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Chapter 1

Introduction

Goals and Motivations In this thesis we introduce a class of generalized Willmore
functionals in order to analyze a wide class of problems from mathematical physics after
we develop a general existence and regularity theory.

The Willmore functional, named after T. J. Willmore, is originally defined for a closed,
embedded surface Σ ⊂ R3 with mean curvature H by

W[Σ] = 1
4

∫
Σ
H2 dµ,

where µ is the measure on Σ induced by the Euclidean metric.
Our primary inspiration comes from general relativity. S. W. Hawking introduced

the Hawking energy as a quasi local energy in [54]. Let (M, g) be a three dimensional
Riemannian manifold and let Σ be a spherical surface in M . Then the Hawking energy is
given by

E [Σ] :=

√
|Σ|
16π

(
1− 1

16π

∫
Σ
H2 − (trΣK)2 dµ

)
.

Here K is a symmetric two tensor field on M , and ν is the normal vector field of Σ. In
general relativity M is embedded in a four dimensional Lorentz manifold N with second
fundamental form K. In this wayM can be seen as the space at a given instant, contained
in the space time N . The motivation for the Hawking energy is the desire to find a (quasi)
local notion of energy in general relativity that encompasses the energy of the gravitational
field. For example, the famous Schwarzschild spacetime as a model for black holes is a so-
called vacuum solution to the Einstein equations. This means there is no classical energy,
like matter, present but still it is a curved spacetime and should therefore contain some
kind of energy. For more on quasi local energies see for instance the living review [52] by
L.B. Szabados.

Unfortunately, the Hawking energy has some undesirable properties. For instance it
is not necessarily positive, as can be seen in the case M = R3, K = 0 and Σ any surface
but a round sphere, since the round spheres SR(a) for R > 0 and a ∈ R3 minimize the
Willmore functional. Indeed, E is normalized to be zero on SR(a). More importantly, E
is not monotone in the sense that it is possible to find bounded, open domains Ω1 and
Ω2 with regular boundaries Σ1 and Σ2 such that Ω1 ⊂ Ω2 but E [Σ1] > E [Σ2]. In the
case M = R3 and K = 0 this occurs if we choose Ω2 to be any bounded, open domain
with regular boundary that is not a ball and compare it to a ball inside of Ω2. Thus we
restrict our focus surfaces adapted to the the Hawking energy shuch as area-constraint
maximizers or critical surfaces with large energy. Although this means that we cannot
investigate arbitrary regions of M , but only those which contain enough critical surfaces.
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2 CHAPTER 1. INTRODUCTION

Clearly, we can analyze E subject to an area constraint by investigating

H[Σ] =
∫

Σ
H2 − (trΣK)2 dµ

subject to an area constraint. Note that trΣK = trM K −K(ν, ν) depends on the normal
vector field ν.

As it poses little extra difficulty, we study a slight generalization called Hawking type
functionals. Let L : TM → R be a smooth and bounded function, and define

HL[Σ] :=W[Σ] +
∫

Σ
L(x, νx) dµ(x).

Apart from Hawking type functionals, we will be interested in another class of func-
tionals. In the beginning of the 19th century S. D. Poisson and S. Germain investigated
the roles of principal curvatures for elastic surfaces, see [48] and [12]. Later, in [15]
W. Helfrich proposed a model for thin elastic membranes seen as surfaces in R3 which are
critical points of a bending energy under area and volume constraints. Let c be a constant,
then his bending energy reads

Hc[Σ] =
∫

Σ
(H + c)2 dµ.

Since then many different bending energies have been proposed, see for instance the review
[53] by Z.C. Tu and Z.C. Ou-Yang. There they present the following functional for two
constants c and b.

Hc,b[Σ] :=
∫

Σ
(H + c)2 dµ+ b

(∫
Σ
H dµ

)2

Here the last term is added to model nonlocal interactions.
An interesting experimentally observed phenomenon of elastic membranes is budding.

It describes the fact that, depending on the external conditions, closed membranes may
develop thin necks which pinch, leading to two touching closed membranes. We will see
in Chapter 2 that W 2,2 immersions with bounded Willmore energy can exhibit a similar
phenomenon called bubbling.

Let S be a closed Riemann surface and (M, g) Riemannian manifold. In Definition 1.1.7
we present the notion of generalized Willmore functional on the space of conformal W 2,2∩
W 1,∞(S,M) immersions that encompasses both HL and Hc,b. In analogy to Willmore
surfaces, the critical points of the Willmore functional, we call the critical points of a
generalized Willmore functional, generalized Willmore surfaces ( or Hawking type surfaces
when dealing with Hawking type functionals specifically).

Our goal is to prove existence and regularity of generalized Willmore surfaces as well as
to analyze Hawking type functionals in the context of general relativity in greater detail.

Existence of Minimizers For the Willmore functional, the question of existence of
Willmore surfaces has been thoroughly examined. T. J. Willmore himself showed in [56]
that round spheres are minimizers among all surfaces in R3.

Furthermore, he famously conjectured that the minimizer among all tori in R3 is the
Clifford torus. This remained an open problem for 49 years until F. C. Marques and
A. Neves confirmed it in 2014, see [36], using min-max theory of minimal surfaces in
S3. To see the relation of minimal surfaces in S3 to the Willmore energy note that the
Willmore functional is conformally invariant, and the stereographic projection maps R3

conformally into S3.
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Settling the Willmore conjecture sparked many reviews that examine the historical
development and the solution to the problem in much greater detail than we could here,
hence we refer to the following two articles by S.T. Yau as well as F. C. Marques and
A. Neves [58], [37].

In the following we will briefly review some relatively recent results on Willmore sur-
faces on which this thesis builds. Let (M, g) be a Rimannian manifold and let φ : S → Σ
be an oriented, immersed surface in M . Here and in the following we employ the notation
W[φ] andW[Σ] for the Willmore energy of immersions φ and their images Σ, interchange-
ably. The Euler–Lagrange equation of the Willmore functional in (M, g) reads

∆H +H| Å |2 +H Ric(ν, ν) = 0 (1.0.1)

where Å = A− γ
2H is the trace free part of the second fundamental form A and Ric is the

Ricci curvature of M and γ = g|Σ. It is an elliptic PDE of order four for the immersion,
which is quite difficult to solve in general. In order to produce critical points one typically
employs variational methods or imposes symmetry assumptions. In this thesis we will
construct minimizers of generalized Willmore functionals via direct minimization under
constraints and generate critical points by perturbative methods from know solutions.

The idea of direct minimization is to pick a minimizing sequence, prove that it sub-
converges in a suitable space and show that the limit actually realizes the infimum. Thus
a key step is to show compactness for a minimizing sequence.

In his book [14] on harmonic maps F. Hélein discusses the compactness of W 2,2 im-
mersions φ : D → Rn with a bound on the Willmore energy. Using the method of moving
frames he proves that there is a constant Cn such that any sequence φk of conformal
W 2,2(D,Rn) immersions with W[φk] ≤ Cn either converges to a constant map or weakly
subconverges to a conformal W 2,2 immersion. In case the sequence φk converges to a
constant, we say it vanishes. An important part in the proof is that the derivatives of
the φk satisfy an elliptic PDE with a Wente type structure on the right hand side which
allows for stronger compactness results then expected. Here Wente type structure refers
to a distinct algebraic expression. The classic example is the following Dirichlet problem
for the Poisson equation on a bounded domain Ω ⊂ R2{

∆u = ∂a
∂x1

∂b
∂x2
− ∂a

∂x2
∂b
∂x2

in Ω
u = 0 on ∂Ω

for a, b ∈ W 1,2(Ω). Solution to this problem exhibit better regularity properties than
expected from the standard elliptic regularity theory; see [14, Chapter 3].

Moreover, the above result by F. Hélein already hints at the fact that a sequence
of surfaces with bounded Willmore energy can vanish. Indeed, this together with the
bubbling of W 2,2 maps, a phenomenon also known for harmonic maps (see for instance
[47]), pose major challenges for the compactness theory. It is not surprising encounter to
bubbling in this context since the Willmore energy is related to Dirichlet energy of the
Gauss map of the surface.

These difficulties have been overcome independently by J. Chen and Y. Li in [3],
as well as A. Mondino and T. Rivière in [42], [43]. The general idea is to use bounds
on the area and the Willmore energy to obtain uniform bounds in W 2,2 and extract a
weakly convergent subsequence. After vanishing is ruled out by curvature or topological
assumptions on the base manifold (M, g), an in depth analysis is needed to understand
the bubbling and show that the sequence converges to a stratified surface in a controlled
way. In this context stratified surfaces can be thought of as a collection closed Riemann
surfaces that touch at isolated points, see Definition 1.1.3.
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It needs to be said that both of the results above rely on the fact that conformal
immersions with a bound on the L2 norm of the second fundamental form and the area
can be extended across singularities to W 2,2 maps. This result is due to E. Kuwert and
Y. Li in [23] where they also investigate weak compactness of conformal immersions with
bounded Willmore energy. In [25] E. Kuwert and R. Schätzle discuss extensions across
point singularities also in the context of Willmore flow, the gradient flow of the Willmore
functional.

However, in general these extensions will be branched immersions which again adds
complexity in the theory. For more information on the branch points see for instance the
works of T. Lamm, H. Nguyen, Y. Bernard, T. Rivière E. Kuwert, R. Schätzle [32], [2],
[25].

So far in the literature, the solution to these obstacles for direct minimization has been
to impose conditions that prevent vanishing or bubbling altogether.

In [3] J. Chen and Y. Li perform a direct minimization in space of branched, conformal
immersions of closed surfaces since they impose energy conditions that prevent bubbling
and further stratification altogether.

In [43] A. Mondino and T. Rivière perform a direct minimization in space of branched,
conformal immersions of bubble trees since their requirements on the curvature of the
ambient manifold rule out vanishing of individual components. Here bubble trees are
stratified surfaces whose components are spheres and which exhibit a tree structure; see
Definition 1.1.4. Furthermore, we introduce bubble forests as a stratified surface consisting
of a closed Riemann surface with finitely many bubble trees attached; see Definition 1.1.4
as well.

In this thesis we do not impose restriction on the ambient manifold or the energy
to prevent bubbling and we integrate the possibility of vanishing components into our
function space. This way, we obtain a formalism that treats the singular cases on equal
footing with the regular ones. To the best knowledge of the author this unified approach
is new in the literature.

Inspired by the fact that vanishing components are often called ghosts, we introduce
haunted immersions of stratified surface; see Definition 2.0.3. These are maps which are
constant on some but not all of the components of the stratified surface and immersions on
the rest. a haunted immersion is called irreducible if it does not have any “unnecessary”
ghosts; see Definition 2.0.3 and below.

The following is a heuristic version of our compactness theorem. For the proper state-
ment see Theorem 2.0.5 along with the definitions of Section 1.1 and Definition 2.0.3.

Theorem 1.0.1 (heuristic). Let Sk be a sequence of compact bubble forests. Let φk ∈
W 2,2(Sk,Rn) be a sequence of irreducible, haunted, branched conformal immersions. As-
sume φk, the area A[φk] and W[φk] are uniformly bounded.

Then φk(Sk) either converges to a point or subconverges to an immersed haunted bubble
tree φ(S). In the second case we find

A[φ] = lim
k→∞

A[φk],

W[φ] ≤ lim
k→∞

W[φk].

In order to employ this theorem in the search for minimizers, we need to ensure that
a given sequence does not vanish altogether. A straightforward way to establish this is to
fix the area and solve a variational problem under constraints. Both of our examples are
formulated as constrained variational problems and in fact our definition of generalized
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Willmore functionals is carefully chosen so that this approach succeeds. Hence we find the
following existence results via direct minimization.

Let F(T ,M) be the space of haunted, branched immersions of bubble trees, let A[φ]
be the area of φ ∈ F(T ,M) and for a constant a > 0 define

Fa(T ,M) = {φ ∈ F(T ,M) | A[φ] = a}.

The notion of a-generalized Willmore functional is introduced in Definition 1.1.7.

Theorem 1.0.2. Let (M, g) be compact Riemannian manifold and let H be an a-generalized
Willmore functional, then inf {H[φ] | φ ∈ Fa(T ,M)} is attained in Fa(T ,M).

Corollary 1.0.3. Let (M, g) be a non-compact Riemannian manifold with CB bounded
geometry and let H be an a-generalized Willmore functional. Suppose there exists a tran-
sitive group action on M that leaves H and A invariant. Then inf {H[φ] | φ ∈ Fa(T ,M)}
is attained in Fa(T ,M).

Corollary 1.0.3 allows us to treat the existence of minimal membranes with prescribed
area and enclosed volume. Let Ω ⊂ R3 be a bounded domain with smooth boundary Σ
and let X be the position vector field. The divergence formula implies

Vol(Ω) =
∫

Ω
1 dx = 1

3

∫
Σ

divX dµ = 1
3

∫
Σ
〈X, ν〉 dµ.

This motivates the introduction of the functional

V[φ] := 1
3

∫
Σ
〈X, ν〉 dµ

on F(T ,R3). It is well defined and translation invariant, see Section 1.2.2. For a, v ∈ R+

define
Fa,v(T ,R3) :=

{
φ ∈ F(T ,R3) | A[φ] = a, V[φ] = v

}
,

then we have the following theorem.

Theorem 1.0.4. For any c, b ∈ R and a, v ∈ R+ such that 3
√

4πv ≤ a3/2 and −ab ≤ 1
the infimum of Hc,b on Fa,v(T ,R3) is attained.

Note that we treat membranes in the class of bubble trees in a natural manner. This
allows us to see budding of membranes as a natural part of the theory and not as an edge
case of degenerating surfaces, as it is commonly done in the literature.

Regularity of Generalized Willmore Surfaces While partial results were known
before, the question of regularity of Willmore surfaces was settled by A. Mondino and T.
Rivière in [43] for arbitrary codimension. They show that the Euler–Lagrange equation
of the Willmore functional can be brought into divergence form. In complex coordinates
{z, z̄}, see Section 3.1, we have

4e−2λ Re
(
∇Mz̄

[
∂zHν −

1
2HH0∂z̄φ

])
= ∆Hν +H| Å |2ν + 8H Re

(
R̃m ez

)
.

Here ez = e−λ∂zφ, for a conformal immersion φ with conformal factor e2λ, H0 = 4A(ez, ez)
and R̃m = g

(
RmM (ez̄, ez)ez, ν

)
for the Riemann curvature tensor RmM of M .

More importantly, they construct potentials for the equation that solve Poissons equa-
tion with a right-hand side that exhibits a Wente type structure, thus leading to better
regularity results than naively expected. After minor modifications we are able to apply
this regularity result for generalized Willmore surfaces as well.



6 CHAPTER 1. INTRODUCTION

Theorem 1.0.5. Let φ ∈W 2,2(D,M3) be conformal immersion with conformal factor e2λ,
λ ∈ L∞(D). If φ solves ∆H + H| Å |2 + F (φ, dφ,∇dφ) = 0, where F is as in Definition
1.1.7, then φ is smooth.

In particular, this means that critical points of generalized Willmore functionals in
codimension one are smooth, away from finitely many points. Although we prove regularity
only in the case of codimension one, we conjecture that it holds in any codimension.

Concentration of Small Hawking Type Surfaces In [28] and [29] T. Lamm and
J. Metzger study Willmore surfaces with small area constraint in codimension one. They
prove existence as well as regularity of minimizers and they find that small, spherical, area-
constrained Willmore surfaces concentrate around critical points of the scalar curvature
of the ambient manifold. P. Laurain and A. Mondino investigate the problem in [33] and
improve upon the previous results.

Additionally, T. Lamm and J. Metzger and F. Schulze show in [31] that a neigh-
borhood of a non-degenerate critical point of the ambient scalar curvature is foliated by
spherical, area-constrained Willmore surfaces. This result was also independently shown
by N. Ikoma, A. Malchiodi, A. Mondino in [21].

A similar line of inquiry is the construction of Willmore spheres with prescribed isoperi-
metric ratios performed J. Schygulla and expanded on by E. Kuwert and Y. Li. If Σ ⊂ R3

is a closed surface and Ω is the enclosed volume, then the isoperimetric ratio is defined as

σ(Σ) := 6
√
π

Vol(Ω)
|Σ|3/2

∈ (0, 1].

In [49] and [24] they show that in R3 minimizers exist for any prescribed ratio between
0 and 1 and that the minimizers degenerate to a double round sphere if the ratio ap-
proaches 0. This is related to the study of bending energies for membranes since there an
area constraint and a constraint on the enclosed volume are common.

In this thesis we investigate Hawking type functionals with small area constraint in
greater detail.

In the context of general relativity this constitutes an important generalization to the
analysis in [28] and [29]. When equipped with additional constraint equations the tuple
(M, g,K) represents the initial data for the Einstein equations as a hyperbolic system.
Thus understanding (M, g,K) is the foundation of understanding the spacetime obtained
as the solution to the Einstein equations. The case K = 0, that was examined previously,
corresponds only to static spacetimes.

We calculate expansions on small spheres and characterize concentration points, i.e.
points in the ambient manifold around which there exist critical, area-constrained, spher-
ical surfaces Σr in any neighborhood Br(p). The goal is to find an analogue of an energy
density as seen by the Hawking energy and to understand which features of the ambient
manifold contribute most to the Hawking energy.

In particular, we prove the following result.

Theorem 1.0.6. Let (M, g) be CB bounded and let H[Σ] = 1
4
∫

ΣH
2− (trΣK)2 dµ. There

is a constant ε0 > 0 depending only on CB and K such that at any concentration point p
of H around which the concentrating surfaces obey H[Σr] ≤ 4π + ε20, we have

∇M
(

Scp +3
5 trK2

p + 1
5 |Kp|2

)
= 0.
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Under suitable requirements on the ambient manifold, compactness for instance, the
existence of the concentration points required in Theorem 1.0.6 is guaranteed by the
existence of minimizers with small area.

Furthermore, we find the following expansion.

Theorem 1.0.7. Let Σ ⊂M be a spherical surface. Suppose Σ is contained in a normal
coordinate neighborhood Br(p) as in Lemma A.1.11 and that ‖ Å ‖2L2(Σ) ≤ Cr|Σ|. Then E
has the following expansion.∣∣∣∣∣E [Σ]− 1

12

( |Σ|
4π

)3/2 (
Scp +3

5 trK2
p + 1

5 |Kp|2
)∣∣∣∣∣ ≤ C|Σ|2

Coordinate spheres and small minimizers both fulfill the requirements of the theorem.
Note that Theorem 1.0.7 stands in contrast to the results of G. Horowitz and B.

Schmidt in [16]. There they found that the Hawking energy has the following expansion

E [S] ∼
(
Scp + trK2

p − |Kp|2
)
R3 +O(R4),

when calculated on spherical cross sections SR(0) of the light cone in the tangent space
at p.

This discrepancy is very surprising. In general relativity the energy density ρ is given by
16πρ = Sc +(trK)2−|K|2. As the Hawking energy should serve as a quasi local energy one
might think that surfaces with maximal area-constrained Hawking energy would tend to
concentrate around critical points of the energy density ρ which is not the case. Similarly,
one would expect to find the energy density in the expansion of the Hawking energy.

The fact that the expansion in a space like slice does not capture the energy density,
whereas the expansion along a light cone does, is especially vexing since the spheres in
the light cone can be though of as lying in a space like slice, belonging to a different time,
themselves.

Foliations of Isolated Systems via Hawking Type Surfaces A Riemannian man-
ifold (M, g) is called asymptotically Schwarzschild if there is a compact set K ⊂ M and
a diffeomorphism x : M\K → R3 \Bσ(0), for a constant σ > 0, such that in these co-
ordinates the metric is asymptotic to the Schwarzschild metric gS ; see Definition 5.1.1.
The region M\K is called the asymptotically Schwarzschild end of M . This notion is
meant to model an isolated system in general relativity, with the additional requirement
that, asymptotically, the system exhibits the decay and the rotational symmetry of the
Schwarzschild space as apposed to just decaying to the Euclidean space.

Constructing asymptotic foliations for these isolated systems is a means of character-
izing their asymptotic behavior and a way of assigning a center of mass to the system.

In [30] T. Lamm, J. Metzger and F. Schulze constructed a foliation of the outer re-
gion of asymptotically Schwarzschild manifolds by large, centered, round, area-constrained
Willmore spheres, which are minimizing in their class.

Building on these results, T. Koerber showed in [22] that under the area-constrained
Willmore flow any sufficiently large, centered and round sphere converges to a leaf of the
foliation.

The construction of the foliation above is similar to foliations of the outer region of
asymptotically Schwarzschild manifolds by constant mean curvature surfaces obtained by
G. Huisken and S.T. Yau [19]. These were generalized by J. Metzger [38] to foliations
by surfaces with prescribed mean curvature. This is connected to Mathematical general
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relativity and the investigation of initial data set of the Einstein equation, which is a very
active field, hence we cannot give an overview here. We briefly mention the following
articles by M. Eichmair, L.H. Huang J. Metzger, C. Nerz where they directly generalize
the results on constant mean curvature foliations [8], [17], [44], [45], [46] .

In this thesis we will proceed along the same lines as [30] to construct a foliation by
Hawking type surfaces of the outer region of the asymptotically Schwarzschild end. For
the functional corresponding to the Hawking energy this can be interpreted as a notion of
center of mass of the ambient manifold as seen by the Hawking energy.

Based on the existence theory developed earlier, we show that asymptotically Schwarz-
schild manifolds admit area-constrained HL-minimizing bubble trees, provided the decay
of L in the asymptotically Schwarzschild end is fast enough. Moreover, we show that
these minimizers are embedded spheres provided they lie in R3 \Br0(0) for a large enough
radius r0.

Relying on the analysis of the Willmore functional in the asymptotically Schwarzschild
setting in [30] we construct a foliation by spherical Hawking type surfaces. The following
is a heuristic version of our foliation result, see Theorems 5.3.6, 5.3.8 and 5.3.7 for the
proper statements.

Theorem 1.0.8 (heuristic). Let (M, g) be an asymptotically Schwarzschild manifold and
suppose L : TM → R is smooth and decays fast enough. Then there exist constants
r0 > 0, λ0 > 0 and a unique foliation {Σλ}λ∈(0,λ0) of (R3 \Br0(0), g) consisting of centered,
spherical, area-constrained Hawking type surfaces with respect to HL. Along this foliation
the energies HL[Σλ] are strictly decreasing.

Moreover, this foliation is obtained via a deformation of the round spheres S2
R(0)

in (R3 \Br0(0), gS) for R ∈ (r0,∞).

We would like to point out that the results of Section 1.2 as well as Chapters 2, 3 and 4
have been published on the arXiv, see [11] and [10].

Outlook Open questions in the immediate vicinity of this thesis include an analysis of
the dynamical stability of the foliation constructed in Chapter 5 analogous to the one
carried out by T. Koerber in [22] using the area-constrained Willmore flow.

Furthermore, it should be possible to improve the decay of the geometric quantities in
Chapter 5, and thus understand the leaves of the foliation in greater detail.

Another important step would be to replace the condition of asymptotically Schwarz-
schild manifolds with asymptotically flat manifolds with positive ADM mass since this is a
related but more general model for isolated systems in general relativity. The ADM mass
is named after R. Arnowitt, S. Deser and C.W. Miser who introduced it in [1]. Similarly,
one can investigate asymptotically hyperbolic manifolds.

In the context of membranes it seems worthwhile to analyze precisely under which
circumstances bubbling occurs and what shapes are produced. This would constitute a
unified discussion of the budding phenomenon for membranes and to the knowledge of the
author it would be the first one without symmetry assumptions.

Additionally, it would be interesting to understand cell movement in the context of
elastic membranes, either through a gradient flow approach or by constructing minimizers
to a changing family energy functionals.
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Thesis Structure The remainder of this chapter is divided into two sections. In Sec-
tion 1.1 we introduce the definitions for branched, conformal immersions, stratified sur-
faces, bubble trees and their convergence, as well as generalized Willmore functionals,
where we took inspiration from [3], [23] and [43].

Section 1.2 discusses our two main examples of generalized Willmore functionals –
Hawking type functionals and bending energies for membranes. We prove that Hawk-
ing type functionals HL are generalized Willmore functionals provided L is smooth and
bounded. Additionally, we calculate the Euler–Lagrange equation in the physically inter-
esting cases of L = (trΣK)2 explicitly since we need it for a detailed analysis in Chapter 4.
Subsection 1.2.2 is dedicated to the functionals Hc,b. We prove that they are generalized
Willmore under suitable conditions and show that a volume constraint is well defined for
immersed surfaces.

We introduce haunted immersions and prove Theorem 2.0.5, our compactness result
for haunted, branched, conformal immersions of bubble forests, in Chapter 2. The main
idea is to apply the compactness of [3] on every component of the bubble forest and track
the structure of the resulting stratified surface. The existence of minimizers of generalized
Willmore functionals in Theorem 2.0.6, Corollary 2.0.7, and Theorem 2.0.8, then follows
by direct minimization under constraints.

Chapter 3 is dedicated to the regularity theory for generalized Willmore equations.
Here we follow [43] closely, first recalling their notation in codimension one in order to
quote the divergence form of Equation (1.0.1). We realize that the crucial [43, Lemma 6.1]
remains valid for the more complicated nonlinearities we consider here, see Lemma 3.2.3.
This implies that, in order to prove regularity of generalized Willmore surfaces, we only
have to adapt the final bootstrap argument, see the proof of Theorem 3.2.6. This chapter
also concludes the treatment of generalized Willmore surfaces in their full generality. In
the final two chapters we restrict to Hawking type surfaces in order to perform a more
detailed analysis.

In Chapter 4, we investigate Hawking type functionals HL with small area constraint
in the spirit of T. Lamm and J. Metzger in [28] and [29]. First, we establish that small
minimizing bubble trees Σ are spheres which have energy HL[Σ] close to 4π. Then we
prove a priori estimates to obtain quantitative control over the extrinsic curvature of
critical surfaces with energy close to 4π. This is crucial in order to compare them to
round spheres via [5, Theorem 1.1] and [6, Theorem 1.2] by C. De Lellis and S. Müller;
see also Theorem A.1.8. This allows us to compute an expansion of the normal variation
of
∫

Σ Ldµ, in order to characterize concentration points. Here we rely on the results of
[28] and [29] for the expansion the Willmore energy. Additionally, the case L = (trΣK)2

is treated in greater detail, and the expansion of HL is readily deduced.
Chapter 5 has the goal of constructing a unique foliation in the asymptotically Schwarz-

schild end of an asymptotically Schwarzschild manifold by spherical, area-constrained
Hawking surfaces. In Section 5.1 we introduce the notation of asymptotically Schwarz-
schild manifolds as presented in [30] and recall basic results from said paper that relate
the geometry of the ambient manifold (M, g) to the model (R3 \{0}, gS). We conclude
this section with Theorem 5.1.8 were we prove existence of area-constrained minimizing
bubble trees for Hawking type functionals in the setting of asymptotically Schwarzschild
manifolds. We also show that these minimizers are spheres with Willmore energy close to
4π , provided they are large and lie in the asymptotic Schwarschild end. The next sub-
section is dedicated to proving a priori estimates in order to obtain quantitative control
over Hawking type surfaces similar to Section 4.1. We first show that the mean curvature
is bounded from below, then, employing the methods of [30], we obtain the same decay
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rates as in [30].
This allows us to show that the linearization of the area-constrained Euler–Lagrange

equation of the Hawking type functional is invertible; see Section 5.3, Theorem 5.3.4.
This proof heavily relies on the corresponding analysis for the area-constrained Willmore
equation in [30, Section 7]. Using the invertibility of the linearized equation we construct
the unique foliation of the outer region in Theorem 5.3.6, 5.3.7 and 5.3.8 perturbatively,
starting from the round Spheres S2

R(0) in (R3 \{0}, gS).
The appendix consists of three chapters. In Chapter A we collect results about CB

bounded Riemannian Manifolds, general facts about surfaces and specialized results for
small surfaces. We will refer to this chapter throughout the thesis. In Chapter B we present
two lemmas about constructing potentials for vector fields that are used to prove Lemma
3.2.3. Finally, Chapter C houses long calculations needed in Theorem 4.2.4, Corollary
4.2.6 and Lemma 5.1.6. Additionally, we present the code for Mathematica 7 which was
used to check said calculations.
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1.1 Preliminaries
Let (M, g) be a Riemanian manifold with Levi–Chivita connection ∇. We denote the
Rimannian curvature tensor of by Rm, its Ricci curvature by Ric and the scalar curvature
by Sc. Further let, (S, η) be a Riemann surface and let φ : S → Σ ⊂ M be an immersion
such Σ is an oriented immersed surface. It inherits a metric γ = g|Σ and its vector valued
second fundamental form is defined as

~A(X,Y ) := − (∇XY )⊥

for X,Y ∈ Γ(TΣ) and ·⊥ the projection to the normal bundle of Σ. The mean curvature
vector is defined as

~H := trΣA

and the vector valued trace free second fundamental form is defined as ~̊A := ~A− ~H
2 γ. In

the case that Σ has codimension one, let ν be the normal vector field. Then the second
fundamental form, mean curvature and trace free second fundamental form are defined by

A(X,Y ) := g (∇Xν, Y ) ,
H := trΣA = divΣ ν,

Å = A− H

2 γ.

