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Summary 

Understanding how organisms adapt to their local environment is a major focus of evolutionary 

biology. Local adaptation occurs when the forces of divergent natural selection are strong 

enough compared to the action of other evolutionary forces. An improved understanding of the 

genetic basis of local adaptation can inform about the evolutionary processes in populations 

and is of major importance because of its relevance to altered selection pressures due to climate 

change. So far, most insights have been gained by studying model organisms, but our 

understanding about the genetic basis of local adaptation in wild populations of species with 

little genomic resources is still limited.  

With the work presented in this thesis I therefore set out to provide insights into the genetic 

basis of local adaptation in populations of two voles species: the common vole (Microtus 

arvalis) and the bank vole (Myodes glareolus). Both voles species are small mammals, they 

have a high evolutionary potential compared to their dispersal capabilities and are thus likely 

to show genetic responses to local conditions, moreover, they have a wide distribution in which 

they experience a broad range of different environmental conditions, this makes them an ideal 

species to study local adaptation.  

The first study focused on producing a novel mitochondrial genome to facilitate further research 

in M. arvalis. To this end, I generated the first mitochondrial genome of M. arvalis using 

shotgun sequencing and an iterative mapping approach. This was subsequently used in a 

phylogenetic analysis that produced novel insights into the phylogenetic relationships of the 

Arvicolinae.  

The following two studies then focused on the genetic basis of local adaptation using ddRAD-

sequencing data and genome scan methods. The first of these involved sequencing the genomic 

DNA of individuals from three low-altitude and three high-altitude M. arvalis study sites in the 

Swiss Alps. High-altitude environments with their low temperatures and low levels of oxygen 

(hypoxia) pose considerable challenges for small mammals. With their small body size and 

proportional large body surface they have to sustain high rates of aerobic metabolism to support 

thermogenesis and locomotion, which can be restricted with only limited levels of oxygen 

available. To generate insights into high-altitude adaptation I identified a large number of single 
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nucleotide polymorphisms (SNPs). These data were first used to identify high levels of 

differentiation between study sites and a clear pattern of population structure, in line with a 

signal of isolation by distance. Using genome scan methods, I then identified signals of 

selection associated with differences in altitude in genes with functions related to oxygen 

transport into tissue and genes related to aerobic metabolic pathways. This indicates that 

hypoxia is an important selection pressure driving local adaptation at high altitude in M. arvalis. 

A number of these genes were linked with high-altitude adaptation in other species before, 

which lead to the suggestion that high-altitude populations of several species have evolved in a 

similar manner as a response to the unique conditions at high altitude 

 

The next study also involved the genetic basis of local adaptation, here I provided insights into 

climate-related adaptation in M. glareolus across its European distribution. Climate is an 

important environmental factor affecting the physiology of all organisms. In this study I 

identified a large number of SNPs in individuals from twelve M. glareolus populations 

distributed across Europe. I used these, to first establish that populations are highly 

differentiated and found a strong pattern of population structure with signal of isolation by 

distance. I then employed genome scan methods to identify candidate loci showing signals of 

selection associated with climate, with a particular emphasis on polygenic loci. A multivariate 

analysis was used to determine that temperature was the most important climate variable 

responsible for adaptive genetic variation among all variables tested. By using novel methods 

and genome annotation of related species I identified the function of genes of candidate loci. 

This showed that genes under selection have functions related to energy homeostasis and 

immune processes. Suggesting that M. glareolus populations have evolved in response to local 

temperature and specific local pathogenic selection pressures.  

 

The studies presented in this thesis provide evidence for the genetic basis of local adaptation in 

two vole species across different environmental gradients, suggesting that the identified genes 

are involved in local adaptation. This demonstrates that with the help of novel methods the 

study of wild populations, which often have little genomic resources available, can provide 

unique insights into evolutionary processes.
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Zusammenfassung (German summary) 

Ein Schwerpunkt der Evolutionsbiologie besteht darin, zu verstehen, wie sich Organismen an 

ihre lokale Umgebung anpassen. Lokale Anpassung tritt ein, wenn die Kräfte der 

divergierenden natürlichen Selektion im Vergleich zu anderen evolutionären Kräften stark 

genug sind. Ein verbessertes Verständnis der genetischen Grundlagen der lokalen Anpassung 

kann Informationen über die Evolutionsprozesse in Populationen liefern und ist durch seine 

Relevanz für durch den Klimawandel bedingte veränderte Selektionsdrücke von großer 

Bedeutung. Bisher wurden die meisten Erkenntnisse durch Untersuchungen an 

Modellorganismen gewonnen. Jedoch ist das Verständnis der genetischen Grundlagen der 

lokalen Anpassung in Wildpopulationen von Arten mit geringen genomischen Ressourcen noch 

immer begrenzt. 

 

Mit den in dieser Doktorarbeit vorgestellten Untersuchungen war es daher mein Ziel, Einblicke 

in die genetischen Grundlagen der lokalen Anpassung in Populationen von zwei 

Wühlmausarten zu geben: der Feldmaus (Microtus arvalis) und der Rötelmaus (Myodes 

glareolus). Bei beiden handelt es sich um kleine Säugetiere mit einem, im Vergleich zu ihrer 

Ausbreitungsfähigkeit, hohen Evolutionspotential. Daher ist anzunehmen, dass sie genetische 

Reaktionen auf lokale Bedingungen zeigen. Hinzu kommt, dass sie aufgrund ihrer großen 

Verbreitung ein großes Spektrum an verschiedenen Umweltbedingungen erfahren, was sie zu 

einer idealen Spezies, für die Untersuchung lokaler Anpassung macht. 

 

Die erste Studie dieser Arbeit konzentrierte sich auf die Erstellung eines bisher nicht 

verfügbaren mitochondriellen Genoms, um die weitere Forschung an M. arvalis zu erleichtern. 

Dies wurde mittels Shotgun-Sequenzierung und eines iterativen Kartierungsansatzes erreicht. 

Anschließend wurde es in einer phylogenetischen Analyse verwendet, die neue Erkenntnisse 

über die phylogenetischen Beziehungen der Arvicolinae lieferte. 

 

Die folgenden zwei Studien konzentrierten sich auf die genetische Basis der lokalen Anpassung 

unter Verwendung von ddRAD-Sequenzierungsdaten und Genom-Scan-Methoden. Die erste 

umfasste die Sequenzierung der genomischen DNA von Individuen aus drei M. arvalis-

Untersuchungsgebieten in geringer Höhe und drei in großer Höhe in den Schweizer Alpen. 

Umgebungen in großer Höhe mit niedrigen Temperaturen und niedrigem Sauerstoffgehalt 
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(Hypoxie) stellen kleine Säugetiere vor erhebliche Herausforderungen. Aufgrund ihrer geringen 

Körpergröße und proportional großen Körperoberfläche müssen sie hohe aerobe 

Stoffwechselraten aufrechterhalten, um die Thermogenese und Fortbewegung zu unterstützen, 

die mit begrenzter Sauerstoffverfügbarkeit eingeschränkt sein können. Um Einblicke in die 

Höhenanpassung zu erhalten, habe ich eine große Anzahl von Einzelnukleotidpolymorphismen 

(SNPs) identifiziert. Mit Hilfe dieser Daten wurden ein hohes Maß an Differenzierung zwischen 

den Untersuchungsorten und ein klares Muster der Populationsstruktur zusammen mit einem 

isolation-by-distance Signal identifiziert. Unter Verwendung von Genom-Scan-Methoden 

identifizierte ich Selektionssignale in Genen, die mit Höhenunterschieden verbunden werden. 

Diese besitzen Funktionen, die mit dem Sauerstofftransport in das Gewebe sowie mit aeroben 

Stoffwechselwegen zusammenhängen. Dies weist darauf hin, dass Hypoxie ein wichtiger 

Selektionsdruck für die lokale Anpassung in großer Höhe für M. arvalis ist. Einige dieser Gene 

sind bereits früher mit der Höhenanpassung bei anderen Arten in Verbindung gebracht worden. 

Dies führte zu der Annahme, dass sich Populationen in großer Höhe lebender verschiedener 

Arten in Anpassung an die einzigartigen Bedingungen in großer Höhe auf ähnliche Weise 

entwickelt haben. 

 

Die nächste Studie befasste sich ebenfalls mit den genetischen Grundlagen der lokalen 

Anpassung. Hier stellte ich Erkenntnisse über die klimabedingte Anpassung von M. glareolus 

in ihrem europäischen Verbreitungsgebiet vor. Das Klima ist ein wichtiger Umweltfaktor, der 

die Physiologie aller Organismen beeinflusst. In dieser Studie identifizierte ich zehntausende 

SNPs bei Individuen aus zwölf in ganz Europa verteilten M. glareolus-Populationen. Diese 

ergaben eine starke Differenzierung der Populationen mit deutlicher Populationsstruktur und 

einem Signal für isolation-by-distance. Anschließend verwendete ich Genom-Scan-Methoden, 

um mögliche Loci zu identifizieren, die mit dem Klima verbundene Selektionssignale 

aufweisen, wobei der Schwerpunkt dabei auf polygenen Loci lag. Eine Multivariaten 

Analysemethode ermittelte, dass die Temperatur die wichtigste Klimavariable unter allen 

getesteten Variablen ist, die für die adaptive genetische Variation verantwortlich ist. Mit Hilfe 

neuartiger Methoden und der Annotation von Genomen verwandter Spezies identifizierte ich 

die Funktion von Genen an Kandidatenloci. Diese zeigten, dass die unter Selektion stehenden 

Gene Funktionen im Zusammenhang mit der Energiehomöostase und den Immunprozessen 

ausüben. Dies wiederum deutet darauf hin, dass sich die Populationen von M. glareolus in 
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Reaktion auf die lokale Temperatur und den spezifischen lokalen Selektionsdruck für 

Krankheitserreger entwickelt haben. 

 

Die in dieser Arbeit vorgestellten Studien liefern Belege für die genetische Basis der lokalen 

Anpassung auf verschiedene Umweltgradienten in zwei Wühlmausarten. Dies deutet darauf 

hin, dass die identifizierten Gene an der lokalen Anpassung beteiligt sind. Darüber hinaus zeigt 

dies, dass Untersuchungen wildlebender Populationen mit geringen genomischen Ressourcen 

durch den Einsatz neuartiger Methoden einzigartige Einblicke in evolutionäre Prozesse 

ermöglichen können.
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Chapter 1: Introduction 

1.1 Local adaptation 

Uncovering the genetic basis of local adaptation is a major focus of evolutionary biology. Local 

adaptation occurs when individuals from a species have higher fitness in their native 

environment than any individuals from the same species introduced from elsewhere (Kawecki 

& Ebert 2004; Blanquart et al. 2013; Savolainen et al. 2013; Tiffin & Ross-Ibarra 2014). The 

driving force of local adaptation originates from spatially and temporally varying natural 

selection. Natural selection acts on the phenotypes of individuals and can lead to genetic 

differences between populations (Richardson et al. 2014). Over time, local adaptation can 

maintain genetic variation, aid species range expansion and eventually results in ecological 

speciation (Hereford 2009; Savolainen et al. 2013). An understanding of the genetic basis of 

local adaptation is important to understand evolution and the processes that have shaped 

adaptive responses, as well as to how species will respond to changing environmental 

conditions (Gienapp et al. 2008; Hoffmann & Willi 2008; Hoffmann & Sgrò 2011; Franks & 

Hoffmann 2012; Pauls et al. 2013). 

The capacity for species and populations to locally adapt is dependent on their evolutionary 

potential, which is dependent on species’ generation time and effective population size. 

Generation time is an important factor, as it determines the speed at which populations can 

evolve in response to changes in their environment (Réale et al. 2003; Visser 2008). In general, 

small species with short generation times will be better able to genetically track changes in their 

environment than species with longer generation times. Natural selection will only cause 

evolution if there is enough genetic variation, which can be caused by mutations, recombination 

and gene flow (Gandon & Michalakis 2002; Barrett & Schluter 2008; Hoffmann & Sgrò 2011). 

The amount of standing genetic variation is highly dependent on effective population size, 

because the effects of drift are less severe in larger populations and the likelihood to acquire 

new mutations is higher (Hedrick 2011). Accordingly, in populations that go through frequent 

population crashes and bottlenecks, genetic drift may lower the amount of genetic variation, 

hampering the evolution of local adaptation (Kawecki & Ebert 2004). Local adaptation is more 

difficult in populations that are exposed to high levels of gene flow (Lenormand 2002; Bourne 

et al. 2014), therefore, species with low dispersal capabilities are more likely to adapt to local 

conditions. Thus, small species, with low dispersal capabilities, short generation times, large 
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effective population sizes and therefore, large evolutionary potential, are expected to have a 

high potential to locally adapt. 

The evolution of local adaptation requires that alleles which increase fitness in one 

environment, should decrease fitness in another environment. If this were not the case, the allele 

with the highest fitness would invade all populations and eventually become monomorphic. 

Local adaptation is facilitated by spatially varying selection across the landscape, but also 

influenced by genetic drift and gene flow (Kawecki & Ebert 2004; Hereford 2009; Hedrick 

2011). Genetic drift can hinder local adaptation by removing genetic variation or fixating 

random alleles and thereby produce random variation that confounds local adaptation (Lande 

1976; Travisano et al. 1995). Gene flow from neighboring populations can introduce new (and 

possibly maladaptive) alleles that may swamp locally favorable alleles (Lenormand 2002). 

However, gene flow also has the potential to aid local adaptation by introducing new genetic 

variation for selection to act upon and alleviate the confounding effects of genetic drift on local 

adaptation (Garant et al. 2007; Savolainen et al. 2007). Thus, if the strength of selection is large 

enough and the amount of gene flow from non-adapted populations is not too high, local 

adaptation should occur. 

The presence of local adaptation can be tested with field experiments. Reciprocal transplant 

experiments have provided evidence that populations are locally adapted and common garden 

experiments have shown that many of the phenotypic differences between populations are 

heritable (Berven 1982; Hereford 2009). These approaches, however, do not provide insight 

into the genetic basis of local adaptation. Some of the earliest studies shedding light on the 

genes or genetic regions responsible for local adaptation did so by focusing on traits that were 

already thought to be targets of selection. These either focused on a clear phenotypic trait, such 

as the change in color variation during the industrial revolution in peppered moth (Biston 

betularia) (Cook & Saccheri 2013; Hof et al. 2016), and the adaptive variation in coat color in 

pocket mice (Chaetodipus intermedius) (Nachman et al. 2003) and deer mice (Peromyscus 

maniculatus) (Linnen et al. 2009). Or by focusing on candidate genes, such as those responsible 

for adaptation to high altitude in deer mice (Storz et al. 2007) and flowering time in Arabidopsis 

thaliana (Le Corre & Kremer 2012).  

The classical methods applied to detect local adaptation use a top-down approach, relying on 

fitness measurements or phenotypic variation and relate this to genotypic data. Quantitative trait 
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locus mapping approaches often study the progeny of crosses between different locally adapted 

populations and correlate the variation in a quantitative trait in the phenotype with genotypic 

variation (Mackay 2001; Bernardo 2008). Genome wide association studies evaluate the 

association between genetic markers and a phenotype of interest, or a measurement of fitness, 

within a large number of individuals, in order to identify genetic markers that are associated 

with these traits in the field (Korte & Farlow 2013). Such methods and experiments require 

space, time, and genomic resources that are not available for many species. Therefore, the use 

of these methods has mainly been restricted to model organisms (Blanquart et al. 2013). Thus, 

although we understand the genetic basis for local adaptation in model organisms, the molecular 

basis of local adaptation in non-model organisms is still poorly understood. However, recently 

the approaches that have been used for decades have changed, as cost-effective methods that 

allow for the production of large amounts of genetic data have been developed. With these in 

place, it is now more feasible for researchers to conduct studies on local adaptation also with 

genetic data rather than with phenotypic data alone. 

1.2 Next generation sequencing 

The advent of next generation sequencing (NGS)-technologies has led to an ever-increasing 

availability of genomic resources for non-model organisms. NGS opened up the possibility to 

sequence millions of DNA fragments in parallel, greatly increasing the speed at which 

genotypic data can be generated for a relatively low price. This allows for the screening of 

thousands to millions of single nucleotide polymorphisms (SNPs) across the entire genome in 

non-model organisms and wild populations at reasonable costs. 

In the pre-NGS era, researchers studying non-model organisms often used the amplified 

fragment length polymorphism (AFLP)-technique to obtain genetic markers and scan the 

genome for signals of selection, because this approach does not require prior information about 

the genome. Although generating AFLP-markers is relatively easy, linking markers of interest 

to genes under selection and generating enough markers to span the entire genome is difficult 

using this approach. Therefore, while studies using AFLP-markers have identified signals of 

selection, they have largely failed to identify the genes or genomic regions underlying local 

adaptation (Bonin 2008), unless additional sequencing efforts were made (e.g. Buehler, 

Holderegger, Brodbeck, Schnyder, & Gugerli, 2014; Wood, Grahame, Humphray, Rogers, & 

Butlin, 2008). However, these limitations disappeared with the advent of NGS and the 
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accompanying rapid development of genomic tools, resulting in numerous studies using SNPs 

as genetic markers to study local adaptation in non-model organisms (Haasl & Payseur 2016). 

1.3 Genome scan methods 

Since genomic data has become readily available, researchers have begun to study local 

adaptation starting from genetic data (i.e. bottom-up approaches), by using population and 

landscape genomic approaches. These approaches do not require prior knowledge of genes or 

loci subject to local adaptation, and can thus be used without the need for a reference genome 

(although this does aid subsequent analyses). The field of landscape genomics has developed a 

number of tools to test markers across the genome for signatures of selection and study local 

adaptation (Rellstab et al. 2015; Hoban et al. 2016). These genome-scan methods can broadly 

be defined in two categories: Differential outlier (FST)-methods and genotype environmental 

association (GEA)-methods. 

If there is no prior information on local conditions or traits driving adaptation, FST-based 

methods can be used to detect loci under positive selection. Alleles favoring local adaptation 

should occur at higher frequency where they are beneficial and thus increase fitness, while they 

should occur at lower frequency where they are detrimental and thus decrease fitness. 

Therefore, loci involved in local adaptation may be identified by screening the genome for loci 

showing above average differentiation among populations, usually measured as FST. Loci with 

extreme FST-values are consequently suggested to be under positive selection (Lewontin & 

Krakauer 1973). In contrast, GEA-methods can be applied when the environmental variables 

of interest leading to local adaptation are known (or at least hypothesized). These methods 

search for alleles among populations with allele frequencies that are strongly associated with 

environmental conditions. Such a correlation between allele frequencies and environment 

suggests that these loci are involved in local adaptation (Mitton et al. 1977). 

Many studies have provided insight into adaptive genetic variation using FST and GEA-based 

methods. However, despite advances in the development of genome scan methods, detecting 

adaptive genetic variation remains challenging with both approaches (Harrisson et al. 2014). 

Theoretical and empirical studies suggest that the traits responsible for adaptation to climate 

are commonly of polygenic nature and are underpinned by many genes of small effect 

(Pritchard & Di Rienzo 2010; Yeaman 2015; Wellenreuther & Hansson 2016; Babin et al. 2017; 
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Harrisson et al. 2017). However, genome scans used to detect adaptive genetic variation 

generally lack the power to detect weak signals of polygenic selection (Rellstab et al. 2015; 

Wellenreuther & Hansson 2016; Forester et al. 2018). This is because genome scans only focus 

on one locus at a time and not on the combined signal of all loci simultaneously. Recently, 

multivariate methods from the field of community ecology have been introduced to the field of 

population genomics. These methods are able to focus on many loci and multiple environmental 

predictors at the same time and are thus better suited to detect signals of polygenic selection 

(Forester et al. 2018; Capblancq et al. 2018). 

So far, numerous tests have been developed to identify loci under positive selection (e.g. 

Beaumont & Balding, 2004; de Villemereuil & Gaggiotti, 2015; Foll & Gaggiotti, 2008; Luu, 

Bazin, & Blum, 2017; Whitlock & Lotterhos, 2015) or to identify loci with allele frequencies 

correlating with environmental traits (e.g. Frichot & François, 2015; Frichot, Schoville, 

Bouchard, & François, 2013; Gautier, 2015; Joost et al., 2007). Many of these methods are 

widely used, but it has to be taken into account that all have their own advantages and 

disadvantages (de Villemereuil et al. 2014; Lotterhos & Whitlock 2015) and use different 

approaches to control for confounding effects. 

Genome scan methods have to distinguish loci under selection from loci showing genetic 

differentiation between populations caused by neutral forces. This can be difficult as 

demographic history and neutral processes such as gene flow and genetic drift can produce 

allele frequency differences between populations that look similar to those caused by positive 

selection or local adaptation. These confounding patterns of neutral population structure can 

mimic patterns of local adaptation and have to be corrected for, in order to prevent incorrect 

conclusions. This can be particularly challenging in species with low dispersal capabilities and 

low gene flow between populations, as these species are often highly structured and the average 

level of between population differentiation is high. Because this results in high FST-values for 

loci that are selectively neutral, loci under selection need to have extremely high FST-values to 

be considered as outlier under selection. 

Another confounding effect of demographic history that may cause spurious association 

between allele frequency and variables of interest, is caused by the colonization of new areas, 

which results in a phenomenon called allele-surfing (Edmonds et al. 2004; Klopfstein et al. 

2006). Allele-surfing occurs when populations expand and populations at the front wave of the 
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expansion experience strong genetic drift. This causes a decrease in genetic diversity along the 

axis of expansion and clinal patterns of differentiation in allele frequency over the landscape 

that resemble patterns of positive selection (Excoffier & Ray 2008; Excoffier et al. 2009). 

Furthermore, hybridization and introgression from related taxa can also cause allele frequency 

patterns that confound detecting of local adaptation (Kane et al. 2009; Geraldes et al. 2014). 

Finally, confounding effects can arise from various types of autocorrelation that stem from the 

shared history of sampled populations. For example, there is often spatial autocorrelation of 

environmental variables. Nearby environments are usually more similar than environments 

further apart and populations are often more related to each other over close than over long 

distances. This can lead to associations between neutral alleles and environmental variables, 

that are caused by the mere spatial arrangement or demographic history of populations, but are 

not signatures of local adaptation. A similar pattern can occur due to range expansion from 

glacial refugia (Hewitt 1999). This can create spatial patterns in allele frequencies that coincide 

with environmental variables such as temperature, that cause spurious correlations between 

allele frequencies and environmental variables of interest (Holliday et al. 2010). Lastly, 

background selection, the process in which neutral alleles linked with deleterious alleles are 

removed with purifying selection (Charlesworth et al. 1993), may cause stronger differentiation 

between populations at linked neutral sites, that can be mistakenly recognized as patterns of 

positive selection favoring local adaptation (Charlesworth et al. 1997; Cruickshank & Hahn 

2014).  

Several approaches have been developed to address the problem of confounding effects of 

neutral processes and spatial autocorrelation. These either make use of explicit models to infer 

demographic history or use the relationship of the sampled populations to correct for neutral 

genetic structure. The first type of approaches simulates a null distribution based on the island 

model (Beaumont & Balding 2004) or a multinomial Dirichlet distribution (Foll & Gaggiotti 

2008). This distribution is then tested against the observed data to infer loci influenced by local 

adaptation. However, if the assumptions of these models are not met, they can suffer from high 

false positive rates (De Mita et al. 2013; de Villemereuil et al. 2014; Lotterhos & Whitlock 

2014). More recent approaches make use of the observed genetic data to explicitly correct for 

relationships among populations, by estimating covariance or relatedness among them. Neutral 

processes like demography and drift affect all loci across the genome, whereas positive 
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selection and other non-neutral processes only affect a subset of loci. Several methods make 

use of this disparity to estimate neutral structure. Ideally, a presumed set of genetic neutral 

markers is known, but since this is usually not the case, the observed genetic data is used. These 

analyses can be performed in multiple ways, for example, by using a pairwise covariance matrix 

(Coop et al. 2010; Günther & Coop 2013; Gautier 2015), a population tree (Bonhomme et al. 

2010), or using linear models (Frichot et al. 2013; Frichot & François 2015; Luu et al. 2017). 

Approaches using a covariance matrix or population tree use these to generate a null distribution 

and to identify loci that depart from this. Linear model approaches incorporate neutral genetic 

structure by including principal components (Luu et al. 2017), random effects or so-called latent 

factors (Frichot & François 2015). Approaches that infer confounding effects from the observed 

data are more flexible as they do not assume an explicit demographic model, and in general 

perform better than models based on demographic null models (de Villemereuil et al. 2014; 

Lotterhos & Whitlock 2014). Altogether genome-wide datasets in combination with genome 

scans provide a powerful approach to study adaptation in heterogeneous environments. 

1.4 Relevant environmental variation 

Spatial environmental variation is omnipresent and populations are usually adapted to local 

conditions (Savolainen et al. 2013). Evidence for selection acting across diverse environmental 

conditions has been found in a wide range of taxa (Franks & Hoffmann 2012). Environmental 

clines offer an ideal system to study the genetic underpinnings of local adaptation, as changes 

in selection pressure along a cline result in locally adapted populations (Slatkin 1973; Bridle et 

al. 2010). In this thesis, I therefore focus on the genetic basis of local adaptation across two of 

these environmental gradients: A latitudinal gradient in climate across Europe and an altitudinal 

gradient in the Swiss Alps. 

1.4.1 Climate and temperature 

Climate is a key environmental factor affecting the physiology and metabolism of all species 

involved. Because of its widespread effect, recent climate change has become a focus of 

evolutionary ecology (Hoffmann & Sgrò 2011; Franks & Hoffmann 2012; Merilä 2012). 

Phenotypic changes in response to climate change have been found in a range of taxa, but 

overall it seems that these are a result of phenotypic plasticity, rather than the result of 

genetically based changes (Merilä & Hendry, 2014 and accompanying reviews). In contrast, 

there is widespread evidence for local adaptation and adaptive clines in response to spatial 
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variation in climatic conditions associated with latitudinal and altitudinal gradients (Conover et 

al. 2009). Within species, phenotypes tend to change in a somewhat predictable way along 

climatic gradients. Such changes include latitudinal clines in body size (Bergmann 1848; Huey 

et al. 2000) and the phenology of many plant species (Olsson & Ågren 2002; Stinchcombe et 

al. 2004). There is evidence for genetic adaptation to heat tolerance across thermal gradients 

associated with latitude (Hoffmann et al. 2002; De Jong et al. 2013; Diamond et al. 2017). A 

multitude of studies have identified genes and pathways that are potentially involved in climate 

adaptation, these include changes in genes related to thermal tolerance, drought resistance and 

other traits related to climate such as pathogen resistance (Franks & Hoffmann 2012). Although 

numerous studies have aided our understanding of adaptation to climate, the genetic basis for 

climate adaptation is complex, and studies in vertebrates with a widespread distribution are 

necessary for a broader understanding of the evolutionary basis for climate-adaptation. 

