density can be

easily derived (see formulae (2.1) and (2.2)). We use electric field measurements from

Van Allen Probes for the input and database of fuhr developed by Kurth et al. (2015)

as the output of the training data set. The resulting neural network is capable of

reconstructing the density from the satellite measurements, hence along the satellite

orbit. The main concept of the algorithm and an example output for one orbital pass

are shown in Figure 2.5. Further here, we describe the details of input and output

data, neural network architecture, and validation. The developed algorithm is fur-

ther referred to as the Neural-network-based Upper hybrid Resonance Determination

(NURD) algorithm.

Figure 2.5: Schematic presentation of the NURD algorithm. We use EMFISIS
electric and magnetic field measurements as input and fuhr obtained with AURA as
output to the neural network. The NURD algorithm is then able to reconstruct the
upper hybrid frequency and hence density along the satellite orbit. An example of
such a reconstruction is shown in the rightmost figure.
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2.2.1 Training data set

Input data

The inputs to the neural network are listed in Table 2.1. A detailed explanation and

rationale behind each input variable are given below.

The first 82 inputs to the model include the electric field measurements from the

EMFISIS HFR instrument, specifically the electric field power spectral density pro-

duced in the survey mode of the instrument. The instrument produces measurements

in the frequency range between 10 to 487 kHz binned into 82 logarithmically spaced

bins with a 6-second temporal resolution. The frequency spacing provides approx-

imately 5% spectral resolution, ∆f
f

, which defines the resulting density resolution,
∆n
n

. As previously discussed, n e is proportional to f 2
pe, which results in 10% density

resolution. Furthermore, the upper frequency limit (487 kHz) restricts the maximum

density that is possible to derive to ∼ 2900 cm−3, and the lower frequency limit (10

kHz) restricts the minimum density to ∼ 1 cm−3. The logarithm of the power spectral

density of the electric field for the 82 frequency bins is used as input to the model.

The next input to the model is the logarithm of electron cyclotron frequency,

fce. The electron cyclotron frequency can be directly derived from the background

magnetic field, |B|: fce = 28|B|, where |B| is measured in nanotesla, and fce is

measured in hertz. We use measurements of the background magnetic field, B, from

the EMFISIS fluxgate magnetometer.

Since plasma density is known to vary spatially, we also use the spacecraft coor-

dinates as input to the model (84 and 85 in the table). The Van Allen probes have

low inclination orbits in the near-equatorial plane, therefore we consider two spatial

coordinates corresponding to the position of the satellite in the equatorial plane. The

L parameter reflects roughly the radial distance from the center of the Earth and is

measured in units of Earth radii, RE. More precisely, L denotes the distance at which

the magnetic field line where the measurement was made crosses the equator. MLT

stands for magnetic local time and represents the angular distance from the magnetic

local midnight measured in decimal hours (0 to 24).

Plasma density dynamics also depends on the level of geomagnetic activity. There-

fore, a parameter characterizing the global level of geomagnetic activity, the Kp index,

is used as input to the model. The Kp index (originating from planetarische Kennz-

iffer, German for planetary index) is derived from measurements of magnetic field on
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Table 2.1: Inputs to the neural network.

# Input name Description Units
1-82 log10 spectrum Decimal logarithm of the spec-

trum
log10 V

2/m2/Hz

83 log10 fce Decimal logarithm of electron
cyclotron frequency

log10 Hz

84 L Magnetic field line Earth radii
85 MLT Magnetic local time Hours (024)
86 Kp index Geomagnetic index Unitless (09)
87 fbinmax Frequency bin with the largest

power spectral density of the
electric field from the HFR
spectrum

Unitless (1, 2, ... , 82)

the ground observatories located in different parts of the world and is an indicator of

global geomagnetic disturbances. It has a 3-hour cadence and ranges from 0 (lowest

geomagnetic activity) to 9 (severe geomagnetic storms) in discrete steps.

The last input, fbinmax, corresponds to the frequency bin with the largest spectral

density in the HFR spectrum. We use this parameter as input since it can serve as

a rough initial approximation of fuhr. This assumption might introduce errors to the

neural network since as shown in Benson et al. (2004) the upper hybrid frequency

fuhr is generally associated not with the maximum emission peak of the upper hybrid

band but with its upper frequency edge. However, the analysis in Benson et al.

(2004) was performed using active and passive observations measured by the IMAGE

Radio Plasma Imager (RPI), which had a higher frequency resolution compared to

EMFISIS HFR and therefore allowed for very accurate fuhr determinations. The

coarse frequency resolution of the EMFISIS HFR does not allow resolving the upper

frequency edge precisely.

Output data

The neural network has a single output: the logarithm of the upper hybrid frequency,

fuhr. The data set of upper-hybrid frequencies derived with the AURA algorithm

(Kurth et al., 2015) is used in the training. AURA is a semi-automated routine for

determination of the fuhr band in the dynamic spectrograms. AURA uses a restricted

search approach for finding the maximum value of the spectrum at a specific time

point. In this algorithm, the density derived from the spacecraft potential (using
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EFW instrument) is used to weight the probability of a possible maximum peak oc-

currence in the spectrum and guide the search procedure. The weighting parameters

are optimized using a bootstrapping method so that the determined spectral peaks

are more likely to correspond to fuhr. After AURA is run for one orbit, the opera-

tor visually detects where AURA has failed to identify the correct UHR band and

manually corrects it. The produced fuhr measurements have a high quality since the

resulting fuhr have been visually checked for each orbit. The accuracy of the AURA

algorithm is ≈ 10%.

The UHR frequency data set derived by AURA and used for training was ob-

tained from the EMFISIS instrument website. The available UHR data set derived

by AURA at the moment of developing the algorithm consists of 1, 091 orbital passes

and covers the period from October 2012 to March 2015. With a 6-second cadence

and 9-hour orbital period, the data set comprises ∼ 5, 900, 000 measurements. How-

ever, not all measurements can be used for training, since the UHR frequency may

be greater than the upper limit of the HFR frequency range near the perigee. We

exclude the out-of-frequency range measurements from the training data set be per-

forming the following procedure. We consider the spectrograms for each orbital pass

separately. Firstly, the left- and rightmost edges of the upper hybrid resonance line

are identified by determining the bins with the highest values of the spectral density

in the uppermost frequency spectral bin (at 487 kHz, near the perigee). We then

apply the neural network only to the measurements within these boundaries. After

the out-of-frequency range part of the data is excluded, the total number of measure-

ments available for training, validation, and testing reaches 4, 027, 610 measurements.

An 87 × 4, 027, 610 matrix of input variables from Table 2.1 (usually referred to as

design or feature matrix) and a 1× 4, 027, 610 vector of output values (measurements

of fuhr ) are constructed using this data set.

2.2.2 Neural network architecture

We use a feedforward neural network with a single hidden layer shown in Figure

2.6. The network has 87 input neurons as defined by the number of input variables

(dimensions in the design matrix). The number of neurons in the hidden layer is

initially not known and is determined during the validation procedure, as described

further. For this application, 80 neurons in the hidden layer were found to be optimal
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in the validation stage. The network has only one output neuron since we are to

model only one variable, fuhr.

Figure 2.6: The optimal architecture of the feedforward neural network determined
in the validation stage. The neural network has 87 inputs, one output, and 80 neurons
in the hidden layer. The weights of the neural network can be considered as 80× 87
W (1) and 1× 80 W (2) matrices; the biases can be represented as an 80× 1 vector b1

for the hidden layer and as a scalar b2 for the output layer (adapted from Zhelavskaya
et al. (2016)).

First, before being fed to the neural network, the input data is normalized to

the common range (here, [0; 1]). Since the range of some variables could be much

larger than others, large value inputs can dominate the input effect compared to

small value inputs and influence the accuracy of the neural network (Li et al., 2000).

Normalization ensures that inputs have identical initial importance to the neural

network. Normalization is performed on the training set independently of validation

and test data sets; the normalization parameters calculated on the training set are

stored and applied afterward to the validation and test data sets (and not recalculated

on these sets).

Input layer does not perform any computations; its function is to distribute the

incoming signal to the neurons of the following hidden layer. The neurons of the

hidden layer have the hyperbolic tangent activation function, which transforms the

input to the range of [−1; 1]. The output of the hidden layer is then the following
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vector:

a1 = tanh(b1 +W (1)x), (2.3)

where x is an input vector (87×1, since there are 87 inputs), b1 is the vector of biases

(80× 1, since there are 80 hidden neurons), W (1) is the matrix of weights connecting

the input to the hidden layer (dimensionality: 80× 87). The transfer function of the

output neuron is linear. The output of the neural network is then given as:

a2 = b2 +W (2)a1, (2.4)

where a1 is the output vector of the hidden layer, b2 is a bias (a scalar), and W (2)

is the matrix of weights connecting the hidden to the output layer (dimensionality:

1× 80).

2.2.3 Steps of the design flow

The design matrix comprising 4, 027, 610 measurements is randomly divided into 3

parts: training, validation, and test sets, in a 34 : 33 : 33% ratio, respectively. A

large subset of the available data is allocated to the validation and testing. Such

division allows for a more reliable test of the generalization ability of the network.

The validation set is used to determine the optimal number of neurons in the hidden

layer of the network. The test set is used to estimate the accuracy of the resulting

neural network model. All three sets are kept separate during the respective stages,

i.e., the validation and test sets are not used in training (and the test set is not used

in training or in validation). It is worth noting that although in this work the division

of data into training, validation, and test sets is performed in a random fashion, the

more warranted way to perform division for the time series is to split data sequentially.

The sequential split ensures independence of all three subsets, while random splitting

might yield an optimistic evaluations on the validation and test sets for the events

lying outside the time period covered by the data set. The network resulting from

training performed on the random split, however, would still perform well for the

reconstruction of the past events.

In order to determine the optimal number of neurons in the hidden layer, we train

five neural networks with a different number of hidden neurons ranging from 40 to

120. The networks are trained on the training set of data using a conjugate gradient
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backpropagation algorithm. After the networks are trained, their performance is

measured on the validation set. We use the mean absolute percentage error (MAPE)

to assess the performance of the networks:

MAPE =
1

M

M∑
i=1

∣∣fAURA
i − fNURD

i

∣∣
fAURA
i

× 100%, (2.5)

where fNURD
i are fuhr values predicted using the constructed neural network, fAURA

i

are fuhr measurements provided by the team of EMFISIS (we refer to them as to

ground truth values), and M is the size of the validation set.

Figure 2.7 displays the MAPE of the resulting neural networks plotted vs the

number of neurons in their hidden layer. The blue solid line shows the MAPE on the

training set, the red dashed line – on the validation set. The MAPE on the training

set decreases as the number of neurons in the hidden layer increases. This happens

due to the following. As the number of hidden neurons grows, the complexity of the

network increases (it has more free parameters), and it becomes capable of fitting the

training data better. On the other hand, as the complexity of the network increases,

the MAPE on the validation set decreases until a certain point, and then it starts to

increase. This is a sign of overfitting, which means that after that point, the model

does not generalize well and does not produce a reliable output on the unseen data.

In our case, we found that the optimal neural network contains 80 neurons in the

hidden layer.

After the optimal number of hidden neurons is determined, the network with 80

neurons is retrained on the training and validation sets combined, and its performance

is further examined on the test set. The MAPE of the resulting model on the test set

is ∼ 8%.

2.2.4 Postprocessing step

After all the steps described above are completed, the resulting model can be used

in practice and applied to data. The output of the system, fuhr, must be binned to

82 logarithmically-spaced frequency bins since we are to derive the UHR band in the

dynamic spectrograms with such spacing. However, the output of the neural network

model is a real number by definition and is not bounded to those bins. Therefore,

the raw output of the neural network must be processed and binned to the specific
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Figure 2.7: Mean absolute percentage error (MAPE) as a function of the number
of hidden neurons of the neural network. As the complexity of the network increases,
MAPE decreases on the training set. However, for the validation set, error stops
decreasing after a certain point indicating that the network has been overfit to the
training data. Here, a network with 80 neurons in the hidden layer is optimal (adapted
from Zhelavskaya et al. (2016)).

frequency bins to be used in practice. The implemented postprocessing procedure is

described below.

In the first step of the postprocessing procedure, the fuhr value reconstructed by

the neural network is rounded off to the closest EMFISIS HFR frequency bin. Next,

we consider the determined bin and the two adjacent bins in the HFR spectrum

(above and below). If the identified bin is the first or the last bin, then only one

adjacent bin is considered (bin 2 or 81, correspondingly). The resulting fuhr is then

determined as the frequency corresponding to the bin containing the maximum power

spectral density (of the three considered bins).

Figure 2.8 shows an example of the neural network output before (“raw” output of

the neural network, blue curve) and after (black curve) the postprocessing procedure.

It can be seen from the figure that the “raw” output of the neural network can slightly

fluctuate from the true uhr band. The postprocessing procedure decreases these fluc-

tuations. The derived upper hybrid line can still toggle between adjacent bins in the

spectrum (see Figure 2.10 for the example), consequently introducing uncertainty in

the density determination. Moreover, errors caused by using the frequency associated

with the maximum emission intensity as fuhr instead of the upper boundary of the

upper hybrid band (Benson et al., 2004; Beghin et al., 1989) also should be taken into
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account. As mentioned before, the coarser frequency resolution of the EMFISIS HFR

instrument in comparison to the IMAGE RPI might not allow capturing this upper

edge accurately. Thus, the introduced error can be estimated by evaluating the error

in density when the derived fuhr differs by one frequency bin from its real value. The

following formula for this error was obtained after some derivations:

∆n

n
≈ 2

∆f

f

√(
fpe

fce

)−2

+ 1, (2.6)

where ∆f
f

is the frequency resolution of 1 bin that is ≈ 5% as noted before. The

expression under the square root is always less than 2 but greater than 1 since the
fpe
fce

ratio is always larger than 1. This makes the total expression always greater than

≈ 10% and less than≈ 14%. Therefore, the error introduced due to switching between

two adjacent bins is between ∼ 10 and 14%. It is worth noting, however, that this

error should be taken into account in the trough most of the times since determination

of the upper hybrid line for the plasmasphere is relatively straightforward.

Figure 2.8: An example of the postprocessing procedure of the neural network
output. Postprocessing assigns the output of the neural network to the most adja-
cent frequency bin and removes potential noise in the neural network output. The
left panel shows the spectrogram for orbit pass #1040, and the right panel shows
the zoomed-in part of the spectrogram (from 03:30 until 06:30 UT). The blue curve
shows the raw neural network output, and the black curve shows the uhr after the
postprocessing step (adapted from Zhelavskaya et al. (2016)).

Finally, after the fuhr determined by the neural network is binned, the electron

densities are derived using expressions (2.1) and (2.2).
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2.3 Results

The NURD algorithm was applied to the Van Allen Probes measurements covering the

period from October 1, 2012, to July 1, 2016, and a database of 33, 830, 887 electron

density measurements (for both probes) was produced. The output of the NURD

algorithm is compared to the density derived using AURA, and several examples of

such comparisons for individual satellite passes are shown below. Furthermore, we

perform analysis of the obtained electron density database and compare the resulting

density distribution to the empirical trough and plasmasphere models by Sheeley

et al. (2001).

2.3.1 Comparison with AURA and NURD performance

In order to compare the output of the NURD algorithm to the output provided by

AURA and properly evaluate the NURD’s performance, we should first introduce a

classification of dynamic spectrograms into types as was done in Kurth et al. (2015).

Kurth et al. (2015) classify dynamic spectrograms for each individual satellite pass

(or orbit) into three types of complexity, A, B, and C, in terms of AURA performance:

1. Type A are the spectrograms in which less than 25% of the fuhr points required

manual correction. These are the spectrograms in which fuhr is fairly clear and

easy to identify. Type A constitutes 70% of the spectrograms processed by

AURA.

2. Type B are the spectrograms in which 25 to 50% of data points must be cor-

rected manually and comprises 20% of the spectrograms. These spectrograms

are more difficult to process, as fuhr is not always possible to identify unam-

biguously.

3. Type C are the spectrograms containing interpretational difficulties in finding

the upper hybrid band. These spectrograms might be very contaminated. This

type constitutes 10% of the spectrograms.

We perform a quantitative comparison between the NURD output and AURA’s

fuhr by computing the MAPE for each orbit type as defined in (2.5). It is worth noting

that such evaluation does not demonstrate the true error of either NURD or AURA

since the ground truth densities are ambiguous, especially for type C. Thus, it is more
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Figure 2.9: The average percentage divergence of the electron plasma density
determined by the NURD algorithm from the electron density determined by the
AURA algorithm calculated on the test set as a function of orbit types (adapted from
Zhelavskaya et al. (2016)).

suitable to call this evaluation measure average percentage divergence rather than

mean absolute percentage error. Figure 2.9 shows the average percentage divergence

calculated for different orbit types on the test data set. The difference between AURA

and NURD is not significant for orbits of type A, since the upper-hybrid resonance

bands are clear and easy to identify for this type of orbit. For orbits of type B, the

difference is slightly higher (∼ 5%), and the difference for orbits of type C is ∼ 14%.

Such deviation between the results might be caused by the ambiguity of the upper

hybrid frequency determination during the geomagnetically active times and at times

by the contaminated signal. During such periods, the plasma density in the trough

can be very low and there might be strong electron cyclotron harmonic emissions

present making it challenging to unambiguously identify the fuhr profile both for the

neural network and for AURA.

Figure 2.10 shows the typical examples for each type of orbit, where the fuhr

profiles obtained using AURA (red curve) and the resulting fuhr profiles obtained

with the NURD algorithm are indicated (black curve). The two fuhr profiles produced

by AURA and NURD for orbit of type A almost overlap. For more complex cases

(types B and C), the upper hybrid band identified by NURD nearly overlaps with

AURA’s fuhr in the plasmasphere (high-density region), but differs in the trough

(low-density region). Such performance can be anticipated since determining the
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density in the plasmasphere is relatively unambiguous. However, this is not the case

for the trough, where the upper hybrid line not always can be observed. Thus, for

such complicated types of orbits, the largest contribution to the average divergence

can be attributed to differences in the trough region between two algorithms. In such

cases, it may be hard to definitely conclude which of the algorithms performed better.

For example, in Figure 2.10b,e (type B), NURD’s fuhr toggles between adjacent bins

more than AURA’s fuhr. However, NURD’s fuhr tends to follow one resonance band

that seems to be selected by it as the band corresponding to the intense emission

extending beyond the banded emissions, while AURA’s fuhr might switch from band

to band. It is very difficult to determine the correct diagnosis visually, and sometimes,

both algorithms might be wrong. Most of such cases refer to parts of orbits of type

C, where the electron density in the trough is extremely low and strong electron

cyclotron harmonic emissions are observed. Figures 2.10c and 10f illustrate the case,

when NURD and AURA may both provide wrong fuhr determination, and the fuhr

band can be higher than the algorithms predicted (at 07:30 near the relatively strong

emission observed near 40 kHz). More comprehensive analysis involving spectral

interpretation of the emissions is needed to determine the actual value of fuhr.

Figure 2.10: Examples of spectrograms of each type (the top panel) and the upper
hybrid frequency identified by AURA, indicated by the red curve and by the NURD
algorithm indicated by the black curve (the bottom panel) (adapted from Zhelavskaya
et al. (2016)).
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2.3.2 Comparison with empirical model of Sheeley et al. (2001)

Initial analysis of the obtained density database comprising 33, 830, 887 measurements

is presented below. Here, we compare the derived plasma density distribution to the

empirical density models of the trough and the plasmasphere developed by Sheeley

et al. (2001) as functions of L and MLT. For the sake of comparison, we separate

density values into plasmasphere- and trough-like data by applying the criteria used

in Sheeley et al. (2001) for the threshold density (in cm−3):

nb = 10

(
6.6

L

)4

. (2.7)

Density values at or above nb for the given L shell are considered plasmasphere-

like; values below nb are considered trough-like.

Figure 2.11 shows the two-dimensional plots of normalized occurrence of the mea-

surements as a function of plasma electron density and L (the top row) and as a

function of electron density and MLT (the bottom row). The data set is divided into

26 bins in the logarithm of electron density and into 16 bins in L/14 bins in MLT.

For the MLT plots, the data is limited to the range of 3 < L < 5. The value in

a particular bin is calculated as the number of measurements corresponding to ne

and L/MLT in that particular range divided by the number of measurements in that

range of L/MLT. Hence, the color scale shows the normalized occurrence in different

L/MLT bins. The minimum number of measurements in a bin required to calculate

the normalized occurrence is 10; the mean number of measurements per bin is 77, 278

for L and 29, 220 for MLT plots.

Figures 2.11a and d show the normalized occurrence for all density measurements,

Figures 2.11b and e – for the plasmasphere-like density, and Figures 2.11c and f – for

the trough-like density, vs L and MLT, respectively. The intense red color indicates

the regions where density measurements tend to be clustered, the blue color indicates

that measurements are sparse in those regions. The black dashed line shows the

threshold density, nb. For the plots in the bottom row (vs MLT), the threshold

density was calculated using the median of L for all data (both plasmasphere- and

trough-like), which is approximately L ≈ 4.2. The uppermost black curve correspond

to the plasmasphere density model of Sheeley et al. (2001), and the lowermost black

curve corresponds the trough density model for MLT = 0. Again, for the plots in the

bottom row, the plasmasphere and the trough density values were calculated using
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the median of L for measurements in the plasmasphere (L ≈ 4.1) and the median of

L for measurements in the trough (L ≈ 4.6) correspondingly. The upper and lower

white dotted curves show the mean of the logarithm of electron density obtained using

NURD for plasmasphere and trough, correspondingly.
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Figure 2.11: The occurrence of density measurements normalized by the number
of data points in different L (the top row) or MLT (the bottom row) bins as a
function of electron density on the logarithmic scale and L (top) or MLT (bottom).
The dashed line indicates the separation between the trough-like and plasmasphere-
like data as nb = 10(6.6

L
)4 (the same as used in Sheeley et al. (2001)). The black

dotted curves indicate the plasmasphere and trough density model by Sheeley et al.
(2001). The white dotted curves indicate the mean of the log(ne) determined with
the NURD algorithm for the plasmasphere and the trough, correspondingly (adapted
from Zhelavskaya et al. (2016)).

Figure 2.11a shows that between L = 2 and 3.5, density measurements cluster

around a narrow range of densities in the plasmasphere. At higher L, however, we

see a bimodal structure with a distinct separation between plasmasphere and trough

measurements. When we examine the plasmasphere and trough density regions sep-

arately (Figures 2.11b, c, and e, f) and compare those distributions to the Sheeley

et al. (2001) model, we find good agreement with both the plasmasphere and the

trough models. However, we also find that the peak of occurrence distributions of

measurements produced by Van Allen Probes is slightly higher than the average den-

sity value measured by the CRRES satellite in the plasmasphere. The mean density
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value is shifted by approximately 280 cm−3 (≈ 0.14 on a logarithmic scale) on av-

erage. For the trough (Figure 2.11c), the peak of occurrence densities distributions

is slightly lower than the empirical model. The shift in the the occurrence peak is

approximately 5.32 cm−3 on average (≈ 0.05 on a log scale). Such a shift may be

caused by the fact that the CRRES mission operated during the peak phase of the

solar cycle, while Van Allen Probes were launched at the increasing phase.

2.4 Discussion and future directions

Our results have shown that neural networks can be successfully applied to plasma

wave data and produce reliable and accurate density determinations. Such perfor-

mance of the developed algorithm was reached due to the proficient quality of the

AURA density set used for training and to the proper neural network design process.

However, it is worth acknowledging that although the electron density data set ob-

tained using AURA and employed for training is currently the most reliable source

of the electron plasma density measurements for the Van Allen Probes mission, there

are still cases of uncertainties in density determination that cannot be resolved even

by the manual inspection. Such uncertainties may be a source of errors in the training

set, especially in the low-density trough region. As a result, the errors in the training

set may influence the neural network performance. Due to that, the accuracy of both

NURD and AURA may be lower in the trough. Therefore, while the use of density

values marked questionable in the electron density data set produced by NURD is

safe in statistical studies, the exact values with this flag should be used with caution.

At the moment, NURD is tuned specifically to the Van Allen Probes data, but

using these data we have shown that neural networks and potentially other machine-

learning algorithms are applicable and produce good results on such types of data.

The created framework can be used to retrain the neural network model using other

data sets, for which the input parameters can be adjusted if necessary.

Although feedforward neural networks (FNNs) were employed as a modeling tech-

nique in this work, it is worth mentioning alternative methods that are also effective

at nonlinear multivariate regression problems. These methods include recurrent neu-

ral networks (RNNs) (e.g., Hochreiter and Schmidhuber, 1997; Goller and Kuchler,

1996), nonlinear least squares (e.g., Teunissen, 1990; Moré, 1978), regression trees
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(e.g., Breiman et al., 1984), etc., which could be also potentially used for determin-

ing fuhr from plasma wave measurements. These methods naturally have their own

advantages and disadvantages, and a method that is more suitable for the data and

problem at hand should be preferably selected. In the study described in this chapter,

the FNNs were chosen over the methods mentioned above for the following reasons.

Unlike nonlinear least squares, FNNs do not require to specify the form (model) of

the nonlinear function to be modeled, which is not known in the problem at hand.

They are also less susceptible to noise in data in comparison to regression trees if

trained properly. FNNs were chosen over RNNs in this study with a goal to first

employ a simpler network architecture without taking into account any temporal de-

pendencies. In the future, however, the ability of RNNs to preserve the information

about the past can be used to explore the influence of temporal dependencies on the

NURDs performance.

The neural network-based methodology described in this chapter can also be em-

ployed in other space weather applications. A particular extension of this work is

the development of the global plasmasphere density model driven by the solar and

geomagnetic activity and therefore not bound by the satellite measurements. In this

case, a neural network model will have the time history of solar wind and geomagnetic

parameters and the satellite location as input, and a single output, plasma density.

Such a model would be extremely useful in space physics, specifically radiation belt

modeling, and also for the applications discussed in the overview section. As also men-

tioned in the overview, the existing empirical models tend to be oversimplified and

are parameterized by location. The model driven by the solar wind and geomagnetic

parameters would be a significant advancement in the field.

2.5 Conclusions

In this chapter, we present our algorithm for the automated determination of plasma

electron density from electric and magnetic field measurements made by Van Allen

Probe spacecraft, the Neural-network-based Upper-hybrid Resonance Determination

algorithm (NURD). The algorithm uses a feedforward neural network to derive upper-

hybrid frequency profiles from the dynamic spectrograms and magnetic field mea-

surements obtained from the EMFISIS instrumentation suite. Plasma density is then

derived from the inferred upper-hybrid frequency profiles. Plasma density database
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developed using another semi-automated routine AURA (Kurth et al., 2015) is used

to train the network. The NURD algorithm is valid for L-shells 1.25 < L < 6.2 and

all local time sectors.

The developed algorithm was applied to the available database of electric and

magnetic field measurements from October 2012 until July 2016, comprising 3, 750

orbital passes of the Van Allen Probes satellites. Comparison with AURA showed

that electron densities obtained using the proposed method are in good agreement

with the densities inferred with AURA. To demonstrate this, we adopted the classi-

fication of the dynamic spectrograms into three levels of difficulty as introduced in

Kurth et al. (2015): type A (upper-hybrid frequency is relatively straightforward to

identify, 70% of all orbits); type B (interpretation from an expert is needed, 20%

of orbits); type C (concealed signal, 10% of orbits). The mean average percentage

divergence between the density values produced by the NURD and AURA was ∼ 1%

for type A, ∼ 5% for type B, and ∼ 14% for type C. The overall error of the derived

density is ∼ 14%. However, the error may be larger in cases of high uncertainty in

density determination, particularly in the low-density region and after the recently

elevated geomagnetic activity. Indeed, the neural network-based approach does not

fully remove the uncertainty in density determination. Nonetheless, it stills produces

reasonable density estimates in the regions of high uncertainty that can be employed

in statistical studies. Additionally, the proposed algorithm is automated meaning that

it can remove a significant part of the manual aspect of the density determination.

The analysis of the resulting electron density data has shown an agreement with

the plasmasphere and trough density models by Sheeley et al. (2001). On the other

hand, a large variability in the density data was observed that cannot be reproduced

by empirical models based on statistical averages. Using the NURD algorithm, the

electron density can be determined to a much finer resolution than using the existing

empirical models.
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Empirical modeling of the

plasmasphere dynamics using

neural networks
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Zhelavskaya I. S., Y. Y. Shprits, M. Spasojević (2017). Empirical modeling of the

plasmasphere dynamics using neural networks. Journal of Geophysical Research:

Space Physics, 122, 11,22711,244. https: // doi. org/ 10. 1002/ 2017JA024406 .

Abstract

We present the PINE (Plasma density in the Inner magnetosphere Neural network-

based Empirical) model - a new empirical model for reconstructing the global dynam-

ics of the cold plasma density distribution based only on solar wind data and geo-

magnetic indices. Utilizing the density database obtained using the NURD (Neural-

network-based Upper hybrid Resonance Determination) algorithm for the period of

October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic

indices, we develop a neural network model that is capable of globally reconstructing

the dynamics of the cold plasma density distribution for 2 ≤ L ≤ 6 and all local

times. We validate and test the model by measuring its performance on independent

data sets withheld from the training set and by comparing the model predicted global
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evolution with global images of He+ distribution in the Earth’s plasmasphere from

the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters

that best quantify the plasmasphere dynamics by training and comparing multiple

neural networks with different combinations of input parameters (geomagnetic in-

dices, solar wind data, and different durations of their time history). The optimal

model is based on the 96-hour time history of Kp, AE, SYM-H, and F10.7 indices.

The model successfully reproduces erosion of the plasmasphere on the night side and

plume formation and evolution. We demonstrate results of both local and global

plasma density reconstruction. This study illustrates how global dynamics can be

reconstructed from local in-situ observations by using machine learning techniques.

3.1 Introduction

The plasmasphere is a toroidal region of cold (˜1 eV) and relatively dense (˜10− 104

cm−3) plasma surrounding the Earth (Lemaire and Gringauz, 1998). It is located in

the inner magnetosphere and extends from the ionosphere out to a boundary known

as the plasmapause, where the plasma density drops abruptly by several orders of

magnitude. The plasmasphere is very dynamic: its shape and size are highly suscep-

tible to the time history of solar and geomagnetic conditions (O’Brien and Moldwin,

2003; Chappell et al., 1970b) . Two flow regimes, sunward convection and corota-

tion with the Earth, determine the shape and size of the plasmasphere (Darrouzet

et al., 2009; Singh et al., 2011). During quiet geomagnetic time, the plasmasphere

is refilled with the ions from the topside ionosphere and expands up to ∼ 4 − 7 RE

(Goldstein et al., 2003b; Singh and Horwitz, 1992; Krall et al., 2008); its shape is then

roughly circular with a bulge on the dusk side (Nishida, 1966). In contrast, during

periods of high geomagnetic activity, the plasmasphere is eroded by the dominat-

ing sunward magnetospheric convection and, therefore, contracts (Carpenter, 1970;

Chappell et al., 1970a; Goldstein et al., 2003b). The stronger the disturbance, the

more the plasmasphere contracts (down to or even lower than 2 RE during severe

geomagnetic storms (Baker et al., 2004; Goldstein et al., 2005c)). Features of various

scales (plumes, channels, crenulations, shoulders, fingers, etc.) (Grebowsky, 1970;

Sandel et al., 2001; Carpenter and Stone, 1967; LeDocq et al., 1994; Spasojević et al.,

2003; Garcia et al., 2003; Goldstein et al., 2004; Foster and Burke, 2002) can be

formed during that time and are transformed during the storm recovery phase by the
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interplay between convection and co-rotating regimes (Dungey, 1961; Goldstein et al.,

2002, 2005c). Their formation depends on the previous configuration of the plasmas-

phere/plasmapause, the time history of convective erosion from electric fields and of

refilling from ionospheric outflow (Gallagher et al., 2005; Darrouzet et al., 2009).

The large-scale redistribution of magnetospheric cold plasma during storm inter-

vals has wide-ranging implications for a variety of other magnetospheric and iono-

spheric processes. The evolving size and shape of the plasmasphere controls the

growth and propagation of plasma waves, and directly affects resonant wave-particle

interactions, thus profoundly influencing energetic ion and electron distributions over

a wide range of energies (e.g., Spasojević et al., 2004; Orlova et al., 2016; Shprits

et al., 2016). Eroded plasmaspheric material is transported sunward and is regularly

observed near the dayside magnetopause boundary (e.g., Chen and Moore, 2006; Lee

et al., 2016). Here, the enhanced dayside plasma density may limit the rate of recon-

nection and thus influence the global convection pattern (e.g., Borovsky and Denton,

2006; André et al., 2016). Storm-time plasmaspheric structures have been found to

be strongly associated with ionospheric density features including ionospheric storm

enhanced density (SED) and polar cap patches (Su et al., 2001a; Zhang et al., 2013).

One of the parameters that is used to quantify the plasmasphere dynamics is

plasma density (Lemaire and Gringauz, 1998; Kotova, 2007, and references therein).

Plasma density can be measured on satellites in several ways. These methods include

measuring the density directly with active sounders (e.g., Trotignon et al., 2003),

particle counters (e.g., Geiger and Müller, 1928), or it can be derived from the space-

craft potential (e.g., Escoubet et al., 1997). Another method of determining plasma

density, one of the most accurate and reliable, is by observing intense upper-hybrid

resonance (UHR) frequency bands in dynamic spectrograms (Mosier et al., 1973). Al-

though the process of deriving UHR bands can be challenging, significant success has

been achieved recently in developing methods for deriving UHR bands from the spec-

trograms in an automated fashion (Kurth et al., 2015; Zhelavskaya et al., 2016). In

both of these works, authors developed automated algorithms for deriving UHR fre-

quency bands from electric and magnetic field measurements made with the EMFISIS

instrument (Kletzing et al., 2013) onboard the Van Allen Probes (Mauk et al., 2013).