Let µγ be the measure on Σ induced by γ. At times we will denote it also by µg or
simply by µ. Let Σ be closed. Then the area of Σ is defined by |Σ| =

∫
Σ 1 dµ. At times

we will denote the area also by A[Σ] if we want to stress its role as a functional. Further,
we will regard it and others as functionals on the surface or the immersion interchange-
ably: A[Σ] = A[φ].

Throughout this thesis we use the convention that C denotes a generic constant that
can change from line to line.

In the following we present the definitions used in this thesis. In particular, we properly
define the notion of generalized Willmore functionals.

Definition 1.1.1 (branched, conformal immersion; cf. [3, Definition 1 and 2]).
Let (S, η) be a Riemann surface and let (Mn, g) be an n-dimensional, oriented Riemannian
manifold which we assume to be isometrically embedded in some RN .

1. For k ∈ Z and p ∈ [1,∞] we define the Sobolev spaces as follows:

W k,p(S,M) :=
{
φ ∈W k,p(S,RN )

∣∣∣φ(S) ⊂M a.e.
}
.

2. An element φ ∈ W 2,2(S,M) is called conformal immersion, if φ is an immersion
almost everywhere and if there is a function e2λ : S → R, called the conformal factor
of φ, such that

φ∗g = e2λη.

3. We say φ : S → M is a branched conformal immersion with finitely many branch
points B ⊂ S, if φ ∈ W 2,2

loc (S \ B,M) is a conformal immersion and if for all p ∈ B
there is an open neighborhood Up and a constant C such that∫

Up\{p}
1 + | ~A|2 dµg ≤ C.



12 CHAPTER 1. INTRODUCTION

4. Set

F(S,M) := {φ ∈W 2,2(S,M) | φ is branched, conformal, immersion
with branch points B;φ ∈W 1,∞

loc (S \B,M)}

and for a > 0 define Fa(S,M) := {φ ∈ F(S,M) | |φ(S)| = a}

Note. For the conformal factor e2λ of a conformal immersion φ ∈ F(S,M) we have λ ∈ L∞loc
away from the branch points.

E. Kuwert and Y. Li showed that branched conformal immersions can be extended to
W 2,2 maps.

Theorem 1.1.2 (see [23, Theorem 3.1]). Let D be the unit disc in R2 and let φ ∈W 2,2
loc (D\

{0},Rn), n ≥ 3, be a conformal immersion, φ∗g = e2λδ. If φ satisfies∫
Up\{p}

1 + | ~A|2 dµg ≤ ∞,

then φ ∈W 2,2(D,Rn) and in complex coordinates we have

λ(z) = m ln |z|+ w(z),
−∆λ = −2mπδ0 +Kge

2λ.

Here, m ∈ N, w ∈ C0 ∩ W 1,2(D), Kg is the Gauss curvature of g and δ0 is the delta
distribution at 0. Additionally, the multiplicity of the immersion at p = φ(0) is given by

θ2(φ, p) = #φ−1(p) = m+ 1.

The well known phenomenon of bubbling of W 2,2 immersions necessitates the intro-
duction of stratified surfaces.

Definition 1.1.3 (stratified surface; cf. [3, Definition 3]). A compact connected metric
space (S, d) is called a stratified surface with singular points P , if P ⊂ S is a finite set such
that:

1. the regular part, S \P , is a smooth Riemann surface without boundary. It carries a
smooth metric η, whose induced distance function agrees with d.

2. Moreover, for each p ∈ P there is a δ > 0 such that Bδ(p)∩P = {p} and Bδ(p)\{p} =⋃m(p)
i=1 Ωi. Here 1 < m(p) <∞ and Ωi are topological discs with one point removed.

Additionally, we assume that η can be extended to a smooth metric on each Ωi∪{p}.

For a stratified surface, the regular part naturally decomposes into finitely many punc-
tured connected Riemann surfaces S \ P =

⋃
i S

i. By the second point of the previous
definition, we can add finitely many points to each Si in order to obtain a Riemann surface
Si. This allows us to interpret a stratified surface as a collection of touching Riemann
surfaces.

Consider the stratified torus S in Figure 1.1. It has one singular point p and S1 =
S \ {p} is a sphere with two punctures. We may add in two points p1, p2 such that
S1 = S1 ∪ {p1} ∪ {p2} is a sphere. In this picture we can understand S as the immersion
of S1.

By abuse of notation we usually denote a stratified surfaces as S =
⋃
i S

i and refer to
Riemannian metrics on S instead of on every Si.

The next definition introduces a important structural feature of stratified surfaces.
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Figure 1.1: A stratified torus with singular point p

Definition 1.1.4 (dual graph, bubble tree, bubble forest).

1. Associate with every stratified surface S =
⋃
i S

i its dual graph, where the vertices
correspond to the components Si and two vertices are joined by an edge whenever
the corresponding Si are joined by a singular point. Note that this construction
allows for loops and multiple edges.

2. A stratified surface whose regular part consists of punctured spheres and whose dual
graph is a simple tree is called a bubble tree. The constituting spheres are called
bubbles.

3. If S is a stratified surface and S1 ⊂ S is a bubble tree, then we say S1 is attached to
S at p ∈ S if S \ S1 ∩ S1 = {p}.

4. A stratified surface S = S0∪
⋃m
i=1 Si consisting of a Riemann surface S0 with finitely

many bubble trees attached at mutually distinct points is called bubble forest with
base S0. Note that the dual graph of a bubble forest is still a tree.

Figure 1.2: A bubble tree and its dual graph

Now we need to combine the notions of branched, conformal immersions and stratified
surfaces.

Definition 1.1.5 (branched, conformal immersion of a stratified surface).

1. Let S be a stratified surface with S \ P =
⋃m
i=1 S

i and let M be a manifold of
dimension three or higher. For k ∈ N and p ∈ [1,∞] denote by W k,p(S,M) the
continuous maps φ : S →M for which all φ|Si extend to maps in W k,p(Si,M).
Additionally, we say that φ : S →M is a (branched) immersion if all extensions φ|

Si

are (branched) immersions.
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2. We extend any functional defined for immersed surfaces componentwise to immersed
stratified surfaces. For example for S and φ as above we set φi := φ|

Si
, Σ = φ(S)

and Σi := φi(Si); then the area and Willmore energy are given by

A[φ] := |Σ| :=
m∑
i=1
|Σi| =

m∑
i=1
A[φi],

W[φ] :=
m∑
i=1
W[φi].

The following definition is motivated by the treatment of bubbling in [3]. In particular
it addresses the fact that the base space may change.

Definition 1.1.6 (convergence as immersed, stratified surfaces). Let (S, ηk) be
a sequence of compact Riemann surfaces and φk ∈ W 2,2(S,M) a sequence of branched,
conformal immersions with conformal factors e2λk . Let (S∞, η) be a stratified surface with
singular set P and let φ ∈W 2,2(S∞,M) be a branched, conformal immersion with branch
points B. We say (S, ηk, φk) converges to (S∞, η, φ) as immersed, stratified surfaces, if for
all k ∈ N we can find open sets Uk ⊂ S and Vk ⊂ S∞ such that

1. Vk ⊂ Vk+1 and P = S∞ \
⋃∞
k=1 Vk. Moreover, S∞ \ Vk is a union of topological discs

with finitely many smaller discs removed.

2. S \ Uk is a smooth surface with boundary and φk(S \ Uk) converges to φ(P ) in
Hausdorff distance.

3. φk(S) converges to φ(S∞) in Hausdorff distance.

4. There is a sequence of diffeomorphisms ψk : Vk → Uk such that φk ◦ ψk ⇀ φ weakly
in W 2,2(K,M).

5. The metrics ψ∗kηk converge smoothly to η.

Further, let (S =
⋃m
i=0 Si, ηk) be a sequence of stratified surfaces and φk ∈ W 2,2(S,M) a

sequence of branched, conformal immersions. We say the sequence (S, ηk, φk) converges
to (S∞, η, φ) as immersed, stratified surfaces if

(
Si, ηk|Si , φk|Si

)
converges to (S∞i , ηi, φi)

as immersed, stratified surfaces for all i ∈ {0, ...,m} and S∞ =
⋃m
i=0 S

∞
i , η|S∞i = ηi and

φ|S∞i = φi.

Now we are in the position to introduce the central definition of generalized Willmore
surfaces.

Definition 1.1.7 (generalized Willmore functional). Let S be a closed stratified sur-
face and let (M, g) be an oriented n-dimensional Riemannian manifold. For φ ∈ F(S,M)
with conformal factor e2λ denote the Hessian by ∇dφ. Let {e1, e2} be a local orthonormal
frame on TS and let {νi}n−2

i=1 be a local orthonormal frame of the normal bundle NS.

1. A branched conformal immersion φ ∈ F(S,M) is said to solve a generalized Willmore
equation (away from the branch points) if

∆⊥ ~H +
2∑

i,j=1
g( ~A(ei, ej), ~H) ~A(ei, ej)− | ~H|2 ~H + F (φ, dφ,∇dφ) = 0. (1.1.1)
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Figure 1.3: Side view of bubbling on a sphere

Here ∆⊥ denotes the Laplace operator on NS and F (φ, dφ,∇dφ) : S → NS is such
that locally in conformal coordinates with λ ∈ L∞ and F = F iνi we have

e2λF i(φ, dφ,∇dφ) ∈ L1 +W−1,2(S) if φ ∈ F(S,M)

e2λF (φ, dφ,∇dφ) ∈W k−1,l(S,NS), l := 2p
2 + p

+ ε if φ ∈W k+2,p, p > 2, k ≥ 0

for some ε > 0.

2. A functional H on F(S,M) is called an a-generalized Willmore functional if

(a) for any φ ∈ Fa(S,M) a bound H[φ] ≤ Λ implies a bound on the Willmore
energy W[φ] ≤ C(Λ, a,M,H).

(b) H is bounded from below on Fa(S,M).
(c) H is invariant under diffeomorphisms of S.
(d) Let {φk} be a sequence in F(S,M) with conformal factors e2λk . For any finite

set S ⊂ S the weak convergence φk ⇀ φ in W 2,2
loc (S \ S,M) together with

‖λk‖L∞(K) ≤ CK for any K ⊂⊂ S \S implies H[φ] ≤ limk→∞H[φk].
(e) H is differentiable and its Euler–Lagrange equation is a generalized Willmore

equation.

If a functional is an a-generalized Willmore functional for all a > 0 or if the area in
question is understood we will simply refer to them as generalized Willmore func-
tionals.

Note.

1. The generalized Willmore equation is based on the Euler–Lagrange equation of the
Willmore functional which reads

∆⊥ ~H +
2∑

i,j=1
g( ~A(ei, ej), ~H) ~A(ei, ej)− | ~H|2 ~H −

2∑
i=1

(
RmM ( ~H, ei)ei

)⊥
= 0.

2. If a generalized Willmore equation is induced by a generalized Willmore functional,
it will of necessity only depend on invariant quantities, that is F (φ,∇φ,∇dφ) =
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F̃ (y,G, ~A), where y ∈ φ(S) and G is the Gauss map of φ(S). If φ ∈W k+2,p ∩W 1,∞

is a branched, conformal immersion, we have, away from the branch points, λ ∈ L∞,
e2λ, G ∈W k+1,p ∩ L∞ and ~A ∈W k,p.

3. The area-constrained variations of any generalized Willmore functional yields a gen-
eralized Willmore equation as well since for a normal variation we find δX A[Σ] =∫

Σ g( ~H,X) dµ and ~H obeys the conditions of the first part of Definition 1.1.7.

We will need the following consequence of the uniformisation theorem for Riemann
surfaces in order to cite a result from [3]. It serfs to fix preferred metrics on Riemann
surfaces.

Theorem 1.1.8 (see [20, Chapter 1]). Let (S, η) be a compact Riemann surface, then S is
conformal to a sphere, a torus or a surface of higher genus with constant Gauss curvature
1, 0 or −1 respectively. Moreover, if S is a sphere, then any two metrics are conformal
and there is only one with Gauss curvature 1. If (S, η) is a torus, then it is conformal to
C /(1, a+ bi) where −1

2 < a ≤ 1
2 , b ≥ 0, a2 + b2 ≥ 1 and a ≥ 0 provided a2 + b2 = 1.

1.2 Examples
In this section we prove that the two types of functionals we saw in the introduction are
indeed generalized Willmore functionals.

1.2.1 Hawking Type Functionals

General relativity is a quite intricate theory, see for instance [55]. The important part for
us is that it is modeled on a foliated Lorentz manifold. Let (N4, h) be a four dimensional
Lorentz manifold and let (M3

t , gt) be an oriented, space like foliation of N4 which we
interpret as equal time slices. That is for every t ∈ R, (Mt, gt) is a Riemannian manifold,
where gt is the restriction of h to Mt. We will focus on a given leaf and thus drop the t
dependence. The second fundamental form K of M in N is given by

K(X,Y ) := h(∇NXn, Y ),

where X and Y are vector fields of M and n is the (time like) normal vector of M .
Further, consider an immersed Riemann surface φ : S → Σ ⊂M with induced metric γ.

Analogous to the mean curvature of Σ in M , we define the mean curvature of Σ with
respect to K to be

P := trΣK = trM K −K(ν, ν).

Then the mean curvature vector of Σ in N is given by ~H := Hν + Pn.
The Hawking energy of Σ is defined as

E [Σ] =

√
|Σ|
16π

(
1− 1

16π

∫
Σ
| ~H|2h dµ

)

=

√
|Σ|
16π

(
1− 1

16π

∫
Σ
H2 − P 2 dµ

)
.

Clearly, minimizing the functional
∫

Σ | ~H|2h dµ under area constraint amounts to maximiz-
ing the Hawking energy under area constraint. Here we take a more general approach and
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investigate Hawking type functionals of the following form. Let L ∈ C∞(TM) be given
and define

H[Σ] := HL[Σ] :=W[Σ] +
∫

Σ
L(x, ν) dµ,

where W[Σ] is the the Willmore functional

W[Σ] := 1
4

∫
Σ
H2dµ.

Theorem 1.2.1. Let (M, g) be a Riemannian manifold and let HL be of Hawking type.
Suppose that L is smooth and bounded by CL. Then H is a generalized Willmore functional.

Proof. Let φ : S → Σ ⊂M be a closed, branched, immersed Riemann surface with area a
and H[Σ] ≤ Λ. We have

H[Σ] =W[Σ] +
∫

Σ
L(x, ν) dµ > −CL)a,

and

W[Σ] ≤ Λ−
∫

Σ
L(x, ν) dµ ≤ Λ + CLa.

H is invariant under reparametrisations of Σ as L is defined on TM andW[Σ] is invariant
as well.

It is known that the Willmore energy is lower semi continuous in this setting (see for
instance [43, Lemma A.8]). Thus we only need to discuss the lower order terms.

The convergence in W 2,2
loc , φk → φ implies local convergence in W 1,q for all 1 ≤ q <∞.

Thus we have point wise convergence almost everywhere of ∇φk → ∇φ, φk → φ and
hence of νk → ν. Since L is smooth, dominated convergence yields that H is lower semi
continuous. We examine the Euler–Lagrange equation of H in the subsequent lemmas.

The variation of the Willmore energy has been calculated in numerous instances, for
example in [30]. We will reiterate it here for completeness. Let φ : S → Σ ⊂ M be a
closed immersed Riemann surfaces in W 2,2 an immersion such that H[φ] <∞.

Set φ(S) = Σ and consider a normal variation of φ along the vector field fν, f ∈
C∞(Σ). By abuse of notation we will call this variation φ as well, that is

φ : I × S →M

(s, x) 7→ φ(s, x) = φs(x)

such that for every s ∈ I, φs(S) is an immersed surface in M , φ0(S) = φ(S) = Σ and
∂φ
∂s

∣∣∣
s=0

= fν.

Proposition 1.2.2. Subjected to the variation φs the geometric quantities behave in the
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following way.
∂

∂s

∣∣∣∣
0
γij = 2fAij

∂

∂s

∣∣∣∣
0
γij = −2fAij

∂

∂s

∣∣∣∣
0
dµ = fHdµ

∂

∂s

∣∣∣∣
0
ν = −∇Σf

∂

∂s

∣∣∣∣
0
Aij = −∇i∇jf + f

(
AiA

k
i −RM (∂i, ν, ν, ∂j)

)
∂

∂s

∣∣∣∣
0
H = −∆f − f

(
|A|2 + RicM (ν, ν)

)
∂

∂s

∣∣∣∣
0
L(φs, νs) = dTML(fν,−∇Σf)

= fdML(ν)− dV L(∇Σf) (1.2.1)

Here dTM denotes the exterior differential of TM , and dMh(X) := dTMh(X, 0) and
dV h(X) := dTMh(0, X) for a vector field X on M and h ∈ C1(TM).

Dλ,g,L(φ) = ∆H +H| Å |2 +HQ+ γ(Å, S) + 2λH + T = 0. (1.2.2)

Here Q, S and T are defined as

Q := RicM (ν, ν)− 2L− trΣ HessV L+ 2dV L(ν)
S := −2 HessV L
T := −2dML(ν)− 2 divΣ dV L,

where HessV L is the fiber part of the Hessian of L and divΣ dV L = trΣ∇MdV L with
∇MdV L(X,Y ) = ∇TM(X,0)dTML(0, Y ).

If L is smooth then 1.2.2 is a generalized Willmore equation.

Proof. The variation of the geometric quantities is widely known, see for instance [18,
Theorem 3.2, Section 7] and the variation of L is straightforward.

The variational problem reads λδf A(Σ) = δfW(Σ) + δf L(Σ). We treat all terms
separately.

d

ds

∣∣∣
0
A[Σ] =

∫
Σ
fH dµ

d

ds

∣∣∣
0
W[Σ] = 1

2

∫
Σ
H
∂H

∂s

∣∣∣
0

+ f
H3

2 dµ

= 1
2

∫
Σ
H(−∆f − f

(
| Å |2 + RicM (ν, ν)

)
) dµ

= 1
2

∫
Σ
−f

(
∆H +H| Å |2 +H RicM (ν, ν)

)
dµ

d

ds

∣∣∣
0
L[Σ] =

∫
Σ

∂L

∂s

∣∣∣
0

+ fLH dµ∫
Σ
dV L(∇Σf) dµ =

∫
Σ

divΣ(fdV L)− f divΣ
(
dV L(x,ν)

)
dµ

= −
∫

Σ
f
(
(divΣ dV L)(x,ν) + γ((HessV L)(x,ν), A)−HdV L(ν)

)
dµ
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Sorting all the terms yields the desired equation.

∆H +H| Å |2 +HQ+ γ(Å, S) + 2λH + T = 0

In the notation of generalized Willmore equations we have F = HQ+γ(Å, S)+2λH+T ∈
L2, provided φ ∈ F(S,M).

For the higher order regularity note that the worst term of |∇φ|2Fν is of the form
|∇φ|2 ?A?ψ(φ, ν) ? ν ? ν ? ν, where the ? denotes a sum of contractions, and ψ : TM → R
is a smooth and bounded function. If φ ∈W k+2,p ∩W 1,∞, k ≥ 0, p ≥ 2, then, due to the
Sobolev embeddings W k+2,p ↪→W k+1,q ↪→ Ck,α, for all 1 ≤ q <∞ and α ∈ (0, 1), we have
|∇φ|2 ? ν ? ν ? ν ∈ W k+1,p ∩ L∞. Similarly, ψ(φ, ν) ∈ W k+1,p ∩ L∞. This means, due to
the A, component we have |∇φ|2Fν ∈W k,p, whenever φ ∈W k+2,p ∩W 1,∞.

We return to the Hawking Energy or rather to the associated generalized Willmore
functional.
Lemma 1.2.3. Let X and Y be a vector fields along Σ and introduce the 1-form η :=
K(·, ν) as well as the musical isomorphism # : T ∗Σ → TΣ then the following equations
hold.

dMP
2(X) = 2P trΣ∇MXK

dV P
2(X) = −4PK(X, ν)

dM
[
dV P

2(X)
]

(Y ) = −4
(
trΣ∇MY K

)
K(X, ν)− 4P∇MY K(X, ν)

HessV P 2 = 8η ⊗ η − 4PK
divΣ dV P

2 = −4 trΣ∇Mη#K − 4P divΣ η

Moreover, the area-constrained Euler–Lagrange equation for the Hawking type func-
tional with L = −1

4P
2 reads

∆H +H| Å |2 +HQ+ fγ(Å, S) + 2λH + T = 0.

Q, S and T are given by

Q = RicM (ν, ν)− 1
2P

2 + 2|η|2 + 2PK(ν, ν)

S = −2PK + 4η ⊗ η
T = P trΣ∇νK − 2 trΣ∇η#K − 2P divΣ η.

Proof. The first equation is clear because the metric is parallel. For the second we use
P = trK −K(ν, ν) and find that

dV P (X) = −2K(X, ν)

as K is bilinear and trK does not depend on the fiber. Now the rest follows.

dV P
2(X) = −4PK(X, ν)

dM
[
dV P

2(X)
]

(Y ) = −4
(
trΣ∇MY K

)
K(X, ν)− 4P∇MY K(X, ν)

HessV P 2 = 2dV (−2PK(·, ν))
= 8K(·, ν)⊗K(·, ν)− 4PK

divΣ dV P
2 = −4 divΣ Pη

= −4P divΣ η − 4γij trΣ(∇Mi K)ηj
= −4P divΣ η − 4 trΣ∇Mη#K

The Euler–Lagrange equation is obtained from the general formula (1.2.2).
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1.2.2 Thin Membranes

We model a membrane as a branched, immersed, stratified surface Σ ⊂ (R3, 〈·, ·〉) with
a parametrization φ ∈ F(S,R3) that minimizes the following bending energy under area
and volume constraints.

H[Σ] := Hc,b[Σ] :=
∫

Σ
(H + c)2 dµ+ b

(∫
Σ
H dµ

)2

Here, c, the spontaneous curvature, is a function on Σ, and b is a constant. The first
part of this energy corresponds to the one proposed by Helfrich and the second part is a
non local generalization. See [53] for a relatively recent review of membranes as elastic
materials.

In the case that Σ is the smooth boundary of a domain Ω, we use the divergence
formula to rewrite the volume of Ω. Let x be the position vector field in R3 and let
x0 ∈ R3, then Vol(Ω) = 1

3
∫

Σ〈x − x0, ν〉 dµ, independently of the choice of x0. This
motivates the introduction of the functional

V[φ] := 1
3

∫
Σ
〈x− x0, ν〉 dµ

on F(S,R3). It is still independent of the base point x0, which also implies it is invariant
under translations. This follows from the fact that any variation of Ṽ[φ] =

∫
Σ〈x0, ν〉dµ

vanishes. This in turn relies on the divergence formula for vector fields on Σ (see [35,
Section 2]). Considering the variation of φ induced by scaling, φt(x) = (1 + t)φ(x), yields

0 = d

dt

∣∣∣∣
t=0
Ṽ[φt] = d

dt

∣∣∣∣
t=0

(1 + t)2Ṽ[φ] = 2Ṽ[φ].

Hence, a volume constraint for φ ∈ F(S,R3) is defined to be a constraint on V[φ].

Proposition 1.2.4. In the setting from above suppose that c : R3 → R is smooth and
bounded. If −ba < 1, then H is an a-generalized Willmore functional. Its Euler–Lagrange
equation with area and volume constraints reads

∆H +H| Å |2 +H Ric(ν, ν) = 1
2Hc

2 +H2c+ (H + 2c)dc(ν)− trΣ HessM c− 1
2λH −

1
2p

−
(
c+ b

∫
Σ
H dµ

)
(| Å |2 + Ric(ν, ν)) + 1

2bH
2
∫

Σ
H dµ.

Here λ and p are the Lagrange parameters for the area and the enclosed volume respectively.

Proof. Let S be a stratified surface with singular set P , let φ ∈ F(S,R3) and φ(S) = Σ.
Suppose that H[Σ] ≤ Λ and |Σ| = a, then

4W[Σ] ≤ Λ−
∫

Σ
2Hc+ c2 dµ− b

(∫
Σ
H dµ

)2

≤ Λ + C(c)a1/2W[Σ]1/2 − b
(∫

Σ
H dµ

)2
.

If b ≥ 0, then we omit the last term. Solving the quadratic inequality yields

W[Σ] ≤ C(Λ, c, a).

If b < 0, we estimate further:

4W[Σ] ≤ Λ + C(c)a1/2W[Σ]1/2 + 4|b|aW[Σ].
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If |b|a < 1 we absorb the last term to the left and find
W[Σ] ≤ C(Λ, c, b, a).

Similarly, we obtain an estimate from blow. If b ≥ 0 then H is positive, so suppose b < 0
and |b|a ≥ 1− ε, for an ε ∈ (0, 1).

H[Σ] =
∫

Σ
(H + c)2 dµ+ b

(∫
Σ
H dµ

)2

≥
∫

Σ
2Hc+ c2 dµ+ 4(1− |b|a)W[Σ]

≥
(

1− 1
ε

)∫
Σ
c2 dµ+ 4(1− ε− |b|a)W[Σ]

≥
(

1− 1
ε

)
C(c)a

Since H is a geometric quantity and c is a function on R3, H is invariant under re-
parametrizations.

To show that H is lower semi continuous under weak W 2,2
loc (S \ P,R3) convergence,

let φk ∈ F(S,R3) be a sequence of conformal maps with conformal factor e2λk and let
K ⊂⊂ S \ P such that

φk ⇀ φ weakly in W 2,2(K,R3) and
‖λk‖L∞(K) ≤ CK (1.2.3)

We already know that the Willmore energy is lower semi continuous under these conditions,
see [43, Lemma A.8]. Since the weakW 2,2 convergence implies strongW 1,p convergence, we
have that φk → φ and ∇φk → ∇φ pointwise almost everywhere. Dominated convergence
and smoothness of c yields ∫

K
c2 ◦ φk dµφk →

∫
K
c2 ◦ φ dµφ.

Weak W 2,2 convergence and the uniform upper and lower bounds on the conformal factor
(1.2.3) imply that Hke

2λk → He2λ and Hke
2λkc ◦ φk → He2λc ◦ φ weakly in L2. Testing

with 1 yields claim.
Let φ : I × S → R3 be a normal variation of Σ with ∂

∂s

∣∣∣
0
φ = fν. The behavior of

the geometric quantities is widely known, see for instance [18, Section 7]. To derive the
Euler–Lagrange equation with area and volume constraints we need to calculate δf H =
λδf A+pδf V.
In particular, we find δf V[φ] =

∫
Σ f dµ. In terms of generalized Willmore equations we

have
∆H +H| Å |2 + F = 0

for

F = H Ric(ν, ν)− 1
2Hc

2 −H2c− (H + 2c)dc(ν) + trΣ HessM c+ 1
2λH + 1

2p

+
(
c+ b

∫
Σ
H dµ

)
(| Å |2 + Ric(ν, ν))− 1

2bH
2
∫

Σ
H dµ

If φ ∈W 2,2 ∩W 1,∞ is a conformal parametrization of Σ, then |∇φ|2F ∈ L1.
In terms of higher regularity, worst term in F is of the form |∇φ|2c ◦ φ | Å |2ν. If

φ ∈ W k+2,p ∩ W 1,∞, k ≥ 0, p > 2, then, due to the Sobolev embeddings W k+2,p ↪→
W k+1,q ↪→ Ck,α, for all 1 ≤ q < ∞ and some α ∈ (0, 1), we have |∇φ|2ν ∈ W k+1,p and
c ◦ φ ∈W k+2,p. Due to the | Å |2 part we find |∇φ|2Fν ∈W k,p/2.
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Chapter 2

Existence of Generalized Willmore
Surfaces

In this chapter we prove the existence of area-constrained generalized Willmore surfaces by
constructing area-constrained minimizers via direct minimization. We would like to per-
form the minimization in the class of branched, conformal immersions of bubble forests but
due to the compactness results in [3] we realize the need to introduce haunted immersions;
see Definition 2.0.3.

In order to make use of the results on Willmore surfaces in Euclidean space, we briefly
recall how the Willmore energy of a closed surface Σ ↪→ M ↪→ RN with respect to RN is
controlled by its Willmore energy with respect to M and its area. Here we assume that
the target Riemannian manifold manifold (M, g) has been isometrically embedded in some
RN , dimM < N . This can always be achieved via Nash embedding.

