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“Intelligenz 1st wie das Facettenauge einer Fliege.”

- P. E.S.



Allgemeinverstandliche Zusammenfassung

Viele Systeme in der Natur zeigen ungleichméftige Rhythmen, ohne dass eine
aufere Kraft sie dabei beeinflusst. Zum Beispiel variiert die Rhythmik der
Atmung sténdig in ihrer Tiefe und Dauer. Zum Zwecke des besseren Ver-
stdndnisses werden solche Rhythmen in vereinfachter Weise durch ihre Phasen
beschrieben. Diese Beschreibung wird in zwei Arbeitsschritten vorgenom-
men, erstens der Unterteilung des Rhythmus in seine Phasen und zweitens
der Zuordnung verschiedener Systemzustidnde zu einer Phase. Beide Arbeits-
schritte liegen jedoch im Ermessen des Beobachters und sind deshalb nicht
allgemeingiiltig: Zum einen wird der ungleichméfige Rhythmus willkiirlich in
kiirzere oder ldngere Phasen unterteilt. Zum anderen werden Systemzustande
unterschiedlicher Amplitude, also z.B. der Atemtiefe, unbegriindet derselben
Phase zugeordnet. Im Rahmen der vorliegenden Doktorarbeit wird eine ver-
feinerte Phasenbeschreibung vorgenommen, die zu einem gewissen Grade all-
gemeingiiltig ist. Beide genannten Arbeitsschritte werden dabei separat ver-
feinert.

Die Unterteilung des Rhythmus in seine Phasen als ersten Arbeitsschritt
ist charakterisiert durch die Schnelligkeit, mit der die jeweiligen Phasen durch-
laufen werden. Daher soll in der Arbeit die Phasengeschwindigkeit dazu ver-
wendet werden, die Phase in eine allgemeingiiltige Form zu bringen. Fiir vom
Zufall bestimmte Systeme ist die Phasengeschwindigkeit jedoch nicht eindeutig
feststellbar. In der Arbeit sollen daher auch mehrere Varianten einer mit-
tleren Phasengeschwindigkeit vorgestellt werden, die eine allgemeingiiltigere
Phasenbeschreibung erlauben. Dabei ist je nach Anwendungsbereich eine an-
dere Variante niitzlich. Vorteil einer allgemeingiiltigen Phasenbeschreibung ist
dabei, dass auch die von ihr abgeleiteten Groken erweiterte Giiltigkeit erlan-
gen: So kann im Ergebnis die Kopplung zwischen miteinander in Verbindung
stehenden Systemen allgemeingiiltig beschrieben werden. Dies wird in der Ar-
beit anhand von Beispielen néher dargelegt.

Auch der zweitgenannte Arbeitsschritt der Zuordnung verschiedener Sys-
temzustidnde zu einer Phase soll in allgemeingiiltiger Weise ermdoglicht werden.
Diese Zuordnung soll nach dem Kriterium der zukiinftigen Unterscheidbar-
keit vorgenommen werden: Demnach sind all diejenigen Systemzustédnde einer
Phase zuzuordnen, die in Zukunft nicht unterschieden werden kénnen. Be-
trachtet man zwei Zusténde einer Phase, so lasst sich das Kriterium dadurch
iiberpriifen, dass man fiir beide Zusténde getrennt die Zeit misst, die vergeht,
bis sie jeweils nach einer Periode wieder in derselben Phase sind. Die gemesse-
nen Zeiten miissen dann fiir die derselben Phase zugeordneten Zustidnde iden-
tisch sein. Fir vom Zufall bestimmte Systeme ist es wiederum nétig, die
mittlere Zeit fiir eine Riickkehr in dieselbe Phase zu berechnen. Fiir Rhyth-
men sogenannter chaotischer Systeme hingegen erweist sich, dass das Kri-
terium nur annidherungsweise erfiillt werden kann. Fiir solche Systeme ist
eine Phasenbeschreibung daher nur begrenzt moglich.

Gemeinsam erlauben beide verfeinerten Arbeitsschritte eine allgemeingiiltige
Phasenbeschreibung ungleichméfiger Rhythmen, wodurch auch komplizierte
rhythmische Vorgénge in der Natur praziser beschrieben werden konnen.
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Abstract

Many natural systems embedded in a complex surrounding show irregular os-
cillatory dynamics. The oscillations can be parameterized by a phase variable
in order to obtain a simplified theoretical description of the dynamics. Impor-
tantly, a phase description can be easily extended to describe the interactions
of the system with its surrounding. It is desirable to define an invariant phase
that is independent of the observable or the arbitrary parameterization, in
order to make, for example, the phase characteristics obtained from different
experiments comparable.

In this thesis, we present an invariant phase description of irregular oscilla-
tions and their interactions with the surrounding. The description is applicable
to stochastic and chaotic irregular oscillations of autonomous dissipative sys-
tems. For this it is necessary to interrelate different phase values in order to
allow for a parameterization-independent phase definition. On the other hand,
a criterion is needed, that invariantly identifies the system states that are in
the same phase.

To allow for a parameterization-independent definition of phase, we inter-
relate different phase values by the phase velocity. However, the treatment of
stochastic oscillations is complicated by the fact that different definitions of
average velocity are possible. For a better understanding of their differences,
we analyse effective deterministic phase models of the oscillations based upon
the different velocity definitions. Dependent on the application, a certain effec-
tive velocity is suitable for a parameterization-independent phase description.
In this way, continuous as well pulse-like interactions of stochastic oscillations
can be described, as it is demonstrated with simple examples.

On the other hand, an invariant criterion of identification is proposed that
generalizes the concept of standard (Winfree) isophases. System states of the
same phase are identified to belong to the same generalized isophase using the
following invariant criterion: All states of an isophase shall become indistin-
guishable in the course of time. The criterion is interpreted in an average sense
for stochastic oscillations. It allows for a unified treatment of different types
of stochastic oscillations. Using a numerical estimation algorithm of isophases,
the applicability of the theory is demonstrated by a signal of regular human
respiration. For chaotic oscillations, generalized isophases can only be obtained
up to a certain approximation. The intimate relationship between these ap-
proximate isophase, chaotic phase diffusion, and unstable periodic orbits is
explained with the example of the chaotic Rdossler oscillator.

Together, the concept of generalized isophases and the effective phase the-
ory allow for a unified, and invariant phase description of stochastic and chaotic
irregular oscillations.
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Chapter 1

Introduction

Our curiosity is excited by physical objects that show dynamical patterns.
If the same pattern is repeated cyclically without any forceful influence of an
external rhythm, a purpose of its own is ascribed to the dynamical process and
it is desirable to understand the structure of its dynamics and its interactions
with its surrounding. It seems natural to divide the pattern into certain phases
that define a consecutive time course in a circular fashion. The associated
phase variable describes in which part of the cycle the system currently resides.
In its applications, may they be as complicated as the rhythms of the human
brain or as simple as the dynamics of a pendulum clock, the phase provides
the foundation for a global understanding of dynamical properties @?

In a physical context, a 2m-periodic phase variable provides a simplified
description of autonomous oscillations shown by natural, synthetic or mathe-
matical systems ﬂ, , @] Simple examples of autonomous dissipative sys-
tems fueled by an energy source can show regular limit-cycle oscillations for
which a phase description — a monotonic parameterization of the limit-cycle —
is straightforward. But their dynamics can also be more complicated: Irregu-
larities in frequency and amplitude may be present in the oscillations. Then,
amplitude variables have to be taken into account in order to quantify devia-
tions from the stereotypical oscillation [@] In some cases, the irregularity can
be described best as the effect of a random forcing, i. e. noise. Noise is either
a perturbation to regular oscillations, or it is substantial in the sense that it
induces oscillations in the system which would equilibrate otherwise [@, @, ]
In other cases, the irregularity is of a non-random nature interpreted as the
presence of deterministic chaos , @, @] Both types of irregular oscilla-
tions can only be parameterized by a single phase variable if certain states are
identified to be in the same phase. The standard procedure of phase reduction
extends the definition of phase starting from a limit-cycle: Those states are
identified that become indistinguishable in the course of time in which they
contract to the same state of the limit-cycle @] Therefore, the procedure is
not applicable for those systems that show irregular oscillations unless they
are weakly noise-perturbed.