1.4.2 Altitude 

Local conditions can vary dramatically over much short spatial distances along altitudinal 

gradients than over latitudinal gradients, which offers an excellent opportunity to study local 

adaptation in the face of gene flow and without the confounding effects of demographic history 

(Keller et al. 2013). The most obvious changes along altitudinal gradients are a decrease in 

temperature, a reduction in oxygen availability and an increase in solar radiation intensity with 

increasing elevation. More specifically, ambient temperatures decrease by 6.5°C and the 

available oxygens levels drop by 10% roughly every 1,000 meters in elevation (Körner 2007). 

The harsh conditions at high altitude and rapid changes in conditions over short distances have 

fueled research using altitudinal gradients. Evidence for physiological adaptation to high 

altitude are widespread and involve changes in the pulmonary and respiratory system, oxygen-

hemoglobin affinity and tissue capillarity (Storz et al. 2010). A genetic basis for high-altitude 

adaptation is determined in humans as well as in other vertebrate species (Storz et al. 2012; 

Simonson 2015; Wei et al. 2016; Bigham 2016; Song et al. 2016).  

The reduction in oxygen availability at high altitude threatens aerobic metabolism and poses a 

major challenge that potentially limits the amount of oxygen available for activity (West 1990). 

For small endothermic mammals and birds this is particularly challenging, as they have to retain 

a constant body temperature in these cold conditions. At the same time, they only have a small 

tissue volume to produce heat compared to their large surface area via which they lose heat. 
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Therefore, small mammals are constantly challenged by high thermogenic demands. This has 

captured the interest of researchers and there is a large body of literature on the specific 

physiological and evolutionary adaptations of high-altitude small mammals (Storz et al. 2010; 

Cheviron & Brumfield 2012). A large part of this is specifically focused on high-altitude deer 

mice, as they have a broad elevational distribution from the coast up to ~ 4,300 meters above 

sea level. A number of studies revealed that populations of deer mice residing at different 

altitudes have evolved differences in aerobic performance and thermogenic capacities that 

contribute to high-altitude adaptation (reviewed in McClelland & Scott, 2018; Storz, Cheviron, 

McClelland, & Scott, 2019). However, despite ongoing progress in identifying the genetic basis 

of high-altitude adaptation, insights are mainly restricted to a few selected species such as 

humans and deer mice for which large genomic resources are available, Therefore, a thorough 

investigation including non-model species is needed to further our understanding in the 

evolutionary basis of high-altitude adaptations. 

1.5 ddRAD-sequencing 

With the rise of NGS, the costs of sequencing whole genomes have been greatly reduced. 

However, sequencing hundreds of individuals of non-model organisms from natural 

populations still remains prohibitively expensive. Therefore, several alternative genomic 

approaches exist that allow researchers to sequence a higher number of samples for a given 

budget. Most researchers currently use reduced representation approaches (defined as any 

method that sequences less than the whole genome) to study individuals from wild populations. 

Most widely used are methods that apply restriction enzymes to reduce the complexity of the 

genome, but alternative approaches include methods that only target specific regions of the 

genome such as RNA-seq and exome capture. 

Restriction site-associated DNA sequencing (RAD-seq) approaches use restriction enzymes to 

cut at specific motifs in the genome and use NGS to sequence the genomic regions adjacent to 

the restriction cut-sites (reviewed in Andrews, Good, & Miller, 2016; Puritz et al., 2014). The 

original RADseq (Miller et al. 2007; Baird et al. 2008) uses one restriction enzyme to digest 

genomic DNA, after which mechanical shearing is used to reduce fragments to the appropriate 

length for sequencing. Since then several RAD-seq variants have been developed (discussed in 

Andrews et al., 2016). Here, I focus on double digest restriction-site associated DNA (ddRAD) 

sequencing, as it is the method employed in this thesis. This method has been widely used in 
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non-model studies to investigate questions in an ecological and evolutionary context. It has 

been used to provide insights into population genomics, landscape genomics, phylogenetics, 

epigenetics and the genomics of local adaptation (Kjeldsen et al. 2016; Vargas et al. 2017; 

Cooper & Uy 2017; Dimond et al. 2017; Maas et al. 2018; Weigand et al. 2018; Hoey & Pinsky 

2018; Homola et al. 2019).  

Preparation of a ddRAD library starts with obtaining high-molecular-weight genomic DNA, as 

degraded DNA may result in poorer sequencing results (Graham et al. 2015). The ddRAD 

protocol itself then starts with digestion of genomic DNA using two restriction enzymes. 

Usually, this consists of a "common cuter", that cuts frequently and a "rare cutter" that cuts less 

frequently, as a result of the length of the enzyme recognition cut-site. For example, a rough 

estimate suggests that a 6-bp cutter will cut every 46=4,096 bp, while an 8-bp cutter will cut 

every 48=65,536 bp. A combination of enzymes can be chosen to fine-tune the number of loci 

expected. After digestion, Illumina adapters are ligated to the sticky ends created by the 

restriction enzymes. These adapters include sample specific barcodes, which allow for 

multiplexing (pooling of individuals) after ligation, thereby greatly reducing time and costs of 

subsequent steps. Once multiplexed, a size selection step is used to isolate fragments of a 

specific length for sequencing. This is another step that can be used to fine-tune the number of 

expected loci to be sequenced. When a reference genome or that of a closely related species is 

available, specific software can be used to determine the expected number of loci of a certain 

fragment length (Lepais & Weir 2014). Consistency of size selection across libraries is crucial 

to produce a comparable set of loci across samples. Inconsistent size selection results in 

different sets of loci selected among different libraries, which potentially leads to high levels of 

missing genotypes between them. Finally, the resulting size selected libraries are PCR amplified 

to create libraries for sequencing. 

1.6 Research species 

The two vole species that are investigated in the present work are the common vole (Microtus 

arvalis) and the bank vole (Myodes glareolus). Both species belong to the rodent subfamily 

Arvicolinae of the family Cricetidae. Arvicolinae is a highly diverse subfamily that includes 

approximately 150 species of voles, lemmings and muskrats (Nowak 1999). Vole is a common 

name for a large fraction of the species within the Arvicolinae (70-100 species, depending on 

the classification used), including species from several tribes (Galewski et al. 2006). Voles are 
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a diverse group of small-bodied mouse-like species that are distributed throughout the Northern 

hemisphere, mainly in temperate and boreal environments (Le Galliard et al. 2012). Where they 

occur, vole species are often the dominant small mammal species and are therefore of 

significant ecological importance. In general, voles live above ground, traveling through the 

vegetation, underneath the snow or use elaborate burrow systems. They are active throughout 

the year and do not go into hibernation. Their diet mainly consists of seeds and plants and the 

occasional insect. Voles are iteroparous, they further have a short life-span which usually 

includes only one reproductive season. During this reproductive season, females can have 

multiple litters and several generations can overlap and reproduce simultaneously, resulting in 

strong annual population dynamics (Boyce & Boyce 1988; Getz et al. 2007; Eccard & Herde 

2013). Voles are also an example of species exhibiting strong multi-annual population density 

fluctuations (Tkadlec & Stenseth 2001; Lambin et al. 2006; Inchausti et al. 2009; Rikalainen et 

al. 2012; Gauffre et al. 2014). The severity of these fluctuations varies across their distribution, 

but can result in 10- to 100-fold changes in density (Stenseth 1999). Surprisingly, despite 

reoccurring bottlenecks, this does not cause loss of genetic variation, probably due to increased 

gene flow from neighboring populations in the high-density phase (Berthier et al. 2006; 

Rikalainen et al. 2012; Martínková et al. 2013; Gauffre et al. 2014). Dispersal is mainly male-

biased, and males tend to both disperse more often and travel longer distances, while females 

are more philopatric and stay closer to their burrow (Aars et al. 1998; Gerlach & Musolf 2000; 

Schweizer et al. 2007; Gauffre et al. 2009; Gauffre et al. 2014). As they are small-bodied 

animals, voles can often only travel short distances. Recurring bottlenecks and low effective 

dispersal rates result in high levels of population differentiation even at small geographic scales 

(Redeker et al. 2006; Schweizer et al. 2007; Borkowska et al. 2010; Guivier et al. 2011). The 

above applies to both species studied in this work. Below, I separately describe each species 

and its characteristics used in this work, combined with implications for studying local 

adaptation.  
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1.6.1 The common vole (Microtus arvalis) 

The common vole (M. arvalis) (Pallas, 1778) 

(Figure 1.1) belongs to the genus Microtus. 

This genus is one of the most speciose 

mammalian genera that resulted from one of 

the fastest radiations within the last 2 million 

years (Jaarola et al. 2004; Fink et al. 2010). 

Microtus originated in South Asia, from 

where several colonization waves to Europe and North America occurred with subsequent 

radiations on each continent (Fink et al. 2010). M. arvalis has a continuous distribution across 

the European continent from the Atlantic coast of France to the steppes of Central Russian, and 

from the Baltic sea coast in the north to the Mediterranean coast in Spain in the south (Figure 

1.2), where it is found from sea level to above 2,000 m a.s.l. (Fischer et al. 2011; Fischer et al. 

2014), occupying dry habitats such as fields and meadows. Previous examinations using 

mitochondrial and nuclear DNA have revealed a genetic subdivision into several highly 

divergent evolutionary lineages in Europe (Haynes et al. 2003; Fink et al. 2004; Jaarola et al. 

2004; Heckel et al. 2005; Hamilton et al. 2005; Tougard et al. 2008; Bužan et al. 2010; 

Martínková et al. 2013; Lischer et al. 2014; Stojak et al. 2016). In general, five evolutionary 

lineages have been identified: Western, Central, Eastern, Italian and Balkan, although some 

authors suggest an additional split of the Western lineage into a Western-North and Western-

South lineage. The divergence among lineages likely occurred before the last glacial maximum 

(LGM), but the major driver is geographic isolation of surviving populations in multiple glacial 

refugia during the LGM (Lischer et al. 2014; García et al. 2019). Interestingly, studies showed 

that M. arvalis did not only retreat south during the LGM (Hewitt 1999), but also survived in 

locations further north (Fink et al. 2004; Hamilton et al. 2005; Pedreschi et al. 2019). Evidence 

suggests that the current spatial distribution of lineages is related to the climatic conditions to 

which the different populations are better adapted. However, whether these adaptations evolved 

before, during or after the LGM cannot be distinguished (Fink et al. 2004; Bize et al. 2018; 

Stojak et al. 2019). Recent studies have found loci potentially involved in adaptation to high 

altitude in alpine regions (Fischer et al. 2011; Fischer et al. 2014). However, as currently no 

Figure 1.1: Microtus arvalis 



Chapter 1: Introduction  23 

annotated reference genome exists for M. arvalis, neither putative functions of loci under 

selection nor the genetic basis of specific adaptations could be identified.  

  

Figure 1.2: Geographic distribution of M. arvalis (yellow) and M. glareolus (blue) (Shenbrot & Krasnov 2005) 

 

1.6.2 The bank vole (Myodes glareolus) 

The bank vole Myodes (formerly known as 

Clethrionomys, which is an invalid junior 

name (Carleton et al. 2014)) glareolus 

(Schreber, 1780) (Figure 1.3) has a wide 

European distribution, ranging from the 

northern parts of Scandinavia to the southern 

European regions of the Mediterranean Peninsulas, and from the west coast of France to deep 

into Russia (Figure 1.2). Within this wide distribution it experiences a range of different climatic 

and environmental conditions. M. glareolus’ recent evolutionary history was strongly shaped 

by the LGM and there is evidence that some populations survived in refugia north of the 

traditional southern refugia (Kotlík et al. 2006; Bhagwat & Willis 2008; Wójcik et al. 2010). 

Previous research based on mitochondrial DNA has described seven distinct lineages: The 

Carpathian, Eastern, Western, Balkan, Spanish, Italian, and Calabrian lineages (Deffontaine et 

al. 2005; Kotlík et al. 2006; Wójcik et al. 2010; Colangelo et al. 2012; Filipi et al. 2015), which 

most probably have survived in different glacial refugia and recolonized Europe from there. An 

eighth "Ural" lineage exists in northern Scandinavia, which was formed by introgression of 

mitochondrial DNA (mtDNA) from a closely related species, the northern red-backed vole 

(Myodes rutilus) into M. glareolus populations (Tegelström 1987; Abramson et al. 2009). The 

distribution of different lineages might be related to climatic and environmental conditions, as 

Figure 1.3: Myodes glareolus 
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suggested by the discovery of possible adaptive mtDNA evolution in M. glareolus in the most 

northern lineages (Filipi et al. 2015), displacement of lineages by other lineages with a 

presumed selective advantage (Kotlík et al. 2014; Kotlík et al. 2018) and a correlation between 

lineage distribution and environmental parameters (Tarnowska et al. 2016; Ledevin et al. 2018). 

There is some evidence for adaptive variation related to climate across its distribution. 

M. glareolus seem to be smaller at higher latitudes, which is thought to increase metabolic 

efficiency (Ledevin et al. 2010). In Scandinavia, body mass and mass-corrected basal metabolic 

rate (BMR) decrease with latitude independently of M. rutilus mtDNA introgression, indicating 

adaptive variation along the climate gradient in this region (Boratyński et al. 2011). Genomic 

resources for M. glareolus include several transcriptomes (Konczal et al. 2014; Konczal et al. 

2015; Migalska et al. 2017) and a poorly annotated reference genome (GCA_001305785.1). 

These resources have been used to study the genetic basis of M. glareolus physiology in 

laboratory settings (Konczal et al. 2015; Konczal et al. 2016). In addition to this, studies have 

been performed to examine the genetic basis of virus tolerance (Rohfritsch et al. 2018) and 

geographic expansion (White et al. 2013).  

1.7 Thesis outline 

Despite increasing efforts, we are just beginning to understand the genetic basis of changes that 

underlie non-model species’ abilities to adapt to local environmental conditions. Therefore, the 

central aim of this work was to shed light on the genetic basis of local adaptation in wild 

populations of two vole species. Voles are an ideal system to study local adaptation. They have 

short generation times and large effective population sizes, resulting in high evolutionary 

potential relative to their capacity to disperse. This induces a high capacity to genetically adapt 

to their local environmental conditions. Accordingly, I studied different populations along 

gradients with strong environmental heterogeneity, to try to provide insight into the genetic 

basis of adaptation to high-altitude in M. arvalis populations (Chapter 3) and climate-related 

adaptive variation in M. glareolus populations across Europe (Chapter 4). Additionally, I set out 

to add genomic resources to facilitate future research in M. arvalis (Chapter 2).  

Chapter 2 

This chapter describes the generation of the first complete mitochondrial genome of the 

common vole (M. arvalis). It was used in phylogenetic analyses together with other species of 

the Arvicolinae subfamily. Using this mitogenomic dataset, I could confidently place M. arvalis 
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as sister species to M. levis, in concordance with other studies (Jaarola et al. 2004; Fink et al. 

2010). However, in contrast to studies using only short mitochondrial or nuclear fragments 

(Galewski et al. 2006), I found the genera Neodon and Lasiopodomys to fall within the 

variability of the genus Microtus. Thus, our results suggest that these genera should be 

subsumed within genus Microtus 

Chapter 3 

This chapter sheds light on the genetic underpinnings of high-altitude adaptation in M. arvalis. 

Earlier efforts have been made to identify candidate markers under positive selection related to 

high altitude in M. arvalis (Fischer et al. 2011; Fischer et al. 2014), but the anonymous genetic 

markers used in these studies hindered obtaining information about the genetic regions or 

putative genes of interest involved. I therefore aimed to identify loci that show signals of 

selection associated with differences in altitude. To this end, ddRAD sequencing was used to 

obtain genetic information from individuals from three low-altitude and three high-altitude 

study sites in the Swiss Alps. By using genomic resources from a closely related species 

(Microtus ochrogaster), a large number of SNPs shared among individuals was identified. 

These were used to estimate genetic diversity within populations and examine population 

structure. I then identified SNPs displaying signals of selection while controlling for the 

confounding effects of population structure. FST-based approaches were used to identify SNPs 

showing signals of local adaptation, and GEA-based approaches were applied to identify SNPs 

that are associated with differences in altitude. Subsequently, I used the positions of these SNPs 

on the M. ochrogaster genome and identified homologous positions on the Mus musculus 

genome to obtain functional annotation of genes with a signal of selection. Interestingly, a 

number of genes with functions related to oxygen-transport into tissue and genes related to 

aerobic metabolic pathways were identified. These findings suggest that high-altitude 

populations of M. arvalis have adapted by enhancing oxygen delivery and thermogenic capacity 

as a response to the specific conditions at high altitude. 

 

Chapter 4 

The final case study in this thesis describes adaptive variation related to environmental 

gradients in M. glareolus. Similar to chapter 3, ddRAD sequencing was used to obtain genomic 

information from individuals and identify genes to gain insight into the genetic basis of local 
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adaptation. To this end, individuals from 12 populations distributed across the European range 

of M. glareolus were sampled. I identified a total of 21,892 SNPs and used GEA-based 

approaches that control for confounding effects of population structure, as well as redundancy 

analyses (RDA), to identify SNPs with allele frequencies correlating with variation in climate. 

Additionally, RDA was used to identify the amount of genomic variation related to population 

structure and climate. The results suggest that both population structure and climate explain 

similar amounts of genetic variation, but that their effects are mostly shared. This makes it 

difficult to separate the effects of population structure and climate. However, both GEA-based 

methods and RDA identified SNPs that show signals of selection related to variation in climate. 

Among these SNPs, I found a large number located in genes with a function associated with 

energy homeostasis and immune system functioning, suggesting that variation in temperature 

and pathogen presence are important selective pressures that drive local adaptation in 

M. glareolus. 

Chapter 5 

Finally, Chapter 5 provides a general discussion of the results presented in this thesis. It 

discusses the methods applied in this thesis and illustrates how these can be used to study 

adaptive variation in non-model organisms with little genomic resources. Moreover, it 

highlights the general implications of this thesis for evolutionary biology and the study of the 

genetic basis of local adaptation in particular.
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Chapter 2: Article I 

The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: 

Arvicolinae)* 

Remco Folkertsma, Michael V. Westbury, Jana A. Eccard and Michael Hofreiter 

This manuscript was published in “Mitochondrial DNA Part B” in 2018. Online available under 

http://doi.org/10.1080/23802359.2018.1457994 

 

2.1 Abstract 

The common vole, Microtus arvalis belongs to the genus Microtus in the subfamily Arvicolinae. 

In this study the complete mitochondrial genome of Microtus arvalis was recovered using 

shotgun sequencing and an iterative mapping approach using three related species. Phylogenetic 

analyses using the sequence of 21 arvicoline species places the common vole as a sister species 

to the East European vole (Microtus levis), but as opposed to previous results we find no support 

for the recognition of the genus Neodon within the subfamily Arvicolinae, as this is, as well as 

the genus Lasiopodomys, found within the Microtus genus. 

2.2 Main text 

The genus Microtus is one of the most diverse genera in the subfamily Arvicolinae. Consisting 

of about 70 different species it is one of the fastest radiating mammalian genera (Nowak 1999). 

The common vole (Microtus arvalis) is a small rodent widely distributed throughout Eurasia, 

ranging from the Atlantic coast in France to Central Russia. They experience a range of different 

climatic conditions from sea level to high altitude in the Alps (Fischer et al. 2011) and occupy 

a variety of different habitats such as farmland and grassland, making it a popular study species 

in ecological and evolutionary research. The species shows high levels of between population 

genetic differentiation (Heckel et al. 2005) and strong genetic clustering among populations on 

small scales (Schweizer et al. 2007). Although previous studies have used partial mitochondrial 

DNA sequences to show the presence of five main evolutionary lineages and to resolve their 

phylogenetic positioning within the genus Microtus (Fink et al. 2004), the complete 

mitochondrial genome of M. arvalis has not yet been published. 
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The male M. arvalis used in this study was sampled in 2015 outside the town of Lochow, 

Germany (52.690640°N, 12.455182°E) under permits from Landesumweltamt Brandenburg 

(RW-7.1 24.01.01.10). A voucher specimen was deposited at the University of Potsdam, 

Potsdam, Germany. DNA was extracted using the Qiagen DNeasy kit, built into an Illumina 

sequencing library and sequenced using an Illumina NextSeq 500. We assembled the full 

mitochondrial genome using an iterative mapping approach (Hahn et al. 2013) with three 

independent runs utilizing available Arvicolinae as reference bait sequences. Resultant 

sequences were aligned using Mafft v7.271 (Katoh & Standley 2013) and a final consensus 

sequence was built using Genious v9.0.5 (Kearse et al. 2012). We obtained a circular sequence, 

16,286 bp in length (GenBank Accession No. MG948434) which was annotated using MITOS 

(Bernt et al. 2013). Finally, a phylogenetic analysis was performed on an alignment of our 

consensus sequence, all available complete mitochondrial arvicoline sequences and Cricetulus 

griseus. We produced a maximum-likelihood phylogenetic tree of all 13 protein-coding genes 

and tRNA genes, with an appropriate partitioning scheme and GTR + G as the substitution 

model as determined by PartitionFinder (Lanfear et al. 2012), with 1000 bootstrap replicates 

using RAxML-HPC2 on XSEDE v8.2.10 (Stamatakis 2014) on the Cipres server (Miller et al. 

2010) (Figure 2.1). 

Phylogenetic analysis shows a well-supported sister-clade relationship between Arvicolini and 

Myodini. Furthermore, in concordance with other studies using mitochondrial or nuclear loci 

(Jaarola et al. 2004; Fink et al. 2010), we also find M. arvalis to be a sister species of M. levis. 

However, in contrast to Galewski et al. (2006) who used the mitochondrial Cytb and nuclear 

Ghr genes, we found no support for the recognition of the genus Neodon, as this is found within 

the genus Microtus, as is the genus Lasiopodomys. Thus, mitogenomic analysis suggests that 

these genera should be subsumed within the Microtus genus. We hope publication of the 

mitochondrial genome of M. arvalis will help to understand the phylogenetic relationship 

within the Arvicolinae and the genus Microtus 
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Figure 2.1: Maximum-likelihood tree of the subfamily Arvicolinae based on the sequences of 13 

protein-coding genes and the tRNA genes of the mitochondrial genome using Cricetulus griseus as 

an outgroup (not shown here for graphical reasons). Bootstrap support values are shown at the 

branch nodes. 
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Chapter 3: Article II 

Population genomic evidence for high-altitude adaptation in common voles* 

Remco Folkertsma, Jana A. Eccard, Gerald Heckel, Johanna L.A. Paijmans and Michael 

Hofreiter 

*This manuscript has been submitted to “Molecular Ecology” in December 2019. 

 

3.1 Abstract 

Local environmental selection pressures can cause adaptive differentiation at the genomic level. 

Altitudinal gradients have been used to discover adaptive variation in a number of species, as 

their steep gradients allow examining signatures of selection in the face of gene flow. Studies 

using small mammals have offered valuable insights into the genetic basis of adaptation to high-

altitude environments. They experience high levels of thermogenic and aerobic stress as a result 

of cold and hypoxic condition with increasing altitude and, because of their small size, are less 

likely to migrate between habitats at different altitudes. Here, we used ddRAD-sequencing and 

landscape genomic approaches to examine population structure and evidence for adaptation to 

high-altitude environments in six populations of Microtus arvalis from low and high-altitude 

study sites in the Swiss Alps. We discovered high levels of genetic differentiation between study 

sites and strong patterns of population structure with a signal of isolation by distance. We used 

FST-based and genotype-environment association (GEA)-based methods that control for the 

confounding effects of population structure, to identify loci showing signals of selection 

associated with differences in altitude. Across all different methods, we identified 127 candidate 

loci potentially related to high-altitude adaptation, 46 of which were within 37 genes. 

Functional annotation of these genes suggests that selection in high-altitude populations of 

M. arvalis is acting to increase oxygen delivery to tissue and on aerobic metabolic pathways in 

responses to cold hypoxic conditions. Several of the candidate genes have been linked with 

adaptation to high altitude before, suggesting a rather specific effect of selection pressures at 

high altitude on mammalian genomes. 

Keywords: Common vole, High altitude, Genome scan methods, ddRAD, adaptation, Microtus 

arvalis 
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3.2 Introduction 

A key goal of research in evolutionary ecology is to understand the genetic basis of adaptive 

differentiation of populations in response to environmental variation (Storz 2005; Hereford 

2009). Natural selection shifts allele frequencies and may thus lead to genetic differences 

between locally adapted populations (Richardson et al. 2014). Local adaptation is assumed 

when populations in their native environment have higher fitness than populations of the same 

species from any other environment (Kawecki & Ebert 2004; Savolainen et al. 2013). Together 

with spatially varying selection, genetic drift and gene flow are the main factors influencing 

genetic population structure across the landscape (Hedrick 2011). Both high levels of gene flow 

and strong genetic drift can diminish local adaptation. Gene flow can hinder local adaptation 

by introducing alleles from differentially adapted neighboring populations, thereby swamping 

locally favorable genes (Lenormand 2002). However, it can also facilitate local adaptation by 

introducing genetic variation to act upon and alleviate the effects of genetic drift (Garant et al. 

2007; Savolainen et al. 2007). If the strength of selection is high enough and the amount of gene 

flow is not too high, divergence between populations at adaptive loci can be maintained while 

other parts of the genome will be homogenized by the effect of gene flow (Feder et al. 2012). 

Genetic drift can also cause loss of some and fixation of other alleles, leading to structure in 

genetic variation possibly looking similar to that caused by local adaptation (Lande 1976; 

Yeaman & Otto 2011).  

Environments with spatially varying selection pressures offer the opportunity to study the 

components that form population genetic differentiation and local adaptation (Haldane 1948; 

Storz 2002). The field of landscape genomics provides a framework for identifying adaptive 

genetic variation in a spatial context and with the recent decrease in sequencing costs and the 

accompanying increased availability of genome-scale genetic data, the opportunity arose to also 

study non-model organisms (Schoville et al. 2012; Rellstab et al. 2015; Haasl & Payseur 2016). 

Genome scans trying to identify adaptive genetic variation can be broadly defined in two 

categories. Differential outlier methods (FST-based methods) seek for signals of selection by 

identifying alleles that show genetic differentiation that is unusual high (evidence for directional 

selection) or low (evidence for balancing selection) among populations (Beaumont & Balding 

2004; Foll & Gaggiotti 2008; Luu et al. 2017). In contrast, genotype-environment association 

(GEA)-based methods identify loci with allele frequencies that are strongly associated with 

environmental variables of interest, and those loci are interpreted as potentially under positive 
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selection (Frichot et al. 2013; Günther & Coop 2013; Gautier 2015). With these tools, several 

studies using non-model organisms have used environmental gradients to infer local adaptation 

to climate (Branco et al. 2017; Harrisson et al. 2017), urbanization (Harris & Munshi-South 

2017), or salinity (Guo et al. 2015). Altitudinal gradients are particular suitable to study 

selection pressures imposed by environmental variables, as they are often steep and occur at 

relatively small geographic scales. Therefore, local conditions can vary dramatically over short 

spatial distances (Körner 2007). This potentially offers the benefit of studying adaptive 

differentiation in the face of gene flow and without having the confounding effect of 

populations’ individual demographic histories (Keller et al. 2013). The most obvious 

environmental changes along altitudinal gradients are decreasing atmospheric pressure and 

oxygen levels (hypoxia), decreasing temperature, and increasing solar radiation intensity with 

increasing altitude (Körner 2007). Using genome-wide data and population genetic methods, 

genetic evidence for physiological adaptation to high altitude have been found in a range of 

mammals such as humans, pigs, sheep, goats and dogs (e.g. Ai et al., 2014; Gou et al., 2014; 

Simonson et al., 2010; Song et al., 2016; Wei et al., 2016). 