Introduce the second fundamental form and the mean curvature vector of Σ in RN as
Ā and H̄ respectively. The second fundamental form of M in RN is denoted by K. We
have Ā = ~A+ ~K as well as H̄ = ~H + ~P , for ~P := trΣ ~K. Since Σ is compact, we easily see∫

Σ
|H̄|2 dµ ≤

∫
Σ
| ~H|2 dµ+ sup

Σ
|~P |2|Σ|. (2.0.1)

In [3] J. Chen and Y. Li proved a Gauss-Bonnet formula for closed branched conformal
immersions.

Lemma 2.0.1 (see [3, Lemma 3.2]). If φ ∈ F(S,Rn) and φ(S) = Σ then∫
Σ

ScΣ dµ = 8π(1− q(S)) + 4πb.

Here q(S) is the genus of S and b is number of branch points counted with multiplicity.

Integrating over the Gauss equation yields

2πb ≤ 1
4

∫
Σ
|H̄|2 dµ− 4π(1− q(Σ)). (2.0.2)

In the same paper J. Chen and Y. Li proved a powerful compactness result for W 2,2

branched, conformal immersions, which is the heart of our existence results.

Theorem 2.0.2 (see [3, Theorem 1]). Let (S, ηk) be a sequence of closed Riemann surfaces
with metrics as given by Theorem 1.1.8 and let φk ∈ W 2,2((S, ηk),Rn) be a sequence of

23
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branched conformal immersions, for some n > 2. If φk(S) ∩ BR0 6= ∅ for some R0 > 0,
and if there are positive constants a and Λ such that

A[φk] ≤ a
W[φk] ≤ Λ

for all k ∈ N, then Σk either converges to a point or there is a stratified surface (S∞, η) and
a branched, conformal immersion φ ∈W 2,2(S∞,Rn) such that a subsequence of (S, ηk, φk)
converges to (S∞, η, φ) in the sense of immersed, stratified surfaces.
Moreover,

A[φ] = lim
k→∞

A[φk],

W[φ] ≤ lim
k→∞

W[φk].

Remark 1. From the proof of the theorem we learn more about the the convergence and
the structure of S∞. It is obtained by attaching finitely many bubble trees to a stratified
surface T . This base stratified surface T in turn is formed as the limit of the (S, ηk) as
nodal surfaces with possibly some bubbling at the nodal points. Additionally, if the ηk
smoothly converge to a smooth metric η on S, then T = (S, η) and S∞ is a bubble forest
with base S. In this case, if Uk ⊂ S are the open sets guaranteed by the convergence as
immersed, stratified surfaces, we have limk→0 |φk(S \ Uk)| = 0.

Furthermore, let P be the singular points of S∞. We may assume that the branch
points of the sequence φk ◦ψk converge to a finite set B̃ and that there is a finite set S ⊂
S∞\P such that the conformal factors e2λ̃k corresponding to φk ◦ψk obey ‖λ̃k‖L∞(K∩Vk) ≤
CK for all K ⊂⊂ S \ (P ∪S ∪ B̃); cf. [3, Proof of Theorem 1, Page 30].

Since the convergence as immersed, stratified surfaces leaves the class of surfaces, we
need to formulate a compactness theorem for stratified surfaces. Ultimately, our goal is
the minimization of a generalized Willmore functional over a surface S0, hence we restrict
ourselves to bubble forests with base S0. The idea is then to apply Theorem 2.0.2 to
every part of the bubble forest. Unfortunately, this means that parts of the forest can
vanish, even though the whole forest cannot due to constraints. This would destroy the
tree structure of the dual graph and hence leave the class of immersed bubble forests. To
remedy this we introduce ghost bubbles and haunted immersions.

Definition 2.0.3 (haunted immersion).

1. Let S =
⋃m
i=1 Si be a stratified surface and let φ : S →M be a continuous map into

a manifold M . We say φ is a haunted immersion, if it is constant on some, but not
all, components of S and an immersion on the rest. A component Si is called a ghost
if φ|Si is constant, otherwise it is called regular.

2. Let (S =
⋃m
i=1 Si, ηk) be a sequence of compact, stratified surfaces and

φk ∈ W 2,2(S,M) a sequence of haunted, branched, conformal immersions. Let
(S∞, η) be a stratified surface and let φ ∈ W 2,2(S∞,M) be a haunted, branched,
conformal immersion. We say (S, ηk, φk) converge to (S∞, η, φ) as haunted, im-
mersed, stratified surfaces if

(a) (Si, φk|Si) converges to a point xi for some but not all i, setting S∞i = Si,
φi = xi and

(b) the remaining (Si, φk|Si) converge to (S∞i , ηi, φi) as immersed stratified surfaces
such that
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(c) S∞ =
⋃m
i=0 S

∞
i , η|S∞i = ηi and φ|S∞i = φi.

Suppose φ is a haunted immersion of a bubble forest S. If a ghost is connected to only
one other component then we delete it. If a ghost is connected to two other components,
say S1 and S2 with common points p1 and p2 respectively, we delete it as well and identify
p1 and p2. Repeating this process until there are no ghosts left or until every ghost is
connected to three or more components yields a bubble forest S′ (possibly with a different
base then S) and a haunted immersion φ′ which is given by φ on every component of S′.
A tuple (S′, φ′) obtained that way is called irreducible.

Figure 2.1: An immersed haunted bubble tree and its dual graph, where the ghost is drawn
white.

The following lemma on graph coloring asserts that in an irreducible, haunted bubble
forest the number of ghosts is bounded by the number of regular components.

Lemma 2.0.4. Let G be a finite tree, colored in black and white according to the rule:
a vertex can be white if its degree is bigger or equal to three. Then there are more black
vertices then white ones.

Proof. For a tree G let W (G) be the number of white vertices and B(G) be the number
of black vertices. Note that any endpoint of G has to be black and the claim holds for
trees with up to four vertices.

We argue by induction. Suppose the claim holds for trees with n and n − 1 vertices.
Let G be a tree with n+ 1 vertices and let p be a boundary vertex connected to q.

1. Suppose deg(q) = 2, then q has to be black andW (G) = W (G\{p}) ≤ B(G\{p}) <
B(G).

2. Suppose deg(q) = 3 and q is black or deg(q) ≥ 4, then there is no need to recolor
q ∈ G \ {p} and we have W (G) = W (G \ {p}) ≤ B(G \ {p}) < B(G) as before.

3. Suppose deg(q) = 3 and q is white. Let r and s be the other vertices adjacent to q
and consider the tree G̃ = G \ {p, q} where we joined r and s. Then

W (G) = W (G̃) + 1 ≤ B(G̃) + 1 = B(G).

The following is our central compactness theorem. We use it to prove the existence of
area-constrained minimizers in the subsequent theorem.

Theorem 2.0.5. Let (Sk, ηk) be a sequence of compact bubble forests with base S0. Sup-
pose ηk is as given by Theorem 1.1.8 on every component of Sk, which fixes ηk on every
bubble. Suppose additionally that ηk|S0 converges smoothly to a smooth metric η′ on S0.
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Let φk ∈W 2,2(Sk,Rn) be a sequence of irreducible, haunted, branched, conformal immer-
sions. Assume φk(Sk) ∩ BR0 6= ∅ for some R0 and there are positive constants a and Λ
such that

A[φk] ≤ a
W[φk] ≤ Λ

for all k ∈ N. Then there exists a bubble forest S = S0 ∪
⋃m
i=1 Si, a stratified surface

(T̃ =
⋃m′
i=0 Ti, η̃) and a haunted, branched, conformal immersion φ̃ ∈W 2,2(T̃ ,Rn), a bubble

forest (T, η) (with base S0 or a sphere) and an irreducible, haunted, branched, conformal
immersion φ ∈W 2,2(T,Rn) such that (T̃ , η̃, φ̃) and (T, η, φ) differ only by ghosts and either

1) φk converges to a point, or

2) there is, a subsequence of {φk} defined on (S, ηk) such that (S, ηk, φk) converges to
(T̃ , η̃, φ̃) as haunted immersed stratified surfaces.

Moreover, if Uk ⊂ S are the open sets guaranteed by the convergence as haunted, immersed,
stratified surfaces, then limk→0 |φk(S \ Uk)| = 0 and

A[φ] = lim
k→∞

A[φk],

W[φ] ≤ lim
k→∞

W[φk].

Proof. First, note that the number of regular components of Sk is uniformly bounded
as they each have Willmore energy at least 4π and by Lemma 2.0.4 the total number of
components is bounded. This means that there are only finitely many possible dual graphs
along the sequence Sk and we can choose subsequences of Sk and φk such that they all
agree. This means the Sk agree as topological spaces but differ by their metric and their
singular points P k. Call the underlying topological space S = S0 ∪

⋃m
i=1 Si and note that

the number of branch points is bounded by (2.0.2).
For an i ∈ {0, 1, ...,m} consider (Si, φk|Si), we apply Theorem 2.0.2 so that either it

becomes a ghost, setting S̃i = Si and φi(x) = limk→∞ φk(Si), or (Si, φk|Si) subconverges
to
(
S̃i := Si ∪

⋃mi
j=1 Si,j , φ

i
)
as immersed stratified surfaces, where S̃i is a bubble forest

and φi ∈W 2,2(S̃i,Rn) is a branched, conformal immersion.
Next, we track the singular set of points P k. For any p ∈ P k there are two components

Si, Sj such that p = Si ∩ Sj , due to the tree structure of S.
We may assume that φk(p) converges to a point y ∈ Rn. Since φi(S̃i) is compact,

the distance d(φk(p), φ(S̃i)) is attained for a sequence of points yk ∈ φi(S̃i). Now, φk(Si)
converges to φi(S̃i) in Hausdorff distance and we find yk → y ∈ φi(S̃i) as φi(S̃i) is closed.
Choose xi ∈ Si such that φi(xi) = y.

Since the same reasoning holds for φk|Sj , we find a xj ∈ S̃j such that φj(xj) = y.
This means we can join the two bubble trees together: define T̃ij = S̃i t S̃j/(xi ∼ xj)
and φij : T̃ij → Rn, φij |S̃i := φi, φij |S̃j := φj . In this way we join up all the bubble trees
to obtain a haunted, branched, immersed, stratified surface (T̃ =

⋃m
i=0 S̃i, φ̃), where φ̃ is

given by φi on S̃i and is continuous throughout. It is then clear that (S, ηk, φk) converges
to (T̃ , η̃, φ̃) as haunted, immersed, stratified surfaces. Here η̃ = η on every bubble and
η̃ = η′ on S0, provided φk(S0) does not shrink to a point.

During this procedure it is possible to loose the tree structure, namely if two or more
singular points of T̃ overlap which can only happen at the points constructed above. See
Figure 2.2 for illustration.
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Figure 2.2: Introducing ghosts into a degenerating bubble tree

This is remedied by introducing a ghost. Let p be a singular point of T̃ such that p ∈⋂l
j=1 S̃ij for l > 2. Set pj := {p} ∩ S̃ij , take a sphere S′ and l mutually distinct points
{aj} on it. Define the stratified surface T̃ ′ := T̃ tS′/∼ where we no longer identify the pj
but instead identify pj with aj and set φ̃′|T̃ = φ̃ and φ̃′|S′ = φ̃(p).
Employing this method as often as necessary to obtain a tree and then deleting any
unnecessary ghost yields the claim.

In terms of direct minimization the compactness result for haunted immersions of
bubble forest puts the base in competition to the bubbles. Hence, we have to restrict to
bubble trees, so as not to loose the base.

Let T be the class of bubble trees. For a Riemannian manifold (M, g) of dimension
three or higher, a positive constant a and an a-generalized Willmore functional H set

F(T ,M) := {φ ∈ F(S,M) | S ∈ T , (S, φ) is haunted},
Fa(T ,M) := {φ ∈ F(T ,M) | A[φ] = a},
β(H,M, a) := inf {H[φ] |φ ∈ Fa(T ,M)} .

Theorem 2.0.6. Let (M, g) be a compact Riemannian manifold and let H be an a-
generalized Willmore functional, then β(H,M, a) is attained in Fa(T ,M).

Proof. Pick a sequence φk ∈ Fa(T ,M) realizing β(H,M, a). By definition, H is bounded
from below and along this sequence it is bounded from above. Again, by the definition of
a-generalized Willmore functional, we know that the Willmore energy with respect to M
is bounded. This implies

W[φk,RN ] ≤ W[φk,M ] + Ca ≤ Λ(M,a, β,H).

After reducing the φk, if necessary, we are in the context of Theorem 2.0.5, as M is com-
pact. Since the area is fixed, the sequence φk cannot shrink to a point. The convergence
as haunted, immersed, stratified surfaces yields a limit φ ∈ Fa(T ,M). By Remark 1 and
Definition 1.1.7 we know that H is lower semi continuous with respect to this convergence,
so we find

β(H,M, a) ≤ H[φ] ≤ lim
k→∞

H[φk] = β(H,M, a).

Corollary 2.0.7. Let (M, g) be a non-compact Riemannian manifold with CB bounded
geometry and let H be an a-generalized Willmore functional. Suppose there exists a tran-
sitive group action on M that leaves H and A invariant, then β(H,M, a) is attained in
Fa(T ,M).
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Proof. Pick a sequence φ̃k ∈ Fa(T ,M) realizing β(H,M, a) and use the transitive action
to obtain a sequence φk ∈ Fa(T ,M) that still realizes β(H,M, a) and whose images
intersect a fixed point. If Σk is the image of φk then [29, Lemma 2.5] asserts

diamM (Σk) ≤ C(CB)
(
|Σk|1/2W[Σk,M ]1/2 + |Σk|

)
≤ C (CB,M, a, β,H) .

Since the diameter in M ⊂ RN is larger then the one in RN , we conclude with Theorem
2.0.6.

Theorem 2.0.8. Let Hc,b and V be the functionals on F(T ,R3) introduced in Section
1.2.2; representing bending energy and enclosed volume. For a, v ∈ R+ define

Fa,v(T ,R3) :=
{
φ ∈ F(T ,R3) | A[φ] = a, V[φ] = v

}
.

For any c, b ∈ R and a, v ∈ R+ such that 3
√

4πv ≤ a3/2 and −ab ≤ 1 the infimum of Hc,b
on Fa,v(T ,R3) is attained.

Proof. Let {φ̃k}k∈N be a sequence in Fa,v(T ,R3) realizing the infimum. Let {Tk}k∈N be
a sequence of translations such that the image of φk := Tk ◦ φ̃k contains the origin. Since
Hc,b, A and V are invariant under translations, Hc,b[φk] still converges to the infimum
in Fa,v(T ,R3). If −ab ≤ 1 then Proposition 1.2.4 asserts that Hc,b is an a-generalized
Willmore functional. As in the proof of Corollary 2.0.7 we know that Im(φk) ⊂ BR0(0)
for a R0 and all k ∈ N. By Theorem 2.0.5 we obtain a subsequence, again denoted by
{φk}, φk ∈ Fa,v(S,R3), S ∈ T , that converges to φ ∈ Fa(T,R3) as haunted, immersed,
stratified surfaces; where (T, φ) differs from a bubble tree only by ghosts. Moreover, we
have

Hc,b[φ] ≤ inf{Hc,b[ψ] | ψ ∈ Fa,v(T ,R3)}.

Now we argue that V[φ] = v.
Since the estimate V [φk|Si ] ≤ C diam

(
φk(Si)

)
|φ(Si)| holds on any component Si of

S, the bubbles that shrink to a point do not hold any volume in the limit. Similarly,
ghosts do not carry any volume, hence we will disregard them in the following. Let P be
the set of singular points of T . The convergence as haunted, immersed stratified surfaces
yields, the existence of open sets Uk ⊂ S, Vk ⊂ T , Vk ⊂ Vk+1, T \

⋃
k∈N Vk ⊂ P , and

diffeomorphisms ψk : Vk → Uk. Furthermore, we know |φk(S \Uk)| → 0, |φk ◦ψk(Vk)| → a
and |φ(Vk)| → a. Let

⋃m
i=1 S

i be the union of all the components of S such that φk(Si)
converges to a point. Set φ′k := φk ◦ ψk.

3 |v − V[φ]| ≤
∣∣∣∣∣
∫
φ′
k
(Vk)
〈x, νk〉 dµk −

∫
φ(Vk)
〈x, ν〉 dµ

∣∣∣∣∣+ sup
x∈φk(S)

|x||φk(S \ Uk)|

+ sup
x∈φ(T )

|x||φ(T \ Vk)|+
∣∣∣∣∣
∫
φk(
⋃m

i=1 S
i)
〈x, νk〉 dµk

∣∣∣∣∣
For j ∈ N fixed we have ∫

φ′
k
(Vj)
〈x, νk〉 dµk →

∫
φ(Vj)
〈x, ν〉dµ

and ∣∣φ′k(Vj)∣∣→ |φ(Vj)|
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for k →∞ since φ′k converges to φ weakly in W2,2
loc(T \ P,R3). Additionally, we have∣∣∣∣∣

∫
φ(Vk)
〈x, ν〉 dµ−

∫
φ(Vj)
〈x, ν〉 dµ

∣∣∣∣∣ ≤ R0|φ(T ) \ φ(Vj)|,

as well as ∣∣∣∣∣
∫
φ′
k
(Vk)
〈x, νk〉 dµk −

∫
φ′
k
(Vj)
〈x, νk〉 dµk

∣∣∣∣∣ ≤ R0|φ′k(Vk) \ φ′k(Vj)|.

For ε > 0 choose j ∈ N such that |φ(T ) \ φ(Vj)| ≤ ε
4R0

and estimate

|φ′k(Vk) \ φ′k(Vj)| ≤
∣∣|φ′k(Vk)| − a∣∣+ |a− |φ(Vj)||+

∣∣|φ(Vj)| − |φ′k(Vj)|
∣∣ .

Now we may choose k > j such that |v − V[φ]| ≤ ε.
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Chapter 3

Regularity of Generalized
Willmore Equations

In this chapter we present the regularity theory for immersions of generalized Willmore
type analogous to the theory for critical points of the Willmore functional under conformal
constraint as it has been developed by A. Mondino and T. Rivière in [43]. It hinges on
the fact that the Euler–Lagrange equation in question can be brought into a divergence
form and that suitably chosen potentials solve an elliptic PDE system with a Wente type
structure; see [14, Chapter 3] for the analogue Poission equation.

We cannot cite the regularity result directly as the function F in Equation (1.1.1)
represents a more general nonlinearity then the ones treated in [43], though it turns out
that we can follow the same arguments.

3.1 Notation

Consider a conformal embedding φ ∈ W 2,2 ∩ W 1,∞(D,M) from the two dimensional
open disc (D, 〈·, ·〉E) to a three dimensional, oriented Riemannian manifold (M, 〈·, ·〉) with
conformal factor e2λ. For the standard Euclidean coordinates x1, x2 on D introduce the
complex coordinates z = x1 + ix2 and z̄. Further, complexify the tangent space of M and
extend all tensors on it C-linearly. For the remainder of this section we fix the following
notation:

ei := e−λ∂xiφ

∂z := ∂x1 − i∂x2

2 ∂z̄ = ∂x1 + i∂x2

2
ez := e−λ∂zφ = e1 − ie2

2 ez̄ := e−λ∂z̄φ = e1 + ie2
2 .

By ∇Mi , ∇Mz and ∇Mz̄ we mean ∇M∂xiφ, ∇
M
∂zφ

and ∇M∂z̄φ respectively, and the following
quantity can be seen as a complex version of the trace free second fundamental form.

H0 := 4A(ez, ez) = A11 −A22 − 2iA12

~H0 := H0ν

Furthermore, we introduce multivector fields onM , denote them by Γ(ΛpTM) and extend
the covariant derivative of M such that it is a derivation with respect to ∧.

31
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Lemma 3.1.1 (cf. [43, Lemma 3.3]). The pair {e1, e2} is an orthonormal frame on Σ
and we can choose the orientation of {e1, e2} such that {e1, e2, ν} with

ν = ∗e1 ∧ e2,

is positively oriented. Here ∗, and ∧ are the hogde star operator of (M, g) and the wedge
product respectively. Moreover, the following identities hold.

|H0|2 = 2| Å |2 〈ez, ez〉 = 1
2

〈ez, ez〉 = 0 〈ez, ez〉 = 0
∗ez = −iez ∧ ν ∗ν = −2iez ∧ ez

∇Mz
(
eλez

)
= −e

2λ

4
~H ∇Mz

(
e−λez

)
= −1

4
~H0

∇Mz ν = 2A(ez, ez) ∂z φ+ 2A(ez, ez) ∂z φ

= 1
2H ∂z φ+ 1

2H0 ∂z φ

Proof. Most of the equations follow directly from the respective definitions and the fact
that {e1, e2, ν} is an orthonormal frame. We briefly discuss the covariant derivatives.

The first is merely the formula for the mean curvature in conformal coordinates.

∇Mz
(
eλez

)
= ∇Mz (∂zφ)

= 1
4∆Eφ

= −e
2λ

4
~H

For the second we first calculate ∇Mz ∂zφ. Let πn and πT be the projections normal and
tangential to Σ.

πn(∇Mz ∂zφ) = −e2λA(ez, ez)ν = −e
2λ

4
~H0

For the tangential part recall that by the definition of the conformal factor we have

〈∇Mj ∂iφ, ∂iφ〉 = 1
2∂je

2λ.

This leads to

〈∇Mz ∂zφ, e1〉 = e−λ

2 ∂ze
2λ

〈∇Mz ∂zφ, e2〉 = −ie
−λ

2 ∂ze
2λ

πT
(
∇Mz ∂zφ

)
= e−λ∂ze

2λez = 2∂zeλez.

Hence we arrive at

∇Mz (e−λez) = ∇Mz (e−2λ∂zφ)

= −2e−λ∂zλez −
1
4
~H0 + 2e−λ∂zλez

= −1
4
~H0.
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Lemma 3.1.2. Let v ∈ Γ(TM) and α ∈ Γ(ΛpTM), p ∈ {0, 1, 2, 3} then we have

∇Mv ∗ α = ∗∇Mv α.

Proof. Let v ∈ Γ(TM) and α, β ∈ Γ(ΛpTM) and let ω := e1 ∧ e2 ∧ ν, then ∗ is defined by

α ∧ ∗β = 〈α, β〉ω.

Ww calculate

α ∧ ∗∇Mv β = 〈α,∇Mv β〉ω

=
(
v〈α, β〉 − 〈∇Mv α, β〉

)
ω

α ∧∇Mv ∗ β = ∇Mv (α ∧ ∗β)−
(
∇Mv α

)
∧ ∗β

= v〈α, β〉ω + 〈α, β〉∇Mv ω − 〈∇Mv α, β〉ω,

but ∇Mv ω = 0 since ez, ez̄ and ν are normalized.

Definition 3.1.3. Define a contraction • of a vector field with a two vector field on pure
two vectors as follows. Let u, v, w ∈ Γ(TM) then

u • (v ∧ w) := 〈u, v〉w − 〈u, v〉w.

Lemma 3.1.4. Let u, v, w, x ∈ Γ(TM) then the covariant derivative obeys

∇Mx (u • v ∧ w) =
(
∇Mv u

)
• v ∧ w − u • ∇Mx (v ∧ w) .

Proof. The claim follows by a straightforward calculation and the fact that the connection
is metric.

∇Mx u • v ∧ w = 〈∇Mx u, v〉w + 〈u,∇Mx v〉w + 〈u, v〉∇Mx w
− 〈∇Mx u,w〉v − 〈u,∇Mx w〉v − 〈u,w〉∇Mx v

=
(
∇Mx u

)
• v ∧ w + u •

(
∇Mx v ∧ w + v ∧∇Mx w

)

3.2 Divergence Form and System of Conservation Laws

In this section we present the generalized Willmore equation in divergence form and con-
struct auxiliary potentials which allow us to prove regularity for generalized Willmore
equations via a bootstrap argument between the immersion φ and its mean curvature
vector ~H.

Lemma 3.2.1 (cf. [43, Lemma 3.4]). In the setting of this chapter we have

e−2λ∂z
(
e2λHH0

)
= H∂zH +H0∂zH − 4eλHR̃m, (3.2.1)

where R̃m = g (Rm(ez, ez)ez, ν).
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Proof. This is a straightforward consequence of Lemma 3.1.1.

H∂zH0 = g(∇Mz ~H0, ~H) = −4g
(
∇Mz ∇Mz (e−λez), ~H

)
= −4g

(
∇Mz ∇Mz (e−λez), ~H

)
− 4eλHR̃m

= −4g
(
∇Mz

[
∂ze
−2λ∂zφ−

1
4
~H

]
, ~H

)
− 4eλHR̃m

= −2∂zλH0H +H∂zH − 4eλHR̃m

e−2λ∂z
(
e2λH0H

)
= 2∂zλH0H +H∂zH0 +H0∂zH

= H∂zH +H0∂zH − 4eλHR̃m

Theorem 3.2.2 (cf. [43, Theorem 3.1]). In the setting of this section the following identity
holds:

4e−2λ Re
(
∇Mz̄

[
∂zHν −

1
2HH0∂z̄φ

])
= ∆Hν +H| Å |2ν + 8H Re

(
R̃m ez

)
,

where R̃m = g (Rm(ez̄, ez)ez, ν).
In particular, if φ is of generalized Willmore type then we obtain the generalized Willmore
equation in divergence form.

4 Re
(
∇Mz̄

[
∂zHν −

1
2HH0∂z̄φ

])
= −e2λF (φ)ν + 8e2λH Re

(
R̃m ez

)
(3.2.2)

Proof. Start by calculating

4e−2λ∇Mz (∂zHν) = e−2λ∆EHν + 4e−2λ∂zH∇Mz ν

= ∆Hν + 2e−2λ∂zH
(
H ∂z φ+H0 ∂z φ

)
.

Taking the real part yields

4e−2λ Re
(
∇Mz (∂zHν)

)
= ∆Hν + 2e−λ Re ((H∂zH +H0∂zH)ez) .

Now we apply Lemma 3.2.1.

4e−2λ Re
(
∇Mz (∂zHν)

)
= ∆Hν + 2e−λ Re

([
e−2λ∂z(e2λHH0) + 4eλHR̃m

]
ez
)

= ∆Hν + 2e−2λ Re
(
∂z(e2λHH0)e−λez

)
+ 8H Re(R̃m ez)

= ∆Hν + 2 Re
(
e−2λ∇Mz (HH0∂zφ)−HH0∇Mz (e−λez)

)
+ 8H Re(R̃m ez)

= ∆Hν + 2 Re
(
e−2λ∇Mz (HH0∂zφ) + 1

4H|H0|2ν
)

+ 8H Re(R̃m ez)

Bringing the term with the z derivative to left-hand side, as well as replacing |H0|2 =
2| Å |2, yields the claim.
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This theorem warrants the investigation of the vector field

Y := 2∂zHν −HH0∂z̄φ.

It differs from Yf , the one used in [43, Equation 5.10], primarily by setting f = 0, but its
derivative differs by the nonlinearity F . We briefly note that

Re[〈∂z̄φ, Y 〉] = 0 (3.2.3)

Re
[
ez ∧

(
Y − 2∇Mz ~H

)]
= 0, (3.2.4)

since ∂ z̄ φ is orthogonal to itself and ν, and we have

Y − 2∇Mz ~H = −HH0∂zφ− 2H∇Mz ν,

as well as

ez ∧∇Mz ν = 1
2ez ∧ (H0 ∂z φ+H ∂z φ)

= − i4e
λHe1 ∧ e2.

In the following we assume that φ(D) is contained in a coordinate patch of M such
that we can trivialize φ∗TM ∼= D × R3, where ∂1φ 7→ b1, ∂2φ 7→ b2, ν 7→ b3 for {bi}, the
standard basis of R3. Additionally, we introduce the space (L1 +W−1,2)(D) as the set of
functions f = f1 + f2 with f1 ∈ L1(D) and f2 ∈W−1,2(D). It is equipped with the norm

‖f‖L1+W−1,2 = inf
f=f1+f2

{‖f1‖L1 + ‖f2‖W−1,2}.

In the trivialization above Y is a vector field in (L1 +W−1,2)(D,C3) since A ∈ L2.
The next lemma establishes the existence of the auxiliary potentials. It uses the Lorentz

space L2,∞. Lorentz spaces can be seen as a refinement of the Lp-spaces, in particular, we
have L2,∞(D) ↪→ L2(D); see [13, Section 1.4] for an introduction. They play a critical role
in the regularity theory of the Laplace operator; see [14, Chapter 3]. By abuse of notation
we will write v ∈ X instead of X(D,Cn), also for (multi-) vector fields v and function
spaces X.

Lemma 3.2.3 (cf. [43, Lemma 6.1]). Let Y be the vector field from above. If φ is of
generalized Willmore type, then

1) there exists a complex vector field K ∈ L2,∞(D), with ImK ∈ W 1,(2,∞)(D) that is
the unique solution of {

∇Mz K = iY in D
ImK = 0 on ∂D.