An oscillating system embedded in a complex surrounding can be described
more realistically by taking into account their interactions. These are usu-



ally constrained to be weak in some sensd]. The state of weakly interacting
limit-cycle oscillators remains close to the limit-cycle, allowing for a pertur-
bative approach to be valid. The phase dynamics of such oscillators has been
extensively studied in different setups such as, two, three and many of the
oscillators interacting globally or in networks via continuous or pulse-like cou-
pling @, @, , @, éﬂ, , , @, ] Usually, the coupled oscillators in-
teract pairwise. A continuous pairwise interaction is characterized by two
coupling functions, each one quantifying the phase-dependent force exerted on
the other phase variable. The coupling function can be inferred from oscil-
latory data, allowing for an easily interpretable method of signal processing
ﬂ§, @: @, BE, @, |. In pulse-like interactions, a short pulse kicks the phase
of the oscillator to a new value. The difference between the old and the new
value can be characterized by the phase resetting curve “E, @, ] The
curve has been used to characterize different types of neuronal oscillators @]
For an invariant definition of interaction functions, such as the coupling func-
tion or the phase resetting curve, the phase variable has to be obtained in a
non-arbitrary parameterization that is normally provided by the limit-cycle
of the oscillating system. Therefore, the theory of phase dynamics has only
a restricted applicability that, for example, does not allow a description of
interacting noise-induced oscillations @, @, ]

The goal of this thesis is an invariant phase description of irregular oscilla-
tions. For this, those states of the oscillations that belong to the same phase
must be identified in an invariant way. Furthermore, the phase of stochastic
oscillations has to be defined independent of the initially arbitrary parameter-
ization to be able to formulate an invariant phase description of interactions.

For an invariant phase description of stochastic oscillations, they are mod-
eled by effective deterministic phase oscillators. The theory is easily extended
to describe continuous and pulse-like interactions by the definition of an ef-
fective coupling function and a stochastic phase resetting curve, respectively.
Furthermore, the problem of phase reduction of irregular oscillations is ad-
dressed. Following the paradigm of Ref. @], we identify states to be in the
same phase if they become indistinguishable in the course of time. The ap-
proach leads to a phase variable that is to a certain extent invariant under
transformations of the state space.

In Chap.[2 the current model and the first passage model of effective phase
dynamics are presented in detail. The current model can be extended to de-
scribe continuous interactions of oscillations as demonstrated by the simple
example of periodically forced stochastic oscillations. The first passage model,
on the other hand, describes the stochastic phase resetting curve of stochas-
tic oscillations that are subject to a brief pulse. In Chap. B the concept of
standard isophases is generalized for a treatment of stochastic and chaotic os-
cillations. A numerical scheme is presented that allows for an estimation of
the generalized isophases from data. It is shown by examples, that the the-
ory is applicable to noise-induced, noise-perturbed as well as non-Markovian

IFor strong interactions, the notion of system might not apply.



stochastic oscillations in a unified way. Furthermore, the applicability of the
scheme to observed oscillations is illustrated by a biophysical example. For
chaotic oscillations, it is shown that generalized isophases can only be approx-
imated. The relations of chaotic phase diffusion, unstable periodic orbits and
approximate isophases is discussed.

We continue the introduction with a biophysical example of interacting
irregular oscillations with which we explain certain difficulties of a phase de-
scription (Sec. [L]). Then, different theoretical models of irregular oscillations
are discussed: In the simplest case, a limit-cycle oscillator allows for a per-
turbative phase description of weakly perturbed and interacting oscillations
(Sec. [L2). Some oscillations are better described by generically stochastic
oscillators that show, for example, noise-induced oscillations. For these, the
notion of oscillation can be ill-posed what drives the concept of phase descrip-
tion to its limits (Sec. [[3]). After all, the irregularity of oscillations may not
be the result of randomness, but deterministic chaos. Then, chaotic oscillators
are the natural model of choice, for which oscillations can be characterized by
their unstable periodic orbits (Sec. [[4]).

1.1 Irregular Oscillations

Autonomous irregular oscillations are immanent in biophysical systems @]
Well-known examples are the oscillations shown by the human heart, as well
as the human respiration. However, the observable patterns are not perfectly
recurrent, but show variability in frequency and amplitude. Therefore, it may
not be straightforward to identify an oscillation, or even harder, the phases
of the oscillatory cycle in an observable-invariant fashion. On the other hand,
a phase description of interacting oscillations yields the profit of an easily in-
terpretable quantification of their interaction. Let us explain the problems
of a phase description of irregular oscillations with the examples of the elec-
trocardiogram (ECG) and breast belt measurements of the regular human
respiration.

Regular human respiration measured by the tension of a breast belt p(t)
gives an approximately sinusoidal signal for which their is not much ambiguity
in the definition of oscillation (cf. top left plot of Fig. [[T). However, the
dynamical pattern E(t) of single beat of the human heart in the ECG shows
multiple features of variable amplitudeﬁ (top plot of Fig. [[.2). For example,
the highest peaks, the R-peaks, can serve as markers in between which the
heart is said to perform one “oscillation” — its phase grows by 27. This notion
of oscillation has been motivated biologically by matching characteristic heart
movements to features of the ECG pattern.

The construction of a phase variable () must start somewhere on the cycle
of the heart beatl. To be specific, we can identify all states £(¢;) for which the

2Usually, there are three peaks named P, R and T, and two valleys named Q and S, but
there can be a fourth peak (see Ref. ﬂﬂ] or any textbook on human physiology).
3Being a cycle, there is no generic beginning.
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ECG shows a local maximum of the R-peak to be in the same phase ¢(t;) = 0.
Knowing only one phase of the cycle, we can already calculate a coarse-grained
instantaneous heart period — the so called beat-to-beat interval (BBI):
T; = tjy1 —t;. Let us note that such an approach is applied in theoretical
models of stochastic oscillations as well @, |. Problematically, the marker-
based procedure for a calculation of BBIs is not invariant because it depends
on the marker and the observable: Let us consider the signal E(t) and its time
derivative E(t) as a two-dimensional state space of the dynamics. The states of
zero phase correspond to a curve in the state space (bottom left plot of Fig.[L.2)).
The BBIs are nothing but the return times to that curve (bottom right plot).
However, if the electrodes] were placed at slightly different positions, the state
space would be transformed, nonlinearly. Most likely, the states defined by
the new maxima of R-peaks would not be the same as before resulting in
quantitatively different BBI&H We find: A marker-based definition of phase is
neither optimal nor invariant.

For a definition of BBIs we needed only one phase of the ECG signal, and
we have chosen the R-peak. Principally, one is interested in defining a phase
variable for all states of the ECG, but this is not easy because variations of
most features corresponding to other values of the phase are usually too large
for a reliable detection. This is different for the almost sinusoidal dynamics
of regular human respiration (cf. top left plot of Fig. [[T]). Using the Hilbert
transformation H,(t), a two-dimensional state space (H,, p) is obtained that
allows for the definition of polar coordinates whose phase variable (t) charac-
terizes respiratory oscillations to a certain extent [63]. As for the ECG marker,
the curves of constant phase defined by the radial beams (red lines) are neither

optimal nor invariantt.

If two oscillating systems interact, an imprint of the interaction is left in
their phase dynamics, that is observable in the phase dependence of their in-
stantaneous frequencies. The interaction of the human respiration and heart
beat can be observed by the well-known respiratory sinus arrhythmia — the
dependence of the heart beat on the respiratory phase [lﬂ] The effect can be
readily seen by displaying the BBIs 7} obtained from the ECG as a function
of respiratory phase ¢(t;) (cf. bottom plot of Fig. [LT]): On average, the inspi-
ratory phase ¢(t;) =~ 0 is accelerant whereas the expiratory phase ¢(t;) ~ 7 is
decelerant. The data shows a large amount of noise that has several potential
sources. For example, it is well-known that the arrhythmia depends on the
amplitude of respiration, as well, which is averaged over in the phase descrip-
tion. However, as it is strongly suggested from the discussion above, we claim
that a certain amount of noise, seen in the bottom plot of Fig. [[T], is due to
the inaccurateness in the definitions of respiratory phase and BBIs.

4The ECG is measured with surface electrodes that are placed on the skin of the upper part
of the body at certain positions.

5The implied randomness of the chosen observable is a form of measurement noise. Its
amplitude depends on the scattering width of states and on the speed of transition of the
curve relative to the mean frequency.

6This can be seen easily by a slight shift of the origin in Fig. [1l
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Figure 1.1: A time segment of regular human respiration p(t) (top left plot)
is embedded via the Hilbert transform H, (black line in top right plot). In
this state space, polar coordinates define an arbitrary phase variable of the
respiration ¢(t) (red lines). The BBIs T,, = t,.; — t, of a simultaneously
measured ECG signal (cf. Fig. [[2) as a function of the phase ¢(t,) at the
time of the R-peak t,, revealed the well-known respiratory sinus arrhythmia
— the dependence of heart period on the respiratory phase (black triangles
in bottom plot). The shown data was obtained from subject £1y05 of the
“fantasia database” ] (sampling rate: 256 Hz).

1.2 Description of Irregular Oscillations as Reg-
ular Oscillations

There are certain conditions under which irregular oscillations may be de-
scribed by regular oscillations shown by limit-cycle oscillators @, , @]
One has to be sure that only weak extrinsic forces perturb the regular dynam-
ics. Then, a phase description based on limit-cycle oscillators can yield a good
approximation, too. The approach was employed to describe systems under
the influence of short pulses ﬂg 26 @], of other oscillators Nﬁ: @], and of
white or colored noise fﬁ, @, Eﬂ, @] Notably, stochastic synchronization of
neuronal oscillators could be modeled quantitatively @]
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Figure 1.2:  The ECG signal E(t) shows a slightly aperiodic return of a
stereotypical dynamical pattern (black line in top plot). The marker-based
approach to identify the tip of the R-peak (red vertical lines) can be mapped
to the choice of a certain curve in the state space (E(t), E(t)) (red points in
bottom left plot). Therefore, the resulting BBIs 7} at times t; (red triangles
in bottom right plot) depend on the marker as well as on the observable. The
data was measured from a 25-year old male subject using a standard Holter
monitor (sampling rate: 256 Hz).