Moreover, large density databases have been produced in these studies. Although

the value of the point density measurements obtained from satellites is considered

reliable, measurements from one satellite naturally only cover one point in space at
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a time and do not provide a global view on the plasmasphere dynamics. Therefore,

developing models of plasma density capable of reproducing the global dynamics of

the plasmasphere, particularly dynamic plume development, is important.

Numerous empirical and physics-based density models have been developed. The

most widely used empirical models in recent years are those developed in the studies

of Carpenter and Anderson (1992); Gallagher et al. (2000); Sheeley et al. (2001). The

model Carpenter and Anderson (1992) is based on electron density measurements de-

duced from sweep frequency receiver (SFR) radio measurements on the International

Sun-Earth Explorer (ISEE-1) spacecraft and ground-based whistler measurements.

It is a saturated density model and, as such, represents the density distribution af-

ter several days of refilling. The model covers the range of 2.25 < L < 8 and the

local time interval of 0 to 15 MLT. It provides the mean density value for different L

shells. The plasmasphere and plasma trough models of Sheeley et al. (2001) present

statistical averages based on densities derived from the Combined Release and Ra-

diation Effects Satellite (CRRES) swept frequency receiver by identifying the upper

hybrid resonance frequency. The models cover the range of 3 ≤ L ≤ 7 and all local

times. Sheeley et al. (2001) provide the mean and the standard deviation of mea-

surements for the plasmasphere and trough models to represent depleted or saturated

density levels for different L and MLT for the trough. The Global Core Plasma Model

(GCPM) by Gallagher et al. (2000) combines several previously developed models (in-

cluding Carpenter and Anderson (1992) and Gallagher et al. (1998)) using transition

equations in order to obtain a more complete description of the plasma in the inner

magnetosphere.

Despite the extensive use of these empirical density models in space physics simu-

lations, they cannot provide reliable density estimates during extreme events, such as

geomagnetic storms, since they are parameterized only by static geomagnetic parame-

ters. The described models do not include the dynamic dependence of plasma density

on solar wind conditions, and density is known to be highly variable during storm

times (e.g., Park and Carpenter, 1970; Park, 1974; Moldwin et al., 1995). Accurately

calculating the evolving density distribution from first principles has also proven elu-

sive due to the sheer number of physical processes involved (Huba and Krall, 2013;

Marchaudon and Blelly, 2015).

The IMAGE mission (Imager for Magnetopause-to-Aurora Global Exploration)
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(Burch, 2000), operating in 2000 − 2005, provided another important source of in-

formation about the plasmasphere. The IMAGE satellite was launched into an orbit

with a very high-latitude apogee, which made it capable of remotely observing the

azimuthal distribution of plasmaspheric plasma. The Extreme UltraViolet (EUV)

instrument (Sandel et al., 2000) onboard the IMAGE satellite produced the first

global images of the plasmasphere. Analysis of the images revealed the complex

and dynamic evolution of the plasmasphere (Spasojević et al., 2003; Goldstein et al.,

2005b) and highlighted the importance of the cold plasma distribution in controlling

other magnetospheric processes (Spasojević et al., 2004; Baker et al., 2004). Various

plasmaspheric structures, such as plumes, notches, shoulders, fingers, channels and

crenulations, have been discovered or better understood (Darrouzet et al., 2009, and

references therein). The global EUV images can also be used to infer the plasma-

pause position by looking at the outermost sharp He+ edge (Goldstein et al., 2003c).

However, despite work in this area (Gurgiolo et al., 2005; Nakano et al., 2014), rou-

tine conversion of the images to plasma density has not been available, in part due

to difficulty inverting the line-of-sight measurements as well as the unknown H+-to-

He+ density ratio.

In this work we use a different approach to model plasma density and better

understand its dynamical dependence on solar wind and geomagnetic conditions. The

methodology employed is neural network-based empirical modeling. Neural networks

are a powerful tool for deriving a highly multivariate nonlinear functional relation

between input and output data, if such a relation exists (Bishop, 1995; Anderson,

1995; Haykin et al., 2009). An inherent part of neural networks includes finding

the optimal inputs that best fits the output parameter. Thus, neural networks can

serve as a good tool to identify parameters that are optimal for quantification of the

plasmasphere dynamics.

In this work we investigate two important aspects pertaining to the plasmasphere

dynamics:

1. The critical combination of geomagnetic and solar wind parameters that deter-

mine the evolution of the plasmasphere;

2. The time history duration that is critical for quantification of the plasmasphere

dynamics.

The inputs to our neural network models include not only location (L and MLT)
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like in the empirical models described above, but also the time history of solar

wind and geomagnetic parameters. Our neural network models have a single out-

put: plasma density. To identify the optimal combination of input parameters and

time history that quantifies the plasmasphere dynamic evolution, we train and test

multiple neural networks with various combinations of input and internal network pa-

rameters. The models undergo an extensive process of validation using in situ density

measurements withheld from the training set. We also compare the model-predicted

global evolution with global images of helium distribution (from IMAGE EUV). The

model that performs well both quantitatively (on the point satellite measurements),

and qualitatively (reproduces the global dynamics of the plasmasphere qualitatively

well) is selected as the final model.

The rest of the paper is organized as follows. In section 3.2, we describe the

methodology employed. We provide the detailed description of the data used to

train neural networks, the procedure of optimal input selection, and the quantitative

and qualitative validation methods. In section 3.3, we explain how the final model

was selected and show examples of density determination for different disturbance

intervals both for Van Allen Probes and IMAGE EUV data. In sections 3.4 and 3.5,

we discuss the physical implications of the selected inputs, model performance, its

advantages and limitations, and possible improvements.

3.2 Methodology

The methodology employed in this work is neural network-based empirical modeling.

Neural networks are one of the best techniques for finding multivariate non-linear

mapping between input variables (in this case, radial distance, MLT, geomagnetic

and solar wind parameters and their time histories) and output variables (in this

case, a single output, cold plasma density). Constructing a neural network requires

a set of data, referred to as a training set, for which both the inputs and outputs are

known. The input to the model is the time history of geomagnetic and solar wind

parameters. The output of the model is electron number density. We construct a

large number of neural networks and determine which configuration of input variables

(which solar wind parameters, length of time history, etc.) and internal network

parameters (number of neurons in the hidden layer) produces a model that 1) is

quantitatively accurate, and 2) generalizes well and avoids overfitting the training
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data. To do so, the neural networks undergo an extensive process of validation and

testing using data that was withheld from the original training set. Moreover, we

validate the model-predicted global evolution by comparing it to global images of the

helium distribution from NASA’s IMAGE mission.

In the rest of the section, we describe training, validation, and input selection

procedures in detail.

3.2.1 Details of the neural network

In this work, we use feedforward neural networks, a type of neural network com-

monly used for solving regression, approximation, and function-fitting problems (e.g.,

Hassoun, 1995; Haykin, 1994). Here, we describe specific aspects of neural networks

concerning the current work. A detailed description of feedforward neural networks

is provided in section 2 of Zhelavskaya et al. (2016). Zhelavskaya et al. (2016) used a

feedforward neural network with one hidden layer to derive electron number density

from electric and magnetic field measurements made by Van Allen Probes.

Following Zhelavskaya et al. (2016), we also use feedforward neural networks with

one hidden layer. Although it is possible to design a neural network with multiple

hidden layers, it has been proven both theoretically and empirically that it is sufficient

to have one hidden layer of finite size in a network to approximate continuous functions

(Cybenko, 1989). A second layer is unlikely to improve results and introduces the

additional problem in that the commonly used gradient descent training algorithms

are unlikely to find an optimal solution when applied to all layers at once (Hochreiter

et al., 2001). Moreover, adding more layers to the neural network increases the

number of parameters to be optimized (i.e., it is necessary to search for an optimal

number of neurons in every additional hidden layer), and can significantly increase

the computational demand for training. Certainly, for more complex tasks, such as

object recognition in images or other tasks related to computer vision, deep neural

networks (neural networks with many hidden layers) are generally used and have

achieved significant success (e.g., Le, 2013; Krizhevsky et al., 2012; Cireşan et al.,

2012). However, different approaches to training must be employed for the case of

deep neural networks in order to train them efficiently (e.g., Vincent et al., 2010).

The complexity of a neural network is characterized by the number of neurons in

the hidden layer. More neurons in the hidden layer means a more complex network.
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In building a neural network model, it is important to find the model of optimal

complexity that will minimize the error and at the same time will not overfit the

training data, i.e., will generalize well when applied to data that was not used to

train the network. Here, we determine the optimal number of neurons using 5-fold

cross validation combined with a learning curve approach. These techniques are

described in section 3.2.4.

In this work, the input to the neural networks is the time history of geomagnetic

and solar wind parameters and the location given by L and MLT. The output of

the neural networks is plasma density. The process of input selection is described in

detail in section 3.2.3. The plasma density data set used to train the neural networks

is described in section 3.2.2.

3.2.2 Training data

All solar wind, magnetic field data and geomagnetic parameters were obtained from

NASA’s OMNIWeb data service. The density data to train the neural networks came

from the density database obtained using the NURD algorithm (Zhelavskaya et al.,

2016) for the period October 1, 2012 to July 1, 2016. Zhelavskaya et al. (2016) used

neural networks to infer upper hybrid resonance frequency from electric and magnetic

field measurements made with the Electric and Magnetic Field Instrument Suite and

Integrated Science (EMFISIS) instrumentation suite (Kletzing et al., 2013) on the Van

Allen Probes satellites. Deriving the plasma density from the upper hybrid frequency

is straightforward. This electron density data set is publicly available at ftp://rbm.

epss.ucla.edu/ftpdisk1/NURD. Van Allen Probes provide density measurements

for L ∼ 2− 6 at all local time sectors.

3.2.3 Inputs to the neural network

A wide variety of parameters might potentially be used to quantify the plasmasphere

dynamics. They include:

1. Geomagnetic parameters (Kp, AE, AU , AL, Dst, SYM-H, ASYM-H),

2. Solar wind data (np, v, Pdyn, Bz, By),

3. Solar wind coupling functions (vBs, vBT, vBT sin θc, dΦMP/dt) (e.g., Newell et al.,

2007),

ftp://rbm.epss.ucla.edu/ftpdisk1/NURD
ftp://rbm.epss.ucla.edu/ftpdisk1/NURD


3.2. METHODOLOGY 87

4. Solar cycle indicators (F10.7, sunspot number, ionospheric IG index),

5. Time history of activity inputs (total duration (e.g., 24, 36, 48 hrs), resolution

(linear, log),

6. Averaging technique (weighted avg, avg from t = 0)).

The goal of this work is to identify the critical combination of geomagnetic and

solar wind parameters that determine the evolution of the cold plasma. However, the

number of possible combinations of these parameters is extremely large, and sweeping

through the input parameter space for optimal input parameters may not be feasible

due to the cost in time and computational resources. In this work, as a first step

towards building an accurate plasmasphere model, we consider a limited number of

input parameters. We focus on two important scientific questions:

1. How well do models driven solely

(a) by geomagnetic parameters, or

(b) by solar wind, or

(c) by a combination of both predict cold plasma dynamics? (i.e. which

combination of activity parameters determines the evolution of the cold

plasma best?)

2. What is the memory of the magnetosphere? i.e. what is the total time history

duration of the solar wind and geomagnetic state that is critical in quantifying

the distribution of cold plasma within the magnetosphere?

To address these questions, we consider the combinations of input parameters

shown in Figure 3.1. We consider models based solely on geomagnetic indices, solely

on solar wind data, and on a combination of both. Since the size and shape of the

plasmasphere is known to be a result of the integrated time history of magnetospheric

convection, it is important to provide as inputs not only the current value of activity

parameters but also their time history. We start with simple models containing only

instantaneous values of activity parameters (first row of Figure 3.1). Every neural

network also includes a location input as L and MLT. Then, we subsequently add

more time history of the corresponding parameters to the networks, up to 120 hours of

time history. We use averages of the time histories of activity parameters integrated
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Figure 3.1: Eighteen combinations of input parameters to the neural network ex-
plored in this work. We start from simple models containing only instantaneous
values of (1) geomagnetic indices, (2) solar wind and IMF parameters, and (3) their
combinations, and then subsequently add a time history of these parameters to the
models. Each subsequent model includes inputs of the previous model and several
more inputs corresponding to more time history added.

from hour zero (for example, 0−3 hr, 0−6 hr, 0−12 hr, etc.). Initial analysis showed

that such averaging technique produces a model that transitions more stably from

one state to the next than one that uses successive time histories (0− 3 hr, 3− 6 hr,

6 − 12 hr, etc.). Overall, the lower the row in Figure 3.1, the larger the number of

input parameters included to train the neural network.

We use the procedure described in the next section to determine the combination

of parameters that best quantifies the cold plasma dynamics.

3.2.4 Model selection and validation

A model is a configuration of input variables, internal neural network parameters,

and a learning algorithm. We consider 18 combinations of input variables shown in

Figure 3.1. The internal network parameters include the number of hidden layers in

the network, the number of neurons in the hidden layer, and the transfer function of

neurons. We use networks with one hidden layer in this work. The transfer function

of neurons in the hidden layer is the hyperbolic tangent and is linear in the output
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layer. The training algorithm is the Levenberg-Marquardt algorithm (Levenberg,

1944; Marquardt, 1963; Hagan and Menhaj, 1994; Hagan et al., 1996) for all neural

networks. The only parameter that varies and is being optimized is the number of

neurons in the hidden layer. As mentioned before, the number of neurons in the

hidden layer characterizes the complexity of the neural network.

To select the optimal model, i.e. a neural network model with input variables and

internal parameters that 1) is quantitatively accurate, and 2) generalizes well and

avoids overfitting the training data, we consider two aspects:

1. Model performance on the point density measurements made on Van Allen

Probes (local validation);

2. Model’s ability to reproduce the global dynamic evolution of the plasmasphere

(global validation).

We select the model that is optimal in terms of both local and global validation.

If two models have a similar performance, we select the less complex model (this is a

common practice in machine learning (e.g., Blumer et al., 1987)).

Models are validated locally by using K-fold cross validation combined with the

learning-curve analysis. For the global validation, we compare the neural network

output on an L and MLT grid (global view of the plasmasphere in the equatorial

plane) to images of He+ distribution taken with the EUV instrument. Specifically,

we compare the plasmapause locations identified manually in the EUV images to the

approximation of plasmapause derived from the neural network global output. We

discuss aspects of local and global validation in the two following subsections.

Local validation: Cross validation and learning curves

K-fold cross validation (CV) is a method for estimating the generalization ability of

the model by measuring its error on validation data (not shown during the training)

(e.g., Kohavi et al., 1995; Devijver and Kittler, 1982). The optimal model is the model

with the lowest validation error among the considered models. It is worth noting

here that a model is a configuration of input variables, internal network parameters,

and a learning algorithm, as opposed to a particular model instance trained in the

cross validation procedure. By using cross validation, we select a model, but not

an individual learned instance of a model. Combining CV with the learning-curve
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analysis significantly speeds up the model selection procedure (e.g., Meek et al., 2002;

Cortes et al., 1994). Learning curves are also used to determine whether a model over-

or under-fits (Perlich et al., 2003). Both K-fold cross validation and learning curves

are described below in detail.

The idea of K-fold cross validation is shown in Figure 3.2. The data set is divided

randomly into K subsets of approximately equal size (K = 5 in Figure 3.2). In each

iteration, one subset is left aside and not used for training, while the rest of the

K − 1 subsets are used to train a neural network. The subset left aside is called a

validation set. The performance of the model on the validation and training sets is

then calculated. One can use an error measure suitable for a specific application at

hand (e.g., RMSE, MAPE, sMAPE, etc.) to calculate the performance of the model.

This procedure is repeated K times with the validation subset being different in each

iteration. This way we can assess how well the model performs on the unseen data

and obtain an estimate of generalization error mean and standard deviation. If the

procedure is repeated a certain number of times (every time the data set is split

differently) the result becomes more statistically significant.

Iteration 1 Validation Train Train Train Train

Iteration 2 Train Validation Train Train Train

Iteration 3 Train Train Validation Train Train

Iteration 4 Train Train Train Validation Train

Iteration 5 Train Train Train Train Validation

Figure 3.2: Schematic representation of K-fold cross validation (when K=5). The
data set is split into 5 subsets of approximately equal size. At every iteration, a
different subset is left out, and the rest of the data is used for training. Thus, we can
estimate the error of the model on 5 different subsets unseen during the training and
obtain the mean and standard deviation of error of the validation error.

One drawback of cross validation is that it can be computationally expensive if

the training procedure takes significant time. One factor that can influence the time
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required for training is the size of the training set. The larger the training set, the

more demanding the training procedure. However, if the training set is extremely

large, it is possible that some part of the data does not add any new information

to the model. Thus, for the sake of model selection, it might be sufficient to train

models on a smaller portion of the data. Learning-curve analysis allows assessment

of how much data is needed to build a model and how much a model benefits from

adding more data.

A learning curve is a plot of validation and training errors (obtained during cross

validation) as a function of the training set size (number of observations in the training

data). The learning curve is used to assess improvements in the model performance

as the number of observations in the training sample increases. To illustrate how the

method works, we describe three possible scenarios that can be observed in practice

below: over-fitting, under-fitting, and desired model performance.

(1) Overfitting occurs when a model is too complex for the underlying data struc-

ture. Subsequently, it can fit every data point in the training data set perfectly but

performs very poorly on the unseen data (validation data). One example of overfitting

would be fitting a quadratic function with a high-order polynomial. The fitted poly-

nomial might go through every training data point, but it will not fit well the general

shape of a quadratic function. Thus, the generalization ability of such a model is

very low, and it cannot be used in practice. The performance of a model that overfits

might be improved if more data is used to train it, or if the complexity of the model

is reduced.

(2) Underfitting, on the other hand, occurs when a model is too simple for the

underlying data structure, i.e. it cannot fit the data because it does not have a

necessary level of complexity. An example of underfitting would be fitting a quadratic

polynomial with a straight line (a one-order polynomial). It is obvious that no matter

what coefficients we choose for the straight line or how much data we use, it is not

possible to fit a straight line to a quadratic function. A model that under-fits has

high error, both on the training and validation data sets. Such a model is also not

suitable for use in practice. Its performance can be improved only by increasing its

complexity.

(3) In the case when the errors on both the training and validation sets are close

to each other and at the same time are low enough, a model can be considered well

trained and can be used in practice.
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Figure 3.3: Toy illustration demonstrating learning curves in three different scenar-
ios: (a) overfitting, (b) underfitting, and (c) ideal case. All three panels show plots of
error vs. number of examples in the training set. In every panel, the blue solid curve
denotes cross validation (CV) error on the training set, and the blue shaded area
shows the standard deviation of CV training error. The red solid curve represents
CV error on the validation set, and the red shaded area shows standard deviation of
CV validation error. The black dashed line stands for the appropriate error level in
the task at hand.

Figure 3.3 shows a toy illustration of these scenarios. In all three plots, the

error obtained during cross validation is plotted on the y-axis against the number of

training examples on the x-axis. The blue curve is the mean error on the training

set; the blue shaded region is the standard deviation of the training error. The red

curve and shaded region show the mean and standard deviation of the model error

on the validation set respectively. Dashed horizontal line shows the appropriate or

desired error chosen for a specific application. All three scenarios start similarly.

When the number of samples in the training set is small, the training error is close

to zero because the network can fit all the points in the training set perfectly, and

the validation error is very high. Then, for the case of overfitting (Figure 3.3a),

the error on the training set remains small as more observations are added to the

training set. At the same time, the error on the validation set decreases but is still

too far from the training error or the appropriate error level. The gap between

the training and validation errors indicates overfitting. For the underfitting scenario

(Figure 3.3b), training and validation errors move closer to each other as the training

set size increases but are both high and do not reach the appropriate error level.

This generally means that the model is too simple and is not able to fit the data.

Ideally (Figure 3.3c), as the number of training examples increases, the training and

validation errors are close to each other and are close to the appropriate error level
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indicated by the dashed line. Moreover, after some point, increasing the training

sample size does not further reduce the error (in Figure 3.3c, the error is not reduced

by increasing the training set from 100 to 200 data points).

Learning curves and cross validation can also be used in identifying whether a

model is stable, i.e. performs similarly on different sets of data. This aspect is very

important, since, if a model is not stable, i.e. the spread of its error is large, we cannot

trust predictions made by this model in practice. This can be interpreted from the

standard deviation of error shown as the blue and red shaded areas in Figure 3.3 on

the training and validation data, respectively. These areas show the spread of the

model error on different training and validation subsets. A large spread means that

the model is not consistent across different data sets, which we aim to avoid. It is

therefore desirable that this spread is small. This aspect is also taken in consideration

in the model selection procedure.

Global validation: Comparison with IMAGE EUV data

The validation techniques described above allow us to determine whether a model

generalizes well on the unseen data and whether its output is quantitatively accurate.

However, we also need to evaluate how well the model reproduces the global evolution

of the plasmasphere, for example, the development and evolution of the plasmaspheric

plume. For this, we compare the output of the neural network-based empirical models

to EUV images mapped to the equatorial plane. Specifically, we compare the shape of

the plasmasphere, the plasmapause locations, derived manually from IMAGE EUV

images to the approximation of the plasmapause predicted by the neural network

models. The density threshold of 40± 10 electrons/cm3 is used as an approximation

of the plasmapause in the global density reconstructions predicted by neural networks,

that is equivalent to the lower sensitivity threshold of the EUV instrument (Goldstein

et al., 2003a). Although IMAGE EUV produced images of He+ distribution and

not of H+ dominant in the plasmasphere, it was shown in the study of Goldstein

et al. (2003a) that the sharp He+ edge in the EUV images coincides with the actual

plasmapause locations. Authors showed that by comparing the L shells of steep

electron number density gradients derived from dynamic spectrograms produced by

the IMAGE Radio Plasma Imager (RPI) in the passive mode with the L shells of He+

edges in the EUV images obtained when the satellite was outside the plasmasphere

near the apogee. The IMAGE EUV instrument provided the first global images of the
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plasmapshere. The IMAGE mission also operated during a different solar cycle than

the one used in training. Therefore, we consider the IMAGE EUV images to be the

best source of data available for validating the global evolution of the plasmasphere

shape predicted by our neural network-based empirical models.

Figure 3.4: Example of comparison of the neural network output with EUV image.
a) EUV image of the He+ column density mapped to the equatorial plane with the
manually selected plasmapause indicated (white circles). b) The output of a neural
network model trained on 3.6 years of RBSP-A and RBSP-B measurements driven by
the time history of the solar wind for the same interval. The neural network captures
the erosion on the nightside and the formation of a plume in the afternoon sector.
Minimum Dst is −68 nT for this event, and maximum Kp is 5.3. The Sun is to the
left.

Figure 3.4a shows an example EUV image from 9 May 2001, a moderate geomag-

netic disturbance interval (minDst = −68 nT) examined in Spasojević et al. (2005).

The white dots are the manually estimated plasmapause location. Figure 3.4b shows

the output of a neural network empirical model. This particular model was trained,

validated and tested using over 1,000,000 points of density data from RBSP-A and

RBSP-B. The inputs to the network include L, MLT (rather than LT or UT since

electric field is organized in terms of magnetic local time), and the averages of AE,

Kp, SYM-H, and F10.7 taken over 0 − 6, 0 − 12, 0 − 24, 0 − 36, 0 − 48, and 0 − 96

previous hours. The optimal network was found to have 45 neurons in the hidden

layer with a root mean squared error (RMSE) of 0.295 and 0.3 on the training data

and in cross validation, respectively. The optimal number of neurons in the hidden

layer was determined in the procedure described in section 3.3.2. The neural network

was then applied to a grid of L and MLT using the solar wind and geomagnetic con-

ditions from 9 May 2001. Goldstein et al. (2003a) estimated that the lower sensitivity

threshold of the EUV instrument was equivalent to 40± 10 cm−3, which is indicated

by the black and gray section of the color bar in Figure 3.4b. However, this threshold
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depends on many factors, with the strong dependence on the variability in the EUV

image background, which has contributions from (1) interstellar/interplanetary 30.4

nm light and (2) 58.4 nm light that leaks through the aluminum filter of the EUV

instrument.

We perform such comparisons for multiple events starting from June 2000 to

November 2005, when the IMAGE mission was operating. The considered events

cover various geomagnetic conditions including both quiet and active times. Manu-

ally identified plasmapause locations for this period were taken from http://enarc.

space.swri.edu/EUV. We visually compare the manually extracted plasmapause lo-

cations to the locations of the density threshold of 40± 10 cm−3 in the global output

of the neural network models. For each model, we identify how well it reproduces the

size and shape of the plasmasphere in general for many different events. We track

the ability of each model to reproduce the plume formation, its size and location, and

the plasmasphere erosion on the night side.

Model selection

We determine the optimal model (configuration of input variables and internal net-

work parameters) using results of both local and global validation. Local validation

aids in identifying which models do not over- or under-fit and are stable (i.e., their per-

formance is consistent over different data sets). By validating these models globally,

we determine the optimal model that best reproduces the global dynamic evolution

on average.

Finally, after determining the optimal configuration of input variables and internal

neural network parameters, a model that can be used in practice should be built. To

do that, all available data (from October 1, 2012, to July 1, 2016) is divided into two

subsets that are called design and test sets. This division must be done before cross

validation, so that the test set is completely independent and is not used in model

selection or training. The division is in 9 : 1 ratio (design : test). The selected model

is then trained on the whole design set. After the model is trained, its performance

is evaluated on the test set and can be regarded as the final model error.

http://enarc.space.swri.edu/EUV
http://enarc.space.swri.edu/EUV
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3.3 Implementation

3.3.1 Details of neural networks implementation

All operations on neural networks are performed using the Matlab Neural Network

Toolbox. To train the neural networks, we use the Levenberg-Marquardt algorithm

(Levenberg, 1944; Marquardt, 1963; Hagan and Menhaj, 1994; Hagan et al., 1996).

The training set is composed of density measurements made on both Van Allen probes

A and B (Zhelavskaya et al., 2016). Density measurements coming from Van Allen

Probes initially have a 6-second cadence. The minimum resolution of the solar wind

measurements from OMNIWeb is 1 minute. Therefore, we use 1-minute averages

of density measurements to train the neural networks. That way, we can preserve

the variability in the plasma density measurements, and at the same time have the

maximum possible measurement resolution for the OMNIWeb data. After averaging,

a total of 3,274,908 density measurements are available for training.

The data set is randomly divided into 2 parts in a 9 : 1 ratio, as discussed above.

The larger part, the design set, is used to select the optimal model by using 5-

fold cross validation and learning-curve analysis. Eighteen neural networks models

corresponding to 18 input combinations from Figure 3.1 have been considered in

the model selection process. The smaller part, the test set, is used to estimate the

accuracy of the final model. The test set is used neither in training nor in validation.

For each neural network model with different inputs, it is also necessary to select

the optimal number of neurons in the hidden layer (internal parameter of the neural

network). The optimal number of neurons might depend on the number of inputs to

the model, which contributes to the complexity of the model. The number of inputs

to the models ranges from 6 in the simplest models based solely on instantaneous

values of solar wind data or geomagnetic parameters, to 90 in the most complex

model, which includes 120 hours of time history of both solar wind and geomagnetic

parameters. Depending on the number of inputs, different numbers of neurons in

the hidden layer are considered when selecting the optimal number of neurons for

each model. The following empirical formula was used to calculate the range of

neurons to consider for each number of inputs: round((x − mod (x, 5)) ∗ coefi),

where x is the number of inputs to the model, and coefi is each number from the

range {0.75, 1.0, 1.25, 1.5, 1.75}. Using this formula, we obtain 5 different numbers of

neurons to consider. For example, if a number of inputs is equal to 34, this formula
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will yield 23, 30, 38, 45, 53. In total, we consider 90 neural networks in our analysis,

which arise from 18 possible model configurations (input combinations), with each

of them having 5 possible numbers of neurons in the hidden layer. The following

procedure is conducted for each neural network model.

The design data set is randomly divided into 5 subsets of approximately equal

size for K-fold cross validation (the division is the same for all models). Here, we use

K = 5, and thus a total of 5 cross validation iterations are performed for each model.

The size of one subset is approximately 590,000 samples. Thus the total number

of measurements that can be used for training in one iteration of cross validation

is approximately 2,360,000 samples. In each iteration, a different subset was left

aside to estimate the accuracy of the model trained on the remaining 4 subsets.

The learning curve plot is produced as follows. In each iteration, the validation set

remains the same, while the training set is increased from 100 to 1,000,000 training

samples. Training samples are drawn from the 4 subsets used for training in each

CV iteration. Depending on the model complexity, a different number of training

samples might be sufficient for the training and validation errors to become close to

each other. Specifically, it is sufficient to train simple models (such as ones from the

first to the third rows in Figure 3.1) on the training set containing 500,000 samples,

but for complex models sometimes more than 1,000,000 samples might be required.

In that case, we increase the size of the training set and train the network on this

set. In all our tests, the training set size does not reach 2,360,000 samples (size of

the total training set in one iteration). On average, training and validation errors get

close to each other when the training set has 1,000,000 samples.

3.3.2 Optimal model selection

Local validation

After the training procedure described above is conducted for all neural network

models, the model with the optimal number of neurons in the hidden layer is selected

for each of the 18 considered neural networks with different inputs (see Figure 3.1).

We select models that minimize the error on the validation set in the same way done

by Zhelavskaya et al. (2016). Below we plot the errors of the 18 resulting models with

the optimal number of neurons selected.

Figure 3.5a shows the root mean squared error (RMSE) of the resulting models
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against the time history included in the model inputs. The three groups of curves

correspond to models with different input combinations as indicated by arrows in the

plot: solely based on the time history of solar wind data, of geomagnetic indices,

and on their combination. Blue curves show errors on the training set, and the blue

shaded areas show the standard deviation of error. Red curves and shaded areas

show the same but for the validation set correspondingly. Figure 3.5b is a zoomed-in

fragment of Figure 3.5a indicated with the dashed rectangle. All three groups of

curves decrease quite steeply in the beginning when not much history is included in

the models. As the duration of the time history included in the models grows, the

curves become less steep. This suggests that there is a certain saturation point in

the time history, after which the performance of models stops improving. Although

in the frame of considered durations of time history, the error is still reduced to 120

hours.

Figure 3.5: Root mean squared error (RMSE) on the y-axis vs. models having
different time history included on the x-axis for (a) all models and (b) models having
time histories of 48, 96, and 120 hours. The farther on the x-axis, the more time
history is included into a model. In both panels, the blue solid curve denotes the
cross validation (CV) error on the training set, and the blue shaded area shows
standard deviation of the CV training error. The red solid curve represents the CV
error on the validation set; the red shaded area shows standard deviation of the
CV validation error. Models based on combination of solar wind and geomagnetic
parameters perform best, while models based only on solar wind data have the worst
performance.

Figure 3.5 shows that models based solely on solar wind data perform worse than

models based on geomagnetic parameters or a combination of both. Models based on
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the combination of the solar wind and geomagnetic parameters have the lowest error.

Thus, although solar wind alone might not be the best driver of the plasmasphere

dynamics, its contribution is significant when combined with geomagnetic parameters.

The improved performance of the combination model implies a nonlinear relationship

between solar wind and geomagnetic parameters and plasmasphere dynamics.

Finally, the error spread (indicated by the shaded areas in Figure 3.5) of the

models based solely on geomagnetic parameters is smaller than that of the models

based on the combination of parameters. The difference between the mean error

on the training and validation sets is also smaller for the models based solely on

geomagnetic parameters. This can indicate slight overfitting of the models based on

the combination of solar wind and geomagnetic parameters.

Global validation

Output of all models is also compared to the images of the global He+ distribu-

tion made with the IMAGE EUV instrument. Particularly, plasmapause locations

manually identified in IMAGE EUV images were compared to the approximation of

the plasmapause locations in the neural network output, which was determined by a

density threshold of 40± 10 cm−3 (Goldstein et al., 2003a).

Comparison with IMAGE EUV data showed that models trained solely on solar

wind parameters perform worse than the models based on the geomagnetic param-

eters or their combination, which confirms the quantitative results in Figure 3.5.

Models based on the geomagnetic parameters and the combination of the solar wind

and geomagnetic parameters perform significantly better in reproducing the global

dynamics of the plasmasphere and capturing plume formation and evolution. How-

ever, it was observed that despite being quantitatively more accurate, models based

on the combination of parameters perform slightly worse during increased geomag-

netic activity when compared with IMAGE data. This might be due to the slight

overfitting indicated above (seen in Figure 3.5).

An example of such a comparison is shown in Figure 3.6. Figure 3.6a shows

an example EUV image from 2 Jun 2001, a mild geomagnetic disturbance interval

(minDst = −27 nT) examined in Goldstein et al. (2003b). The white dots are the

manually estimated plasmapause location. Figures 3.6b, 3.6c, 3.6d show the output

of 3 neural network models correspondingly: b) based solely on geomagnetic indices,

c) on solar wind parameters, and d) both geomagnetic and solar wind parameters.
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Figure 3.6: Example comparison of the EUV image of the He+ column density
mapped to the equatorial plane (a) with the output of 3 neural network models:
(b) based solely on geomagnetic indices, (c) on solar wind parameters, and (d) both
geomagnetic and solar wind parameters. White circles indicate the manually selected
plasmapause. Minimum Dst for this event is −27 nT, maximum Kp is 5.3. The Sun
is to the left.

The black and gray section of the color bar indicates a 40±10 cm−3 density threshold.