2) There exists a complex function B0 ∈W 1,(2,∞)(D), with ImB0 ∈W 2,q(D) for every
q ∈ (1, 2) that solves {

∂zB0 = 〈∂z φ,K〉 in D
ImB0 = 0 on ∂D.
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3) There exits a complex 2-vector field B ∈ W 1,(2,∞)(D), with ImB ∈ W 2,q(D) for
every q ∈ (1, 2) that solves{

∇Mz B = ∂z φ ∧K + 2iH ∂z φ ∧ ν in D
ImB = 0 on ∂D.

Proof. This lemma corresponds to [43, Lemma 6.1]. Its proof is a direct application of
the general constructions [43, Lemma A.1 and Lemma A.2] (see also B.1.1 and B.1.2) and
depends on the fact that Y solves (3.2.3) and (3.2.3). Further, it needs the regularity
conditions Y ∈ L1 + W−1,2 and Re(∇Mz̄ Y ) ∈ L1 + W−1,2 both of which are true by the
assumptions on φ. In particular, it does not depend on the explicit shape of Re(∇Mz̄ Y ).

Lemma B.1.1 and Lemma B.1.2 deal the existence and regularity of solutions to the
following systems {

Di
zu
i = ∂zu

i +
∑n
k=1 γ

i
ku

k = F i in D
Im ui = 0 on ∂D.

for vector fields u = (u1, ..., un) on C and functions γik ∈
(
C0 ∩W 1,2(C)

)
with small L∞

norm.
We may assume that φ(D) is contained in a small normal coordinate neighborhood

such that the Christoffel symbols are arbitrarily small and define

γjk := Γjki ∂z φ
i.

Since φ ∈ W 1,∞(D), the γjk are small in L∞ and we have γjk ∈
(
C0 ∩W 1,2) (D). After

extending to C the covariant derivative fulfills the requirements on the differential operator
Dz.

1) Extend the vector field Y to all of C while maintaining Y ∈ L1 +W−1,2(C). Lemma
B.1.1 further requires Re(∇Mz Y ) ∈ L1+W−1,2(C). Since φ is of generalized Willmore
type we have

‖Re(∇Mz Y )‖L1+W−1,2(C) ≤ C‖Re(∇Mz Y )‖L1+W−1,2(D)

≤ C‖H‖L1(D) + C‖e2λF (φ)ν‖L1+W−1,2(D).

2) As ∂z φ is bounded and K ∈ L2,∞(D) it is clear that 〈∂z φ,K〉 ∈ L1 ∩L2,∞(D). We
have to verify that Im ∂z〈∂z φ,K〉 ∈ Lq(D) for every q ∈ (1, 2). From the definition
of Y we get

0 = Im〈∂z, iY 〉 = Im〈∂z,∇Mz K〉

= Im
(
∂z〈∂z φ,K〉 − 〈∇Mz ∂z φ,K〉

)
.

Complex conjugation yields

Im ∂z〈∂z φ,K〉 = −e
2λ

4 H〈ν, Im(K)〉.

This implies the claim, as ImK ∈ W 1,(2,∞)(D) ↪→ Lp(D) for all p ∈ [1,∞) and
H ∈ L2(D). After extending 〈∂z φ,K〉 to all of C we can apply Lemma B.1.2.
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3) Clearly, we have ∂z φ ∧K + 2iH ∂z φ ∧ ν ∈ L1 ∩ L2,∞(D) and (3.2.3) implies

0 = Im
[
∂z φ ∧

(
iY − 2i∇Mz ~H

)]
= Im

[
∂z φ ∧

(
∇Mz K − 2i∇Mz ~H

)]
= − Im

[
∇Mz

(
∂z φ ∧

(
K + 2i ~H

))
−
(
∇Mz ∂z φ

)
∧
(
K + 2i ~H

)]
= − Im

[
∇Mz

(
∂z φ ∧

(
K + 2i ~H

))
+ e2λ

4 Hν ∧
(
K + 2i ~H

)]
.

Hence, Im
[
∇Mz

(
∂z φ ∧

(
K + 2i ~H

))]
∈ Lq(D) for all q ∈ [1, 2) and extending the

right-hand side to C allows us to apply Lemma B.1.2.

In the next two lemmas we explore the relation between B and B0 and establish that
they solve an elliptic PDE system that exhibits the crucial Wente type structure.

Lemma 3.2.4 (cf. [43, Lemma 6.2]). The potentials constructed in Lemma 3.2.3 satisfy
the following coupled system.

∇Mz B = i (∂z B0) e1 ∧ e2 − i ∗ ν • ∇Mz B

∂z B0 = −i
〈
∇Mz B, e1 ∧ e2

〉
Proof. The first equation follows from expanding K in the basis {ez, ez, ν} and recalling
the relations of Lemma 3.1.1.

∇Mz B = ∂z φ ∧K + 2iH ∂z φ ∧ ν

= 2〈∂z φ,K〉ez ∧ ez +
(
〈ν,K〉+ 2iH

)
∂z φ ∧ ν

= i ∂z B0e1 ∧ e2 − i ∗ ν • ∇Mz B

The second one is straightforward.

〈∇Mz B, ∂z φ ∧ ∂z φ〉 = 〈∂z φ ∧K, ∂z φ ∧ ∂z φ〉

= −e
2λ

2 〈K, ∂z φ〉

= −e
2λ

2 ∂z B0

The defining equations of B0 and B, as well as the last lemma, let us guess that K is
actually as regular as ∂z B0 which shares the regularity with ∇Mz B. This means H should
be as regular as ∇Mz B. We already have Lp estimates for the imaginary part of ∇Mz B and
the equations in 3.2.4 relate (∇Mz B, ∂z B0) to i(∇Mz B, ∂z B0) which allows us to play of
the imaginary part against the real part. More specifically, (B,B0) solves the following
Wente type system.
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Lemma 3.2.5 (cf. [43, Proposition 6.1]]). Let φ be of generalized Willmore type, then we
have

∆ ReB = ∗
[(
∇M2 ν

)
• ∇M1 ReB −

(
∇M1 ν

)
• ∇M2 ReB

]
−
(
(∂1 ReB0)∇M2 e1 ∧ e2 − (∂2 ReB0)∇M1 e1 ∧ e2

)
+ I

∆ ReB0 = 〈∇M1 ReB,∇M2 e1 ∧ e2〉 − 〈∇M2 ReB,∇M1 e1 ∧ e2〉+G

Here I and G are functions in Lq(D), q ∈ [1, 2), which depend on B,B0,∆ ImB,∆ ImB0
derivatives of the metric and the second fundamental form A.

Note. In coordinates the system is of the form

∆U j = ∂1E
j
k ∂2 U

k − ∂2E
j
k ∂1 U

k + Ĩj

for U = (Re(Bij),Re(B0)), ∂i U j ∈ L2,∞(D), ∂iEjk ∈ L2(D) and where the Ĩj ∈ Lq,
q ∈ [1, 2) are comprised of I or G and terms involving Christoffel symbols, A, U j and
∂i U

j . This is evident if we recall that the idea of the contraction • is to take scalar
product componentwise.

Proof. By abuse of notation we allow the functions I and G to vary from line to line We
begin with the scalar potential.

∆ Re(B0) = 4 Re ∂z ∂z B0 = 4 Im ∂z
〈
∇Mz B, e1 ∧ e2

〉
= 4

〈
Im∇Mz ∇Mz B, e1 ∧ e2

〉
+ 4 Im

〈
∇Mz B,∇Mz e1 ∧ e2

〉
= Im

〈
∇M1 B − i∇M2 B,∇M1 e1 ∧ e2 + i∇M2 e1 ∧ e2

〉
+G

=
〈
∇M1 ImB,∇M1 e1 ∧ e2

〉
+
〈
∇M2 ImB,∇M2 e1 ∧ e2

〉
+
〈
∇M1 ReB,∇M2 e1 ∧ e2

〉
−
〈
∇M2 ReB,∇M1 e1 ∧ e2

〉
+G

=
〈
∇M1 ReB,∇M2 e1 ∧ e2

〉
−
〈
∇M2 ReB,∇M1 e1 ∧ e2

〉
+G

Here we used extensively that B ∈ W 1,(2,∞), ImB ∈ W 2,q, q ∈ [1, 2), e1 ∧ e2 ∈ L∞ and
∇Mj e1 ∧ e2 ∈ L2, j ∈ {1, 2} as well as the fact that curvature terms of M are bounded on
φ(D). A similar calculation shows the claim for B. First off we have

4∇Mz ∇Mz B = ∆B − i[∇M1 ,∇M2 ]B + I.

Note that [∇M1 ,∇M2 ] is differential operator of order one involving the curvature and hence
the term −i[∇M1 ,∇M2 ]B can be absorbed into the I as well. Using Lemma 3.2.4 we get

∆ ReB = Re
[
4i∇Mz

(
∂z B0e1 ∧ e2 − ∗ν • ∇Mz B

)]
+ I

= −∆ Im(B0)e1 ∧ e2 − 4 Im
(
∂z B0∇Mz e1 ∧ e2

)
+ 4 Im

[
∗
(
∇Mz ν

)
• ∇Mz B + ∗ν • ∇Mz ∇Mz B

]
+ I

= −4 Im
(
∂z B0∇Mz e1 ∧ e2

)
+ 4 Im

[
∗
(
∇Mz ν

)
• ∇Mz B

]
+ I

= − ∂1 Re(B0)∇M2 e1 ∧ e2 + ∂2 Re(B0)∇M1 e1 ∧ e2

+ ∗
(
∇M2 ν

)
• ∇M1 Re(B)− ∗

(
∇M1 ν

)
• ∇M2 Re(B) + I
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Now we are in the position to prove our regularity theorem.

Theorem 3.2.6. Let φ ∈ F(D,M) with conformal factor e2λ, λ ∈ L∞(D). If φ is of
generalized Willmore type then φ is smooth.

Proof. In the first two steps we briefly sketch how to prove that (B,B0) ∈ W 1,p
loc for a

p > 2. This is done completely analogous to the proof of [43, Theorem 6.1]. We include
it here for completeness. See also [50] for a comprehensive treatment of the kind of PDE
system that (B,B0) solves.

In the third step we proceed differently. In particular, we adapt the bootstrap proce-
dure between H and φ to account for the function F in Equation (3.2.2).

Step 1) We show that ∇U ∈ L2(B1/2).
Let Br(x) be the ball in D of radius r around x, and abbreviate Br(0) to Br. By
Lemma 3.2.5 we need analyze the regularity the system

∆U j = ∂1E
j
k ∂2 U

k − ∂2E
j
k ∂1 U

k + Ij .

We decompose it into three systems of Dirichlet problems. The solution U j is given
as sum of ũj , ṽj , w̃j , which individually solve

{
∆ũj = ∂1E

j
k ∂2 U

k − ∂2E
j
k ∂1 U

k in D
ũj = 0 on ∂D

{
∆ṽj = Ij in D
ṽj = 0 on ∂D

{
∆w̃j = 0 in D
w̃j = U j on ∂D

By standard interior elliptic regularity theory and the fact that Ij ∈ Lq, q ∈ [1, 2)
we obtain ∇ṽj ∈ L2(D) and ∇w̃j ∈ L2

loc(D). As the ∂iEjk are in L2 and the ∂i Uk
are in L2,∞ we can solve for ũj as well, where ∇ũj ∈ L2(D); see [14, Theorem 3.4.5].
Thus we get ∇U j ∈ L2(B1/2).

Step 2) We show that there exists a constant p > 2 such that ∇U ∈ Lp
(
B1/2

)
.

The goal is to show that

sup
x∈B1/2, r∈(0,ρ)

rβ‖∆U j‖L1(Br(x)) ≤ C

for a β ∈ (0, 1). By a paper of Adams [4] this suffices to conclude that ∇U j ∈
Lp(B1/2), for a p > 2. To achieve this we show that there is an α ∈ (0, 1) such that

sup
x∈B1/2, r<1/4

r−α
∫
Br(0)

|∇U j(y)|dy <∞ (3.2.5)
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since a straightforward estimate reveals∫
Br(x0)

|∆U j |dµ ≤
∫
Br(x0)

|∇Ejk||∇U
k|dµ+

∫
Br(x0)

|Ij | dµ

≤ ‖∇Ejk‖L2
B1
‖∇Uk‖L2

Br(x0)
+ |Br(x0)|1/q∗‖Ij‖LqB1

≤ Crβ.

Here q∗ is the Hölder conjugate of q and β = min(α, 2/q∗).
Since the Ejk are in L2(D), there is a ρ > 0 for any ε > 0 such that

sup
x∈B1/2

∫
Bρ(x)

|∇Ejk(y)|2 dy < ε2.

Similar to the previous step we decompose U = u + v + w on Bρ(x0), where uj , vj
and wj solve the following equations for an arbitrary but fixed x0 ∈ B1/2.

{
∆uj = ∂1E

j
k ∂2 U

k − ∂2E
j
k ∂1 U

k in Bρ(x0)
uj = 0 on ∂Bρ(x0)

{
∆vj = Ij in Bρ(x0)
vj = 0 on ∂Bρ(x0)

{
∆wj = 0 in Bρ(x0)
wj = U j on ∂Bρ(x0)

As before [14, Theorem 3.4.5] establishes the existence of uj along with an estimate
for the gradient.

‖∇uj‖L2(Bρ(x0)) ≤ Cε‖∇U‖L2(Bρ(x0))

Since I ∈ Lq, we can employ a scaling argument to control ‖∇vj‖L2 . Another
scaling argument for subharmonic functions establishes a corresponding estimate for
wj . From these three individual estimates (3.2.5) follows; see [43, Proof of Theorem
6.1] for the detailed argument.

Step 3) We show that φ is smooth.
The defining equation for B reads

2iH∂zφ ∧ ν = ∇Mz B − ∂z φ ∧K.

Projecting this to ∂z̄φ ∧ ν and taking the imaginary part yields

H = e2λ Im
(〈
∇Mz B, ∂z̄φ ∧ ν

〉)
+ 1

2〈Im(K), ν〉,

hence H ∈ Lploc, as Im(K) ∈ Lq for all q ∈ [1,∞). Since φ is conformal we have
∆Eφ = e2λ ~H, where ∆E is the Euclidean Laplace operator, and hence φ ∈W 2,p

loc . In
the following we retreat to D1/2(0), in order to drop the loc subscript.
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The generalized Willmore equation in divergence form reads

4 Re
(
∇Mz̄

[
∂zHν −

1
2HH0 ∂ z̄ φ

])
= 8 Re

(
e2λHR̃ez

)
− e2λF (φ)ν.

In terms of a local frame {bα} of M with Christoffel symbols Γ, ∇Mz̄ ∇Mz ~H can be
expressed as

∇Mz̄ ∇Mz ~H = 1
4∆E

~H+∂z ~H ?∂ z̄ φ?Γ?b+∂ z̄( ~H ?∂z φ?Γ)?b+ ~H ?∂z φ?∂ z̄ φ?Γ?Γ?b.

Here we employed the ? notation, that is F ? G denotes a sum of contractions of F
and G. Combining the last two equations we get an elliptic equation for ~H whose
right-hand side we control.

∆E
~H = 4 Re

(1
2∇

M
z̄ (H2 ∂z φ) + 2e2λHR̃ez − ∂z ~H ? ∂ z̄ φ ? Γ ? b (3.2.6)

− ∂ z̄( ~H ? ∂z φ ? Γ) ? b− ~H ? ∂z φ ? ∂ z̄ φ ? Γ ? Γ ? b
)
− e2λF (φ)ν

By Definition 1.1.7, there is an ε > 0 such that

e2λF (φ)ν ∈W k−1,l, l = 2p
2 + p

+ ε if φ ∈W k+2,p ∩W 1,∞, p > 2, k ≥ 0.

Now suppose φ ∈ W k+2,p for some k ≥ 0, p > 2 then the right-hand side of (3.2.6)
is in W k−1,l′ , where l′ = min(l, p/2), if k = 0 and l′ = min(l, p) if k > 0. Hence,
~H ∈ W k+1,l′ and by the equation ∆Eφ = e2λ ~H we arrive at φ ∈ W k+3,l′ . The
following iteration implies the smoothness of φ.
Let p0 := 2 + δ, for some 0 < δ < ε/2 small enough such that H ∈ Lp0 , φ ∈ W 2,p0 .
Set pi := 2l′i−1

2−l′i−1
for i ∈ N; li := 2pi

2+pi + ε for i ∈ N0 and l′i := min(li, pi/2). Since

W 1,l′i ↪→ Lpi+1 , we see that ~H ∈ W 1,l′i for all i ∈ N. As pi → ∞ and li → 2 + ε we
eventually have that ~H ∈W 1,p0 . Now we may iterate again for the higher derivatives.
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Chapter 4

Concentration of Small Surfaces

In this chapter we analyze area-constrained critical points of Hawking type functionals in
order to characterize points in the ambient manifold around which small area-constrained
Hawking type surfaces concentrate. This way we are able to identify the analogue of an
energy density for Hawking type functionals. We follow [29] closely, where these arguments
were developed for the Willmore functional. To that end we fix a CB-bounded three
dimensional ambient manifold (M, g) (see Appendix A) and a Hawking type functional
H = W +L, where L[Σ] =

∫
Σ L(x, ν) dµ, for a smooth L : TM → R. Throughout

Subsection 4.1 we suppose also that L, dTML, HessV L and ∇MdV L are bounded by CL.
Geodesic balls in M are denoted by Br(p).

Recall the Euler–Lagrange equation for Hawking type functionals.

∆H +H| Å |2 +H Ric(ν, ν) +HQ+ γ(Å, S) + 2λH + T = 0, (4.0.1)

where Q, S and T are given by

Q = −2L− trΣ HessV L+ 2dV L(ν),
S = −2 HessV L,
T = −2dML(ν)− 2 divΣ dV L.

4.1 A Priori Estimates for Small Surfaces

In this section we first characterize small area-constrained minimizers of Hawking type
functionals. Subsequently, we establish a priori estimates for Hawking type surfaces with
small energy in order to obtain quantitative control of relevant geometric quantities such
as the mean curvature. These will be of vital importance on the next section.

Proposition 4.1.1. There are constants a0(CL, CB) > 0 and C(CL, CB) > 0 such that
any φa ∈ Fa(T ,M) realizing β(HL,M, a) = inf{HL[φ] | φ ∈ Fa(T ,M)} for a ≤ a0 is an
embedding of a sphere, its image is contained in a normal coordinate neighborhood and φa
satisfies

|H[φa]− 4π| ≤ C(L,CB)a.

Proof. Let φa ∈ Fa(S,M) realize β(HL,M, a), for a bubble tree S, and set Σa := φa(S).
In [41] A. Mondino calculated the expansion of the Willmore energy for spheres in

coordinates and found
W[SR, g] ≤ 4π + C(CB)|SR|g.

43
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Since L is bounded, we can estimate the Willmore energy of Σa by comparing it to spheres
SR, a = 4πR2, in coordinates.

W[Σa, g] ≤ H[Σa] + CLa ≤ H[SR] + CLa ≤ 4π + C(CL, CB)a

Lemma A.1.7 asserts that diamM (Σa) ≤ C(L,CB)
√
a. Hence, Σa lies in a normal coordi-

nate neighborhood Br(0), provided a is small enough.
Consider a bubble Si of S on which φa is not constant and set Σi := φa(Si). We apply

corollary A.1.5 as well as the integrated Gauss equation to see

W[Σi, g] ≥ W[Σi, gE ]− Cr2 ≥ 4π − Cr2.

Hence, there can be only one bubble and by deleting ghosts we may assume that (S, φa)
is not haunted. From the same corollary we gather

W[Σa, gE ] ≤ W[Σa, g] + Cr2 ≤ 4π + C(r2 + a).

In order to see embeddedness we employ the Li–Yau inequality [34]; see also Lemma
A.1.17. Denote by θ2(Σ, p) = #φ−1(p) the density of Σ at p, then we have

θ2(Σ, p) ≤ W[Σ]
4π .

This follows from Simons monotonicity formula, see [25, Appendix A] for a discussion.
Finally, Lemma A.1.11 allows us to choose the normal neighborhood such that r and

R are comparable. This yields the final estimate on H[Σa].

H[Σa] =W[Σa, g] + L[Σa] ≤ 4π + C(L,CB)a
H[Σa] ≥ W[Σa, gE ]− C(L,CB)a ≥ 4π − C(L,CB)a

Proposition 4.1.2. There are positive constants r0(CB) and C(CB, CL) such that for
all r ∈ (0, r0) and Σ ⊂ Br(p), immersed, area-constrained, critical surfaces of H, we can
estimate the Lagrange multiplier as follows.

|λ| ≤ C|Σ|−1
(
|Σ|1/2W[Σ]1/2 + |Σ|+ r

∫
Σ
|A|2dµ

)
Proof. As in [29, Proposition 5.3] the idea is to consider an area-constrained normal varia-
tion ofH in direction f = g(x, ν), for the position vector field x in Br in normal coordinates
to obtain

δf H[Σ] = λδf A[Σ].
If the variation of the area is non zero, we calculate the Lagrange parameter λ as the
quotient

λ = δf H[Σ]
δf A[Σ] .

We choose f = g(x, ν), where x is the position vector field in Br in normal coordinates
and estimate δf L directly.

|∇Σf | ≤
∑
i

|γijg(∇Mj x, ν)|+
∣∣∣∣γijg (x, ∂φ∂xk

)
Akj

∣∣∣∣
≤ C(CB) + C(CB)r|A|

δf L[Σ] =
∫

Σ
fdML(ν) + dV L(−∇Σf) + fLH dµ

≤ C(CL, CB)|Σ|+ C(CL, CB)r|Σ|1/2
(∫

Σ
|A|2 dµ

)1/2
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For δfW and δf A we use the results from [29, Proposition 5.3]

|δf A[Σ]| ≥ |Σ|,

|δfW[Σ]| ≤ C|Σ|1/2W[Σ]1/2 + Cr

∫
Σ
|A|2 dµ.

Theorem 4.1.3. There are positive constants ε0 and C depending only on CB and CL
such that any spherical immersed surface Σ that

1. solves equation (1.2.2), satisfies

2. H(Σ) ≤ 4π + ε2 and

3. |Σ| ≤ ε2

for an ε ∈ (0, ε0), obeys the following estimate.∫
Σ
|∇2H|2 +H2|∇H|2 +H2|∇ Å |2 +H4| Å |2dµ ≤ C

Proof. We start by integrating the Gauss equation over Σ, to obtain

2W[Σ] = 8π +
∫

Σ
| Å |2dµ+ 2

∫
Σ

Ric(ν, ν)− 1
2 Sc dµ.

Since the curvature is bounded and H is close to 4π, we can estimate ‖ Å ‖2L2(Σ).

‖ Å ‖2L2(Σ) = 2H[Σ]− 8π − 2L[Σ]− 2
∫

Σ
G(ν, ν) dµ

≤ C(CL, CB)ε2

Moreover, Lemma A.1.7 and Lemma A.1.11 assert that we can operate in a normal co-
ordinate neighborhood Br(0) adapted to Σ such that r ≤ C|Σ|1/2. This simplifies the
estimate for the Lagrange multiplier to

|λ| ≤ C(CL, CB)|Σ|−1ε.

It also enables us to use the Michael-Simon-Sobolev inequality (see Lemma A.1.13).
We multiply equation (1.2.2) by ∆H and integrate over Σ. Through integration by

parts and Young’s inequality we obtain∫
Σ

(∆H)2 dµ = −
∫

Σ
∆HH| Å |2 + ∆HHQ+ ∆Hγ(Å, S) + ∆HT − 2|∇H|2λ dµ

≤
∫

Σ

(∆H)2

2 + 2H2| Å |4 + 2H2Q2 + 2γ(Å, S)2 + 2T 2 + Cε

|Σ| |∇H|
2 dµ,

and ∫
Σ

(∆H)2 dµ ≤ C(CL, CB) + C(CL, CB) ε

|Σ|

∫
Σ
|∇H|2 dµ+ 4

∫
Σ
H2| Å |4 dµ. (4.1.1)

From here on the proof proceeds exactly as the one of [29, Proposition 5.1]. We preset it
here for completeness.
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We use the Bochner identity (see Lemma A.1.12) on ∇2H, the Hessian of H.

∫
Σ
|∇2H|2 +H2|∇H|2 dµ ≤

∫
Σ

(∆H)2 + C|∇H|2
(
| Å |2 + 1

)
dµ (4.1.2)

The Micheal–Simon–Sobolev inequality implies

∫
Σ
|∇H|2 dµ ≤ C

(∫
Σ
|∇|∇H||+ |H||∇H| dµ

)2

≤ C|Σ|
∫

Σ
|∇2H|2 +H2|∇H|2 dµ (4.1.3)

Inserting (4.1.1) and (4.1.3) into (4.1.2), as well as absorbing several terms yields

∫
Σ
|∇2H|2 +H2|∇H|2 dµ ≤ C + C

∫
Σ
H2| Å |4dµ+ |∇H|2| Å |2 dµ. (4.1.4)

We continue with the Simons identity for immersed surfaces; see [51].

− Åij ∆ Åij +1
2H

2| Å |2 = −γ(Å,∇2H) + | Å |4 + | Å |2 Ric(ν, ν) (4.1.5)

− Åij Åk
j Ricik−2γ(Å,∇ω)

Here we introduced a new 1-form, ω := Ric(ν, ·)T , where ·T denotes the restriction to
the tangent space of Σ. We multiply (4.1.5) with H2 and integate over Σ. We will
estimate every term seperately, using integration by parts and the Codazzi equation



4.1. A PRIORI ESTIMATES FOR SMALL SURFACES 47

div Å = 1
2∇H + ω.

−
∫

Σ
H2 Åij ∆ Åij dµ =

∫
Σ
γ(∇(H2 Åij),∇ Åij) dµ

=
∫

Σ
2H Åij

γ(∇H,∇ Åij) +H2|∇ Å |2 dµ∣∣∣∣∫
Σ

2H Åij
γ(∇H,∇ Åij) dµ

∣∣∣∣ ≤ 2
∫

Σ
| Å ||H||∇H||∇ Å | dµ

≤
∫

Σ
1/2H2|∇ Å |2 + 2| Å |2|∇H|2 dµ

| Åij Åk
i Rickj | ≤ C| Å |2∫

Σ
H2| Å |2 dµ ≤

∫
Σ
H2 +H2| Å |4 dµ

≤ W[Σ] +
∫

Σ
H2| Å |4 dµ

≤ C +
∫

Σ
H2| Å |4 dµ

−
∫

Σ
H2γ(Å,∇(∇H − 2ω)) dµ =

∫
Σ
γ(div(H2 Å),∇H − 2ω) dµ

=
∫

Σ
2H Å(∇H,∇H − 2ω#)

+H2γ(div Å,∇H + 2ω) dµ

=
∫

Σ
2H Å(∇H,∇H)− 4H Å(∇H,ω#)

+H2
(1

2 |∇H|
2 + 2|ω|2 + 2γ(∇H,ω)

)
dµ

≤ C
∫

Σ
|H|| Å ||∇H|2 + |H|| Å ||∇H|

+H2|∇H|2 +H2|∇H|+H2 dµ

≤ C
∫

Σ
H2|∇H|2 + | Å |2|∇H|2 +H2 dµ

≤ C + C

∫
Σ
H2|∇H|2 + | Å |2|∇H|2 dµ

Piecing all this together yields∫
Σ
H2|∇ Å |2 +H4| Å |2 dµ ≤ C(CB)

(
1 +

∫
Σ
H2|∇H|2 + | Å |2|∇H|2 +H2| Å |4 dµ

)
,

and in view of (4.1.4) we arrive at∫
Σ
|∇2H|2 +H2|∇H|2 +H2|∇ Å |2 +H4| Å |2 dµ

≤ C(CB, CL)
(

1 +
∫

Σ
| Å |2|∇H|2 +H2| Å |4 dµ

)
. (4.1.6)

Now we treat the terms on the right-hand side with the Michael-Simon-Sobolev inequality.∫
Σ
H2| Å |4 dµ ≤ C

(∫
Σ
|∇H| Å |2|+H2| Å |2 dµ

)2

≤ C
(∫

Σ
|∇H|| Å |2 + |H|| Å ||∇ Å |+H2| Å |2 dµ

)2

≤ C
∫

Σ
| Å |2 dµ

∫
Σ
| Å |2|∇H|2 + |H|2|∇ Å |2 +H4| Å |2 dµ
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Since ‖ Å ‖L2 is bounded by Cε we may absorb the last two terms on the right to the left
of (4.1.6). We treat the term | Å |2|∇H|2 similarly.∫

Σ
| Å |2|∇H|2 dµ ≤ C

(∫
Σ
|∇ Å ||∇H|+ | Å ||∇2H|+ |H|| Å ||∇H| dµ

)2

≤ C
(∫

Σ
| Å ||∇2H|+ |H|| Å ||∇H| dµ

)2
+ C

(∫
Σ
|∇ Å ||∇H| dµ

)2

≤ C
∫

Σ
| Å |2 dµ

∫
Σ
|∇2H|2 +H2|∇H|2 dµ

+ C

(∫
Σ
|∇ Å |2 + |∇H|2 dµ

)2
(4.1.7)

The first two terms on the right-hand side can be absorbed again. For the last one we
recall the Codazzi equation ∇H = 2 div Å−2ω. It implies

|∇H|2 ≤ C + C|∇ Å |2.