It has been suggested that small mammals experience particularly strong selection pressure 

caused by the physiological challenges in high-altitude environments. With their small body 

size and proportional large body surface they have to sustain high rates of aerobic metabolism 

to support thermogenesis and locomotion, which is particularly challenging at high altitude 

under cold conditions with only limited levels of oxygen available (Tucker 1970; Hayes 1989). 

For example, high-altitude populations of deer mice (Peromyscus maniculatus) evolved 

physiological differences in aerobic exercise performance and thermogenic capacities in 

hypoxic conditions compared to their lowland counterparts (Cheviron et al. 2012; Lui et al. 

2015). Genetic changes associated with these differences are related to metabolic pathways 

involved in oxygen transport and oxidative capacity of mitochondria, suggesting an adaptive 

response to cope with lower air temperatures and lower oxygen levels (Lui et al. 2015; Scott et 

al. 2015; Lau et al. 2017; Mahalingam et al. 2017). Similar, the mitochondrial haplotype of 

white-toothed shrew (Crocidura russula) is associated with non-shivering thermogenesis along 

an altitudinal gradient, also suggesting selection is acting on thermogenic capacity (Ehinger et 

al. 2002; Fontanillas et al. 2005). Finally, two independent studies of pika species living at high 

altitude (Ochotona princeps and O. roylei), identified regulatory changes in genes involved in 

metabolic function and oxygen transport that play a role in coping with low oxygen levels 
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(Waterhouse et al. 2018; Solari et al. 2018). These results suggest that among small mammals 

living at high altitude, common adaptive responses exist that help them survive in these cold 

and hypoxic conditions. 

The common vole, Microtus arvalis (Pallas, 1778), is one of the most abundant mammal species 

in Europe. Its distribution ranges from the Atlantic coast of France to the steppes of Central 

Russia, and from the Baltic sea coast in the North to the Mediterranean coast in Spain. In 

altitude, it ranges from sea level to above 2,000 m a.s.l (Fischer et al. 2011). It lives in dry 

habitats such as fields and meadows, where it builds subterranean burrows, feeding on plants, 

seeds and occasionally insects. Its life-history is characterized by a short lifespan and early 

maturation. Females show high levels of fecundity and can produce up to 5 litters per 

reproductive season (Boyce & Boyce 1988). Voles have a low and sex dependent effective 

dispersal rate. After maturation, females usually stay in close proximity to their burrow, while 

males show a high tendency to disperse among colonies (Schweizer et al. 2007; Borkowska et 

al. 2010; Hahne et al. 2011). This leads to strong genetic clustering at large (Heckel et al. 2005; 

Fischer et al. 2014) and small (Schweizer et al. 2007; Borkowska et al. 2010) geographic scale. 

As opposed to many other species during the last glacial maximum (LGM), M. arvalis had 

surviving populations not only in the south in refugia located on the Balkan and the Iberian 

Peninsula (Hewitt 1999), but also survived in locations further north in Central and Western 

Europe (Fink et al. 2004; Hamilton et al. 2005; Pedreschi et al. 2019). However, colonization 

of the central regions of the Alps started only as recently as 10,000 years before present, as this 

area was covered with ice during the LGM (Hamilton et al. 2005; Braaker & Heckel 2009). 

This suggests that M. arvalis experienced higher selection pressures in its more recently 

colonized high-altitude environments compared to longer-term inhabited low-altitude 

environment. 

Evidence for local adaptation associated with altitude comes from two previous studies. By 

comparing populations living at different altitudes, Fischer et al. (2011) identified signatures of 

local adaptation associated with high altitude in four Alpine populations using AFLP markers 

(1.25% of markers). A second study, on a larger European scale, uncovered that about 6.7% of 

the studied AFLP markers were under positive selection, and geographic patterns suggest that 

many of these are associated with Alpine regions favoring adaptation as a result of their extreme 

environmental conditions (Fischer et al. 2014). Unfortunately, the use of anonymous markers 
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in these studies prevented them from obtaining information about the genetic regions or putative 

genes involved in local adaptation of M. arvalis. 

Here, we employed a double digest restriction-site associated DNA (ddRAD) sequencing 

approach to generate tens of thousands of SNPs in M. arvalis across six study sites sampled at 

high and low altitude in the Swiss Alps. Our primary aim was to identify candidate genes 

involved in evolutionary adaptation to high altitude. To this end, we used a set of outlier 

methods to identify loci with signatures of positive selection and specifically searched for 

signals of divergent selection between high and low altitude populations, while accounting for 

population structure to avoid detection of false positives. 

3.3 Materials and methods 

3.3.1 Sampling, library preparation and sequencing 

We collected a total of 143 M. arvalis from three low-altitude (~ 600 m a.s.l.) and three high-

altitude sites (~2.000 m a.s.l.) in the Swiss Alps. Low-altitude sites are referred to as L1W; 

L2W; and L3E, high-altitude sites are referred to as H1; H2; and H3 (Figure 3.1, Table 3.1). 

Study sites are in close proximity to each other and are located within the distribution of the 

Central evolutionary lineage of M. arvalis, with at least 70 km distance to the nearest contact 

zone or populations carrying mitochondrial DNA from other lineages (Braaker & Heckel 2009; 

Beysard & Heckel 2014). 

 

Figure 3.1: Map of study sites of M. arvalis populations in the Swiss Alps. Circles indicate low-altitude 

(~ 600 m a.s.l.) and triangles high-altitude sites (~2,000 m a.s.l.). Codes for study sites are in Table 3.1. 

Contour lines represent 100 m change in altitude, Lake Brienz and streams are indicated in blue. 
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Voles were trapped using snap traps and tissue samples were preserved in absolute ethanol and 

stored at -20°C. Samples were then analyzed using a double digest restriction associated DNA 

(ddRAD) sequencing protocol (Peterson et al. 2012). Briefly, total DNA was extracted from 

one paw of each individual (approximately 15 mg of tissues) using the DNeasy Blood and 

Tissue kit (Qiagen) following the manufacturer’s recommendations and quantified using a 

Qubit 2.0 Fluorometer (Life Technologies Inc., ON, Canada). As DNA degradation can cause a 

loss of data when using ddRAD (Graham et al. 2015), DNA extracts were visually checked for 

degradation using 1% agarose gels and only non-degraded extracts were selected for further 

processing. For each individual, we independently digested 1 µg of DNA in 50 µl reactions for 

12 hours at 37ºC with 20 units each of EcoRI-HF and MspI-HF enzymes (New England 

Biolabs, NEB). Digests were cleaned using Sera-Mag Speedbeads (Fisher Scientific, 

Pittsburgh, PA, USA) and eluted in 40 µl of H2O. DNA concentrations were quantified using 

the QuantiFluor dsDNA systems (Promega) and each sample was standardized to 125 ng of 

digest before carrying out a ligation reaction. During this reaction, samples were ligated to P1 

adapters that contain a unique 5-nucleotide barcode (designed to ligate to the sticky end left by 

EcoRI) and a P2 forked-adapter (designed to ligate to the MspI-end). Ligation reactions were 

performed at 25°C for 1 hr, after which the enzyme was heat-inactivated at 65°C for 10 min, 

followed by a decrease of 2°C every 90 s until the reaction reached room temperature. PCR 

products for each individual were visualized on an agarose gel to ensure ligation and 

amplification. Ligated samples were then grouped into pools of 36 individuals and cleaned 

using Speedbeads. Each pool was size selected for fragments 300-400 bp in length using a 

pippin prep system (Sage Science, Beverly, MA). This range was expected to provide ~ 65.000 

ddRAD loci based on in silico digestion of the prairie vole (M. ochrogaster) genome (accession: 

GCF_000317375.1) using SimRAD (Lepais & Weir 2014). We confirmed the sizes on an 

Agilent Tapestation 2200. Next, we performed a qPCR to determine the optimal number of 

cycles for each pool, based on the start of the saturation phase on amplification plots (range: 

12-14 cycles) (Gansauge & Meyer 2013). Pools were then amplified by PCR in four parallel 

reactions of 40 µl using primers designed to only amplify fragments with P1 and P2 adapters 

according to the protocol by Peterson et al. (2012). The resulting libraries were sequenced in 

two separate runs on an Illumina NextSeq 500 using mid-output kits. We first sequenced 

libraries using 75 bp paired end (PE) sequencing after which we performed another sequencing 

run using 150 bp PE sequencing. 
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3.3.2 Mapping 

Following sequencing, raw sequences were treated with cutadapt v1.4 (Martin, 2011) to remove 

Illumina-specific adapters and trim low-quality bases from reads at their 3’ end with a phred 

score below 20. Reads were demultiplexed based on the sequence of their internal barcode not 

allowing for any mismatch using iPyrad v0.7.13 (Eaton 2014). Only reads with a minimum 

length of 35 bp were retained. Remaining reads were then mapped onto the M. ochrogaster 

reference genome using bwa-mem v0.7.8 (Li, 2013) with default parameters. We decided to 

map against a closely related genome rather than using a de novo approach, as this has been 

shown to provide better allele frequency estimates (Shafer et al. 2017). We then converted 

mapping results in SAM files into BAM files using SAMTOOLS v1.6 (Li et al., 2009), while 

filtering for a minimum mapping quality of 30 and only kept uniquely mapping reads in proper 

pairs. Finally, we performed local realignment around indels using GATK’s v3.8 (McKenna et 

al. 2010) RealignerTargetCreator and IndelRealigner (DePristo et al. 2011) to avoid incorrect 

SNPs associated with misaligned reads. 

3.3.3 Genotype calling and genotype likelihoods 

Genotype calling based on low to moderate coverage data is associated with uncertainties that 

can lead to biased estimates of allele frequencies and population genetic parameters. Therefore, 

genotype likelihoods were estimated using ANGSD v0.914 (Nielsen et al. 2012; Korneliussen 

et al. 2014). This software, specifically designed for such data, estimates genotype likelihoods 

while taking the uncertainty caused by errors in base calling, mapping and alignment into 

account. Moreover, ANGSD has the possibility to determine the major and minor allele, 

respectively, based on the genotype likelihoods, which is an advantage when aligning reads 

using a divergent reference genome (Skotte et al. 2012). This provides the best estimate of 

variability when a species-specific reference genome is not available (Nevado et al. 2014). We 

used the estimated genotype likelihood and then called genotypes using the following filters: A 

minimum base quality of 20; a maximum of 2 alleles; a minor allele frequency of 0.05 across 

all samples (minor/major alleles were inferred from the genotype likelihoods); a maximum p-

value threshold of 10-6 for calling a SNP; a minimum depth of 5 and a maximum depth of 50 

per sample and a genotype posterior probability cut-off value of 0.95. Genotypes were only 

retained if they could be genotyped in at least 70% of all individuals and in at least 12 

individuals from each study site (Huang & Knowles 2016). Finally, genotype calls were output 

in PLINK (Purcell et al. 2007) and VCF (Danecek et al. 2011) format and used in subsequent 
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genome scan methods. To avoid bias and errors in downstream analyses that can be caused by 

uncertainty in called genotypes (Johnson & Slatkin 2008; Han et al. 2014), we estimated 

population genetics parameters and examined population structure based on the likelihood of 

site frequency spectra (SFS), genotype likelihoods and genotype probabilities. For this, we 

created a second dataset containing only genotype likelihoods. We used the same filters as 

described above except that we only included SNPs with a minimum read-depth of 2, we did 

not allow for missing individuals, and included only one SNP per RAD-tag. 

3.3.4 Population diversity measurements 

We estimated population genetic diversity for individuals from each study site based on their 

SFS, which was polarized using the reference as ancestral state (Korneliussen et al. 2013). 

Nucleotide diversity was first calculated as the average number of pairwise differences (π) (Nei 

& Li 1979) and second as the proportion of segregating sites (θW) (Watterson 1975). From these 

estimates, we subsequently calculated Tajima's D (Tajima 1989). In a similar way, we estimated 

the SFS for each individual separately to calculate individual level heterozygosity. Per-

individual inbreeding coefficients (F) were estimated using ngsF (Vieira et al. 2013). Further, 

to infer relationships between individuals, we estimated the relatedness coefficient (r) between 

pairs of individuals using NgsRelate (Korneliussen & Moltke 2015). NgsRelate calculates r by 

obtaining the maximum-likelihood coefficients for K0, K1 and K2, the probability that two 

individuals share 0, 1 or 2 alleles by descent. 

3.3.5 Population structure 

To infer population structure and admixture among populations we used several methods. First, 

we ran NGSadmix (Skotte et al. 2013) with the number of clusters K ranging from two to eight 

to account for possible within-site structure. Each value of K was repeated 20 times or until 

three replicates were within one likelihood unit of the highest value. All values of K converged 

using these criteria; we therefore only report the runs with the highest likelihood here. As an 

alternative approach, population structure and relationships between individuals were 

visualized using a principal component analysis (PCA). For this, we approximated the 

covariance matrix among individuals using ngsCovar from the ngsTools suite (Fumagalli et al. 

2014). We then used the 'eigen' function in R v3.4.4 (R Core Team 2018) to calculate principal 

components and produced PCA plots. Furthermore, we estimated the weighted (ratio of sums) 

pairwise FST using the Hudson estimator (Hudson et al. 1992; Bhatia et al. 2013), based on the 
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two-dimensional SFS for each population pair. We tested for patterns of isolation by distance 

(IBD) by testing the correlation between pairwise linearized FST values [FST/(1-FST)] and the 

log-transformed geographic distance (Rousset 1997), using a Mantel test with 1,000 

permutations in the R package 'Vegan' (Dixon 2003). 

3.3.6 Identifying loci under selection 

We used different genome-scan methods with the called genotypes dataset in order to identify 

SNPs likely to be differentiated as a result of selection. A major problem for such methods is to 

clearly distinguish between genetic signals left by neutral processes and selection, respectively. 

Therefore, it is recommended to combine multiple methods as this reduces error rates and false 

positives (de Villemereuil et al. 2014; François et al. 2016).  

First, to detect loci which are highly differentiated between populations, we implemented two 

FST-based methods. Bayescan v2.1 (Beaumont & Balding 2004; Foll & Gaggiotti 2008; Fischer 

et al. 2011) identifies SNPs that show extreme FST-values between populations compared to 

what would be expected under neutral processes. We ran three replicates using the software’s 

default values, using a prior odds value of 100 and a q-value cutoff of 0.1 (corresponding to a 

false discovery rate (FDR) of 10%). SNPs were considered outliers if they were identified in 

each replicate. BayeScan requires individuals to be grouped into populations a priori. In our 

analysis, individuals were grouped into 6 populations according to study site. Next, we used 

Pcadapt v3.1 (Luu et al. 2017), a principal components-based method that does not need a priori 

grouping of individuals into populations. Instead, Pcadapt requires users to estimate the correct 

number (K) of principal components that need to be retained in order to correct for neutral 

population structure. We decided upon K=5, after first running Pcadapt with K=1-20 and based 

on visual inspection of the resulting scree plot using Cattel's rule (Cattell 1966), as 

recommended by the authors. SNPs with a q-value < 0.1 were considered outliers. 

We also used two complementary GEA-based methods to identify outlier SNPs that are 

associated with differences in altitude (coded as 1 and -1 for high and low-altitude populations, 

respectively). 

First, we used BayPass (Gautier 2015), which accounts for demographic history of populations 

by computing a population covariance matrix based on the population's allele frequencies and 

then tests for non-random association between covariables and population allele frequencies 

using a Bayesian framework. The BayPass model is an extended and improved version of the 
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Bayenv model proposed by Coop, Witonsky, Di Rienzo, & Pritchard (2010) and Günther & 

Coop (2013), which improves estimation of the population covariance matrix and includes a 

complete reprogramming of the Markov Chain Monte Carlo (MCMC) algorithm. We first 

estimated the population covariance matrix using the core model with 20 pilot runs of 1,000 

iterations, followed by a burn-in of 50,000 iterations and an MCMC procedure of 50,000 

iterations, sampling every 25 iterations. Then we ran BayPass in the auxiliary covariate model 

with the same settings, while using the previously estimated covariance matrix to identify loci 

associated with altitude. We considered individuals to come from three populations as this best 

represents the population structure as identified by principal component analysis and admixture 

analysis (see Results section). We performed five independent runs under the auxiliary model 

to check for consistency of the estimates and then calculated the median Bayes Factor (BF) for 

each SNP. As a decision rule for association of a SNP with the low/high altitude status of 

populations, SNPs with a BF > 15 decibans, suggesting very strong evidence for selection 

according to the Jeffreys scale (Jeffreys 1961), were considered as outlier SNPs under selection.  

Second, we used latent factor mixed models (LFMM) to test for genotype-environment 

associations using the LEA R-package (Frichot & François 2015). LFMM uses a univariate 

mixed-model approach that estimates the correlation between allele frequencies and 

environmental values, while taking into account the neutral genetic background and levels of 

ancestral population structure by using so-called latent factors, which represent the genetic 

structure of the data (Frichot et al. 2013). To define the appropriate number of latent factors, we 

used the snmf function to determine the number of hidden genetic clusters (K). We identified 

the best value of K by comparing the cross-entropy score in the snmf analyses for each K 

between 1 and 15 with 20 repetitions each and chose the proper K-value where there was no 

further strong decline in cross-entropy score. We then performed 10 independent runs of LFMM 

to test for association of allele frequencies with altitude, using 50,000 burn-in cycles followed 

by 100,000 iterations, with K=3. From these we calculated the median z-scores and then 

readjusted the p-values using the genomic inflation λ, calculated as median(z-scores2)/0.456 

(Devlin & Roeder 1999). Finally, we obtained a list of outlier SNPs after controlling for multiple 

testing using the Benjamini-Hochberg procedure (Benjamini & Hochberg 1995) with an 

expected FDR equal to 10%. Outlier SNPs detected by at least two methods were considered 

candidate SNPs for further analysis (de Villemereuil et al. 2014). 
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3.3.7 SNP annotation and gene ontology 

We obtained annotations for each SNP using the annotation release 101 provided with the M. 

ochrogaster reference genome. We then used biomart (Smedley et al. 2015) and the Ensembl 

genome database to find homologous Mus musculus genes for each M. ochrogaster gene and 

used these to retrieve associated gene ontology (GO)-terms using the UniProt knowledgebase 

(Bateman et al. 2017). To evaluate over-represented terms of biological process ontologies, we 

used the Bioconductor package topGO (Alexa & Rahnenführer 2010), to compare our list of 

candidate SNPs with all identified genes with a SNP. We used a Fisher's exact test and the elim 

algorithm to account for correlation in the GO graph topology, and report those GO-terms with 

a p-value < 0.01 and at least 3 associated genes. 

3.4 Results 

3.4.1 Sequencing results and filtering 

We used a ddRAD-sequencing approach for genome-wide genotyping of 143 individuals of 

M. arvalis from six locations in the Swiss Alps. In total, we obtained 93,862,985 reads during 

two runs of sequencing. After filtering for low quality reads and assigning individuals to 

barcodes, this resulted in an average of 654,229 (SD = 227,696) high-quality PE reads per 

individual ranging from 14.1 to 17.1 million reads per study site. Of these, approximately 

83.4 % (SD=2.2%) aligned to the M. ochrogaster reference genome. Amongst individuals, 

mapped reads covered an average of 14,158,248 (SD=524,786) nucleotides of the genome 

(~0.62%) with an average sequencing depth of 5.60X (SD=1.50) ranging from 2.69X to 10.48X 

per individual. After filtering, we obtained genotype information for a total of 19,119 SNPs, 

corresponding to 9,318 RAD-tags, that can be used in downstream genome scan analyses. In 

addition to this we obtained genotype likelihoods for 2,358 SNPs for use in population genetic 

analyses. These were calculated for independent SNPs that contained genotypic data for all 

individuals. 

3.4.2 Genetic diversity statistics 

First, we estimated genetic diversity for each of the six study sites (Table 3.1). The number of 

pairwise differences and the number of segregating sites was very similar for each location and 

did not differ significantly between high and low-altitude sites, although all estimates were 

slightly lower in high-altitude sites. The genome wide average Tajima’s D was positively 

skewed for all sites, ranging from 0.56 to 0.78 and did not differ significantly between high and 
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low-altitude sites. Inbreeding coefficients (F) were generally low, but varied among 

populations. Results from NgsRelate suggest varying degrees of relatedness of individuals 

within populations. Except for three individuals from H2, which are related to an individual 

from H1, we did not find evidence for relatedness between individuals from different study sites 

(Appendix A: Table S3.1). Individual levels of heterozygosity were generally high and there 

was no significant difference among populations, except for H3, which was lower in all pairwise 

comparisons with low-altitude sites (Tukey's HSD tests; p < 0.05).  

 

3.4.3 Population structure and differentiation 

Next, we examined population structure using the dataset with genotype likelihoods. All 

analyses showed a general pattern of neutral genetic structure based on the geographic context 

of study sites. Analyses using NGSadmix revealed a clear pattern of genetic clusters when 

considering a K value of three, with little admixture between genetic clusters and an assignment 

probability to a single genetic cluster above 90% for each individual. Here, individuals from 

L3E form a single distinct cluster, another cluster is formed by individuals from L1W and L2W, 

and a third cluster consists of all high-altitude individuals from H1, H2 and H3 (Figure 3.2). 

Higher values of K revealed additional substructure associated with geographic location. With 

K=6, individuals are coarsely grouped into clusters coherent with their geographic sampling 

location, except for individuals from H1 and H2, which are also the geographical closest to each 

other.

Table 3.1: Overview of characteristics and genetic diversity statistics (mean ± standard deviation) of M. arvalis 

at six study sites from low and high altitude in the Swiss Alps. Population ID (ID), sample size (n), altitude in 

metre above sea level, Watterson’s theta (θW), Tajima’s pi (π), Tajima’s D, heterozygosity - the proportion of 

heterozygous genotypes, inbreeding coefficients (FIS) and the kinship coefficient (r) are displayed. 

 

ID Study site n Altitude (m) Latitude Longitude θW π Tajima’s D Heterozygosity FIS r

Low altitude

L1W Wilderswil 24 580 46.670 °N 7.873 °E

0.00140 

(0.00163)

0.0021 

(0.0027)

0.68    

(1.10)

0.00123 

(0.00012)

0.004 

(0.009)

0.04 

(0.02)

L2W Böningen 24 585 46.676 °N 7.887 °E

0.00138 

(0.00149)

0.0020 

(0.0024)

0.78    

(1.15)

0.00122 

(0.00013)

0.015 

(0.041)

0.04 

(0.01)

L3E Meiringen 23 580 46.738 °N 8.124 °E

0.00137 

(0.00155)

0.0020 

(0.0025)

0.77    

(1.12)

0.00125 

(0.00013)

0.000 

(0.000)

0.01 

(0.01)

High altitude

H1 Waldspitz 24 2,060 46.660 °N 8.046 °E

0.00138 

(0.00155)

0.0020 

(0.0025)

0.71     

(1.07)

0.00124 

(0.00021)

0.016 

(0.052)

0.05 

(0.02)

H2 Schreck-Feld 24 2,036 46.662 °N 8.062 °E

0.00132 

(0.00168)

0.0019 

(0.0027)

0.56    

(1.04)

0.00113 

(0.00014)

0.014 

(0.026)

0.03 

(0.02)

H3 Grosse Scheidegg 24 1,980  46.659 °N 8.098 °E

0.00119 

(0.00136)

0.0018 

(0.0023)

0.78    

(1.16)

0.00109 

(0.00009)

0.003 

(0.009)

0.06 

(0.01)
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The first two components of the PCA using ngsCovar explain 16.2% of genetic variation and 

also clearly suggest a similar clustering of individuals based on their geographic location 

(Figure 3.3). The first axis, which explains 10.9% of genetic variation, shows a cluster of 

individuals from L1W and L2W separated from a cluster of individuals from high-altitude study 

sites of H1, H2 and H3. The second axis, which explains 5.3% of genetic variation, shows 

individuals of L3E in a cluster separated from the individuals from the other study sites. 

Analyses using the called genotypes dataset provide the same general pattern (Appendix A: 

Figure S3.1 and Figure S3.2). The inferred population structure corresponds well with genomic 

pairwise FST-values, which revealed high levels of population differentiation ranging from 0.05 

(H1 vs. H2) to 0.32 (L2W vs. H2). High FST-values for L3E were found in all pairwise 

Figure 3.2: Admixture proportions using NgsAdmix based on 2,358 variable sites with various numbers of 

ancestral populations (K= 2-6) of M. arvalis. Each individual is represented by a column with colours 

corresponding to the proportions of their ancestry component. Vertical black bars separate study sites. Codes 

for study sites are in Table 3.1. 
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comparisons (all pairwise FST-values > 0.23) (Appendix A: Table S3.2). Pairwise FSTs were 

positively correlated with differences in geographic distance (Mantel’s r = 0.87, p < 0.01; 

Appendix A: Figure S3.3a). As this result might be driven by the bimodal nature of the data, we 

also tested this with only distant sites, however, results remained significant (Mantel’s r = 0.68, 

p = 0.03; Appendix A: Figure S3.3b). Pairwise FSTs did not correlate with differences in altitude 

(Mantel’s r = 0.82, p > 0.1). 

3.4.4 Candidate loci under selection 

In total, all approaches together identified 696 (3.6%) outlier SNPs belonging to 546 unique 

RAD-tags. First, using FST-based methods to detect SNPs under divergent selection, we 

identified a total of 587 SNPs (3.1%) as outliers. BayeScan identified 226 SNPs (1.2%, in line 

with the findings of Fischer et al. (2011) as outliers using an FDR of 10%, with 80 of these 

found in genes. None of these outliers were found to be under balancing selection. Analysis 

with Pcadapt resulted in 430 SNPs (2.2%) detected as outliers, 156 of which were located within 

a gene. Of all SNPs detected by FST-based approaches, 69 SNPs (7.3%) were detected by both 

BayeScan and Pcadapt (Figure 3.4a). Analysis with BayPass revealed that 115 SNPs (0.6%) 

were significantly associated with altitude using a Bayes factor above 15. Out of these, 44 were 

located within a gene. LFMM was more conservative, identifying 92 SNPs (0.5%) as associated 

with altitude using an FDR of 10%, 22 of which were located within a gene. This combined to 

a total of 181 SNPs (0.9%) detected using GEA-based methods, of which 26 SNPs (14.4%) 

Figure 3.3: Neutral genetic structure of populations as depicted by the first two principal components 

of a PCA based on pairwise genetic covariance among 143 individuals with 2,358 variable sites of from 

six M. arvalis study sites. Codes for study sites are in Table 3.1. 
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were identified by both methods (Figure 3.4b). There was little overlap between SNPs detected 

using different approaches. First, only 72 SNPs (10,3%) were overlapping between FST-based 

methods and GEA-based methods, and only 7 SNPs were detected by all four methods 

(Appendix A: Figure S3.4). Together these combined to 127 candidate SNPs detected by at least 

two methods. Of these, 46 were located within genes, representing 37 unique genes. Several of 

these genes were associated with known function in hypoxia signaling pathways, red blood cell 

production, angiogenesis and energy metabolism (Table 3.2). Enriched terms for our candidate 

SNPs tended to be rather general, but two interesting terms related to circadian rhythm and 

glomerulus development, respectively, were also detected (Appendix A: Table S3.3). 