Inputs to all three networks contain 96 hours of time history. Each model contains

its optimal number of neurons selected in the local validation procedure described

above. The number of neurons in the hidden layer of these models are b) 45, c) 45,

and d) 81. It can be seen from Figure 3.6 that the model based solely on geomagnetic

parameters captures the erosion on the nightside and the formation of a plume in the

afternoon sector quite well, whereas the model based solely on solar wind does not

reproduce the plume formation. The model based on the combination of parameters

seems to overestimate the size of the plume and does not reproduce the plasmasphere

shape accurately. Such a performance of the models based solely on solar wind (SW)

data was quite often observed when compared to IMAGE EUV data. Frequently, in-

dependent of how much time history is included into the SW-based model, it does not

do a very good job at reproducing plume formation and evolution. Additionally, the

models based on the combination of parameters do not always accurately reconstruct

plasmasphere evolution. Another significant disadvantage of the models that include

solar wind parameters is the presence of gaps in the solar wind data, which cause

gaps in the density reconstruction. In general, the models based solely on geomag-

netic parameters produce the most reliable and stable global density reconstruction.

Resulting model

As a result of local and global validation procedures, for further use in practice we

selected the model based solely on the geomagnetic parameters. In the future, gaps in
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the solar wind data might be filled (Kondrashov et al., 2010), and as our quantitative

analysis shows, models based on the combination of parameters should perform better.

The total duration of the geomagnetic parameters time history that is critical for

quantifying plasmasphere dynamics was found to be 96 hours. A visual comparison

with IMAGE EUV plasmapause data shows that there is no significant improvement

in performance of the model that includes 120 hours of history. Therefore, the less

complex model is selected. The optimal number of neurons in the hidden layer, i.e.

at which the model has the minimum error on the validation set, was found to be 45.

Altogether, the resulting final neural network model is based on the 96-hour time

history of the following indices: AE,Kp, SYM-H, F10.7, and has 45 neurons in

the hidden layer. After selecting the optimal combination of input parameters and

number of neurons in the hidden layer, the final neural network model is trained on the

whole design data set, and evaluated on the test set. The Root Mean Squared Error

(RMSE) of the resulting model on the test set is 0.3015, and 0.2950 on the design

set. The linear correlation coefficient between the density measurements made on the

Van Allen Probes and the density determined with the developed model is 0.9458 on

the test set and 0.9462 on the design set. The final model is further referred to as the

PINE model – the Plasma density in the Inner magnetosphere Neural network-based

Empirical model.

3.4 Results

3.4.1 Examples of the resulting model output

Figure 3.7a and 3.7b show plots of the electron density during the March storm in

2015. The blue curve shows the density derived with the NURD algorithm that is

referred to as the true density on Van Allen Probes. The red curve shows density

determined by the PINE model, and the black curve shows the density calculated

using the plasmasphere and trough density model by Sheeley et al. (2001). Figure

3.7c shows the Kp index during this event. It can be seen from the plot that the PINE

model is capable of capturing the plasmasphere dynamics during varying geomagnetic

activity. The developed model does a significantly better job following the changing

density levels than the model by Sheeley et al. (2001). The resulting model was

tested for multiple events, and its performance is consistently better than Sheeley
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Figure 3.7: Example of density determination for the March storm in 2015. Pnales
a and b plot density vs. time. Blue curves are the density derived from Van Allen
Probes using NURD algorithm (Zhelavskaya et al., 2016) for Probe A. Red curve is
the density determined by the PINE model. Black curve is the density calculated
using the trough and plasmasphere density model by Sheeley et al. (2001). Panel c
shows Kp geomagnetic activity index during this event.

et al. (2001).

The top row of Figure 3.8 shows an example of global density reconstruction for

a series of time frames during 26 − 27 June 2001, a minor geomagnetic disturbance

interval (minDst = −21 nT) examined in detail in Spasojević et al. (2003). The

black and gray section of the color bar is 40 ± 10 electrons cm−3 and is equivalent

to the estimated lower sensitivity threshold of the EUV instrument (Goldstein et al.,

2003a). The Kp index for the duration of the event is shown in the bottom row of

Figure 3.8, and red vertical lines indicate the particular times considered in the top

row. To reconstruct the density in the equatorial plane, the developed model was

applied to a grid of L and MLT using geomagnetic conditions from 26 − 27 June

2001. Several stages of this minor geomagnetic disturbance interval are shown. The

first snapshot (a) shows the onset of the disturbance. The neural network captures

very well the nightside edge of the plasmasphere. The next three panels (b, c, and d)
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Figure 3.8: Example of global density reconstruction by the resulting neural net-
work model during 26 − 27 June 2001, a minor geomagnetic disturbance interval
(minDst = −21 nT) examined in detail in Spasojević et al. (2003) (top row). The
white dots denote the manually estimated plasmapause location. The bottom row
shows Kp geomagnetic activity index in gray; red vertical lines correspond to the
density snapshots in the upper panel as indicated by letters. The Sun is to the left.

show the density reconstructed during the disturbance. The model does a good job of

reconstructing the size of the plume, its rotation and the plasmapause location. The

last panel (e) shows the recovery period after the disturbance when the plume begins

to corotate with the main plasmasphere from the afternoon sector across the nightside.

As discussed in Spasojević et al. (2003), this is a particularly interesting event because

of its isolated nature. Due to its isolated type, this event is particularly difficult to

model. Prior to the disturbance, Kp remained below 2 for over 40 hours, and then it

dropped to 1- for over 30 hours immediately after the disturbance. The neural network

model experiences difficulties in accurately reconstructing the plasmapause location

in the recovery phase of the storm shown in panel (e). Looking carefully at this panel,

we can see that the shape of the plasmasphere is slightly ”flattened out”, and the

plasmasphere is deformed from having a spherical shape with an extended plume.

Such unusual shape of the plasmasphere can pose difficulties for neural network since

these types of events are underrepresented in data, which might explain why the

neural network is not able to accurately capture the plasmapause location. However,

despite the complexity of this case, the neural network was able to reproduce the

corotation of the plume and accurately determine the plasmapause locations during

the disturbance and its onset shown in panels (a-d).

Further examples of global density reconstruction are shown in Figure 3.9 for 4
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Figure 3.9: Examples of global density reconstruction by the resulting neural net-
work model for 4 different events during the main phase plume formation. The top
row shows the EUV images for the times indicated in the titles, and the bottom row
shows the final model output for those times. Events are ordered from left to right
according to Kp (from low to high). Kp is shown in the titles as well. The Sun is to
the left.

different events during their respective main phase plume formations: a) 10 Jun 2001

06:33 UT, b) 28 May 2001 22:17 UT, c) 08 May 2001 18:24 UT, and d) 20 Mar 2001

13:59 UT (considered in Spasojević et al. (2003), Spasojević et al. (2005), Spasojević

and Sandel (2010), and Goldstein et al. (2007) respectively). The top row shows the

EUV images, and the bottom row shows the output of the resulting model for these

times. Events are sorted from left to right in accordance with Kp: from low to high

Kp. Again, the white dots indicate the manually selected plasmapause. It can be seen

from the figures that the resulting model reproduces the plume formation quite well.

Erosion on the night side is very well captured for all 4 events. However, the model

slightly overestimates the plasmapause boundary on the nightside for the time frame

shown in Figure 3.9d, in the high geomagnetic disturbance interval where Kp = 7.3.

This is caused by the fact that the training density data obtained from the Van Allen

Probes is underrepresented for high disturbed times. Nevertheless, the model does a

fairly good job of reproducing the global shape of the plume for this event.

Overall, we find that the developed model does a very good job of capturing the

erosion of the plasmapause on the nightside and the formation of the plume in the

afternoon sector.
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3.4.2 Model use

The developed model was applied to multiple events from IMAGE and Van Allen

Probes eras. The obtained density reconstructions can be found at ftp://rbm.epss.

ucla.edu/ftpdisk1/PINE.

3.5 Discussion

Our results have shown that solar wind and geomagnetic parameters can be used

to accurately quantify the plasmasphere dynamics. The relationship between solar

wind and geomagnetic parameters and plasma density is not linear, and both types

of parameters have their own effect on the cold plasma dynamics. Both quantitative

(comparison with the satellite point measurements) and qualitative (comparison with

the global EUV images) validations showed that neural network models based solely

on the time history of solar wind data perform worse than models based solely on

the time history of geomagnetic parameters. This might be caused by the fact that

geomagnetic indices reflect the state of the geomagnetic system that is affected by

the incoming solar wind and thus the indices already contain the information from

the solar wind in a processed form. Also, geomagnetic indices are produced from the

measurements made at ground observatories around the world, which makes them

“global” in the sense of local time unlike the solar wind parameters measured at

the Lagrangian L1 point. Therefore, only solar wind parameters might not be fully

representative of all processes occurring in the geomagnetic system and hence be a

worse proxy for the plasmasphere dynamics than geomagnetic indices. Models based

on the combination of both types of parameters are the most accurate quantitatively;

however, they tend to slightly overfit the training data. Overfitting might occur

since the models based on the combination of parameters have more inputs and thus

are more complex. More complex models (with more inputs) are more prone to

overfitting (e.g., Linoff and Berry, 2011). However, the fact that the models based

on the combination of parameters are quantitatively more accurate than the models

based solely on either the solar wind or geomagnetic parameters suggests that there

is a nonlinear relationship between solar wind and geomagnetic parameters, and the

plasmasphere dynamics.

In terms of reproducing the global plasmasphere dynamics, models based on the

solar wind data have a hard time reproducing plumes, regardless of how much time

ftp://rbm.epss.ucla.edu/ftpdisk1/PINE
ftp://rbm.epss.ucla.edu/ftpdisk1/PINE
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history is included. This again might be potentially caused by the inability of solar

wind parameters to fully describe the state of geomagnetic system as opposed to the

geomagnetic indices. The two other types of models perform better in this regard.

However, models based on the combination of parameters have a significant disad-

vantage: there are gaps present in the solar wind data, and hence there are gaps in

density determination (the gaps in solar wind data for years 2012 to 2016 range from

22.96 to 28.89% per year for solar wind data with 1-minute cadence). These results

answer the first question stated in the introduction: the critical combination of so-

lar wind and geomagnetic parameters that best quantify the plasmasphere dynamics

includes the Kp, AE, SYM-H, and F10.7 indices.

The time history of the solar wind and geomagnetic parameters plays a very im-

portant role in quantifying the global dynamic evolution of the plasmasphere. Models

that contain little to no time history are not able to reproduce plume formations and

are not very reliable during high geomagnetic activity. Starting from 48 hours, time

history models tend to perform better during active times and in capturing the for-

mation of the plume. The optimal duration of time history of the solar wind and

geomagnetic state that quantifies the distribution of cold plasma within the magne-

tosphere was found to be 96 hours. By employing such a time history, it becomes

possible to reconstruct density for interesting and complex events as the one shown

in Figure 3.8. In this event, models including less time history were not able to

reproduce the plume formation and rotation after the disturbance. This result an-

swers the second question stated in this work: the critical duration of time history of

parameters necessary for quantification of the plasmasphere dynamics is 96 hours.

Neural networks proved to be effective in finding the multivariable nonlinear map-

ping from the time history of solar wind and geomagnetic parameters to plasma den-

sity. It is worth noting, however, that neural networks learn better when data is

abundant. For our case, a large volume of data is available for the times of quiet

geomagnetic activity. However, the available data is not sufficient for the times of

high geomagnetic activity. Data used for training the PINE model covers the period

from October 2012 to July 2016, which is a relatively quiet period with few storms.

The PINE model still produces satisfactory results during periods of strong geomag-

netic activity (Kp > 7), but at times it has difficulties in accurately reproducing

the plasmasphere shape. It is also important to note that the IMAGE EUV images

were obtained between 2000− 2005, whereas density data from Van Allen Probes is
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measured between 2012− 2016. These are different periods in the solar cycle, which

might also affect neural network training. This may be improved by using a larger

training set covering a full solar cycle and with more disturbance intervals on which

to train the network behavior, such as adding the density databases from the CRRES

and THEMIS missions.

The PINE model performs remarkably well in reproducing the global plasmasphere

dynamics and large-scale irregularities, such as plumes. However, the model’s current

limitation is capturing small- and medium-scale irregularities (on the order of a few

tenths of an RE). This might be due to several reasons. First, the influence of many

activity parameters on the plasmasphere have not been explored in this work and

therefore are not included in the model (such as AU,AL,Bx, By, solar wind coupling

functions (Newell et al., 2007), etc.). Second, a rather coarse averaging of time (from

hour 0) was included in the models. However, it is difficult to know which parameters

would help model these fine-scale features, since they are not very well understood

(Darrouzet et al., 2009), and probably involve very complex coupling that is unlikely

to come up out of a set of parameters.

Despite the limitations, the PINE model does a very good job of reconstructing

the global evolution of cold plasma dynamics. It successfully reproduces the erosion of

plasma on the nightside, sunward surge of plasma on the dayside, and rotation of the

plume toward midnight during disturbed times (e.g., Sandel et al., 2003; Spasojević

et al., 2003; Goldstein et al., 2004; Darrouzet et al., 2009). During quiet times,

the PINE model can also reproduce the size of the plasmasphere remarkably well.

Output of the PINE model agrees significantly better with both Van Allen Probes

and IMAGE EUV observations than output of the existing empirical model by Sheeley

et al. (2001), both on a case-by-case comparison and on average.

3.6 Conclusions

We have built an empirical model of cold plasma density that is capable of globally

reconstructing the plasmasphere dynamics. The model is based on a 96-hour time

history of geomagnetic activity parameters. To find the nonlinear mapping between

activity parameters and plasma density, neural networks were used.
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To determine the critical combination of activity parameters, we explored the in-

fluence of geomagnetic and solar wind parameters and their time history on the plas-

masphere dynamics separately and in combination by means of neural network-based

empirical modeling. Neural networks with different combinations of input parameters

have been developed and compared among each other. To train the networks a den-

sity data set for Van Allen Probes developed by Zhelavskaya et al. (2016) was used.

The performance of the networks was estimated quantitatively by means of cross

validation and learning curve analysis on the data from Van Allen Probes. Qualita-

tively, the ability of the networks to reconstruct the global plasmasphere dynamics

was tested by comparing the approximate plasmapause locations in the output of

the neural networks with the plasmapause data obtained by the IMAGE Extreme

UltraViolet (EUV) instrument.

The comparison showed that models improve their performance as more time

history is included. The critical duration of the time history of parameters, after

which no significant improvement is observed, was found to be 96 hours. Models

based on the combination of solar wind and geomagnetic parameters achieved the

best quantitative performance. However, due to gaps in the solar wind data and slight

overfitting of the models based on the combination of solar wind and geomagnetic

parameters, it was decided to use the model based solely on geomagnetic parameters

at the moment. If the gaps in the solar wind data are filled in the future and the same

analysis is repeated, models based on the combination of solar wind and geomagnetic

parameters show potential to perform better. Nevertheless, the improved quantitative

performance of the combination model implies that a nonlinear relationship exists

between solar wind and geomagnetic parameters, and the plasmasphere dynamics.

In this work, we have demonstrated that neural networks are an efficient technique

for building complex models based on space weather data.
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Chapter 4

A combined neural network- and

physics-based approach for

modeling plasmasphere dynamics

Note

The following work is submitted to Journal of Geophysical Research: Space Physics :

Zhelavskaya I. S., N. Aseev, Y. Y. Shprits, M. Spasojević (2020). A combined neural

network- and physics-based approach for modeling the plasmasphere dynamics. (sub-

mitted to Journal of Geophysical Research: Space Physics).

Abstract

In recent years, feedforward neural networks (NNs) have been successfully applied

to reconstruct global plasmasphere dynamics in the equatorial plane. These neural

network-based models capture the large-scale dynamics of the plasmasphere, such

as plume formation and erosion of the plasmasphere on the nightside. However,

their performance depends strongly on the availability of training data. When the

data coverage is limited or non-existent, as occurs during geomagnetic storms, the

performance of NNs significantly decreases, as networks inherently cannot learn from

the limited number of examples. This limitation can be overcome by employing

physics-based modeling during strong geomagnetic storms. Physics-based models

show a stable performance during periods of disturbed geomagnetic activity, if they

111
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are correctly initialized and configured. In this study, we illustrate how to combine

the neural network- and physics-based models of the plasmasphere in an optimal

way by using the data assimilation Kalman filtering. The proposed approach utilizes

advantages of both neural network- and physics-based modeling and produces global

plasma density reconstructions for both quiet and disturbed geomagnetic activity,

including extreme geomagnetic storms. We validate the models quantitatively by

comparing their output to the in-situ density measurements from RBSP-A for an 18-

month out-of-sample period from 30 June 2016 to 01 January 2018, and computing

performance metrics. To validate the global density reconstructions qualitatively, we

compare them to the IMAGE EUV images of the He+ particle distribution in the

Earth’s plasmasphere for a number of events in the past, including the Halloween

storm in 2003.

4.1 Introduction

The plasmasphere is a region of cold (< 10 eV) and dense (10− 104cm−3) plasma en-

circling the Earth and corotating with it (Lemaire and Gringauz, 1998). It is located

in the inner magnetosphere and extends several Earth radii (RE) into space out to

a boundary known as the plasmapause (Gringauz, 1963; Carpenter, 1963). At this

boundary, the plasma density decreases drastically by several orders of magnitude.

The plasmasphere is a very dynamic region, and its shape and size are strongly de-

pendent on solar and geomagnetic conditions (O’Brien and Moldwin, 2003; Chappell

et al., 1970b). The size and shape of the plasmasphere are controlled by two regimes:

sunward convection and corotation with the Earth (Darrouzet et al., 2009; Singh

et al., 2011). The corotation regime dominates during quiet geomagnetic times, and

the plasma trapped inside the closed magnetic field lines corotates with the Earth

(Carpenter, 1966). At the same time, the plasmasphere is refilled from the dayside

ionosphere (Singh and Horwitz, 1992; Goldstein et al., 2003b; Krall et al., 2008). It

has a nearly circular shape with a dusk side bulge (Nishida, 1966). Contrastingly, the

sunward magnetospheric convection begins to dominate during intervals of high ge-

omagnetic activity (Carpenter, 1970; Chappell et al., 1970a; Goldstein et al., 2003b)

and erodes the plasmasphere. The stronger the geomagnetic disturbance, the more

severely the plasmasphere is eroded (as far as 2 RE during severe disturbances). The

combination of convection and corotation electric fields causes the development of
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a plasmaspheric plume in the dusk local time sector (e.g., Spasojević et al., 2003;

Grebowsky, 1970).

The plasmasphere is important for a number of physical processes. Its size and

shape control the propagation and growth of plasma waves, and affect wave-particle

interactions, thus greatly influencing distributions of energetic ions and electrons

across a broad range of energies (e.g., Spasojević et al., 2004; Horne et al., 2005;

Shprits et al., 2016; Orlova et al., 2016). The plasmaspheric material eroded during

periods of strong convection is transported sunward and is observed near the dayside

magnetopause regularly (e.g., Chen and Moore, 2006; Lee et al., 2016). The enhanced

plasma density at the dayside magnetopause can limit the rate of reconnection, thus

affecting the global convection pattern (e.g., André et al., 2016; Borovsky and Denton,

2006). The plasma density is also a crucial parameter in a variety of applications in

the field of space weather, such as spacecraft anomaly analysis due to spacecraft

charging (e.g., Reeves et al., 2013) and GPS navigation (e.g., Mazzella, 2009; Xiong

et al., 2016). It is therefore important to model the dynamics of the plasmasphere

accurately in order to be able to reliably predict the aforementioned processes.

A number of physics-based and empirical models have been developed in recent

decades. The most commonly used empirical models are the Carpenter and Ander-

son (1992), Gallagher et al. (2000), and Sheeley et al. (2001) models. The Carpenter

and Anderson (1992) model is based on measurements of electron density derived

from radio measurements made with the sweep frequency receiver (SFR) on board

the International Sun-Earth Explorer (ISEE-1) spacecraft and ground-based whistler

measurements. It is a model of saturated density and, thus, represents the distribu-

tion of density after several days of refilling. The model covers the range from 2.25 to

8 in L-shell, and the interval of 0-15 MLT (magnetic local time). The model provides

the mean value of density at different L-shells. Gallagher et al. (2000) developed the

Global Core Plasma Model (GCPM), which combined several previously developed

models (such as Carpenter and Anderson (1992) and Gallagher et al. (1998)) by means

of transition equations, in order to provide a more comprehensive description of the

inner-magnetospheric plasma. The models of plasmasphere and plasma trough devel-

oped by Sheeley et al. (2001) provide statistical averages of density based on density

measurements obtained from the swept frequency receiver onboard the Combined

Release and Radiation Effects Satellite (CRRES) by identifying the upper hybrid

resonance frequency. The models cover all local times and 3 ≤ L ≤ 7. Moreover,
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Sheeley et al. (2001) also provide the standard deviation of density for both the plas-

masphere and trough models to describe depleted and saturated density levels for

various L-shells and MLT sectors for the trough.

Despite the extensive use of these empirical density models for inner-magnetospheric

simulations, they provide statistically averaged values and do not account for the

changing geomagnetic conditions, and therefore, cannot produce reliable estimates

of density during extreme geomagnetic events. The models described above do not

include the dynamic dependence of plasma density on geomagnetic and solar wind

conditions, and density is known to vary substantially during periods of strong geo-

magnetic activity (e.g., Park and Carpenter, 1970; Park, 1974; Moldwin et al., 1995).

This fact motivated the development of time-dependent models of plasma den-

sity. In recent years, a number of models utilizing neural networks and taking into

account solar or geomagnetic conditions have been developed (Bortnik et al., 2016;

Zhelavskaya et al., 2017; Chu et al., 2017a,b). In all these studies, the authors used

feedforward neural networks with different architectures to model the plasma density

in the equatorial plane or in 3D (in Chu et al. (2017b)). Feedforward neural networks

are a powerful mathematical tool for finding nonlinear multivariate mappings from

input to output variables, if such a mapping exists (Anderson, 1995; Bishop, 1995;

Haykin et al., 2009). Bortnik et al. (2016) used density measurements inferred from

the spacecraft potential (Li et al., 2010) on board the THEMIS (Time History of

Events and Macroscale Interactions during Substorms) mission (Angelopoulos, 2009)

to train their neural network model. They used a 5-hour time history of Sym-H index

and location as an input to the model. The Chu et al. (2017a) model is based on

the same density measurements. The inputs to the model were location and the time

histories of Sym-H for the preceding 3 days, AL for 2 hours, and F10.7 for 3 days.

Chu et al. (2017b) built upon those two studies and developed a three-dimensional

electron density (DEN3D) model based on density measurements from the plasma

wave experiment on board ISEE (Gurnett et al., 1978), the plasma wave experiment

on board the CRRES (Anderson et al., 1992), the plasma wave instrument on board

Polar (Gurnett et al., 1995), and the radio plasma imager (RPI) on board the Imager

for Magnetopause-to-Aurora Global Exploration (IMAGE). They used location and

the time histories of Sym-H for the preceding 3 days, AL for 5 hours, and F10.7 for

3 days as inputs to their model. The model of Zhelavskaya et al. (2017), Plasma

density in the Inner magnetosphere Neural network-based Empirical (PINE) model,
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Figure 4.1: Distribution of Kp over October 2012 – June 2016 (the training time
interval for the PINE model). The cadence of bins is 1/3, i.e., the same as the cadence
of the Kp index.

is based on the density measurements obtained from the upper-hybrid resonance fre-

quency measured with the EMFISIS instrument on board the Van Allen Probes. This

technique is known to be one of the most reliable methods for obtaining plasma den-

sity (Mosier et al., 1973). The inputs to the model were the 96-hour time history

of Kp, AE, Sym-H, and F10.7 indices and the location given by L and MLT. They

showed that neural networks-based models can accurately reproduce the dynamics of

the plasmasphere (with correlation coefficient ≈ 0.95), and can successfully reproduce

the asymmetric shape of the plasmasphere, including plume formation and erosion

on the nightside.

Neural networks learn from data and are very powerful when data are abundant.

However, when the data are limited or lacking, their performance may significantly

decrease (Priddy and Keller, 2005). This implies that neural networks can be difficult

to apply to highly unbalanced regression problems and to predict rare events. Extreme

geomagnetic storms are an example of such events. Figure 4.1 shows the distribution

of the Kp index over the training period of the PINE model (Oct 2012-Jul 2016,

Zhelavskaya et al. (2017)). As can be seen from the figure, its distribution is highly

skewed. Observations for Kp > 7 are limited. In fact, there is not a single example

of Kp = 9 during this period and, hence, in the training dataset. That implies that

NNs may not be reliable during periods of high geomagnetic activity, which are the

most interesting events.
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One possible way to overcome this limitation is to employ a different approach

to model the plasmasphere dynamics during disturbed geomagnetic conditions. In

particular, physics-based modeling is a more stable approach than neural network-

based modeling for high Kp, since it does not depend on data availability. A number of

physics-based models have been developed in recent years. Pierrard and Stegen (2008)

used the kinetic exospheric approach to model the dynamics of the plasmasphere.

Jordanova et al. (2006) coupled their ring current-atmosphere interactions model

(RAM) with a 3-D equilibrium code (SCB) and a cold plasma model (CPL). The

RAM-SCB-CPL model calculates the cold electron density in the equatorial plane by

following the motion of individual flux tubes, using a model of electric field which

includes a corotation potential and a convection potential that is chosen from either

semi-empirical models (Volland, 1973; Stern, 1975; Weimer, 2005), or self-consistently

calculated electric potential (Yu et al., 2015), mapped to the equatorial plane along

the SCB field lines. Krall et al. (2016) coupled this model with SAMI3 (Sami3 is Also

a Model of the Ionosphere) to model the plasmasphere dynamics during two events in

2001. De Pascuale et al. (2018) used RAM-CPL to simulate equatorial plasmaspheric

electron densities during two storm events in 2013, and compared them to in-situ

measurements from the Van Allen Probes (Radiation Belt Storm Probes). ? used

the first-principles physics-based model SAMI3 to model the plasmasphere in 3D.

They incorporated the neutral wind dynamo potential, the corotation potential, and

a time-dependent potential from Volland (1973) and Maynard and Chen (1975) to

model the convection potential for an idealized magnetic storm. An overview of

various other physics-based models of the plasmasphere based on the fluid and the

kinetic approaches is given in Pierrard et al. (2009).

The physics-based models rely on a number of physical processes, which are usu-

ally parameterized empirically in the model (e.g., refilling, electric and magnetic fields,

etc.). Such parameterizations tend to be simplified as they are based on statistical

averages over certain parameters (such as L-shell, MLT, or others). This can lead

to inaccuracies in the physics-based model associated with such simplified assump-

tions. Therefore, it would be ideal to develop an optimal approach combining the

advantages of both neural network- and physics-based models, namely the stability

of physics-based models during geomagnetic storms, and the ability of neural networks

to reproduce realistic density distributions for various events as they are independent

of other parameterizations, such as refilling, magnetic and electric field models, etc..
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One possible way to combine the models is to employ data assimilation. Data

assimilation is a mathematical tool designed for combining a model with typically

sparse observations in an optimal way (Kalman, 1960). In data assimilation, the in-

formation provided by both the physical model and the available observations is used

to find the most likely estimate of the unknown true state of a dynamic system, while

taking into account their uncertainties. The sequential Kalman filter (Kalman, 1960)

is one popular algorithm of data assimilation. It uses predictions and observations in

a recursive manner to improve the system measurements. It has numerous applica-

tions in technology, including the navigational system on Global Positioning System

devices and the Apollo mission (Grewal and Andrews, 2010), image processing (Salti

et al., 2014; Bresson et al., 2015), ocean modeling, operational weather forecasting

(Kalnay, 2003; Lahoz et al., 2010; Sorenson, 1985), and reconstruction of the global

state of the radiation belts (e.g., Shprits et al., 2007a, 2013).

In this study, we employ the Kalman filter technique to combine a neural network-

and physics-based models in an optimal way. We use a version of the four-dimensional

physics-based Versatile Electron Radiation Belt code (Shprits et al., 2015; Aseev et al.,

2016), VERB-CS code (CS stands for “Convection Simplified”), to model the plasma-

sphere dynamics in the equatorial plane. The physics-based VERB-CS code (Aseev

and Shprits, 2019) was initially developed to model the dynamics of the ring current,

but can be adjusted to model the plasmasphere dynamics as well, which is done in this

study. We treat the output of the neural network model PINE (Zhelavskaya et al.,

2017) as “observations” of plasma density in the data assimilation setup. PINE is

purely data-driven and produces realistic density reconstructions that have a remark-

ably similar distribution to actual density measurements and reproduces the shape of

the plasmasphere bulge and plumes. To ensure that the models perform well quan-

titatively and reproduce point satellite measurements accurately, we compare their

output to in-situ electron density measurements obtained from the Van Allen Probes

for an 18-month out-of-sample interval from 30 June 2016 to 01 January 2018. Addi-

tionally, we compare the global evolution of plasma density predicted by the models

with the global He+ images obtained from the IMAGE EUV to validate the models

qualitatively and ensure that they reproduce the global dynamics of the plasmasphere

correctly.

The paper is structured as follows: In section 4.2, we describe the data used for

training and validation of the models, i.e., in situ density measurements from the



118CHAPTER 4. COMBINED APPROACH FOR PLASMASPHERE MODELING

Van Allen Probes and the plasmapause position derived from the IMAGE EUV. We

describe the neural network, the physics-based VERB-CS code, and the Kalman filter

and how it is used to develop the assimilative model in section 4.3. In section 4.4,

we present the results obtained with the models for the Halloween storm in 2003 and

several events from 2001, and also for a long-term density reconstruction. Finally, in

sections 4.5 and 4.6, we discuss implications and possible improvements to the models

developed in this study.

4.2 Data

All magnetic field, solar wind data, and geomagnetic indices have been downloaded

from the OMNIWeb data service. We have used the density dataset obtained with

the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm

(Zhelavskaya et al., 2016) for the period from 01 October 2012 to 01 July 2016, to train

the neural networks. Zhelavskaya et al. (2016) employed feedforward neural networks

to identify the upper hybrid resonance bands in the dynamic spectrograms made with

the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)

suite (Kletzing et al., 2013) onboard the Van Allen Probes satellites and calculated

the plasma density from the upper-hybrid resonance frequency. The electron density

data set is publicly available at the GFZ Data Services (Zhelavskaya et al., 2020b).

The Van Allen Probes provide electron density measurements for all local time sectors

and L ∼ 2 − 6 RE. We use density measurements for a period of 30 June 2016 to

1 January 2018 (obtained with the same method) to quantify the performance of all

the models developed in this study in section 4.4.3.

To validate the global output of our models, we use the plasmapause locations

derived from the EUV instrument on board the IMAGE satellite (Sandel et al., 2000).

The IMAGE EUV instrument provided the global images of the plasmasphere for the

first time. These images can be used to derive the location of the plasmapause by

considering the outermost sharp edge of He+ (Goldstein et al., 2003c). Goldstein

et al. (2003a) showed that the sharp edge of He+ in the EUV images corresponds to

the actual location of plasmapause. We use the density threshold of 40 ± 10 cm−3

as an approximation of the plasmapause position in the global reconstructions of

density produced by the models, which corresponds to the lower sensitivity threshold

of the IMAGE EUV instrument (Goldstein et al., 2003a). It is worth noting that the
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IMAGE mission operated in 2000 – 2005, which was a different solar cycle compared

to the one we used in the training of the neural network. Therefore, the IMAGE

EUV images are the best available data source for validating the global evolution of

the shape of the plasmasphere produced by the models developed in this study. The

plasmapause database derived from the IMAGE EUV instrument was obtained from

http://enarc.space.swri.edu/EUV/.

4.3 Methodology

4.3.1 The neural network-based model of plasma density PINE

We utilize the output of the PINE model (Zhelavskaya et al., 2017) as “observations”,

which we combine with the physics-based VERB-CS code modeling the evolution of

plasma density in the data assimilation setup. Zhelavskaya et al. (2017) used feedfor-

ward neural networks to model the global plasmasphere dynamics in the equatorial

plane. They used geomagnetic parameters, their time histories, and the location given

by L and MLT as input variables to the model. The plasma density in the equatorial

plane of the Earth was the only output. The neural networks were trained on a 4-year

plasma density dataset obtained from the Van Allen Probes plasma wave measure-

ments. These density measurements were derived using the Neural-network-based

Upper hybrid Resonance Determination (NURD) algorithm for automatic inference

of the electron number density from plasma wave measurements made by the Van

Allen Probes (Zhelavskaya et al., 2016). The model was extensively validated by

means of K-fold cross validation to ensure that it does not overfit and generalizes

well on unseen data. Furthermore, its global output was compared to the collection

of global images of the He+ distribution in the plasmasphere obtained with the EUV

instrument of NASA’s IMAGE mission to ensure that the model produces reason-

able global density reconstructions (e.g., Figures 4, 8, and 9 in Zhelavskaya et al.

(2017)). The model works well for quiet and moderately disturbed events (Kp < 7),

but its performance is limited during strong geomagnetic storms due to the lack of

such examples in the training data set.

In the original study, the authors used K-fold cross validation with K=5 to train

and validate the model. They used this procedure also to find the optimal inputs

to the model (for more details, please see Appendix A). The training and validation

http://enarc.space.swri.edu/EUV/


120CHAPTER 4. COMBINED APPROACH FOR PLASMASPHERE MODELING

datasets were constructed by randomly dividing the whole dataset into K=5 subsets,

where in each iteration, one subset was left aside and used to validate the model (not

used for training), while the rest of the K – 1 subsets were used to train a neural

network. It should be noted that while the division of data into training, validation,

and test sets is carried out in a random fashion in that study, the more secure way

to perform splitting for the time series is to divide data sequentially. The sequen-

tial division guarantees independence of all three subsets, while random division may

produce optimistic evaluations on the validation and test sets for the events outside

of the time period of the dataset. Nonetheless, the network resulting from train-

ing conducted using the random division would still have a good performance when

reconstructing the past events.