Thus we are left with one final term. To treat it, we employ the integrated Simons identity;
compare (4.1.5).∫

Σ
|∇ Å |2 + 1

2H
2| Å |2 dµ ≤ C|Σ|+

∫
Σ
−γ(Å,∇2H)− 2γ(Å,∇ω) + 2| Å4 |dµ

Using the Michael-Simon-Sobolev inequality, we find∫
Σ
| Å |4 dµ ≤ C

(∫
Σ
| Å ||∇ Å |+ |H|| Å |2 dµ

)2

≤ C
∫

Σ
| Å |2 dµ

∫
Σ
|∇ Å |2 + |H|2| Å |2 dµ,

which can be absorbed. Next we observe∫
Σ
−2γ(Å,∇ω) dµ ≤ C

∫
Σ
| Å ||∇Ric |+ | Å |2 + | Å ||H| dµ

≤ C
∫

Σ
| Å |2 dµ+ C

(∫
Σ
| Å |2

) 1
2
.

Finally, we use the Hölder inequality to infer∫
Σ
|∇ Å |2 dµ ≤ C(CB, CL)

(
|Σ|+ ‖ Å ‖L2(Σ)

)
+ ‖ Å ‖L2(Σ)‖∇2H‖L2(Σ). (4.1.8)

Since this term enters quadratic in (4.1.7), we have shown that we can absorb every term
but the constant one on the right-hand side of (4.1.6) to the left.

The next corollary is in some ways the heart of this section as it establishes the round-
ness of small surfaces of generalized Willmore type.

Corollary 4.1.4. Assume Σ is a surface as in Theorem 4.1.3 and define R via |Σ| = 4πR2.
If |Σ| is small enough then there exists a constant C = C(CL, CB) such that the following
estimates hold.

‖ Å ‖L2(Σ) ≤ C|Σ|

‖H − 2/R‖L∞(Σ) ≤ C|Σ|1/2
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In particular, the mean curvature has to be positive and the inverse of the mean curvature
has to be bounded.

‖H−1‖L∞(Σ) ≤ C|Σ|1/2

‖H−1 −R/2‖L∞(Σ) ≤ C|Σ|3/2

Proof. For the first part we will apply the Michael-Simon-Sobolev inequality to | Å |2 and
H2| Å |2. ∫

Σ
| Å |2 dµ ≤ C

(∫
Σ
|∇ Å |+H| Å |dµ

)2

≤ C|Σ|
∫

Σ
|∇ Å |2 +H2| Å |2 dµ∫

Σ
H2| Å |2 dµ ≤ C

(∫
Σ
|∇H|| Å |+ |H||∇ Å |+H2| Å | dµ

)2

≤ C|Σ|
∫

Σ
| Å |2|∇H|2 + |H|2|∇ Å |2 +H4| Å |2 dµ

≤ C|Σ|+ C|Σ|
∫

Σ
| Å |2|∇H|2 dµ

We may use estimates (4.1.8) and (4.1.7) from the proof of Theorem 4.1.3 to deal with
‖∇ Å ‖2L2 and ‖| Å ||∇H|‖2L2 .

∫
Σ
| Å |2|∇H|2 dµ ≤ C

∫
Σ
| Å |2 dµ+ C

(∫
Σ
|∇ Å |2 dµ+ |Σ| dµ

)2

≤ C‖ Å ‖2L2(Σ) + C
(
|Σ|+ ‖ Å ‖2L2(Σ) + ‖ Å ‖L2(Σ)

)2

≤ C‖ Å ‖2L2(Σ) + C|Σ|2∫
Σ
|∇ Å |2 dµ ≤ C

(
|Σ|+ ‖ Å ‖L2(Σ)

)
Thus we get

‖ Å ‖2L2(Σ) ≤ C|Σ|
2 + C|Σ|‖ Å ‖L2(Σ) + C|Σ|2‖ Å ‖2L2(Σ) + C|Σ|4

We may absorb two terms to obtain

‖ Å ‖L2(Σ) ≤ C|Σ|.

For the second part we use the estimate of De Lellis and Müller [5], see also Theorem
A.1.8, in conjunction with Lemma A.1.3 and corollary A.1.5 to estimate

‖H − 2/R‖L2(Σ,γ) ≤ C‖ Å ‖L2(Σ,γ) + C|Σ|2 ≤ C|Σ|.

From Lemma A.1.15 we gather that

‖H − 2/R‖4L∞(Σ) ≤ ‖H − 2/R‖2L2(Σ)

∫
Σ
|∇2H|2 +H4(H − 2/R)2 dµ.

The first term on the right can be estimated with Theorem 4.1.3 and the second one can
be absorbed to the left. To see that, let a := 2/R and note

H4 ≤ 4(H − a)4 + 8a2(H − a)2 + 4a4.
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This implies

‖H − a‖4L∞(Σ) ≤ C|Σ|
2 + C|Σ|2‖H − a‖4L∞(Σ) + C|Σ|‖H − a‖2L∞(Σ)

After applying Young’s inequality to the last term on the right-hand side, we can absorb
all but the constant term to the left.

4.2 Surface Concentration
In this section we characterize the points around which surfaces of generalized Willmore
type concentrate. First we present a result for general Hawking type functionals, then we
perform detailed calculation for the physically interesting case L = −1/4P 2.

Definition 4.2.1 (concentration point). A Point p ∈M is called a concentration point
of H if there is a constants r0 > 0 and an A0 > 0 such that for every r ∈ (0, r0) there is
an A ∈ (0, A0) and a spherical, area-constrained, critical surface Σr of H with |Σr| = A
contained in the geodesic ball Br(p).

Definition 4.2.2. Let S := S2
1(a) be the two sphere around a ∈ R3 with outer normal

vector field ν and fet F : R3×R3 → R be bounded. For a multi index (α1, ..., αk), k ∈ N
introduce

c(α1,...,αk)(F, a) :=
∫
S2

1(a)
F (a, ν)(x− a)α1 ...(x− a)αk dµ,

c(F, a) :=
∫
S2

1(a)
F (a, ν) dµ.

Theorem 4.2.3. Let (M, g) be CB bounded and let H =W +L be a Hawking type func-
tional with L[Σ] =

∫
Σ L(x, ν) dµ for a smooth L.

1. Let M be compact, then there exits at least one concentration point of H. The
concentrating surfaces Σr at that point are area-constrained minimizers of H and
obey H[Σr] ≤ 4π + ε20, where ε0 is the constant from Proposition 4.1.3.

2. Let p ∈ M be a concentration point of H such that the concentrating surfaces Σr

have energy H[Σr] ≤ 4π + ε20.
Then, in Riemannian normal coordinates around p, the vector Vp with components

V α
p = −c (dV Lα, p) + 2cα (L, p) + c(α,β) (dV Lβ, p)

vanishes.
Moreover, if Vai vanishes identically for a sequence of points {ai} converging to p,
as constructed in the proof, then we have that

∇M Scp−Wp = 0.

Here Wp is a vector whose components read

Wα
p = 3

2π
(
−cβ

(
∇Mβ dV Lα, p

)
+ 3c(α,β) (dMLβ, p) + c(α,β,γ)

(
∇Mγ dV Lβ, p

))
.

Remark 2.



4.2. SURFACE CONCENTRATION 51

a) If L(x, ν) is even in ν, then the Va vanish as all the involved integrals vanish.

b) Wp involves only terms with a dM . We can therefore see it as the gradient of
some function w at p. This leads to the interpretation that, provided V vanishes, a
concentration point of H is a critical point for Sc−w.

Proof. For the first part, we know by Proposition 4.1.1 that there is a minimizing area-
constrained embedded sphere with H[ΣA] ≤ 4π + ε20, for any small enough area A. More-
over, they are contained in normal neighborhoods BrA(pA), where rA and

√
A are com-

parable. For A → 0 the points pA will subconverge to a point p which is a concentration
point by construction.

For the second part, let r0 and A0 be as in the definition of concentration point.
Suppose r ∈ (0, r0) and r0 ≤ inj(M, g). Let Σ be a spherical, area-constrained, critical
point of H contained in Br(p) with area |Σ| = 4πR2 and H[Σr] ≤ 4π + ε20. Since L is
smooth and we work in Br(p), the results of Section 4.1 apply. In Appendix A we discuss
that, by choosing r0 smaller if necessary, we have the estimates d := diamg Σ ≤ CR ≤ Cr.
Since there is at least one such Σ for any r ∈ (0, r0), we may suppose that 2d < r. This
allows us to use Lemma A.1.11 in order to find normal coordinates ψ adapted to Σ around
pΣ ∈M such that Σ ⊂ B2d(pΣ) ⊂ Br(pΣ), dg(p, pΣ) ≤ r and

∫
ψ(Σ)

y dµg(y) = 0.

Additionally, in these adapted normal coordinates we have

max
x∈Σ
|x|E ≤ CR.

We will operate in these coordinates from now on.
Consider the area-constrained variation of H[Σ] with respect to the vector field fν =

g(b, ν)/Hν, where b is a constant vector field to be chosen later. Recalling the traced
Gauss equation

ScΣ = Sc−2 Ric(ν, ν) + 1
2H

2 − | Å |2,

we may split the Willmore functional into two new functionals

U [Σ] = 1
2

∫
Σ
| Å |2 dµ

V[Σ] =
∫

Σ
Ric(ν, ν)− 1

2 Sc dµ

W[Σ] = 4π(1− q(Σ)) + U [Σ] + V[Σ]

and arrive at

λδf A = δf H = δf U +δf V +δf L .

Let Ω be the region enclosed by Σ and let 〈·, ·〉 denote the Euclidean scalar product on
R3.

Estimating Vol(Ω), δf A[Σ] and δf U [Σ], as well as the better part of δf V[Σ] as in [28,
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Section 4] yields ∣∣∣∣Vol(Ω)− 4π
3 R3

∣∣∣∣ ≤ CR5,

|λδf A[Σ]| ≤ CR4,

|δf U [Σ]| ≤ CR4,∣∣∣∣δf V[Σ] + 1
4 Vol(Ω)〈∇M ScpΣ , b〉

∣∣∣∣ ≤ CR4,

and hence ∣∣∣∣π3R3〈b,∇M ScMpΣ〉 − δf L[Σ]
∣∣∣∣ ≤ CR4. (4.2.1)

Thus we need to estimate the variation of L.

δf L[Σ] =
∫

Σ
fdML(ν)− dV L(∇f) + LHf dµ (4.2.2)

We start with the second term on the right-hand side, using ei := ∂φ
∂xi

.∫
Σ
dV L(∇f) dµ =

∫
Σ

1
H
dV L(ej)γij

(
g(∇Mi b, ν) +A(bT , ei)−

1
H

∂H

∂xi
g(b, ν)

)
dµ

=
∫

Σ

1
H
dV L(ej)γij

(
Å(bT , ei) + g(∇Mi b, ν)

)
− 1
H2dV L(∇H)

+ 1
2dV L(bT ) dµ

The first three terms on the right-hand side can be estimated rather easily, using the
results of Section 4.1 as well as the fact that we use Riemann normal coordinates on M .∫

Σ

1
H
dV L(ej)γij

(
Å(bT , ei) + g(∇Mi b, ν)

)
− 1
H2dV L(∇H) dµ ≤ CR4

The other terms, that is
∫

Σ 1/2 dV L(bT ) +fdML(ν) +LHf dµ, need to be treated in more
detail. We will pull them back to an approximating sphere to perform explicit calculations.
In Lemma A.1.3, Theorem A.1.8 and corollary A.1.10 we detailed how this is possible. The
estimates derived there in conjunction with corollary 4.1.4 imply that, up to order O(R4),
we have to estimate ∫

S
−1

2 dV L(bT ) + RE
2 〈b, ν〉dML(ν) + 〈b, ν〉Ldµ.

Here RE is the Euclidean radius of Σ, |Σ|E = 4πR2
E , which is comparable to R, and S is

the round sphere of radius RE , centered at a =
∫

Σ x dµE , the Euclidean center of mass
of Σ. The outer normal to S is given by ν = (x − a)/RE , where x is the position vector
field.

Note that in this construction dg(pΣ, a) ≤ Cd3 and hence

dg(p, a) ≤ Cr. (4.2.3)

Note also that the term 1/2dV L(bT ) + 〈b, ν〉L is of order one, whereas RE/2〈b, ν〉dML(ν)
is of order R. This means, unless

∫
Σ 1/2dV L(bT ) + 〈b, ν〉L vanishes up to O(R2), it will
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dominate the concentration point p. We will perform a Taylor expansion in the first
variable around a in order to separate the orders of magnitude.

dV L(bT )(x,ν) = dV L(bT )(a,ν) +∇Mx−adV L(bT )(a,ν) +O(R2)
〈b, ν〉L(x, ν) = 〈b, ν〉L(a, ν) + 〈b, ν〉dML(x− a)(a,ν) +O(R2)

RE
2 〈b, ν〉dML(ν)(x,ν) = RE

2 〈b, ν〉dML(ν)(a,ν) +O(R2)

Integrating over S and separating by powers of RE yields∫
S
−1

2 dV L(bT ) + RE
2 〈b, ν〉dML(ν) + 〈b, ν〉L dµ, (4.2.4)

= R2
E

(
−b

α

2 c(dV Lα) + bαcα(L) + bα

2 c
(α,β)(dV Lβ)

)
,

+R3
E

(
−b

α

2 c
β(∇Mβ dV Lα) + 3bα

2 c(α,β)(dMLβ) + bα

2 c
(α,β,γ)(∇Mγ dV Lβ)

)
,

+O(R4).

Define the components of two vectors Va and Wa by

V α
a = (−c(dV Lα) + 2cα(L) + c(α,β)(dV Lβ)),

Wα
a = 3

2π
(
−cβ(∇Mβ dV Lα) + 3c(α,β)(dMLβ) + c(α,β,γ)(∇Mγ dV Lβ)

)
.

If Va is not zero, then equation (4.2.1) implies that 〈b, Va〉 → 0 for r → 0 and any constant
vector b. Moreover, by equation (4.2.3) we get that a → p as r → 0. Choosing b = Vp
yields that p is characterized by the vanishing of Vp.
If Va vanishes, we get

∇M Scp−Wp = 0,

using equation (4.2.1) and b = ∇M Scp−Wp.

Now we apply the previous result to the Hawking energy E . Recall

E [Σ] = |Σ|1/2

16π3/2 (4π −H[Σ])

for H[Σ] = W[Σ] − 1
4
∫
Σ(trΣK)2 dµ, where K is a smooth symmetric 2-tensor on M .

Clearly the area-constrained minimizers of H are the area-constrained maximizers of E .

Theorem 4.2.4. Let H be as above. At any concentration point p of H around which the
concentrating surfaces obey H[Σr] ≤ 4π + ε20, where ε0 is the constant from Proposition
4.1.3 we have

∇M
(

Scp +3
5 trM K2

p + 1
5 |Kp|2

)
= 0.

Proof. We apply Theorem 4.2.3. First note that the function L = −1
4(trΣK)2 is even in ν

and hence the vectors Va vanish. Thus we need to compute the vectorWp with components

Wα
p = 3

2π
(
−cβ(∇Mβ dV Lα, p) + 3c(α,β)(dMLβ, p) + c(α,β,γ)(∇Mγ dV Lβ, p)

)
.
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Recall the following derivatives of P 2 = (trΣK)2 from Lemma 1.2.3.

dMP
2(X) = 2P trΣ∇MXK

dV P
2(X) = −4PK(X, ν)

∇MY dV P 2(X) = −4
(
trΣ∇MY K

)
K(X, ν)− 4P∇MY K(X, ν)

We will calculate the three terms of W separately. Since we choose normal coordinates
around p, we have p = 0. The relevant integrals are presented in Lemma C.2.2. For better
readability we drop the subscript from trM .

1)

c(α,β)
(
(dMP 2)β, p

)
=
∫
S1

2P trS1 ∇Mβ Kxαxβ dµ

= 2
∫
S1

(trK −K(ν, ν))
(
tr∇Mβ K −∇Mβ K(ν, ν)

)
xαxβ dµ

∫
S1

2 trK tr∇Mβ Kxαxβ dµ = 2 trK tr∇Mβ K
∫
S1
xαxβ dµ

= 8π
3 trK tr∇Mα K∫

S1
−2K(ν, ν) tr∇Mβ Kxαxβ dµ = −2Kγδ tr∇Mβ K

∫
S1
xαxβxγxδ dµ

= −8π
15
(
trK tr∇Mα K + 2〈K(eα, ·), tr∇M· K〉

)
∫
S1
−2 trK∇Mβ K(ν, ν)xαxβ dµ = −2 trK∇Mβ Kγδ

∫
S1
xαxβxγxδ dµ

= −8π
15
(
trK tr∇Mα K + 2 trK divEK(eα)

)
∫
S1

2K(ν, ν)∇Mβ K(ν, ν)xαxβ dµ = 2Kγδ∇Mβ Kµν

∫
S1
xαxβxγxδxµxν dµ

= 8π
105 (trK∇α trK + 2 trK divK(eα, ·) + 2〈K(eα, ·),∇ trK〉

+ 4〈K(eα, ·), divK〉+ 2〈K,∇αK〉+ 4〈K,∇K(eα, ·)〉)

=: 8π
105Iα

2)

cβ
(
(dM [dV P 2]α)β, p

)
= −4

∫
S1

((
trS1 ∇MeβK

)
K(eα, ν) + P∇MeβK(eα, ν)

)
xβ dµ

= −4
∫
S1

((
tr∇MeβK −∇

M
eβ
K(ν, ν)

)
K(eα, ν)

+ (trK −K(ν, ν))∇MeβK(eα, ν)
)
xβ dµ
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∫
S1
−4 tr∇Mβ KK(eα, ν)xβ dµ = −4 trK∇Mβ Kβ,γ

∫
S1
xβxγ dµ

= −16π
3 tr∇Mβ KKαβ

= −16π
3 〈tr∇

M
· K,K(eα, ·)〉∫

S1
4∇Mβ K(ν, ν)K(eα, ν)xβ dµ = 4∇Mβ KγδKαε

∫
S1
xβxγxδxε dµ

= 16π
15

(
2〈divEK,K(eα, ·)〉+ 〈tr∇M· K,K(eα, ·)〉

)
∫
S1
−4 trK∇Mβ K(eα, ν)xβ dµ = −4 trK∇Mβ Kαγ

∫
S1
xβxγ dµ

= −16π
3 trK divEK(eα)∫

S1
4K(ν, ν)∇Mβ K(eα, ν)xβ dµ = 4Kγδ∇Mβ Kαε

∫
S1
xβxγxδxε dµ

= 16π
15

(
trK divEK(eα) + 2〈K,∇M· K(eα, ·)〉

)
3)

c(α,β,γ)
(
(dM [dV P 2]β)γ , p

)
= −4

∫
S1

(
(tr∇Mγ K −∇Mγ K(ν, ν))K(eβ, ν)

+(trK −K(ν, ν))∇Mγ K(eβ, ν)
)
xαxβxγ dµ

∫
S1
−4 tr∇Mγ KK(eβ, ν)xαxβxγ dµ = −4 tr∇Mγ KKβδ

∫
S1
xαxβxγxδ dµ

= −16π
15

(
trK tr∇Mα K + 2〈tr∇M· K,K(eα, ·)〉

)
∫
S1

4∇Mγ K(ν, ν)K(eβ, ν)xαxβxγ dµ = 2 8π
105Iα∫

S1
−4 trK∇Mγ K(eβ, ν)xαxβxγ dµ = −4 trK∇Mγ Kβδ

∫
S1
xαxβxγxδ dµ

= −16π
15

(
trK tr∇Mα K + 2 trK divEK(eα)

)
∫
S1

4K(ν, ν)∇Mγ K(eβ, ν)xαxβxγ dµ = 2 8π
105Iα

Adding all these terms up yields

Wα
p [P 2] = −8

5〈tr∇
M
· K,K(eα, ·)〉 −

8
5 trK divEK(eα) + 4 trK tr∇αK

− 16
5 〈K(eα, ·), divEK〉 −

16
5 〈K,∇

M
· K(eα, ·)K〉+ 4

5Iα,

= 4
5∂α

(
3 trK2 + |K|2

)
.
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Corollary 4.2.5. Using the the various integrals calculated in the proof above we find

Wα[trK2] = 6∂α trK2

Wα[K(ν, ν)2] = 2
5∂α

(
trK2 + 2|K|2

)
Wα[trKK(ν, ν)] = 2∂α trK2.

In particular, this allows us to determine functions L(x, ν) such that HL concentrates at
points with ∂α

(
Sc + trK2 − |K|2

)
= 0. For instance

L = −3
4P

2 + 2K(ν, ν)2,

L = −1
4 trK2 + 5

4K(ν, ν)2.

Moreover, we can determine the expansion of H on small spheres.

Corollary 4.2.6. Let Σ ⊂ M be a spherical surfaces, with |Σ| = 4πR2. Suppose Σ
is contained in a normal coordinate neighborhood Br(p) as in Lemma A.1.11 and that
‖ Å ‖2L2(Σ) ≤ C1rR

2 for a constant C1. Let HL be of Hawking type for an L ∈ C1, then
there is a constant r0 > 0 such that for all r ∈ (0, r0) we have the expansion∣∣∣∣HL[Σ]− 4π + 2π

3 R2 Scp−R2c(L, p)
∣∣∣∣ ≤ CR3.

Where C depends only on r0, C1, L and CB. Additionally, we calculate

c(trK2, p) = 4π trK2
p

c(K(ν, ν)2, p) = 4π
15
(
trK2

p + 2|Kp|2
)

c(trKK(ν, ν), p) = 4π
3 trK2

p .

Hence we obtain ∣∣∣∣H[Σ]− 4π + 2π
3 R2 Scp +2π

15R
2(3 trK2

p + |Kp|2)
∣∣∣∣ ≤ CR3

for the functional corresponding to the Hawking energy.

Proof. From [28, Theorem 5.1] we get the expansion∣∣∣∣W[Σ]− 4π + 2π
3 R2 Scp

∣∣∣∣ ≤ CR3.

Using the coordinates of Lemma A.1.11 and Lemma A.1.10 we have L[Σ] = R2
Ec(L, p) +

O(R3). This implies the expansion since R and RE are all comparable. The explicit
calculation of c is straightforward, using the results of Appendix C.2.

Corollary 4.2.7. Let L = α trK2 + βK(ν, ν)2 + γ trKK(ν, ν) for α, β, γ ∈ R, then we
have

Wp[L] = ∇M 3
2πc(L, p),

i.e. a concentration point of HL is a critical point of its second order expansion.

We would like to point out that we have checked the calculations in Theorem 4.2.4
and Corollary 4.2.6 using Mathematica 7, see Remark 4 in Appendix C.2.



Chapter 5

Foliations of Asymptotically
Schwarzschild Manifolds by
Hawking Type Surfaces

The goal of this chapter is to construct a foliation by spherical, area-constrained Hawking
type surfaces of the outer regions of asymptotically Schwarzschild manifolds. From the
perspective of general relativity these manifold represent isolated systems. Here the idea
is that in the absents of classical energy the spacetime should become asymptotically flat.
Foliations can be used to describe the asymptotic behavior of the ambient manifold and
provide a notion of center of mass.

The key step in constructing the foliation is to prove that the linearization of the Euler-
Lagrange equation 1.2.2 is invertible since this allows us to employ the implicit function
theorem in order to construct the foliation perturbatively from the known foliation of the
Schwarzschild space by the spheres SR(0). This is done in the beginning of Section 5.3.
The next two sections introduce the necessary notation and a priori estimates.

5.1 Notation and Existence of Minimizers

We work in the setting of asymptotically Schwarzschild manifolds as introduced in [30],
briefly recalling the notation and preliminary results here. Let gS be the (Euclidean)
Schwarzschild metric on R3 \{0}. It is conformally flat and can be written as gS = φ4gE
where gE is the Euclidean metric, φ = 1 + m

2r for a strictly positive mass parameter m.
In case we need to specify the mass we will also write gSm for gS We refer to the position
vector field by x, its norm is denoted by r = |x|E and we denote the radial vector field
by ρ = x

r . For a compact surface Σ ⊂ R3 we set rmin := minx∈Σ |x|E . We use the indices
S and E to refer to geometric quantities depending on gS or gE respectively. When we
compare Willmore functionals with respect to different metrics, we employ the notation
W[Σ, g] to specify the metric.

Definition 5.1.1 (see [30, Defintion 1]). A Riemannian manifold (M, g) is called (m,σ, η)–
asymptotically Schwarzschild if there is a compact K ⊂ M and a diffeomorphism x :
M\K → R3 \Bσ(0) such that in these coordinates we have the following estimate with
respect to gS .

sup
R3 \Bσ(0)

(
r2|g − gS |+ r3|∇ −∇S |+ r4|Ric−RicS |+ r5|∇Ric−∇S RicS |

)
≤ η

57
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Here the norms are taken with respect to gs, but the estimate implies that the norms with
respect to gS and g are equivalent with a factor depending only on (m,σ, η).

The region M\K ∼= R3 \Bσ(0) is called the asymptotically Schwarzschild end of M .

Lemma 5.1.2 (see [30, Lemma 1]).

1. The Ricci curvature of gS is given by

RicS = m

r3φ
−2
(
gE − 3ρ[ ⊗ ρ[

)
here ·[ is the musical isomorphism with respect to gE.

2. If Σ ⊂ R3 \{0} is a surface, then the following relations hold.

νS = φ−2νE

dµS = φ4dµE
ÅS = φ2 ÅE

HS = φ−2HE + 4φ−3∂νEφ

Lemma 5.1.3 (see [30, Lemma 2]). Let (M, g) be (m,σ, η)–asymptotically Schwarzschild.
Let Σ ⊂ Bσ(0) a surface and let µ and µS be the the measures on it induced by g and gS.
To compare the area elements write dµ−dµS = hdµ, then we have the following estimates.

r2|ν − νS | ≤ Cηr2|h| ≤ Cη

For the second fundamental form we find

|A−AS | ≤ Cη(r−3 + r−2|A|),
|∇A−∇AS | ≤ Cη(r−4 + r−3|A|+ r−2|∇A|).

The following lemma indirectly relates the different scales r2
min and |Σ|. It is a variant

of [19, Lemma 5.3].

Lemma 5.1.4 (see [30, Lemma 3]). For each α0 > 2 there exist constants r0(m,σ, η, α0) >
0 and C(m,σ, η, α0) > 0, such that for all α > α0 and for all surfaces Σ ⊂ R3 \Br0(0) for
which the divergence formula holds the following inequality is satisfied.∫

Σ
r−α dµ ≤ Crα−2

min W[Σ]

Proof. We apply the divergence formula to the scaled position vector field. To that end,
note that

divΣ(xr−α) = r−α divΣ x− αr−α−2g(xT , x),
g(xT , x) = |x|2g − g(x, ν)2,

and
|divΣ x− 2| ≤ Cr−1,

hence ∣∣∣∣∫
Σ

(2− α)r−α + αr−α−2g(x, ν)2 −Hr−αg(x, ν) dµ
∣∣∣∣ ≤ C ∫

Σ
r−α−1 dµ. (5.1.1)
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Now choose α = 2 to obtain∫
Σ
r−4g(x, ν)2 dµ ≤ C

∫
Σ
r−3 dµ+

∫
Σ
H2 + 1

4g(x, ν)2r−4 dµ,

and therefore ∫
Σ
r−4g(x, ν)2 dµ ≤ C

∫
Σ
r−3 +H2 dµ.

For α = 3 we find∫
Σ
r−3 dµ ≤ C

∫
Σ
r−4 + 3r−5g(x, ν)2 − r−3Hg(x, ν) dµ,

≤ Cr−1
min

∫
Σ
r−3 dµ+ Cr−1

min

∫
Σ
r−3 +H2 dµ,

and thus ∫
Σ
r−3 dµ ≤ Cr−1

min

∫
Σ
H2 dµ.

Inserting this back into (5.1.1)yields the claim for α > 2.∫
Σ
r−α dµ ≤ C

α− 2

∫
Σ
r−α−1 + αr−α−2g(x, ν)2 − r−α−1Hg(x, ν) dµ

≤ C

α− 2r
−1
min

∫
Σ
r−α dµ+ C

α− 2r
−α+2
min

∫
Σ
r−4g(x, ν)2 − r−3|H||g(x, ν)|dµ

≤ C

α− 2r
−1
min

∫
Σ
r−α dµ+ C

α− 2r
−α+2
min

∫
Σ
H2 dµ

Now we can relate the Willmore energy in the asymptotically Schwarzschild end of
(M, g) to the one in the Schwarzschild space and to the Euclidean one. Then next lemma
follows directly form Lemma 5.1.3.