1.2.1 Standard Phase Reduction

Autonomous regular oscillations are shown by a limit-cycle oscillator [89, [7§|
x = F(x) . (1.1)

Asymptotically, each state that lies in the basin of attraction reaches a stable
period T limit-cycle xo(t+71") = x¢(t) which serves as the backbone of the stan-
dard phase reduction procedure: Each state xy on the cycle can be identified
with a phase 0(x¢) € [0,27) in a one-to-one fashion. The identification should
be performed such that the phase as a function of time is strictly monotonous
if it is considered as an unwoundl] variable that is not taken modulo 27. In
this way a phase variable is introduced on the cycle. There are two degrees of
freedom which are not fixed by the definition of phase. First, the phase 6 =0
has to be matched to a certain state xy on the cycle. Choosing another state
x;, leads to a constant phase shift. Second, the monotonous parameterization

"The unwound phase is also sometimes called unwrapped.
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of the cycle is arbitrary. Therefore, its dynamics = h(f) is described by an
arbitrary positive function h(#). One can chose 0 = 2% In this parameter-
ization 6 is a time-like variable. Starting from an arbitrary parameterizing
phase «a that obeys the phase dynamics & = h(«), a uniformly rotating phase
variable 6 can always be obtained by the transformation

(e

9:5(04):2%/;(—2‘:). (12)

Let us note that a stochastic phase variable can only rotate uniformly on
average. However, the notion of average uniformity is ambiguous because the
notion of average speed is. Therefore in Chap. 2 we will distinguish between
the arbitrarily parameterized protophase and the phase that has a special
parameterization, for clarity.

The irregularity of oscillations is modeled as an external perturbation to the
dynamics of oscillator (ILT)). Even though it might be weak or short leading
only to small deviations of the state from the limit-cycle, the definition of
0(x) has to be extended to states in its vicinity. One possibility is to use an
arbitrary extension (p(x) from the limit-cycle to its neighborhood, which then
is foliated by a family of Poincaré sections J(p) of constant arbitrary phase
¢ that equals € on the limit-cycle. The family defines cylindrical coordinates
that consist of the arbitrary phase ¢ and amplitudes a parameterizing J(y).
For example, the star-shaped set of curves of constant phase ¢ that define the
polar coordinates, shown in the top right plot of Fig. [T}, form a family J(y).
The dynamics of ¢ may still depends on a, whereas the goal is to define a
phase that rotates independent of the amplitudes: Then, in accordance with
the paradigm, differences in phase will remain whereas differences in amplitude
will decay in the course of time.

For a limit-cycle oscillator (ILTI), the proper family of Poincaré sections I(6)
can be defined as follows: A state x close to the limit-cycle will be attracted
to it after some time, and asymptotically it shares the same future with some
state x¢ on the limit-cycle: (cf. Fig. [[3)):

Jim ||x(t) = xo(t)|| = 0. (1.3)

Then, x is assigned the same phase as xg: 0(x) = 6(x¢). In this way, 0(x) is
defined for all states that approach the limit-cycle. The set of all points with
the same phase gives a Poincaré section I(0), called standard isophase, for
which phase dynamics decouples from amplitudes @] We want to stress that
standard isophases are defined in the basin of attraction of a stable limit-cycle.

As an example, the Landau-Stuart oscillator is a two-dimensional system
that shows a limit-cycle beyond a supercritical Hopf bifurcation. In a complex
coordinate W, it is governed by the dynamics [80)]

U= (14ia)¥ — (14 ir)| V)0 . (1.4)
In polar coordinates U = re’? the dynamics is given by

F=r(1—7%), p=a—rr?. (1.5)
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Figure 1.3:  According to Eq. (L3]), a state x(t) (blue line with arrow) of
a limit-cycle oscillator starting on a standard isophase I(#) (black line) ap-
proaches the state x(t) (red line with arrow) starting on the intersection of
the isophase and the limit-cycle (dashed line), here shown for oscillator ([L.4))
at parameters « = 2 and xk = 1. For each x, the time 7'(x) to return to I(0)

is equal to the oscillation period of the limit-cycle: T'(x) =T = 2=

—Kk "

The equations have the limit-cycle solution r(t) = 1 and ¢(t) = (a«— k)t +¢(0)
with a frequency w = a — k. The general solution can be found, too:

1—r2(0) ] "
t)= |1+ ——"2e?
0=+ ) © :

o(t) =wt+ klnr(t) + ¢(0) — klnr(0) .

(1.6)

From the general solution, we can find the uniformly rotating phase 6 by
inquiring # = w. The resulting transformation

O(p,r) =¢ —rKlnr (1.7)

is an implicit definition of standard isophases: For a fixed phase 6, the solu-
tions of Eq. (L7) form the associated standard isophase (cf. Fig. [[3]). From
the equation we see that x governs the non-isochronicity, i. e. the amplitude
dependence of the local frequency.

In Ref. [@], a generalization of phase was proposed mainly relying on the
average constancy of its growth rate (cf. Eq. (L2))), but that approach still
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does not lead to an invariant phase description. In Chap. Bl we present a
geometrical approach by generalizing the concept of standard isophases with
which an invariant phase description can be formulated. For the generaliza-
tion the following property of standard isophases is used. Let us consider a
standard isophase I(6) as a Poincaré section of the dynamics: It takes a return
time 7T'(x) for a state x on I(f) to perform one oscillation and return to 1(0).
Because of the decoupling of the phase equation f = w from the amplitudes,
all average return times of I() are constantly equal to the oscillation period
T. Not relying on the existence of a limit-cycle, the property is suitable for
a generalization of standard isophases. However, in an application to chaotic
dynamics it is seen that even generalized isophases may not exist. In this case,
useful approximations are still possible.

1.2.2 Phase Description of Interaction

The interaction of oscillations is reflected in their phase dynamics as seen in the
bottom plot of Fig. [Tl If interactions are weak, the standard phase reduction
of limit-cycle oscillators can be employed in a perturbative manner in order to
derive the coupled phase equation.
In order to model interaction, we perturb the oscillator with an additional
term I'(¢,x) as
x = F(x) +I'(t,x) , (1.8)

with which random forcing given by Gaussian white noise, brief pulses given
by a d-function, or a continuous periodic forcing is modeled. We use the phase
0(x) of the unperturbed system, that obeys condition (L3]), in order to obtain
a phase description of the perturbed oscillator [Eq. (I=8)]. We getl

0 =w+ VOX)(t,x) . (1.9)

The equation is not closed because, generally, the perturbed state x is not on
the limit-cycle. However, x belongs to a standard isophase that intersects the
limit-cycle at xq (cf. Fig. [3). Therefore, we can close Eq. (LY) by replacing
x with the corresponding state xo on the cycle: Then, 6(xg) is a one-to-one
mapping what closes the phase equation. This standard procedure of phase
reduction is only good if the state is close to the limit-cycle.

Influence of Random Forcing. A random forcing of a limit-cycle os-
cillator is modeled by multiplicative Gaussian white noise interpreted in the
Stratonovich sense [70]:

T(t,x) = G(x)E() .

In this work, £(t) always has the property: (£(¢)&(t')) = 26(t —t') . Performing
the phase reduction, one has to be careful with the projection of states on the
limit-cycle because an additional term Y () arrises from correlations of noise
with the amplitudes a(x) (see Ref. [90]). One gets

0=w+Y(0)+ Z(O)E) , (1.10)
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with the phase sensitivityf] Z (0) = (V0,G(x0(0))), and the amplitude termf
Y(0) = (Va(V0,G),(Va)G). The approximation holds only if noise is weak
compared to the stability of the deterministic limit-cycle. Eq. (ILI0) is an
example of a stochastic phase oscillator (see Sec. 21]).

Pulse-like Interaction. If the perturbation is a series of short pulses applied
at times ¢; with strength and direction k(x), the interaction can be modeled

by
I(t,x) = k(x) Za@s —t;) .

The resulting phase equation is given by

0=w+2(0)> 5(t—t;), (1.11)

with the phase sensitivityl Z(0) = (V0,k(y(0))). Eq. (CII) is good under
the assumption that the state x stays close to the limit-cycle. Even for strong
pulses, a closed phase equation can be found if its state relaxes fast enough to
the cycle.

The effect of a single kick I'(¢,x) = k(x)d(t — ¢') that is applied at a
phase 0(t') = « is described by the phase resetting curve PRC(a, k): It is the
difference in phase of the unkicked [Eq. (IZ1)] and kicked [Eq. (I=8)] oscillatorf]
after its state relaxed back to the limit-cycle.