  

Figure 3.4: Results of outlier detection based on 19,119 SNPs in six M. arvalis study sites. (a) BayeScan plot 

with FST on the y-axis plotted against the log10 of the q-values. The vertical line indicates the cut-off 

(FDR=10%) used for detecting outliers with BayeScan, detected SNPs are on the right side of this line. Red 

circles indicate SNPs detected as outliers by Pcadapt. (b) Results of the genotype-environment association 

analyses with low-altitude populations coded as -1 and high-altitude populations coded as 1. Depicted is the 

correlation between Bayes Factor (in decibans) from the BayPass analysis and the -log10 of q-values from the 

LFMM analysis. The vertical line represents the BF > 15 deciban decision rule for detected outliers with 

BayPass. SNPs on the right side of this are detected as outliers. The horizontal line represents the value of the 

Benjamin-Hochberg correction threshold for outliers detected with an FDR of 10% with LFMM. Circles above 

this line in red are detected as outliers by LFMM. 
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3.5 Discussion 

Despite strong patterns of neutral population structure and IBD across populations, we were 

able to detect signatures of divergent selection, suggesting adaptive divergence as a result of 

altitudinal selection across six populations from different altitudes of M. arvalis. We did so by 

genotyping a total of 19,199 SNPs amongst populations and used landscape genomic 

approaches to identify loci that show patterns of spatially divergent selection. Of the many loci 

that we identified as outliers, 127 candidate loci were affected by spatially varying selection 

pressures associated with altitude, and 46 of these are of particular interest as they were located 

within 37 genes with functional annotation. These provided evidence for functional adaptation 

to specific selection pressures occurring in high-altitude environments such as low temperatures 

and hypoxia. 

We found high levels of differentiation among study sites and a clear pattern of neutral 

population structure represented by three major clusters, most likely shaped by a pattern of 

isolation by distance. High levels of population differentiation are not uncommon for common 

vole populations. This is caused by recurring local population crashes and limited dispersal 

capabilities of this species, resulting in low levels of effective gene flow between populations. 

Our findings are in line with studies on other populations of this species, which found high 

levels of differentiation on a European wide scale (Heckel et al. 2005; Fischer et al. 2014), as 

well as between patchily distributed populations no further than 2.5 km apart (Schweizer et al. 

2007; Borkowska et al. 2010). Surprisingly, a stream between the two proximate study sites 

L1W and L2W, which we expected to form a potent barrier for gene flow (Ratkiewicz & 

Borkowska 2006), did not result in greater differentiation between these populations compared 

to differentiation between other proximate populations in this study. Theoretically, only a few 

migrants each generation are enough to create a panmictic population (Slatkin 1987; Mills & 

Allendorf 1996) and short distance gene flow is supported by the discovery of descendants of 

a recent immigrant from H1 into H2, which shows that individuals can travel the distance 

between these geographically close study sites (Saxenhofer et al. 2019). Thus, it is maybe not 

surprising that we find a clear signal of population differentiation between distant study sites 

and only comparatively little differentiation among sites within close proximity. We found that 

genetic variation was slightly lower and levels of inbreeding and relatedness higher in high-

altitude populations compared to low-altitude populations. High-altitude populations might 

experience increased population fluctuations as a result of longer and colder winters, resulting 
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in more extreme bottlenecks, which could reduce the amount of genetic variation present (Nei 

et al. 1975; Frankham 1995). Alternatively, lower levels of genetic variation in high-altitude 

populations might be a remnant of the recent colonization of higher altitudes in this area 

(Hamilton et al. 2005; Lischer et al. 2014), and shaped by historical events causing loss of 

genetic variation due to founder effects and increased genetic drift during range expansion 

(Heckel et al. 2005; White et al. 2013). 

The different genome-scan methods used to detect loci that are potentially involved in local 

adaptation to high altitude allowed identification of a total of 696 candidate loci. Overlap 

between different methods was limited, as only 18.2% of outliers were detected by at least 2 

methods, and only 7 SNPs were identified as outlier by all four methods. However, such results 

are not uncommon (de Villemereuil et al. 2014; Harrisson et al. 2017) and are in this case likely 

caused by the assumed modes of selection that form the basis of each test, which are divergent 

local selection in the FST-based methods versus positive selection associated with difference in 

altitude in the GEA-based methods. Moreover, outlier methods are based on different 

assumptions regarding demographic effects and use different methods to control for 

confounding effects of population structure. This results in different outliers detected depending 

on the methods used (de Villemereuil et al. 2014; Lotterhos & Whitlock 2015). In our analyses, 

FST-based methods detected considerable more outliers than GEA-based methods, suggesting 

that at least some of the outliers detected by FST-based methods may be related to divergent 

selection among populations rather than altitudinal selection. The difference between both 

methods becomes clear when comparing PCA plots based on outliers detected by FST-based 

methods with outliers detected using GEA-based methods (Appendix A: Figure S3.5). The PCA 

plot of loci detected by FST-based methods shows a pattern very similar to the genome wide 

pattern of neutral population structure (Appendix A: Figure S3.5a). In contrast, the PCA plot 

based on outliers detected with GEA-based methods shows a pattern that would be expected 

from loci shaped by divergence associated with altitude that clearly stand out from the pattern 

of neutral genetic structure (Appendix A: Figure S3.5b). It is a general problem of genome scans 

that when model assumptions are not met, increased false positive rates may be the consequence 

(De Mita et al. 2013; de Villemereuil et al. 2014; Lotterhos & Whitlock 2014). As a conservative 

approach, we required candidate loci to be detected by at least two genome scan methods. 

Although it remains possible that the association of certain SNPs with altitude is resulting from 

drift or allele surfing during range expansion (Klopfstein et al. 2006; Hofer et al. 2009), 
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geographical proximity and common evolutionary background makes this relatively unlikely in 

our case (Fischer et al. 2011). Moreover, we identified several candidate genes that have been 

linked to high altitude adaptation in previous studies. 

Organisms living at high altitude are confronted with considerable physiological challenges 

caused by reduced oxygen levels, low ambient temperatures and increased UV radiation. 

Therefore, it is perhaps unsurprising that there is ample evidence for adaptive changes as a 

result of residing at high altitude (reviewed in Cheviron & Brumfield, 2012; Storz, Scott, & 

Cheviron, 2010)). In humans and other large mammals, these changes involve adaptations in 

oxygen binding, energy metabolism and responses to UV radiation (Storz et al. 2010; Ai et al. 

2014; Foll et al. 2014; Simonson 2015; Wei et al. 2016; Bigham 2016). To ensure proper aerobic 

performance for thermogenesis, the tissue has to be adequately provided with oxygen, which is 

impaired in the hypoxic conditions at high altitude (Storz et al. 2007; Storz et al. 2010). High-

altitude residents have evolved numerous adaptations in the oxygen delivery system to increase 

the amount of oxygen transported to the tissue. Interestingly, many of the genes found to be 

under selection linked to hypoxia in these studies are related to the hypoxia-inducible factor 

(HIF)-pathway. This pathway includes numerous transcription factors that function as master 

regulators of oxygen homeostasis by coordinating the transcriptional response to hypoxia 

(Semenza 2007; Semenza 2009; Bigham & Lee 2014). Cold, hypoxic high-altitude 

environments are particularly challenging for small endothermic mammals. They only have a 

small tissue-volume to produce heat compared to their large surface area via which they lose 

heat. Consequently, small mammals are constantly challenged by high thermogenic demands. 

Therefore, they have to sustain high levels of aerobic metabolism to support locomotor activity 

and thermogenesis, which requires a high rate of oxygen transport (Hayes, 1989; Li et al., 2001; 

Tucker, 1970). This problem has intensively been studied in high-altitude deer mice (P. 

maniculatus), which have adapted to their environment by changes in oxygen transport, 

mitochondrial oxidative capacity and metabolic substrate sources (reviewed in McClelland & 

Scott, 2018; Storz, Cheviron, McClelland, & Scott, 2019). 

Out of the 127 candidate loci that we identified, 46 loci reside within 37 known genes, and 

functional annotation of these genes suggests that many of these are associated with oxygen 

transport and metabolic processes, probably as a response to chronic low oxygen levels and 

increased metabolic demands at high altitude. We identified signals of selection in two genes 
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that are involved with the formation of blood vessels. Arntl is involved in the regulation of 

vascular development (Jensen et al. 2012; Jensen & Cao 2013). Likewise, Map2k5 interacts 

with the HIF-pathway to control angiogenesis (Doebele et al. 2009; Biyashev et al. 2010) and 

is found to be under selection in high-altitude Mongolians (Xing et al. 2013). These findings 

are in line with genetic changes found in high-altitude populations of deer mice that cause 

greater capillarity in skeletal muscles when compared to their lowland counterparts, and are 

assumed to have been selected because they should increase the capillary surface area and the 

capacity to extract oxygen from the blood (Lui et al. 2015; Scott et al. 2015). Other evolved 

changes in high-altitude populations include a dampened rise in blood hemoglobin (Hb) levels 

in hypoxic conditions compared to low-altitude populations (Black & Tenney 1980; Beall & 

Reichsman 1984; Monge & Leon-Velarde 1991). This blunted rise is considered an attenuation 

of the maladaptive increase in blood Hb levels that increases blood viscosity and impairs 

oxygen transport (Beall et al. 2010; Storz et al. 2010; Petousi et al. 2014). Additionally, they 

have evolved increases in the Hb-O2 affinity of red blood cells to enhance oxygen delivery, 

resulting from genetically based changes in Hb-functioning (Storz 2016; Natarajan et al. 2018). 

We identified a signal of selection in Rora, which induces transcription of hypoxia-inducible-

factor-1alpha (HIF-1ɑ) in the HIF-pathway (Kim et al. 2008) and which was found to be 

strongly associated with phenotypic variation in Hb concentration of Amhara Ethiopians living 

at different altitudes (Alkorta-Aranburu et al. 2012). We further identified a number of genes 

that are involved in erythropoiesis. For instance, Gata1 is a transcriptional regulator of 

erythropoiesis, which is upregulated under hypoxic conditions by HIF-1ɑ (Pevny et al. 1991; 

Zhang et al. 2012) and Epb41 plays a critical role in erythrocyte shape as a constitute of the 

erythrocyte-membrane cytoskeletal network (Anderson & Lovrien 1984). Changes in these 

genes might play a role in differences in erythrocyte size and shape found in high-altitude 

populations compared to low-altitude populations (Bullard et al. 1966; Weber 2007; Zhong et 

al. 2015). 

As a response to the cold hypoxic conditions, high-altitude populations have evolved changes 

in metabolism and substrate use with some evidence for genetic changes in functionally relevant 

pathways (Cheviron et al. 2014; McClelland & Scott 2018; Storz et al. 2019). These include a 

greater reliance on carbohydrate use during exercise compared to low-altitude counterparts 

(Cheviron et al. 2014; Lau et al. 2017) and high rates of fatty acid oxidation to support 

thermogenesis (Cheviron et al. 2012). We found signals of divergent selection in a number of 
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genes that function in metabolic processes associated with substrate selection. For instance, 

Arntl, which influences angiogenesis (see above), also interacts with HIF-1ɑ under hypoxia to 

mediate substrate selection according to the time-of-day (Peek et al. 2017) and Lgr4 regulates 

the balance between carbohydrate and lipid metabolism in skeletal muscle (Sun et al. 2015). 

Likewise, a signal of selection on the derived high-altitude SNP was found in Mcu, which is 

involved in calcium uptake in the mitochondria (Baughman et al. 2011), responsible for 

mitochondrial metabolism and determining cell fate (Shanmughapriya et al. 2015; Kamer & 

Mootha 2015). Mcu is associated with metabolic substrate selection during exercise in skeletal 

muscle of mice, and a mouse model lacking Mcu led to impaired carbohydrate metabolism and 

enhanced preference for fatty acid oxidative metabolism (Kwong et al. 2018; Gherardi et al. 

2019). Finally, we identified a signal of selection in Mrc1. Expression of this gene is correlated 

positively with mitochondrial gene expression in humans (Moreno-Navarrete et al. 2013) and 

was more highly expressed in high-altitude deer mice compared to their low-altitude 

counterparts (Scott et al. 2015). Altogether, the selection signals detected for these genes 

suggest a substantial genetic basis of adaptation to living at high altitude in M. arvalis and 

contribute by enhancing oxygen delivery and thermogenic capacity.  

The observation that some of these genes and related pathways have been associated with high 

altitude in other studies suggests that high-altitude populations of several species have evolved 

in a similar manner as a response to the unique conditions at high altitude. These results suggest 

that adaptation to high altitude is on a molecular level at least to some extent predictable, as has 

been shown for other adaptive processes (Blount, Lenski, & Losos, 2018; Martin & Orgogozo, 

2013; Ujvari et al., 2015). However, the physiology of high-altitude adaptation is complex, and 

our results suggest that while natural selection has acted in parallel on a small set of genes 

during the process of adaptation to high-altitude environments in different species, we also 

found a number of candidate genes that have not been detected in previous studies. Thus, on 

the molecular level, parallel adaptation in different evolutionary lineages may work on a core 

set of genes detected in all cases, and accessory sets of genes that differ between each 

evolutionary lineage that becomes adapted to the respective conditions. 
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4.1 Abstract 

Detecting spatially varying selection and adaptive variation can provide insight into a species' 

ability to adapt to different environments. However, despite advances in genomic technologies, 

detecting the footprints of selection remains challenging in natural populations. In this study, 

we analyzed ddRAD sequencing data (21,892 SNPs) to examine population structure and use 

geographic variation in climate to test for signatures of adaptive differentiation across twelve 

populations of bank voles (Myodes glareolus) distributed throughout Europe. Accurately 

detecting signals of selection requires controlling for population structure, which can be 

challenging when collinearity between climate and population structure exist. We therefore 

used methods that control for population structure. First, we used two univariate genotype-

environment association methods to identify loci under spatially varying selection associated 

with climate variation. We then employed a multivariate approach, redundancy analysis (RDA), 

to additionally identify subtle signatures of polygenic adaptation. These methods identified a 

total of 213 candidate loci, of which 74 were found within genes. These genes were associated 

with functions related to energy homeostasis and immune system functioning. We then used the 

result of the RDA to show that climate and population structure have similar effects in shaping 

genetic variation, but that a part of genetic variation (48.7%) can be accounted for by their joint 

effects. Thus, making it difficult to separate signatures of local adaptation from neutral patterns 

of population structure. Further, by examining outlier loci only, we find that among the tested 

climate variables, annual mean temperature is one of the main factors driving adaptive genetic 

variation. By using a combination of landscape genomics approaches, our study sheds light on 

the genome-wide adaptive differentiation and the spatial distribution of variants underpinning 

adaptive variation shaped by local climates in bank voles.  
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4.2 Introduction 

Understanding how organisms adapt to their local environment is one of the central questions 

of evolutionary biology. It is generally accepted that genetic variation within and between 

populations is affected by the local environment in which organisms reside. If individuals are 

locally adapted, they have higher fitness in their native habitat than individuals from other 

populations (Kawecki & Ebert 2004; Storz 2005; Hereford 2009). Natural selection acting on 

phenotypic traits responsible for local adaptation can lead to changes in locally adapted 

populations phenotypes. Evidence for divergent selection acting across clinal variation in 

environments is evident from phenotypic differentiation among populations (Stinchcombe et 

al. 2004; Stillwell 2010). Which is assumed to be driven by a combination of phenotypic 

plasticity and variation in selection pressures stemming from local environmental conditions 

acting on genetic variation (Kawecki & Ebert 2004; Savolainen et al. 2013; Diamond & Martin 

2016). The genetic basis for environmental adaptation has been uncovered for a few obvious 

traits with clear phenotypic characteristics, such as variation of coat color in mice associated 

with environmental background color (Nachman et al. 2003; Linnen et al. 2009), reduction of 

armor plating in sticklebacks as a response to freshwater colonization (Cresko et al. 2004; 

Colosimo et al. 2005). These examples aside, information on phenotypic variation is often 

scarce for many wild species, which makes it difficult to detect the genetic basis of 

environmental adaptation.  

However, positive selection due to local adaptation leaves genomic signatures and genome-

scans can be used to pick up these signals that vary strongly within and between populations 

(Rellstab et al. 2015; Hoban et al. 2016). Genomic scans make use of variation in thousands of 

SNPs across the genome to identify loci that harbor signals of selection. FST-outlier tests can be 

used to detect loci showing signatures of divergent selection (Foll & Gaggiotti 2008; Whitlock 

& Lotterhos 2015; Luu et al. 2017), but these do not provide information on the agent of 

selection. In contrast, genotype-environment association (GEA)-tests, test for significant 

correlations between SNP allele frequencies across populations and variation in environmental 

variables of interest and thus reveal clues about the important drives of selection (Joost et al. 

2007; Coop et al. 2010; Günther & Coop 2013; Frichot & François 2015). Theoretical and 

empirical studies suggest that the adaptive traits responsible for adaptation to climate are 

commonly of polygenic nature and are underpinned by many genes of small effect (Pritchard 

& Di Rienzo 2010; Yeaman 2015; Wellenreuther & Hansson 2016). While genome scans 
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perform well in picking up signals of adaptive loci with large effect sizes, their ability to detect 

weak signals of polygenic selection is rather limited (Rellstab et al. 2015; Wellenreuther & 

Hansson 2016; Forester et al. 2018). This is because these methods only focus on one locus at 

the time, rather than looking at the combined signal of many individual loci simultaneously. 

Recently, multivariate methods from the field of community ecology have been introduced to 

the field of population genomics and used to test for signals of adaptive variation (e.g. Babin, 

Gagnaire, Pavey, & Bernatchez, 2017; Harrisson et al., 2017; Hoey & Pinsky, 2018; Lasky et 

al., 2012). These methods are able to analyze many loci and multiple environmental predictors 

at the same time and are thus better suited to detect signals of polygenic selection that are 

ignored by GEA-methods (Forester et al. 2018; Capblancq et al. 2018). A benefit of multivariate 

analyses is that they can also be used to inform about the proportion of the genome that is 

affected by spatial varying selection and identify important environmental predictors (Lasky et 

al. 2012; Nadeau et al. 2016; Micheletti et al. 2018)⁠. As such, it can inform about the relative 

importance of neutral and adaptive variation and the relevance of environmental predictors in 

shaping adaptive differentiation. 

Recently a surge of studies has been published that use genome-scan methods to focus on 

adaptive variation in wild populations (Haasl & Payseur 2016). There is a large body of 

evidence on rodents and other small mammals showing genetic changes related to variation in 

climate and other clinal gradients. For example, Phifer-Rixey et al. (2018) found climate 

associated adaptive divergence in gene regulatory regions and genes related to metabolism and 

immunity, using Mus musculus populations along a latitudinal transect in Eastern North 

America. Harris & Munshi-south (2017) found signals of selection associated with an urban-

rural gradient in white-footed mice (Peromyscus leucopus) in genes with metabolic functions. 

Other studies identified signals of selection in genes by using altitudinal gradients (Waterhouse, 

Erb, Beever, & Russello, 2018, Folkertsma et al., in prep). However, the specific selective 

forces driving adaptation as well as the genetic loci affected by these, are much less well 

understood for larger latitudinal gradients than for shorter ones mentioned above. 

The bank vole Myodes (formerly known as Clethrionomys) glareolus (Schreber, 1780) is a 

small Eurasian forest-dwelling rodent. Its distribution ranges from the Northern latitudes of 

Scandinavia to the Southern European regions of the Mediterranean peninsulas. M. glareolus 

survived in cryptic glacial refugia during the Last Glacial Maximum (LGM) and subsequently 

recolonized the European continent (Deffontaine et al. 2005; Kotlík et al. 2006; Colangelo et 
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al. 2012). This resulted in a complex genetic structure, with eight distinct phylogeographic 

lineages described based on mitochondrial data (Wójcik et al. 2010; Filipi et al. 2015). It is 

possible that lineage-specific adaptation to local environmental conditions in refugia affected 

the potential of post-glacial recolonization of each lineage (Tarnowska et al. 2016; Ledevin et 

al. 2018), suggesting that adaptive differentiation may have played a role in determining the 

current distribution of lineages (Kotlík et al. 2014; Strážnická et al. 2018). M. glareolus is the 

rodent reservoir of Puumala virus that causes mild hemorrhagic fever with renal syndrome in 

humans. It is itself capable of tolerating infection (Bernshtein et al. 1999) but suffers only small 

negative effects on fitness (Tersago et al. 2012; Kallio et al. 2015). This has fueled studies in 

the genetic basis of pathogen tolerance and adaptive variation in several genes has been 

identified that is presumably associated with resistance against Puumala hantavirus (PUUV) 

infection (Guivier et al. 2010; Guivier et al. 2011; Guivier et al. 2014; Dubois et al. 2017; 

Rohfritsch et al. 2018). M. glareolus experience strong multi-annual fluctuations in population 

size (Stacy et al. 1997; Tkadlec & Zejda 1998; Zhigalskii 2011), have low dispersal ability 

(Viitala et al. 1994; Deter et al. 2008) and populations can be highly differentiated even at close 

geographic proximity (Gerlach & Musolf 2000; Redeker et al. 2006). Populations differ 

phenotypically and display spatial and temporal variation in characteristics such as initiation of 

breeding after winter, onset and severity of population fluctuation, body size, age structure and 

pathogen prevalence (Corbet 1964; Hansson 1985; Aalto et al. 1993; Yoccoz et al. 2001; Behnke 

et al. 2001; Kloch et al. 2010; Eccard & Ylönen 2011). Within its wide distribution, M. glareolus 

experiences a wide range of environmental conditions, which makes it an excellent species to 

study climate related adaptive variation. 

In this study, we investigated the genomic basis of adaptation to climate in M. glareolus by 

using double digest restriction site associated DNA (ddRAD) sequencing to generate 21,892 

SNPS in 276 individuals from 12 populations from across the European continent. These 

populations experienced a wide range of different climatic conditions which enabled us to look 

for genomic signatures of positive selection correlating with climate variables related to 

temperature and patterns of precipitation. We further characterized the association of genetic 

variation with population structure and climate, and identified important climate variables 

responsible for adaptive differentiation.  
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4.3 Methods 

4.3.1 Sampling 

We sampled individuals from 12 locations across the continental European range of bank voles 

(Figure 4.1). We prioritized sampling from each phylogeographic lineage (Filipi et al. 2015), to 

ensure to capture genomic variation present in each. The majority of samples for each 

population came from a single trapping location. In case individuals were sampled along a 

transect, we used the center of trapping locations as location. Sampling was performed between 

2011 and 2015. 

Figure 4.1: Sampling locations of the populations (coloured circles) of M. glareolus with annual mean 

temperature (data: www.worldclim.org (Fick & Hijmans 2017)), distribution: Shenbrot & Krasnov 2005. See 

table 4.1 for details. 
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4.3.2 Climatic data 

Geographic variation in climate was characterized by downloading a set of 10 bioclimatic 

variables considered relevant for the biology of bank voles from the WorldClim V2 dataset 

(http://www.worldclim.org/bioclim), for each of the sampling locations. Climate variables were 

reduced to principal components to reduce dimensionality using a principal component analysis 

(PCA) in R v3.4.4 with the prcomp function (R Core Team 2018) (Appendix B: Figure S4.1). 

This resulted in two climate-based principal components for use in univariate GEA-methods; 

together these retained 80% of the total original variation. PC1, which explained 62.5% of 

variation, was associated with variables related to both temperature and precipitation. PC2, 

which explained 17.1% of variation, associated mostly with precipitation related variables only 

(Appendix B: Table S4.1). 

4.3.3 Molecular methods 

Genomic DNA was extracted using the DNeasy Blood & Tissue kit (Qiagen) according to the 

manufacturer’s instructions. Extractions were visually inspection for degradation (Graham et 

al. 2015) on a 1% agarose gel and only non-degraded extracts were selected for further 

processing. Samples were then analyzed using a double digest restriction associated DNA 

(ddRAD) sequencing protocol (Peterson et al. 2012). For each sample, 1 ug DNA was digested 

for 12 hours using EcoRI-HF and MspI-HF restriction enzymes (New England Biolabs, NEB). 

After double digestion, samples were cleaned using Sera-Mag Speed beads, standardized to 125 

ng of digest, ligated with unique in-line barcodes and pooled into pools of maximally 48 

individuals before size selection. Pools were size selected using a Pippin Prep system (Sage 

Science, Beverly, MA) for fragments with 300-400bp insert size providing an estimated 38,000 

fragments based on the M. glareolus reference genome (GCA_001305785.1) (Lepais & Weir 

2014). Finally, size selected pools were PCR amplified to create multiplexed Illumina libraries. 

Here, we used a cycle number based on the start of the saturation phase on amplification plots, 

in order to avoid PCR artefacts. The resulting libraries were sequenced on an Illumina NextSeq 

500. We first sequenced libraries using 75 bp paired end (PE) sequencing after which we 

performed another sequencing run using 150 bp PE sequencing. 

4.3.4 Sequencing, mapping and genotyping 

After sequencing, raw sequences were treated with cutadapt v1.4 (Martin 2011) We remove 

Illumina specific adapters and trimmed low-quality bases at their 3’ end with a phred score 
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below 20, maintaining only reads with a minimum length of 35bp. These were then 

demultiplexed using iPyrad v0.7.13 (Eaton 2014). Reads were assigned to individuals 

according to their barcode not allowing for any mismatch. Subsequently reads were mapped 

against a modified version of the M. glareolus reference genome using bwa-mem v0.7.8 (Li 

2013) with default settings. To increase mapping results, we used in silico mate-pair libraries 

of the Cross-Species scaffolding pipeline (Grau et al. 2018) to increase genome completeness 

and contiguity of the published M. glareolus reference genome. In silico mate-pairs were 

generated using the Prairie vole (Microtus ochrogaster) reference genome (GCA_000317375.1) 

which diverged about 14 million years ago from M. glareolus (Fabre et al. 2012). Running the 

pipeline increased the N50 by a factor of > 17 and the length of the longest contig by a factor 

of almost 30, resulting in a 14.2% increase in properly paired reads after mapping (Appendix 

B: Table S4.2). Samtools v1.6 (Li et al. 2009) was used to convert the generated SAM files into 

BAM files while filtering for a minimum mapping quality of 30 and only retaining reads 

mapped in proper pairs. We conducted local realignment around indels using GATK v3.8’s 

(McKenna et al. 2010) RealignerTargetCreator and IndelRealigner modules (DePristo et al. 