In this study, we expand the analysis performed in Zhelavskaya et al. (2017) by

conducting the K-fold cross validation procedure using sequential division of data

into training and validation sets. We use an approach similar to the one implemented

in Zhelavskaya et al. (2019). In that study, the authors implemented an approach

incorporating both sequentiality and randomness in splitting the data into training

and validation sets. The motivation behind that is that, as discussed above, random

division into folds may lead to optimistic evaluations on the validation set, since

such splitting causes a correlation between the training and validation sets. The

sequential splitting, in turn, may lead to a significantly different distribution of the

target variable in the training and validation sets. For example, it may occur that

the validation or training set does not contain periods of high geomagnetic activity

due to the way the data were split. Therefore, Zhelavskaya et al. (2019) implemented

an intermediate solution. They first split the data into 35-day blocks sequential in

time, and then assigned these 35-day blocks randomly to the cross-validation folds

for either training or validation. The reason for using blocks of a 35-day length is to

avoid the possible effect of the 27-day recurrence caused by the solar rotation.

We apply the K-fold cross validation procedure described above to the density

measurements from the Van Allen Probes. The obtained results are described in

detail in Appendix A. In summary, we confirm the findings of the original study of

Zhelavskaya et al. (2017). The models based on the geomagnetic indices yield the best

performance, compared to the models based only on solar wind or on both solar wind

and geomagnetic indices. As discussed in the original study, the models based on the

solar wind inputs are less accurate than models based on geomagnetic indices. At the
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same time, the models based on both data sources tend to overfit the training data.

We find that the optimal model is based on the 48-hour time history of geomagnetic

indices AE, Kp, Sym-H, and also F10.7. The model also includes the location input

given by L and MLT. This updated version of the PINE model is used in this study.

Further in the paper, we apply the model to the out-of-sample period from 30 June

2016 to 01 January 2018 (which was not used neither in training or validation) and

test the model performance during that interval.

4.3.2 The physics-based model of plasma density VERB-CS

The evolution of the plasmasphere density in the equatorial plane can be described

by the following equation:

∂n

∂t
+ vφ

∂n

∂φ
+ vR

∂n

∂R
= S − L (4.1)

where n denotes the plasma density; φ is the MLT; R is the radial distance in the equa-

torial plane; vφ and vR are drift velocities in MLT and radial distance, respectively; S

is the source of charged particles; and L includes loss processes. The second and third

terms describe the transport of the plasmaspheric particles due to the E × B drift.

Refilling is taken into account by the source term S, and the loss term L accounts for

the loss of the particles into the interplanetary medium.

We calculate E ×B drift velocities using the dipole magnetic field approximation

and assuming that the electric field is a superposition of co-rotation, convection, and

subauroral polarization stream (SAPS)-driven electric fields. The co-rotation electric

field is calculated from the electrostatic potential:

φCR = −ACR

r
, ACR ≈ 92 kV/RE (4.2)

To calculate the convection electric field, we use the Kp-dependent Volland-Stern

electric field model (Maynard and Chen, 1975; Stern, 1975; Volland, 1973):

φVS = −AMCr
2 sin(φ), AMC =

0.045

1− 0.159Kp + 0.0093Kp2
(4.3)

We use a shielding parameter γ = 1.8 instead of standard γ = 2, as our experiments

show that using γ = 1.8 agrees better with observations (more details are provided
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in the Results and Discussion sections). We include the effect of SAPS in the model

by using the Kp-dependent model of the SAPS electric field developed by Goldstein

et al. (2005a). This model quantitatively includes the average properties of SAPS

reported in Foster and Vo (2002). The SAPS has an effect on the location of the dusk

side plasmapause and influences the shape and location of plasmaspheric plumes.

To account for refilling, we use long-term refilling rates of equatorial electron

density from Denton et al. (2012). These rates were inferred from passive radio

emissions measured by the IMAGE RPI instrument during quiet geomagnetic times

and are valid for the range L = 2 to 9. The model provides median, mean, 1st and

3rd quartiles of the refilling rates. In our study, we have used the median refilling

rate: log10(dne,eq

dt
) = 2.22− 0.006L− 0.0347L2 (in cm−3/day). Our experiments show

that VERB-CS achieves a better performance when refilling rates are multiplied by

a factor of 1.75. The model without such increased refilling rates showed significant

underestimation of density values on the night side. The increased refilling rates

improved that aspect of the model and therefore in this study we use refilling rates

from Denton et al. (2012) multiplied by a factor of 1.75. Additional experiments are

shown in Supporting Information (Figures S12-S15 and description therein).

The escape of particles from the plasmasphere into the interplanetary medium

through the magnetopause can be described by the loss term L of the form

L =
n

τ
(4.4)

where τ is a lifetime parameter. To model magnetopause loss, we set τ close to 0

outside of the magnetosphere, and to a very large number inside the magnetosphere.

The boundary of the magnetosphere, the magnetopause, is calculated using the Shue

et al. (1998) model.

To solve equation (4.1) numerically, we employ the VERB-CS code (Aseev and

Shprits, 2019). The VERB-CS code models electron transport in ambient electric

and magnetic fields and loss due to interaction with plasma waves. The VERB-CS

code solves the two-dimensional advection equation that describes the particle drift,

and we have extended the code to solve equation (4.1) by introducing losses to the

magnetopause and the source term S.

Equation (4.1) must be complemented by initial and boundary conditions. To

specify the initial conditions, we use the empirical density model of Sheeley et al.
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(2001) and the model of plasmapause by Carpenter and Anderson (1992). The models

by Sheeley et al. (2001) provide the mean and the standard deviation of measurements

for the plasmasphere and trough, and are valid for 3 ≤ L ≤ 7 and all local times.

To extend the density to lower L-shells, we use the density at L = 3 for L < 3. We

start our simulations using the VERB-CS code during geomagnetically quiet intervals

(Kp ≤ 2) and therefore assume that the plasmasphere is symmetric in MLT at the

beginning of each simulation.

The boundary conditions are periodic in MLT and constant in R. They are set

at R0 = 1.75 and 10 RE with 0.2-RE and 0.5-hour grid steps in radial distance and

MLT, respectively. We use the Sheeley et al. (2001) model to set the inner boundary

conditions at 1.75 RE. We use a statistical model of electron plasma sheet density

developed by Dubyagin et al. (2016) to set the outer boundary conditions at 10 RE.

The model is valid for the nightside MLT sectors and distances between 6 and 11 RE

and is based on ∼ 400 h of particle measurements from the THEMIS mission. The

model is parameterized by the average of the solar wind proton density over 4 h and

the average of the southward component of interplanetary magnetic field (IMF BS)

over 6 h. We assume that the electrons at 10 RE reside on the open drift paths at 10

RE on the dayside and set the outer boundary conditions to 0 from 6 to 18 MLT.

The plasmasphere is known to reach saturation after prolonged periods of quiet

geomagnetic conditions (Park, 1974; Xiao-Ting et al., 1988; Lawrence et al., 1999;

Su et al., 2001b). To account for this effect, we have imposed a saturation upper

limit of density on the code output. We have used the saturated density model

of Carpenter and Anderson (1992). It is worth noting that this model provides an

average of plasmasphere density observed after periods of relatively quiet geomagnetic

conditions for at least 62 hours, rather than a theoretical upper limit. However, the

ease of use of this model makes it a good choice for the purposes of this study,

namely to illustrate the application of data assimilation to combining neural network

and physics-based models together in an optimal way.

4.3.3 The assimilative model

In this section, we outline the Kalman filter technique and describe its application to

the fusion of the physics-based and empirical models of the plasmasphere.

The Kalman filter is a popular technique for data assimilation. It is commonly
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used to adjust model predictions in accordance with available, typically sparse, obser-

vations, while taking into account uncertainties of both the model and observations

(Kalman, 1960). In this study, we adapt the Kalman filter technique to combine the

predictions of two models, namely the physics-based VERB-CS code and the neural

network-based PINE model. For this purpose, we consider the VERB-CS code as a

model that propagates a state of the system in time. The output of the data-driven

PINE model, in turn, is used as observations.

The Kalman Filter

The Kalman filter consists of two steps: the prediction step and the update step.

These steps are repeated in cycles. In the prediction step, the model is used to issue

predictions at the current time step tk, using the previous state of the system, if

available. The output of this step is called the forecast of the system. In the update

step, this forecast is updated in an optimal way, given the observations at time tk.

The output of this step is called the analysis. At this point, the cycle of the Kalman

filter is complete and the next iteration can start at time tk+1. Before describing each

of the steps in more detail, several notations need to be introduced.

Let us denote the model forecast of the density at time tk by nfk . Hereinafter,

subscript k is an index of time tk, bold lowercase letters denote vectors that are

obtained after discretization of a physical quantity, and bold upper-case letters denote

matrices. Please note that all discretized variables are assumed to be vectors.

If equation (4.1) is linear, its discretized version can generally be written as

nfk = Mk−1n
a
k−1, (4.5)

where superscripts f and a denote forecast and analysis, respectively, and Mk−1 is a

matrix, also referred to as the model matrix or the model operator. This matrix can

be obtained, for example, by applying a finite difference method to (4.1). At a given

time tk−1, the model matrix Mk−1 propagates the current state of the system nak−1 to

the next state in time nfk . The analysis nak−1 is the best estimate of the state vector

at time tk−1, based on the model and the available observations. The evolution of

plasma density can be modeled by sequentially solving equation (4.5) for k = 1, 2, . . ..

If applied to a real (“true”) state ntk−1 of the system, the model matrix propagates

ntk−1 with some error εMk . This error can originate from the uncertainties of the model,
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such as errors due to missing physical processes in the model or numerical errors due

to discretization of the continuous equation (4.1). It is also referred to as the model

error:

ntk = Mk−1n
t
k−1 + εMk . (4.6)

The vector εmk is usually assumed to be a Gaussian white-noise random variable

with zero mean and covariance matrix Qk, which is referred to as the model error

covariance matrix (i.e., E(εMk ) = 0 and E(εMk ε
M>
k ) = Qk, where E is the expectation

operator). To correct the model error εMk , we can exploit the information that obser-

vations provide. Given a true state of the system ntk, that is defined on the same grid

as the forecast nfk , the measurements nobsk can be represented as follows:

nobsk = Hkn
t
k + εobsk , (4.7)

where Hk is referred to as the observation operator and εobsk is the observation error.

The role of the observation operator is to convert the true state from the model

grid onto the grid of observations (these two grids are generally different). The

observation error εobsk can be associated with the measurement technique. Note that

when we treat the output of the data-driven PINE model as observations, the error

εobsk includes errors of the PINE model predictions. The typical assumption is that

vector εobsk is a Gaussian white-noise random variable with zero mean and covariance

matrix Rk, also referred to as the observation error covariance matrix (i.e., E(εobsk ) = 0

and E(εobsk εobs>k ) = Rk).

The Kalman filter then combines the model forecast nfk with observations nobsk to

obtain a prediction that is closest to the truth in the least squares sense, given the

information about the model and observation error covariance matrices Qk and Rk.

The optimal combination of the forecast and observations is referred to as analysis,

nak, as mentioned above. The analysis nak at time tk can be obtained from the analysis

nak−1 at the previous time step by sequentially solving the equations that constitute

the Kalman filter described below.

Prediction step

The prediction step advances the forecast and the forecast error covariance. First,

the analysis nak−1 obtained at time tk−1 is propagated to the next time tk using the

model matrix Mk−1:

nfk = Mk−1n
a
k−1. (4.8)
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Then, the forecast error covariance matrix Pf
k is updated according to:

Pf
k = Mk−1P

a
k−1M

T
k−1 + Qk−1, (4.9)

where Pa
k is the analysis error covariance matrix. The matrices Pf

k and Pa
k are es-

timates of forecast and analysis errors, respectively. The forecast error covariance

matrix Pf
k is used later in the update step.

Update step

In the update step, the forecast obtained in the previous step is updated according

to observations:

nak = nfk + Kk

(
nobsk −Hkn

f
k

)
, (4.10)

where Kk is referred to as the Kalman gain. The Kalman gain is a matrix of optimal

weights that is used to correct the forecast based on available observations. The last

term in the equation represents the correction to the forecast given the observations,

weighted by the Kalman gain. The Kalman gain Kk is updated at time tk as follows:

Kk = Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1

. (4.11)

Finally, the analysis error covariance matrix Pa
k is updated as follows:

Pa
k = Pf

k −KkHkP
f
k . (4.12)

This finishes the iteration k of the Kalman filter.

Details of implementation

There are several details of the Kalman filter implementation that should be taken

into account, which we describe below.

The nonlinear term S in equation (4.1) does not allow us to write the discretization

of the equation in the form (4.8). The non-linearity of the equation requires the

extension of the Kalman filter equations (4.8) and (4.9) by linearizing the model

operator. In order to simplify the implementation of the Kalman filter, we avoid the

linearization of the model operator by running one step of the VERB-CS code instead

of solving equation (4.8) to obtain the plasma density forecast nfk using a previous

(optimal) state nak−1, obtained in the update step (eq. (4.10)), as initial condition for

the VERB-CS code. The VERB-CS code solves the partial differential equation (4.1)
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numerically by discretizing density n, drift velocities vϕ and vR, sources S, losses

L, and spatial and temporal derivatives ∂
∂vϕ

, ∂
∂vR

, and ∂
∂t

. Discretization allows us

to consider plasma density and other parameters at discrete times tk, where k is an

integer, on the grid consisting of discrete values of MLT and R.

To update the forecast error covariance matrix Pf
k in equation (4.9), we obtain

the model matrix Mk−1 by discretizing equation (4.1) without the source term S,

which removes the nonlinearity from equation (4.1). For this, we use the first-order

explicit upwind finite difference scheme with a time step that automatically adapts to

changing drift velocities to satisfy the Courant stability condition. The forward model

includes the refilling, therefore the refilling is not accounted for only in the calculation

of the forecast error covariance matrix. Neglecting the refilling rates in the update

of the forecast error covariance matrix Pf
k does not significantly affect the optimality

of the Kalman filter, if the step of data assimilation is chosen to be much smaller

than the characteristic time of the refilling (that is on the order of days, Denton et al.

(2012) and references therein). In this study, the data assimilation is performed every

4 hours. Moreover, as the primary goal of this study is to demonstrate whether the

Kalman filter can be applied to combine a neural network and a physics-based model

of the plasmasphere and what limitations it has, we do not aim at the most accurate

implementation of the Kalman filter here (for example, using the extended Kalman

filter (Goodwin and Sin, 1984; Ide et al., 1997)).

As mentioned in the previous paragraph, assimilation of the VERB-CS and the

PINE model output is performed every 4 hours. This time allows the physics-based

code to evolve the state of the system starting from the initial “blended” state. We

note that this time was chosen empirically. Comparison with other times (3 and 5

hours, not shown here) showed that using 4 hours provides a slightly better perfor-

mance. The assimilation is not performed when Kp > 6 and for one day after the

storm, i.e., only the output of the VERB-CS code is taken into account during the

storm times and shortly after them, and the PINE output is not considered. This is

done in order to avoid possible errors that can be propagated from the neural network

model, as it is not reliable for Kp > 6.

Another aspect that should be noted is the implementation of the observation

operator Hk. This operator transforms the forecast of the model nfk from the model

grid onto the grid of observations (see eq. (4.7)). In our case, the model grid is that of

VERB-CS, and the observations grid is that of the PINE model. As discussed in the
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previous section, the spatial grid of VERB-CS ranges from 0 to 24 hours with 0.5-hour

grid step in MLT and from 1.75 to 10 RE with 0.2 RE grid step in radial distance. In

order to obtain the global output using the PINE model (i.e., on the whole equatorial

plane and not just at specific L and MLT), we need to assume a spatial grid, on which

the output is produced. The PINE model is valid for all MLT sectors, and from 1.75

to 6.15 RE in radial distance due to the use of density measurements from Van Allen

Probes for training. Therefore, the lower and upper boundaries of the PINE grid

are set at 1.75 and 6.15 RE in radial distance, respectively. In order to simplify the

implementation of the Kalman filter, we use a spatial grid of the same resolution

as the VERB-CS, namely with 0.5-hour and 0.2-RE grid steps in MLT and radial

distance, respectively. Thus, the spatial grid of PINE is a subset of the VERB-CS

grid, which makes it easier to assimilate the PINE output. Hk is then defined as a

matrix consisting of zeros and ones, where 1 corresponds to an element of this matrix

when the model’s (VERB-CS’) grid point coincides with the observation (PINE’s)

grid point, and 0 otherwise. The number of rows in Hk is the number of grid points

of PINE, and the number of columns is the number of grid points of VERB-CS.

In the standard formulation of the Kalman filter, the model and observation error

covariance matrices are assumed to be known., That is rarely the case in practice,

and simple approximations are typically made. One approach is to set up the model

and observation covariance matrices Qk and Rk as diagonal matrices with elements

αm(nf )2 and αobs(nobs)2, respectively (Kondrashov et al., 2011). αm and αobs are

referred to as model and observation errors, respectively, and are usually empirically

chosen constants. If they are chosen to be equal to each other, both model and data

contribute equally to the result of data assimilation, otherwise the result is dominated

by either data or model. This approach is used in a number of studies in space physics,

in particular for the radiation belt reanalysis (Daae et al., 2011; Shprits et al., 2013;

Kellerman et al., 2014; Cervantes et al., 2020). In this study, we employ an approach

that builds on and extends this methodology. We use the same form of the model

and observation covariance matrices Qk and Rk, namely, diagonal matrices with

elements αm(nf )2 and αobs(nobs)2, respectively. However, we choose the model and

observation errors, αm and αobs, to depend on the plasmapause position (instead of

just being constant). Specifically, we assign different values to m and obs depending on

whether nf and nobs are located inside or outside the plasmapause. The plasmapause

is calculated according to a fixed density threshold of 40 cm−3 (the densities larger
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than the threshold are assumed to be inside the plasmasphere, otherwise – outside).

We assign the model error inside the plasmapause αminside = 0.397, the model error

outside the plasmapause αmoutside = 0.463, the observation error inside the plasmapause

αobsinside = 0.335, and the observation error outside the plasmapause αobsoutside = 0.333.

The description of how these values were obtained is presented in Appendix B. Using

such an approach, we obtain a better agreement between the assimilative model

and observations, compared to using single constants for αm(nf )2 and αobs(nobs)2,

respectively. However, we choose the model and observation errors, αm and αobs.

4.4 Results

In this section, we perform several tests to compare the performance of the PINE,

VERB-CS, and assimilative model, which is henceforth referred to as the Assimila-

tive Magnetospheric Plasma density (AMP) model. We compare the outputs of the

models during the 2003 Halloween storm and a number of events during March-June

2001. We validate the models by comparing the modeled and observed shape of the

plasmasphere by using the plasmapause location obtained from the IMAGE EUV

instrument. We also perform a long-term density reconstruction for the period of

30 June 2016 to 1 January 2018, using all the models. For the long-term run, we

validate the models by comparing their output to the in-situ density measurements

from RBSP-A. This period was not used in the training of the PINE model. The

setup of all the models used in these tests is described in section 4.3.

4.4.1 Test 1: Halloween storm 2003

The first test we perform is to compare the performance of the models for the 2003

Halloween storm. The Halloween storm occurred from late October to early Novem-

ber 2003 and was one of the strongest solar storms observed during the satellite era.

During this period, a series of energetic eruptions occurred, including two CMEs

(coronal mass ejections), which struck the Earth, one shortly after another, with an

extremely short (less than a day) Sun-Earth shock transit time (e.g., Gopalswamy,

2006). At the Earth, Kp reached 9 and Dst nearly -400 nT. Fortunately, the plasma-

pause locations derived from IMAGE EUV are available during some parts of the

storm, which makes it an ideal event for testing the models for extreme geomagnetic
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Figure 4.2: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during the 2003 Halloween storm. The first four rows show the
outputs of the models corresponding to the times marked with the red lines in the
bottom panel showing the Kp index during the 2003 Halloween storm. The black-
and-white dots show the location of the plasmapause derived from the IMAGE EUV
images. The color in the first four rows indicates the logarithm of density (the scale
of the colorbar is the same for all models and all times). The gray and black section
of the colorbar indicates a density threshold of 40± 10 cm−3 and can be considered a
rough approximation of the plasmapause location for the sake of comparison to the
observed plasmapause position obtained from IMAGE EUV (more details on that
are given in section 4.2). The Sun is to the left. Row (a) corresponds to the time
before the storm, (b) to the period during the storm (second CME), (c) and (d) to
the recovery phase of the storm.
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conditions.

Figure 4.2 shows the global electron density reconstruction during the Halloween

storm 2003 using the PINE (left column), VERB-CS (middle column), and assimila-

tive (right column) models. The first four rows show the global snapshots of density,

and the bottom row shows the Kp index during the event. The first four rows corre-

spond to the specific times during the event when the plasmapause from the IMAGE

EUV instrument was available. These times are marked with the red lines and labels

(a-d) in the bottom panel.

In order to obtain a global output using the PINE model, it was applied to each

point on its spatial grid independently (described in section 4.3.3), and the smoothed

global output shown in Figure 4.2 was obtained by interpolating between the points.

The output of the VERB-CS code was obtained by running the model starting from

quiet geomagnetic conditions (27-Oct-2003 20:00 UT, Kp = 1.7) with the setup de-

scribed in section 4.3.2. The output of the assimilative model was obtained by running

the model from the same time. Its setup is described in section 4.3.3. The time step of

the simulations is 15 minutes for all the models. The time of the IMAGE plasmapause

location is chosen to be as close as possible to the temporal grid of the models, but

not further than 14 minutes away. Therefore, the time of the IMAGE plasmapause

may not exactly coincide with the time of the simulation and may deviate from it by

14 minutes maximum. Although it is possible to set the exact time of the simulation

for the PINE model, we choose to select the same temporal grid as in the VERB-CS

and assimilative AMP models to ensure an equal comparison between all the models.

As seen in Figure 4.2, the PINE model agrees well with the plasmapause derived

from the IMAGE EUV before the storm (row (a)), but produces unrealistic global

density reconstruction during the main phase of the storm. As discussed in the

introduction, the reason for that is the absence of training examples during extreme

geomagnetic events (there is no single Kp = 9 in the training dataset of PINE). After

the storm (row (c)), the size of the plasmasphere reproduced with PINE is in good

agreement with the IMAGE observations. On the contrary, the VERB-CS model

produces an overly extended plasmasphere during the quiet time before the storm,

but reproduces the massive erosion of the plasmasphere (row (b)) observed in the

IMAGE EUV observations as well. Several days after the storm (row (d)), VERB-

CS produces lower densities inside the plasmasphere than those produced by PINE

(this can be seen from the color in the density snapshots: yellow color in VERB-CS,
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compared to the red color in the PINE output).

The assimilative AMP model is in good agreement with IMAGE observations for

all phases of the disturbance. The size of the plasmasphere before the storm is in

better agreement with IMAGE plasmapause observations, compared to the VERB-

CS output, and is closer to the size of the plasmasphere modeled with PINE. During

the storm, the PINE output is not taken into account and, therefore, the assimilative

model produces results similar to the physics-based VERB-CS model, successfully

reproducing the massive erosion of the plasmasphere. During the recovery phase,

the PINE model is taken into account and therefore, the assimilative model produces

densities closer to those obtained with PINE inside the plasmasphere (as can be

seen from the color in the density snapshots), while the shape of the plasmapause

is retained from both PINE and VERB-CS models. This example illustrates how

a neural network-based and physics-based models can be combined in an optimal

way to produce a more accurate global density reconstruction, than each of them

separately. Such a result is a good indication that the assimilative methodology is

useful to model the plasmasphere dynamics during extreme geomagnetic events.

4.4.2 Test 2: Multiple events (March-June 2001)

In the previous section, we showed that the assimilation of the neural network- and

physics-based models demonstrated good agreement with the plasmapause observa-

tions during the 2003 Halloween storm, and performed better than either of the models

separately. In this section, we test the models further by comparing their output for

a number of events in March-June 2001. We have selected 5 events corresponding

to different Kp levels, starting from quiet geomagnetic conditions (Kp = 2.7) and

reaching disturbed ones (Kp = 8). The motivation behind this selection was to test

how the models perform separately and when combined by means of data assimilation

for different levels of geomagnetic disturbance. The output of the models through-

out different phases of the selected events is provided and described in Supporting

Information (Figures S1-S7).

Figure 4.3 shows snapshots of global density reconstructions using the PINE,

VERB-CS, and assimilative models for 5 different events in 2001. The format is

similar to Figure 4.2. The columns correspond to models, as labeled in the top

row. The rows correspond to events. The times of the density snapshots and the
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Figure 4.3: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during a series of events in 2001, as indicated in the labels on
the left in each row. The format of the density snapshots is the same as in Figure
4.2.
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corresponding Kp values are labeled in each row on the left. The events are ordered

by increasing Kp index, rather than by time. The format of the density snapshots is

the same as in the top four rows of Figure 4.2.

The global density reconstructions are obtained in the same fashion, as described

in the previous section. Spatial and temporal grids of the models and their setup are

also the same as used there. We note again that the time grid step is 15 minutes, and

therefore may not exactly coincide with the timing of the plasmapause observations

derived from IMAGE EUV (but is not farther than 10 minutes away). The simula-

tions were run separately for 5 different events, each starting from quiet geomagnetic

conditions. The starting time and Kp at the beginning of the events were: (a) 10

April 2001 03:00 UT (Kp = 1.7), (b) 17 June 2001 00:00 UT (Kp = 0.3), (c) 08 May

2001 03:00 UT (Kp = 0.7), (d) 18 March 2001 12:00 UT (Kp = 1), and (e) 30 March

2001 11:00 UT (Kp = 2).

It can be seen that PINE performs well during low and moderate geomagnetic

activity (rows a-c), i.e., the modeled plasmapause agrees well with the one observed

with IMAGE, similar to the results of the previous section. However, for a more

disturbed event, such as in row (e), when Kp = 8, it produces an abnormal artifact

on the night side. On the contrary, the physics-based VERB-CS model performs

very well for the disturbed times (rows d and e): the modeled plasmapause matches

exactly the one observed with IMAGE. However, for the quiet event shown in row (a),

it produces an overly expanded plasmasphere, compared to the observed plasmapause,

as well as for the moderate disturbance event in row (b).

The assimilative model blends the outputs of both models in an optimal way for all

the tested events. Its output is closer to the output of the VERB-CS code during the

disturbed intervals (rows d-e) and to the output of the PINE model for the quiet times

(rows a-b). For the event (c), the output of the assimilation appears to be somewhat

in between the outputs of the PINE and VERB-CS models. This test illustrates that

the output of the combined model agrees better with the plasmapause observations

from IMAGE than the output of each of the models used separately, not only for

extreme geomagnetic storm, but also for quiet and moderately disturbed events.
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4.4.3 Test 3: Long-term reconstruction of density

In the two previous sections, we have illustrated the performance of the assimilative,

PINE, and VERB-CS models for different geomagnetic conditions, including quiet,

moderate, and extreme conditions. The assimilative model demonstrated a better

performance compared to PINE and VERB-CS used separately for all considered

events. In this section, we test the performance of all models further by performing

a long-term reconstruction of plasma density using all the models. We compare the

modeled density with the in-situ density measurements from RBSP-A during the pe-

riod between 30 June 2016 and 01 January 2018. We choose this particular interval

for testing, as the density measurements during this time were mostly not used in

the training of the PINE model. Therefore, this choice ensures a fair comparison

between the performance of PINE, VERB-CS, and the assimilative model. Further-

more, RBSP-A crosses all MLT sectors during this interval, as shown in Figure 4.4,

which allows us to evaluate the performance of the models in different MLT sectors.

The setup of all three models is the same as in the two previous sections. Summary

plots demonstrating performance metrics calculated during this period for all three

models are shown at the end of this section. It is worth noting that the PINE model

was trained on the interval 01 October 2012 – 01 July 2016 (Zhelavskaya et al., 2017),

and therefore, we exclude the period 30 June – 01 July 2016 when calculating the

performance metrics here. We choose 30 June 2016 as the start time of the simula-

tion as the Kp index was smaller than on 02 July 2016 (0.3 vs. 0.7), and also since

there was a minor disturbance (Kp = 3.3) between 30 June and 02 July, which could

negatively influence the initial conditions for VERB-CS.

Figure 4.5 presents a comparison of the output of the neural network density

model in-situ density measurements from RBSP-A from 30 June 2016 to 01 January

2018. Panel (a) shows the in-situ density observations from RBSP-A. Panel (b) shows

the output of the PINE model. These two panels have the same format: the x-axis

corresponds to time, the y-axis to the L-shell, and the color indicates the logarithm

of electron density. The next two panels (c) and (d) show the difference between the

observations and the output of the model. Panel (c) shows the absolute difference

between logarithms of modeled and observed density. Panel (d) shows the difference

itself. The blue color in this panel implies underestimation of density by the model

(the modeled density is smaller than observed), the red color overestimation. We

note the small data gaps that can be seen as white vertical stripes in these panels.
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Figure 4.4: Coverage of RBSP-A during 30 June 2016 – 01 January 2018.

These are gaps in density measurements and the model output is not shown during

these times as well since there are no measurements to compare with. Panel (e)

shows the location of RBSP-A’s apogee during this interval. The gray shaded area

implies that the apogee of RBSP-A was at the nightside (i.e., from 18 to 6 MLT).

It is worth noting that the apogee of RBSP-A is located in the night sector during

approximately the first half of the interval, and therefore, the densities on the farther

L-shells are smaller (dark blue color), compared to the second half of the interval

(where the color is light green on the farther L-shells). During the second half of the

interval, RBSP-A’s apogee was located on the dayside, and therefore, the density is

higher there due to plasmaspheric bulge and plume. The bottom panel shows the Kp

index during this period.

To obtain the model output at the L- and MLT-coordinates of RBSP-A, the

model was first applied to the full spatial grid of L and MLT. Then, a virtual satel-

lite was flown through the model output at the coordinates closest to the L- and

MLT-coordinates of RBSP-A, and after that, the output was interpolated to these

coordinates. Although the PINE model can be directly applied to specific L and

MLT coordinates without the need to make a virtual flyby, such a procedure was

nonetheless employed in order to obtain a consistent comparison with VERB-CS and

the assimilative model.

It can be seen that the PINE model output is very similar to the observations. The

model captures the expansion of the plasmasphere that occurs during periods of quiet
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Figure 4.5: Long-term comparison of the PINE model and the RBSP-A density
measurements during July 2016 – January 2018. Panels (a) and (b) show the RBSP-
A density measurements and the output of the PINE model, respectively, where the
L-shell is on the y-axis, time is on the x-axis, and the color indicates the log of density.
Panels (c), (d), and (e) show the absolute difference, the sign of the difference, and
the difference between log of the model and data, respectively.
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geomagnetic conditions and erosion associated with geomagnetic disturbances. For

example, the massive erosion of the plasmasphere during the September 2017 storm

is captured by the model. Moreover, the positive and negative differences between

the model output and observations (shown in panel (d)) are spread randomly over

the duration of the simulation, which indicates that there is no systematic bias in

the model. Overall, these results show that the PINE model performs well on the

out-of-sample period (i.e., the period not used in the training).

Figure 4.6 shows the comparison between in-situ density from RBSP-A and the

output of the physics-based VERB-CS code. The format of the figure is the same

as in Figure 4.5, where panel (b) presents the output of VERB-CS, and panels (c)

and (d) show the difference between the modeled and observed density in different

formats. The model output at the coordinates of RBSP-A was obtained in the same

fashion as in Figure 4.5: the model was first run on the full spatial grid, and then

the virtual satellite was flown through the output at the L- and MLT-coordinates of

RBSP-A.

It can be seen that the VERB-CS model captures the general dynamics of the

plasmasphere, i.e., its erosion and expansion, well. Again, the model reproduces a

massive erosion of the plasmasphere during the September 2017 storm. It can be

seen, however, that the differences between observations and the output of VERB-CS

shown in panel (c) are larger than those of the PINE model (shown in Figure 4.5). The

positive and negative differences between the model output and observations (panel

(d)) also seem to be spread randomly over the duration of the simulation, however, a

slight overestimation can be seen during July-October 2017, when RBSP-A’s apogee

was in the 12-17 MLT sector.

Finally, Figure 4.7 presents the comparison between in-situ density measurements

from RBSP-A and the output of the assimilative model. The format is the same as in

Figures 4.5 and 4.6, where panel (b) shows the output of the assimilative model and

panels (c) and (d) show the difference between the model output and observations in

different formats (as described below in Figure 4.5). The output of the model was

obtained in the same manner as for the other models. The assimilative model was

first run on the full spatial grid, and then a virtual satellite was flown through the

global output of the assimilative model along the RBSP-A coordinates.

It can be seen from the figure that the assimilative model successfully captures

the general dynamics of the plasmasphere, i.e., erosion and expansion associated with
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Figure 4.6: Long-term comparison of the physics-based model and the RBSP-A
density measurements during July 2016 – January 2018. Panels (a) and (b) show the
RBSP-A density measurements and the output of the physics-based model, respec-
tively, where the L-shell is on the y-axis, time is on the x-axis, and the color shows
the log of density. Panels (c), (d), and (e) show the absolute difference, the sign of
the difference, and the difference between log of the model and data, respectively.
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Figure 4.7: Long-term comparison of the assimilative model and the RBSP-A den-
sity measurements during July 2016 – January 2018. Panels (a) and (b) show the
RBSP-A density measurements and the output of the assimilative model, respec-
tively, where the L shell is on the y-axis, time is on the x-axis, and the color shows
the log of density. Panels (c), (d), and (e) show the absolute difference, the sign of
the difference, and the difference between log of the model and data, respectively.
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corresponding geomagnetic conditions. Although, similarly to VERB-CS, it produces

larger densities in the 12-17 MLT sector (in the second half of the interval), its output

is in better agreement during the rest of the interval, compared to the VERB-CS

model: the overestimation that was observed in the VERB-CS output is reduced. As

can be seen from panel (c), the errors of the assimilative model are larger than those

of PINE on the nightside but are comparable than those of PINE on the dayside.