Lemma 5.1.5 (see [30, Lemma 5]). Let (M, g) be (m,σ, η)–asymtotically Schwarzschild
then there exist constantsr0(m,σ, η) > 0 and C(m,σ, η) > 0 such that for every surface Σ
in R3 \Br0(0) we have

|W[Σ, g]−W[Σ, gS ]| ≤ Cηr−2
min

(
‖A‖2L2(Σ,g) + ηr−2

min‖A‖
2
L2(Σ,g)

)
∣∣∣‖ Å ‖2L2(Σ,g) − ‖ ÅE ‖2L2(Σ,gE)

∣∣∣ ≤ Cηr−2
min

(
‖ Å ‖2L2(Σ,g) + ‖H‖L2(Σ,g)‖ Å ‖L2(Σ,g)

+ηr−2
min‖H‖

2
L2(Σ,g)

)
.

In the next lemma we compute the expansion of the Willmore energy of round sphere
explicitly. This is used in Theorem 5.1.8 to compare the energy of a sequence minimizing
a Hawking type functionals to the energy of spheres in order to establish that the sequence
does not drift of to infinity. This in turn ensures the existence of minimizers.

Lemma 5.1.6. Consider (R3 \{0}, gS), then the Willmore energy of a surface Σ is given
by

W[Σ, gS ] =W[Σ, gE ]− 2m
∫

Σ
HE

〈x, νE〉E
r2(2r +m) dµE + 4m2

∫
Σ

〈x, νE〉2E
r4(2r +m)2 dµE .

For Σ = SR(a) we find the following expansions.
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1. For |a| → 0

W[SR(a), gS ] = 4π − 32πmR
(2R+m)2 +O(|a|2). (5.1.2)

2. For |a| → ∞, set |a| = r0 +R

W[SR(a), gS ] = 4π + 8πm2R4

5r6
0

+O(r7
0). (5.1.3)

3. Similarly, for |a| = r0 +R and R→ 0

W[SR(a), gS ] = 4π + 128πm2

5r2
0(2r0 +m)4R

4 +O(R5). (5.1.4)

Proof. The formula for the Willmore energy is a direct consequence of Lemma 5.1.2. The
expansions follow by straightforward calculation, see Lemma C.3.1.

The following lemma will be used to control the position of surfaces in R3 \Bσ.

Lemma 5.1.7. Let M be (m,σ, η)–asymptotically Schwarzschild. For a closed surface
Σ ⊂ M define Σσ := Σ ∩

(
R3 \Bσ

)
. There exists a constant C(m,σ, η) > 0 such that all

closed surfaces Σ with Σσ 6= ∅ satisfy

max
x∈Σσ

|x|E ≤ min
x∈Σσ

|x|E + C
(
|Σ|1/2W[Σ]1/2 + |Σ|

)
Proof. Lemma A.1.7 asserts

diamM (Σ) ≤ C(m,σ, η)
(
|Σ|1/2W[Σ]1/2 + |Σ|

)
,

and we can relate the diameter in M to the Euclidean one in R3 as follows.
Let x and y, be two distinct points in R3 \Bσ(0), let γ : [0, 1]→ R3 \Bσ(0) be a length

minimizing geodesic in M such that γ(0) = x, γ(1) = y. Then we have

dE(x, y) ≤ LE(γ) =
∫ 1

0

φ2

φ2

√
gE(γ′, γ′) ds

≤
∫ 1

0

√
gS(γ′, γ′) ds

≤
∫ 1

0
(1 + C

√
ησ−1)

√
g(γ′, γ′) ds

= CdM (x, y).

For a closed surface Σ ⊂ M such that Σσ 6= ∅, define rmax := maxx∈Σσ |x|E and rmin :=
minx∈Σσ |x|E . Let xmin and xmax be two points in Σσ such that |xmin|E = rmin and
|xmax|E = rmax. Let γ be a length minimizing geodesic in M from xmin to xmax. Let
x1 ∈ Bσ(0) be the first point where γ leaves R3 \Bσ(0) (if at all) and let x2 ∈ Bσ(0) be
the last point where γ reenters R3 \Bσ(0). Now we can estimate rmax.

rmax ≤ dE(xmin, xmax) + rmin

≤ dE(xmin, x1) + dE(xmax, x2) + 2σ + rmin

≤ CdM (xmin, x1) + CdM (xmax, x2) + rmin

≤ CdM (xmin, xmax) + rmin

≤ C diamM (Σ) + +rmin
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Now we are in the position to prove the existence of minimizers in asymptotically
Schwarzschild manifolds and to characterize them asymptotically.

Theorem 5.1.8. Let (M, g) be (m,σ, η)–asymptotically Schwarzschild, let H[Σ] =W[Σ]+
L[Σ] be a Hawing type functional and suppose L[Σ] =

∫
Σ L(x, ν) dµg with |L| ≤ CLr

−α,
α > 2, in R3 \Bσ(0).

1. If α > 3, then there exits a constant A0(CL,m, η, σ) > 0 such that for all A ≥ A0
there exists an area-constrained, H minimizing, haunted, branched, immersed bubble
tree ΣA with area |ΣA| = A.

2. Suppose there are constants r1 > 0, β ∈ (0, 4) and C̃L > 0 such that L[SR(a)] ≤
−C̃Lr−βmin for all SR(a) ⊂ R3 \Br1 with |a| > R. Then there exists an area-constrained
H minimizing haunted, branched, immersed bubble tree ΣA for any area A > 0.

3. There exists a constant r0(CL,m, σ, η) > σ such that any area-constrained H min-
imizer ΣA is an embedded sphere provided it is contained in R3 \Br0(0). Addi-
tionally, for every ε > 0 the there exits a constant r1(CL,m, σ, η) ≥ r0 such that
ΣA ⊂ R3 \Br1(0) satisfies

W[Σ] ≤ 4π + ε.

Proof. In order to apply the compactness result of Theorem 2.0.5 we need to show that
a minimizing sequence does not drift off to infinity, i.e. that it is contained in a compact
region of the ambient space. By Lemma 5.1.7 it is enough to obtain a bound on rmin.

Consider the spheres SR(a) ⊂ R3 \Bσ(0) with |a| → ∞. By Lemma 5.1.5 and 5.1.6, as
well as the requirement on L we see

β(H,M, 4πR2) ≤ lim
|a|→∞

W[SR(a), g] + L[SR(a)] = 4π.

Let Σk be a sequence of haunted, branched, immersed bubble trees with area A realizing
β(H,M,A). If the Σk ⊂ K, where K is compact such thatM\K=̃R3 \Bσ(0) we are done.
So suppose that Σk ⊂ R3 \Bσ(0) and that rk,min := infΣk |x|E diverges. We show that this
implies that the Σk have to be spheres and that H[Σk]→ 4π. Since the Σk are minimizing,
we have H[Σk] = β(H,M,A) + δk ≤ 4π + δk, where δk → 0 as k →∞ and hence

W[Σk, g] ≤ H[Σk]− L[Σk] ≤ 4π + Cδk

As we have argued in Theorem 2.0.5, we may assume all Σk are parametrized by the
same topological bubble tree S =

⋃
i S

i, φk(S) = Σk. If Si is not a ghost, then 0 <
W[φk|Si , g] ≤ W[Σk, g] ≤ 4π + δk. Integrating the Gauss equation over Σi

k = φk(Si) and
estimating the curvature terms yields that

‖ Åi
k ‖2L2(Σi

k
,g) ≤ Cδk + C(m, η)r−1

k,min ≤ Cδk.

Using Lemma 5.1.5 we see that

|W[Σi
k, g]−W[Σi

k, gS ]| ≤ Cδk,

‖ Åi
E,k ‖2L2(Σi

k
,gE) ≤ Cδk.

Therefore, Theorem A.1.8 implies

|W[Σi
k, gE ]− 4π| ≤ Cδk.
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Now, Lemma 5.1.6 shows that W[Σi
k, g] → 4π and hence H[Σi

k] → 4π. This means,
asymptotically there can be only one regular bubble without any ghosts and Lemma
A.1.17 implies that Σk has to be embedded. This discussion already proves assertion
number three.

Next consider a centered sphere SR(0). Since its Euclidean trace free second funda-
mental form vanishes, we infer the following from Lemma 5.1.5, provided rmin(m,σ, η) = R
is large enough

‖ Å ‖2L2(SR(0),g) ≤ CηR
−4W[SR(0), g],

W[SR(0), g] ≤ W[SR(0), gS ] + Cη2R−4.

From equation (5.1.2) we see that

H[SR(0)] ≤ 4π − 32πmR
(2R+m)2 + C(CL,m, η)(R−α+2 +R−4) < 4π,

provided R is large enough. As α > 3, this shows that the minimizing sequence cannot
drift off to infinity altogether.

For the second statement consider the off-center spheres SR(a) for |a|E = r0 + R,
r0(R,m, σ, η) ≥ r1. Their generalized Willmore energies can be estimated as follows.

H[SR(a)] =W[SR(a), g] + L[SR(a)]

≤ W[SR(a), gS ] + C(σ, η)η2r−4
0 − CLr

−β
0

≤ 4π − C̃Lr−β0 + C(σ, η)η2r−4
0

For r0(R, C̃L,m, σ, η) large enough we have H[SR(a)] < 4π, which implies again that the
minimizing sequence cannot drift off to infinity.

5.2 Integral Estimates
Let H[Σ] = W[Σ] +

∫
Σ L(x, ν) dµ be a Hawking type functional. Suppose L is smooth

and decays like |L(x, ν)| + |dV L(x, ν)| + r|dML(x, ν)| ≤ CLr
−α. We have the functional

related to the Hawking energy in mind, L = − trΣK
2. In this case K = O(r−2) and α = 4

is a natural assumption. We would like to perform a similar analysis as carried out in
[30], that is multiply the Euler–Lagrange equation by H−1 and integrate. But unlike in
the Willmore case we have to treat terms of the form r−αH−1. Therefore we first need
quantitative control over H−1. We proceed as we did for small surfaces in Section 4.1 in
order produce the integral and pointwise estimates. Due to the third assertion of Theorem
5.1.8 we will consider only critical surfaces, in the next two sections.

Lemma 5.2.1. Let Σ ⊂ R3 \Br0 be an area-constrained critical surface of H. Then there
is an r0 > 0 and a constant C > 0 depending on m, η and CL, such that the Lagrange
multiplier obeys

|λ| ≤ C

|Σ|
(
r−1

min + r−α+2
min

)
‖A‖2L2 + Cr−2

min|Σ|−1/2W[Σ]1/2.

Proof. The proof is analogous to Proposition 4.1.2(see also [29, Proposition 5.3]) where
we examined small surfaces. For any normal variation δf we have

δf H[Σ] = λδf A,
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and thus
|λ| =

∣∣∣∣∣δfW[Σ] + δf L[Σ]
2δf A[Σ]

∣∣∣∣∣ ,
provided δf A 6= 0. We choose f = g(x, ν), where x is the position vector field.

δf A[Σ] =
∫

Σ
g(x, ν)H dµ

=
∫

Σ
divΣ x dµ

= 2|Σ|+ |Σ|O(r−2
min)

≥ |Σ|

δf L[Σ] =
∫

Σ
fdML(ν)− dV L(∇Σf) + fLH dµ

≤ C
∫

Σ
r−α + r−α(r−1 + r|A|) + r−α+1H dµ

≤ Cr−α+2
min W[Σ] + C

∫
Σ
r−α + r−α+2|A|2 dµ

≤ Cr−α+2
min ‖A‖2L2

δfW[Σ] =
∫

Σ
H∆Σf + fH| Å |2 + fH Ric(ν, ν) dµ

Here we calculate ∆Σf more carefully as we need to cancel the term fH| Å |2. Introduce
normal coordinates and the ? notation, that is F ? G denotes a sum of contractions of F
and G. We proceed with calculation in local coordinates.

∇Σf i = γij∂jg(x, ν)

= γijg(∂j + xβ
∂φγ

∂yj
Γδβγeδ, ν) + γijg(x,∇Mν)

= γ−1 ? g ? x ? dφ ? Γ ? ν + γijA(xT , ∂j)
∆Σf = γ−1 ? g ? (dφ ? dφ ? Γ ? ν + x ? dφ ? dφ ? dΓ ? ν) + γ−1 ? g ? x ? dφ ? Γ ? A

+ γij∇Σ
i A(xT , ∂j) + γijA(∇Σ

i x
T , ∂j)(

∇Σ
i x

T
)l

= ∂ig

(
x,

∂φ

∂yk

)
γkl

= γklg

(
x,∇Mi

∂φ

∂yk

)
+ γklg

(
∇Mi x,

∂φ

∂yk

)
= −g(x, ν)γklAik + γklγki + γ−1 ? x ? dφ ? dφ ? Γ ? g

Moreover, the Codazzi equations imply

γij∇Σ
i A(xT , ∂j) = γ(∇ΣH,xT ) + Ric(xT , ν).

Thus we have

∆Σf = −g(x, ν)|A|2 +H + γ(∇ΣH,x) + Ric(xT , ν) +O(r−2) +A ? O(r−1).

Note that

2
∫

Σ
Hγ(∇ΣH,x) dµ =

∫
Σ

divΣH
2x−H2 divΣ x dµ

=
∫

Σ
H3g(x, ν)− 2H2 +H2O(r−2) dµ.
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Now we can compute the variation of W.

δfW[Σ] =
∫

Σ
H∆Σf + fH| Å |2 + fH Ric(ν, ν) dµ

=
∫

Σ
−g(x, ν)H|A|2 +H2 + 1

2H
3g(x, ν)−H2 + g(x, ν)H| Å |2 +H Ric(x, ν)

+H2O(r−2) +HO(r−2) +HA ∗O(r−1) dµ

=
∫

Σ
H Ric(x, ν) +H2O(r−2) +HO(r−2) +HA ∗O(r−1) dµ

≤ Cr−1
min‖A‖

2
L2 + Cr−2

min|Σ|1/2W[Σ]1/2

Theorem 5.2.2. There are positive constants ε, r0 and C(m,σ, η, CL) such that any
spherical surface Σ ⊂ R3 \Br0 with

1. W[Σ] ≤ 4π + ε and

2. Dλ(Σ) = 0 for a given λ

satisfies ∫
Σ
|∇2H|2 +H2|∇H|2 +H2|∇ Å |2 +H4| Å |2 dµ ≤ Cd. (5.2.1)

Here d := r−2α
min + r−6

min +
(
r−2

min + r−2α+4
min

)
|Σ|−2 + r−4

min|Σ|−1.

Proof. This proof proceeds along the same lines as the one of Theorem 4.1.3. First we
note that the integrated Gauss equation yields an estimate for Å.

‖ Å ‖2L2 = 2W[Σ]− 8π − 2
∫

Σ
ScM −2 RicM (ν, ν) dµ

≤ 2ε+ Cr−1
minW[Σ]

≤ Cε

Here we used the fact that the curvature is of order r−3 and employed Lemma 5.1.4. Recall
the Euler–Lagrange equation (1.2.2) satisfied by Σ.

∆H +H| Å |2 +H Ric(ν, ν) +HQ+ γ(Å, S) + 2λH + T = 0

Here Q, S and T depend on the normal of Σ and L. They scale like r−α, r−α and r−α−1

respectively. Multiply the equation by ∆H and integrate over Σ.∫
Σ

(∆H)2 dµ ≤
∫

Σ

1
8(∆H)2 + 8H2| Å |4 + C(r−3 + r−α + |λ|)|H∆H|

+ Cr−α| Å ||∆H|+ Cr−α−1|∆H|dµ

≤
∫

Σ

1
8(∆H)2 + 8H2| Å |4 + C(r−3 + r−α + |λ|)2H2 + 1

8(∆H)2

+ Cr−2α| Å |2 + 1
8(∆H)2 + Cr−2α−2 + 1

8(∆H)2 dµ

After absorbing we find ∫
Σ

(∆H)2 dµ ≤ Cd+ C

∫
Σ
H2| Å |4 dµ,
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Next we use the integrated Bochner identity for H, see A.1.12.∫
Σ
|∇2H|2 +H2|∇H|2 dµ =

∫
Σ

(∆H)2 + 1
2 |∇H|

2
(
| Å |2 − 1

2H
2 + ScM + RicM (ν, ν)

)
+H2|∇H|2 dµ

We may absorb a term and use integration by parts.∫
Σ
|∇H|2r−3 dµ =

∫
Σ
−r3H∆H + 3r−4Hγ(∇r,∇H) dµ

≤ Cr−6
min +

∫
Σ

(∆H)2 + 1
2H

2|∇H|2 dµ

Absorbing into the left-hand side yields∫
Σ
|∇2H|2 +H2|∇H|2 dµ ≤ Cr−6

min +
∫

Σ
C(∆H)2 + C|∇H|2| Å |2 dµ.

We continue by integrating Simons’ identity, see [51].

− Åij ∆ Åij +1
2H

2| Å |2 = −γ(Å,∇2H) + | Å |4 + | Å |2 Ric(ν, ν)

− Åij Åk
j Ricik−2γ(Å,∇ω),

where ω := RicM (ν, ·), multiply it by H2 and integrate over Σ. We integrate twice by
parts ∫

Σ
−H2 Åij ∆ Åij dµ =

∫
Σ
H2|∇ Å |2 +HAijγ(∇H,∇Aij) dµ∫

Σ
−H2γ(Å,∇2H − 2∇ω) dµ =

∫
Σ

2H Å(∇H,∇H − 2ω#)

+H2 divΣ Å(·,∇H − 2ω#) dµ

and continue with the following estimate.∫
Σ
H2|∇ Å |2 + 1

2H
4| Å |2 dµ ≤ 2

∫
Σ
|H|| Å ||∇H||∇ Å |+H2|∇ Å ||∇H|+ |H|| Å ||∇H|2

+ Cr−3(H2| Å |2 + |H|| Å ||∇H|+H2|∇ Å |)
+H2| Å |4 dµ

≤
∫

Σ

1
8H

2|∇ Å |2 + 8| Å |2|∇H|2

+ 1
8H

2|∇ Å |2 + 8H2|∇H|2 + |H|2|∇H|2 + | Å |2|∇H|2

+ Cr−6H2 +H2| Å |4 + | Å |2|∇H|2 + 1
8H

2|∇ Å |2

+H2| Å |4 dµ∫
Σ
H2|∇ Å |2 +H4| Å |2 dµ ≤ Cr−6

min + C

∫
Σ
| Å |2|∇H|2 +H2|∇H|2 +H2| Å |4 dµ

So far we have shown∫
Σ
|∇2H|2 +H2|∇H|2 +H2|∇ Å |2 +H4| Å |2 dµ ≤ Cr−6

min

+ C

∫
Σ

(∆H)2 + | Å |2|∇H|2 +H2| Å |4 dµ

≤ Cd+ C

∫
Σ
| Å |2|∇H|2 +H2| Å |4 dµ. (5.2.2)
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To deal with the last two terms we employ the Michael–Simon–Sobolev inequality, see
Lemma A.1.14 or [30, Proposition 1]. The next part works exactly as in case of small
surfaces, see (4.1.7) and above.∫

Σ
H2| Å |4 dµ ≤ C

∫
Σ
| Å |2 dµ

∫
Σ
| Å |2|∇H|2 + |H|2|∇ Å |2 +H4| Å |2 dµ∫

Σ
| Å |2|∇H|2 dµ ≤ C

∫
Σ
| Å |2 dµ

∫
Σ
|∇2H|2 +H2|∇H|2 dµ

+ C

(∫
Σ
|∇ Å |2 + |∇H|2 dµ

)2

Since ‖ Å ‖L2 is bounded by Cε, we may absorb all but the last two terms of the second
inequality. Due to the Codazzi equation ∇H = 2 div Å +2ω, we only need to find an
estimate for |∇ Å |2. To this end we integrate Simons’ identity over Σ.∫

Σ
|∇ Å |2 + 1

2H
2| Å |2 dµ ≤ C

∫
Σ
| Å ||∇2H|+ | Å |4 + r−6 + | Å |∇ω|dµ

≤ C(
∫

Σ
| Å ||∇2H|+ | Å |4 + r−6

+ | Å ||∇Ric |+ | Å ||A||Ric |dµ∫
Σ
|∇ Å |2 +H2| Å |2 dµ ≤ C

(
r−4

min + ‖ Å ‖L2‖∇2H‖L2 +
∫

Σ
| Å |4 dµ

)
(5.2.3)

The last term can be treated with the Michael–Simon–Sobolev inequality.∫
Σ
| Å |4 dµ ≤ C

(∫
Σ
| Å ||∇ Å |+H| Å |2 dµ

)2

≤ C‖ Å ‖L2

∫
Σ
|∇ Å |2 +H2| Å |2 dµ (5.2.4)

Finally we see that all terms in (5.2.2) except the constant one can be absorbed into the
left-hand side.

Corollary 5.2.3. Under the assumptions of Theorem 5.2.2 we have the following estimate.∫
Σ
| Å |2 dµ ≤ C(m, η,CL)|Σ|

(
r−4

min + |Σ|d
)

(5.2.5)

Proof. We start with the Michael-Simon-Sobolev inequality and carry on with (5.2.3) and
(5.2.4). ∫

Σ
| Å |2 dµ ≤ C|Σ|

∫
Σ
|∇ Å |2 +H2| Å |2 dµ

≤ |Σ|
(
r−4

min + ‖ Å ‖L2‖∇2H‖L2

)
≤ |Σ|

(
r−4

min + ‖ Å ‖L2d1/2
)

Solving the quadratic inequality yields the estimate.

We would like to use these estimates to produce a more quantitative estimate of ‖ Å ‖L2 ,
which would yield control of H in L∞. To achieve this, we need to be able to compare
the scales r2

min and |Σ|. Define the Euclidean radius and the Euclidean center of mass
of a closed surface Σ via |Σ|E =: 4πR2

E and aE := |Σ|−1
E

∫
Σ x dµE . As the next lemma

establishes, we need to control the ratio

τ := |aE |E
RE

.
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Lemma 5.2.4. Let ε ∈ (0, 1). There exist positive constants constants r0(m,σ, η, CL, ε),
C(m,σ, η, CL, ε) and a constant C1(m,σ, η, CL) > 0 such that for any surface Σ as in
Theorem 5.2.2 which satisfies

1. τ ≤ 1− ε and

2. |Σ| ≤ ε
16C1

r
min(3,α)
min

we have
C−1rmin ≤ RE ≤ Crmin.

Due to Lemma 5.1.3 and Lemma 5.1.2 this also implies that |Σ|and r2
min are uniformly

comparable.

Proof. We employ A.1.8 to relate Σ to an approximating sphere. Let ψ : SR(0) → Σ be
the map from that theorem and note that we can estimate ‖ ÅE ‖L2(Σ,gE) ≤ C‖ Å ‖L2(Σ,g)+
Cηr2

min. Let xmin ∈ Σ such that |xmin| = rmin and x̃min such that ψ(x̃min) = xmin. Then
the triangle inequality reveals

RE = |x̃min|E ≤ |ψ(x̃min)− (x̃min + a)|E + |aE |E + |ψ(x̃min)|E ,

≤ C1RE
(
|Σ|r−4

min + |Σ|2d
)1/2

+ CREηr
−2
min + |aE |E + rmin.

Rearranging shows

rmin ≥ RE(1− τ)− C1RE
(
|Σ|r−4

min + |Σ|2(r−6
min + r−2α

min ) + r−2
min + r−2α+4

min

)1/2
− CREηr−2

min,

≥ ε

2RE .

Estimating rmin from above is more straightforward.

rmin = |ψ(x̃min)|E ≤ |ψ(x̃min)− (x̃min + a)|E + |aE |E +RE

≤ RE(1 + τ) + 2C1RE
(
|Σ|2(r−6

min + r−2α
min ) + r−2

min + r−2α+4
min

)1/2

≤ 4RE

Definition 5.2.5. Let Σ be a surface in the asymptotically Schwarzschild end of M . As
before, define RE via |Σ|E = 4πR2

E and set

φ := 1 + m

2RE
,

RS := φ
2
RE ,

HS := φ
−2 2
RE
− φ−3 2m

R2
E

.

In corollary 4.1.4 we already detailed how to obtain L∞ bounds on H. Using (5.2.5)
and (5.2.1) we can prove an analogous estimate.

Proposition 5.2.6. Let Σ be as in Lemma 5.2.4. Then we have the following estimates
for a constant C(m,σ, η, CL).∫

Σ
| Å |2 dµ ≤

(
r−2

min + r−2α+4
min

)
(5.2.6)

‖H −HS‖L∞ ≤ C(m, η)r−2
min (5.2.7)

‖H − 2/RE‖L∞ ≤ Cr−2
min
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In particular, the mean curvature is positive and its inverse is bounded, provided rmin is
large enough.

‖H−1‖L∞ ≤ Crmin

Proof. The first estimates follows directly from (5.2.5) and Lemma 5.2.4.
For the second one we first estimate‖H − HS‖L2 like in [30, Proposition 7]; using

Theorem A.1.8 again as well as Lemma 5.1.3.

‖H −HS‖L2 ≤ C
(
‖H −HS‖L2

∥∥∥∥φ−2
(
HE −

2
RE

)∥∥∥∥
L2

+
∥∥∥∥ 2
RE

(φ−2 − φ−2)
∥∥∥∥
L2

+
∥∥∥∥2m
RE

(φ−3 − φ−3)
∥∥∥∥
L2

+
∥∥∥∥∥φ−3

(
2m
r2 gE(ρ, νE)− 2m

R2
E

)∥∥∥∥∥
L2

)
≤ C

(
‖ Å ‖L2 + r−1

min

)
≤ Cr−1

min

The L∞ estimate follows from Lemma A.1.15:

‖H −HS‖4L∞(Σ) ≤ ‖H −HS‖2L2(Σ)

∫
Σ
|∇2H|2 +H4(H −HS)2 dµ.

The first term has the right decay and the second one can be estimated as follows.∫
Σ
H4(H −HS)2 dµ ≤

∫
Σ

2H2(H −HS)4 + 2H2H
2
S(H −HS)2 dµ

≤
∫

Σ
4(H −HS)6 + 4H4

S(H −HS)2 + 8H2
S(H −HS)4 dµ

≤
(
C‖H −HS‖4L∞ +H

4
S‖H −HS‖2L2

)
After absorbing we get

‖H −HS‖4L∞ ≤ C(M,L)r−8
min.

The estimate on the inverse of the mean curvature in Proposition 5.2.6 allows to derive
additional integral and L∞ estimates. The following theorem combines results analogous
those in [30, Section 4 to 6].

Definition 5.2.7. In analogy to the definition of (m,σ, η)–asymptotic Schwarzschild man-
ifolds we introduce the following decay conditions for smooth L : TM → R. Let α and η
be positive, k ∈ N, we define L ∈ Okη(r−α) recursively. We say L ∈ O0

η(r−α) if in R3 \Bσ(0)
we have |L| ≤ ηr−α and L ∈ Ok+1

η (r−α) if |L| ≤ ηr−α, dML ∈ Okη(r−α−1), dV L ∈ Okη(r−α).

Theorem 5.2.8. For every positive m, η and σ there exits positive constants r0, ε0 and C,
depending only on (m, η, σ), such that if (M, g) is (m, η, σ)–asymptotically Schwarzschild
with | Sc | ≤ ηr−5

min and Σ ⊂ Br0 is spherical and has the following properties:

1. Σ satisfies (1.2.2) for λ > 0 and L ∈ O3
η(r−4)

2. |W[Σ]− 4π| ≤ ε0

3. there are ε ∈ (0, 1) and C > 0, s.t. τ ≤ 1− ε and |Σ| ≤ ε
16C1

r3
min;



5.2. INTEGRAL ESTIMATES 69

then Σ satisfies

τ ≤ C√ηr−1
min.

Moreover, we have the following estimates.

‖H −HS‖L∞ + ‖ Å ‖L∞ + rmin‖∇H‖L∞ ≤ C
√
ηr−3

min (5.2.8)
‖ν − φ−2ρ‖L∞ ≤ C

√
ηr−1

min (5.2.9)
‖ω‖L∞ + rmin‖∇ω‖L∞ ≤ C

√
ηr−4

min

‖λ+ Ric(ν, ν)‖L∞ + ‖Ric(ν, ν) + 2mR−3
S ‖L∞ ≤ C

√
ηr−4

min∫
Σ

|∆H|2

H2 + |∇A|2 + |∇ lnH|4 + |A|2| Å |2 dµ ≤ Cηr−6
min (5.2.10)

Proof. We present just the general idea of the proof. The calculations are completely
analogous to [30, Lemma 6 to Theorem 8] with minor variations to account for the terms
coming from L. Suppose for now that L = O3

η(r−α) for α > 3.
First, we derive integral estimates from the Euler–Lagrange equation and the Gauss

equation.