Continuous Interaction. A simple example of continuous interaction is
given by a periodically forced oscillator with

I'(t,x) = G(y(t), x) .

Here, 1(t) = Qt is the (2m-periodic) external phase with frequency Q. After
the application of the phase reduction procedure we arrive at

0=w+ K(1(t),0) (1.12)

with a coupling functionfl K (1, 0) = (V6, G(¢,0)). The approximation is only
good for a weak interactions. If the difference in frequencies w — €2 is small,

the transversal variable A = 6 — 1) is slow. Averaging out the fast variable we
obtain the equation for A in the standard Adler form ]

12 (1.13)
dd) =5 [ QA+ vy
T Jo
If the average coupling function ¢(A) is bigger than the difference in frequen-
cies, Eq. (ILT3) has a fixed point; the phenomenon of synchronization sets in

8The vector of derivatives with respect to x; is V, and with respect to ay, it is V.
9They should start with the same initial condition on the limit-cycle.
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where A considered as an unwound variable remains bounded @]

Synchronization can also occur for a pulse-like interaction (cf. Eq. (ILII])).
However, it can never be present if oscillations are additionally forced by un-
bounded noise: Even for weak noise, phase slips, where A(t) grows by 27, can
occur with small probability.

1.3 Stochastic Description of Irregular Oscilla-
tions

Some autonomous irregular oscillations cannot be treated as a deterministic
limit-cycle oscillator in an approximate way. The reason can be that random
perturbations are not weak, and thus, the standard phase reduction gives a
bad approximation. There are also systems where the random forcing induces
oscillations in an excitable system which would equilibrate otherwise. Then,
the approach cannot be applied because without a limit-cycle the foliation of
the state space by a set of standard isophases is not possible: Phase simply
cannot be deﬁned@.

The simplest system that shows noise-induced oscillations is the well-known
stochastic Adler equation [@]

0(t) = a + cos 0 + o&(t) , (1.14)

It is a stochastic phase oscillator whose state is defined by a 27-periodic phase
variable 6 (same class as Eq. (LI0)). Naturally, an oscillation is characterized
by the growth of 6 by 27. For |a| < 1 for which the deterministic dynamics has
a fixed point, the oscillator shows noise-induced oscillations. For |a| > 1 oscil-
lations are noise-perturbed and a limit-cycle exists. For these, phase resetting
curves and average coupling functions |Eq. (LI3])] can be derived perturba-
tively starting from the noise-free dynamics at o = 0. However, this is not
possible for noise-induced oscillations.

Even the notion of oscillation can be unclear in higher-than-one dimensions.
Let us explain the difficulty by the example of the FitzHugh-Nagumo model
that is a paradigmatic two-dimensional model of neuronal oscillations ﬂa, @,

@]:

dt 37 (1.15)
dy =z +a+ 0of(t)
dt

The small parameter ¢ separates the time scales of the two variables x and vy,
and a governs the excitability of the model: It shows noise-induced oscillations

10As we have seen in the examples (cf. Fig. [L2), this seems to be only true from the point
of view of a theoretician.
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Figure 1.4: The noise-induced oscillations of the FitzHugh-Nagumo model
|[Eq. (LIT)] can fill the whole interior of the state space, here shown at pa-
rameters a = 1.1, 0 = 0.4 and € = 0.1. Therefore, it is not straightforward
to distinguish between an oscillation and the dynamics in the vicinity of the
fixed point (red cross). Possibly, one can define an arbitrary phase variable
@(t) = tan~'(y/z). This is equivalent to a definition of oscillation.

for a > 1 and noise-perturbed ones for a < 1. For a small, but finite ¢ the
system shows an imperfect canard [88|. Therefore, it can be unclear how
to distinguish oscillations with small amplitude from the stochastic dynamics
in the vicinity of the fixed point (cf. Fig. [[4). One needs to find a — in
this case — biophysical criterion: For a neuron embedded in a network of
others, for example, an oscillation could be defined more clearly as the activity
of the membrane potential that is strong enough to transmit information to
another neuron. Let us, thus, assume that we have found a valid definition
of oscillations. Then, a phase description still suffers from the problem of
identifying the states of the same phase without any reference to a limit-cycle.
If a stochastic phase variable could be defined by a phase reduction, the phase
would still show noise-induced oscillations, such as oscillator (LI4) at |a| < 1,
that do not allow for a perturbative characterization of interaction.

1.4 Description of Irregular Oscillations as Chaos

Autonomous irregular oscillations need not to be the result of random forcing.
Under certain conditions, the state of a deterministic low-dimensional system,
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such as a few global modes of a rotating fluid or the global modes of a laser,
can show irregular oscillatory dynamics without randomness, where a state has
a unique future. Such oscillations are modeled best with oscillators that show
chaos E, , , , , ], of which some have been successfully characterized
by a phase variable [B, 7 @, @]

The model with which we wish to describe such irregular oscillations shall
obey a low-dimensional deterministic dynamic

x = F(x) . (1.16)

The dynamics is said to be chaotic if two close typical states diverge ex-
ponentially on average (for a detailed introduction to continuous chaos, see
Refs. [@, @]) Because the states stay on the stable chaotic attractor — the
invariant set of Eq. (LI6) — their distance must remain bounded. Therefore,
the exponential divergence is only observable initiall.
A well-known example of chaotic dynamics is the Rdssler oscillator given

by the equations [@]

T=—y—2z;

y=ux+0.15y ; (1.17)

2=02+4 z(x — 10) .

The oscillator was shown to model certain laser systems ﬂﬁ], but it was origi-
nally designed as a simplified model for the Lorenz system given by [49]

t=10-(y —z) ;
y=28r—y—xz; (1.18)
z:—g-z—l—ajy.

Both systems show a chaotic dynamics that allows for a definition of oscillation:
The Réssler attractol [of Eq. (ILI7)] shows a ring-like structure that makes
a definition of oscillation obvious. For example, the cylindrical coordinates

g0:ta1r1’1g ;a= <\/x2+y2,z) (1.19)
T

define an arbitrary phase variable () that grows monotonically by 27 each
time the trajectory cycles around the ring (cf. left plot of Fig. [LH]). As opposed
to the Rossler attractor, the Lorenz attractor shows two centers of rotation
(cf. right plot of Fig. [H]). Therefore, an oscillation of the state seems to be
ambivalent, similar to the case of stochastic oscillations (cf. Fig. [4]). How-
ever, for many chaotic oscillators it may be uniquely characterized by means
of their unstable periodic orbits.

HFor spatially extended systems, the differential equation could describe only the few active
modes. If many modes are active, a stochastic description can be more useful IB__1|7 @]

2Fach point on the invariant set contains an unstable direction in tangent space.

13The attractor of a dynamical system is the set of states that is invariant under the dy-
namics, and that attracts almost all trajectories in its vicinity.
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Figure 1.5: The Réssler attractor [Eq. (ILIT)] shows a ring-like structure that
allows for a natural definition of oscillation by an arbitrary phase variable ¢(t)
[Eq. (LI9)] (left plot). The Lorenz attractor [Eq. (LIS])] on the other hand,
shows two centers of rotation (right plot). Therefore, a definition of oscillation
is not obvious for the Lorenz attractor.

Embedded in the chaotic attractor are an infinite number of unstable pe-
riodic_orbits (UPOs) x¢(t + 7) = x¢(t), each one having a different period
T “_4—4], @] The set of all UPOs can characterize many properties of chaos [@, B],
and here we use them to characterize chaotic oscillations. Each orbit has a cer-
tain lap number p of intersections with a Poincaré section of constant arbitrary
phase . Considering the unwoun phase variable, it is given by

_ #(x0(7)) — (x0(0))

(1.20)
27
With the lap number and the period we define the oscillation period
2
s=""_T (1.21)
v p

which will be comparable to the mean period of chaotic oscillations. Now,
cylindrical coordinates (p,a) that characterize oscillations well should fulfill
the conditions: The arbitrary phase variable (t) has positive growth rate, and
the lap number of each UPO is minimal. The Poincaré sections of constant
arbitrary phase ¢, called arbitrary Poincaré sections I(p), are parameterized
by the amplitudes a. We hope that such a characterization leads to a unique
definition of chaotic oscillation. Arbitrary Poincaré sections of the Lorenz
attractor that obey the conditions are illustrated in Fig. (see Appendix [C]).

With the definition of oscillation by means of an arbitrary phase variable
©(t) at hand, the mean frequency of chaotic oscillations can be computed from
a typical chaotic trajectory (¢(t) is unwound):

w = lim 0 . (1.22)

t—o00 t

4“Unwound” means that ¢ is not taken modulo 27, but it is extended to the real line.

21



Figure 1.6: The sterecogram of the Lorenz attractor [Eq. (LIS)| (gray line)
illustrates that arbitrary Poincaré sections (color coded), marked by passages

of the trajectory, are two-fold on the “wings” of the attractor (see instructions
for use in Appendix [CT]).