The densities inside the plasmasphere (at low L-shells) are lower compared to the

observations from RBSP-A, which is caused by the use of the saturation density model

(Carpenter and Anderson, 1992) in the assimilative model setup as well. Overall, the

performance of the assimilative model improves on the dayside compared to VERB-

CS and is similar to that of PINE. On the nightside, the assimilative model produces

results closer to the VERB-CS.

Performance metrics

To obtain a general overview of the performance of all the models, it is helpful to

examine the performance metrics calculated for each model over the whole time period

under consideration. We use the root-mean-square error (RMSE) and mean error

(ME) or bias to analyse the performance of all the models in different L and MLT

sectors.

Figure 4.8 shows the RMSE (top row) and ME/bias (bottom row) of the PINE

(left column), assimilative (middle), and VERB-CS (right) models calculated over

the period from 02 July 2016 to 01 January 2018, used in the long-term simulations

shown in Figures 4.5-4.7. It is worth mentioning again that the PINE model was

trained on the interval 01 October 2012 – 01 July 2016 (Zhelavskaya et al., 2017),

and therefore we exclude the period 30 June – 01 July 2016, when calculating the

performance metrics here. In order to calculate the metrics, the data are binned in

L and MLT, and the performance metrics are computed separately for each bin. The

bins in L range from 1.5 to 6.5 with 0.5 bin size, and in MLT from 0 to 24 with bin

size 1.

It can be seen that all the models have lower errors closer to the Earth (inside the

plasmasphere), and that the errors increase with L. The errors of the PINE model

are the lowest out of all models in terms of both RMSE and bias in all bins. The

errors of the physics-based model are larger on the nightside and smaller for 6-14

MLT. The model has a larger bias in 12-18 MLT sector, however. On the nightside
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Figure 4.8: The root-mean-square error (top row) and the bias or mean error (bot-
tom row) of the PINE, physics-based, and assimilative models for the 02 July 2016 –
01 January 2018 period. The Sun is to the left. The colorbar of each row shows the
value of the corresponding metric (RMSE or ME). The colorbar limits are the same
for all models in each row.
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the bias is smaller and tends to be negative. This result is similar to the one shown

in Figure 4.6, and implies that the VERB-CS model systematically produces slight

overestimation of density in the 12-18 MLT sector, than is observed. This may be

caused by the use of increased refilling rates (by the factor of 1.75). Our experiments

(not shown here) demonstrated that the model without such increased refilling rates

produces significant underestimation of density on the nightside, meaning that the

code produces a more eroded plasmasphere on the nightside than is observed. After

performing sensitivity tests to all the input parameters of the VERB-CS code (mag-

netic field, electric field, initial conditions, boundary conditions, etc.), we found that

changes in the electric field have the most impact on this behavior (not shown here).

Modifying the shielding parameter γ changes the extent of erosion significantly. From

sensitivity tests (not shown), we found that using γ = 1.8 provides better agreement

with observations than using the standard γ = 2 (Maynard and Chen, 1975). There-

fore, we use γ = 1.8 in these simulations. This aspect of the VERB-CS code requires

further investigation and testing, which we discuss in more detail in section 4.5.

It can be seen that the errors and bias of the assimilative model are significantly

reduced in the day and dusk sectors, compared to the physics-based model, but are

still large on the nightside (21-7 MLT). This implies that the assimilative technique

works well for blending the models on the dayside: the error of the assimilative model

is smaller than that of VERB-CS and is closer to the PINE error. However, on the

nightside, the assimilative model performance is similar to that of VERB-CS rather

than PINE. One reason for that could lie in the performance of VERB-CS and in the

choice of model and observation errors αm and αobs in the Kalman filter. VERB-CS

has considerably larger errors on the nightside than PINE does, and therefore, it is

probable that αm and αobs used here do not account for such a difference in errors

between VERB-CS (model) and PINE (used as observations). The VERB-CS code

may not properly account for some physical processes on the night side, which leads

to the increased error in the assimilative model. If the VERB-CS model is improved,

the results of data assimilation will consequently be improved as well. We discuss

this in more detail in the Discussion section.

This test still illustrates that the assimilative methodology provides quantitative

improvement in performance compared to the performance of the VERB-CS model (in

particular, on the dayside). The performance of the assimilative model is comparable

to the PINE model performance on the dayside but is closer to the performance of
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VERB-CS on the night side. It is clear that further improvement in the physics-based

model (VERB-CS), or using a more advanced model, will improve the performance of

the assimilative model. We note that although the VERB-CS code and assimilative

model reproduce the location of the plasmapause during storm times better than the

PINE model (Figures 4.2 and 4.3), they show larger errors in low-density regions

outside the plasmasphere compared to PINE (Figure 4.8). These are two different

aspects of the models: (1) ability to predict plasmapause correctly and (2) ability to

reproduce density accurately.

As discussed above and can be seen from the results obtained in all three tests,

neural networks have a good performance in general (in terms of performance met-

rics), but their performance decreases during extreme geomagnetic storms. At the

same time, the physics-based VERB-CS code reproduces the plasmasphere dynamics

during geomagnetic storms well but tends to be less accurate quantitatively, com-

pared to the neural network PINE model. The assimilative methodology employed

here performs well at combining both models during different levels of geomagnetic

disturbance and shows the best agreement with the plasmapause derived from the

IMAGE EUV instrument out of all models. The comparison with the in-situ den-

sity from RBSP-A over a long-term reconstruction of plasma density shows that the

assimilative model can reach the performance of PINE on the dayside, but at the

moment, its errors are closer to the VERB-CS model errors on the nightside, and

consequently are larger than PINE’s. This aspect can be improved in the future

by either improving the VERB-CS model and/or by adjusting model and observa-

tion errors in the assimilative model. Overall, the assimilative model developed in this

study demonstrates a potential to combine the advantages of both neural network and

physics-based models, namely to have a good quantitative performance on average,

and produce realistic global density reconstructions during the extreme geomagnetic

events.

4.5 Discussion

Our results show that the assimilative methodology employed in this study for com-

bining the neural network PINE model and the physics-based VERB-CS code demon-

strates great potential for combining advantages of both models. Namely, the assim-

ilative model demonstrated good performance on a series of test events from the
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IMAGE era for a variety of geomagnetic conditions: quiet, moderate, disturbed, and

extreme geomagnetic storms. The output of the model showed better agreement with

the plasmapause locations derived from IMAGE EUV than PINE or VERB-CS, when

used separately (Figures 4.2 and 4.3). As discussed above, the performance of neu-

ral networks is limited by the training data. As there are no examples of extreme

geomagnetic storms in the training dataset of PINE, its performance is reduced dur-

ing such events. The assimilative methodology helps eliminate this limitation. The

assimilative model also demonstrated good capabilities in combining quantitative ad-

vantages of models in terms of performance metrics. Long-term simulations of plasma

density using all the models show that the current setup of the assimilative model

allows for improving the performance of VERB-CS considerably in the dayside local

time sector.

An advantageous feature of the assimilative model is that it can reconstruct the dy-

namics of the plasma density beyond the domain of the neural network-based model.

The domain of the data assimilative model extends to 10 RE in radial distance (as in

the physics-based VERB-CS model), compared to 6.15 RE of the PINE model. The

PINE model is valid from ∼ 1.75 to 6.15 RE due to the use of density from the Van

Allen Probes for training, and the domain of the assimilative model is the same as

that of the physics-based model, VERB-CS. Therefore, the physics-based VERB-CS

model can act as a “smart” extrapolator, extending the predictions further to the

plasma sheet. It is worth noting that we have used in-situ density measurements

from RBSP-A to validate the models. Therefore, all the models in this study were

quantitatively validated up to 6.15 RE. The quantitative validation beyond this radial

distance is outside the scope of this study, but including density measurements from

other missions, such as THEMIS, will aid in the quantitative validation of both the

VERB-CS and the assimilative models beyond 6.15 RE. Moreover, including such

density measurements into the training dataset of the neural network will also allow

for extending it to larger radial distances.

An important aspect of the assimilative approach employed here is the choice of

model and observation errors αm and αobs. In this study, we employed an approach

similar to Kondrashov et al. (2011), which was adjusted to use different constant

values for model and observation errors αm and αobs inside and outside of the plas-

masphere. We have compared the results obtained using such an approach to using

constant values of errors throughout all radial extent of models (not shown here).
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We found that using different values of errors for inside and outside the plasmapause

works better in our case and provides better agreement with observations. It is worth

noting that selecting the model and observation errors is one of the most difficult top-

ics in data assimilation and is still an active area of research (e.g., Berry and Harlim,

2017; Bishop, 2019; Hamilton et al., 2019); the existing approaches to select them

are mostly empirical. Investigating the selection of these errors in a systematic way

and experimenting with the dependence of the errors on other parameters such as L,

MLT, and/or geomagnetic activity should be the subject of future research.

As this is the first study in which a neural network model was combined with a

physics-based model of the plasmasphere, it is focused on demonstrating the assimila-

tive methodology and its potential rather than reaching the best possible accuracy for

either of the models in this study. Consequently, we made a number of assumptions

and simplifications, in particular regarding the electric field, refilling, and saturation

density models used in the physics-based VERB-CS code. We discuss them below in

the context of the results obtained in this study.

In this study, we have used the electric field model of Volland (1973) and Stern

(1975) parameterized by Kp (Maynard and Chen, 1975). Since Kp is a 3-hour in-

dex, the model inherently does not take into account the electric field variations on

timescales less than 3 hours, which may not be sufficient time to account for changes

in the plasmasphere dynamics on shorter timescales (Goldstein et al., 2005a). Using

a realistic electric field from global magnetospheric models or different parameteriza-

tion accounting for shorter timescales, such as the parameterization of Goldstein et al.

(2005a) based on solar wind and IMF parameters, can potentially improve the model

and needs to be investigated further. It is also worth noting that our tests showed

that using a smaller shielding parameter γ = 1.8 instead of standard γ = 2 with the

Maynard and Chen (1975) parameterization provides better agreement with both the

IMAGE plasmapause and in-situ density observations from RBSP-A. Changes in this

parameter significantly influence the extent of the erosion of the plasmasphere on the

nightside.

It can also be seen from the results that, in some cases, the plasmasphere produced

by the VERB-CS is more extended than was observed, in particular during geomag-

netically quiet times (e.g., first row of Figure 4.2 and of Figure 4.3). This could

be attributed to the refilling rates used. We have used long-term median refilling

rates from Denton et al. (2012) (without accounting for solar-cycle dependence). The
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model assumes that there is no significant dependence of the refilling rate on MLT.

The same refilling rates are assumed for all geomagnetic conditions. At the moment,

there still remain unsolved problems in the processes of plasmasphere ion refilling

from the ionosphere (Gallagher and Comfort, 2016). Therefore, this topic should

be explored further in regard to the physics-based modeling of the plasmasphere,

and other approaches to parameterizing the refilling should be tested. For example,

De Pascuale et al. (2018) used the approach of Rasmussen et al. (1993) to model the

refilling using the Cold PLasma physics-based model CPL (Jordanova and Miyoshi,

2005; Jordanova et al., 2010b,a, 2014), where the approach of equatorial plasma den-

sities toward equilibrium depends on the variation from the saturation level and a

timescale. The timescale of refilling depends on the local time in addition to L, and

was calculated from the differences in outgoing ion flux into the plasmasphere at

hemispheric boundaries using empirical atmosphere models, including the MSIS-86

thermosphere model (Hedin, 1987), and IRI ionosphere model (Bilitza, 1986), in their

study.

From long-term simulations (Figure 4.6), it can be seen that density inside the

plasmasphere (on low L-shells) is slightly smaller on average than that of RBSP-A.

This difference can be explained by the fact that the saturation model (Carpenter

and Anderson, 1992) incorporated into the VERB-CS model provides lower saturation

density on average than observed, using density measurements from the Van Allen

Probes. Further investigation of other saturation density models or constructing a

new saturation model that includes density measurements from the Van Allen Probes

is required to improve the VERB-CS model performance.

It is also worth noting that in this study we inspect and compare the global

outputs of the models and the observed and modeled plasmapause locations visually.

It would be ideal to conduct a statistical analysis comparing the observed and modeled

plasmapause locations. However, such analysis is a very challenging task. We discuss

the challenges pertaining to it in detail in Supporting Information (please see Figures

S8-S11 and their discussion). Due to the challenges discussed there, we perform the

visual inspection of the global outputs of the models in this study. However, we are

planning to develop tools for such comparisons in order to analyze the plasmapause

locations statistically in the future.

The results obtained in this study illustrate that the assimilative methodology

can be applied to combine both the qualitative and quantitative advantages of the
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VERB-CS and PINE models. It is clear that further improvement of the mentioned

models or use of more sophisticated models in the physics-based VERB-CS code will

improve the performance of the assimilative model. The methodology developed in

this study will be especially useful for modeling the plasmasphere dynamics during

geomagnetic storms and extreme events, such as the Halloween storms, while also

providing realistic density values during quiet and moderate geomagnetic conditions.

The combined data assimilative model is not computationally expensive and can be

used as a part of global models of the magnetosphere or coupled with ring current

and radiation belt codes. The current study is intended to be a demonstration of

the potential of the assimilative methodology and should be considered more as an

illustration of how the physics-based and neural network models can be combined,

rather than as a tool.

4.6 Summary and Conclusions

In this study, we demonstrate for the first time how a neural network and physics-

based models of the plasmasphere electron density can be combined in an optimal

way by using data assimilation. We use the Kalman filter technique to optimally

blend the neural network PINE model developed by Zhelavskaya et al. (2017) and

the physics-based VERB-CS code (Aseev and Shprits, 2019) adjusted to model the

plasmasphere dynamics.

We conduct three tests to evaluate the performance of the PINE, VERB-CS, and

the assimilative model developed in this study. In the first two tests, we compare

the model-predicted global evolution of plasma density to the global images of the

He+ distribution from IMAGE EUV; namely, we compare the modeled shape of the

plasmasphere to the observed one using the plasmapause locations derived from the

IMAGE EUV for the 2003 Halloween storm and for five events during March-June

2001. In the third test, we conduct a long-term reconstruction of electron density

using all three models for an out-of-sample interval from 30 June 2016 to 01 January

2018. We compare the output of the models to the in-situ density obtained from

RBSP-A and compute performance metrics.

The tests conducted in this study show that the neural network model PINE

has a good quantitative performance on average and reproduces the general dynam-

ics of the plasmasphere well, such as erosion on the nightside and plume formation.
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Its performance is limited, however, for Kp > 7 due to the lack of training data.

The physics-based VERB-CS code also reproduces the dynamics of the plasmasphere

well, and is especially effective during high geomagnetic activity and extreme geo-

magnetic events. However, its quantitative performance is lower than PINE’s. Using

the Kalman filter technique of data assimilation, we were able to combine the advan-

tageous features of both models. The assimilative model is capable of reproducing

the dynamics of the plasmasphere well during both quiet and disturbed geomagnetic

activity, including extreme geomagnetic events. Its quantitative performance is bet-

ter than that of VERB-CS and is comparable to PINE’s for the dayside local time

sector.

Future work includes considering different and more realistic electric field, refilling,

and saturation density models. More work should be done regarding the selection of

model and observation error in the Kalman filter setup. The assimilative model can

be extended by assimilating in-situ density measurements in the model, as well (e.g.,

from Van Allen Probes, IMAGE RPI, or other sources, depending on the time period),

in addition to the output of the neural network model PINE.

4.A The updated version of the PINE model

As discussed in section 4.3.1, Zhelavskaya et al. (2017) used K-fold cross validation

with random splitting of data into training and validation folds to validate the models.

They also used this procedure to select optimal input variables to the model. They

considered several different combinations of solar wind parameters and geomagnetic

indices as potential inputs to the neural network. In particular, they considered

models based solely on geomagnetic indices (Kp, AE, Sym-H, and also F10.7), solely

on solar wind data (solar wind speed, dynamic pressure, proton density, and the

interplanetary magnetic field (IMF) Bz), and on a combination of both. As the

time history of previous conditions is important for the plasmasphere dynamics, they

also considered different durations of time history of these parameters as inputs,

starting with simple models based only on instantaneous values of activity parameters

and subsequently adding more time history of the corresponding parameters to the

networks, up to 120 h of time history. The time history was represented as averages

of the time histories of activity parameters integrated from hour 0 (e.g., 0-3, 0-6, 0-12

h, etc.). Every neural network also included a location input, as given by L and MLT.



150CHAPTER 4. COMBINED APPROACH FOR PLASMASPHERE MODELING

Figure A1: Root-mean-square error (RMSE) on the y-axis versus the hours of time
history included in the models. The yellow color shows the errors of models based on
solar wind, the blue color is for the models based on geomagnetic indices, and red is
for the models based on both of them combined. Solid lines show validation errors
and dashed lines show training errors. The error bars show the standard deviation of
error on the validation set obtained during the cross validation procedure.

In this study, we extend this analysis using the K-fold cross validation procedure

described in section 4.3.1. We consider the same combinations of input parameters to

the neural networks. The neural networks are trained on the density measurements

from both RBSP-A and RBSP-b during 01 October 2012 – 01 July 2016. We use

cross validation to obtain validation and training errors, and the standard deviations

of errors. As described in section 4.3.1, all available data for this time interval are

split into 35-day blocks. At first, 10% of the data are left aside as a testing dataset.

Then the remaining 35-day blocks are randomly assigned to the training or validation

sets. This type of data split allows the sequentiality of data to be preserved, and

also introduces randomness and representation of different geomagnetic conditions in

both validation and training sets. The rest of the methodology is identical to that of

Zhelavskaya et al. (2017).

Figure A1 shows the root-mean-square error (RMSE) plotted against the number

of hours of time history included into the model. The yellow color indicates the errors

of models based on solar wind, the blue color is for the models based on geomagnetic
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indices, and red is for the models based on both of them combined. Solid lines

show the validation errors and dashed lines the training errors. The error bars show

the standard deviation of error obtained during the cross validation procedure. The

validation error represents how well a model performs on the unseen data and is the

error we aim to minimize. The difference between the training and validation errors

indicates if a model overfits the data or not. When the difference is too large, this

means that a model “learned” the training data too well – it memorized it essentially,

and due to that performs poorly on the unseen data. As a consequence, it does not

have good generalization capabilities.

It can be seen that the models based only on solar wind have the largest errors.

The errors of the models based only on geomagnetic indices are significantly lower.

The validation errors of all models are large when no time history is included into

them and decrease as more time history is included. After a certain point (around

48-hour time history), however, the validation errors start to slightly increase again.

At the same time, the training errors always decrease as more time history is included.

The moment when the validation error starts increasing indicates that a model starts

to overfit. That is not desirable in the models and needs to be avoided. In this case,

the overfitting starts approximately after a 48-hour time history (for all models). The

inclusion of longer time history does not bring additional improvement. The models

based on the combination of solar wind and geomagnetic indices have similar errors

to the models based only on indices, but overfit much more. This implies that the

model based only on geomagnetic indices contains a sufficient amount of information

to model the plasmasphere dynamics accurately. One of the reasons for overfitting

could be the lack of training data. Therefore, once more training data are available, it

is worthwhile to re-examine the models again. It is also worthwhile to conduct more

detailed experiments regarding more optimal solar wind feature construction and use

of deeper neural networks. In this case, the optimal model is based on the 48-hour

time history of geomagnetic indices, since the validation error is the smallest for that

particular combination, and the model does not overfit significantly. The inputs to

the model are L, MLT, and averages of Kp, AE, Sym-H, and F10.7 over previous 3,

6, 12, 24, 36, and 48 hours.
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4.B The model and observation error of the Kalman

filter

The model and observation errors αm and αobs were obtained as outlined below.

We use the results of the long-term density reconstruction obtained in section 4.4.3.

There, PINE and VERB-CS were run for the period of 30 June 2016 – 01 January

2018, and their output was compared to the in-situ density measurements from RBSP-

A during that period. The performance of both models was analysed using the RMSE

performance metric. Here, we have also computed the RMSE of both models for

locations inside and outside the plasmapause of the respective model separately for

the period of 02 July 2016 – 01 January 2018. The plasmapause was calculated using

the density threshold of 40 cm−3, as described in section 4.2. Figure B1 (panels a-d)

shows the histograms of error distributions during this period for both models at

different locations. The RMSEs are labeled inside the respective panels. We have

employed the RMSE values obtained in this analysis as model and observation errors

αm and αobs inside and outside the plasmapause of each model.

The same analysis was performed for the output of the assimilative model. Its

RMSEs inside and outside the plasmapause are shown in panels (e-f) of Figure B1. It

can be seen that the RMSEs of the assimilative model are equal to approximately an

average of those of PINE and VERB-CS RMSEs (and also MEs). After conducting

a series of experiments with different values of αm and αobs including just constant

values, i.e., without dependence on the plasmapause location (not shown), we found

that these values provide the best agreement between the assimilative model and

in-situ density observations.
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Figure B1: Distribution of errors of PINE, VERB-CS, and the assimilative model
inside and outside the plasmapause during the out-of-sample period of 02 July 2016 –
01 January 2018 (compared to density measurements from RBSP-A). The respective
RMSE and ME are given inside each panel.
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Supporting Information

Contents of this file

1. Figures S1 to S7 show the sequences of the comparisons of the models through-

out the storms presented in Figure 4.3 of the main paper. These sequences

illustrate the predictions of the models at different storm phases.

2. Figures S8 to S11 demonstrate the issues with the statistical analysis of plasma-

pause locations.

3. Figures S12 to S15 show the comparison of models performance with modified

refilling rates.

Introduction

In the main manuscript, we presented comparisons of outputs of neural network model

PINE, physics-based model VERB-CS, and assimilative model AMP for a number of

selected times during several storms (Figure 4.3). In this supporting information, we

provide additional figures and information about the models output. Figures S1-S7

show the sequences of comparisons of model output throughout the storms presented

in Figure 4.3. Figures S8-S12 and their description demonstrate the issues that may

arise in statistical analysis comparing the plasmapause locations derived from models

and from data. Figures S13-S16 show the comparison of the performance of the

VERB-CS and assimilative models using different versions of refilling rates.

Models output at different storm phases

Figures S1-S7 illustrate the predictions of the models at different storm phases of the

events presented in Figure 4.3 of the main manuscript. The format of Figures S1-S7

is the same as of Figure 4.2 of the main manuscript. The first four rows show the

outputs of the models corresponding to the times marked with the red lines in the

bottom panel showing the Kp index during the 2003 Halloween storm. The black-

and-white dots show the location of the plasmapause derived from the IMAGE EUV

images. The color in the first four rows indicates the logarithm of density (the scale

of the colorbar is the same for all models and all times). The gray and black section

of the colorbar indicates a density threshold of 40± 10 cm−3 and can be considered a
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rough approximation of the plasmapause location for the sake of comparison to the

observed plasmapause position obtained from IMAGE EUV (more details on that are

given in section 2). The Sun is to the left.

Figure S1 shows the comparison of the models for the storm on April 11, 2001,

corresponding to event (a) in Figure 4.3. The plasmapause derived from the IMAGE

EUV instrument spanned from 11-Apr-2001 00:04:00 to 14-Apr-2001 15:07:00.

Figure S2 shows the comparison of the models for the storm on June 18, 2001,

corresponding to event (b) in Figure 4.3. The plasmapause derived from the IMAGE

EUV instrument spanned from 18-Jun-2001 00:10:00 to 18-Jun-2001 20:26:00.

Figure S3 shows the comparison of the models for the storm on May 8-9, 2001,

corresponding to event (c) in Figure 4.3. The plasmapause derived from the IMAGE

EUV instrument spanned from 08-May-2001 00:01:00 to 14-May-2001 03:54:00.

Figure S4 shows the comparison of the models for the storm on March 20, 2001,

corresponding to event (d) in Figure 4.3. The plasmapause derived from the IMAGE

EUV instrument spanned from 20-Mar-2001 09:33:00 to 20-Mar-2001 17:44:00.

Figure S5-S7 show the comparison of the models for the storm on March 30-April

2, 2001, corresponding to event (e) in Figure 4.3, during initial, main, and recovery

phases of the storm, respectively. The plasmapause derived from the IMAGE EUV

instrument spanned from 30-Mar-2001 00:05:00 to 02-Apr-2001 19:13:00.

Comparison of the modeled and observed plasmapause loca-

tions

Below we outline a number of challenges pertaining to comparison of the modeled

and observed plasmapause locations in a statistical manner.

First of all, comparison of the real plasmapause and plasmapause derived from the

models is not straightforward. In particular, it is not clear whether different plasma-

pause locations should be compared for the same MLT sector or in some other way.

Figures S8-S11 illustrate several possible scenarios of comparison between modeled

and observed plasmapause. In these figures, we generated synthetic “observed” and

“modeled” plasmapause locations to demonstrate this point.

Figure S8 shows the scenario, when the predicted and observed shapes of the

plasmasphere are both circular. Here, we introduced a slight shift of the plasmapause

by 0.5 Re in -x and -y directions into the “model”. In this case, the RMSE represents
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the error of the model well.

Figure S9 and S10 illustrate the case, when the predicted shape of the plasmas-

phere is correct, however, the modeled plasmapause is slightly rotated compared to

the observed one. The “modeled” plasmapause is the absolutely the same as the “ob-

served” plasmapause, but just rotated by 10 degrees in Figure S9, and by 25 degrees

in the Figure S10. In this case, the differences between plasmapause locations are

large for the same MLT sectors in the dusk sector. At the same time, one can say

that the predicted shapes are very similar except for the slight rotation (at least for

the case of rotation by 10 degrees).

Figure S11 shows the case, when the predicted shape of the plasmasphere is not

correct in the dusk sector (no plume is predicted), but the size of the main body of

the plasmasphere is almost correct. The RMSE is similar to the scenario presented

in Figure S10 (with rotation by 25 degrees). However, in reality the shape of the

plasmasphere is not predicted correctly, since the plume is not reproduced. The same

applies when the model predicts a plume, when in reality no plume was observed.

Figures S10 and S11 illustrate that while the errors of the model may be similar,

the behavior of the model can be quite different in reality. Thus, comparing the

modeled and observed plasmapause locations using a single error metric, such as

RMSE, for different MLT sectors may not adequately explain the physical reasons for

the differences between modeled and observed plasmapause.

In addition to the challenges outlined above, there are other complications in com-

paring the plasmapause locations. The plasmapause identified in IMAGE is manually

derived from the gradients in He+ ion distribution imaged by the EUV instrument.

Sometimes the plasmapause may be diffuse (not sharp), particularly on the dayside,

which results in multiple dots for the same MLT selected as plasmapause in the IM-

AGE EUV images (for example, as in Figure S1b). This may further complicate

the comparison between modeled and observed plasmapause. The definition of the

plasmapause itself is ambiguous, as some authors use a density threshold and some use

density gradients to define it (in this study, we use density threshold for comparison

with IMAGE EUV).

Due to these factors, the statistical analysis comparing plasmapause locations

may not reveal the real errors of the models. Ideally it should be performed in a

way in which we have the ability to quantify the differences in the rotation of the

plasmasphere and in the preservation of the shape (plume, or no plume) in the model
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and IMAGE observations.

Influence of refilling rates

Our experiments have shown that a better performance is achieved by VERB-CS

when refilling rates of Denton et al. (2012) are multiplied by a factor of 1.75. The

VERB-CS model incorporating unchanged refilling rates by Denton et al. (2012) has

a negative bias and systematically underestimates density on the nightside. The

increased refilling rates improve that aspect of the model. The comparison between

two setups is shown in the figures below (in Figure S12, the setup with unchanged

refilling rates is in the left column and the setup with refilling rates multiplied by the

factor of 1.75 is in the right column; in Figure S13, setup with unchanged refilling

rates - top row, setup with refilling rates multiplied by 1.75 - bottom row).

The results of the assimilative model with increased refilling rates are consequently

improved compared to the model with unchanged refilling rates. Figures S14 and S15

show the comparison between these two setups. The format of these figures is the

same as Figures S12 and S13. The model and observation errors are the values of

RMSEs presented in Figure S14 for each setup, respectively.
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Figure S1: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during the storm on April 11, 2001, corresponding to event (a)
in Figure 4.3 of the paper. The format of the figure is described in the paper and
above.
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Figure S2: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during the storm on June 18, 2001, corresponding to event (b)
in Figure 4.3 of the paper. The format of the figure is described in the paper and
above.
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Figure S3: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during the storm on May 8-9, 2001, corresponding to event (c)
in Figure 4.3 of the paper. The format of the figure is described in the paper and
above.
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Figure S4: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during the storm on March 20, 2001, corresponding to event
(d) in Figure 4.3 of the paper. The format of the figure is described in the paper and
above.
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Figure S5: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during the initial phase of the storm on March 30-April 2,
2001, corresponding to event (e) in Figure 4.3 of the paper. The format of the figure
is described in the paper and above.
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Figure S6: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during the main phase of the storm on March 30-April 2, 2001,
corresponding to event (e) in Figure 4.3 of the paper. The format of the figure is
described in the paper and above.
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Figure S7: Comparison of the PINE (left), VERB-CS (middle), and assimilative
model (right) outputs during the recovery phase of the storm on March 30-April 2,
2001, corresponding to event (e) in Figure 4.3 of the paper. The format of the figure
is described in the paper and above.
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Figure S8: The predicted and observed shapes of the plasmasphere are both circular.
Here, we introduced a slight shift of the plasmapause by 0.5 Re in -x and -y directions
into the “model”. For further details, please refer to the text.

Figure S9: The predicted shape of the plasmasphere is correct, however, the mod-
eled plasmapause is slightly rotated compared to the observed one. The “modeled”
plasmapause is the absolutely the same as the “observed” plasmapause, but just
rotated by 10 degrees. For further details, please refer to the text.
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Figure S10: The predicted shape of the plasmasphere is correct, however, the mod-
eled plasmapause is slightly rotated compared to the observed one. The “modeled”
plasmapause is the absolutely the same as the “observed” plasmapause, but just
rotated by 25 degrees. For further details, please refer to the text.

Figure S11: The predicted shape of the plasmasphere is not correct in the dusk
sector (no plume is predicted), but the size of the main body of the plasmasphere is
almost correct. For further details, please refer to the text.
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Figure S12: The root-mean-square error (top row) and the bias or mean error
(bottom row) of the VERB-CS model with the dipole magnetic field, the Volland-
Stern electric field model and refilling rates from Denton et al. (2012) (left), and with
the same setup but refilling rates multiplied by 1.75 (right).
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Figure S13: Distribution of errors of the VERB-CS model with the dipole magnetic
field, the Volland-Stern electric field model and refilling rates from Denton et al. (2012)
(top row) and with the same setup but refilling rates multiplied by 1.75 (bottom)
model inside and outside the plasmapause.
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Figure S14: The root-mean-square error (top row) and the bias or mean error
(bottom row) of the assimilative model (DA) with the dipole magnetic field, the
Volland-Stern electric field model and refilling rates from Denton et al. (2012) (left),
and with the same setup but refilling rates multiplied by 1.75 (right).



170CHAPTER 4. COMBINED APPROACH FOR PLASMASPHERE MODELING

Figure S15: Distribution of errors of the assimilative model (DA) with the dipole
magnetic field, the Volland-Stern electric field model and refilling rates from Denton
et al. (2012) (top row) and with the same setup but refilling rates multiplied by 1.75
(bottom) model inside and outside the plasmapause.
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Chapter 5

Systematic Analysis of Machine

Learning and Feature Selection

Techniques for Prediction of the

Kp Index

Note

The following work is published in Space Weather :

Zhelavskaya I. S., R. Vasile, Y. Y. Shprits, C. Stolle, J. Matzka (2019). System-

atic analysis of machine learning techniques for Kp prediction, Space Weather, 17.

https: // doi. org/ 10. 1029/ 2019SW002271 .

Abstract

The Kp index is a measure of the mid-latitude global geomagnetic activity and repre-

sents short-term magnetic variations driven by solar wind plasma and IMF. The Kp

index is one of the most widely used indicators for space weather alerts and serves as

input to various models, such as for the thermosphere and the radiation belts. It is

therefore crucial to predict the Kp index accurately. Previous work in this area has

mostly employed artificial neural networks to nowcast Kp, based their inferences on

the recent history of Kp and on solar wind measurements at L1. In this study, we

systematically test how different machine learning techniques perform on the task of
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nowcasting and forecasting Kp for prediction horizons of up to 12 hours. Addition-

ally, we investigate different methods of machine learning and information theory for

selecting the optimal inputs to a predictive model. We illustrate how these methods

can be applied to select the most important inputs to a predictive model of Kp and

to significantly reduce input dimensionality. We compare our best performing mod-

els based on a reduced set of optimal inputs with the existing models of Kp, using

different test intervals and show how this selection can affect model performance.

5.1 Introduction

The Kp index is one of the most widely used global measures of geomagnetic activity.

It is used as an input to many scientific applications, including the parameterization

of ionospheric ion outflow (Yau et al., 2011) and aurora particle precipitation (Emery

et al., 2008) in the ionosphere, thermosphere (Bruinsma et al., 2018), hot plasma

particle density (Korth et al., 1999; Denton et al., 2016), cold plasma density in the

plasmasphere (Maynard and Chen, 1975; Pierrard et al., 2009; Goldstein et al., 2014;

Zhelavskaya et al., 2017), plasmapause location (Carpenter and Anderson, 1992),

and radiation belt models and wave parameterizations (Brautigam and Albert, 2000;

Shprits et al., 2007b; Orlova et al., 2014; Ozeke et al., 2014; Agapitov et al., 2015) in

magnetospheric physics, among others. It is therefore important to predict the Kp

index accurately in order to produce most reliable forecasts in the aforementioned

areas.