∫
Σ

|∆H|2

H2 + |∇A|2+|∇ lnH|4 + |A|2| Å |2 dµ

≤
∫

Σ
|ω|2 + (Ric(ν, ν) + λ)2 dµ+ Cη2r−2α+2

min∫
Σ
|∇ lnH|2 + | Å |2 dµ ≤ Cr2

min

∫
Σ
|ω|2 + (Ric(ν, ν) + λ)2 dµ+ Cη2r−2α+4

min

Using the explicit expression of RicS we find∣∣∣∣∣λ− 2m
R3
S

∣∣∣∣∣ ≤ C
∫

Σ
|ω|2 + (Ric(ν, ν) + λ)2 dµ

+ Cr−4
min

(
τ + rmin‖ Å ‖L2 + ηr−1

min + ηr−α+4
min

)
,

as well as

‖λ+ Ric(ν, ν)‖L2 ≤ Crmin
(
‖ω‖2L2 + ‖λ+ Ric(ν, ν)‖2L2

)
+ Cr−3

min

(
τ + rmin‖ Å ‖L2 +√ηr−1

min + ηr−α+4
min

)
.

The next step is to show the decay with respect to the Schwarzschild background is good
enough.

‖ν − φ−2ρ‖2L2 ≤ Cr2
min

(
τ2 + ‖ Å ‖2L2 + ηr−2

min

)
‖Ric(ν, ν)− φ−4 RicS(ρ, ρ)‖2L2 ≤ Cr−4

min

(
τ2 + ‖ Å ‖2L2 + ηr−2

min

)
‖ω‖2L2 ≤ Cr−4

min

(
τ2 + ‖ Å ‖2L2 + ηr−2

min

)
‖RicT −PSφ−2ρ RicS ‖2L2 ≤ Cr−4

min

(
τ2 + ‖ Å ‖2L2 + ηr−2

min

)
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Using these approximations and absorption we arrive at the following estimates.

‖λ+ Ric(ν, ν)‖L2 ≤ Cr−3
min

(
τ +√ηr−1

min + ηr−α+4
min

)
‖ω‖L2 ≤ Cr−2

min

(
τ +√ηr−1

min + ηr−α+2
min

)
‖∇ω‖L2 + ‖∇Ric(ν, ν)‖L2 ≤ Cr−3

min

(
τ +√ηr−1

min + ηr−α+2
min

)
(5.2.11)

‖∇ lnH‖L2 + ‖ Å ‖L2 ≤ Cr−1
min

(
τ +√ηr−1

min + ηr−α+3
min

)
∫

Σ

|∆H|2

H2 + |∇A|2+|∇ lnH|4 + |A|2| Å |2 dµ

≤ Cr−4
min

(
τ2 + ηr−2

min + η2r−2α+6
min

)
The L∞ estimates again follow from A.1.15.

‖H −HS‖L∞ + ‖ Å ‖L∞ + rmin‖∇H‖L∞ ≤ Cr−2
min

(
τ +√ηr−1

min + ηr−α+3
min

)
The final step is to show the decay of τ . This is done analogous to [30, Chapter 6], there
they perform an intricate expansion of the variation of W for which the variation of L is
a lower order term. For α = 4, the estimates above have the same decay as the ones in
[30], hence we obtain the same decay for τ as well.

Remark 3. Suppose L ∈ Oη(r−α) for α ∈ (3, 4). Based on the proof of Theorem 5.2.8 we
conjecture the decay τ ≤ C

√
ηr−βmin for a β ∈ (0, 1) and a corresponding one for the other

quantities.

Lemma 5.2.9. There exists a r0(m,σ, η) > 0 such that any closed surface Σ ⊂ R3 \Br0
satisfying

‖ν − φ−2ρ‖L∞(Σ) ≤ Cr−1
min

is a graph over S2
σ(0).

Proof. Let ρ = y
|y| , for y ∈ Σ and note that (5.2.9) and Lemma 5.1.3 imply

|ρT |2 = |ρ− 〈ρ, νE〉νE |2

= |1− gS(φ−2ρ, νE)2|
≤ Cr−1

min.

Consider f : Σ→ S : y 7→ y
|y|σ = ρσ and calculate

dfy(v) = σv

|y|
− σ

|y|3
〈y, v〉

= σ

|y|
(v − 〈ρ, v〉ρ)

(dfy)ji ≥
σ

|y|

(
δji − |ρ

T | − |〈ν, ei〉|
)

≥ σ

|y|

(
δji − Cr

−1/2
min

)
This means that f is regular and thus locally invertible. Consider the partition

S =
⋃̇

j∈N
Mj
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for Mj := {p ∈ S | |f−1(p)| = j}. All Mj are open as f is locally invertible and they
are closed as well, since Mj = S\

⋃̇
i∈N, i 6=jMj . Thus every Mj is either empty or all of

S. Therefore Σ is a 1−covering of S, and hence f is a diffeomorphism. We can write
every point y = ρ(y)r(y) ∈ Σ as y = p + u(p)ρ(p) = σ−1(σ + u)p for p = f(y) and
u(p) = r(f−1(p))− σ.

5.3 Foliation
In order to construct a foliation by critical surfaces via the implicit function theorem,
we need to show that the linearization of the generalized Willmore equation (1.2.2) is
invertible on critical surfaces. This is achieved in the same way as in [30]. In particular,
using the estimates of Theorem 5.2.8, we may cite their discussion of the Jacobi operator.

Let J := −∆−|A|2−Ric(ν, ν) and decomposeW 2,2(Σ) = V0⊕V1⊕V2 into L2 orthogonal
eigenspaces of J . Here V0 = span{ϕ0}, V1 = span{ϕ1, ϕ2, ϕ3} for ϕi eigenfunctions of J ,
and V2 the L2 orthogonal complement. For a function f the projections to Vi are denoted
by fi, i ∈ {0, 1, 2}. The eigenvalues of J are denoted by µi. The linearization of the
area-constrained Willmore operator LH + 1

2H
3 − 2λH is denoted by Wλ.

Lemma 5.3.1. Let Σ be as in Theorem 5.2.8. Write equation (1.2.2) as

∆H +H| Å |2 +H RicM (ν, ν) + γ(A,S) + 2λH + T = 0,

with S and T defined as

S := −2 HessV L− 2Lγ + 2dV L(ν)γ,
T := −2dML(ν)− 2 divΣ dV L.

and denote the linearization of γ(A,S) +T by EL then we have the following estimate for
all f ∈W 4,2(Σ). ∫

Σ
fELf dµ ≤ Cηr−4

min

(
r−2

min‖f‖
2
L2 + ‖∇f‖2L2

)
(5.3.1)

Proof. Calculate the variation of γ(A,S) + T in direction fν.

∂

∂s

∣∣∣∣
0
T (x, ν) = dmT (fν) + dV T (−∇f)

∂

∂s

∣∣∣∣
0
γ(A,S) = γ (Hess f, S) + γ(∇V−∇fS,A) + f

(
γ(∇Mν S,A)

−γ(S,A2) + γ(S,Rm(·, ν, ν, ·))
)

The estimate follow from Theorem 5.2.8 and the decay of L via integration by parts.

Proposition 5.3.2. Let Σ be as in Theorem 5.2.8. There exists η0 and r0 depending on
m and σ and ε such that the following estimate holds for all f ∈ V ⊥0 .∫

Σ
fEλf dµ ≥ 6m2r−6

min

∫
Σ
f2 dµ

Proof. In [30, Chapter 7] it is shown how to estimate ‖∇f1‖L2 by a constant times
r−2

min‖f1‖L2 and that Wλ obeys the estimate∫
Σ
fWλf dµ ≥ 12m2r−6

min‖f‖
2
L2 + 1

2r
−2
min‖∇f2‖2L2 .
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The arguments used there relay solely on the estimates in Theorem 5.2.8 and facts about
the eigenvalues of J . Hence we will use the results of [30, Chapter 7] here as well.

The estimate (5.3.1) shows that we can absorb part coming from EL.∫
Σ
fEλf dµ ≥ 12m2r−6

min‖f‖
2
L2 + 1

2r
−2
min‖∇f2‖2L2 − Cηr−4

min

(
r−2

min‖f‖
2
L2 + ‖∇f2‖2L2

)

In order to show that Eλ is invertible we need to have control over functions in V0.
The necessary results are collected in the next proposition. It summarizes the lemmas 20
to 24 of [30] and can be proven in a completely analogous fashion, as we have the same
decay estimates in Theorem 5.2.8 and EL is a lower order perturbation.

Proposition 5.3.3. Let Σ be as in Theorem 5.2.8. For a function u ∈ L1(Σ) denote its
mean by u = |Σ|−1 ∫

Σ udµ.

1. Let u ∈W 4,2(Σ) then we have the following estimates.∣∣∣µ0 + |A|2 + Ric(ν, ν)
∣∣∣ ≤ C√ηr−4

min (5.3.2)

‖∇2u‖2L2(Σ) + r−2
min‖∇u‖

2
L2(Σ) ≤ Cr

−4
min‖u‖

2
L2(Σ) + Crmin

∣∣∣∣∫
Σ
uEλudµ

∣∣∣∣ (5.3.3)

2. If, additionally, u ∈ C∞(Σ) is a solution to Ju = µ0u, then we find

‖u− u‖2L2(Σ) + r2
min‖∇u‖2L2(Σ) + r6

min‖∇u‖2L2(Σ) dµ ≤ C√ηr−2
min‖u‖

2
L2(Σ), (5.3.4)

‖u− u‖L∞(Σ) ≤ Cη1/4r−2
min‖u‖L2(Σ). (5.3.5)

3. Let δ > 0 and let u ∈ W 4,2(Σ) be a solution to Eλu = f with
∫

Σ(f − f0)2 dµ ≤
δr−12

min ‖u‖2L2.

‖u− u0‖L2(Σ) ≤ C
(√

δ +√η + r−1
min

)
‖u‖L2 . (5.3.6)

4. There exists a δ0 > 0 such that for all δ ∈ (0, δ0) and all solutions u ∈ W 4,2(Σ) of
Eλu = f with

∫
Σ(u− u0)f dµ ≤ δr−6

min‖u‖L2(Σ)‖u− u0‖L2(Σ) we have

‖u− u0‖L∞(Σ) ≤ C
(√

δ + η1/4 + r−1
min

)
|u0|. (5.3.7)

Now we are in the position to discuss the invertibility of Eλ.

Theorem 5.3.4. There exists positive constants δ0 > 0, η0 and r0 such that for all
η ∈ (0, η0) and all surface Σ as in Theorem 5.2.8 the operator

Eλ : W 4,2(Σ) ⊂ L2(Σ)→ L2(Σ)

is invertible and satisfies the following estimates.

‖u‖L2(Σ) ≤
r6

min
δ0
‖Eλ‖L2(Σ)

r−1
min‖∇u‖L2(Σ) + ‖∇2u‖L2(Σ) ≤ C(m,σ, η)r

4
min
δ0
‖Eλu‖L2
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Proof. We argue by contradiction. Assume that Eλ is not injective, then there is a u ∈
W 4,2(Σ)\{0} such that Eλu = 0 and ‖u‖L2(Σ) = 1. In particular we have

sup
v∈L2(Σ), ‖v‖L2=1

∣∣∣∣∫
Σ
vEλu

∣∣∣∣ ≤ δr−6
min (5.3.8)

for any δ ∈ (0, δ0). Choose v = u−u0
‖u−u0‖L2(Σ)

, δ and η small, and rmin large enough then

(5.3.7) implies u0 6= 0, and we may assume u0 > 0, as well as u0
2 ≤ u(x) ≤ 2u0 for all

x ∈ Σ. By orthogonality and (5.3.6) we also have 1
2 ≤ ‖u0‖L2(Σ) ≤ 1. This yields

1
2 |Σ|

−1/2 ≤ |Σ|−1/2‖u0‖L2 ≤ 2u0 ≤ 2|Σ|−1/2‖u0‖L2 ≤ 2|Σ|−1/2. (5.3.9)

Now we show the decay of ‖H‖L2 which leads to a contradiction to the assumption
|W[Σ] − 4π| ≤ ε0. Progressing as in the proof of [30, Theorem 11], using the estimates
above, Proposition 5.3.3, Theorem 5.2.8 and equation (5.2.11), it can be shown that

−
∫

Σ
uH2 Ric(ν, ν) dµ ≤ C

∣∣∣∣∫
Σ
Wλudµ

∣∣∣∣+ Cr−5
min.

Hence we get

2mr−3
min

∫
Σ
H2 dµ ≤ −

∫
Σ
H2 Ric(ν, ν) dµ+ Cr−4

min

≤ − 1
2u0

∫
Σ
uH2 Ric(ν, ν) dµ+ Cr−4

min

≤ Crmin

∣∣∣∣∫
Σ
Wλudµ

∣∣∣∣+ Cr−4
min

≤ Cr−4
min + Crmin

∣∣∣∣∫
Σ
ELudµ

∣∣∣∣
≤ Cr−4

min,

where we used the expansion of Ric(ν, ν), Lemma 5.3.1 and the estimates in (5.3.9). This
establishes the injectivity. Since Eλ is an elliptic operator it is Fredholm and by the
Fredholm alternative, it is surjective as well. The L2 estimate follows from the negation
of (5.3.8) and (5.3.3) this yields the W 2,2 estimate.

The following theorem asserts that the round spheres in Schwarzschild space are the
unique critical surfaces in the class we consider. They will serve as the starting point for
the perturbation in Theorem 5.3.6

Theorem 5.3.5 (see [30, Theorem 12]). For all m > 0 there exit constants r0 > 0, τ0 > 0
and ε0 > 0 with the following properties.
Assume that (M, g) = (R3 \{0}, gSm) and let Σ be a surface satisfying (1.2.2), for λ > 0
and L = 0, with

1.
∣∣∫

ΣH
2 dµ− 16π

∣∣ ≤ ε0,
2. rmin > r0,

3. τ ≤ τ0 and

4. Re ≤ ε0r2
min.
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Then Σ = SRe(0).

Now we are in the position to prove the three main statements of this chapter. The idea
of their proofs is the same as the ones for [30, Theorem 13, 14 and 15] which in turn are
modeled after [38, Section 6]. In Theorem 5.3.6 we construct a deformation of the spheres
SR(0) in (R3 \Bσ(0), gS), for large radii, to Hawking type surfaces in (R3 \Bσ(0), g). In
Theorem 5.3.7 we show that this deformation already yields a foliation and Theorem 5.3.8
asserts that it is unique in its class.

Theorem 5.3.6. For all m > 0 and σ > 0 there exists an η0 > 0, λ0 > 0 and a C > 0
depending only on m and σ with the following properties.

Assume (M, g) is a (m, η, σ)–asymptotically Schwarzschild manifold and is L : TM →
R smooth and of order O4

η(r−4), satisfying

1. η < η0,

2. |Sc | ≤ ηr−5.

Additionally, suppose that we have g ∈ C4,α(R3 \Bσ(0), gS) and L ∈ C4,α(R3 \Bσ(0), gS)
with bounds on the norms that depend only on (m,σ, η0), then for all 0 < λ < λ0 there
exits a surface Σλ which solves (1.2.2) for L and a given λ.

Moreover, let gt = (1− t)gS + tg and Lt = tL then there exists a differentiable defor-
mation G : S2 × (0, λ0)× [0, 1]→M such that

1. D(λ, gt, Lt)(G(S2, λ, t)) = 0 for all λ ∈ (0, λ0) and t ∈ [0, 1],

2. G(S2, λ, 0) = S2
r(λ)(0),

3. G(S2, λ, 1) = Σλ.

Proof. For δ0 ∈ (0, 1) and t ∈ [−δ0, 1 + δ0] define gt = (1 − t)gS + tg as well as Lt = tL.
Choose δ0 so small that gt is (m,σ, η0)–asymptotically Schwarzschild. We introduce δ0 to
ensure that g and gS are not a boundary cases of gt.

A calculation reveals that Sr solves (1.2.2) for λ(r) = 2m
r3
(
1 + m

2r
)−6. For large r this is

invertible, hence for any small enough λ there exits a r(λ) such that Sr(λ)(0) solves (1.2.2)
for that λ. This yields an upper bound for λ0. Furthermore, we define the following
conditions.

A1)
∣∣∫

ΣH
2 dµ− 16π

∣∣ ≤ ε0
A2) τ ≤ τ0

A3) |Σ| ≤ ε0r3
min

Here τ0 and ε0 are chosen such that we can apply the results of this section. If Σ satisfies
(1.2.2) and A1)–A3) we gather from Lemma 5.2.4, Proposition 5.2.6, Theorem 5.2.8 that
the following conditions hold.

B1)
∣∣∣H −HS

∣∣∣ ≤ C√η0r
−3
min

B2) τ ≤ C√η0r
−1
min

B3) C−1rmin ≤ RE ≤ Crmin
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In this case Lemma 5.2.9 implies that Σ is a graph over Sσ(0). Further, we may assume
that η0 and rmin are such that the conditions B1)–B3) imply Theorem 5.3.4, provided Σ
satisfies (1.2.2).

For a graphical surface Σ = φ(Sσ), we may regard the operator Dλ,g,L as an operator
on the graph function. Provided Σ is as in Theorem 5.3.4, it also allows us to see Eλ as
an invertible operator on C4,α(Sσ, gS) satisfying the estimate

‖u‖C4,α(S,gS) ≤ C(m, η0, σ, α)r
p
min
δ0
‖Eλ‖C0,α(S,gS)

for a positive p. First, switch the metric in the estimate of Theorem 5.3.4 to gS and pull
it back to S to obtain a W 2,2(S, φ∗gS) estimate.

Using the position estimate in Theorem A.1.8 and the estimate on τ in Theorem 5.2.8
we control φ. The estimate on the normal in (5.2.9) controls dφ. Thus we may switch
from φ∗gS to gS and obtain

‖u‖W 2,2(S,gS) ≤ C(m,σ, η0)r
p
min
δ0
‖Eλu‖L2(S,gS),

for a positive p. The Sobolev embedding implies ‖u‖C0,α(S,gS) ≤ C(S, gS)‖u‖W 2,2(S,gS) and
the Schauder estimates for Eλ assert

‖u‖C4,α(S,gS) ≤ CS(Eλ, α, S, gS)
(
‖u‖C0,α(S,gS) + ‖Eλu‖C0,α(S,gS)

)
.

The constant CS depends on Eλ only through a bound of the C0,α norms of its coefficients,
which in turn only depends on (m,σ, η0) by our assumptions on g and L.

Define the function space

Xt = {u ∈ C4,α(S) | rmin > 2r0, B1), B2), and B3) hold for Graph(u) and gt}.

For λ1 ∈ (0, λ0) and a smooth curve

κ : [0, 1]→ (λ1, λ0)× [0, 1]
s 7→ (λ(s), t(s))

with t(0) = 0 and t(1) = 1 define

Iκ :=
{
s ∈ [0, 1]

∣∣∣ ∃u ∈ Xt(s)
2 such that Ds(u) := D(λ(s), gt(s), Lt(s))(u) = 0

}
.

Now we show that Iκ = [0, 1], the graph function corresponding to t = 1 will describe the
sought after surface. We choose λ0 so small that for all λ ∈ (0, λ0) the Sr(λ)(0) are in X0,
hence 0 ∈ Iκ, and it is enough to show that Iκ is open and closed.

To show that Iκ is open, fix (λ2, t0) = (λ(s0), t(s0)) ∈ (λ1, λ0) × [0, 1] and consider
a solution u0 ∈ C4,α(S) to Dλ2,t0 u0 := D(λ2, gt0 , Lt0)(u0) = 0 and set φ0 = idS +u0ρ.
There is constant c(u0) > 0 such that φ̃f = φ0 + fν is a normal variation of φ0, for any
f ∈ C4,α(S), ‖f‖C0 ≤ c. Define Y := {f ∈ C4,α | ‖f‖C0 ≤ c} and

F : Y × (0, λ0)× (−δ0, 1]→ C0,α(S)
(f, λ, t) 7→ Dλ,t(φ̃f )

By the choice of (λ2, t0) we have F (0, λ2, t0) = 0 as well as dF(0,λ2,t0)(f, 0, 0) = Eλ2,t0f
and we know from Theorem 5.3.4 that Eλ2,t0 is invertible, hence we can apply the implicit
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function theorem to F . There exits a δ > 0 and a differentiable map ξ : (λ2 − δ, λ2 + δ)×
(t0 − δ, t0 + δ)→ C4,α(S), such that ξ(λ2, t0) = 0 and

Dλ,t(φ̃ξ(λ,t)) = F (ξ(λ, t), λ, t) = 0 (5.3.10)

for all (λ, t) ∈ (λ2 − δ, λ2 + δ)× (t0 − δ, t0 + δ).
Now we consider ξ̃ := ξ ◦ κ : (s0 − δ̃, s0 + δ̃) → C4,α, for an appropriate δ̃. Since

ξ(λ, t) is C4,α close to 0 we can use the conditions B1)–B3) for φ0 to see that φ̃ξ̃(s) satisfies
A1)–A3) for all s ∈ (s0 − δ̃, s0 + δ̃); where we decrease the δ̃ if necessary. This implies
that φ̃ξ(s)(S) is graphical with a graph function ũs ∈ Xt(s) for all s ∈ (s0 − δ̃, s0 + δ̃), and
hence Iκ is open.

To show that Iκ is closed, let {si} be a sequence in Iκ converging to s. Then the
sequence {gt(si)} a converges smoothly to gt(s). Moreover, there is a sequence of functions
ui ∈ Xt(si)

2 which is uniformly bounded in W 4,2(Sσ(0)).
The bounds on the ui follows from the position estimate in Theorem A.1.8, the estimate

on τ(ui) in Theorem 5.2.8 and a bound RE,i ≤ Cλ
−1/3
1 from Lemma 5.2.1. The gradient

estimate follows from the estimate on the normal in (5.2.9) since it can be expressed as

νi = −∇ui + (1 + u/σ) ρ∣∣∣|∇ui|2 + (1 + ui/σ)2
∣∣∣1/2 .

The estimates on the mean curvature and its derivatives in (5.2.8) and (5.2.10) together
with elliptic regularity theory imply bounds on the higher derivatives of ui. Thus we may
assume that ui converges to a function u weakly in W 4,2, strongly in W 3,2 and in C2,α.
These three kinds of convergence imply that u solves D(λ(s), t(s))(u) = 0 weakly. By
the regularity theory for generalized Willmore equations we know that u is smooth. As
the conditions B1)–B3) hold along the sequence ui the C2,α convergence implies that u
satisfies A1)–A3) and we conclude u ∈ Xt(s).

Theorem 5.3.7. There exits a constant r0 > 0 such that the family of surfaces {Σλ}(0,λ0)
constructed in Theorem 5.3.6 form a foliation of M \Br0(0).

Moreover, the Hawking type functional is strictly decreasing along the foliation.

Proof. Consider the map G : S × (0, λ0) × [0, 1] → M from Theorem 5.3.6. From the
construction of Σλ we know that G is differentiable in λ. First we show that αλ(x, t) :=
g
(
∂G
∂λ (x, λ, t), νλ(x, t)

)
is non-zero everywhere, as this implies that G(·, ·, t) is a local dif-

feomorphism for all t ∈ [0, 1].
To this end take a λ1 ∈ (0, λ0) and consider the curve λ(s) = (1− s)λ1 + sλ2. We can

regard the family of surfaces Σλ(s) as a variation of Σλ1 with normal variational vector
field αλνλ. Let G⊥ be that normal variation and calculate

Eλ(s)αλ(s)(λ1 − λ0) = d

dt
Dλ(s)(F⊥(·, λ(s)))− 2H d

ds
λ(s)

= −2H(λ1 − λ0).

This shows that αλ solves Eλαλ = −2H.
Analogous to the proof of [30, Theorem 15], this allows us to prove the estimate

∫
Σλ

(αλ − (αλ)0)H dµ ≤ Cη1/4

r6
min
‖αλ‖L2(Σλ)‖αλ − (αλ)0 ‖L2(Σλ).
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Now estimate (5.3.7) implies that αλ(s) is non-zero everywhere, for all s ∈ (0, 1), since α
cannot be identically 0, due to the linearity of Eλ.

Furthermore, we know that all the surfaces G(S, λ, t) are graphical over S. Thus we
have

G(x, λ, t) = u(x, λ, t)ρ(x)

and
αλ = du

dλ
g(ρ, νλ).

Now αλ(x, t) is continuous in t and the expansion (5.1.2) of the Willmore functional
in R3 \{0}, gS) shows that αλ(x, 0) = du

dλ(x, λ, 0) is negative. Thus α is negative for all
(x, λ, t) ∈ S × (0, λ0)× [0, 1]. Together with the estimate on the normal (5.2.9) this shows
that u(x, λ, t) is strictly decreasing in λ, and hence bijective as a map

u(x, ·, t) : (0, λ0)→ (u(x, λ0, t),∞).

This implies that G(·, ·, 1) : S × (0, λ0)→ R3 \Ωλ0 is bijective, where Ωλ0 is the closure of
the region bounded by G(S, λ0, 1). This in turn shows that Σλ is a foliation.

To see that HL(Σλ) is strictly decreasing in λ, simply calculate

d

dλ
HL[Σλ] = λ

∫
Σλ
αH dµ < 0.

Theorem 5.3.8. The surfaces Σλ constructed in Theorem 5.3.6 and therefore the foliation
of Theorem 5.3.7 are unique in the following sense.

There exits positive constants η0, λ0 and r0 such that any two surfaces Σ1 and Σ2 in
R3 \Br0 satisfying B1)− B3) and solving D(λ, g, L)(Σ) = 0 for L ∈ O4

η(r−4), η ∈ (0, η0),
and λ ∈ (0, λ0) have to agree.

Proof. Let Σ1 and Σ2 be as above. Consider the curve κ : [0, 1] → (0, λ0) × [0, 1 + δ0),
κ(t) = (λ, t), along with gt = (1− t)gS + tg and Lt = tL for a small δ0 > 0. Starting from
each Σi, i ∈ {1, 2}, we construct deformations Fi : S2 × (0, 1 + δ0) → M as in Theorem
5.3.6 such that Fi(S2, 1) = Σi and such that Si = F (S2, 0) solve Dλ,gS ,0(Si) = 0 as well as
satisfy B1) − B3). These surfaces are centered constant mean curvature spheres by [30,
Theorem 12] (see also Theorem 5.3.5 above) and they are unique by [19, Section 5]. Since
the deformations are locally constructed via the implicit function theorem which asserts
uniqueness, and since the C4,α estimate on Eλ is uniform in the proof of Theorem 5.3.6
the deformations Fi agree.
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Appendix A

Bounded Geometry and Surfaces

In this section we will briefly introduce bounded geometry, as presented in [28] and [29].
For a more comprehensive treatment see for instance [9, Chapter 2].

Definition A.1.1. Let (M, g) be a complete Riemannian manifold with injectivity radius
rinj(M, g, p) at p ∈M and Riemannian curvature tensor Rm. We say M has CB bounded
geometry if there exists a constant CB > 0 such that for each p ∈M we have

rinj(M, g, p) ≥ C−1
B

and
|Rm |+ |∇Rm | ≤ CB.

We may combine the well known results on normal coordinates with the uniform bound
on the injectivity radius to obtain the following lemma.

Lemma A.1.2 (cf. [28, Section 2.1]). Let (M, g) be a manifold of CB bounded geometry,
let Br(y) be the Euclidean ball at y ∈ TpM of radius r and Br(p) the geodesic ball at
p ∈ M with radius r. There exists constants h0 and r0, depending only on CB, such that
in normal coordinates expp : Br0(0)→ Br0(p) the metric satisfies

g = gE + h,

where gE is the Euclidean metric and h obeys

sup
Br0 (0)

(
|x|2|h|+ |x||∇Eh|+

∣∣∣∣(∇E)2
h

∣∣∣∣) ≤ h0.

Here x is the position vector field in Br(0), | · | is the Euclidean norm and ∇E is the
Euclidean connection.