2011) to avoid erroneous SNP calls due to misaligned reads. Sequencing resulted in notable 

variation in sequencing depth between individuals, which is not unusual for ddRAD 

sequencing. As this affects downstream genotyping and population genetic inference (Gautier 

et al. 2013; Arnold et al. 2013), we excluded 4 samples from our analysis with an average 

sequencing depth below 3x and applied a down-sampling approach to an average depth of 15x 

for 11 individuals with a depth substantially above 15x, which resulted in 276 individuals in the 

final dataset. Finally, as GEA-based methods require called genotypes, genotyping was 

performed using ANGSD v 0.914 (Nielsen et al. 2012; Korneliussen et al. 2014) with the 

samtools method (Li 2011) using the BAM files as input. ANGSD is specifically designed for 

low to moderate coverage data, which comes with greater uncertainty that can lead to biased 

estimates of allele frequencies and population genetic inferences. Genotypes are inferred using 

the genotype likelihoods while taking errors in base calling, mapping and alignment into 

account. Only biallelic SNP sites that passed the following filters were genotyped: a minimum 

base quality of 20; a minor allele frequency > 0.05 across all samples (minor/major alleles were 

inferred from the genotype likelihoods); a minimum p-value threshold to call a SNP of 10-6; a 

minimum depth of 5 and a maximum depth of 100 per sample. Finally, a site had to be present 

in at least 12 individuals in each of the 12 populations. We further estimated population genetics 
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parameters and examined population structure based on the likelihood of site frequency spectra 

(SFS), genotype likelihoods and genotype probabilities. This allowed us to refrain from 

genotype calling, which can result in bias and errors in downstream population analyses 

(Johnson & Slatkin 2008; Han et al. 2014). For this, we created a second dataset containing 

only genotype likelihoods. We used the same filters as described above except that we only 

included SNPs with a minimum read-depth of 2, we did not allow for missing individuals, and 

included only one SNP per RAD-tag. 

4.3.5 Population genetic inference 

Population statistics were calculated using ANGSD, by estimating the site frequency spectrum 

(SFS), either for each population or population pair (one- and two dimensional SFS) based on 

genotype likelihoods and polarizing the data by using the reference as ancestral state. Using the 

one-dimensional SFS, we computed nucleotide diversity as the average number of pairwise 

differences (π) (Nei & Li 1979) and as the proportion of segregating sites (θW) (Watterson 

1975), across each scaffold with at least 100 informative sites for each population, which we 

subsequently used to calculate Tajima's D (Tajima 1989). Accordingly, we calculated the 

weighted (ratio of sums) pairwise FST values using the Hudson estimator (Hudson et al. 1992; 

Bhatia et al. 2013) for each population pair, based on the corresponding two-dimensional SFS. 

Similarly, heterozygosity was calculated for each individual by estimating the SFS for each 

sample separately. We estimated per-individual inbreeding coefficients (F) with ngsF (Vieira et 

al. 2013). 

To infer population structure and admixture among populations, we used the software 

NGSadmix (Skotte et al. 2013). NGSadmix is software specifically designed to deal with low 

coverage sequencing data that uses a maximum-likelihood approach based on genotype 

likelihoods. In our population genetic analyses, we only selected sites with a minimum read-

depth of 2, shared by all individuals, and only included 1 site per RAD-tag, resulting in 2,476 

independent sites. We ran NGSadmix with the number of clusters K ranging from 2 to 14. For 

each value of K, the analysis was repeated 20 times. We then measured the variance of 

likelihood values of each set of 20 runs to compare validity across different K-values. Here we 

only report the runs with the highest likelihood solutions for each K. We further explored 

population structure and relationships between individuals by performing a principal 

component analysis (pca) using the same dataset. By using ngsCovar from the ngsTools suite 
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(Fumagalli et al. 2014), we approximated the covariance matrix among individuals. We then 

calculated principal components in R v3.4.4 (R Core Team 2018) using the ‘eigen’ function and 

drew pca plots using an in-house R script. We further tested for patterns of isolation by distance 

(IBD) by testing the correlation between pairwise linearized FST-values [FST/(1-FST)] and the 

log-transformed pairwise geographic distance (Rousset 1997), using a Mantel test with 1,000 

permutations in the R package 'Vegan 2.5-4' (Dixon 2003). 

4.3.6 Genome scan methods 

In order to detect signatures of local adaptation to climate under spatially varying selection, we 

sought for genomic markers that show the strongest relationship between changes in allele 

frequencies and climatic variation among populations. For this purpose, we used two univariate 

genotype-environment association (GEA) methods that test for association between allele 

frequencies and climate, while taking into account neutral population structure. 

The first univariate approach, Bayenv2 (Coop et al. 2010; Günther & Coop 2013), corrects for 

shared demographic history by taking into account the effects of population structure using a 

neutral covariance matrix of allele frequencies. We used a set of 3,000 non-linked SNPs and 

100,000 Markov Chain Monte Carlo (MCMC) iterations to estimate the covariance matrix. We 

then tested for association of each SNP with the two climate-based principal components, while 

using the covariance matrix as a null-model to control for demographic history, using 100,000 

iterations of the MCMC. To account for run to run variability, we used different seeds for 10 

independent Bayenv2 runs and calculated median Bayes Factor (BF) and Spearman’s rho (ρ) 

(Blair et al. 2014). We only considered SNPs as outliers that were among the top 5% of BF and 

were also in the top 5% of the absolute values of ρ.  

We used Latent factor mixed models (LFMM) from the R package LEA v1.6.0 (Frichot & 

François 2015) as a second univariate approach to test for association between allele 

frequencies and two climate-based principal components. LFMM corrects for underlying 

population structure by introducing hidden latent factors that account for neutral genetic 

structure within the data (Frichot et al. 2013). To determine the appropriate number of latent 

factors (K), we analyzed the genetic structure in the data based on the best estimates of genetic 

clusters inferred by sNMF's ancestry estimation program (Frichot et al. 2014). We ran sNMF 

for each number of ancestral populations (K) from 7 to 15, using alpha = 10 and 20 replicate 

runs, to determine the cross-entropy-score (CE) for each K. The best value of K was determined 
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by comparing the average CE-scores values of each K and taking the K with lowest average 

score (K = 10) (Appendix B: Figure S4.2), from which we chose the run with the lowest CE-

score for population assignment. We then performed 10 independent runs of LFMM for both 

climate-based principal components with K = 10, using 50,000 burn-in cycles followed by 

using 100,000 iterations. From these, we calculated the median z-scores and re-adjusted p-

values using the genomic inflation factor (Devlin & Roeder 1999). To correct for multiple 

testing, a Benjamini and Hochberg FDR correction was applied (Benjamini & Hochberg 1995) 

and loci with an expected FDR of 10% were identified as outliers. As the results can be sensitive 

to the number of latent factors included in the model, we also performed the analysis using 

K = 11, which had the second lowest CE-score, and the intuitive value of K = 12, for the number 

of populations we sampled. We found considerable overlap of loci detected as outliers using 

different values of K. As higher values of K resulted in a higher number of candidate loci, we 

decided to only report candidate outlier loci detected using K = 10 as a conservative approach. 

Next to univariate methods, we also used a multivariate method to test for signatures of 

adaptation. This method, redundancy analysis (RDA), is an ordination-based approach which 

extends multiple linear regression to find sets of linear combinations between a set of multiple 

response variables (SNP allele frequencies) and multiple predictors (climate and population 

structure) (Legendre & Legendre 2012). As RDA takes advantage of covarying signals of 

selection across loci, this method is able to detect signals of weak, polygenic selection (Forester 

et al. 2018). RDA and associated analyses were performed using the Vegan 2.5-4-package in R 

(Dixon 2003). The dependent matrix contained SNP allele frequencies for each population. As 

an independent matrix we first used the ten climatic variables (standardized to zero mean and 

unit variance) as predictors, but this resulted in over-parametrization of the model and 

multicollinearity among predictors. We therefore removed variables based on their variance 

inflation factor (VIF), starting with the highest, until all predictors had VIF < 10 (Zuur et al. 

2010). This resulted in 5 remaining climatic variables (Mean diurnal range, annual mean 

temperature, temperature seasonality, annual precipitation and precipitation seasonality). To 

control for the effects of population structure we performed a partial RDA (pRDA) (Lasky et 

al. 2012; Harrisson et al. 2017). Here, we used the climatic variables as constraining variables 

and, to correct for population structure, the values of each population on the first 4 axis of the 

ngsCovar analysis as conditioning variables. We identified SNPs as potential outliers that were 

in the tails of the distribution for each of the first two constrained axis, by using a cut-off that 
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was ±3 SD from the mean score, as this renders the best balance between true- and false-positive 

rates (Forester et al. 2018). 

4.3.7 Variance partitioning and the identification of important climate variables 

RDA can also be used to evaluate the variation that can be explained by the constraints used. 

For this purpose, we used RDA and pRDA to estimate the proportion of genetic variance 

explained by climate, population structure and their joint effects (describing spatially structured 

climatic variation), using the variance values (inertia) in the constrained matrix of the respective 

partial models. Significance of these models and the marginal effects of each climate variable 

were tested using Anovas with 1,000 permutations. To further assess the independent effects of 

each climate variable and to calculate the amount of genetic variance each explains, we 

performed multiple pRDA. In these, we conditioned the effect of each climate variable on the 

others and thus removed the variance due to partial correlations with other variables. In 

addition, to identify the climate variables that contributed most to adaptive variation, we 

performed pRDA on a subset of loci identified as outliers. Here, we assessed the amount of 

genetic variance in outlier loci that can be explained by climate variables. The significance of 

these models was tested using Anovas performed with 1,000 permutations. We further identified 

the variable that had the largest influence on each SNP by ranking marker scores for each pRDA 

for each climate variable. For each SNP we identified the climate variable with the highest rank 

(after Babin et al., 2017). 

4.3.8 SNP annotation and gene ontology 

As a well annotated high-quality genome for M. glareolus is missing, we attempted to find 

homologous M. ochrogaster positions for each candidate SNP using the LastZ pairwise 

alignment tool v1.04.00 (Harris, 2007). For this, we selected 20,000 bp scaffolds surrounding 

each outlier SNP and LastZ default options to compute pairwise alignments. Only alignments 

with a bitscore above 1,000 were kept from which we selected the longest alignments. These 

were used to determine the homologous position of each candidate SNP on the M. ochrogaster 

genome. We then used biomart (Smedley et al. 2015) and the Ensembl genome database to 

retrieve associated gene ontology (GO) terms of the M. musculus orthologs using the Uniprot 

knowledgebase (Bateman et al. 2017). CateGOrizer was used to analyze biological process GO-

categories and count GO-terms using the GO-slim method (Hu et al. 2008). 
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4.4 Results 

4.4.1 Sequencing results 

We used a ddRAD-sequencing approach for genome-wide genotyping, resulting in a dataset of 

276 M. glareolus from 12 locations across the Europe continent. In total we obtained 613 

million reads during two runs of sequencing. After filtering for low quality reads, assigning 

individuals to barcodes, removing low coverage individuals and downsampling high coverage 

individuals, this resulted in a dataset with an average of 1,615,845 (SD = 747,121) high-quality 

properly paired PE reads per individual that aligned to our improved reference genome. 

Sequencing results differed among populations, with per population averages ranging between 

964,915 (Vammala) and 2,608,954 (Potsdam) PE reads. High quality called genotypes covered 

an average of 8,477,465 (SD = 2,145,583) nucleotides of the genome (~0.33%) per individual. 

This resulted in a dataset with an average sequencing depth of 15.94X (SD = 5.41), ranging 

from 7.31X to 29.41X per individual. Using this data, we retrieved information for 21,892 SNPs 

on 7,679 RAD-tags shared between 12 individuals in each population, that can be used in 

genotype-environment analyses. The dataset with genotype likelihoods only for population 

genetic inference consisted of data for 2,476 variable sites with data for all individuals. 

4.4.2 Population inferences 

We used the one-dimensional SFS to estimate genetic diversity statistics for each of the 12 

M. glareolus populations (Table 4.1). The proportion of segregating sites and the average 

number of pairwise differences differed slightly between populations. The median value for θW 

was 0.0027 and varied approximately threefold ranging from 0.00160 (Gimo) to 0.00483 

(Sovata), while the median value for π was 0.00316 and varied approximately two-fold between 

0.00188 (Gimo) and 0.00407 (Radicondoli). Genome-wide average Tajima's D was highest for 

Toulouse (0.584) and positive for nine populations, while Sovata had a negative (-0.671) 

Tajima's D, just as three other populations. Positive Tajima's D values often indicate a recent 

population contraction, while negative Tajima's D values are often an indication for a population 

expansion after a recent bottleneck. Heterozygosity was generally high across populations, but 

differed significantly between populations, ranging from 0.0012 (Gimo) to 0.0025 (Sovata). 

Surprisingly, Sovata, which has the highest level of heterozygosity displays the largest level of 

inbreeding, but, although this seems counter-intuitive, inbreeding coefficient and 
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heterozygosity do not necessarily correlate (Slate 2004). Finally, kinship coefficients (r) and 

inbreeding coefficients (F) varied among populations, but were overall low. 

 

4.4.3 Population structure 

We found a clear pattern of distinct and differentiated M. glareolus populations across the 

European continent. Results from the principal component analysis showed a clear structuring 

of individuals in populations along the first 4 principal components (Figure 4.2), which 

together explained 20.14% of the total genetic variation. Component 1 explained 9.42% of 

genetic variation and separated populations along a latitudinal gradient, with a cluster of 

individuals from South-western populations, a second cluster with individuals from the 

Central European populations and Gimo in Sweden and a third cluster including all remaining 

Scandinavian populations. The second component explained 5.17% of genetic variation. It 

separated Gimo from the other Scandinavian populations and separated the three 

geographically close populations in Central Europe from the Eastern European populations. 

The third and fourth components both explain less than 5% of genetic variation, and these 

separate Gimo and Radicondoli from the other populations. Interestingly, none of the first four 

components separated the Finish populations from each other.  

 

  

 

Table 4.1: Overview of of characteristics and genetic diversity statistics (mean ± standard deviation) of 12 

sampled M. glareolus populations. Sample size (n), Watterson’s theta (θW), Tajima’s pi (π), Tajima’s D, 

heterozygosity - the proportion of heterozygous genotypes, average population inbreeding coefficients (FIS) 

and the average population kinship coefficient (r) are displayed. 

Population ID Latitude Longitude n θW π Tajima’s D Heterozygosity FIS r

Pallasjärvi Pal 68.011 °N 24.140 °E 24 0.0026 (0.0016) 0.0029 (0.0020) 0.326 (1.06) 0.0019 (0.00007) 0.014 (0.030) 0.004 (0.024)

Mäntyharju Man 61.479 °N 26.870 °E 24 0.0025 (0.0015) 0.0028 (0.0021) 0.293 (1.05) 0.0018 (0.00006) 0.004 (0.011) 0.010 (0.039)

Vammala Vam 61.377 °N 22.822 °E 23 0.0024 (0.0015) 0.0026 (0.0021) 0.244 (1.08) 0.0016 (0.00013) 0.007 (0.014) 0.006 (0.030)

Gimo Gim 60.563 °N 17.822 °E 24 0.0016 (0.0012) 0.0019 (0.0018) 0.318 (1.15) 0.0012 (0.00010) 0.003 (0.007) 0.009 (0.035)

Urwitalt Urw 53.800 °N 21.650 °E 22 0.0028 (0.0015) 0.0032 (0.0020) 0.453 (0.93) 0.0021 (0.00003) 0.016 (0.025) 0.007 (0.030)

Potsdam Pot 52.436 °N 13.041 °E 24 0.0026 (0.0014) 0.0031 (0.0019) 0.569 (0.94) 0.0020 (0.00007) 0.025 (0.034) 0.002 (0.014)

Krušné hory Kru 50.676 °N 13.561 °E 24 0.0035 (0.0019) 0.0034 (0.0023) -0.186 (0.90) 0.0021 (0.00015) 0.012 (0.026) 0.005 (0.032)

Litoměřice Lit 50.540 °N 13.937 °E 23 0.0033 (0.0017) 0.0034 (0.0021) -0.011 (0.88) 0.0021 (0.00008) 0.018 (0.025) 0.005 (0.030)

Sovata Sov 46.623 °N 25.114 °E 23 0.0048 (0.0021) 0.0040 (0.0023) -0.671 (0.76) 0.0025 (0.00016) 0.028 (0.023) 0.005 (0.023)

Radicondoli Rad 43.259 °N 11.092 °E 22 0.0035 (0.0018) 0.0041 (0.0024) 0.518 (0.85) 0.0025 (0.00016) 0.012 (0.029) 0.005 (0.042)

La Venotière Ven 47.746 °N 1.775 °E 21 0.0029 (0.0014) 0.0033 (0.0020) 0.444 (0.93) 0.0021 (0.00011) 0.006 (0.012) 0.008 (0.035)

Toulouse Tou 43.237 °N 0.824 °E 22 0.0020 (0.0013) 0.0025 (0.0020) 0.586 (1.06) 0.0016 (0.00013) 0.003 (0.011) 0.008 (0.036)
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Admixture analysis using different values of K showed a consistent pattern of differentiated 

populations (Figure 4.3). The lowest variance was found for 2 or 3 ancestral populations, but 

higher K-values reveal additional sub-structuring related to geographical location. The 2nd 

lowest variance was found for 11 ancestral populations. By using this K value, individuals are 

grouped into distinct clusters based on sampling locations, except for the individuals from 

Mäntyharju and Vammala, which form a single cluster. When 12 ancestral populations are 

assumed, individuals are grouped into clusters based on population locations, with only some 

degree of admixture suggested between individuals from Mäntyharju and Vammala, as well as 

between individuals from Krušné hory and Litoměřice. Decreasing the number of ancestral 

populations down to K = 5, suggests similarity of geographically close populations as 

individuals from geographically close areas start to cluster together, which coarsely resembles 

clustering of individuals in the principal component analysis. A similar pattern emerges from 

the results of the genomic pairwise FST-values, which revealed moderate to high levels of 

differentiation between populations (Appendix B: Table S4.3). Here, pairwise FSTs 

corresponded well with geographic proximity of populations. This is supported by Mantel tests, 

as genetic distance and geographic distance were highly correlated (r = 0.47, p = 0.002), 

suggesting a pattern of IBD. Interestingly, the population from Gimo is more differentiated from 

the Scandinavia populations than it is from Central European populations. 

Figure 4.2: Genetic structure of populations as depicted by the first four principal components of a PCA based 

on pairwise genetic covariance among 2,476 variable sites of 276 individuals from 12 M. glareolus populations, 

together components explain 20.1% of genetic variation. 
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4.4.4 Candidate loci and Gene ontology 

Univariate approaches detected a total of 975 outlier loci which were found to be associated 

with climate. These were located on 730 individual ddRAD-tags. Analyses using Bayenv2 

detected 631 outlier loci, among which 283 loci had a strong association with PC1 and 354 loci 

were associated with PC2. LFMM was more conservative and detected a total of 497 outlier 

Figure 4.3: Admixture proportions using NgsAdmix based on 2,476 variable sites of 276 individuals, with 

various numbers of ancestral populations (K= 2-12) of M. glareolus. Each individual is represented by a column 

with colours corresponding to the proportions of their ancestry components. Populations: Pal - Pallasjärvi; Man 

- Mäntyharju; Vam - Vammala; Gim - Gimo; Urw - Urwitalt; Sov - Sovata; Pot - Potsdam; Lit - Litoměřice; 

Kru - Krušné hory; Rad - Radicondoli; Ven - La Venotière; Tou -Toulouse.  
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loci, among which 134 loci were associated with PC1 and 377 with PC2. Overlap between 

methods was low with 152 outlier loci discovered by LFMM as well as Bayenv2 (15.6% of 

total). The multivariate RDA detected 485 outlier loci associated with the first 2 RDA axis. 

Overlap between univariate approaches and RDA was poor, with only 69 loci detected by both 

approaches (5.1%). Overall, a total of 1,392 outlier loci were detected using all methods 

(Appendix B: Figure S4.3), of these, we only considered outlier loci detected by at least 2 

methods as plausible candidates, resulting in 213 candidate loci. LastZ pairwise alignment of 

20kb scaffolds surrounding these resulted in 209 scaffolds that aligned to the M. ochrogaster 

genome, from which we determined the homologous SNP position. Of these, we found that 8 

candidate loci were found in exons, 86 in introns and 115 in intergenic regions, resulting in 74 

genes with one or more candidate loci (Appendix B: Table S4.4). Several of these genes were 

associated with functions in metabolism, immunology and DNA-break repair (Table 4.2). The 

GO-terms based on the M. musculus annotation most commonly assigned to genes were 

metabolism, cell communication, development and signal transduction.  

4.4.5 Variance partitioning and the identification of important climate variables 

The RDA model with only climate variables (C) revealed that a significant amount of genetic 

variance in all SNPs could be explained by climate (F = 2.09, p = 0.005), which explained 

33.2% of genetic variance (adjusted R2) among populations. In this model, only the marginal 

effects of mean diurnal range and temperature seasonality were significant and these also had 

the largest independent effects both explaining about 12% of variance while controlling for 

other climate variables. When conditioning climate on population structure (C | S), the model 

lost significance (F = 1.34, p > 0.2), but the constraining factors (i.e. climate variables) still 

explained 6.9% of the total genetic variance. However, none of the marginal effects of the 

climate variables was significant, and each independent climate variable explained less than 5% 

of the total variance (Figure 4.4, Table 4.3). Climate and population structure combined (C + 

S) explained 71.4% of genetic variance (F = 4.06, p = 0.001). Using pRDA, we identified that 

population structure explained a larger part of the total variance explained than climate. While 

controlling for population structure (C | S), climate explained 18.4% of the total genetic 

variance, and vice-versa, population structure explained 33.0% of genetic variance while 

controlling for climate (S | C). The joint effect of population structure and climate was large 

and explained 48.7% of genetic variance (Table 4.4).  
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The RDA (including all climate variables conditioned on population structure) on the subset of 

485 outlier loci detected by the RDA analysis, explained 51.1% of variance in these outliers 

(F = 3.73, P = 0.03). Results from pRDA show that only annual mean temperature explained a 

significant amount of outlier variance (52.0%, p < 0.05). Followed by non-significant effects of 

mean diurnal range (35.1%, p = 0.08) and precipitation seasonality (29.1%, p = 0.09) (Table 

4.3). The climate variable with the highest influence on outlier SNPs as detected by RDA was 

annual mean temperature, which was associated with 37.1% of the markers, followed by mean 

diurnal range which was associated with 20.8% of markers. Of the outlier loci detected by all 

methods, the primary associations were with annual mean temperature (27.5%) and annual 

precipitation (25.4%). The same picture arises when only considering candidate loci that were 

detected by at least 2 methods. Here, 28.6% of loci are associated with annual mean temperature 

and 25.4% are associated with annual precipitation (Appendix B: Table S4.5). 

 

 

Effect

Variance 

explained

Percentage 

explained

Total variance (explained+unexplained) 986.0

Total explained variance (climate + population 

structure + climate|population structure) 934.8 94.8

Climate 171.6 18.4

Population structure 308.3 33.0

Joint effect of climate and population structure 454.9 48.7

Table 4.4: Results of variance partitioning with the variance (inertia) and the 

percentage of variance explained by climate only, population structure only, and the 

joint effect of climate and population structure. 

Variable r
2

r
2

adjust
P -value r

2
r

2
adjust

P -value

AnMTemp 0.04 0.06 0.28 0.17 0.52 0.03

TempSeas 0.03 0.01 0.43 0.04 0.07 0.23

MDR 0.04 0.06 0.27 0.12 0.35 0.07

AnPrec 0.04 0.05 0.29 0.08 0.20 0.13

PrecSeas 0.04 0.04 0.29 0.10 0.29 0.09

All 21,892 SNPs 485 RDA outlier SNPs

Table 4.3: Results of pRDA to test for the unique contribution (in terms of amount of genetic variance 

explained) of each climate variables. Analysis are done separately for all 21,892 SNPs and the 485 

outlier SNPs identified by the RDA analysis. 
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4.5 Discussion 

The goal of the present study was to investigate genome-wide patterns of selection associated 

with climate amongst 12 populations from across the European distribution of M. glareolus. To 

this end, we used a ddRAD-sequencing approach to genotype 21,892 SNPs. By combining 

approaches to reduce error rate, we discovered numerous correlations between population allele 

frequencies and environmental variation. In addition to this, we used a multivariate framework 

and identified distinct climate variables responsible for adaptive genetic variation. By doing so, 

we were able to gather a picture of genome-wide adaptive variation and identified functional 

significant genes which play a role in environmental local adaptation. 

  

 

Figure 4.4: Ordination plots summarizing the results 

of the RDA analysis. (a) For the full redundancy 

analysis, including only climate variables. (b) Partial 

redundancy analysis where the effects of climate are 

conditioned on population structure. (c) Redundancy 

analysis using the 485 SNPs identified as outliers with 

the RDA detection approach, with climate conditioned 

on population structure. Sampling locations are 

represented by colored circles. Climate variables are 

represented by black arrows, with their length 

representing the amount of genetic variation explained 

by each variable on each axis and their angle the 

correlation between them. SNPs are depicted as grey 

crosses. The proportion of total variance explained by 

each RDA axis is indicated in percent along the axis. 
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4.5.1 Genetic diversity and population structure 

Patterns of genome-wide genetic variation varied among populations, this is similar to what is 

observed in other studies using genome-wide markers but on different geographical scales 

(White et al. 2013; Rohfritsch et al. 2018). Differences in genetic variation among populations 

might be caused by the fact that not all population across the distribution are cyclic (Bondrup-

Nielsen & Ims 1986; Brommer et al. 2010). Moreover, those that are may not be in the same 

phase of the cycle (Hansson & Henttonen 1985), all of which could affect population statistics 

measurements (Rikalainen et al. 2012; Norén & Angerbjörn 2014; Dubois et al. 2017).  

Populations were highly differentiated and we found a strong pattern of population structure in 

line with a signal of isolation by distance. These results are not surprising, populations 

experience recurring population crashes and effective gene flow between populations is low, 

which results in a strong pattern of isolation by distance across smaller and larger geographic 

scales (Aars et al. 1998; Gerlach & Musolf 2000; Redeker et al. 2006; Guivier et al. 2011). The 

phylogeography of M. glareolus is marked by distinct mitochondrial (mtDNA) lineages, which 

resulted from survival within glacial refugia and recolonization of the European continent at 

the end of the last glaciation (Deffontaine et al. 2005; Kotlík et al. 2006; Filipi et al. 2015). The 

patterns of population structure found here are broadly comparable with previous results based 

on mtDNA data, but some incongruence is apparent. For instance, individuals from Pallasjärvi 

were expected to form a single cluster, as individuals from this population are the only 

individuals expected to have hybridized with the red-backed vole (Myodes rutilus) (Tegelström 

1987; Boratyński et al. 2011). However, based on our nuclear data, they consistently form a 

cluster with other Finish individuals in the PCA, and only separate at higher values of K in the 

admixture analysis. Suggesting, that hybridization at the genomic level is much less apparent. 