Because of the limit, the mean frequency is independent of the choice of the
arbitrary phase.

The oscillation period of unstable periodic orbits [Eq. (L2I])] of chaotic os-
cillators usually does not coincide with the mean period of chaotic oscillations
T = 2r/w. Yet, the trajectory comes infinitely close to each of the orbits in
a quasi-random manner. The implications are that one observes a character-
istic amount of phase diffusion of the phase ¢(t) for large times. It can be
characterized by the phase diffusion coefficient

D = pim @ et (1.23)

t—o0 2t

Because of the large time limit the phase diffusion is independent of a particular
choice of arbitrary phase as well.

For the Rossler oscillator [Eq. (ILIT)|, we located 80 p-orbits with p < 10
that have a finite, but narrow distribution of oscillation periods. Therefore, the
oscillator has a non-vanishing phase diffusion coefficient [Eq. (L23)]. However,
it is very small. Because the exact frequency of the oscillator is not known,
the diffusion must be computed by the Brownian bridge method described in
Appendix [Bl From 50 independent trials, we obtained an estimation

. 95.10°6
D:8.8-1O‘5im rad st

V50
Because the diffusion is small compared to the mean frequency w =~ 1.03, the
phase properties of the Rossler oscillator is well-represented by a deterministic
phase equation as noted in Ref. [@] This is not true for the Lorenz system
that shows a considerably larger chaotic phase diffusion.

(1.24)
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Chapter 2

Effective Description of Stochastic
Oscillations

The difference in phase of two states of a deterministic phase oscillatorfl] can
depend on time. In a region of state space where the phase grows fast, the dif-
ference increases, while the states appear closer together in regions where the
phase grows slowly. For deterministic phase oscillators, we know that phase
differences depending on time are unphysical artifacts of the specific parameter-
ization of oscillations ]: The phase variable can always be re-parameterized
by the transformation (L2 based on the phase velocity. Because the trans-
formed phase variable grows with constant phase velocity, phase differences
are now constant. The transformation makes the arbitrarily parameterized
phase variable invariant under both, time and initial parameterization. In this
way, interaction functions can be also cast into an invariant form “E, @] A
stochastic phase variable, on the other hand, cannot show a constant growth
rate because of the random fluctuations. Still, a parameterization-independent
representation, which we present in this chapter, would allow for an invariant
characterization of interactions, as for the deterministic case. However, the
matter is complicated by the fact that multiple definitions of average phase
velocity are possible.

We address the problem by constructing two deterministic effective phase
models that are based upon different definitions of average phase velocity of
stochastic oscillations. The current model, which is based on the average time
spent in an interval, is shown to exhibit the same mean frequency and invari-
ant distribution density as the stochastic oscillations. The first passage model,
which is based on an average velocity defined by mean first passage times, is
shown to exhibit an invariant distribution density which instead corresponds
to the, so called, mean first passage density of the oscillations. Based upon
each of the models, the arbitrarily parameterized stochastic phase variable can
be transformed to an invariant form. Dependent on the application, a specific
effective phase model is suitable for an invariant phase description of interac-
tions. The current model is easily extended for a characterization of contin-
uous interactions as exemplified by periodically forced stochastic oscillations.

LA deterministic phase oscillator is governed by dynamics on the circle.
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A pulse-like interaction on the other hand is described by the stochastic phase
resetting curve that is correctly represented by the corresponding kicked first
passage model. In this way, a theoretical description of interacting stochastic
oscillations is obtained, which is shown to have far reaching implications for
bivariate methods of data processing. In most examples of this chapter, an
emphasis is made on noise-induced oscillations for which a perturbative ap-
proach is not applicable.

In this chapter, we use stochastic dynamics on a circle as our basic model
of stochastic oscillations. They allow for a clear presentation of the theoretical
framework because these, so called, stochastic phase oscillators are treatable
analytically to a great extent. Furthermore, the term “protophase” is used
in the rest of this chapter in order to differentiate between parameterization-
dependent protophases and parameterization-independent (invariant) phases.

In the first section of this chapter, characteristic properties of stochastic
phase oscillators are reviewed. In Sec. and [2.3] we present the two models of
effective phase dynamics — the current model and the first passage model. Their
effective velocities are analysed in detail for certain asymptotic cases (Sec. [27]).
Thereafter, the theory is extended for a description of interactions of stochastic
oscillations, where for simplicity, the discussion is confined to unidirectional
interactionsﬁ. The current model is easily extended to describe the periodically
forced stochastic phase oscillator, effectively (Sec. 2H). The stochastic phase
oscillator subject to a brief pulse is treatable within the framework of stochastic
phase resetting that is presented in Sec. Here, the first passage model
applies.

2.1 Stochastic Phase Oscillators and their Effec-
tive Description

In this section, we present some well-known characteristic properties of stochas-
tic phase oscillators in the context of noise-induced and noise-perturbed oscil-
lations. The properties allow for a broad classification of the oscillator’s dy-
namics. They will serve as a benchmark for the effective models. The section is
concluded with a discussion on the notion of speed introducing the conceptual
framework of this chapter.

Our basic model of stochastic oscillations is a stochastic phase oscillator
that, for example, may have been obtained by the phase reduction method ap-
plied to noise-perturbed oscillations (cf. Sec.[[.2)). The model attains states on
the circle parameterized by a 27-periodic random variable 0(t), called stochas-
tic protophase. Let us consider the unwound protophase that is not taken
modulo 27: An oscillation is defined as the growtlﬁ of (t) by 2.

2The surrounding exerts a continuous or pulse-like force on the oscillator.
3The protophase is always defined such that it grows with positive mean frequency
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The protophase obeys the Langevin dynamics (in the Stratonovich inter-
pretation @]) '

0 = h(0) +g(0)¢(t) (2.1)
where, in this work, £(t) denotes d-correlated Gaussian white noise: (£(t)&(t)) =
26(t — t'). If Eq. (2 is obtained by phase reduction, the deterministic part
h(0) and the noise amplitude g(0) reflect to a certain degree a specific choice
of parameterization of oscillations and are, thus, not invariant. If the deter-
ministic part h(#) is strictly positive, oscillator ([Z]) can show noise-perturbed
oscillations that persist with finite frequency if the noise amplitude goes to
zero. However, if h(6) has at least two zero crossings, oscillations cease as the
noise amplitude vanishes: They are noise-induced ]

A well-known example showing the most prominent features of stochastic
oscillations is the stochastic Adler equation ﬂiﬁ] (generalized theta model ﬂﬁ])

O(t) = a+ cosO + o€ (t) . (2.2)

For |a| <1 it shows noise-induced oscillations, whereas for |a| > 1 oscillations
are noise-perturbed. Furthermore, the Adler equation belongs to the subclass
of stochastic phase models with additive noise, for which the noise amplitude
g(0) is a constant o.

The most relevant quantities of oscillator ([2]) are accessible analytically.
Its probability density P(6,t) is governed by the Fokker-Planck equation as-
sociated to Eq. (2.1]), which is given by @]

0P = —0p [hP] + 0Oy [g@e [gPH = —0yJ . (23)

For the stationary probability density P(6), the probability flux J is constant
and we obtain the simpler equation

J =hP —g0y[gP] . (2.4)
It has the well-known solution @]
2746 ddj o h(e) J
PQzC’/ ————e U 2@ Y 2.5
D=C) ) 2

where C' is a normalization constant ensuring fo% P(0) do = 1. 1If oscilla-
tions are noise-induced, the probability density becomes singular as the noise
amplitude vanishes (left plot of Fig. 2.1J).

Among the traditional quantities of stochastic phase oscillators are the
mean frequency and the phase diffusion coefficient

2
6O) o b i 100 =)
2t
which are defined for the unwound protophase. They are expressed in terms
of () and g(f) through the well-known formulas ﬁ: 47, 68, l4g)
27 _h(p)

w=2rJ = 21C {1 —e M0 2 d@} , and (2.7)

(2.6)

w = lim
t—o00 t—o00
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Figure 2.1: Left plot: The density P(0) [Eq. (Z3)] of the Adler equation
|[Eq. Z2))] becomes singular as the noise amplitude vanishes, if the oscillations
are noise-induced (here shown for a = 0.9 and o as indicated). Right plot:
Dependent on a, the Lyapunov exponent A [Eq. (229])] of the Adler equation as
a function of the noise amplitude o shows three characteristic dependencies,
here shown for noise-induced oscillations at a = 0.5 (blue circles), and a = 0.95
(red triangles), and for noise-perturbed oscillations at a = 1.5 (black squares).
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where p(0,p) = exp [ g h(" dn] For noise-induced oscillations the mean

D= : (2.8)

frequency converges to zero in the limit of vanishing noise amplitude (left plot
of Fig. 22). If noise is additive, the mean frequency converges to a finite value
in the limit 0 — oo (cf. Sec. Z4). The quotient v/D/w is a measure for deco-
herence of oscillations and similar to the inverse of the Péclet number [@ @]

For noise-induced oscillations, the well-known effect of coherence resonance is
observable, where decoherence decreases for increasing noise amplitude @]
(right plot of Fig. Z2). The effect is not observable for noise-perturbed oscil-
lations. For a detailed discussion of coherence resonance the reader is referred
to Ref. [@] Unlike the Péclet number, the quotient diverges in the limit of
weak noise.