A number of models for Kp index prediction have been developed in the past

decades. All these models use solar wind parameters measured at L1 as an input

and the Kp index is their only output. Various methods were employed to develop

these models. The first two models predicting Kp, Costello (1998) and Boberg et al.

(2000), used feedforward neural networks (FNNs), a type of artificial neural networks

(ANNs) often used for solving regression, classification and clusterization problems.

Wing et al. (2005) employed FNNs and recurrent neural networks to develop a pre-

dictive model of Kp, and have shown that both types of networks have a similar

performance. Recent studies by Bala and Reiff (2012) and Wintoft et al. (2017) have

also employed feedforward neural networks for the Kp prediction. Tan et al. (2018)

have used long-short-term memory (LSTM), an artificial recurrent neural network
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architecture used in the field of deep learning that is powerful for processing sequen-

tial data such as sound, natural language, or other complex time series. Alternative

methodologies, such as the nonlinear autoregressive moving average with exogenous

inputs (NARMAX) algorithm and support vector machines, were employed in Ba-

likhin et al. (2001); Boaghe et al. (2001); Ji et al. (2013); and Wang et al. (2015).

The models listed above were developed using different machine learning tech-

niques. They were trained and tested using data from different time intervals (de-

pending on the data availability but also on the choice of the training and testing

time intervals made by the authors). The inputs to the models were also constructed

differently in different studies. This makes it difficult to compare models and ob-

jectively evaluate progress. Thus, it is also unclear whether another new modeling

technique or a different way of constructing the inputs can improve the quality of the

predictions. It has also not been systematically investigated whether it is the use of

solar wind measurements at L1 as input that sets a limit to the prediction accuracy,

since the single point observations around L1 cannot fully capture the complex solar

wind – magnetosphere coupling.

In this study, we investigate what brings the most improvement to the model ac-

curacy and whether there is a limit to the prediction accuracy set by using solar wind

measurements at L1 as input to a model. We perform such an analysis by applying

different machine learning modeling techniques to develop predictive models of Kp

for different prediction horizons up to 12 hours and comparing their performance. We

focus our analysis on three algorithms: Linear Regression (LR), artificial Feedforward

Neural Networks (FNN) (Bishop, 2006; Goodfellow et al., 2016), and Gradient Boost-

ing (GB) (Friedman, 2001). We use linear regression as a benchmark for comparison

with nonlinear (FNN) and ensemble-based (GB) models. We use the same validation

technique and the same time intervals to train and validate the models, and in doing

so create an unbiased technique to validate and compare models. This analysis step

helps determine to what extent the chosen modeling approach affects the accuracy of

predictions for different prediction horizons.

We also compare how different approaches for constructing input variables to the

models affect the accuracy of predictions. Additionally, we test different machine

learning and information theoretical methods for optimal input selection. The mo-

tivation to explore methods for optimal input selection (also called feature selection

in machine learning) is to identify the most important solar wind drivers to predict
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the Kp index. As the number of inputs to a model (or features) grows very quickly

when their cadence is increased or when more time history is included, it becomes

difficult to interpret the physical importance of each input variable and can also in-

crease the training time. Feature selection methods allow us to find a subset of the

most important inputs that contain a sufficient amount of information to model the

target variable (here, Kp) and, at the same time, to achieve good accuracy of the

predictions. We investigate feature selection procedures based on the following meth-

ods: Fast Function Extraction (FFX) (McConaghy, 2011), Random Forest (RF) (Ho,

1995), Mutual Information Maximization (MIM) (Bollacker and Ghosh, 1996), and

Maximum Relevancy Minimum Redundancy (MRMR) (Peng and Ding, 2005; Ding

and Peng, 2005). The Random Forest algorithm is often used for feature selection

and is implemented in many machine learning packages. The feature selection method

based on the FFX algorithm makes use of the intrinsic feature selection of FFX and

the K-fold cross-validation, and is developed in this work. The last two methods are

based on the concept of mutual information.

Finally, we compare the best performing models to the previous predictive models

of Kp using different time intervals for testing to illustrate the importance of choice

of testing interval and how it can affect the model performance.

The structure of the paper is as follows: In section 5.2, we provide a brief de-

scription of the machine learning algorithms and feature selection methods used in

this work. In section 5.3, we describe the data, the training and validation methodol-

ogy, and the hyperparameter selection for all considered methods. In section 5.4, we

present the comparison of the machine learning methods and results of the selection

of input variables. We also present the comparison of our best performing models to

the existing ones. Finally, we summarize the main results of the paper in section 5.5.

5.2 Machine learning background

This section provides a brief description of the algorithms used in this work. The de-

scription is intended to provide the reader with an overview of these methods, while

more details of each method can be found in the references therein. Section 5.2.1

provides an overview of the algorithms used in this study to develop the predictive

model of the Kp index, namely Gradient Boosting (GB), Feedforward Neural Net-

works (FNNs), and Linear Regression (LR). Section 5.2.2 describes the procedures
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for optimal feature selection that we employ in this work based on Fast Function Ex-

traction (FFX), Random Forest (RF), and information theoretical methods, namely

Mutual Information Maximization (MIM) and Maximum Relevancy Minimum Re-

dundancy (MRMR).

5.2.1 Machine learning algorithms for model development

Feedforward Neural Networks (FNN). FNNs are a type of artificial neural net-

work inspired by the way biological neural networks in our brain process information

(Bishop, 2006; Goodfellow et al., 2016). FNNs are used for solving regression, clas-

sification, and clusterization problems. In regression problems, they are used to find

multivariate nonlinear relationships between the input and the output variables. An

FNN consists of an input layer, an output layer, and a number of hidden layers. Its

schematic representation is shown in Figure 5.1a for the case of a network with one

hidden layer. Each node in the layer is a neuron, which can be thought of as the

basic processing unit of a neural network. In the FNN, each neuron is connected to

all neurons in the preceding and succeeding layer; neurons of the same layer are not

connected. Each connection between two neurons in an FNN has a weight associated

to it. The information in the FNN moves only forward, from the input to the output

with no feedback connections or loops. An FNN is applied to solve a specific problem

after it is trained on a set of data pertaining to this problem. Training is an opti-

mization procedure, in which the weights (the internal parameters of the network) are

tuned using the training set of data so that the difference between the network output

and the actual target variable is minimal. A description of FNNs applied to space

physics problems can be found in Zhelavskaya et al. (2017); Chu et al. (2017a,b); and

Zhelavskaya et al. (2018). In this work we use the MATLAB Deep Learning Toolbox to

train neural networks (https://mathworks.com/products/deep-learning.html).

Gradient Boosting (GB). Gradient boosting is an ensemble machine learning

algorithm for solving classification and regression problems. It combines the outputs

of many simple prediction models to obtain a more accurate prediction (Friedman,

2001). Boosting iteratively produces a hierarchy of these models, as shown in Figure

5.1b. These models are referred to as weak classifiers/regressors. In GB, each weak

model is typically a shallow decision tree (Breiman et al., 1984). In a regression

problem, the first model is trained to fit the actual output, and then every new model

https://mathworks.com/products/deep-learning.html


178 CHAPTER 5. MACHINE LEARNING FOR KP PREDICTION

is trained to fit the residual between the actual target variable and the prediction

value given by the previous model. The prediction is then given by a weighted linear

combination of outputs of each weak model. The weights of that linear combination

and internal parameters of each decision tree of the ensemble, such as the maximum

tree depth, are determined during the training phase. In Gradient Boosting, training

is performed using gradient descent minimization of the target cost function in a

functional space. We use the python xgboost library to implement the gradient

boosting algorithm (https://xgboost.readthedocs.io/en/latest/).

Linear regression (LR). Linear regression is a linear approach to modeling the

relationship between a scalar-dependent variable and one or more explanatory vari-

ables. The fit to the data is obtained using a maximum likelihood estimator (Bishop,

2006). Linear regression algorithms may perform worse than other nonlinear meth-

ods (e.g., neural networks) in practice, since they are only able to model a linear

relationship between input and output variables. On the other hand, especially in re-

gression problems, they provide an analytic expression and allow for the interpretabil-

ity of the result. We use the python sklearn library for linear regression (https://

scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.

html).

5.2.2 Feature selection procedures

Feature selection based on Fast Function eXtraction (FFX). The Fast Func-

tion Extraction algorithm is a deterministic scalable algorithm for symbolic regression

problems (McConaghy, 2011). Symbolic regression is a type of regression, in which

the model is constructed by searching the space of mathematical expressions for the

optimal combination of expressions, i.e., the combination of mathematical blocks that

best fits to a given data set in terms of accuracy and simplicity. These mathematical

blocks are usually represented by a set of basis functions (e.g., polynomial functions,

exponential functions, etc.) that is used and combined iteratively to obtain more

complex functions of the input variables. The FFX algorithm uses a deterministic

procedure to build new regression functions in each iteration and allows for faster

training times and prototyping, in comparison to other more general symbolic regres-

sion schemes, such as genetic programming (Koza, 1992). The choice of the basis

https://xgboost.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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Figure 5.1: A schematic representation of a) Feedforward Neural Network, b) Gra-
dient Boosting, c) Linear Regression, d) Fast Function Extraction, e) Random Forest,
f) Mutual Information methods for model construction and feature selection used in
this work.
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functions determines the class of solutions for a specific problem. Typically, a poly-

nomial basis augmented by nonlinear basis elements (such as max or min functions)

is used to model quasi linear systems and still obtain much better performance than

simpler linear regression schemes. In that sense, symbolic regression constitutes a

natural nonlinear extension to linear regression models, by allowing an interpretation

of the result and, at the same time, improving the accuracy by adding nonlinear

elements to the solution.

The FFX algorithm performs an internal feature selection by building symbolic

expressions using only a subset of input variables. As the input data set changes,

different variables may appear in the expression of the final trained model. In the

context of a K-fold cross-validation procedure (described in section 5.3.3), a number

of different models is obtained by training on different training/validation partitions.

Given this set of models, we develop the following feature selection procedure. We

fix a threshold integer value k ∈ [1...N ], where N is the total number of trained

model instances (N = 5 × 10 for 5-fold CV with 10 repetitions). Only those input

variables that appear in at least k of the trained model instances are extracted. As

k approaches N , the set of extracted variables is reduced: For k = N , only those

variables that appear in every trained model, are selected. Thus, the FFX algorithm

provides a definitive number of selected features for each threshold k. Contrary to

the RF feature selection procedure described below, no ranking among the selected

variables is obtained (they are considered to be equally important). The library used

for this algorithm can be found at https://github.com/natekupp/ffx.

Feature selection based on Random Forest (RF). The forest of random

trees, or more commonly, the Random Forest algorithm, is an ensemble machine

learning algorithm for classification and regression problems that can also be used for

the input selection (Ho, 1995; Breiman, 2001). RF is based on decision trees (Breiman

et al., 1984), similarly to GB, but in RF, each decision tree is fitted directly to the

target variable, thus all trees can be trained in parallel. Two points should be noted

regarding the way the trees in the RF ensemble are constructed. First, each decision

tree in the ensemble is built using the bootstrapped version of the initial training data

set. Bootstrapping is an algorithm that produces replicas of a data set by performing

random sampling with replacement. Therefore, each decision tree is built using a

slightly modified version of the initial data set. Second, each decision tree is trained

using a subset of inputs drawn randomly from the whole set of inputs, which makes

https://github.com/natekupp/ffx
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the resulting trees uncorrelated to each other (Breiman, 2001). The output of the

final model is the average of predictions made by all decision trees in the ensemble.

Its schematic representation is shown in Figure 5.1e.

The Random Forest algorithm can be used to rank the importance of variables

in a regression or classification problem (Breiman, 2001), and perform optimal fea-

ture selection and therefore reduce the input dimensionality. The method is referred

to as feature importance extraction and is based on the Gini importance or mean

decrease impurity concept (Ho, 1995). The method returns an ordered list of input

features according to the value of the mean decrease impurity, with the sum of the

mean impurities over all variables being unity. To select a reduced number of input

features a threshold value T , 0 < T < 1, is fixed, and only those variables, the ordered

cumulative sum of which is as close as possible to the threshold T , are selected. The se-

lection of this threshold is usually performed empirically. We used the sklearn library

to implement the RF regression algorithm (https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestRegressor.html).

Feature selection based on Mutual Information (MI). Mutual informa-

tion is a concept of information theory that can be used to study the relationships

between different variables (usually input and target variables of a model). It is not

a machine learning algorithm by itself, but can be used for feature selection and,

therefore, we present a brief description of it. MI between two variables X and Y

is a measure that quantifies the amount of information obtained about one variable

through the other variable. It is defined as:

I(X, Y ) =

∫
X

∫
Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy, (5.1)

where p(x, y) is the joint probability density function of X and Y , and p(x) and p(y)

are the marginal density functions. Mutual information determines how similar the

joint distribution p(x, y) is to the product of the marginal distributions p(x) and p(y).

If X and Y are independent, then p(x, y) is equal to p(x)p(y), and the integral in (1)

is equal to zero. In practice, the probability distribution functions can be obtained

by discretizing variables X and Y and using an alternative definition of MI utilizing

the concept of Shannon entropy:

I(X, Y ) = H(X) +H(Y )−H(X, Y ), (5.2)

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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where H(X) and H(Y ) are entropies of X and Y respectively, and H(X, Y ) is their

joint entropy. Entropy is a measure of uncertainty of a variable, and entropies of

discrete variables are defined as:

H(X) = −
∑
p(x) log p(x), H(Y ) = −

∑
p(y) log p(y),

H(X, Y ) = −
∑∑

p(x, y) log p(x, y)
(5.3)

A more detailed description of MI and other concepts of information theory and their

application in space physics can be found in Wing and Johnson (2019). Below, two

methods based on the MI, that are used in this work, are described.

Mutual Information Maximization (MIM). The MIM feature selection

algorithm employs the concept of mutual information and selects input features that

maximize the mutual information between them and the target variable. Formally,

if St−1 =
{
Xf1 , . . . , Xft−1

}
is the set of selected features at time step t− 1, where fi

is the input feature selected at time step i, MIM selects the next input feature ft by

solving the following optimization problem:

ft = arg max
i/∈St−1

I(Xi, Y ), (5.4)

where Xi is the input variable that is not yet included in the set of selected features

St−1, and Y is the target variable. Simply stated, MIM selects input variables that

have the largest mutual information with the target variable and ranks them according

to their MI with the target variable. MIM makes the following assumptions:

• Assumption 1: The selected features XS are independent and are also class-

conditionally independent, given the unselected feature under consideration Xk

(i.e., the knowledge of the unselected feature does not give additional knowledge

of the selected features). Here, XS is the reduced data set containing selected

features.

• Assumption 2: All features are pairwise class-conditionally independent, i.e.,

p(Xi, Xj|Y ) = p(Xi|Y )p(Xj|Y ), meaning that
∑
I(Xj, Xk|Y ) is zero.

• Assumption 3: All features are pairwise independent, i.e., p(Xi, Xj) = p(Xi)p(Xj),

meaning that
∑
I(Xj, Xk) is zero.

These assumptions may not always hold in practice and therefore, MIM is not
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widely used as it can have a poor performance. Nevertheless, we include it for com-

parison and illustrative purposes.

Maximum Relevancy Minimum Redundancy (MRMR). The MRMR al-

gorithm also employs the concept of MI, similarly to MIM, but adds another term to

the optimization problem in selecting the next input feature:

ft = arg max
i/∈St−1

I(Xi, Y )− α
t−1∑
k=1

I(Xfk , Xi), α =
1

(t− 1)
, (5.5)

where I(Xfk , Xi) denotes MI between already selected input variables Xfk in St−1 and

candidates for the new input variable. Therefore, this method accounts not only for

the “relevancy” of features, as in MIM, but also for the “redundancy” of information

brought by new input features, that is expressed by the last term in (5). Even if MI

of a new input variable with the target variable is large, it may be strongly correlated

with already selected input variables in XS and may therefore not bring in any new

information. Therefore, other variables that minimize the redundancy factor with

already selected inputs will be selected by MRMR. MRMR makes the assumptions 1

and 2 described above.

Both the MIM and MRMR feature selection algorithms provide a ranking of the

the variables in the order of importance. The number of variables to be selected is

usually chosen empirically.

5.3 Data and methodology

5.3.1 Data

We use solar wind and interplanetary magnetic field (IMF) data from NASA’s OM-

NIWeb data service during the time period of 1998–2017, to construct the input to

our machine learning models. Specifically, we use 1-minute resolution measurements

of solar wind speed, proton density, total interplanetary magnetic field B, and inter-

planetary magnetic field components Bx, By, Bz in the GSM coordinate frame. Using

solar wind data with 1-minute resolution allows better capturing spikes and minima

in the solar wind parameter, compared to data with 5-minute or 1-hour resolutions.

The Kp index, i.e., the target variable or the model output, is obtained from the

GFZ Potsdam website (https://www.gfz-potsdam.de/en/kp-index/), and has a

https://www.gfz-potsdam.de/en/kp-index/
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Table 5.1: Considered inputs for all prediction horizons.

Solar wind and IMF parameter B,Bx, By, Bz, Vsw, nProt
Aggregate functions avg, min, max
Time windows, hours

0-1, 1-2, ..., 8-9
(here, current time is hour 0)

Other inputs
sin(2πT/24), cos(2πT/24),
sin(2πD/365), cos(2πD/365)

three-hour cadence.

5.3.2 Model inputs

A variety of solar wind parameters and their derivatives, such as their time history or

solar wind coupling functions (Newell et al., 2007), can be used as inputs to predictive

models of Kp. Here, we consider a limited number of solar wind parameters and their

time history as inputs. Specifically, we consider the solar wind speed (Vsw), proton

density (nProt), IMF components Bx, By, Bz, and the total IMF magnitude B.

We then construct minimum, maximum and average values of these variables over

1-hour time windows (starting from 0-1 to 8-9 hours previous to the current time)

and use them as inputs to our models. In some of the previous studies, 3-hour time

windows were used to construct the inputs (Wintoft et al., 2017; Bala and Reiff, 2012,

e.g.). We test how the window size affects the model performance by comparing the

performance of models based on 1-hour and 3-hour inputs in section 5.4.2 (Figure

5.4).

To take into account possible seasonal variation, we also include indicators of day

of the year and time of the day represented by sin(2πT/24), cos(2πT/24), sin(2πD/365),

cos(2πD/365), where T is the UT hour of the day and D is day of the year, following

Wintoft et al. (2017).

In total, the considered variables comprise 166 input features. The output of the

model is the Kp index with 3-hour cadence. One data sample corresponds to one Kp

value in our data set (we do not interpolate Kp to 1-minute cadence of the solar wind

data) and therefore, the number of data samples in the full data set for the 1998–2017

period is 58439, and corresponds to the number of Kp values over this period. Please

refer to Table 5.1 for a summary of the inputs.
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5.3.3 Training and validation setup

We use a repeated K-fold cross-validation procedure with K = 5 folds and 10 repeti-

tions in order to evaluate the performance of different models (i.e., obtain estimates of

the mean and standard deviation of the training and validation errors) and compare

them with each other.

In K-fold cross validation, the available data set is split into K folds, where one fold

is used for validation and the remaining K − 1 folds are used for training (validation

data are not shown to the model during training). This procedure is implemented K

times with different validation fold each time. In a repeated K-fold cross-validation

(CV), this procedure is repeated multiple times (here we choose 10), where in each

repetition the folds are split differently. After each repetition, model assessment

metrics are computed (e.g., RMSE, linear correlation coefficient, etc.), and then the

scores from all repetitions are averaged to obtain the final model assessment score. In

a 5-fold CV with 10 repetitions, we train 50 model instances and compute/obtain 50

values of training and validation errors, and use them to calculate the mean of model

assessment scores. Such a repeated CV procedure produces a more robust assessment

score than if CV is performed only once, and especially if only one hold-out test set

is used instead of the CV procedure. A repeated CV also gives an idea about the

variance of a model by examining the standard deviation of the model error. A high

standard deviation indicates that the model produces different results when trained

on different data splits and, therefore, has a high variance. Models with low standard

deviation of error are desirable, since they perform similarly on different data splits

and are therefore robust. Additionally, we withhold a separate test set comprising

10% of all data before the start of the CV procedure for the final model evaluation.

Since the data under consideration is a time series, the neighbouring data points

may be strongly correlated. Consequently, random splitting into training and vali-

dation sets may lead to correlations between these two sets. At the same time, if

the data are split into CV folds sequentially, the distribution of the target variable

in different validation folds can be significantly different, e.g., it may occur that high

Kp values are present only in the validation or only in the training data set. To

avoid both of these unwanted scenarios, we implement an intermediate procedure.

We first split all data into 35-day blocks sequential in time, and then assign these

35-day blocks randomly to the CV folds. The reason for using a 35-day block length

is to avoid the possible effect of 27-day recurrence caused by the rotation of the sun.
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Each block contains 280 measurements, and in total, we obtain 209 blocks using this

procedure. Finally, the sizes of the training and validation sets for different CV splits

comprise 41918 and 10640 data samples respectively, and the test set 5880.

5.3.4 Hyperparameter optimization

Hyperparameter optimization is an essential step of the optimal model selection. It

is performed to find the model complexity that is appropriate for a specific regression

or classification problem, so that the model does not underfit (its complexity is too

low) or overfit (the complexity is too high) the training data. Each of the machine

learning algorithms described in section 5.2 has a specific set of hyperparameters that

can be tuned.

Feedforward Neural Networks. We employ a single hidden layer neural net-

work. One hidden layer is typically sufficient to approximate a continuous function

(Cybenko, 1989). The number of neurons in the input layer is equal to the number

of inputs, and only one neuron is present in the output layer, which outputs the

predicted value of the Kp index. Therefore, the main hyperparameter to tune is the

number of neurons in the hidden layer. The choice of the number of neurons is made

using a grid search, and an optimal number of 19 neurons was determined when using

all the 166 input variables for all horizons. Due to the shallowness of the network,

we employ a second order optimization method based on the Levenberg-Marquardt

algorithm to train the networks (provided by the Matlab Deep Learning toolbox).

Gradient Boosting . As given by the xgboost python library (https://xgboost.

readthedocs.io/en/latest/), the gradient boosting regression algorithm has 15 hy-

perparameters. Since the sensitivity of the results on many of them is negligible, we

focus on tuning the three most important parameters: the number of estimators (i.e.,

the number of trees in the ensemble), the learning rate (regulates the step of the

gradient descent), and the maximum depth of each tree (controls the complexity of

the model and therefore affects overfitting). Using the grid search, we find that 100

estimators and a learning rate of 0.08 lead to the best performance on the validation

set for all prediction horizons. Regarding the max depth of trees, we find that a max

depth of 5 provides a good performance on the validation set and, at the same time,

limits overfitting.

https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/
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Linear Regression . The linear regression algorithm does not require hyperpa-

rameter optimization. The model complexity is low enough to avoid overfitting and,

therefore, no regularization is necessary. The bias of the model is relatively high,

however, due to the insufficiency of the model to perform well on the nonlinear task,

and cannot be mitigated unless opting for more complex, nonlinear models, or using

more sophisticated input features constructed from the solar wind parameters (i.e.,

solar wind coupling functions).

FFX . The FFX algorithm has a number of hyperparameters to optimize in the

FFX python package (5 parameters corresponding to the choice of the basis functions

that can be selected by a user, and 8 other default parameters that were optimized

by McConaghy (2011)). The most important is the choice of the basis functions. We

obtained the best model performance by including single variables, the interaction

terms that allow building low-order polynomials in the input variables (e.g., x1 × x2

or x2
1), and hinge functions (i.e., max and min functions) to introduce non-linear

thresholds.

Random Forest . The hyperparameter search for the random forest algorithm

is similar to that of gradient boosting. RF has 12 hyperparameters to optimize.

We focus on the two main parameters that control the complexity of the model: the

number of estimators and the maximum depth of each element of the ensemble. Using

the grid search, we find that the optimal values are 30 estimators in the ensemble and

a maximum depth of 7.

MIM and MRMR. These methods do not have hyperparameters as the meth-

ods described above, but there is one factor that may influence how MI is calculated,

and that is how the variables are discretized. There are several ways in which this can

be done, and this is currently an active area of research (Ali et al., 2015; Jiang and

Wang, 2016; Gao et al., 2017, e.g.). One way is to bin variables uniformly using bins

of a predefined size for each variable (Wing and Johnson, 2019; Wing et al., 2016,

e.g.). Sturges (1926) proposed that the optimal bin size for a normal distribution is

nb = log2(n) + 1 and bin width w = range/nb, where n is the total number of mea-

surements in the data set and range is the maximum - minimum value of a variable.

We have explored a number of different bin sizes and found that nb = 20 is optimal

for our task.
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5.4 Results

5.4.1 Comparison of the ML methods for model development

In this section, we compare the performance of the gradient boosting (GB), neural

network (NN), and linear regression (LR) based models on the task of predicting the

Kp index for prediction horizons from 0 to 12 hours ahead. All models have the same

inputs described in section 5.3.2, and are trained and validated using the repeated

K-fold cross validation procedure described in section 5.3.3.

Figures 5.2a and 5.2b show the cross-validation root mean square error (RMSE)

and correlation coefficient (CC) of the different models as a function of prediction

horizon intervals, respectively. For reference, errors of the persistence model and of

the averaged Kp model are shown as well. The persistence model is a model that

always predicts the most recent known value of Kp, and we defined the averaged Kp

model as a model that predicts the mean value of the Kp index over the previous

15 days. The values of RMSE and CC for all the methods are also listed in Table

5.5 in Appendix 5.A for reference. As can be seen from Figure 5.2, the averaged Kp

model, < Kp >, has the highest RMSE and the lowest CC (shown in light gray), as

expected. The persistence model (dark gray) has the second highest error and lowest

CC, and its performance decreases for the longer prediction horizons. For the LR,

GB, and NN methods, the bars in the plot are arranged in pairs, where the color

corresponds to a particular method. Solid (darker) colors show the mean validation

error and faded (lighter) colors show the mean training error, both obtained in the

cross validation procedure. It can be seen that the error of the LR model (shown in

yellow) is much lower than that of the persistence and < Kp > models, but is higher

compared to the NN- and GB-based models, especially for prediction horizons 0 and 3

hours ahead. For longer prediction horizons, the errors of the LR-, NN- and GB-based

models are comparable. This confirms the existence of a nonlinear component in the

Kp prediction problem for the short-term prediction horizons that can be modeled

only with nonlinear methods. The GB-based (blue) and NN-based (red) models yield

similar validation errors for prediction horizons 0 and 3 hours ahead. The validation

error of the GB model is slightly smaller for the longer prediction horizons. The

standard deviation of error (shown with error bars) is less than 0.05 for both the GB-

and the NN-based models, which is significantly less than the discretization of Kp

levels, indicating that the models are quite robust. It should be also noted that the



5.4. RESULTS 189

difference between the training (faded blue) and the validation (solid blue) errors of

the GB model is larger than the one of the NN model, which may indicate that the GB-

based model is overfit. It is therefore difficult to make a definitive conclusion about

which model is suited better for the problem of Kp prediction since the difference

between their performance is small. Due to the fact that the overfitting behavior is

not desirable for a model, we choose the NN-based model as a benchmark model for

further use and comparison to the previous studies. More information on overfitting

and why it is not desirable can be found in Zhelavskaya et al. (2017).

5.4.2 Comparison of feature selection methods

In this section, we compare the performance of the input selection algorithms de-

scribed in section 5.2.2 for the same prediction horizons (0 to 12 hours ahead). We

also test how the size of a time window used for constructing the input variables to

the models affect the accuracy of the predictions.

A feature selection procedure provides a list of the most important input variables,

and a model based on these input variables needs to be constructed and trained in

order to assess the quality of the selected inputs (and hence, the feature selection

method). In the previous section, we have selected the NN-based model as a bench-

mark model for further use and comparison to the previous studies. Hence, we also

use neural networks as a benchmark algorithm to test and compare different feature

selection procedures. For each prediction horizon, we train and compare neural net-

works with five different configurations of input variables: (1) all input variables, as

in section 5.4.1 (166 variables listed in Table 5.1), (2) inputs selected by the FFX

algorithm, (3) inputs selected by the RF algorithm, and inputs selected by (4) the

MIM and (5) the MRMR feature selection algorithms. Since only FFX provides the

definitive number of selected inputs, as discussed in section 5.2.2, the number of se-

lected inputs for the RF, MIM, and MRMR algorithms is chosen to be equal to the

number of inputs selected by the FFX algorithm. This allows an objective compari-

son between the feature selection methods, as the number of inputs is the same for

all methods. The number of selected inputs for different prediction horizons is listed

in Table 5.2. The full list of optimal input variables selected by different algorithms

is provided in Appendix 5.B.

Figures 5.3a and 5.3b show the RMSE and correlation coefficients of the neural



190 CHAPTER 5. MACHINE LEARNING FOR KP PREDICTION

Figure 5.2: a) Root mean square error (RMSE) of the ML methods used for model
development as a function of prediction horizon in hours: for gradient boosting (blue),
neural networks (red), linear regression (orange), persistence model (dark gray), and
averaged Kp over the 15 previous days (light gray). The bars are arranged in pairs for
the first three methods, and the solid (darker) colors show the error on the validation
set, the faded (lighter) colors show the error on the training set. The error bars
indicate the standard deviation of error obtained from 5-fold cross validation with
10 repetitions. The horizontal red solid and dashed lines are help lines for a more
convenient comparison between different methods (the solid lines correspond to the
validation error of the NN-based models, the dashed lines to the training error). b)
Same as in the top panel, but using the Pearson correlation coefficient (CC) as a
performance assessment metric.
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Table 5.2: Number of features selected using the feature selection algorithm based
on FFX with threshold k = 50.

Prediction horizon, hours 0 3 6 9 12
Number of selected inputs (out of 166 available inputs) 52 14 13 12 10

networks with the inputs selected by different feature selection algorithms vs. the

prediction horizon. The neural network containing all 166 input variables is denoted

as NN (shown with the red bars) and is the same as in Figure 5.2; all other models are

denoted as NN-X, where X corresponds to the algorithm used to select the optimal

inputs (FFX, RF, MIM, or MRMR). Only the error on the validation set is shown,

since the training error is very close to it for all the methods. The values of RMSE

and CC for all the methods are also listed in Table 5.6 in Appendix 5.A for reference,

for both validation and training sets. Neural networks having the inputs selected by

the MIM algorithm show the poorest performance, while all other neural networks

have comparable validation errors. This confirms that the Mutual Information of

input variables with the target variable used in isolation from other input variables

is not a good indicator of the importance of features when the input variables are

correlated with each other. It should therefore not be used in such cases. Models

with the inputs selected by other methods (FFX, RF, MRMR) have small differences

in the resulting errors and perform similarly to the model containing all 166 inputs.

Compared to all other models, NN-FFX shows the best performance for all horizons

as well as a reduced variance, i.e., lower standard deviation of the validation error.

Despite having fewer inputs, it also shows a slightly better performance compared

to the neural network containing all 166 inputs. This result indicates that using

these methods, particularly FFX, we can significantly reduce the number of input

parameters and select the optimal ones containing a sufficient amount of information

to model the target variable, i.e., the Kp index. We can use the obtained set of

optimal input variables to gain a better understanding of what solar wind drivers are

most significant to predict the Kp index for different horizons.

To identify how the construction of inputs affects the performance of the models,

we perform the same analysis for the inputs constructed using 3-hour time windows

(for computing averages, min, and max of solar wind parameters). The performance

of different feature selection algorithms is similar to the results shown in Figure 5.3,

and for brevity, we only present the results of the best performing models. Figure
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Figure 5.3: a) Root mean square error (RMSE) and b) correlation coefficient (CC)
of the trained models used for input selection as a function of prediction horizon for
neural networks trained on the whole set of inputs replotted from Figure 5.2 (red),
neural networks trained on inputs selected using FFX with threshold k = 50 (green),
neural network trained on inputs selected using random forest (light yellow), and
neural networks trained on inputs selected using MRMR (violet) and MIM (brown);
The bars show the average validation a) RMSE and b) correlation coefficient. The
error on the training set is not shown in this figure. The error bars indicate the stan-
dard deviation of the error obtained from 5-fold cross validation with 10 repetitions.
The horizontal green lines are help lines for a more convenient comparison between
different methods (they correspond to the validation error of the NN-FFX models).
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Figure 5.4: Comparison between 1-hour and 3-hour cadence inputs. Format is the
same as in Figure 5.2. The horizontal green solid and dashed lines are help lines for
a more convenient comparison between the models (the solid lines correspond to the
validation error of the NN-FFX 1H models, the dashed lines to the training error).

5.4 shows the RMSE of the NN-FFX model with inputs constructed using 1-hour

time windows (shown with green) and with inputs constructed using 3-hour time

windows (pink) vs. prediction horizon. The values of RMSE and CC for all the

methods are also listed in Table 5.7 in Appendix 5.A for reference. The model with

the inputs constructed using 1-hour time windows shows a slightly lower validation

error than the model based on 3-hour inputs, however, the improvement is marginal,

and the differences in the model errors are very small. This potentially indicates that

a further increase of the cadence of inputs may not lead to significant improvements,

when using solar wind measurements at L1 as input to the predictive model of Kp.

5.4.3 Resulting models

Based on the results obtained in the previous sections, we select the optimal models for

each prediction horizon, i.e., the ones that do not overfit, show the lowest validation

error and lowest standard deviation of error, for further use and comparison with

existing models. These are the neural network-based models with the input variables

selected by the FFX feature selection algorithm (NN-FFX).