In addition, individuals from Venotière as well as individuals from Sovata do not show any 

clustering with other individuals from their respective mtDNA clade. Such conflicting 

geographic patterns between mitochondrial and nuclear genetic markers (mito-nuclear 

discordance) are not uncommon (Toews & Brelsford 2012) and might be a result of selection 

on the mitochondrial genome (Boratyński et al. 2011; Boratyński et al. 2016; Bonnet et al. 2017; 

Stojak et al. 2019). However, as the distribution is broadly defined and clades sometimes 

overlap (Wójcik et al. 2010; Drewes et al. 2017), these results have to be taken with some 

caution. 
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4.5.2 Variance partitioning 

Results from the RDA provide the same picture. We are able to explain a large amount of the 

total genetic variation present among populations. Population structure accounted for a large 

part of the explained genetic variation, even when taking climate into account. This is in contrast 

with the effects of climate, which are non-significant and weak when controlling for population 

structure. Additionally, the contribution of individual climate variables seems to be small, as 

none of them were significantly associated with genetic variation. Population structure affects 

the genome as a whole, in contrast, despite the large geographical range of M. glareolus and the 

wide differences in several climate variables at opposite ends of its distribution, the effects of 

climate should be much more subtle. Affecting only small parts of the genome, specifically 

those that are responsible for adaptive variation. 

4.5.3 Genome scan method 

In this study we used different genome scan methods to identify loci that may be involved in 

local adaptation of M. glareolus on the European continent. Despite the strong patterns of 

population structure, univariate and multivariate methods still were able to identify a total of 

1,392 candidate SNPs that show signals of selection associated with climatic variation. 

However, SNPs identified as outliers differed between methods and overlap between methods 

was limited. A total of 214 SNPs were identified by at least two methods and 17 candidate SNPs 

were identified by all three methods. It is not surprising that we find little overlap between 

methods. Outlier methods are based on different assumptions regarding demographic effects 

and use different methods to control for confounding effects of population structure (de 

Villemereuil et al. 2014; Lotterhos & Whitlock 2015; Hoban et al. 2016). First, we used 2 

univariate methods, LFMM and Bayenv2, overlap between these univariate methods was low, 

as only 15.6% of outliers detected by LFMM were also found with Bayenv2. Next to these, we 

used RDA as a multivariate approach, to complement these analyses. RDA might be better 

suited to pick up weak signals of polygenic selection and might in addition, be more robust to 

our random sampling design that does not maximize environmental differentiation (Forester et 

al. 2018). Indeed, overlap between univariate methods and RDA was low, with only 5.1% of 

loci detected by RDA also being detected by either LFMM or Bayenv2. Little overlap between 

different methods presents a strong argument for the use of different approaches when testing 

for signals of local adaptation. 
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4.5.4 Identification of important climate variables for adaptive variation 

We analyzed candidate loci with RDA to identify climate variables that are most important in 

shaping adaptive variation in M. glareolus’ distribution. In general, more loci were associated 

with among population variation in annual climate than with among population seasonal 

variation in climate. Annual mean temperature explained the highest proportion of genetic 

variation of all climate variables tested. Moreover, across all variables and outlier subsets, 

annual mean temperature was consistently associated with the highest amount of adaptive 

variation, explaining 28.6% of adaptive variation in the candidate loci subset. Annual mean 

temperature differed between -0.8C (Pallasjärvi) and 12.4C (Radicondoli) among our 

populations and can thus be expected to act as an important selective pressure. Although we 

focus on the importance of annual mean temperature, this variable was highly correlated with 

monthly and quarterly minimum and maximum temperatures (Appendix B: Table S4.6). 

However, these variables could not be included in the RDA as this would have over-

parameterized the model, but these factors are also of major importance in shaping adaptive 

variation (David et al. 2005; Challinor et al. 2007; Tarnowska et al. 2016; Stojak et al. 2019). 

Especially for small mammals, which have limited capacity for insulation and experience 

increased heat loss compared to larger bodied individuals, colder conditions can be challenging 

(McClelland & Scott 2018). Consequently, it is expected that individuals from populations 

living in colder environments experience higher thermogenic demands and have accordingly 

developed a range of adaptations (Nilsson & Nilsson 2016). Contrary, warmer temperatures 

might also be difficult to cope with for small mammals, as this can easily lead to overheating 

(Rezende et al. 2004), which could also lead to specific adaptations in populations in warmer 

climate. Interestingly, experimental selection for increased aerobic capacity in M. glareolus 

resulted in the evolution of an increased thermogenic capacity, resulting in increased cold 

tolerance (Stawski et al. 2017). It is thus very likely that temperature shapes a large part of 

adaptive genetic variation across M. glareolus’ distribution. However, geographical variation in 

metabolic traits of is rarely studied in this species. Boratyński et al. (2011) showed that voles at 

higher latitudes appear to have a lower metabolic rate, which was partly confounded by mtDNA 

introgression. Another found no variation in BMR of voles from a wide range, which was 

attributed to adaptation to microclimatic conditions (Aalto et al. 1993). Unfortunately, this study 

used questionable methodology (different aged individuals among sites, variable housing 

conditions and variable moments of measurement) and it is likely that results thus do not 
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represent adaptation to local conditions or even genetic adaptation. Nevertheless, evidence for 

the importance of temperature in shaping genetic variation comes from studies examining the 

influence of climate on genetic structure. For instance, the average minimum temperature in 

January was an important factor in shaping the genetic structure across the landscape in two 

related vole species (Stojak et al. 2019), while the presence of M. glareolus belonging to the 

Carpathian lineage in a secondary contact zone with the Eastern lineage was positively 

correlated with mean July temperature (Tarnowska et al. 2016). This suggests adaptation to 

temperature does take place. Moreover, 7 out of 9 variables identified to be important in shaping 

the distribution of M. glareolus in western Europe were related to indices of environmental 

temperature (Amirpour Haredasht et al. 2013).  

The second most important variable was mean annual precipitation, which explained about 

27.8% of adaptive variation in the candidate loci subset. Patterns of precipitation are related to 

biomass production and plant community composition (Yan et al. 2015). Therefore, variation 

in precipitation might have an indirect effect on fitness and adaptive variation, by affecting 

habitat quality and abundance of food, or changes in resource abundance related to water 

availability. Indeed, M. glareolus population cycles and abundance are related to resource 

availability (Pucek et al. 1993; Imholt et al. 2015) and precipitation might indirectly act as a 

strong selective force. These observations suggest an important role for the average temperature 

and precipitation in shaping genetic differentiation between locally adapted populations. 

4.5.5 Evidence for selection on temperature-related genes 

We analyzed the function of candidate loci under selection in response to climate variation in 

order to find cues regarding their phenotypic effect, and to provide insight into adaptive 

variation. In line with annual mean temperature explaining large part of adaptive variation, we 

find that the function of many candidate genes under selection are related to energy homeostasis 

and fat metabolism. M. glareolus populations across the European continent experience 

different ambient temperatures, which obviously results in varying energetic requirements 

throughout the species range. Maintaining a constant body temperature can be especially 

challenging in cold conditions, as these results in high thermogenic demands. M. glareolus are 

in general smaller towards higher latitudes and have a lower basal metabolic rate (BMR) 

(Ledevin et al. 2010; Boratyński et al. 2011). At the start of winter, individuals reduce their 

body mass and increase their capacity for non-shivering thermogenesis (NST) (Klaus et al. 
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1988). Which is presumed to play an important role in adaptation to colder conditions, as a 

lower body mass decreases the total cost of maintenance and thermoregulation (Klaus et al. 

1988; Ergon et al. 2004; Boratyński et al. 2011; Boratyński et al. 2013). Adipose tissue plays 

an important role in energy homeostasis, regulates energy storage and expenditure and is a 

major determinant of body mass (Sethi & Vidal-Puig 2007). Of interest therefore are a number 

of genes involved in adipose biology and body size that were found to be under divergent 

selection. Examples of such genes are leucine rich repeat containing 8 family, member C 

(Lrrc8c) (Tominaga et al. 2004), dynein axonemal heavy chain 8 (Dnah8) (Söhle et al. 2012) 

and potassium voltage-gated channel subfamily H member 1 (Kcnh1) (Y.Y. Zhang et al. 2014), 

which is under selection in human Alaskan Arctic populations adapted to cold environments 

(Reynolds et al. 2019). Insulin-like growth factor 1 (Igf1), encodes for a growth factor protein 

that is related to insulin but has a much higher growth-promoting activity. Igf1 is strongly 

associated with body size in mammals such as mice (Kroonsberg et al. 1989; Baker et al. 1993), 

humans (Woods et al. 1996) and dogs (Sutter et al. 2007), possibly via its regulatory effects on 

cell growth and cellular differentiation. Furthermore, we found a signal of divergent selection 

in neurotrophic receptor tyrosine kinase 2 (Ntrk2), which has been implicated in the regulation 

of food intake and body weight in rodents. (Kernie 2000; Xu et al. 2003). In general, genetic 

variation in these genes may be related to variation in body size and associated differences in 

adipose metabolism across M. glareolus distribution. 

In mammals, heat can be produced via NST in the brown adipose which supports 

thermoregulation. NST can change in response to environmental conditions and is increased in 

winter (Klaus et al. 1988; Bonda-Ostaszewska et al. 2012). The capacity for NST differs 

between evolutionary lineages in M. arvalis (Bize et al. 2018), suggesting this trait is under 

selection, presumably as an adaptation to cold conditions. It is therefore interesting that we 

found a signal of selection in the phospholipase C-like 1 (Plcl1) gene. The product of this gene 

is involved in several intracellular signaling cascades involved in adipose metabolism and is a 

modulator of lipolysis (Oue et al. 2016). In addition to this, it serves as a signaling molecule 

regulating NST (Kanematsu et al. 2019). Interestingly, three of these described genes (Plcl1, 

Lrrc8c and Kcnh1) were also implied to be involved in adaptation to climate in populations of 

M. musculus (Phifer-Rixey et al. 2018). Several of the above genes related to energy 

homeostasis are also associated with obesity in humans (Lrrc8c (Hayashi et al. 2011), Plcl1 

(Yamawaki et al. 2017), Dnah8 (Söhle et al. 2012), Kcnh1 (Vasconcelos et al. 2016), Igf1 
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(Berryman et al. 2013) and Ntrk2 (Gray et al. 2007)), which provides further support for their 

role in maintaining energy homeostasis. Temperature is one of the most important 

environmental factors, affecting metabolism and the physiological of all organisms (Parmesan 

& Yohe 2003; Clarke 2003; Tewksbury et al. 2008). Numerous studies have used clinal variation 

in temperature and genome scans and detected signals of selection in genes related to energy 

homeostasis and metabolism (e.g. Andrew, Jensen, Hagen, Lundregan, & Griffith, 2018; 

Fumagalli et al., 2015; Hancock et al., 2011; S. E. Harris & Munshi-South, 2017; Harrisson et 

al., 2017; Lv et al., 2014; Prates, Penna, Rodrigues, & Carnaval, 2018; Pritchard et al., 2018; 

Rodríguez et al., 2017). This suggests that temperature is one of the key environmental variables 

driving local adaptation. It is therefore no surprise that we have also found genes related to 

adipose metabolism and energy homeostasis under divergent selection in response to variation 

in climate. The overlap between our candidate genes with candidate genes detected in M. 

musculus (Phifer-Rixey et al. 2018), suggests that small mammals might have a similar genetic 

basis for adapting to variation in temperature. 

4.5.6 Evidence for selection on immune-related genes 

Pathogens are among one of the strongest selective forces in natural populations and an 

important driver of local adaptation (Altizer et al. 2003; Fumagalli et al. 2011). There is large 

variation in the strength of pathogen-driven selection across geographic areas, caused by local 

variation in features such as climate, infection risk and resource availability (Charbonnel & 

Cosson 2012; McIntyre et al. 2017). Thus, given the wide distribution of sampled M. glareolus 

populations, the distribution of pathogens is likely highly heterogeneous among them (Tersago 

et al. 2009; Guivier et al. 2014). Previous studies have found evidence for adaptive variation 

associated with pathogen tolerance on a much smaller scale than our study (Guivier et al. 2010; 

Guivier et al. 2011; White et al. 2013; Guivier et al. 2014; Dubois et al. 2017; Rohfritsch et al. 

2018). Accordingly, we found signals of divergent selection in a number of genes related to 

pathogen handling and immune functioning. Such as, signal transducer and activator of 

transcription 4 (Stat4), which encodes a transcription factor responsible for T-helper cell 

development. Stat4 plays a major role in the immune system response to viral infections as 

being part of the JAK-STAT signaling pathway (Kaplan 2005; Villarino et al. 2017). 

Interestingly, Stat4 was found to be involved in the immune response to Sin Nombre hantavirus 

infected deer mice (P. maniculatus) (Schountz et al. 2012; Schountz et al. 2014). This suggests 
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that changes in this gene might play a role in PUUV resistance in M. glareolus as well. In 

addition to this, we found that two genes encoding transcription factor involved in pathogen 

handling were also under divergent selection. First, Basic leucine zipper transcriptional factor 

ATF-like 3 (BATF3), is responsible for the cell fate choice of regulatory T-cells and antigen 

cross-presentation (Hildner et al. 2008; Geissmann et al. 2010; Lee et al. 2017). Second, we 

found a signal of selection in B lymphoid transcription repressor BTB and CNC homology 2 

(Bach2). Studies using mice have shown that Bach2 is a key regulator of immune activation 

that prevents inflammatory disease by controlling the balance between tolerance and immunity 

(Roychoudhuri et al. 2013; Nakamura et al. 2013; Sidwell & Kallies 2016). Thus, it is possible 

that variation in this gene might play a role in balancing the inflammatory response towards 

PUUV in M. glareolus as well. The signals of divergent selection found in these immunology 

genes provide further evidence for the general assumption that pathogens play a major role as 

important drivers of local adaptation. Our findings are in line with previous results 

characterizing the genetic basis of M. glareolus pathogen tolerance abilities. Results suggest 

that divergent pathogen selection pressures across M. glareolus distribution has resulted in 

adaptive variation in contrasting environments. 

4.6 Conclusion 

In this study, we used ddRAD-sequencing and a combination of landscape genomic approaches 

to provide a view on the evolutionary processes acting across the M. glareolus distribution. We 

shed light on adaptive genetic variation by using univariate GEA-methods to detect outlier loci 

that correlate with climate. We expanded these methods with a multivariate approach that is 

able to pick up subtle signals of polygenic selection. After selecting outliers found by multiple 

methods, we identified loci in 74 genes of interest that showed evidence of spatially varying 

selection. Functional annotation of these suggest that spatially varying selection associated with 

energy homeostasis and responses to pathogens are among the more important ones throughout 

the M. glareolus distribution. In addition to this, we showed that both geography (measured by 

population structure) and climate play a large (and shared) role in explaining neutral genetic 

differentiation across the species range. Genetic variation among candidate loci was mostly 

explained by annual variation in climate and specifically annual mean temperature. Which 

highlights the importance of temperature as a key environmental factor driving adaptive 

variation in M. glareolus. The functional significance of the candidate genes found should be 

further investigates, as these loci are good candidates for adaptation to changing environmental 
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conditions. This could be done in future studies with additional populations and denser 

genotyping, or with experimental manipulation such as common-garden experiments combined 

with an analysis of gene expression. Understanding the balance between the strength of 

environmental selection and neutral processes can inform us about the spatial distribution of 

genetic variation and the genetic basis of local adaptation. 
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Chapter 5: Discussion 

The study of local adaptation is central to the field of evolutionary biology. The advent of next 

generation sequencing has made it possible to obtain large-scale, genome-wide data of so far 

little studied wild species and populations. Voles are small mammals with a widespread 

distribution throughout Europe, where they encounter a wide variety of different environmental 

conditions. They, furthermore, have a high evolutionary potential which makes it likely that 

they genetically adapt to local conditions. These characteristics make them an ideal species to 

study the genetics of local adaptation. Although loci under natural selection have been identified 

in wild vole populations (Fischer et al. 2011; White et al. 2013; Fischer et al. 2014; Rohfritsch 

et al. 2018), our understanding of the genetic underpinnings of local adaptation in these species 

is still limited. Therefore, I set out to provide insight into the genetic basis of local adaptation 

in response to strong environmental heterogeneity. In this thesis, I provide evidence for the 

genetic underpinnings of adaptation to high altitude in Microtus arvalis (Chapter 3). In Chapter 

4, I then identify adaptive loci associated with climate gradients in Myodes glareolus and 

highlight the importance of temperature in shaping adaptive variation. In addition, in Chapter 

2, I present the first complete mitochondrial genome of M. arvalis and use this to decipher the 

phylogeny among this and related species. 

5.1 Methodological considerations 

5.1.1 ddRAD-sequencing 

Reduced sequencing costs have enabled sequencing of entire populations of some organisms 

with extensive resources (Mackay et al. 2012; G. Zhang et al. 2014), however, sequencing 

whole genomes of non-model organisms still requires a large investment. I, therefore, chose to 

use ddRAD-sequencing (Peterson et al. 2012) as a cost-effective method to sequence parts of 

the genomes of the many individuals in chapter 3 and 4. However, several questions have been 

raised in regards to the functional significance of adaptive loci detected using reduced-

representation methods that warrant discussion (Lowry et al. 2017). First, during the final PCR 

amplification step of the ddRAD-protocol, PCR duplicates, which are identical (non-

independent) copies of the same molecule, are created. Some studies report that up to 30% of 

sequenced data in ddRAD libraries might be PCR duplicates (Schweyen et al. 2014; Andrews 

et al. 2014). Ideally, these would be identified by the fact that they map to the same start and 

end position of the genome, and removed in subsequent bioinformatic analyses as it is done in 
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genome shotgun studies. Unfortunately, this approach cannot be used with data from ddRAD 

sequencing, because all fragments from a given locus will have identical start and end positions 

as they are cut using the same enzymes. However, considering that fragments of a locus will 

have approximately the same length, it is unlikely that a substantial bias towards certain alleles 

exist, as there is no reason to assume PCR should favor one allele over another (Andrews et al. 

2016). Nevertheless, as a conservative approach, to not over-amplify sequencing libraries and 

thereby create an excessive number of PCR duplicates, the optimal cycle numbers were 

determined based on qPCR amplification plots, which restricts the number of created PCR 

duplicates. Thus, although PCR duplicates cannot be avoided, it is unlikely that they are of 

major influence on the results of the studies in this thesis. Another concern has been raised 

about the ability of ddRAD to sequences all loci under selection across the genome (Lowry et 

al. 2017). The authors of this study argue that genome scans using RADseq will, depending on 

the level of linkage disequilibrium (LD), likely miss many markers under selection because 

only a fraction of the genome is sequenced using these approaches. For the two chapters in this 

thesis I generated data covering about 0.62% (chapter 3) and 0.33% (chapter 4) of the genome, 

resulting in one RAD-tag with a SNP approximately every 0.31 Mb and 0.25 Mb, respectively. 

However, the effectively covered region of the genome is much larger, as the signal from all 

loci in LD with our tags are also investigated. The expected coverage for RADseq data increases 

rapidly with LD (McKinney et al. 2017). For example, an average LD length of 250 kb would 

allow us to cover the whole genome of M. arvalis and M. glareolus (McKinney et al. 2017). 

Unfortunately, the extend of LD in both species is not known. In wild mice (M. musculus 

domesticus), which might have similar genetic characteristics as the studied species, LD decays 

at 100 kb (Laurie et al. 2007) Considering the large number of RAD-tags sequenced in both 

studies and the extend of LD in M. musculus domesticus, it can thus be assumed that the covered 

region of the genome is much larger than the region of the sequenced RAD-tags alone. 

Regardless of the actual genome coverage and although likely some loci under selection were 

missed, results of both studies show, that a large number of important loci under spatially 

varying natural selection were detected, with functions relevant to the selection pressures 

studied. 

5.1.2 Genome scan methods 

In chapter 3 and chapter 4 several different genome scan methods were used to identify loci 

potentially involved in local adaptation. These methods are widely used and have successfully 
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identified genes involved in local adaptation across a range of species (Rellstab et al. 2015; 

Hoban et al. 2016). However, they also all have their limitations. For example, a strong 

correlation between environmental gradients and demography history can lead to a lower power 

to detect loci under selection (de Villemereuil et al. 2014; Lotterhos & Whitlock 2015). In 

scenarios where theoretical assumptions regarding demographic history are not met, which 

often is the case in natural populations, this results in increased false discovery rates (de 

Villemereuil et al. 2014). The populations studied in both chapters are highly structured, and at 

least in the study presented in chapter 4, this structure correlates with the tested climate 

parameters. To account for this problem, I only used methods that correct for the confounding 

effects of population structure. The results obtained show that different methods detected 

different sets of outlier loci, which is not unexpected as it was previously reported in other 

studies (Lotterhos & Whitlock 2015). To increase the reliability of the detected loci, I therefore 

only considered loci as candidate loci if they were detected by at least two methods. As true 

positives are more likely to overlap between methods than false positives (de Villemereuil et al. 

2014), this approach increases the likelihood that the candidate loci detected are indeed 

involved in local adaptation (François et al. 2016). 

5.2 The first Microtus arvalis mitochondrial genome 

M. arvalis is probably the most abundant European mammal and widely studied to understand 

postglacial recolonization processes of European fauna (Fink et al. 2004). However, despite its 

popularity as a research species, genomic resources for M. arvalis are mostly lacking. 

Mitochondrial DNA (mtDNA) is a popular and frequently used resource in evolutionary 

biology. It has been used extensively used as a marker of choice to resolve phylogenetic 

relationships and has provided tremendous insight into the process of evolutionary divergence 

(Avise et al. 1987; Galtier et al. 2009). However, until now, mitochondrial resources for 

M. arvalis were restricted to short, single gene or single region mitochondrial sequences. Those 

were used to determine the presence of several evolutionary lineages in M. arvalis (e.g. Fink et 

al., 2004; Heckel, Burri, Fink, Desmet, & Excoffier, 2005), but they were insufficient to fully 

resolve the relationship within the genus Microtus (Jaarola et al. 2004; Galewski et al. 2006). 

In the study presented in Chapter 2, shotgun sequencing data and an iterative mapping approach 

(Hahn et al. 2013) were used to recover the first complete mitochondrial genome of M. arvalis 

(Folkertsma et al. 2018). I used this to perform a phylogenetic analysis and to provide new 

insights into the Arvicolinae phylogeny. I did not find support for the previous generic 
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recognition of Neodon and Lasiopodomys as separate genera, suggesting these two genera have 

to be subsumed within the Microtus genus. The new mitochondrial sequence reported in this 

study provides an important genomic resource in this ecological relevant, but resource-wise 

under-represented species and can help to resolve uncertainty regarding the relationships 

between genera. This is illustrated by a recent publication (Takahata et al. 2019) that used the 

new M. arvalis mitochondrial genome to investigate the taxonomic status of a previously 

unknown species. Thus, the genomic resources generated within this study represent an 

important step forward as they can help to improve future phylogenetic analyses. 

5.3 High-altitude adaptation in Microtus arvalis 

In the second study, I set out to provide insights into the genetic basis of adaptation to high 

altitude. Organisms living at high altitude face considerable physiological challenges as a result 

of low temperatures, low oxygen levels and increased UV-radiation. These challenges are even 

more pronounced for small mammals, which, due to their small body size, are constantly 

confronted with high thermogenic demands. These high thermogenic demands require an 

adequate supply of oxygen to the tissue, which is challenging in the hypoxic conditions at high 

altitude. So far, our understanding about the genetic basis of high-altitude adaptation in 

mammals is mainly restricted to humans and deer mice (Bigham 2016; McClelland & Scott 

2018; Storz et al. 2019), although other species have also been investigated to a limited extent 

(Scott et al. 2010; Natarajan et al. 2015; Waterhouse et al. 2018). Previous studies have provided 

evidence for adaptation to high altitude in M. arvalis, but the identification of genes with 

functional significance was hindered by the fact that only anonymous AFLP-markers were used 

(Fischer et al. 2011; Fischer et al. 2014). Hence, in Chapter 3, I aimed to provide insights into 

the genetic basis of adaptation to high altitude in M. arvalis to further our understanding of 

high-altitude adaptation. To this end, I analyzed genomic data generated using a ddRAD 

sequencing approach from individuals sampled at three low-altitude and three high-altitude 

study sites. I detected high levels of genetic differentiation among study sites, with a strong 

signal of isolation by distance (IBD). This resulted in a clear pattern of neutral population 

structure best represented by three major clusters, comprising of individuals from study sites in 

close proximity. These results are in line with previous studies in M. arvalis and are most likely 

a result of recurring population crashes and low effective gene flow between distant populations 

(Schweizer et al. 2007; Fischer et al. 2014). However, despite these strong patterns of neutral 

population structure, genome scan methods successfully detected signals of selection associated 
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with differences in altitude. Genome scan methods identified a number of candidate outlier 

genes with functions related to the formation of new blood vessels, the production of red blood 

cells and energy metabolism. This suggests that selection on high-altitude populations of 

M. arvalis is acting to increase oxygen delivery to the tissue and enhance thermogenic capacity. 

Moreover, a number of genes displaying signals of selection are directly involved or can be 

linked to the HIF-pathway. This ancient pathway is the major pathway that responds to changes 

in available oxygen in the cellular environment and regulates hundreds of downstream genes 

(Semenza 2007; Bigham & Lee 2014). It is widely implicated in high-altitude adaptation, and 

genes in this pathway have been under selection in several high-altitude species (e.g. humans, 

sheep, goats, dogs) (Simonson et al. 2010; Gou et al. 2014; Ai et al. 2014; Wei et al. 2016; Song 

et al. 2016). In addition, signals of selection were detected in genes that have been previously 

found to be under selection in high-altitude populations of other species. These results suggest 

that high-altitude populations of several taxa have evolved in a similar manner as a response to 

the unique conditions at high altitude. Thus, although the physiology of high-altitude adaptation 

is complex, it seems that natural selection has acted on only a small set of similar genes during 

the process of adaptation to high-altitude environments in different species. 

The work presented in this chapter shows that even for non-model species without an annotated 

reference genome available, methods like ddRAD, can successfully be used to identify 

candidate genes for local adaptation. Researchers who generate RAD-sequencing data 

commonly resort to using de novo approaches when a reference genome for their study species 

is not available (Catchen et al. 2013; Puritz, Hollenbeck, et al. 2014; Eaton 2014). Such de novo 

approaches result in the generation of so-called de novo RAD assemblies. Those are reference 

genomes, consisting of several short contigs generated from RAD data. A huge drawback of 

this is that these de novo assemblies lack functional annotation. Thus, in the absence of genome 

annotation, a BLAST search has to be performed to annotate the generated de novo assembly. 