Another interesting quantity that characterizes stochastic oscillations is
the Lyapunov exponent A\ associated to noise “ﬂ @ .] It quantifies
whether two copies of oscillator (ZI]) under the 1nﬂuence of the same noise
representation tﬁwill synchronize by stochasticity. For oscillator [2.1]), A is
computed by Nﬁ

A= (h'(0) +g"(0)g(0)) - (2.9)

If noise is additive, A vanishes in the limit of large noise amplitude o. In the
limit o — 0, there are three cases (right plot of Fig. 2Z1]): For noise-perturbed
oscillations, the Lyapunov exponent goes to zero as A\ o< —o> “ﬁ] For noise-
induced oscillations, it converges to a finite negative value dependent on the
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Figure 2.2:  For noise-induced oscillations in the Adler equation [Eq. (22|
(red triangles: a = 0.95, and blue circles: a = 0.5), the mean frequency w
|Eq. (Z6])] goes to zero in the limit of small noise amplitude o (left plot).
The quotient v/D/w [Eq. Z8)] as a function of ¢ (right plot) is a measure of
decoherence, which has negative slope for noise-induced oscillations but not
for noise-perturbed ones (black squares: a = 1.5).

quantitative stability of the oscillator’s fixed point at 0 = 0. Here, A may as
well show a local minimum as a function of o (red triangles). It should be noted
that the Lyapunov exponent of a stochastic phase oscillator is always negative
whereas general stochastic oscillations may have a positive A @, ] There-
fore, a phase reduction of such stochastic oscillations is not well-understood
and it must be treated with care.

The dynamics of noise-induced oscillations can be quite close to that of
noise-perturbed ones (cf. Ref. [@]) what suggests a unified theoretical descrip-
tion by a purely deterministic phase equation

0= H(b) (2.10)

to be possible. Generally, one cannot use the approximation F'(#) = h(6) by
considering only the deterministic part h(6) of oscillator (1)) showing noise-
induced oscillations because h(6) has zero-crossings — Eq. (2I0) has stable
fixed points and does not show oscillations. Instead, we have to construct an
effective phase model using some criteria to determine F'(#). Generally, we de-
mand that the effective phase model represents as many characteristic proper-
ties of stochastic oscillations as possible. Within this framework, one approach
is presented based on the probability current. It allows for a construction of
an effective phase model with the same mean frequencyﬂ (condition (i)) and
the same invariant distribution density (condition (ii)) as the stochastic phase
oscillator. Without violating these conditions, the phase diffusion coefficient
(condition (iii)) can be modeled, too, by adding noise to Eq. (2I0) in a certain
way. Another approach of effective modeling is based on first passage times.

4Then, it also shows the same mean period.
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Roughly, the difference of these models lies in the definition of the local av-
erage speed (frequency) of stochastic oscillations: Given an interval of length
A0, the speed can be measured as the quotient of Af and the mean time At
that oscillator (2.1) spends in this interval. This leads to the current velocity
based on the probability current. Alternatively, the speed can be measured as
the quotient of Af and the mean time required to reach the opposite bound-
ary of the interval, which leads to the first passage velocity. For deterministic
phase oscillators the two definitions of speed coincide, whereas for oscillations
showing irregular features, there is a difference which is especially pronounced
for noise-induced ones.

2.2 Current Model of Effective Phase Dynamics

In this section, an effective phase model of oscillator (Z.]) based on the prob-
ability current is presented. It shows the same mean frequency and invariant
distribution density as the oscillator. The current model finds its main appli-
cation in Sec. 23] where an effective coupling function is constructed.

We construct the current model of oscillator (2] that obeys the determin-
istic phase equation

0=H(®) . (2.11)

Here, the mean time that oscillator (21I) spends in an interval [0, 8 4 df] leads
us to a notion of speed. According to the invariant probability density, the
mean time is defined as dt = Pdf/J. 1t follows, that the current velocity H(0)

is given by
Jdo w
H(0) = = . 2.12
(6) P(0)d9  2wP(0) (2.12)

The same effective velocity is obtained by drawing a correspondence between
the stationary Fokker-Planck equation (24]) of oscillator (2]]) and the station-
ary Liouville equation J = H(0)P(0) of the effective model [Eq. (IZ]])ﬁ

Model (ZIT]) obeys conditions (i)¥ and (ii)ﬁ because it fulfills the stationary
Liouville equation for P(f) and it shows the correct period T

T db
— Oy [H(O)P(9)] =0 ; — =T
o H(0)
Using Eqns. ([Z3) and (21), the current model of the Adler equation may
be constructed and integrated numerically. A comparison of respective real-
izations 0(t) of Equs. (ZI1]) and (22) shows that their observed dynamics is
comparable even though the stochastic components are missing in the current
model (top plot of Fig. 23)).

5This is why we call it (probability) current velocity
6The frequency of the model is equal to the mean frequency of oscillations.
"The invariant distribution of the model is equal to the probability density of oscillations.
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The current velocity H () can be expressed in terms of h(#) and g(6). For
this, Eq. (Z4) is divided by P(f), and the result is compared to Eq. (2I2)
yielding

H(B) = h(0) ~ 500 [(6)] — ()0 [ PO)] = h(6) —u(®) . (213)

It consists of the deterministic contribution A(f) and an osmotic contribution
u(f) that is especially pronounced for noise-induced oscillations (cf. bottom
plot of Fig. 2Z3). The current velocity corresponds to the point-wise average
of central differences M] Therefore, it may be constructed from an observed
(e.g., experimentally) time series 6,, = 0(nAt) by the simple averaging proce-

dure
<0n+1 - en— 1 >

H(0) ~ SR

(2.14)

On=>0

Meanwhile, forward differences 6,1 — 6,, provide the deterministic part h(0)
only: The reader is referred to Refs. @, , , @, ] for details.
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Figure 2.3:  (top plot) The Adler equation [Eq. ([Z2])] shows a realization
(solid line) that is, even in the noise-induced case, strongly resembled by that
of its current model [Eq. (ZII)] (red dashed line), here shown for a = 0.9
and o = 0.3 . For this, the osmotic contribution u(#) to the current velocity
is non-negligible as it accounts for the strict positivity of H(#) (bottom plot,

cf. Eq. 213)).

Having constructed the current model, we can transform its protophase 6
to a uniformly rotating phase ¢ which has simple properties:

1

:%'

p=w; P(p) (2.15)
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As it can be easily checked, the nonlinear transformation 6 — ¢ is given by

o =S(0) =2r /0 9 P@) do’ . (2.16)

Herewith the parameterization-dependent differences in the protophase Af =
05—6, can be transformed to the invariant differences in the phase (cf. Eq. (2.10))

Ag = S(6,) — S(6y) = 27 /92 P(6) db . (2.17)

Given a time series 6,, = (nAt) containing N data points, the transformation
can be obtained numerically [41]. If one is not interested in the transformation
S(#) but in the transformed data ¢, = S(6,) only, one may alternatively
evaluate

g N1
=N o0, — 0 2.18
oo = 200, 0) (2.18)
which is implemented quickly by sorting. (©(z) is the Heaviside function.)

Phase diffusion, mean frequency and probability density may be modeled
simultaneously by the addition of d-correlated ((n(t)n(t')) = 26(t—t')) additive
noise v/ Dn(t) to the invariant phase dynamics (ZI5):

¢ =w-+VDn(t) . (2.19)

Now, ¢(t) shows a phase diffusion constant D while preserving uniform density
and mean frequency. Therefore, application of the inverse transformation 6 =
S~1(p) gives us the stochastic current model

0=H(®) + ?H(G)n(t) (2.20)
that fulfills conditions (i) and (ii) for any value of D. It may be chosen freely,
and we chose it uniquely from condition (iii): The phase diffusion coefficients
of the stochastic current model [Eq. (Z20)] and the stochastic phase oscillator
|[Eq. (ZT))] should be equal. This condition is fulfilled if coefficient ([2.8]) is used
for D. The quotient v/ D Jw in front of the multiplicative noise, is exactly the
quantity illustrated in the right plot of Fig. In the limit of weak noise,
the quotient diverges for noise-induced oscillations yielding an invalid model
(cf. Eq. (Z40)), whereas for noise-perturbed oscillations v/D /w vanishes.

2.3 First Passage Model of Effective Phase Dy-
namics

In this section, an alternative effective phase model of stochastic oscillations
is presented, which is based on first passage time statistics. The first passage
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model predicts the correct stochastic phase resetting curve of stochastic oscil-
lations as shown in Sec.