In our further analysis, we apply these models to all data combined (training,

validation and test sets, described in section 5.3.3) for all prediction horizons, to

produce the normalized occurrence maps (presented in this section, Figure 5.6) and



194 CHAPTER 5. MACHINE LEARNING FOR KP PREDICTION

Figure 5.5: Histogram of normalized distribution of training, validation and test
sets. The gray error bars show the spread of the normalized number of measurements
in the training and validation sets in different Kp bins as per different splits produced
in the cross validation procedure.

to compute the accuracy metrics (section 5.4.4, Table 5.3). We use the whole data

set to do that in order to maximize the coverage and the number of measurements

in the comparison (the test set provides only 5880 measurements). Also, the results

for the training, validation, and test sets separately are similar to the ones produced

using the full data set (please see Appendix 5.C for the accuracy metrics computed on

the training, validation, and test sets separately). The normalized distribution of the

training, validation, and test sets are shown in Figure 5.5, in blue, red, and yellow,

respectively. Due to the use of cross validation procedure, the splitting into training

and validation sets was performed for 10 × 5 times (5-fold CV with 10 repetitions).

Therefore, we compute the mean value and the standard deviation of the normalized

frequency of measurements in the training and validation sets over different splits.

The standard deviation of the normalized frequency is shown with the error bars. No

error bars are associated with the test set, since it is the same for all splits. It can be

seen that the distributions of measurements in the training, validation, and test sets

are similar to each other (the coverage of measurements in different sets is similar for

different Kp bins), which supports the use of the combined data set (i.e., training,

validation, and test) for further analysis.

Figure 5.6 shows the normalized occurrence of the observed vs. predicted Kp.

The occurrence is normalized by the number of measurements of the observed Kp,

i.e., the color of each bin denotes the number of measurements in that bin divided

by the total number of measurements in that bin of observed Kp. Bins containing 4

or fewer measurements are not taken into account. The gray dashed lines show the
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ideal fit to observations and the blue dashed lines show the obtained linear fits. The

correlation coefficient (CC) and the root mean square error (RMSE) of the models

for each prediction horizon are indicated as well. It can be seen that the models

for prediction horizons 0 (nowcast) and 3 hours ahead perform well: most of the

measurements are clustered close to the diagonal and the spread of the observed vs.

predicted Kp values is quite small. However, the performance decreases for longer

prediction horizons as the models tend to underestimate the Kp index for higher Kp

values, i.e., the bias of the models for high Kp values increases as the prediction

horizon increases. This indicates that either the information from the solar wind

measurements at L1 is not sufficient to predict the elevated geomagnetic activity for

the longer prediction horizons, or that it cannot be predicted accurately due to the

lack of observations of high Kp in our training data set. The second option is less

likely, since influence of the lack of observations of high Kp values would manifest

in all the models. Indeed, the models for predicting Kp for 0 and 3 hour ahead

are capable of predicting those events (Figures 5.6a, b and 5.7a, b). This suggests

that such a decrease in performance is due to the lack of information in the solar

wind measurements at L1. This behavior of predictive models based on the solar

wind measurements at L1 is also noted by Shprits et al. (2019), and is discussed and

analyzed there in more detail.

Figure 5.7 shows examples of the Kp index prediction for different prediction

horizons during the May-June 2005 period, that is, an event from the test set (not

used in the training). Again, the models for prediction horizons for 0 and 3 hours

ahead perform better than models for longer prediction horizons: the latter do not

capture the arrival of the storm nor its magnitude. Also, the models underestimate

high Kp values for longer prediction horizons (the bias of the models for high Kp

values increases). Again, this potentially indicates that the information in the solar

wind measurements at L1 is not sufficient for long-term predictions, especially for

predicting the elevated geomagnetic activity.

5.4.4 Benchmarking

Following Liemohn et al. (2018), we calculate the standard assessment metrics for

comparison with previous and future studies. The standard assessment metrics pro-

posed in Liemohn et al. (2018) are listed in Table 5.3 and are the following: linear
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Figure 5.6: Correlation between the observed and predicted Kp values by the neural
network for all data (combined training, validation, and test sets) for prediction
horizons a) 0 (nowcast), b) 3, c) 6, d) 9, and e) 12 hours ahead. The gray dashed
lines indicate the perfect fit and the blue dashed lines indicate the obtained fit.
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Figure 5.7: Examples of Kp prediction for prediction horizons a) 0, b) 3, c) 6, and
d) 9 hours ahead on the event from the test set. The blue lines show the observed
Kp index, the red lines show the predicted Kp index.

fit intercept and slope, Pearson correlation coefficient, root mean square error, mean

absolute error, mean error, and prediction efficiency. We calculate these metrics using

the whole data set, as discussed in the previous section (Figure 5.5). It can be seen

that RMSE increases (and correlation coefficient decreases) for the longer prediction

horizons, as shown and discussed before. MAE and PE have a similar behavior,

indicating that the model performance is better for short-term predictions than for

long-term. It is interesting to note that ME, or bias, is close to zero for all prediction

horizons. The slope of the linear fit decreases with prediction horizon, however, indi-

cating that the model underpredict Kp as the prediction horizon increases. But, as

seen in Figure 5.6, the model tends to underpredict high Kp values and overpredict

low Kp values (which is also reflected in the values of the intercept of the linear fit in

Table 5.3). Since there are many more low Kp values in our data set than high Kp

values, the differences tend to cancel out, and as a result, ME is close to zero for all

horizons.

We also compare our best performing models (NN-FFX) to the existing predictive

models of Kp. The results of this comparison are presented in Table 5.4. We only
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Table 5.3: Fit performance statistics of the NN-FFX models for different prediction
horizons computed on all data.

Prediction horizon, hours 0 3 6 9 12
Number of values in comparison 58439 58439 58439 58439 58439
Intercept of the linear fit 0.2624 0.4444 0.7724 0.9653 1.1073
Slope of the linear fit 0.8712 0.7641 0.5888 0.4894 0.4152
Pearson correlation coefficient (R) 0.9361 0.8742 0.7668 0.7002 0.6430
Root mean square error (RMSE) 0.4865 0.6698 0.8853 0.9856 1.0565
Mean absolute error (MAE) 0.3786 0.5081 0.6734 0.7495 0.8042
Mean error (ME, or bias) 0.0179 -7.26e-04 -0.0030 -0.0016 0.0078
Prediction efficiency (PE) 0.8761 0.7643 0.5880 0.4903 0.4134

consider models that can be compared to our models in terms of prediction hori-

zons. We have therefore not included the following studies into this comparison, as

their prediction horizons cannot be directly compared to the ones used in this study

(nowcast, 3, 6, 9, and 12 hours ahead): 1 hour ahead in Costello (1998); Balikhin

et al. (2001); Boaghe et al. (2001); Ji et al. (2013); 1 and 4 hours ahead in Wing

et al. (2005); results for 1-hour predictions by Bala and Reiff (2012). To allow direct

comparison between the models, we use the same training, validation, and test time

periods as in those studies. We use the input variables to the models that are found

by the FFX feature selection algorithm. The comparison, when done in such a way,

also helps illustrate that the training interval, as well as validation and test intervals,

can affect the performance of the resulting model. The accuracy metrics in Table

5.4 are computed on the test set of the corresponding study. Overall, the resulting

accuracy of our models is comparable or slightly better than that of the listed studies.

There are no published studies for prediction horizons of 9 and 12 hours ahead to

compare. The table also reflects that model errors change depending on the chosen

training and test sets (e.g., prediction for 3 hours ahead) and also differ from those

listed in Table 5.3. This means that selecting only a specific time interval for testing

or validation can affect the resulting model performance. It also demonstrates that

assessing a model error using just a specific time interval may not reflect the actual

performance of a model. The cross validation procedure described in this study at-

tempts to overcome these issues by including an element of randomness and ensuring

that the distributions of the training, validation and test sets are representative and

similar to each other.
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Table 5.4: Comparison with existing Kp predictive models for prediction horizons
0, 3, and 6 hours ahead. Numbers in bold indicate the best performance within one
row (one model for one prediction horizon).

Prediction
horizon

Model RMSE CC RMSE
NN-
FFX
model

CC
NN-
FFX
model

Test period

0 (now-
cast)

Wintoft et al. (2017) 0.55 0.92 0.51 0.93 2001, 2011

3 hours Boberg et al. (2000) 0.98 0.77 n/a n/a 1986–1996
Bala and Reiff (2012) 0.65 0.86 0.62 0.88 2001/04,

2006/01–
2007/12

Tan et al. (2018) 0.64 0.81 0.65 0.80 2013/12–2014/9
6 hours Bala and Reiff (2012) 0.85 0.76 0.82 0.78 2001/04,

2006/01–
2007/12

5.5 Discussion

The results obtained in the previous sections demonstrate that machine learning-

based models driven by the solar wind measurements at L1 can produce accurate

short-term Kp predictions, but the accuracy is reduced for long-term prediction hori-

zons (> 3 hours ahead). This is observed for all machine learning methods considered

in this study and for the previous studies as well (Table 5.4). The models cannot cap-

ture the storm onset times for long-term horizons accurately and tend to underpredict

high Kp and overpredict low Kp values. This indicates that the information contained

in solar wind measurements at L1 is not sufficient for accurate long-term predictions

of Kp (> 3 hours ahead). Other information sources, such as images of the Sun or fea-

tures derived from them, should be incorporated into the model to produce accurate

long-term forecasts.

Nonlinear machine learning methods, such as gradient boosting and neural net-

works, perform significantly better than linear regression for short-term prediction

horizons, but their performance becomes comparable as the prediction horizon in-

creases (Figure 5.2). This implies that the relation between Kp and solar wind mea-

surements at L1 is non-linear for short-term prediction horizons, but there is little to

no gain in using non-linear methods for longer prediction horizons (> 3 hours ahead)

when using solar wind measurements at L1 as input to the model.
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It should also be noted that all models listed in Table 5.4, as well as ours, have a

similar performance (for the same horizon) independent of the inputs or the modeling

techniques/methods used. This implies that the usage of another new method/ML

technique or a different way of constructing Fthe inputs will probably not bring much

more improvement in the performance of a model that uses solar wind measurements

at L1 as an input. Moreover, it should be noted that the average RMSE of the nowcast

models considered here is ∼ 0.5 (during disturbed times, Kp > 4, the average RMSE

is ∼ 0.8 (Shprits et al., 2019)), which is higher than the cadence of Kp, that is 1/3.

Ideally, if the solar wind measurements at L1 contained sufficient information for the

prediction of Kp at the current moment, the maximum RMSE of a model would be

equal 1/3, since a model could be wrong only by one Kp bin (due to the discretization

of Kp; the average RMSE of such a model would be much lower than 1/3, but the

RMSE during storms or onset of storms could be larger). However, the fact that

the average RMSE of the models is greater than 1/3, independent of the way the

inputs are constructed or the method used to develop a model, implies that there

is a stochastic component of the magnetosphere system that is not captured in the

solar wind measurements and cannot be modeled properly, assuming that our models

optimally utilize all the data. Since Kp reflects the geomagnetic disturbance at the

Earth’s surface due to electric currents in the ionosphere and magnetosphere, there

is an uncertainty in the direct relation between solar wind and Kp associated with

the coupling between ionosphere and magnetosphere, which is a complex stochastic

process. It is also possible that the magnetosphere operates in different regimes

depending on the type of incoming solar wind and this, in turn, affects the Kp index.

This can be further investigated by defining different types of solar wind and training

models separately for different types of solar wind. Types of solar wind can be defined

depending on the charge state composition of the solar wind, solar wind speed, proton

temperature, proton density, etc. (for example, as done in Heidrich-Meisner and

Wimmer-Schweingruber (2018) or Xu and Borovsky (2015)).

Feature selection methods, such as FFX, RF, or MRMR, the use of which was

demonstrated in this paper, showed their capabilities to select the most impor-

tant/significant inputs to the model. Using these methods, the number of inputs

to the model was reduced from 166 to 52 for nowcast, and from 166 to 10 for predic-

tion 12 hours ahead (Table 5.2). At the same time, the performance of the models

based on the reduced input set remained the same or even slightly improved (when
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using the FFX feature selection algorithm) compared to the model based on all 166

inputs.

In addition to the significant reduction of input dimensionality, the selected input

variables can be analysed to understand the main drivers for the Kp predictive models.

Different methods select slightly different variables as the optimal ones, but we can

consider the best performing model, which is based on the variables selected by the

FFX method. For the nowcast of Kp, minimum of Bz over the previous 7 hours

and maximum of solar wind speed Vsw over the previous hour are ones of the selected

variables, as well as average and minumum of Vsw, average and maximum Bz, average,

minimum, and maximum of B (their time history over the varying time intervals). It

is interesting to note that the FFX algorithm also selects the minimum and maximum

of By and maximum of Bx components, as well as minimum and maximum of proton

density over the previous 4 hours and the indicators of seasonal variability. For the

3 hours ahead prediction, the dimensionality is reduced even more, down to 14 input

variables. The subset of the same variables is selected (min and avg Bz; max and

min Vsw; max and min B, max By, max and min of proton density, and seasonal

indicators), except that they are selected for only the several previous hours. At the

same time, the performance of the model containing only these 14 inputs is even

slightly better compared to the model containing 166 variables, indicating that 14

variables are sufficient and encompass the necessary information to predict Kp 3

hours ahead. The selected input variables for all prediction horizons and all feature

selection methods considered are displayed in Appendix 5.B.

5.6 Conclusions

In this study, we explore how different machine learning algorithms, namely Gradient

Boosting, Feedforward Neural Networks, and Linear Regression, perform on the task

of predicting the Kp index for prediction horizons of 0, 3, 6, 9, and 12 hours ahead

using solar wind measurements at L1 as an input. We also illustrate how different

feature selection methods can be applied to select the optimal inputs to the predictive

model of the Kp index. In particular, we assess the performance of four feature

selection procedures based on the Fast Function Extraction (FFX), Random Forest

(RF), Mutual Information Maximisation (MIM), and Maximum Relevancy Minimum

Redundancy (MRMR) algorithms. We have found that:
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1) The models trained using neural networks (NNs) and gradient boosting (GB)

notably outperform the models constructed using linear regression (LR) for

the short-term prediction horizons. This implies the existence of a nonlinear

component in the Kp prediction problem for short-term predictions that cannot

be modeled using linear methods alone.

2) The performance of all considered methods decreases as the prediction horizon

increases. This likely means that the information in the solar wind measure-

ments at L1 is not sufficient to produce accurate long-term predictions (e.g., > 3

hours), especially for high Kp values, and is not sufficient to accurately capture

the arrival time of geomagnetic storms for the long-term prediction horizons.

3) The proposed FFX feature selection algorithm (i.e., a procedure for finding op-

timal input variables to a model) outperforms other feature selection algorithms

considered in this study. It provides a significant reduction of the number of

input variables sufficient to model the Kp index (starting from more than 3-fold

for the nowcast to more than 16-fold for the prediction of 12 hours ahead).

4) Despite having fewer inputs, the models based on the reduced set of input

variables obtained with the FFX algorithm have a slightly better performance

than the models based on the full input set. This implies that, using the FFX

feature selection algorithm, we can significantly reduce the input dimensionality,

obtain a set of the most significant input variables sufficient for predicting the

Kp index for different prediction horizons, and, at the same time, improve the

model performance.

The obtained sets of optimal input variables can be used to gain an understanding

of what inputs are the most important and physically meaningful for predicting the

Kp index. Moreover, the models can be trained faster and have less tendency to overfit

using such a reduced set of inputs. The feature selection methods described in this

work can also be applied to other problems in space physics in order to significantly

reduce the input dimensionality and identify the most important inputs that contain

sufficient information to produce accurate predictions.



5.A. RMSE AND CC OF ALL METHODS CONSIDERED IN THE PAPER 203

5.A RMSE and CC of all methods considered in

the paper

Tables below contain values of RMSE and CC on the validation and training sets for

all the methods considered in this study. Table 5.5 contains RMSE and CC of the

methods presented in Figure 5.2: Gradient Boosting (GB), Neural Networks (NN),

Linear Regression (LR), Persistence, and <Kp>. Table 5.6 contains RMSE and CC

of the methods presented in Figure 5.3: Neural Networks with all 166 inputs (NN),

NN with inputs selected by Fast Function Extraction (NN-FFX), Random Forest

(NN-RF), Maximum Relevancy Minimum Redundancy (NN-MRMR), and Mutual

Information Maximization (NN-MIM) feature selection procedures. Table 5.7 con-

tains RMSE and CC of the methods presented in Figure 5.4: Neural Networks with

inputs selected by Fast Function Extraction feature selection procedure constructed

using 1-hour intervals (NN-FFX 1H) and 3-hour intervals (NN-FFX 3H).
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Table 5.5: RMSE and CC of the methods presented in Figure 5.2.

Prediction horizon,
Method

RMSE CC

hours Validation Training Validation Training

0

GB 0.5098 0.4573 0.9291 0.9437

NN 0.5167 0.4769 0.9274 0.9386

LR 0.6181 0.6090 0.8941 0.8974

Persistence - -

<Kp> 1.2800 0.3700

3

GB 0.6736 0.6118 0.8721 0.8966

NN 0.6964 0.6530 0.8632 0.8813

LR 0.7392 0.7303 0.8439 0.8484

Persistence 0.8470 0.8080

<Kp> 1.2800 0.3700

6

GB 0.8789 0.7990 0.7696 0.8163

NN 0.9097 0.8505 0.7532 0.7886

LR 0.9189 0.9102 0.7448 0.7513

Persistence 1.0770 0.6900

<Kp> 1.2800 0.3700

9

GB 0.9807 0.8906 0.7020 0.7658

NN 1.0029 0.9532 0.6875 0.7239

LR 1.0163 1.0070 0.6751 0.6836

Persistence 1.2040 0.6130

<Kp> 1.2800 0.3700

12

GB 1.0492 0.9539 0.6473 0.7252

NN 1.0726 1.0374 0.6295 0.6588

LR 1.0839 1.0742 0.6168 0.6271

Persistence 1.2910 0.5540

<Kp> 1.2800 0.3700
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Table 5.6: RMSE and CC of the methods presented in Figure 5.3.

Prediction horizon
Method

RMSE CC

hours Validation Training Validation Training

0

NN 0.5167 0.4769 0.9274 0.9386

NN-FFX 0.5068 0.4764 0.9301 0.9386

NN-RF 0.5247 0.5004 0.9248 0.9320

NN-MRMR 0.5295 0.4994 0.9234 0.9324

NN-MIM 0.5755 0.5642 0.9087 0.9127

3

NN 0.6964 0.6530 0.8632 0.8813

NN-FFX 0.6774 0.6678 0.8703 0.8747

NN-RF 0.6956 0.6892 0.8627 0.8658

NN-MRMR 0.7117 0.7033 0.8559 0.8602

NN-MIM 0.7334 0.7263 0.8460 0.8497

6

NN 0.9097 0.8505 0.7532 0.7886

NN-FFX 0.8913 0.8814 0.7615 0.7685

NN-RF 0.9017 0.8953 0.7547 0.7596

NN-MRMR 0.9178 0.9091 0.7446 0.7514

NN-MIM 0.9854 0.9788 0.6979 0.7039

9

NN 1.0029 0.9532 0.6875 0.7239

NN-FFX 0.9936 0.9804 0.6919 0.7031

NN-RF 0.9963 0.9857 0.6887 0.6979

NN-MRMR 1.0164 1.0008 0.6744 0.6879

NN-MIM 1.0504 1.0430 0.6459 0.6535

12

NN 1.0726 1.0374 0.6295 0.6588

NN-FFX 1.0618 1.0523 0.6357 0.6453

NN-RF 1.0683 1.0573 0.6294 0.6404

NN-MRMR 1.0786 1.0700 0.6201 0.6296

NN-MIM 1.1039 1.0993 0.5970 0.6029
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Table 5.7: RMSE and CC of the methods presented in Figure 5.4.

Prediction horizon,
Method

RMSE CC

hours Validation Training Validation Training

0
NN-FFX 1H 0.5068 0.4764 0.9301 0.9386

NN-FFX 3H 0.5201 0.4978 0.9254 0.9320

3
NN-FFX 1H 0.6774 0.6678 0.8703 0.8747

NN-FFX 3H 0.7118 0.6944 0.8551 0.8631

6
NN-FFX 1H 0.8913 0.8814 0.7615 0.7685

NN-FFX 3H 0.9051 0.8878 0.7523 0.7640

9
NN-FFX 1H 0.9936 0.9804 0.6919 0.7031

NN-FFX 3H 1.0007 0.9870 0.6850 0.6967

12
NN-FFX 1H 1.0618 1.0523 0.6357 0.6453

NN-FFX 3H 1.0659 1.0521 0.6307 0.6442

5.B Optimal inputs selected by feature selection

algorithms

Tables below contain reduced sets of input variables selected by the feature selection

algorithms described in this paper (section 5.2.2). Results for all prediction horizons

considered in this work (from nowcast to 12 hours ahead) are presented for both 1-

hour and 3-hour based inputs. The format of the inputs is the following: the subscript

denotes the operation which is performed to obtain the input (taking max, min, or

averaging) and the numbers in the brackets (e.g., (−3; −2) in Bzmin(−3; −2)) denote

the time interval over which max, min, or average is taken. T is the UT hour of the

day, and D is day of the year.

Table 5.8: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 0 (nowcast) with a 1-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 0 (nowcast)

FFX (1H) RF (1H) MRMR (1H) MIM (1H)

Bzmin(−3; −2) Bavg(−1; 0) Bzmin(−3; −2) Bzmin(−3; −2)
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Bzmin(−4; −3) Bzmin(−1; 0) Vswmax(−1; 0) Vswmax(−1; 0)

Bzmin(−5; −4) Bzmin(−2; −1) Vswmax(−2; −1) Bzmin(−4; −3)

Bzmin(−7; −6) Bzmin(−3; −2) Vswavg(−2; −1) Bzmin(−2; −1)

Vswavg(−2; −1) Bzmin(−4; −3) Vswmin(−1; 0) Vswavg(−1; 0)

Vswmax(−1; 0) Bzmin(−5; −4) Bzmin(−1; 0) Vswmax(−2; −1)

Vswmin(−1; 0) Bzmin(−6; −5) Bzmin(−5; −4) Vswavg(−2; −1)

Vswmin(−3; −2) Bavg(−7; −6) Bmax(−3; −2) Vswmin(−1; 0)

Bavg(−9; −8) Vswavg(−2; −1) Bzmin(−4; −3) Vswmax(−3; −2)

Vswmin(−5; −4) Vswavg(−3; −2) Bzmin(−2; −1) Vswmin(−2; −1)

Vswmin(−9; −8) Vswavg(−4; −3) Bmax(−9; −8) Vswavg(−3; −2)

Bmax(−1; 0) Vswavg(−5; −4) Vswmax(−3; −2) Vswmax(−4; −3)

nProtmax(−1; 0) Vswavg(−6; −5) Bzmin(−7; −6) Bmax(−3; −2)

nProtmax(−2; −1) Vswavg(−7; −6) Bzmin(−6; −5) Bzmin(−1; 0)

nProtmax(−3; −2) Vswmax(−1; 0) Bmax(−1; 0) Vswmin(−3; −2)

nProtmax(−4; −3) Vswmax(−2; −1) Bzavg(−3; −2) Bmax(−4; −3)

Bmax(−2; −1) Vswmax(−3; −2) Bzmin(−9; −8) Bmax(−2; −1)

nProtmin(−2; −1) Vswmax(−4; −3) Vswmax(−5; −4) Vswavg(−4; −3)

nProtmin(−3; −2) Vswmax(−5; −4) Bmax(−2; −1) Bzmin(−5; −4)

sin(2πT/24) Vswmax(−6; −5) Bzmin(−8; −7) Bmax(−1; 0)

cos(2πT/24) Vswmax(−7; −6) Bzavg(−2; −1) Vswmax(−5; −4)

sin(2πD/365) Vswmin(−1; 0) Bxmin(−7; −6) Bmax(−5; −4)

cos(2πD/365) Vswmin(−2; −1) Bzavg(−4; −3) Bmax(−6; −5)

Bmax(−6; −5) Vswmin(−3; −2) cos(2πD/365) Bavg(−3; −2)

Bmax(−9; −8) Vswmin(−4; −3) Bmax(−4; −3) Vswmin(−4; −3)

Bmin(−6; −5) Vswmin(−5; −4) Vswmin(−2; −1) Bavg(−4; −3)

Bzavg(−1; 0) Vswmin(−6; −5) Bymax(−3; −2) Vswavg(−5; −4)

Vswavg(−1; 0) Vswmin(−7; −6) Bzavg(−1; 0) Bavg(−2; −1)

Bxmax(−2; −1) Vswmin(−8; −7) Bmax(−7; −6) Vswmax(−6; −5)

Bxmin(−1; 0) Vswmin(−9; −8) sin(2πT/24) Bmax(−7; −6)

Bxmin(−5; −4) Bmax(−1; 0) Bxmin(−1; 0) Bavg(−5; −4)

Bymax(−1; 0) nProtmax(−1; 0) Bymin(−1; 0) Bavg(−1; 0)

Bymax(−2; −1) nProtmax(−2; −1) Vswmax(−4; −3) Bavg(−6; −5)

Bymax(−3; −2) nProtmax(−3; −2) Bmax(−5; −4) Vswmin(−5; −4)
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Bymax(−4; −3) nProtmax(−4; −3) Bzavg(−5; −4) Vswavg(−6; −5)

Bymax(−5; −4) Bmax(−2; −1) Bmax(−8; −7) Bmax(−8; −7)

Bymin(−1; 0) Bmax(−3; −2) Bxmin(−9; −8) Bmax(−9; −8)

Bymin(−2; −1) sin(2πD/365) Bzmax(−9; −8) Vswmax(−7; −6)

Bymin(−3; −2) cos(2πD/365) Bymax(−1; 0) Bavg(−7; −6)

Bymin(−4; −3) Bmax(−4; −3) Vswmax(−9; −8) Vswmin(−6; −5)

Bzavg(−2; −1) Bmax(−5; −4) Bavg(−1; 0) Bavg(−8; −7)

Bzavg(−3; −2) Bmax(−6; −5) Bzavg(−6; −5) Vswavg(−7; −6)

Bzavg(−4; −3) Bmax(−7; −6) Bymax(−9; −8) Bzmin(−6; −5)

Bzavg(−5; −4) Bzavg(−1; 0) Bxmax(−3; −2) Vswmax(−8; −7)

Bzavg(−6; −5) Vswavg(−1; 0) Vswavg(−3; −2) Bavg(−9; −8)

Bzavg(−7; −6) nProtavg(−1; 0) Bmax(−6; −5) Vswmin(−7; −6)

Bzavg(−8; −7) Bymax(−5; −4) Bzmax(−8; −7) Vswavg(−8; −7)

Bzavg(−9; −8) Bzavg(−2; −1) Bzmax(−3; −2) Vswmax(−9; −8)

Bzmax(−3; −2) Bzavg(−3; −2) Bymin(−4; −3) Vswmin(−8; −7)

Bzmax(−4; −3) Bzavg(−4; −3) cos(2πT/24) Vswavg(−9; −8)

Bzmax(−5; −4) Bzavg(−5; −4) Bavg(−2; −1) Bzmin(−7; −6)

Bzmax(−6; −5) Bzavg(−7; −6) Vswavg(−1; 0) Vswmin(−9; −8)

Table 5.9: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 0 (nowcast) with a 3-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 0 (nowcast)

FFX (3H) RF (3H) MRMR (3H) MIM (3H)

Bavg(−3; 0) Bavg(−3; 0) Bzmin(−3; 0) Bzmin(−3; 0)

Bxavg(−3; 0) Bmax(−9; −6) Vswmax(−3; 0) Bzmin(−6; −3)

Bmin(−9; −6) Bmin(−3; 0) Bzmin(−6; −3) Vswmax(−3; 0)

Bxavg(−6; −3) Bymax(−3; 0) Bmax(−9; −6) Vswavg(−3; 0)

Bxmax(−3; 0) Bymax(−6; −3) cos(2πD/365) Bmax(−3; 0)

Bxmax(−9; −6) Bymin(−9; −6) Bymax(−3; 0) Bmax(−6; −3)

Byavg(−3; 0) Bzavg(−3; 0) Bzavg(−3; 0) Vswmin(−3; 0)

Byavg(−6; −3) Bzavg(−6; −3) Bzmin(−9; −6) Vswmax(−6; −3)
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Bymax(−3; 0) Bzavg(−9; −6) Bxmax(−3; 0) Bavg(−3; 0)

Bymax(−6; −3) Bzmax(−3; 0) Vswmin(−3; 0) Bavg(−6; −3)

Bymin(−3; 0) Bzmin(−3; 0) Bmax(−3; 0) Vswavg(−6; −3)

Bymin(−6; −3) Bzmin(−6; −3) Bzavg(−6; −3) Bmax(−9; −6)

Bzavg(−3; 0) Bzmin(−9; −6) sin(2πT/24) Bavg(−9; −6)

Bzavg(−6; −3) Vswavg(−6; −3) Bxmin(−9; −6) Vswmin(−6; −3)

Bzavg(−9; −6) Vswavg(−9; −6) Bymin(−3; 0) Bzmin(−9; −6)

Bzmax(−3; 0) Vswavg(−3; 0) Bmax(−6; −3) Vswmax(−9; −6)

Bzmax(−6; −3) Vswmax(−3; 0) Vswmax(−9; −6) Vswavg(−9; −6)

Bzmax(−9; −6) Vswmax(−6; −3) Bxmin(−3; 0) Vswmin(−9; −6)

Bzmin(−3; 0) Vswmax(−9; −6) Bzmax(−9; −6) Bzavg(−3; 0)

Vswavg(−3; 0) Vswmin(−3; 0) Bavg(−3; 0) Bymax(−3; 0)

Vswmax(−3; 0) Vswmin(−6; −3) Bzavg(−9; −6) Bymax(−6; −3)

Vswmin(−3; 0) Vswmin(−9; −6) Bymin(−9; −6) Bmin(−6; −3)

Vswmin(−6; −3) nProtavg(−6; −3) Vswavg(−3; 0) Bmin(−9; −6)

Vswmin(−9; −6) nProtmax(−3; 0) Bymax(−6; −3) Bmin(−3; 0)

nProtmax(−3; 0) nProtmax(−6; −3) Bzmax(−3; 0) Bzavg(−6; −3)

nProtmax(−6; −3) nProtavg(−3; 0) Bxmax(−9; −6) Bymax(−9; −6)

nProtmin(−3; 0) nProtmax(−9; −6) Bavg(−9; −6) Bymin(−3; 0)

nProtmin(−6; −3) nProtmin(−3; 0) Bymax(−9; −6) Bxmin(−3; 0)

nProtmin(−9; −6) sin(2πD/365) Vswmax(−6; −3) Bymin(−6; −3)

sin(2πT/24) cos(2πD/365) Bxmin(−6; −3) Bxmin(−6; −3)

cos(2πT/24) Bavg(−6; −3) nProtmax(−3; 0) Bzmax(−9; −6)

sin(2πD/365) Bavg(−9; −6) Bymin(−6; −3) Bzmax(−6; −3)

cos(2πD/365) Bmax(−3; 0) Bzmax(−6; −3) Bxmin(−9; −6)

Bmax(−3; 0) Bmax(−6; −3) cos(2πT/24) Bzmax(−3; 0)

Table 5.10: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 3 hours ahead with a 1-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 3 hours ahead
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FFX (1H) RF (1H) MRMR (1H) MIM (1H)

Bzmin(−1; 0) Bzmin(−1; 0) Bzmin(−1; 0) Bzmin(−1; 0)

Bzmin(−2; −1) Bzmin(−2; −1) Vswmax(−1; 0) Vswmax(−1; 0)

Vswmax(−1; 0) Bzmin(−3; −2) Bmax(−3; −2) Bmax(−1; 0)

Vswmin(−1; 0) Bzmin(−4; −3) Bzmin(−9; −8) Vswavg(−1; 0)

Bmax(−1; 0) Vswavg(−2; −1) Bzmin(−2; −1) Bzmin(−2; −1)

nProtmax(−1; 0) Vswmax(−1; 0) cos(2πD/365) Vswmax(−2; −1)

nProtmin(−1; 0) Vswmax(−2; −1) Bzmin(−4; −3) Bmax(−2; −1)

sin(2πT/24) Vswmin(−1; 0) Bxmin(−9; −8) Bmax(−3; −2)

cos(2πD/365) Vswmin(−2; −1) Bmax(−1; 0) Vswmin(−1; 0)

Bzavg(−1; 0) Bmax(−1; 0) Bzmin(−6; −5) Bavg(−1; 0)

Bmin(−9; −8) nProtmax(−1; 0) Vswmax(−3; −2) Vswavg(−2; −1)

Bymax(−1; 0) Bzavg(−1; 0) Bzmin(−3; −2) Vswmax(−3; −2)

Bzavg(−2; −1) Vswavg(−1; 0) Bzavg(−1; 0) Bmax(−4; −3)

Bzavg(−5; −4) nProtavg(−1; 0) sin(2πT/24) Bavg(−2; −1)

Table 5.11: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 3 hours ahead with a 3-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 3 hours ahead

FFX (3H) RF (3H) MRMR (3H) MIM (3H)

Bavg(−3; 0) Bavg(−3; 0) Bzmin(−3; 0) Bzmin(−3; 0)

Bxavg(−3; 0) Bmin(−3; 0) Vswmax(−3; 0) Bmax(−3; 0)

Bmin(−3; 0) Bxmin(−3; 0) Bmax(−3; 0) Vswmax(−3; 0)

Bmin(−9; −6) Bxmin(−6; −3) cos(2πD/365) Bavg(−3; 0)

Bxmax(−9; −6) Bymax(−3; 0) Bzmin(−9; −6) Vswavg(−3; 0)