However, annotation results are often poor. As a consequence, the functional significance of a 

large percentage of loci of interest cannot be established, resulting in many loci of interest with 

unknown function as no annotation is available (ranging from 35%-95% of loci without 

annotation in studies (White et al. 2013; Guo et al. 2016; Rodríguez et al. 2017; Hoey & Pinsky 

2018; Rohfritsch et al. 2018). Instead of using a de novo approach, reads were mapped to the 

well annotated prairie vole (Microtus ochrogaster) genome. Although M. ochrogaster diverged 

from M. arvalis about 13.2 MYA (Fabre et al. 2012), 83.4% of the reads were successfully 
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mapped to this reference genome. By using the positional information of outlier loci on the 

M. ochrogaster reference genome I was able to determine that 35% of outliers were found in 

annotated genes. Thus, our results demonstrate that a distant reference genome can be a great 

asset for identifying the functional significance of candidate genes in non-model organisms.  

5.4 Climate adaptation in Myodes glareolus 

Climate is of major influence on the distribution of species and affects all physiological 

processes of organisms (Parmesan & Yohe 2003; Clarke 2003). Detecting the genetic basis of 

adaptation to different climates and identifying climate related adaptive variation can provide 

insights into a species' ability to respond to climate change (Hoffmann & Willi 2008). Several 

studies have provided evidence for local adaptation associated with spatial variation in climate 

(Hereford 2009; Savolainen et al. 2013) and an increasing number of studies have focused on 

climate adaptation in non-model organisms (Haasl & Payseur 2016). There is also evidence for 

small mammals showing genetic changes related to variation in climate and other clinal 

gradients (e.g. Harris & Munshi-South, 2017; Phifer-Rixey et al., 2018; Rohfritsch et al., 2018; 

Waterhouse, Erb, Beever, & Russello, 2018). However, these studies often examined 

populations on relatively small geographic scales and our understanding about the genetic loci 

involved in climate adaptation in small mammals is thus rather limited. Moreover, little is 

known about the climatic forces that drive selective gradients and give rise to adaptive genetic 

variation for most species. Another drawback of most of studies published so far is that they 

have only used univariate methods to reveal adaptive variation. Therefore, they were rather 

limited in their ability to detect weak signals of polygenic selection (Wellenreuther & Hansson 

2016). Hence, for the work presented in Chapter 4, I set out to provide insight into the genetic 

basis of climate adaptation in M. glareolus.  

DdRAD sequencing was used to sequence and annotate the genome of 276 individuals from 

twelve M. glareolus populations across the European continent. Because of the wide 

distribution of sampled populations, climatic conditions varied widely among them. I first used 

several methods to characterize patterns of differentiation and population structure. These 

methods revealed high levels of differentiation among populations. Furthermore, a distinct 

pattern of population structure resembling the geographic distribution of populations was 

identified, in line with a strong signal of IBD. This was confirmed by results from the 

redundancy analysis (RDA), which demonstrate that the geographic distribution of populations 
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explains a large amount of genetic variation. RDA further uncovered a strong correlation 

between genetic population structure and geographic variation in climate, suggesting that a 

large amount of genetic variation was accounted for by spatially structured climate variation. 

However, in spite of the strong correlation between climate and population structure, the 

genome scan methods that were used still identified a large number of outlier loci that displayed 

signals of spatially varying selection associated with climate. Furthermore, the observation of 

outliers detected by the RDA suggests that at least some of the loci were under the influence of 

weak polygenic selection. I then used RDA to determine that annual mean temperature 

contributed most strongly to signatures of adaptive variation among outlier loci of all tested 

climatic variables, thus showing that temperature is an important selective pressure. This result 

is in accordance with previous research in M. glareolus, which showed seasonal and spatial 

phenotypic variation in temperature-related traits such as body mass, BMR and non-shivering 

thermogenesis (NST) (Klaus et al. 1988; Ledevin et al. 2010; Boratyński et al. 2011). 

Signals of selection were found in a number of genes with functions related to energy 

homeostasis, body size, adipose metabolism and NST. The function of these genes suggests that 

these are differentially selected in response to the local environmental temperature of 

populations. This finding, in combination with the large amount of adaptive variation explained 

by temperature, indicates that temperature is an important selection pressure driving adaptation 

to local conditions in M. glareolus populations across their range. The observation that some of 

these genes are also implied to be involved in adaptation to climate in populations of 

M. musculus along a latitudinal gradient (Phifer-Rixey et al. 2018) suggests that small mammals 

might have a similar genetic basis for adapting to variation in temperature. I further identified 

various candidate genes with immunological functions, which suggests that populations 

experienced different pathogen selection pressures. Pathogens are among one of the strongest 

selective forces in natural populations and an important driver of local adaptation (Altizer et al. 

2003; Fumagalli et al. 2011). The spatial distribution of pathogens is highly heterogeneous and 

many pathogens are climate sensitive (Guernier et al. 2004; McIntyre et al. 2017). M. glareolus 

is the reservoir host of the Puumala hantavirus (PUUV), but the prevalence of the virus differs 

among populations (Easterbrook & Klein 2008). Several studies have provided insight into the 

genetic basis of PUUV tolerance and found signals of selection in immune-related genes among 

populations that differ in PUUV prevalence on regional scales (Guivier et al. 2010; Guivier et 

al. 2014; Rohfritsch et al. 2018). In line with these studies, I identified signals of selection that 
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correlate with climate in immune-related genes. One of the candidate genes is involved in the 

response to Sin Nombre hantavirus in deer mice (Schountz et al. 2012; Schountz et al. 2014), 

while a further candidate gene is involved in regulating the balance between tolerance and 

immunity in the immune response (Roychoudhuri et al. 2013; Nakamura et al. 2013). These 

observations, along with the signals of selection identified in other immune-related genes, 

suggest that M. glareolus evolved specific genetic adaptations to pathogen selection pressures 

not only at a regional scale but across its entire distribution, possibly mediated by climate. 

The results presented in this chapter show that improving the quality of genomic resources can 

facilitate downstream analysis and improve our understanding of adaptive variation in non-

model organisms. The lack of a high-quality reference genome with proper genome annotation 

for M. glareolus initially hindered a thorough investigation of genes involved in climate 

adaptation. Although a reference genome was available (ASM130578v1), this consisted of 

many small scaffolds (below 1Kb in length) and no genome annotation was provided. To 

overcome this problem, I first set out to improve the contiguity of the reference genome. This 

was done by using the Cross-Species scaffolding pipeline (Grau et al. 2018). Here, I generated 

in silico mate-pair libraries using the reference genome from M. ochrogaster which diverged 

from M. glareolus about 14.2 MYA (Fabre et al. 2012). By doing so, the quality of the reference 

genome is greatly improved, which is reflected in the N50, which increased by a factor of 17. 

Using the improved reference genome resulted in a 14% increase of mapped reads compared to 

the original published M. glareolus reference genome. Then, as annotations were lacking, 

annotations for regions with outlier SNPs were obtained by aligning these regions to the well-

annotated M. ochrogaster reference genome using the LastZ pairwise alignment tool (Harris, 

2007). I was able to align more than 98% of the regions, which resulted in the successful 

identification of candidate genes. These results demonstrate that through the use of a specific 

set of software, I was able to improve genomic resources for this non-model species. This 

approach could be a promising avenue for studies on other species for which only little or only 

low-quality genomic resources are available, at least until high-quality genome assemblies are 

available for a much larger number of species than it is currently the case. 
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5.5 General conclusions and outlook 

In this thesis I set out to provide novel insights into the genetic basis of local adaptation. I used 

ddRAD-sequencing, landscape genomic approaches and an innovative combination of methods 

to improve genomic resource, in order to identify candidate genes potentially involved in local 

adaptation. I studied vole populations at very different geographic scales. M. arvalis 

populations were studied across an altitudinal gradient in the Swiss Alps to identify adaptations 

to environmental conditions at high altitude. M. glareolus populations were studied across a 

much larger climate gradient in Europe to determine climate-related adaptations. Many of the 

genes identified in both studies have been found to be under selection in other species as a 

response to the same respective selection pressures. Not only does this increase confidence in 

our results, it also suggests that natural selection could act on similar sets of genes in the 

adaptive process of local adaptation in different species. 

In many ways we have only begun to scratch the surface in our understanding of how species 

adapt to local conditions. We have identified adaptive loci putatively involved in local 

adaptation, but this is just the starting point of characterizing the genomic basis for local 

adaptation. With regard to the work presented here, future work should aim to verify the results 

presented in this thesis. The genetic basis of local adaptation often, but not always, varies among 

populations (Colosimo et al. 2005; Manceau et al. 2010; Turner et al. 2010), and studies which 

did use replicate tests determined that the overlap between replicates may be small (Poncet et 

al. 2010; Rellstab et al. 2017; Müller et al. 2017). If the loci identified in this thesis are truly 

adaptive, they should also show the same environmental correlations in independent datasets 

with different populations, which would improve evidence for the adaptive patterns discovered 

(Tiffin & Ross-Ibarra 2014; Rellstab et al. 2015). Moreover, high-quality genomic resources 

have to be developed for both species such as a well-annotated reference genome. This would 

provide a proper tool for future analysis, improving read alignment, variant calling and 

functional analysis, and would thereby aid our understanding of evolutionary processes in both 

species. 

Studying the genetic basis of local adaptation does not end with identifying candidate loci. 

Research should continue from there and provide further evidence for the functional 

significance of candidate loci identified in genome scans. This can for instance be done by 

verifying if nonsynonymous SNPs are found in genes close to the identified loci (Hancock et 
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al. 2011) and if that is the case, by investigating their functional significance. Experimental 

validation with quantitative trait locus mapping of crosses in reciprocal transplant experiments 

can provide direct evidence that genetic differences in identified loci lead to a fitness advantage 

in affected local populations (Hancock et al. 2011; De Kort et al. 2014; Phifer-Rixey et al. 

2018). This will improve our understanding of local adaptation, but the implementation of such 

approaches is not easily achieved and costs considerable effort. 

Overall, the work presented within this thesis provides novel insights into the genetic basis of 

local adaptation in two species with little genomic resources, that have evolved adaptive 

changes in response to relevant environmental variation. With decreasing sequencing costs and 

an increase in the availability of genomic tools, promising avenues are opening up to improve 

our understanding of local adaptation in wild populations.
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Appendix A. 

Supporting material to Chapter 3: Folkertsma et al., in prep  

Population genomic evidence for high-altitude adaptation in common voles 

  

Figure S3.1: Admixture proportions using NgsAdmix based on 19,119 genotyped SNPs, with various 

numbers of ancestral populations (K= 2-6). Each individual is represented by a column with colours 

corresponding to the proportions of their ancestry component. Vertical black bars separate study sites. Codes 

for study sites are in Table 3.1. 
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Figure S3.3: Scatterplot showing the results of the Mantel tests between the matrix of genetic distances (Pairwise 

linear FST-values) and the matrix of the logarithm of geographic distance, to test for presence of isolation by 

distance. (a) among all six M. arvalis study sites, (b) among geographic distant sites only (by removing pairwise 

comparison of geographic proximate populations (L1W-L2W; H1-H2; H1-H3; and H2-H3). 

  

Figure S3.2: Neutral genetic structure of populations as depicted by the first two 

principal components of a PCA based on pairwise genetic covariance among 143 

individuals with 19,119 SNPs 6 M. arvalis study sites, together both components 

explain 14.9% of genetic variation.  
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Figure S3.5: Principal component plots of individuals based on pairwise genetic covariance among 143 

individuals by using detected outlier SNPs only. (a) PCA plot based on 587 SNPs detected as outliers with FST-

based methods (BayeScan and Pcadapt). (b) PCA plot based on 181 SNPs detected as outliers with GEA-based 

methods (LFMM and BayPass). The plot created with outliers detected by FST-based methods is very similar to 

the neutral PCA plot. While the plot created with outliers detected by GEA-based methods shows a clear 

separation of individuals in two groups associated with altitude of sampled populations. 

Figure S3.4: Venn diagram comparing outlier SNPs detected by GEA-based methods: 

LFMM and BayPass, and FST-based methods: BayeScan and Pcadapt. 
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 Table S3.1: Relatedness estimates for pairs of individuals from the same and proximate study sites. Codes for 

study sites are in Table 1. 

 
  

Individuals

H1_198 H1_200 H1_201 H1_20

2

H1_20

3

H1_206 H1_20

7

H1_210 H1_21

1

H1_212 H1_213 H1_215 H1_216 H1_217 H1_218 H1_219 H1_220 H1_22

1

H1_22

4

H1_22

6

H1_228 H1_229 H1_230 H1_23

1

H2_100 H2_101 H2_103 H2_104 H2_105 H2_10

6

H2_107 H2_108 H2_10

9

H2_111 H2_11

2

H2_113 H2_11

4

H2_11

7

H2_11

8

H2_13

9

H2_140 H2_14

1

H2_142 H2_144 H2_14

5

H2_14

6

H2_14

7

H2_14

8

H3_009 H3_010 H3_01

1

H3_012 H3_013 H3_01

4

H3_019 H3_020 H3_021 H3_024 H3_026 H3_027 H3_02

8

H3_029 H3_030 H3_032 H3_033 H3_035 H3_037 H3_03

9

H3_040 H3_08

0

H3_08

1

H3_0

82

H1_198

H1_200 0.130

H1_201 0.159 0.263

H1_202 0.017 0.009 0.017

H1_203 0.075 0.044 0.041 0.049

H1_206 0.004 0.000 0.013 0.113 0.042

H1_207 0.225 0.164 0.146 0.011 0.027 0.004

H1_210 0.031 0.017 0.037 0.057 0.036 0.033 0.014

H1_211 0.027 0.036 0.010 0.059 0.033 0.033 0.021 0.035

H1_212 0.016 0.021 0.034 0.019 0.033 0.016 0.017 0.214 0.012

H1_213 0.005 0.013 0.019 0.010 0.011 0.000 0.007 0.143 0.010 0.259

H1_215 0.000 0.014 0.020 0.044 0.012 0.018 0.001 0.199 0.037 0.161 0.245

H1_216 0.035 0.037 0.030 0.065 0.023 0.027 0.026 0.237 0.044 0.209 0.124 0.189

H1_217 0.005 0.004 0.006 0.010 0.007 0.000 0.005 0.004 0.006 0.027 0.124 0.045 0.007

H1_218 0.013 0.024 0.007 0.001 0.004 0.000 0.017 0.000 0.004 0.012 0.091 0.059 0.000 0.217

H1_219 0.000 0.000 0.000 0.001 0.000 0.000 0.004 0.000 0.000 0.011 0.072 0.013 0.000 0.250 0.156

H1_220 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.006 0.000 0.037 0.111 0.036 0.009 0.225 0.114 0.235

H1_221 0.004 0.008 0.019 0.035 0.062 0.129 0.021 0.089 0.038 0.082 0.000 0.079 0.091 0.000 0.000 0.000 0.000

H1_224 0.024 0.021 0.022 0.012 0.016 0.003 0.013 0.036 0.013 0.023 0.033 0.023 0.048 0.000 0.003 0.000 0.000 0.023

H1_226 0.019 0.027 0.019 0.043 0.059 0.029 0.020 0.113 0.060 0.128 0.021 0.172 0.138 0.000 0.001 0.000 0.000 0.053 0.111

H1_228 0.000 0.006 0.001 0.000 0.000 0.000 0.008 0.000 0.009 0.005 0.055 0.030 0.000 0.138 0.264 0.172 0.164 0.000 0.021 0.010

H1_229 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.057 0.020 0.000 0.186 0.176 0.337 0.168 0.000 0.007 0.005 0.237

H1_230 0.003 0.010 0.000 0.000 0.000 0.000 0.010 0.003 0.000 0.025 0.086 0.018 0.000 0.168 0.264 0.163 0.203 0.000 0.000 0.000 0.229 0.188

H1_231 0.000 0.000 0.000 0.001 0.000 0.000 0.004 0.000 0.000 0.015 0.114 0.049 0.001 0.229 0.240 0.213 0.218 0.000 0.009 0.014 0.206 0.216 0.269

H2_100 0.000 0.000 0.000 0.000 0.000 0.118 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H2_101 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004

H2_103 0.000 0.000 0.000 0.000 0.000 0.086 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.000

H2_104 0.000 0.000 0.000 0.000 0.000 0.266 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.246 0.002 0.196

H2_105 0.000 0.000 0.000 0.002 0.008 0.002 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.007 0.000 0.000 0.000 0.000 0.000 0.016 0.094 0.010 0.021

H2_106 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.000 0.001 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.000 0.000 0.006 0.024 0.006 0.021 0.000

H2_107 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.302 0.000 0.000 0.201 0.012

H2_108 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.004 0.003 0.255 0.000 0.170

H2_109 0.000 0.012 0.010 0.018 0.002 0.013 0.005 0.016 0.024 0.000 0.000 0.003 0.003 0.025 0.012 0.023 0.001 0.015 0.000 0.002 0.008 0.000 0.000 0.007 0.009 0.043 0.000 0.014 0.006 0.006 0.000 0.000

H2_111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.047 0.003 0.014 0.146 0.010 0.153 0.168 0.007

H2_112 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.002 0.003 0.002 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.005 0.004 0.000 0.009 0.023 0.000 0.023 0.023

H2_113 0.000 0.000 0.000 0.000 0.000 0.110 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.003 0.000 0.000 0.000 0.000 0.240 0.000 0.280 0.236 0.008 0.010 0.000 0.000 0.012 0.007 0.000

H2_114 0.000 0.000 0.000 0.000 0.000 0.095 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.000 0.284 0.226 0.010 0.021 0.000 0.014 0.011 0.006 0.013 0.244

H2_117 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.092 0.000 0.006 0.178 0.006 0.226 0.221 0.007 0.277 0.012 0.000 0.017

H2_118 0.000 0.000 0.000 0.000 0.012 0.075 0.000 0.000 0.040 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.011 0.000 0.000 0.000 0.000 0.254 0.000 0.121 0.143 0.013 0.005 0.000 0.007 0.000 0.000 0.000 0.131 0.085 0.000

H2_139 0.000 0.000 0.000 0.000 0.014 0.024 0.000 0.001 0.029 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.013 0.000 0.000 0.000 0.000 0.039 0.026 0.029 0.033 0.001 0.008 0.015 0.004 0.020 0.016 0.027 0.029 0.024 0.003 0.061

H2_140 0.001 0.006 0.000 0.009 0.031 0.000 0.000 0.000 0.010 0.000 0.001 0.000 0.000 0.004 0.000 0.000 0.000 0.005 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.000 0.000 0.017 0.009 0.021 0.023 0.014 0.006 0.020 0.000 0.002 0.010 0.003 0.032

H2_141 0.000 0.001 0.000 0.000 0.023 0.021 0.003 0.000 0.017 0.000 0.000 0.011 0.004 0.000 0.000 0.000 0.000 0.005 0.000 0.010 0.000 0.000 0.004 0.000 0.017 0.016 0.017 0.027 0.000 0.029 0.000 0.015 0.017 0.000 0.035 0.020 0.005 0.000 0.026 0.037 0.036

H2_142 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.017 0.001 0.000 0.001 0.006 0.000 0.013 0.000 0.002 0.028 0.001 0.000 0.016 0.000 0.007 0.036 0.010 0.008 0.000 0.059 0.014 0.023 0.006

H2_144 0.000 0.000 0.000 0.000 0.015 0.003 0.000 0.000 0.013 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.005 0.008 0.019 0.000 0.000 0.000 0.000 0.010 0.027 0.001 0.011 0.000 0.013 0.020 0.025 0.005 0.011 0.032 0.006 0.000 0.009 0.020 0.033 0.031 0.036 0.028

H2_145 0.000 0.000 0.000 0.000 0.010 0.004 0.000 0.000 0.022 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.004 0.013 0.018 0.003 0.001 0.008 0.000 0.008 0.022 0.000 0.003 0.010 0.006 0.001 0.013 0.007 0.017 0.016 0.004 0.000 0.000 0.020 0.043 0.024 0.044 0.018 0.271

H2_146 0.004 0.000 0.000 0.008 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.019 0.013 0.010 0.002 0.000 0.000 0.000 0.020 0.000 0.002 0.013 0.020 0.007 0.003 0.010 0.015 0.010 0.004 0.000 0.000 0.000 0.011 0.107 0.022 0.037 0.028 0.012

H2_147 0.008 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.012 0.005 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.011 0.003 0.000 0.026 0.000 0.014 0.028 0.010 0.001 0.000 0.048 0.024 0.049 0.022 0.164 0.034 0.041 0.025

H2_148 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.005 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.001 0.006 0.004 0.000 0.004 0.024 0.006 0.014 0.008 0.019 0.016 0.010 0.001 0.018 0.035 0.003 0.014 0.028 0.000 0.010 0.022 0.011 0.015 0.041 0.030 0.029 0.029

H3_009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000

H3_010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233

H3_011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.061 0.066

H3_012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.155 0.179 0.013

H3_013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.237 0.224 0.062 0.112

H3_014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.230 0.198 0.058 0.109 0.280

H3_019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.011 0.014 0.000 0.004 0.001 0.037 0.019 0.005 0.037 0.043 0.028

H3_020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.001 0.005 0.066 0.025 0.021 0.132 0.026 0.026 0.040

H3_021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.048 0.008 0.012 0.071 0.008 0.013 0.029 0.266

H3_024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.034 0.044 0.042 0.028 0.038 0.000 0.010 0.033

H3_026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.065 0.049 0.035 0.048 0.048 0.050 0.022 0.027 0.057 0.286

H3_027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.040 0.027 0.063 0.039 0.035 0.003 0.037 0.085 0.329 0.292

H3_028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.011 0.000 0.000 0.000 0.004 0.001 0.001 0.000 0.012 0.047 0.033 0.023 0.132 0.017 0.019 0.041 0.248 0.176 0.021 0.050 0.078

H3_029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.009 0.008 0.014 0.010 0.002 0.030 0.034 0.030 0.002 0.007 0.032 0.015 0.019 0.000

H3_030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.026 0.025 0.018 0.012 0.046 0.040 0.043 0.008 0.011 0.028 0.016 0.022 0.000 0.268

H3_032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.063 0.068 0.018 0.036 0.032 0.015 0.029 0.078 0.213 0.128 0.172 0.061 0.020 0.021

H3_033 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.062 0.131 0.025 0.070 0.036 0.049 0.044 0.053 0.050 0.050 0.047 0.031 0.028 0.028 0.216

H3_035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.074 0.073 0.117 0.026 0.082 0.065 0.044 0.032 0.039 0.060 0.044 0.049 0.022 0.016 0.025 0.219 0.360

H3_037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.034 0.021 0.062 0.011 0.010 0.017 0.017 0.055 0.311 0.244 0.337 0.066 0.029 0.031 0.198 0.036 0.037

H3_039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.052 0.051 0.040 0.028 0.027 0.033 0.012 0.033 0.052 0.265 0.285 0.224 0.052 0.010 0.010 0.177 0.062 0.067 0.251

H3_040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.002 0.000 0.000 0.004 0.006 0.006 0.000 0.003 0.013 0.004 0.009 0.016 0.014 0.010 0.001 0.032 0.010 0.018 0.000 0.295 0.256 0.029 0.020 0.023 0.032 0.020

H3_080 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.006 0.000 0.003 0.000 0.000 0.008 0.000 0.000 0.002 0.001 0.006 0.000 0.000 0.014 0.006 0.008 0.000 0.000 0.033 0.028 0.035 0.000 0.000 0.001 0.000 0.004 0.000 0.264 0.263 0.003 0.016 0.018 0.008 0.000 0.265

H3_081 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.046 0.004 0.024 0.071 0.057 0.281 0.042 0.048 0.000 0.024 0.010 0.012 0.018 0.031 0.034 0.055 0.059 0.000 0.030 0.025 0.032

H3_082 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.103 0.094 0.022 0.076 0.058 0.031 0.028 0.022 0.055 0.047 0.057 0.026 0.032 0.029 0.189 0.287 0.334 0.052 0.080 0.032 0.014 0.054

Individuals

L1W_0

68

L1W_0

70

L1W_0

73

L1W_0

74

L1W_0

76

L1W_0

77

L1W_0

78

L1W_0

79

L1W_0

86

L1W_0

87

L1W_0

88

L1W_0

90

L1W_0

91

L1W_0

92

L1W_0

93

L1W_1

20

L1W_1

21

L1W_1

22

L1W_1

23

L1W_1

24

L1W_1

26

L1W_1

28

L1W_1

31

L1W_1

32

L2W_1

50

L2W_1

51

L2W_1

52

L2W_1

53

L2W_1

57

L2W_1

58

L2W_1

60

L2W_1

61

L2W_1

71

L2W_1

72

L2W_1

73

L2W_1

74

L2W_1

75

L2W_1

78

L2W_1

80

L2W_1

81

L2W_1

82

L2W_1

83

L2W_1

85

L2W_1

86

L2W_1

88

L2W_1

89

L2W_1

90

L2W_1

91

L1W_068

L1W_070 0.005

L1W_073 0.006 0.044

L1W_074 0.236 0.000 0.009

L1W_076 0.004 0.014 0.009 0.000

L1W_077 0.084 0.015 0.007 0.081 0.121

L1W_078 0.000 0.013 0.025 0.000 0.011 0.028

L1W_079 0.066 0.023 0.018 0.018 0.029 0.000 0.004

L1W_086 0.000 0.018 0.011 0.000 0.088 0.011 0.000 0.085

L1W_087 0.061 0.000 0.000 0.104 0.112 0.206 0.026 0.000 0.040

L1W_088 0.141 0.000 0.000 0.131 0.000 0.106 0.002 0.005 0.000 0.082

L1W_090 0.100 0.000 0.000 0.084 0.097 0.114 0.001 0.000 0.035 0.234 0.072

L1W_091 0.018 0.007 0.013 0.034 0.088 0.020 0.028 0.043 0.029 0.046 0.004 0.043

L1W_092 0.018 0.009 0.014 0.035 0.014 0.000 0.004 0.024 0.000 0.000 0.081 0.000 0.075

L1W_093 0.105 0.000 0.000 0.092 0.102 0.153 0.023 0.000 0.036 0.198 0.079 0.223 0.041 0.000

L1W_120 0.118 0.013 0.000 0.192 0.000 0.083 0.001 0.000 0.000 0.090 0.133 0.062 0.003 0.078 0.049

L1W_121 0.097 0.001 0.000 0.113 0.054 0.113 0.000 0.000 0.052 0.131 0.126 0.114 0.011 0.052 0.169 0.181

L1W_122 0.020 0.000 0.000 0.009 0.090 0.024 0.002 0.012 0.072 0.038 0.030 0.082 0.032 0.020 0.027 0.054 0.053

L1W_123 0.000 0.002 0.012 0.000 0.083 0.002 0.001 0.034 0.109 0.019 0.000 0.028 0.015 0.012 0.017 0.000 0.020 0.147

L1W_124 0.035 0.010 0.013 0.025 0.034 0.001 0.011 0.153 0.093 0.011 0.006 0.020 0.090 0.041 0.004 0.000 0.012 0.000 0.040