As an alternative to the current model outlined in the last section, a velocity
based on first passage time statistics of oscillator (2I]) shall lead us to the first
passage model

0=N() . (2.21)

To determine 6 ~ % we interpret At as the average time which it takes to

pass an interval of length Af. More precisely, the first passage velocity is
constructed using the mean first passage time T'(«, ) which it takes for the
stochastic phase of oscillator (Z1]) to reach a boundary § > « starting at «.
Its inverse is given by @]

1 dt . T.0+¢) —T(0,0)

N@ "~ - ’ = 05T, sy - (2.22)

Condition (i) is fulfilled by the first passage model. However, condition (ii)ﬁ
is generally not fulfilled as will be shown next.

The invariant distribution density of model (Z21]), which we call mean first
passage density, is given by
w
R(0) = 2AN(0) (2.23)
It is also known as the speed density @] In order to obtain an equation for
R(#), the well-known equation for the mean first passage time of oscillator (2.1])
has to be derived which we repeat following Ref. [@] For an easier description
of boundaries, the unwound stochastic protophase (t) is considered in the
following. Consider the Fokker-Planck equation (23] with the sharp initial
condition P(0,0) = §(0 — «). In this case Eq. (Z3]) describes the conditional
probability density P(0,t|c«,0). The boundary conditions

P(—00,tla,0) = P(8,t|a,0) =0 (2.24)

are introduced@, which correspond to the fact that states starting at a should
only be considered as long as they do not reach the boundary 3. Now, P has
to be reinterpreted since the normalization condition does not hold anymore.
The no-passage probability G(c,t) is defined as the probability that at time ¢
boundary f is not reached when starting at a. It is given by

Gla,t) = / " P ta.0)d0 (2.25)

—0o0

8The mean period of oscillator Z1I) is 7'(, 27 + 6). Therefore, 0277 % =T.

9The invariant distribution of the model is equal to the probability density of oscillations.

10We always assume that the oscillator shows a positive mean frequency. Therefore, we set
the lower boundary to —oo, and thus consider only passages of the boundary 3. If the

mean frequency is zero, the mean first passage time will diverge.
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By a Kolmogorov backward expansion of P(¢’,t|c,0), one finds that G obeys
0,G = h()0,G + g(a)04 [9() 0G| - (2.26)

For t € [0,00) and o < 3, the probability density of first passage times is given
by g(a,t) = —0,G. With respect to it, the mean first passage time is given by

T(a, B) = (t) = /0 TGt dt (2.27)

Integrating Eq. (Z20) over positive times, one obtains an equation for the
mean first passage time

— 1 =h0,T + 904 [g0.T] . (2.28)

Because 0pT|,_s_g = — 0aT|,—5_g = 1/N(0), Eq. 2.28) may be rewritten for
the mean first passage density R(6) as

J =hR+ gy [gR)] . (2.29)

This equation has the well-known solution

B dip R
Re) =0 / s (2:50)

with the same normalization constant C' as in Eq. (1), and J = w/27. Re-
markably, Eq. (2.29)) is similar to Eq. (2.4]) except for a factor minus one. The
equation provides an easily manageable analytic formula for the first passage
velocity N (6). Furthermore, it is seen that indeed condition (ii) is not fulfilled.

The mean first passage density has a direct meaning for a realization 0(t)
of the stochastic protophase: Let ¢, be the times of first passage, for which
O(t < t,) < O(t,) holds, where 6(t) is unwound. Connecting adjacent val-
ues of the point process 6, = 0(t,) gives the smallest monotonous envelope
[maxy < 0(t')] mod 27 (left plot of Fig. 2.4). Each 6,, gives a starting point for
a measurement of the passage time ending when 0(t) reaches 6,,,1 = 6,, + df.
Although the trajectory of the corresponding time segment 6(t, < t < t,.1)
lies in an arbitrary region below 6,,, it is attributed to the interval 6,, < 6 < 0,,14
for the mean first passage density R(6). In fact, R(6) is the probability density
of the envelope. The probability density P(f) and the mean first passage den-
sity R(f) can be quite different (right plot of Fig. 24]). Therefore, the current
model and the first passage model are distinctly different from each other for
general stochastic oscillations. The fact that R(#) is the probability density
of the envelope of §(t) can be used for its numerical construction from data
which is shown at the end of this section.

We would like to mention that going from the stochastic protophase 6(t) to
its envelope, we achieve a monotonically growing protophase. Indeed, phase
is often understood as a strictly monotonic variable, in some sense a “replace-
ment” for a time variable. But for a stochastic oscillator one often observes
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Figure 2.4:  The protophase 6(t) (black solid line) of the Adler equation
[Eq. [22])] and its envelope (red thick line) have similar long term dynamics
(left plot). However, the invariant probability density P(0) [Eq. (23)] (black
circles) and the mean first passage density R(0) |[Eq. [230)] (red squares) are
different (right plot), especially for noise-induced oscillations, here shown for
a=09and o =0.3.

“reverse” variations. Thus, taking the envelope is a natural way to restore a
monotonic function of time.

The first passage model [Eq. (Z2I))] provides an effective phase dynamics
of stochastic oscillations, which is alternative to the current model. It ful-
fills condition (i) in that it shows the same mean frequency as oscillator (21]),
but instead of modeling its probability density (condition (ii)), it preserves its
mean first passage density (condition (iib)) which for deterministic oscillators,
is equal to the invariant distribution density. Even for small noise amplitudes,
the current model and the first passage model can be quite different if they de-
scribe noise-induced oscillations (cf. top plot of Fig. 21]). For noise-perturbed
oscillations the two velocities H(#) and N(6) converge to the deterministic
part h(f) as the noise amplitude vanishes (bottom plot of Fig. 2.H).

In the numerical example presented in Fig. 2.0 the current and the first
passage velocities are mapped to each other by mirror symmetry. This is due
to the fact that both h(f) and ¢(#) are symmetric in the Adler equation: If a
stochastic phase oscillator has symmetric functions h(6) and ¢(é), the trans-
formation § — —6 maps Eq. (229) to Eq. ([Z4]). Their solutions are mapped
to each other, too. Therefore, symmetry of h and g implies N(0) = H(—0) as
it is observed in Fig.

As for the current model, a uniformly rotating invariant phase is con-
structed by the transformation (cf. Eq. (2.16))

0
v =20)=2r / R(6) dy' . (2.31)
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phase velocity

Figure 2.5: The current velocity [Eq. (ZI2)] (red squares) and the first pas-
sage velocity [Eq. [222])] (blue circles) of the Adler equation [Eq. (22)] differ
essentially for both, noise-induced (at a = 0.9, top plot) and noise-perturbed
(at @ = 1.1, bottom plot) oscillations, here shown for ¢ = 0.2 . The difference
in effective velocities is especially pronounced for noise-induced oscillations
and does not disappear in the limit of vanishing noise, while both effective
velocities converge to h(6) (dashed line) if oscillations are noise-perturbed.

With Z(#), differences in the protophase 6, — 0 are transformed to differences
in the phase

Adb = Z(6) — Z(0,) = 2 / " R6) db (2.32)

01

By adding effective noise to the dynamics of 1, phase diffusion can be taken

into account leading to (cf. Equns. (2.19) and (2.20))

6= N®) + ?N(G)n(t) . (2.33)

This stochastic first passage model fulfills conditions (i), (iib) and (iii).

Because the first passage model does not fulfill condition (ii), an appli-

cation of transformation (2.31]) to the stochastic protophase 6(¢) of oscilla-
tor (Z1)) does not lead to a stochastic phase () that is uniformly distributed
as it does for transformation (ZI6). However, using Eq. ([229), it is derived
that the stochastic phase ¥ (t) = Z(0(t)) shows a uniform ensemble velocity.
To see this, let us consider any initial probability distribution P(6,t). The

HTts probability density is R(0) # P(6).
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ensemble velocity is given by

2w

O ()

Z(0)9,P(0,t)do

2

P(0,1) [1(0)0sZ(0) + g(0)0s (9(0)3s2(0))] (2.34)

o~ T

I
DO

. / " P9, £) [H(O)R(6) + 9(6)0 (9(0)R(O))]

Here, Eq. (23)), Eq. (229]) and the normalization condition of P(6,t) was used.
The property is important for stochastic phase resetting where the evolution
of the mean phase is regarded conditional on fixed initial conditions.

The fact that R(0) is the probability density of the envelope of a realization
0(t) of oscillator (2.1 can be used for an estimation of the transformation Z(0)
from sampled observations §(nAt) of stochastic oscillations. To construct the
envelope, we need to find the times of first passage t,, for which the unwound
realization has a history that is strictly smaller, i. e. (jAt < t,) < 6(t,). At
these first passages 0,, = 0(t,,), transformation ([231]) is estimated by

Vo= 206 = 25 3t~ 1) (2.35)

9j<9n
To find the transformation on the whole domain one can proceed by an ap-
propriate interpolation of Z(0,,), for example, via smoothing splines ﬂé] Note

that Eq. (Z33) gives a biased estimator. This can be fixed by inserting a
central difference scheme (t;41 —t;_1)/2.