Byavg(−3; 0) Bymin(−3; 0) Bzavg(−3; 0) Bmax(−6; −3)

Bymax(−3; 0) Bzavg(−3; 0) Bxmin(−3; 0) Bavg(−6; −3)

Bymax(−9; −6) Bzmax(−3; 0) Bzmin(−6; −3) Vswmin(−3; 0)

Bymin(−3; 0) Bzmin(−3; 0) sin(2πT/24) Bzmin(−6; −3)

Bymin(−9; −6) Bzmin(−6; −3) Bymin(−3; 0) Vswmax(−6; −3)

Bzavg(−3; 0) Bzmin(−9; −6) Bmax(−9; −6) Bmax(−9; −6)
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Bzavg(−9; −6) Vswavg(−6; −3) Vswmin(−3; 0) Vswavg(−6; −3)

Bzmax(−3; 0) Vswavg(−9; −6) Bymax(−3; 0) Bavg(−9; −6)

Bzmax(−6; −3) Vswavg(−3; 0) Bzmax(−9; −6) Vswmin(−6; −3)

Bzmin(−3; 0) Vswmax(−3; 0) Bxmax(−3; 0) Vswmax(−9; −6)

Vswmax(−3; 0) Vswmax(−6; −3) Bavg(−3; 0) Bzmin(−9; −6)

Vswmin(−3; 0) Vswmax(−9; −6) Bxmin(−9; −6) Vswavg(−9; −6)

nProtmax(−3; 0) Vswmin(−3; 0) Bzavg(−6; −3) Vswmin(−9; −6)

nProtmax(−6; −3) Vswmin(−6; −3) Vswmax(−9; −6) Bymax(−3; 0)

nProtavg(−3; 0) Vswmin(−9; −6) Bymin(−9; −6) Bmin(−3; 0)

nProtmax(−9; −6) nProtavg(−6; −3) Bzmax(−3; 0) Bmin(−6; −3)

nProtmin(−3; 0) nProtmax(−3; 0) Bymax(−6; −3) Bzavg(−3; 0)

nProtmin(−6; −3) nProtmax(−6; −3) Bzavg(−9; −6) Bymax(−6; −3)

sin(2πT/24) nProtavg(−3; 0) nProtmax(−3; 0) Bmin(−9; −6)

cos(2πT/24) nProtmin(−3; 0) Bmax(−6; −3) Bymin(−3; 0)

sin(2πD/365) sin(2πD/365) Bxmax(−9; −6) Bymax(−9; −6)

cos(2πD/365) cos(2πD/365) Vswavg(−3; 0) Bxmin(−3; 0)

Bavg(−9; −6) Bavg(−6; −3) Bzmax(−6; −3) Bzmax(−6; −3)

Bmax(−3; 0) Bmax(−3; 0) Bxmin(−6; −3) Bzmax(−3; 0)

Bmax(−6; −3) Bmax(−6; −3) Bymax(−9; −6) Bxmin(−6; −3)

Table 5.12: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 6 hours ahead with a 1-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 6 hours ahead

FFX (1H) RF (1H) MRMR (1H) MIM (1H)

Bzmin(−1; 0) Bavg(−1; 0) Bmax(−1; 0) Bmax(−1; 0)

Bzmin(−4; −3) Bzmin(−1; 0) Vswmax(−1; 0) Bmax(−2; −1)

Vswmax(−1; 0) Bzmin(−2; −1) Bzmin(−1; 0) Bmax(−3; −2)

Vswmin(−1; 0) Vswmax(−1; 0) cos(2πD/365) Vswmax(−1; 0)

Bmax(−1; 0) Vswmax(−2; −1) Bzmin(−8; −7) Bavg(−1; 0)

nProtmax(−1; 0) Vswmin(−1; 0) Bzmin(−3; −2) Bavg(−2; −1)

nProtmin(−1; 0) Vswmin(−2; −1) Bxmin(−7; −6) Vswavg(−1; 0)
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sin(2πT/24) Bmax(−1; 0) sin(2πT/24) Bmax(−4; −3)

cos(2πD/365) nProtmax(−1; 0) Bzmin(−5; −4) Vswmax(−2; −1)

Bmin(−1; 0) Bmax(−2; −1) Bmax(−9; −8) Bavg(−3; −2)

Bzavg(−1; 0) Bzavg(−1; 0) Bzmin(−2; −1) Vswmin(−1; 0)

Bmin(−9; −8) Vswavg(−1; 0) Vswmax(−7; −6) Vswavg(−2; −1)

Bzavg(−5; −4) nProtavg(−1; 0) Bymax(−1; 0) Bmax(−5; −4)

Table 5.13: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 6 hours ahead with a 3-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 6 hours ahead

FFX (3H) RF (3H) MRMR (3H) MIM (3H)

Bavg(−3; 0) Bavg(−3; 0) Bmax(−3; 0) Bmax(−3; 0)

Bmin(−3; 0) Bzavg(−3; 0) Vswmax(−3; 0) Bavg(−3; 0)

Bmin(−9; −6) Bzmax(−3; 0) Bzmin(−3; 0) Bzmin(−3; 0)

Bxmin(−3; 0) Bzmin(−3; 0) cos(2πD/365) Vswmax(−3; 0)

Bymax(−3; 0) Bzmin(−9; −6) Bzmin(−9; −6) Bmax(−6; −3)

Bzavg(−3; 0) Vswavg(−6; −3) sin(2πT/24) Vswavg(−3; 0)

Bzavg(−6; −3) Vswavg(−9; −6) Bxmin(−3; 0) Bavg(−6; −3)

Bzavg(−9; −6) Vswavg(−3; 0) Bzmin(−6; −3) Bmax(−9; −6)

Bzmin(−3; 0) Vswmax(−3; 0) Bymin(−3; 0) Vswmin(−3; 0)

Bzmin(−9; −6) Vswmax(−6; −3) Bzmax(−9; −6) Vswmax(−6; −3)

Vswmax(−3; 0) Vswmin(−3; 0) Bzmax(−3; 0) Bavg(−9; −6)

Vswmin(−3; 0) Vswmin(−6; −3) Vswmax(−9; −6) Bzmin(−6; −3)

Vswmin(−9; −6) Vswmin(−9; −6) Bxmin(−9; −6) Vswavg(−6; −3)

nProtmax(−3; 0) nProtmax(−3; 0) Bzavg(−3; 0) Vswmin(−6; −3)

nProtavg(−3; 0) nProtavg(−3; 0) Bymax(−3; 0) Vswmax(−9; −6)

nProtmin(−3; 0) nProtmin(−3; 0) Bxmax(−3; 0) Vswavg(−9; −6)

sin(2πT/24) sin(2πD/365) Bmax(−9; −6) Bzmin(−9; −6)

cos(2πD/365) cos(2πD/365) nProtmin(−3; 0) Bmin(−3; 0)

Bmax(−3; 0) Bmax(−3; 0) Bavg(−3; 0) Vswmin(−9; −6)
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Table 5.14: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 9 hours ahead with a 1-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 9 hours ahead

FFX (1H) RF (1H) MRMR (1H) MIM (1H)

Bzmin(−1; 0) Bavg(−1; 0) Bmax(−1; 0) Bmax(−1; 0)

Bzmin(−4; −3) Bzmin(−1; 0) Vswmax(−2; −1) Bmax(−2; −1)

Bzmin(−7; −6) Bzmin(−2; −1) cos(2πD/365) Bmax(−3; −2)

Bzmin(−9; −8) Vswmax(−1; 0) Bzmin(−3; −2) Bavg(−1; 0)

Vswmax(−1; 0) Vswmax(−2; −1) Bzmin(−9; −8) Bavg(−2; −1)

Vswmin(−9; −8) Vswmin(−1; 0) sin(2πT/24) Bmax(−4; −3)

Bmax(−1; 0) Vswmin(−2; −1) Bzmin(−1; 0) Bavg(−3; −2)

nProtmin(−1; 0) Bmax(−1; 0) Bxmin(−7; −6) Vswmax(−1; 0)

sin(2πT/24) nProtmax(−1; 0) Bzmin(−6; −5) Bmax(−5; −4)

cos(2πD/365) Bmax(−2; −1) Bymin(−1; 0) Vswavg(−1; 0)

Bmin(−1; 0) nProtmin(−1; 0) Bxmin(−1; 0) Bavg(−4; −3)

Bzavg(−1; 0) cos(2πD/365) Bzmax(−9; −8) Vswmax(−2; −1)

Bmin(−8; −7) Bzavg(−1; 0) Bzmin(−2; −1) Bmax(−6; −5)

Bmin(−9; −8) Vswavg(−1; 0) Vswmax(−7; −6) Bavg(−5; −4)

Bzavg(−5; −4) nProtavg(−1; 0) Bmax(−5; −4) Vswavg(−2; −1)

Table 5.15: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 9 hours ahead with a 3-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 9 hours ahead

FFX (3H) RF (3H) MRMR (3H) MIM (3H)

Bavg(−3; 0) Bavg(−3; 0) Bmax(−3; 0) Bmax(−3; 0)

Bmin(−3; 0) Bzavg(−3; 0) Vswmax(−3; 0) Bavg(−3; 0)

Bmin(−9; −6) Bzmin(−3; 0) cos(2πD/365) Bmax(−6; −3)

Bymax(−3; 0) Vswavg(−9; −6) Bzmin(−3; 0) Vswmax(−3; 0)

Bzavg(−3; 0) Vswavg(−3; 0) sin(2πT/24) Bavg(−6; −3)
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Bzavg(−6; −3) Vswmax(−3; 0) Bzmin(−9; −6) Bzmin(−3; 0)

Bzavg(−9; −6) Vswmax(−6; −3) Bxmin(−3; 0) Vswavg(−3; 0)

Bzmin(−3; 0) Vswmin(−3; 0) Bzmax(−9; −6) Bmax(−9; −6)

Bzmin(−9; −6) Vswmin(−6; −3) Bymin(−3; 0) Bavg(−9; −6)

Vswmax(−3; 0) Vswmin(−9; −6) Bzmax(−3; 0) Vswmin(−3; 0)

Vswmin(−9; −6) nProtmax(−3; 0) Bzmin(−6; −3) Vswmax(−6; −3)

nProtmax(−3; 0) nProtavg(−3; 0) Bxmin(−9; −6) Vswavg(−6; −3)

nProtmin(−3; 0) nProtmin(−3; 0) nProtmin(−3; 0) Bzmin(−6; −3)

sin(2πT/24) sin(2πD/365) Bxmax(−9; −6) Vswmax(−9; −6)

cos(2πD/365) cos(2πD/365) Bymax(−3; 0) Vswmin(−6; −3)

Bmax(−3; 0) Bmax(−3; 0) Vswmax(−9; −6) Bmin(−3; 0)

Table 5.16: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 12 hours ahead with a 1-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 12 hours ahead

FFX (1H) RF (1H) MRMR (1H) MIM (1H)

Bavg(−1; 0) Bavg(−1; 0) Bmax(−1; 0) Bmax(−1; 0)

Bzmin(−1; 0) Bzmin(−1; 0) Vswmax(−2; −1) Bmax(−2; −1)

Bzmin(−4; −3) Vswmax(−1; 0) cos(2πD/365) Bavg(−1; 0)

Bzmin(−9; −8) Vswmax(−2; −1) Bzmin(−9; −8) Bmax(−3; −2)

Vswmax(−1; 0) Vswmin(−1; 0) sin(2πT/24) Bavg(−2; −1)

Bmax(−1; 0) Bmax(−1; 0) Bzmin(−1; 0) Bavg(−3; −2)

nProtmin(−1; 0) Bmax(−2; −1) Bxavg(−9; −8) Bmax(−4; −3)

sin(2πT/24) nProtmin(−1; 0) Bzmin(−5; −4) Bmax(−5; −4)

cos(2πD/365) sin(2πD/365) Bxmin(−1; 0) Bavg(−4; −3)

Bmin(−1; 0) cos(2πD/365) Bzmin(−3; −2) Vswmax(−1; 0)

Bzavg(−5; −4) Vswavg(−1; 0) Bzmax(−9; −8) Bmax(−6; −5)
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Table 5.17: Features selected using FFX, RF, MRMR, and MIM feature selection
algorithms for the prediction horizon h = 12 hours ahead with a 3-hour time window
used to construct input features. RF, MRMR, and MIM provide the ordered list
of variables, with the most important variable at the top of the list. FFX does not
provide the feature importance ranking.

h = 12 hours ahead

FFX (3H) RF (3H) MRMR (3H) MIM (3H)

Bavg(−3; 0) Bavg(−3; 0) Bmax(−3; 0) Bmax(−3; 0)

Bmin(−3; 0) Bzavg(−3; 0) Vswmin(−3; 0) Bavg(−3; 0)

Bmin(−9; −6) Bzmin(−3; 0) cos(2πD/365) Bmax(−6; −3)

Bymax(−3; 0) Bzmin(−6; −3) sin(2πT/24) Bavg(−6; −3)

Bzavg(−3; 0) Vswavg(−3; 0) Bzmin(−3; 0) Vswmax(−3; 0)

Bzavg(−6; −3) Vswmax(−3; 0) Bxmin(−9; −6) Bmax(−9; −6)

Bzavg(−9; −6) Vswmax(−6; −3) Bzmin(−9; −6) Bavg(−9; −6)

Bzmin(−3; 0) Vswmin(−3; 0) Bzmax(−3; 0) Vswavg(−3; 0)

Bzmin(−9; −6) Vswmin(−6; −3) Bxmax(−3; 0) Bzmin(−3; 0)

Vswmax(−3; 0) Vswmin(−9; −6) Bzmax(−9; −6) Vswmax(−6; −3)

Vswmin(−9; −6) nProtmax(−3; 0) nProtmin(−3; 0) Vswmin(−3; 0)

nProtmax(−3; 0) nProtavg(−3; 0) Bymax(−3; 0) Vswavg(−6; −3)

nProtmin(−3; 0) nProtmin(−3; 0) Bzmin(−6; −3) Bzmin(−6; −3)

sin(2πT/24) sin(2πD/365) Bymin(−9; −6) Bmin(−3; 0)

cos(2πD/365) cos(2πD/365) Bxmin(−3; 0) Vswmax(−9; −6)

Bmax(−3; 0) Bmax(−3; 0) Vswmax(−3; 0) Vswmin(−6; −3)
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5.C Fit performance statistics

Table 5.18: Fit performance statistics of the NN-FFX models for different prediction
horizons computed on the training set.

Prediction horizon, hours 0 3 6 9 12
Number of values in comparison 42479 42479 42479 42479 42479
Intercept of the linear fit 0.2597 0.4363 0.7578 0.9467 1.0866
Slope of the linear fit 0.8743 0.7671 0.5935 0.4951 0.4225
Pearson correlation coefficient (R) 0.9376 0.8758 0.7696 0.7048 0.6493
Root mean square error (RMSE) 0.4822 0.6668 0.8827 0.9817 1.0511
Mean absolute error (MAE) 0.3758 0.5062 0.6714 0.7473 0.8007
Mean error (ME, or bias) 0.0238 0.0020 -9.0616e-05 0.0040 0.0126
Prediction efficiency (PE) 0.8787 0.7670 0.5923 0.4967 0.4216

Table 5.19: Fit performance statistics of the NN-FFX models for different prediction
horizons computed on the validation set.

Prediction horizon, hours 0 3 6 9 12
Number of values in comparison 10080 10080 10080 10080 10080
Intercept of the linear fit 0.2780 0.4870 0.8496 1.0579 1.2035
Slope of the linear fit 0.8618 0.7503 0.5670 0.4659 0.3872
Pearson correlation coefficient (R) 0.9303 0.8666 0.7518 0.6758 0.6105
Root mean square error (RMSE) 0.4987 0.6792 0.8936 0.9990 1.0755
Mean absolute error (MAE) 0.3853 0.5150 0.6835 0.7596 0.8197
Mean error (ME, or bias) 0.0062 -0.0012 0.0054 0.0180 0.0141
Prediction efficiency (PE) 0.8654 0.7509 0.5652 0.4563 0.3721

Table 5.20: Fit performance statistics of the NN-FFX models for different prediction
horizons computed on the test set.

Prediction horizon, hours 0 3 6 9 12
Number of values in comparison 5880 5880 5880 5880 5880
Intercept of the linear fit 0.2570 0.4359 0.7569 0.9542 1.1052
Slope of the linear fit 0.8653 0.7642 0.5884 0.4836 0.4061
Pearson correlation coefficient (R) 0.9350 0.8745 0.7695 0.7056 0.6477
Root mean square error (RMSE) 0.4964 0.6754 0.8898 0.9909 1.0632
Mean absolute error (MAE) 0.3872 0.5101 0.6710 0.7480 0.8029
Mean error (ME, or bias) -0.0059 -0.0199 -0.0387 -0.0436 -0.0374
Prediction efficiency (PE) 0.8740 0.7646 0.5914 0.4965 0.4184
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Chapter 6

Summary and future work

6.1 Summary

In this dissertation, we demonstrated how one can utilize sparse, single-point satellite

measurements to reconstruct the global space environment by using neural networks.

We showed that neural networks are an efficient technique for building complex models

based on sparse space observations. This research began with deriving electron density

from satellite measurements along the satellite orbit, continued to reconstructing the

global plasmasphere environment from sparse density measurements employing solar

wind, geomagnetic indices and the location as inputs, and concluded with improving

the performance of the developed neural network for periods of enhanced geomagnetic

activity by combining it with the physics-based model of plasma density. In addition

to that, the developed machine learning-based tools were extended and applied to

predict the geomagnetic Kp index. The summary and main findings of this research

are presented below.

We applied feedforward neural networks to automatically derive the upper-hybrid

resonance frequency from the electric field measurements made with the EMFISIS

instrument onboard the Van Allen Probes spacecraft (Zhelavskaya et al., 2018). The

derived upper-hybrid frequency was then used to calculate the electron density. The

neural network was trained on the 2.5-year plasma density database developed us-

ing another semi-automated routine AURA (Kurth et al., 2015). We demonstrated

that the developed Neural-network-based Upper hybrid Resonance Determination

(NURD) algorithm was in a good agreement with AURA. Specifically, the densi-

ties derived by NURD deviated from the ones derived by AURA by 1-5% for the
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cases when the upper-hybrid band was relatively easy to identify or partially ob-

scured (which comprised 90% of all the data), and by 14% for the difficult cases.

The NURD algorithm was further applied to the available database of electric and

magnetic field measurements from October 2012 until July 2016. Via a statistical

analysis, we demonstrated that the resulting electron density was in a good agree-

ment with the empirical plasmasphere and trough density models by Sheeley et al.

(2001), with only a slight shift of the mean density values, which may be due to the

different part of the solar cycle used for constructing the Sheeley et al. (2001) model.

The resulting database of electron densities was made publicly available (Zhelavskaya

et al., 2020b).

Using this large database of electron density measurements along the orbit of the

Van Allen Probes satellites, we developed a new empirical model of the plasma den-

sity, the Plasma density in the Inner magnetosphere Neural network-based Empirical

(PINE) model (Zhelavskaya et al., 2017). We used a similar approach based on feed-

forward neural networks, and in this case the inputs to the neural network were the

time histories of solar wind parameters and geomagnetic indices, and the location.

The neural networks were able to learn the global distribution of cold plasma from

sparse density measurements and the developed model can be applied to reconstruct

the cold plasma density distribution globally at any time, when the inputs are known.

Furthermore, we assessed the influence of different drivers on the performance of the

model, in particular the geomagnetic and solar wind parameters and their time his-

tory. To determine the critical combination of activity parameters, we trained several

neural networks with different combinations of input parameters and compared them

to each other. The performance of the networks was estimated both quantitatively,

by means of cross validation on the data from Van Allen Probes, and qualitatively, by

comparing the modeled plasmapause locations with the ones observed with the IM-

AGE EUV instrument. We found that using geomagnetic indices alone is sufficient to

model the plasmasphere dynamics accurately (with a correlation coefficient of ∼0.95

and an RMSE of 0.30 on the testing data set). The inclusion of solar wind confused

the model and caused overfitting, while using solar wind parameters for modeling

alone did not provide a sufficient model accuracy. The critical duration of the time

history of parameters, after which no significant improvement is observed, was found

to be 48 hours. The model is capable of globally reconstructing the large-scale plas-

masphere dynamics and successfully captures plume formation and evolution and the
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storm-time erosion of the plasmasphere.

As a next step, we explored the performance of the developed neural network-based

model during extreme geomagnetic storms. The performance of neural networks is

known to strongly depend on the availability of training data. In our case, the data

during strong geomagnetic storms are very limited, and consequently the performance

of neural networks is also reduced for such events. In order to mitigate this issue, we

employed a physics-based modeling approach during intervals of enhanced geomag-

netic activity. We then developed an approach to optimally combine the empirical

neural network and physics-based models of the plasmasphere electron density by

means of data assimilation (Zhelavskaya et al., 2020a). Data assimilation is typically

used to combine sparse observations and a background model, but in this study we

used this approach for the first time to combine two models. In particular, we used

the Kalman filter technique to optimally blend the developed neural network model

and the physics-based VERB-CS code (Aseev and Shprits, 2019), adjusted to model

the plasmasphere dynamics. We evaluated the performance of all the models by (1)

comparing the model-predicted global evolution of plasma density to the global im-

ages of the He+ distribution from the IMAGE EUV for a number of events in the

past including the 2003 Halloween storm, and (2) by comparing the output of the

models for a 18-month out-of-sample interval to the in-situ density obtained with the

RBSP-A spacecraft and computing performance metrics. We demonstrated that the

new assimilative model is capable of reproducing the dynamics of the plasmasphere

well during both quiet and disturbed geomagnetic activity, including extreme geo-

magnetic events. Its quantitative performance is better than that of VERB-CS and

is comparable to the neural network performance for the dayside local time sector.

Finally, we applied the developed neural network-based modeling tools to another

important problem in the field of space weather, the prediction of the geomagnetic

index Kp (Zhelavskaya et al., 2019). Previous studies used various machine learn-

ing methods and algorithms to predict the Kp index, basing their inferences on the

recent history of Kp and on solar wind measurements at L1. Our goal was to un-

derstand what brings the most improvement to the model accuracy (i.e., a machine

learning method, on which a model is based, or a method for constructing inputs to

the model) and whether there is a limit to the prediction accuracy set by using solar

wind measurements at L1 as input to a model. To answer those questions, we system-

atically tested a number of machine learning algorithms, namely Gradient Boosting,
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Feedforward Neural Networks, and Linear Regression. We used the same validation

technique and the same time intervals to train and validate the models, and in doing

so created an unbiased technique to validate and compare models. We have found that

models constructed using nonlinear methods (neural networks and gradient boosting)

outperform models constructed using linear regression for the short-term prediction

horizons, which implies the existence of a nonlinear component in the Kp prediction

problem for short-term predictions. We also found that the performance of all con-

sidered methods decreases as the prediction horizon increases, which may indicate

that the information in the solar wind measurements at L1 is not sufficient to pro-

duce accurate long-term predictions (e.g., > 3 hours), especially for high Kp values,

and is not sufficient to accurately capture the arrival time of geomagnetic storms for

the long-term prediction horizons. Additionally, we investigated different methods of

machine learning and information theory for optimal input selection, and used these

methods to identify the most important inputs to a predictive model of Kp. Models

based on the selected inputs, using the proposed feature selection method, showed an

improvement in performance compared to models based on the full input set. The

obtained optimal input variables can be used to gain an understanding of what inputs

are the most important and physically meaningful to predict the Kp index. The fea-

ture selection methods described in this work can also be applied to other problems

in space physics in order to significantly reduce the input dimensionality and identify

the most important inputs that contain sufficient information to produce accurate

predictions.

6.2 Future work

The results of this dissertation are planned to be extended in the future. In this

section, we outline directions of the planned future work.

The developed neural network model of plasma density PINE is based on the

electron density measurements from the Van Allen Probes mission. The training data

set for this model covered ∼4 years of data, which did not coincide with substantial

geomagnetic activity. The performance of the PINE model can be further improved by

enlarging the training data set and accounting for extreme geomagnetic activity. We

will expand the training data set by using in-situ density measurements from other

missions, such as IMAGE (using the RPI instrument), CRRES (Anderson et al.,
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1992), Cluster (Escoubet et al., 2001), ISEE-1 (Gurnett et al., 1978), and Polar

(Gurnett et al., 1995), and inter-calibrate them. This will allow us to include more

storm-time events into the training data set and improve the model performance

for such intervals. We will also investigate different machine learning techniques for

unbalanced data sets, such as rebalancing or weighting of the cost function.

In addition to that, we will use the output of the developed assimilative model

during the past storm-time intervals as a part of the training data set. This will allow

increasing the number of storm-time cases in the training data set and eventually

producing a balanced training data set, i.e., with a uniform coverage in terms of

geomagnetic activity. Weights can be assigned to these additional surrogate data,

indicating a lower trust level than for the actual in-situ observations. We will test if

the addition of such surrogate data aids the model performance or not, and which of

the methods mentioned above produce the optimal results.

We will test different and more realistic electric field (e.g., Matsui et al. (2013)),

refilling, and saturation density models in order to improve the physics-based VERB-

CS model of plasma density. More work will be done regarding the selection of model

and observation error in the Kalman filter setup of the assimilative model. The assim-

ilative model can be further extended by assimilating in-situ density measurements

in the model (e.g., from Van Allen Probes, IMAGE RPI, or other sources, depending

on the time period), in addition to the output of the neural network model PINE.

Furthermore, we will extend the neural network PINE model to lower altitudes

by including electron density measurements from those altitudes. This will allow us

to model the plasma density starting from the ionospheric heights all the way up to

the plasmasphere. In particular, we will employ the in-situ density measurements

and ionospheric density reconstructions from the following missions: CHAllenging

Minisatellite Payload (CHAMP), Swarm, Constellation Observing System for Me-

teorology, Ionosphere, and Climate (FormoSat-3/COSMIC), Gravity Recovery and

Climate Experiment (GRACE), and MetOP. We will employ a methodology simi-

lar to the PINE modeling, based on feedforward neural networks. In addition, we

will apply the feature selection techniques employed in this dissertation for the Kp

prediction to select the most important drivers of the plasmasphere and ionosphere

dynamics. We will investigate whether the electron density in the ionosphere and

plasmasphere can be accurately modeled using a single model, or whether different

models for different regions need to be developed. Similar methods may be applied
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to model other regions, such as the ionosphere or ring current. They can also be ap-

plied to model maps of vertical total electron content (VTEC) used for applications

in navigation.

The developed models of the plasmaspheric electron density can be used to im-

prove existing and to develop more advanced parameterizations of the diffusion coef-

ficients used for radiation belt modeling. Currently, diffusion coefficients are param-

eterized using statistical density models, such as Sheeley et al. (2001) or Carpenter

and Anderson (1992) (e.g., Orlova et al., 2012; Ni et al., 2008). These models do

not account for the asymmetric plasmapause and plumes in the plasmasphere, which

is important for separating the regions of hiss and chorus waves. Usage of more

advanced models, such as PINE or the assimilative model, will allow us to account

for these effects and explore how the plasmasphere dynamics influence the radiation

belts. It will be especially interesting to analyse the influence of plasma density on

the radiation belt dynamics during extreme events, such as the Halloween storm in

2003.

Finally, we will apply the developed plasma density models to predict the plas-

masphere dynamics in real-time and complement the system for forecasting of the

Earth’s radiation belt dynamics operating at GFZ.
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Cireşan, D., Meier, U., Masci, J., and Schmidhuber, J. (2012). Multi-column deep

neural network for traffic sign classification. Neural Networks, 32:333–338.

Cohen, E. R. (2007). Quantities, units and symbols in physical chemistry. Royal

Society of Chemistry.

Comfort, R. (1986). Plasmasphere thermal structure as measured by isee-1 and de-1.

Advances in space research, 6(3):31–40.

Comfort, R., Newberry, I., and Chappell, C. (1988). Preliminary statistical survey of

plasmaspheric ion properties from observations by de 1/rims. Modeling Magneto-

spheric Plasma, Geophys. Monogr. Ser, 44:107–114.

Cortes, C., Jackel, L. D., Solla, S. A., Vapnik, V., and Denker, J. S. (1994). Learning

curves: Asymptotic values and rate of convergence. Advances in Neural Information

Processing Systems, pages 327–327.

Costello, K. A. (1998). Moving the Rice MSFM into a real-time forecast mode using

solar wind driven forecast modules. PhD thesis, Rice University.

Cowley, S. W. (1996). A beginner’s guide to the earth’s magnetosphere. Earth in

Space, 8:9–13.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-

ematics of control, signals and systems, 2(4):303–314.

Daae, M., Shprits, Y., Ni, B., Koller, J., Kondrashov, D., and Chen, Y. (2011).

Reanalysis of radiation belt electron phase space density using various boundary

conditions and loss models. Advances in space research, 48(8):1327–1334.

Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S. (1999). The terrestrial

ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4):407–438.



BIBLIOGRAPHY 233
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Orlova, K., Spasojević, M., and Shprits, Y. (2014). Activity-dependent global model

of electron loss inside the plasmasphere. Geophysical Research Letters, 41(11):3744–

3751.

Orlova, K. G., Shprits, Y. Y., and Ni, B. (2012). Bounce-averaged diffusion coeffi-

cients due to resonant interaction of the outer radiation belt electrons with oblique

chorus waves computed in a realistic magnetic field model. Journal of Geophysical

Research: Space Physics, 117(A7).



248 BIBLIOGRAPHY

Ozeke, L. G., Mann, I. R., Murphy, K. R., Jonathan Rae, I., and Milling, D. K.

(2014). Analytic expressions for ulf wave radiation belt radial diffusion coefficients.

Journal of Geophysical Research: Space Physics, 119(3):1587–1605.

Park, C. (1972). Methods of determining electron concentrations in the magneto-

sphere from nose whistlers.

Park, C. (1974). Some features of plasma distribution in the plasmasphere deduced

from Antarctic whistlers. Journal of geophysical research, 79(1):169–173.

Park, C. and Carpenter, D. L. (1970). Whistler evidence of large-scale electron-density

irregularities in the plasmasphere. Journal of Geophysical Research, 75(19):3825–

3836.

Park, C. G. (1971). Westward electric fields as the cause of nighttime enhancements

in electron concentrations in midlatitude f region. Journal of Geophysical Research,

76(19):4560–4568.

Parker, E. N. (1963). Interplanetary dynamical processes. New York, Interscience

Publishers, 1963.

Peng, H., L. F. and Ding, C. (2005). Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238.

Perlich, C., Provost, F., and Simonoff, J. S. (2003). Tree induction vs. logistic regres-

sion: A learning-curve analysis. Journal of Machine Learning Research, 4(Jun):211–

255.
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Trotignon, J., Rauch, J., Décréu, P., Canu, P., and Lemaire, J. (2003). Active and pas-

sive plasma wave investigations in the Earth’s environment: The cluster/whisper

experiment. Advances in Space Research, 31(5):1449–1454.

Van Allen, J. A. and Frank, L. A. (1959). Radiation around the earth to a radial

distance of 107,400 km. Nature, 183(4659):430–434.

Vernov, S. and Chudakov, A. (1960). Investigation of radiation in outer space. In

International Cosmic Ray Conference, volume 3, page 19.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010).

Stacked denoising autoencoders: Learning useful representations in a deep net-

work with a local denoising criterion. Journal of Machine Learning Research,

11(Dec):3371–3408.

Volland, H. (1973). A semiempirical model of large-scale magnetospheric electric

fields. Journal of Geophysical Research, 78(1):171–180.



254 BIBLIOGRAPHY

Walt, M. (1994). The geomagnetic field, page 2535. Cambridge Atmospheric and

Space Science Series. Cambridge University Press.

Wang, J., Zhong, Q., Liu, S., Miao, J., Liu, F., Li, Z., and Tang, W. (2015). Statistical

analysis and verification of 3-hourly geomagnetic activity probability predictions.

Space Weather, 13(12):831–852.

Weimer, D. (1996). A flexible, imf dependent model of high-latitude electric potentials

having space weather applications. Geophysical Research Letters, 23(18):2549–2552.

Weimer, D. (2001). An improved model of ionospheric electric potentials includ-

ing substorm perturbations and application to the geospace environment model-

ing november 24, 1996, event. Journal of Geophysical Research: Space Physics,

106(A1):407–416.

Weimer, D. (2005). Predicting surface geomagnetic variations using ionospheric elec-

trodynamic models. Journal of Geophysical Research: Space Physics, 110(A12).

Williams, D. and Hinton, G. (1986). Learning representations by back-propagating

errors. Nature, 323(6088):533–538.

Williams, D. J. (1987). Ring current and radiation belts. Reviews of Geophysics,

25(3):570–578.

Wing, S. and Johnson, J. R. (2019). Applications of information theory in solar and

space physics. Entropy, 21(2):140.

Wing, S., Johnson, J. R., Camporeale, E., and Reeves, G. D. (2016). Information

theoretical approach to discovering solar wind drivers of the outer radiation belt.

Journal of Geophysical Research: Space Physics, 121(10):9378–9399.

Wing, S., Johnson, J. R., Jen, J., Meng, C.-I., Sibeck, D. G., Bechtold, K., Freeman,

J., Costello, K., Balikhin, M., and Takahashi, K. (2005). Kp forecast models.

Journal of Geophysical Research: Space Physics, 110(A4).

Wintoft, Wik, Magnus, Matzka, Jürgen, and Shprits, Yuri (2017). Forecasting kp

from solar wind data: input parameter study using 3-hour averages and 3-hour

range values. J. Space Weather Space Clim., 7:A29.



BIBLIOGRAPHY 255

Xiao-Ting, S., Gendrin, R., and Caudal, G. (1988). Refilling process in the plasmas-

phere and its relation to magnetic activity. Journal of Atmospheric and Terrestrial

Physics, 50(3):185 – 195.
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