Next we consider small surfaces (Σ, γ) that are isometrically immersed in a three
dimensional, CB bounded manifold (M, g). That is we deal with closed surfaces contained
in geodesic balls Σ ⊂ Br0(y) for some point y ∈ M and r0 ≤ min(rinj, 1). With our
previous result in mind, we regard them as immersed in Br0(0) equipped with the metric
g = gE + h as above. We fix this setting for now, unless stated otherwise. Additionally,
we will denote all geometric quantities computed with respect to the Euclidean metric by
an index E.
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Lemma A.1.3 (see [28, Lemma 2.1]). There exists a constant C, depending only on r0
and h0, such that for all surfaces Σ ⊂ Br(0) = Br, r ≤ r0, we have

|γ − γE |E ≤ C|x|2E
|
√
|det γ| −

√
| det γE || ≤ C

√
det γE |x|2E

|
√
|det γ| −

√
| det γE || ≤ C

√
det γ|x|2E

|ν − νE | ≤ C|x|2E
|A−AE |E ≤ C(|x|E + |x|2E |AE |E)

Proof. The first claim is obvious since γ is the restriction of g. For the second one we need
to calculate the determinant of γ = γE + η, with η = h|Σ. Using the estimate on h and
the expansion of the determinant we have that

| det γ − det γE | = | det γE
[
tr((γE)−1h) +O(|x|4E)|

]
≤ C det(γE)|x|2E

and hence ∣∣∣√det γ −
√

det γE
∣∣∣ ≤ |det γ − det γE |√

det γ +
√

det γE

≤ C det(γE)|x|2E√
det γ +

√
det γE

≤ C
√

det γE |x|2E .

To get the estimate on normal vectors, we first note that the projection to the tangent
space of Σ is small. Let {ei} be a local frame of the tangent space of Σ. We have
g(ei, ν) = 0 = gE(ei, νE) and hence

|gE(ei, ν − νE)| = |gE(ei, ν)|
= |h(ei, ν)|
≤ C|x|2E .

Next we consider the projection of ν − νE in the νE direction, but we expand ν − νE in
the basis {ei} ∪ ν.

gE(νE , ν)− 1 = gE(νE , ν − νE)
= g(ν − νE , ν)gE(νE , ν) +O(|x|4E)
= gE(νE , ν)− gE(νE , ν)2 +O(|x|2E)

This yields

|gE(νE , ν)2 − 1| = O(|x|2E).

Since the normal vector depends continuously on the metric, we may assume that gE(νE , ν)
is positive. Hence we have

|gE(νE , ν − νE)| = |gE(νE , ν)− 1|,
≤ |gE(νE , ν)− 1||gE(νE , ν) + 1|,
= O(|x|2E)
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The last computation is straightforward. We denote by {yα} the normal coordinates on
(Br(0), gE) and recall that the Christoffel symbols are basically a linear combination of
the first derivatives of the metric.

|Aij − (AE)ij | = |gE(∇Ei ej , νE)− g(∇iej , ν)|
≤ |gE(∇Ei ej −∇iej , νE)|+ |gE(∇iej , νE − ν)|+ |h(∇iej , ν)|

≤ |gE(eαi e
β
j Γγαβ∂γ , ν)|+ C|x|2E |Aij |

≤ C|x|E + C|x|2E |Aij |

Using this to estimate Aij again yields

|Aij − (AE)ij | ≤ C|x|E + C|x|2E |(AE)ij |.

Definition A.1.4. We define the radius R of Σ with respect to γ by the relation |Σ| =:
4πR2. Analogously, the corresponding Euclidean radius RE is given by |Σ|E =: 4πR2

E ,
where |Σ|E :=

∫
Σ dµγE .

Corollary A.1.5 (cf. [28, Lemma 2.5]). In the setting of Lemma A.1.3 the following
estimates hold.

1.

||Σ| − |Σ|E | ≤ Cr2|Σ|
||Σ| − |Σ|E | ≤ Cr2|Σ|E
|R−RE | ≤ Cr2R

|R−RE | ≤ Cr2RE

In particular, the areas |Σ| and |Σ|E are comparable, as are the corresponding radii
R and RE.

2.

|W[Σ, g]−W[Σ, gE ]| ≤ C(CB)r2
(
|Σ|+W[Σ, γ] + r2‖ Å ‖2L2(Σ,γ)

)
‖ ÅE ‖2L2(Σ,γE) ≤ C(CB)‖ Å ‖2L2(Σ,γ) + Cr4W[Σ, g]

Lemma A.1.6 (see [28, Lemma 2.2]). There exists 0 < r1 ≤ r0 and a purely numerical
constant C such that for all Σ ⊂ Br, r ≤ r1, we have

|Σ| ≤ Cr2W[Σ].

Lemma A.1.7 (see [29, Lemma 2.5]). There exists a constant C, depending only on CB,
such that all connected surfaces Σ ⊂M obey

diamM (Σ) ≤ C
(
|Σ|1/2W[Σ]1/2 + |Σ|

)
.

Clearly, the previous two lemmas also hold for stratified surfaces if we apply them to
every component.

In Section 4.2 it is necessary to approximate a surfaces by a spheres, hence we state a
scaled version of the results of De Lellis and Müller on that topic together with an estimate
on the normal vectors.
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Theorem A.1.8 (cf [5, Theorem 1.1] and [6, Theorem 1.2]). Let Σ ⊂ R3 be a surfaces
with induced metric γE and ‖ ÅE ‖2L2(Σ,γE) < 8π and consider its Euclidean radius RE as
well as its Euclidean center of gravity aE := |Σ|−1

E

∫
Σ x dµγE . Then there exists a universal

constant C and a conformal map ψ : S := S2
RE

(aE) → Σ with the following properties.
Let σ be the round metric on S, νS its unit normal vector field and let α be the conformal
factor of ψ, i.e. ψ∗γE = α2σ. Then the following estimates hold.

‖AE −RE id‖L2(Σ,γE) ≤ C‖ ÅE ‖L2(Σ,γE)∥∥∥∥HE −
2
RE

∥∥∥∥
L2(Σ,γE)

≤ C‖ ÅE ‖L2(Σ,γE)

‖ψ − idS ‖L2(S) ≤ CR2
E‖ ÅE ‖L2(Σ,γE)

‖ψ − idS ‖L∞(S) ≤ CRE‖ ÅE ‖L2(Σ,γE)

‖dψ − idTS ‖L2(S) ≤ CRE‖ ÅE ‖L2(Σ,γE)

‖α− 1‖L∞(S) ≤ C‖ ÅE ‖L2(Σ,γE)

Corollary A.1.9. Assume additionally that ‖ ÅE ‖L2(Σ,γE) is so small that ‖α−1‖L∞(S) ≤
1/2. Then there is a universal constant C such that

‖νS − νE ◦ ψ‖L2(S) ≤ CRE‖ ÅE ‖L2(Σ,γE).

Proof. Let {ei} be a local orthonormal frame on S and define {fi := dψ(ei)}, an orthogonal
frame on Σ. Further, denote by g the Euclidean metric on R3, by ∧ the wedge product
and by ∗g the Hodge star operator induced by g and the orientation {ei} ∪ νS . Then,
locally, we may express the normal vectors as

νS = ∗g (e1 ∧ e2)

νE = ∗g (f1 ∧ f2)
| ∗g (f1 ∧ f2) |g

= ∗g (f1 ∧ f2)
α2 .

This allows us to derive pointwise estimates.

|νS − νE |g =
∣∣∣∣e1 ∧ e2 −

1
α2 f1 ∧ f2

∣∣∣∣
g

≤
∣∣∣∣1− 1

α2

∣∣∣∣
g

+ 1
α2 |e1 ∧ e2 − e1 ∧ f2|g + |e1 ∧ f2 − f1 ∧ f2|g

≤
∣∣∣∣1− 1

α2

∣∣∣∣
g

+ C

( 1
α2 + 1

α

)
|dψ − id |g

Here C is a numerical constant. The supremum estimate on α implies that 1/α ≤ 2 and
that ∣∣∣∣ 1

α2 − 1
∣∣∣∣ ≤ 2C‖ ÅE ‖L2(Σ,γE).

Combining these two estimates and integrating yields the claim.

We may combine the results of Lemma A.1.3, Theorem A.1.8 and the previous corollary
in order to approximate a small surface (Σ, γ) with (S, σ).
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Corollary A.1.10. Let Σ ⊂ Br0 be a small surface, and assume that ‖ ÅE ‖L(Σ,γE) ≤ 8π is
small enough that corollary A.1.9 holds. Assume further that H−1 and H−1

E are uniformly
bounded. Then we have the following estimates for a constant C dependent only on CB.

|dµγ − dµσ| ≤ C
(
r2 + ‖ ÅE ‖L2(Σ,γE)

)
‖ν ◦ ψ − νS‖L2(S,σ) ≤ C

(
r2RE +RE‖ ÅE ‖L2(Σ,γE)

)
‖H−1 −RE/2‖L2(Σ,γE) ≤ C

(
sup

Σ

r

HHE

(
1 + r2‖AE‖2L2(Σ,γE)

)
+ sup

Σ

RE
HE
‖ ÅE ‖L2(Σ,γE)

)
Moreover, we may transport any bounded Lipschitz function F : R3×R3 → R from Σ
to S. ∣∣∣∣∫

Σ
F (y, ν)dµγ −

∫
S
F (x, νS)dµσ

∣∣∣∣ ≤ C1R
2
E

(
r2 + ‖ ÅE ‖L2(Σ,γE)

)
Here C1 is a constant that depends on CB and F .

It is possible to choose normal coordinates of (M, g) well suited for a given closed
surface Σ.

Lemma A.1.11 (see [39, Lemma 3.1]). Let Σ ⊂ M be a surface with extrinsic diameter
d such that 2d ≤ inj(M, g). Then there exists a point p0 ∈ M with dist(p0,Σ) ≤ d and
such that in normal coordinates ψ centered at p0 we have that

a = 1
|Σ|

∫
ψ(Σ)

y dµg = 0

and

|aE |E = 1
|Σ|E

∣∣∣∣∣
∫
ψ(Σ)

y dµE

∣∣∣∣∣
E

≤ C(CB)d3.

Additionally, if Σ obeys ‖ ÅE ‖2L2(Σ,γE) ≤ 8π, then we have

max
x∈Σ
|x|E ≤ C(CB)RE .

We close the Chapter by recalling several useful lemmas for deriving Integral estimates.

Lemma A.1.12 (The Bochner identity). Let (M, g) be a Riemannian manifold and u ∈
C∞(M), then we have

1
2∆|∇u|2 = |∇2u|2 + g(∇u,∇∆u) + Ric(∇u,∇u),

where ∇2u denote the Hessian of u.
If M is compact and without boundary or u has compact support away from the bound-

ary, we may integrate the above relation to obtain∫
M
|∇2u|2 dµ =

∫
M

(∆u)2 − Ric(∇u,∇u) dµ.

Additionally, if M is a surface isometrically immersed in a three dimensional manifold
N , we may use the Gauss equation to infer∫

M
|∇2u|2 dµ =

∫
M

(∆u)2 + |∇u|2(1
2 | Å |

2 − 1
4H

2 − 1
2 ScN + RicN (ν, ν)) dµ.
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Th following two lemma are variants of the Michael–Simon–Sobolev inequality for per-
turbed metrics, see [40] or [7, Section 3.5] the Euclidean version. See also [19, Proposition
5.4]

Lemma A.1.13. Let g = gE + h, |h| ≤ |x|2h0, be given on Bρ. Then there exists a
0 < r0 ≤ ρ and a constant C(r0, h0) such that for all closed surfaces Σ ⊂ Br0 with
H ∈ L2(Σ) and all f ∈ C∞(Σ) we have(∫

Σ
f2 dµg

)2
≤ C

∫
Σ
|∇f |+ |Hf | dµg.

Lemma A.1.14. Let (M, g) be (m,σ, η)– asymptotically Schwarzschild. Then there exits
constants r0 > 0 and C depending on (m,σ, η) such that for all closed surfaces Σ ⊂ R3 \Br0
with H ∈ L2(Σ) and all f ∈ C∞(Σ) we have(∫

Σ
f2 dµg

)2
≤ C

∫
Σ
|∇f |+ |Hf | dµg.

The next two lemma are a consequence of the Michael–Simon–Sobolev inequality. See
[27, Theorem 5.6] and [26, Lemma 2.8] for the proof in the Euclidean case. Proving the
statement with the perturbed background metric just requires minor changes.

Lemma A.1.15. Let g = gE + h, |h| ≤ |x|2h0, be given on Bρ. Then there exists a
0 < r0 ≤ ρ and a constant C(r0, h0) such that for all closed surfaces Σ ⊂ Br0 with
H ∈ L2(Σ) and all smooth forms φ we have

‖φ‖4L∞(Σ) ≤ C‖φ‖
2
L2(Σ,g)

∫
Σ
|∇2φ|2g + |H|4|φ|2g dµg.

Lemma A.1.16. Let (M, g) be (m,σ, η)– asymptotically Schwarzschild. Then there exits
constants r0 > 0 and C depending on (m,σ, η) such that for all closed surfaces Σ ⊂ R3 \Br0
with H ∈ L2(Σ) and all smooth forms φ we have

‖φ‖4L∞(Σ) ≤ C‖φ‖
2
L2(Σ,g)

∫
Σ
|∇2φ|2g + |H|4|φ|2g dµg.

The final lemma is perhaps the most useful tool to show that a given surface has to
be embedded. It follows from Simons monotonicity formula, see [25, Appendix A] for a
discussion.

Lemma A.1.17 (Li–Yau inequality; see [34]). Let φ : S → Σ ⊂ R3 be a branched,
immersed stratified surface with mean curvature H ∈ L2(Σ). Denote by θ2(Σ, p) the
density of Σ at p, i.e. θ2(Σ, p) = #φ−1(p), then we have

θ2(Σ, p) ≤ W[Σ]
4π .



Appendix B

Vector Potentials

In this chapter we briefly present the existence and regularity of certain systems of partial
differential equations of first order which we will use to construct potentials of generalized
Willmore immersions. These results can be found in the appendix of [43].
Let γji ∈

(
C0 ∩W 1,2) (C) for i, j ∈ {1, ..., n} with supp γji ⊂ B2(0). For any U ∈

L1
loc(C,Rn) and {bi}ni=1 the standard basis of Rn define the differential operator

DzU := ∂z U +
n∑
k=1

γjiU
ibj

in the distributional sense.

Lemma B.1.1 (see [43, Lemma A.1]). Let Y ∈
(
L1 +H−1) (C,Rn) with Im(DzY ) ∈(

L1 +H−1) (C,Rn). There is an ε0 > 0 such that for all ε ∈ (0, ε0) and γik satisfying
‖γik‖L∞ ≤ ε there exists a unique U ∈ L2,∞(D,Rn) with Im(U) ∈W 1,(2∞)(D,Rn) solving{

DzU = Y in D
Im(U) = 0 on ∂ D

.

Moreover, we have the estimate

‖U‖L2,∞ + ‖∇ Im(U)‖L2,∞ ≤ C (‖Y ‖L1+H−1 + ‖ Im(DzY )‖L+H−1) .

Lemma B.1.2 (see [43, Lemma A.2]). Let Y ∈
(
L1 ∩ L2,∞) (C,Rn) with Im(DzY ) ∈ Lq

for some 1 < q < 2. There is an ε0 > 0 such that for all ε ∈ (0, ε0) and γik satisfying
‖γik‖L∞ ≤ ε there exists a unique U ∈W 1,(2,∞)(D,Rn) with Im(U) ∈W 2,q(D,Rn) solving{

DzU = Y in D
Im(U) = 0 on ∂ D

Moreover, we have the estimate

‖U‖W 1,(2,∞) + ‖∇2 Im(U)‖Lq ≤ C (‖Y ‖L1∩L2,∞ + ‖ Im(DzY )‖Lq) .
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Appendix C

Useful Calculations

C.2 Integrals Over the Sphere

Consider the 2-sphere S := S2
1(0) in R3 and let {xα} be the standard Euclidean coordinates

on it. We aim the calculate integrals of the form∫
S
xα1 ... xαn dµS ,

where n is an integer up to 6. If n is an odd number, the integral always vanishes.
Since we treat the integral in spherical coordinates we state relevant trigonometric

identities to facilitate the calculation.

Lemma C.2.1. Let a, b ∈ R, then the following identities hold.

• 2 cos(a) sin(b) = sin(a+ b)− sin(a− b)

• 2 cos(a) cos(b) = cos(a+ b) + cos(a− b)

• 2 sin(a) sin(b) = − cos(a+ b) + cos(a− b)

In particular, we have

• 2 cos(a)2 = cos(2a) + 1 and

• 2 sin(a)2 = − cos(2a) + 1

Moreover, the substitution u(x) = cosx, du
dx = − sin x will be very useful.

We will always arrange our coordinates {x = sin θ cosφ, y = sin θ sinφ, z = cos θ},
φ ∈ (0, 2π), θ ∈ (0, π), such that the coordinate in the integrand with the highest exponent
is given by z, the second highest by x and the third by y. In assuming this we may break
the orientation but it irrelevant for these integrals. Moreover, we will number the cases
by the triple (a, b, c), where a, b, c denote the exponents of x, y, z respectively.

(0, 0, 2) ∫ 2π

0

∫ π

0
cos θ2 sin θ dφdθ = 2π

∫ 1

−1
u2 du

= 4
3π
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(1, 0, 1) ∫ 2π

0

∫ π

0
cos θ sin θ2 cosφdφdθ = 0

(0, 0, 4) ∫ 2π

0

∫ π

0
cos θ4 sin θ dφdθ = 2π

∫ 1

−1
u4 du

= 4
5π

(1, 0, 3) ∫ 2π

0

∫ π

0
cos θ3 sin θ2 cosφdφdθ = 0

(2, 0, 2) ∫ 2π

0

∫ π

0
cos θ2 sin θ3 cosφ2 dφdθ = π

∫ π

0
cos θ2 sin θ − cos θ4 sin θ dθ

= π

(2
3 −

2
5

)
= 4

15π

(1, 1, 2) ∫ 2π

0

∫ π

0
cos θ2 sin θ3 cosφ sinφdφdθ = 4

15

∫ 2π

0
sin 2φdφ

= 0

(0, 0, 6) ∫ 2π

0

∫ π

0
cos θ6 sin θ dφdθ = 2π

∫ 1

−1
u6 du

= 4
7π

(1, 0, 5) ∫ 2π

0

∫ π

0
cos θ5 sin θ cosφdφdθ = 0

(2, 0, 4) ∫ 2π

0

∫ π

0
cos θ4 sin θ3 cosφ2 dφdθ = π

∫ π

0
cos θ4 sin θ − cos θ6 sin θ dθ

= π

(2
5 −

2
7

)
= 4

35π
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(1, 1, 4) ∫ 2π

0

∫ π

0
cos θ4 sin θ2 cosφ sinφdφdθ = 4

35

∫ 2π

0
sin 2φdφ

= 0

(3, 0, 3) Consider ∫ 2π

0
cosφ3 dφ = 1

2

∫ 2π

0
cos 2φ cosφ+ cosφdφ

= 1
4

∫ 2π

0
cos 3φ+ cosφ+ 2 cosφdφ

= 0

This leads to ∫ 2π

0

∫ π

0
cos θ3 sin θ4 cosφ3 dφdθ = 0

(2, 1, 3) Consider ∫ 2π

0
cosφ2 sinφdφ = 1

2

∫ 2π

0
cos 2φ sinφ+ sinφdφ

= 1
4

∫ 2π

0
sin 3φ− sinφ+ 2 sinφdφ

= 0

This leads to ∫ 2π

0

∫ π

0
cos θ3 sin θ4 cosφ2 sinφdφdθ = 0

(2, 2, 2) Consider ∫ 2π

0
cosφ2 sinφ2 dφ =

∫ 2π

0
cosφ2 − cosφ4 dφ

= π − 1
4

∫ 2π

0
cos(2φ)2 − cos 2φ+ 1 dφ

= π

4

This leads to∫ 2π

0

∫ π

0
cos θ2 sin θ5 cosφ2 sinφ2 dφdθ = π

4

∫ π

0
cos θ2 sin θ3 − cos θ4 sin θ3 dθ

= π

4

∫ π

0
cos θ2 sin θ − 2 cos θ4 sin θ + cos θ6 sin θ dθ

= π

4

(2
3 −

4
5 + 2

7

)
= 4

105π
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Lemma C.2.2. We may condense these calculations to the following three formulas, em-
ploying the Kronecker delta.∫

S
xαxβ dµ = 4π

3 δαβ∫
S
xαxβxγxδ dµ = 4π

15 (δαβδγδ + δαγδβδ + δαδδβγ)∫
S
xαxβxγxδxεxρ dµ = 4π

105(δαβδγδδερ + δαβδγεδδρ + δαβδγρδεδ

+ δαγδβδδερ + δαγδβεδδρ + δαγδβρδεδ

+ δαδδγβδερ + δαδδγεδβρ + δαδδγρδεβ

+ δαεδγδδβρ + δαεδγβδδρ + δαεδγρδβδ

+ δαρδγδδβε + δαρδγβδδε + δαρδγεδβδ)

Remark 4. We checked the calculations in the proof of Theorem 4.2.4 using the following
code for Mathematica 7 by calculating (4.2.4) for L = −P 2 directly. Here U represents
∇K.

K = {{K11, K21, K31}, {K21, K22, K32}, {K31, K32, K33}};
U1 = {{U111, U121, U131}, {U121, U221, U321}, {U131, U321, U331}};
U2 = {{U112, U122, U132}, {U122, U222, U322}, {U132, U322, U332}};
U3 = {{U113, U123, U133}, {U123, U223, U323}, {U133, U323, U333}};
b = {b1, b2, b3};
x1 = Cos[phi] Sin[theta];
x2 = Sin[phi] Sin[theta];
x3 = Cos[theta];
x = {x1, x2, x3};

bT[x] = b - b.x x; (* tangential projection of b*)
P0[x] = Tr[K] - x.K.x; (* P evaluated at 0 *)
U[x, x, x] = {x.U1.x, x.U2.x, x.U3.x}.x;
Ub[b, x, x] = {b.U1.x, b.U2.x, b.U3.x}.x; (* nabla_x K (x,b)*)
UU[bT[x], x, x] = bT[x].U1.x*x1 + bT[x].U2.x*x2 + bT[x].U3.x*x3;
trU[x] = {Tr[U1] , Tr[U2], Tr[U3]}.x;
P[x] = P0[x] + trU[x] - U[x, x, x];

I1 = Integrate[(P [x] (bT[x].K.x + UU[bT[x], x, x])) Sin[theta], {theta, 0,
Pi}, {phi, 0, 2 Pi}]

I2 = Integrate[(b.x/2 P0[x] (trU[x] - U[x, x, x])) Sin[theta], {theta, 0,
Pi}, {phi, 0, 2 Pi}]

I3 = Integrate[(P[x]^2 b.x/2) Sin[theta], {theta, 0, Pi}, {phi, 0,
2 Pi}]

FullSimplify[I1+I2+I3]

The result of the last line yields 〈b,W 〉 up to a constant.
To support Corollary 4.2.6 we also calculate the following with the same variables as

above.

Integrate[(x.K.x )^2 Sin[theta], {theta, 0, Pi}, {phi, 0, 2 Pi}]
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Integrate[x.K.x Sin[theta], {theta, 0, Pi}, {phi, 0, 2 Pi}]
Integrate[(P0[x] )^2 Sin[theta], {theta, 0, Pi}, {phi, 0, 2 Pi}]

C.3 Expansion of the Willmore Functional

In Section 5.1 we postponed the proof of the following lemma.

Lemma C.3.1. Consider (R3 \{0}, gS), then the Willmore energy of an embedded surface
is given by

W[Σ, gS ] =W[Σ, gE ]− 2m
∫

Σ
HE

〈x, νE〉E
r2(2r +m) dµE + 4m2

∫
Σ

〈x, νE〉2E
r4(2r +m)2 dµE .

Moreover, for Σ = SR(a) we find the following expansions.

1. For |a| → 0

W[SR(a), gS ] = 4π − 32πmR
(2R+m)2 +O(|a|2).

2. For |a| → ∞, set |a| = r0 +R

W[SR(a), gS ] = 4π + 8πm2R4

5r6
0

+O(r7
0).

3. Similarly, for |a| = r0 +R and R→ 0

W[SR(a), gS ] = 4π + 128πm2

5r2
0(2r0 +m)4R

4 +O(R5).

Proof. The formula for the Willmore energy is a direct consequence of the formulas for
the mean curvature HS = φ−2HE + 4φ−3∂νEφ, ∂νEφ = − m

2r3 〈x, νE〉E and the measure
dµS = φ4dµE .

The expansions follow by straightforward calculation. For any sphere SR(a) the Eu-
clidean mean curvature is HE = 2/R, hence we need to calculate

I :=
∫
SR(a)

〈x, νE〉E
r2(2r +m) dµE

II :=
∫
SR(a)

〈x, νE〉2E
r4(2r +m)2 dµE .

We parametrize SR(a) as x = a + Rx̃, where x̃ ∈ S1(0). Of course we have x̃ = νE(x).
Then we introduce spherical coordinates such that 〈a, νE〉E = |a| cos θ and abbreviate
α = |a|2 +R2.

I = R2
∫ π

0

∫ 2π

0

|a| cos θ +R

(α+ 2R|a| cos θ)(2(α+ 2R|a| cos θ)1/2 +m)
sin θ dφdθ

II = R2
∫ π

0

∫ 2π

0

|a2| cos2 θ + 2|a|R cos θ +R2

(α+ 2R|a| cos θ)2(2(α+ 2R|a| cos θ)1/2 +m)2 sin θ dφdθ.
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Substituting y = cos θ yields

I = 2πR2
∫ 1

−1

|a|y +R

(α+ 2R|a|y)(2(α+ 2R|a|y)1/2 +m)
dy

II = 2πR2
∫ 1

−1

|a2|y2 + 2|a|Ry +R2

(α+ 2R|a|y)2(2(α+ 2R|a|y)1/2 +m)2 dy.

If |a| = 0 we obtain

I = 4πR
2R+m

II = 4π
(2R+m)2 ,

which is consistent with the expansion at |a| = 0.
If |a| 6= 0 then we substitute z = α+ 2|a|Ry.

I = π

2|a|

∫ (R+|a|)2

(R−|a|)2

z +R2 − |a|2

z(2
√
z +m) dz

II = π

4R|a|

∫ (R+|a|)2

(R−|a|)2

z2 + 2(R2 − |a|2)z + (R2 − |a|2)2

z2(2
√
z +m)2 dz

The integration is not quite obvious but still elementary. We obtain

I = π

2|a|

[
|a|+R− ||a| −R| − m

2 ln
(2(|a|+R) +m

2||a| −R|+m

)
+

2(R2 − a2)
m

(
ln
( |a|+R

||a| −R|

)
− ln

(2(|a|+R) +m

2||a| −R|+m

))]
,

II = π

4R|a|
[
A+ 2(R2 − |a|2)B + (R2 − |a|2)2C

]
,

where

A = 1
2

(
m

2(R+ |a|) +m
− m

2|R− |a||+m
+ ln

(2(|a|+R) +m

2||a| −R|+m

))
B = 2

m2

(
m

2(R+ |a|) +m
− m

2|R− |a||+m
− ln

(2(|a|+R) +m

2||a| −R|+m

)
+ ln

( |a|+R

||a| −R|

))
C = 1

m4

( 8m
2(R+ |a|) +m

− 8m
2|R− |a||+m

+ 8m
R+ |a| −

8m
|R− |a||

− m2

(R+ |a|)2 + m2

(R− |a|)2 − 24 ln
(2(|a|+R) +m

2||a| −R|+m

)
+ 24 ln

( |a|+R

||a| −R|

))

The expansions follow after a long and tedious calculation best left to a computer algebra
system. We used Mathematica 7 to obtain the formulas in the statement, see the code
below.

I1[a, R, m] = - 2 Pi m/(R a)(2 a - m/2 Log[(2(a + R) + m)/(2(R - a) +m)]
+ 2/m (a^2 - R^2) ( Log[(2 (a + R) + m)/(2 (R - a) + m)]
- Log[(R + a)/(R - a)]))

A[a, R, m] = 1/2 (m/(m + 2 (R + a)) - m/(2 (R - a) + m)
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+ Log[(2 (a + R) + m)/(2 (R - a) + m)])

B[a, R, m] = 2/m^2 (m/(m + 2 (R + a)) - m/(2 (R - a) + m)
- Log[(2 (a + R) + m)/(2 (R - a) + m)]
+ Log[(R + a)/(R - a)])

C[a, R, m] = 1/m^4 (8 m (1/(m + 2 (R + a)) - 1/(2 (R - a) + m)
+ 1/(R + a) -1/(R - a))- m^2/(R + a)^2
+ m^2/(R - a)^2-24 Log[(2 (a + R)+ m)/(2 (R - a)+ m)]
+24 Log[(R + a)/(R - a)])

I2[a, R, m] = Pi m^2/(R a) (A[a, R, m] + 2 (R^2 - a^2) B[a, R, m]
+ ( R^2 - a^2)^2 C[a, R, m])

Series[I1[a, R, m] + I2[a, R, m], {a, 0, 3}]
Series[I1[r0, R, m] + I2[r0, R, m], {r0, Infinity, 6}]
Series[I1[r0, R, m] + I2[r0, R, m], {R, 0, 4}]
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