L1W_126 0.009 0.025 0.007 0.001 0.020 0.017 0.021 0.023 0.056 0.005 0.000 0.017 0.021 0.008 0.015 0.005 0.001 0.025 0.017 0.033

L1W_128 0.100 0.000 0.000 0.116 0.066 0.083 0.000 0.000 0.018 0.130 0.142 0.099 0.019 0.033 0.122 0.186 0.239 0.057 0.024 0.000 0.000

L1W_131 0.048 0.010 0.000 0.050 0.015 0.004 0.001 0.159 0.011 0.017 0.039 0.016 0.099 0.054 0.000 0.003 0.000 0.022 0.002 0.107 0.032 0.002

L1W_132 0.004 0.004 0.000 0.000 0.221 0.054 0.044 0.012 0.111 0.082 0.000 0.087 0.117 0.001 0.071 0.004 0.042 0.087 0.081 0.009 0.047 0.062 0.016

L2W_150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L2W_151 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.115

L2W_152 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.245 0.086

L2W_153 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.043 0.046

L2W_157 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.044 0.022 0.188

L2W_158 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.038 0.018 0.045 0.022

L2W_160 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.139 0.063 0.208 0.032 0.019 0.028

L2W_161 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.026 0.010 0.010 0.015 0.049 0.018

L2W_171 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.064 0.097 0.051 0.047 0.010 0.086 0.150 0.032

L2W_172 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.095 0.070 0.078 0.124 0.000 0.096 0.000 0.059

L2W_173 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.006 0.014 0.068 0.110 0.000 0.024 0.002 0.026 0.109

L2W_174 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.030 0.018 0.010 0.001 0.000 0.013 0.022 0.007 0.069 0.037

L2W_175 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.040 0.056 0.058 0.018 0.046 0.011 0.021 0.039 0.000 0.004 0.009

L2W_178 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.032 0.008 0.003 0.001 0.000 0.000 0.021 0.000 0.000 0.000 0.002 0.000

L2W_180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.008 0.000 0.000 0.030 0.000 0.003 0.000 0.000 0.000 0.094 0.000 0.161

L2W_181 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.014 0.000 0.000 0.006 0.000 0.012 0.000 0.000 0.000 0.094 0.008 0.131 0.251

L2W_182 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.010 0.002 0.000 0.022 0.000 0.000 0.004 0.000 0.000 0.098 0.009 0.104 0.270 0.243

L2W_183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.081 0.011 0.025 0.007 0.077 0.039 0.048 0.083 0.008 0.006 0.001 0.020 0.166 0.071 0.080 0.036

L2W_185 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.027 0.018 0.020 0.029 0.075 0.071 0.000 0.046 0.114 0.006 0.029 0.013 0.003 0.000 0.000 0.000 0.005

L2W_186 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.092 0.026 0.060 0.083 0.008 0.093 0.000 0.083 0.340 0.079 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.120

L2W_188 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.004 0.073 0.017 0.005 0.002 0.052 0.037 0.034 0.045 0.014 0.000 0.007 0.015 0.152 0.073 0.081 0.074 0.203 0.014 0.035

L2W_189 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.041 0.038 0.073 0.039 0.075 0.067 0.017 0.086 0.086 0.019 0.017 0.051 0.000 0.000 0.004 0.011 0.044 0.061 0.112 0.063

L2W_190 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.005 0.002 0.005 0.031 0.005 0.042 0.000 0.007 0.003 0.005 0.014 0.035 0.000 0.011 0.003 0.024 0.129 0.005 0.037 0.023

L2W_191 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.002 0.009 0.018 0.083 0.000 0.000 0.024 0.008 0.043 0.140 0.018 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.039 0.000 0.021 0.018

Individuals

L3E_

003

L3E_

005

L3E_

006

L3E_

015

L3E_

016

L3E_

017

L3E_

041

L3E_

042

L3E_

043

L3E_

044

L3E_

045

L3E_

046

L3E_

047

L3E_

048

L3E_

049

L3E_

050

L3E_

051

L3E_

053

L3E_

054

L3E_

056

L3E_

057

L3E_

060

L3E_

085

L3E_003

L3E_005 0.225

L3E_006 0.000 0.000

L3E_015 0.000 0.000 0.000

L3E_016 0.004 0.024 0.000 0.016

L3E_017 0.000 0.000 0.000 0.000 0.000

L3E_041 0.000 0.000 0.000 0.000 0.000 0.256

L3E_042 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L3E_043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

L3E_044 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.110 0.000

L3E_045 0.000 0.000 0.000 0.003 0.011 0.000 0.000 0.000 0.000 0.000

L3E_046 0.000 0.000 0.191 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000

L3E_047 0.000 0.000 0.024 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.053

L3E_048 0.046 0.026 0.000 0.000 0.000 0.000 0.000 0.034 0.000 0.013 0.000 0.000 0.000

L3E_049 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012

L3E_050 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.064 0.000 0.083 0.000 0.044 0.000 0.000

L3E_051 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.007 0.000 0.066 0.000 0.000 0.000 0.000 0.123 0.000

L3E_053 0.000 0.000 0.000 0.041 0.000 0.000 0.000 0.000 0.065 0.001 0.009 0.000 0.000 0.010 0.084 0.000 0.000

L3E_054 0.000 0.000 0.000 0.017 0.000 0.016 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.046 0.000 0.077 0.000

L3E_056 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.007 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.093 0.013

L3E_057 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.096 0.000 0.094 0.000 0.024 0.000 0.000 0.200 0.000 0.000 0.000 0.000

L3E_060 0.000 0.000 0.000 0.016 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.000 0.064 0.000 0.125 0.067 0.000

L3E_085 0.000 0.000 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.005 0.118 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.055 0.044 0.067
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Table S3.2: Above diagonal: between population FST-values, below diagonal: geographic distance between 

populations (in kilometers). Codes for study sites are in Table 1. 

 

 
Table S3.3: Significantly over-represented biological processes among 37 candidate genes. 

 
 

GO term Biological process Annotated Significant Expected P-value

GO:0032922 Circadian regulation of gene expression 9 3 0.12 0.00016

GO:0071353 Cellular response to interleukin-4 3 2 0.04 0.00049

GO:0032835 Glomerulus development 14 3 0.18 0.00067

GO:0060142 Regulation of syncytium formation by plasma membrane fusion 4 2 0.05 0.00098

GO:0097028 Dendritic cell differentiation 4 2 0.05 0.00098

GO:0097035 Regulation of membrane lipid distribution 4 2 0.05 0.00098

GO:0042753 Positive regulation of circadian rhythm 4 2 0.05 0.00098

GO:0045599 Negative regulation of fat cell differentiation 6 2 0.08 0.00241

GO:0090263 Positive regulation of canonical Wnt signaling pathway 22 3 0.29 0.00263

GO:0009968 Negative regulation of signal transduction 175 9 2.3 0.00278

GO:0090184 Positive regulation of kidney development 7 2 0.09 0.00335

GO:0043154

Negative regulation of cysteine-type endopeptidase activity 

involved in apoptotic process 7 2 0.09 0.00335

GO:0045893 Positive regulation of transcription, DNA-templated 206 8 2.7 0.00365

GO:1903845

Negative regulation of cellular response to transforming growth 

factor beta stimulus 8 2 0.11 0.00443

GO:2001240

Negative regulation of extrinsic apoptotic signaling pathway in 

absence of ligand 9 2 0.12 0.00565

GO:0061005 Cell differentiation involved in kidney development 10 2 0.13 0.007

GO:0031018 Endocrine pancreas development 10 2 0.13 0.007

GO:0031399 Regulation of protein modification process 236 8 3.1 0.00846

L1W L2W L3W H1 H2 H3
Population 

average

L1W 0.08 0.28 0.26 0.29 0.30 0.24

L2W 1.3 0.30 0.28 0.32 0.29 0.25

L3W 20.6 19.5 0.23 0.25 0.27 0.27

H1 13.3 12.3 10.4 0.05 0.10 0.18

H2 14.5 13.5 9.7 1.2 0.07 0.20

H3 17.3 16.3 9.0 4.0 2.8 0.21
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Appendix B. 

Supporting material to Chapter 4: Folkertsma et al., in prep 

Genomic signatures of climate adaptation in bank voles 

 

 

  

Figure S4.1: Biplot of the principal component analysis depicting relationships between 

twelve sampled M. glareolus populations (colored circles) and 10 climate variables 

(depicted by arrows). The proportion of total variance explained by each axis is indicated 

in percent. Environmental identifiers can be found in supplemental table S4.1. 
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Figure S4.2: Cross-entropy (CE) scores for sNMF runs with the numbers of 

clusters ranging from 1 to 20. The lowest CE score (K=10) is marked in red. 

Figure S4.3: Venn diagrams of outlier loci, size of circles represents the number of outlier loci 

detected. (a) Comparison of overlap between outliers detected by LFMM, Bayenv2 and RDA. 

Here we used outliers detected using PC1 and PC2 for LFMM and Bayenv2, outliers that were 

detected by both PCs are included only once. (b) Comparison of overlap between outliers 

detected by LFMM and Bayenv using PC1. (c) Comparison of overlap between outliers detected 

by LFMM and Bayenv using PC2. 



Appendix B: Folkertsma et al. in prep – Supporting materials 131 

Table S4.1: Loadings of each climate variable from the WorldClim database to each principal component. For sake 

of clarity loadings |<0.3| are not presented. Only component 1 and 2 are retained for analysis. 

 
 

 
Table S4.2: Mapping results of mapped reads onto M. glareolus reference genome (GCA_001305785.1) and our 

improved genome from the Cross-species scaffolding pipeline. We mapped a subset of reads from one sample of 

each population for reference, resulting in an average increase of properly paired reads of 12.5%. 

 
  

Variable Description PC1 PC2 PC3 PC4

AnMTemp  Annual Mean Temperature 0.889 -0.364

MDR

 Mean Diurnal Range (Mean of 

monthly (max temp - min temp))
0.525 -0.744 0.363

Iso  Isothermality (BIO2/BIO7) (* 100) 0.927

TempSeas

 Temperature Seasonality (standard 

deviation *100)
-0.948

MaxTempW

M  Max Temperature of Warmest Month
0.766 -0.489

MinTempCM  Min Temperature of Coldest Month 0.936

AnPrec  Annual Precipitation 0.785 0.595

PrecWM  Precipitation of Wettest Month 0.431 0.783 -0.371

PrecDM  Precipitation of Driest Month 0.774 0.520

PrecSeas

 Precipitation Seasonality (Coefficient 

of Variation)
-0.751 -0.561

Total variance explained per component 62.5% 17.1% 12.7% 5.3%

Cumulative variance explained 62.5% 79.6% 92.3% 97.6%

M. glareolus reference genome 

(GCA_001305785.1) Improved reference genome

Sample Population

Number of properly paired reads 

mapped

Number of properly paired 

reads mapped

Percentage 

increase

Pal_03B Pallasjärvi 1,570,842 1,797,278 12.6

Man_19 Mäntyharju 689,950 799,570 13.7

Vam_581 Vammala 355,088 407,906 12.9

Gim_127 Gimo 844,552 972,112 13.1

Urw_1152 Urwitalt 1,692,884 1,957,572 13.5

Sov_02 Sovata 1,409,272 1,535,772 8.2

Pot_02 Potsdam 1,156,232 1,319,496 12.4

Lit_1914 Litoměřice 514,202 589,764 12.8

Kru_2121 Krušné hory 682,140 785,402 13.1

Rad_01 Radicondoli 344,434 391,868 12.1

Ven_381 La Venotière 607,554 687,584 11.6

Tou_001 Toulouse 858,114 991,050 13.4



Appendix B: Folkertsma et al. in prep – Supporting materials 132 

Table S4.3: Above diagonal: between population FST-values, below diagonal: geographic distance between 

populations (in kilometers). Population IDs can be found in table 4.1. 

 
 

  

Distance\FST Pal Man Vam Gim Urw Sov Pot Lit Kru Rad Ven Tou

Population 

average FST

Pal 0.12 0.14 0.39 0.21 0.17 0.26 0.21 0.21 0.36 0.34 0.49 0.27

Man 740 0.04 0.39 0.21 0.17 0.26 0.21 0.20 0.36 0.34 0.48 0.25

Vam 742 216 0.40 0.22 0.18 0.28 0.22 0.22 0.37 0.36 0.50 0.27

Gim 884 499 285 0.33 0.25 0.30 0.25 0.25 0.43 0.40 0.55 0.36

Urw 1,589 910 847 788 0.10 0.18 0.13 0.13 0.33 0.29 0.44 0.23

Sov 2,382 1,657 1,649 1,622 835 0.12 0.07 0.07 0.25 0.21 0.37 0.18

Pot 1,834 1,307 1,158 951 596 1,085 0.10 0.09 0.32 0.29 0.45 0.24

Lit 2,025 1,455 1,325 1,142 640 931 220 0.03 0.29 0.23 0.41 0.2

Kru 2,016 1,455 1,321 1,132 652 962 199 31 0.29 0.23 0.40 0.19

Rad 2,861 2,281 2,161 1,978 1,405 1,166 1,031 838 846 0.29 0.36 0.33

Ven 2,585 2,202 2,020 1,760 1,548 1,767 959 939 917 882 0.22 0.29

Tou 3,081 2,660 2,489 2,240 1,923 1,946 1,368 1,284 1,271 833 507 0.43

Population 

average distance
1,885 1,398 1,292 1,207 1,067 1,455 973 985 982 1,480 1,462 1,782
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Table S4.4: Summary of candidate genes identified by at least two genome scan methods. Locus refers to the 

location on the M. ochgrogaster reference genome (Chromosome_base-position). Method of outlier detection 

refers to the genome scan method that identified the SNP as an outlier locus. 

 
 

Locus SNP Gene GeneID Method of outlier detection

NC_022009.1_114127352 13905 LOC101979993 - IQCJ-SCHIP1 readthrough transcript protein 101979993 Lfmm_PC2, Bayenv_PC2

NC_022009.1_46105427 8095 Dync1h1 - Dynein cytoplasmic 1 heavy chain 1 101984788 Lfmm_PC1, Bayenv_PC1

NC_022010.1_6202483 3306 Ccdc60 – Coiled-coil domain containing 60 101981129 Lfmm_PC2, Bayenv_PC2

NC_022011.1_19197181 1228 Zfhx3 – Zinc finger homeobox 3 102001415 Lfmm_PC1, Lfmm_PC2, Bayenv_PC1

NC_022011.1_34776034 6118 Pard3 – Par-3 family cell polarity regulator 101989144 Lfmm_PC1, Bayenv_PC1

NC_022011.1_3920185 21260 Sntb2 – Syntrophin beta 2 101992453 Lfmm_PC2, Bayenv_PC2

NC_022011.1_56624398 830 Lrp1b - LDL receptor related protein 1B 101997699 Lfmm_PC2, Bayenv_PC2

NC_022012.1_36407433 10718 Grik4 – Glutamate ionotropic receptor kainate type subunit 4 101999225 Lfmm_PC2, Bayenv_PC2

NC_022012.1_47630215 16807 Exph5 – Exophilin 5 101978966 Lfmm_PC1, Bayenv_PC1, RDA

NC_022012.1_86433265 2658 Glb1 – Galactosidase beta 1 101995815 Lfmm_PC2, Bayenv_PC2

NC_022013.1_34093736 1113 Cdc73 – Cell division cycle 73 102001708 Bayenv_PC1, RDA

NC_022013.1_54264340 11298 Nrg3 – Neuregulin 3 101991068 Lfmm_PC1, Bayenv_PC1

NC_022013.1_58988823 15530 Ptpn20 – Protein tyrosine phosphatase non-receptor type 20 102001893 Bayenv_PC1, RDA

NC_022013.1_70231999 53 Dusp10 – Dual specificity phosphatase 10 101991434 Bayenv_PC1, RDA

NC_022013.1_73321014 625 Gpatch2 - G-patch domain containing 2 101998109 Lfmm_PC1, Bayenv_PC1

NC_022013.1_77189997 3823 Batf3 – Basic leucine zipper ATF-like transcription factor 3 101980506 Lfmm_PC1, Bayenv_PC1, Bayenv_PC2, RDA

NC_022013.1_78476899 1013 Kcnh1 – Potassium voltage-gated channel subfamily H member 1 101985787 Lfmm_PC2, Bayenv_PC2

NC_022014.1_31095426 5192 Rcvrn – Recoverin 101994553 Lfmm_PC2, Bayenv_PC2

NC_022014.1_41285562 8997 Fam114a2 – Family with sequence similarity 114 member A2 101997830 Lfmm_PC1, Bayenv_PC1

NC_022014.1_61163428 21680 Usp32 – Ubiquitin specific peptidase 32 101992481 Lfmm_PC1, Bayenv_PC1

NC_022015.1_15886054 10195 LOC102001996 – Acyl-coenzyme A synthetase ACSM4, mitochondrial 102001996 Lfmm_PC2, Bayenv_PC2

NC_022015.1_2378691 8764 Lyve1 – Lymphatic vessel endothelial hyaluronan receptor 1 101996405 Lfmm_PC2, Bayenv_PC2

NC_022015.1_25578114 5595 Fam53b – Family with sequence similarity 53 member B 101990325 Bayenv_PC1, RDA

NC_022016.1_34744889 10905 Magix - MAGI family member, X-linked 101994189 Bayenv_PC1, RDA

NC_022016.1_65583158 2415 Nfia – Nuclear factor I A 101985327 Lfmm_PC1, Bayenv_PC1

NC_022016.1_6610013 4490 Tnc – Tenascin C 101983607 Lfmm_PC2, Bayenv_PC2

NC_022017.1_15736754 10561 Ift27 – Intraflagellar transport 27 101989188 Lfmm_PC1, Lfmm_PC2, Bayenv_PC1

NC_022017.1_17053779 19263 Adamts20 - ADAM metallopeptidase with thrombospondin type 1 motif 20 101980054 Lfmm_PC2, Bayenv_PC2

NC_022017.1_43070389 18068 Fer1l6 – Fer-1 like family member 6 101996887 Lfmm_PC2, Bayenv_PC2

NC_022018.1_22965832 1502 Camk1d – Calcium/calmodulin dependent protein kinase ID 101997166 Lfmm_PC2, Bayenv_PC2

NC_022018.1_59867563 14768 Ntrk2 – Neurotrophic receptor tyrosine kinase 2 101991185 Lfmm_PC2, Bayenv_PC2, RDA

NC_022019.1_33366136 1761 Dock9 – Dedicator of cytokinesis 9 101983813 Lfmm_PC2, RDA

NC_022020.1_13918386 1319 Dtna – Dystrobrevin alpha 102001187 Lfmm_PC1, Bayenv_PC1, RDA

NC_022020.1_39468798 14030 LOC101982397 – Zinc finger protein 474 101982397 Lfmm_PC2, Bayenv_PC2

NC_022022.1_22815234 9847 Ank2 – Ankyrin 2 101979678 Lfmm_PC2, Bayenv_PC2

NC_022024.1_33246556 5752 Igf1 – Insulin like growth factor 1 101987701 Lfmm_PC2, Bayenv_PC2

NC_022025.1_5022288 5995 Kiaa1324l - KIAA1324 like 101997177 Lfmm_PC2, Bayenv_PC2

NC_022027.1_38831099 13878 Adgrl3 – Adhesion G protein-coupled receptor L3 101986483 Bayenv_PC1, RDA

NC_022027.1_54997482 19286 Lrrc8c – Leucine rich repeat containing 8 VRAC subunit C 101997182 Lfmm_PC2, RDA

NC_022028.1_28663654 13488 St6gal2 - ST6 beta-galactoside alpha-2,6-sialyltransferase 2 101979687 Lfmm_PC2, Bayenv_PC2

NC_022028.1_33292795 9202 Cdh23 – Cadherin related 23 101999180 Lfmm_PC1, Bayenv_PC1

NC_022028.1_35652758 1125 Rufy2 - RUN and FYVE domain containing 2 101987900 Lfmm_PC2, Bayenv_PC2

NC_022028.1_49631929 8437 Dnah8 – Dynein axonemal heavy chain 8 101988652 Lfmm_PC2, Bayenv_PC2

NC_022029.1_13954523 5544 Atad2b - ATPase family AAA domain containing 2B 101991203 Lfmm_PC2, Bayenv_PC2

NC_022030.1_4789630 16537 Slc2a12 – Solute carrier family 2 member 12 101990267 Bayenv_PC1, RDA

NC_022030.1_57114683 9559 Tns1 – Tensin 1 102001111 Lfmm_PC1, Bayenv_PC1

NC_022031.1_25142086 17315 Fut9 – Fucosyltransferase 9 101991953 Lfmm_PC2, Bayenv_PC2

NC_022031.1_30606927 2299 Bach2 - BTB domain and CNC homolog 2 101995098 Lfmm_PC1, Lfmm_PC2, Bayenv_PC2, RDA

NC_022033.1_117651 13141 Myt1 – Myelin transcription factor 1 101989790 Bayenv_PC1, RDA

NC_022033.1_15962378 375 Ptprt – Protein tyrosine phosphatase receptor type T 101998531 Lfmm_PC2, Bayenv_PC1, RDA

NC_022034.1_10692654 12357 Fndc1 – Fibronectin type III domain containing 1 101985076 Lfmm_PC2, Bayenv_PC2

NC_022034.1_34066290 6313 Tbc1d32 - TBC1 domain family member 32 101979138 Bayenv_PC2, RDA

NC_022034.1_40747119 13061 Ptprk – Protein tyrosine phosphatase receptor type K 101989309 Lfmm_PC2, Bayenv_PC2

NC_022036.1_5481645 16269 LOC101998720 – Anionic trypsin-2 101998720 Bayenv_PC1, RDA

NW_004949095.1_788514 7990 C6H1orf21 – Chromosome 6 C1orf21 homolog 101983365 Lfmm_PC2, Bayenv_PC2

NW_004949096.1_35517029 20241 Blvra – Ciliverdin reductase A 101996347 Lfmm_PC2, Bayenv_PC2

NW_004949098.1_1764557 14228 Mrpl19 – Mitochondrial ribosomal protein L19 101984889 Lfmm_PC1, RDA

NW_004949099.1_1813079 16762 Aplf – Aprataxin and PNKP like factor 101983646 Lfmm_PC1, Bayenv_PC1

NW_004949099.1_24984757 14356 Grm7 – Glutamate metabotropic receptor 7 102002042 Lfmm_PC2, Bayenv_PC2

NW_004949099.1_7212850 11906 LOC113458036 – Uncharacterized LOC113458036 113458036 Lfmm_PC1, Bayenv_PC1, RDA

NW_004949102.1_10543126 731 Exoc4 – Exocyst complex component 4 101999828 Lfmm_PC1, Lfmm_PC2, Bayenv_PC2, RDA

NW_004949102.1_1626706 3317 LOC101997986 – Hyaluronidase-5-like 101997986 Bayenv_PC1, RDA

NW_004949102.1_4439720 7323 Grm8 – Glutamate metabotropic receptor 8 102000941 Lfmm_PC1, Bayenv_PC1

NW_004949102.1_6516662 13798 Ahcyl2 – Adenosylhomocysteinase like 2 101989422 Bayenv_PC1, RDA

NW_004949106.1_3445183 19410 Plcl1 – Phospholipase C like 1 (inactive) 101997890 Bayenv_PC1, RDA

NW_004949106.1_7957839 21309 Stat4 – Signal transducer and activator of transcription 4 101994625 Lfmm_PC2, Bayenv_PC2

NW_004949111.1_3852573 15198 LOC101997307 – Uncharacterized LOC101997307 101997307 Lfmm_PC1, RDA

NW_004949117.1_4850355 15033 Dpys – Dihydropyrimidinase 101985105 Bayenv_PC1, RDA

NW_004949128.1_2823627 5956 Atp10b - ATPase phospholipid transporting 10B (putative) 101983489 Lfmm_PC2, Bayenv_PC2

NW_004949130.1_2298948 9797 LOC101979737 – Keratin, type I cytoskeletal 18 pseudogene 101979737 Lfmm_PC2, Bayenv_PC2

NW_004949149.1_1068966 11743 Inpp4b – Inositol polyphosphate-4-phosphatase type II B 101992938 Lfmm_PC1, Lfmm_PC2

NW_004949155.1_1652207 7752 Slc16a2 – Solute carrier family 16 member 2 101982460 Lfmm_PC1, Bayenv_PC1

NW_004949164.1_394094 19532 Elmo1 – Engulfment and cell motility 1 101998663 Bayenv_PC1, RDA

NW_004949242.1_70943 16243 LOC101986078 – Vomeronasal type-1 receptor 4-like 101986078 Lfmm_PC1, Bayenv_PC1



Appendix B: Folkertsma et al. in prep – Supporting materials 134 

Table S4.5: Percentage of outliers associated with climate variables based on pRDA for different datasets 

containing: all 1,392 outliers detected, only 485 outliers detected by RDA, and 213 selected outliers detected by 

at least two methods. 

 

 
Table S4.6: Correlation between climate variables from the WorldClim database. Above diagonal: correlation 

coefficient (spearman’s ρ), below diagonal significance level of correlations (NS=non-significant, * < 0.05, ** < 

0.01, *** < 0.001. Abbreviations can be found in Appendix B: table S4.1. 

 
 

 

AnM 

Temp MDR Iso Temp Seas

Max 

TempWM

Min 

TempCM AnPrec PrecWM PrecDM PrecSeas

AnMTemp 0.41 0.82 -0.83 0.93 0.93 0.47 0.04 0.55 -0.60

MDR NS 0.67 -0.31 0.60 0.29 0.46 0.32 0.27 -0.22

Iso ** * -0.86 0.77 0.82 0.73 0.35 0.70 -0.63

TempSeas ** NS *** -0.68 -0.94 -0.72 -0.23 -0.84 0.85

MaxTempWM *** * ** * 0.81 0.44 0.01 0.44 -0.51

MinTempCM *** NS ** *** ** 0.61 0.15 0.78 -0.79

AnPrec NS NS ** ** NS * 0.72 0.80 -0.53

PrecWM NS NS NS NS NS NS ** 0.39 0.02

PrecDM NS NS * *** NS ** ** NS -0.86

PrecSeas * NS * *** NS ** NS NS ***

All 1,392 

outliers

485 RDA 

outliers

213 selected 

outliers

AnMTemp 27.5% 37.1% 28.6%

TempSeas 14.8% 11.1% 15.0%

MDR 18.1% 20.8% 13.6%

AnPrec 25.4% 15.9% 27.7%

PrecSeas 14.2% 15.1% 15.0%
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