2.4 Asymptotic Properties of the Effective Ve-
locity

In this section, the limiting cases of weak and strong additive noise are con-
sidered for the effective model. For the case of a vanishing noise amplitude
in noise-induced oscillations, the effective velocity shows discontinuities. Fur-
thermore, a formula for the estimation of mean frequency in the limit of strong
noise is derived.

2.4.1 Singular Perturbation for Weak Noise

In the Fokker-Planck equation [Eq. (Z3])], the noise amplitude g(6) appears in
front of the derivative with the highest order in #. Therefore, a perturbation
expansion in g(0) for a deterministic approximation of dynamics (2.1I]) might
be singular. For a stochastic phase oscillator with additive noise

0 = h(0) + o&(t) , (2.36)
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we show that a perturbation expansion becomes singular if oscillations are
noise-induced. We discuss the case in which the deterministic phase descrip-
tion should model the probability density of the stochastic oscillations. The
singularity that arises in the limit of weak noise 0 — 0 is discussed by a per-
turbation expansion starting from o = 0, and starting from ¢ > 0 using the
current model of effective phase dynamics. For the first passage model the sit-
uation is analogous as can be seen by the symmetry of Equs. (24) and (229)
(cf. Fig. 2.8]). Furthermore, the results of this section generalize to stochastic
phase oscillators with multiplicative noisdd that is well-behaved.

For o = 0, our considerations start with the arbitrary model § = h(0). Let
us suppose that oscillator ([236) shows noise-perturbed oscillations, i. e. h(6)
is strictly positive. Then, the invariant distribution density of the arbitrary
model gives a proper zeroth order approximation to the probability density:

Better approximations can be obtained analytically by a Taylor expansion of
P(#) in 0. For the alternative case of noise-induced oscillations, we impose,
without loss of generality, that h(f) has zero crossings 6. Then, the arbitrary
model has a stable fixed point at #_ as well as an unstable one at 6, > 6_. Its
distribution density is given by

PO) =60 —0_)+O(0) . (2.37)

It corresponds to the probability density of oscillator (2:36]). However, higher
order terms in o that should lead to a smooth distribution density must nec-
essarily be singular. One can see that a perturbation theory becomes singular
for noise-induced oscillations. Note that in the limit ¢ — 0, the mean first
passage density also has a singular limit for noise-induced oscillations, which
is located at the unstable fixed point. In the above example it is given by

R(O) = 6(0—0,) + O(0) . (2.38)

For noise-perturbed oscillations the mean first passage density and the in-
variant probability density converge in this limit reflecting the fact that for
deterministic self-sustained oscillators the quantities are synonymous.

Starting with the current modeld of oscillator (236) computed for finite
o # 0, another view can be gained on the limit of weak noise ¢ — 0. Using
Equs. (27) and (2I2), the current velocity is given by

_ r(0,27)

1—¢e o2 ) P
HO) = o gt i 704) = | ey ag. (2:30)

12The noise amplitude depends on the protophase.
I3The derivation is analogous for the first passage model.
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Let us assume without loss of generality that r(0,27) is positive. In the limit
of weak noise, the integral in the denominator of Eq. (Z39) is dominated by
the minimum of r(6,v) with respect to ¥. Using the method of stationary
phase, the zeroth order expansion

h(0) : if argminy, [r(0,¢)] =0

] (2.40)
0 . elsewise

is obtained. Surprisingly, the limit of weak noise leads to a vanishing of current
velocity in a finite interval around the fixed point #_ and not just at this point.

In Fig. 2.6 the peculiar nature of H(#) is illustrated for the Adler equation.
If o is small, the effective velocity becomes discontinuous for noise-induced
oscillations (right plot of Fig. 26l), whereas H () converges to h(f) for noise-
perturbed ones (left plot of Fig. 20l).

N
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=
[
T

o
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phase velocity

o
=)
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/2 ™ 3m/2 2 0 w/2 ™ 3m/2 27

Figure 2.6: At different noise amplitudes, the current velocity H(0)
|[Eq. @I2)| of the Adler equation [Eq. ([2.2))] shows qualitatively different be-
haviour dependent on the type of oscillations, here shown for a small (¢ = 0.1,
red squares) and a large (0 = 0.7, blue circles) value: For noise-perturbed
oscillations (a = 1.1, left plot), H(#) closely approximates the determinstic
part h(6) (black dashed line) at small o, but for noise-induced oscillations
(a = 0.9, right plot), H(#) becomes discontinuous in the limit of vanishing

noise (cf. Eq. (2.40)).

2.4.2 Estimating Frequency for Strong Noise

For strong noise, an estimation of the mean frequency can be troublesome
if one has to rely on Monte-Carlo simulations. Here, we want to provide a
formula that allows for an estimation of frequency at large noise amplitudes
if an effective velocity at arbitrary o is available. Still, only additive noise is
considered, whereas here, the results do not generalize in any approximation.

The current velocity can be expressed as H = h— o2 [In P]" (cf. Eq. @I3)).
Therefore, the integral over H () from 0 to 27 does not depend on o. To
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evaluate the integral we consider the limit of strong noise ¢ — oo, for which
P(0) — 1/2m, and we obtain

1 2
— H(0) df = lim w = wy - (2.41)
2 0 T—00
The same result can be obtained for the first passage velocity. Thus for additive
noise, the area under effective velocities is independent of the noise amplitude
and proportional to the asymptotic mean frequency wso.

2.5 Applications to Continuous Interaction

In this section, the current model of effective phase dynamics is extended to
describe periodically forced stochastic oscillations that represent a simple ex-
ample of continuously interacting stochastic oscillations. The current velocity
is split into an autonomous part and an effective coupling function that allows
for an invariant description of the interaction.

2.5.1 Construction of Effective Coupling

Performing a phase reduction of a stochastic oscillating system that is subject
to a periodic forcing results in a stochastic phase oscillator with an additional
term associated to the forcing. Therefore, our basic model [Eq. 21J) is ex-
tended by a coupling function that depends on the phase variable of the forcing
Y (t). The model obeys the Langevin equation

0 = h(0) +g(O)E(t) + f(4(1).6) - (2.42)

For deterministic oscillators, the coupling can lead to phase synchronization
between ¢ and 6 [@] However, the unbounded Gaussian noise prevents such a
perfect synchronization. At most, phase slip are exponentially rare. Again,
the coupling function f(1,0) is not invariant as it depends on the arbitrary
parameterization of the protophase. Moreover, a quantification of coupling
strength by a quotient f/h might not be well-defined if the unforced oscillations
are noise-induced, because then, h has zero-crossings.
As a simple example, the forced stochastic Adler equation

0 = a + cos + o&(t) + ksin(Qt — 6) (2.43)

is considered. Its autonomous part is the Adler equation and the forcing
phas ¥(t) = Qt grows uniformly. The chosen coupling tends to stabilize
the phase difference A = ¢ — 0 around A = 0. The forced Adler equation is
described by the stationary probability density P(6,1)) for which the Fokker-
Planck equation is a partial differential equation. Unfortunately, it is not ac-
cessible analytically anymore. In numerical examples, we, therefore, computed

“During a phase slip, the phase difference grows by 27.
15Being a phase, 1 describes states on a circle. Therefore, it is taken modulo 27.
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P(60,4) by discretizing the stationary Fokker-Planck equation and solving it
with a matrix inversion [67].
The 6-component of the stationary probability flux is given by@ “E]

J = [h(0) + f(¥,0) — gOsg] P(0,7)) . (2.44)

The aim is to construct a forced effective phase model based on the probability
current (cf. Sec. Z2): The forced current model

0= H(0,v) (2.45)

depends on v as well. As prescribed by the autonomous case, a correspon-
dence between the #-component of the probability flux [Eq. (2:44])] and the
f-component of J = H(0,1)P(0,1) (stationary Liouville equation) is drawn.
This yields the current velocity

J
H(0,v) = F:h—gﬁgg—gzﬁglnp—l—f. (2.46)
In order to quantify the coupling effectively, we rewrite H(f,) as a sum
of a y-independent marginal current velocity H,,(0) and an effective coupling

F(1,0). The former is obtained in terms of the marginal probability density
PL(0) = Ozﬂ P(0,4)dy by integrating Eq. ([2.44]) over v:

2
__ Y e xr
H,(6) = 5o = h = %hg = 6°0y lan+/0 fpdi
Rearranging H = H,,, + F', we find the effective coupling
P P(6, )
F = f- —dyp — ¢* 1 L 2.4

As for the current velocity, F' may be decomposed into a deterministic part f
and an osmotic part f, as given by

F(1,0) = f(1,0) — f(,0)

f0) = w0 - [ rwo e a (2.4
P(6,0)
Po(f)

While the deterministic part contains information about the coupling function
f(1,0), the osmotic part is the result of statistical effects. It assures the lack
of synchronization in the forced current model, as it is shown below.

To bring the forced current model into a standard form, we introduce a
uniformly distributed phase ¢ by the transformation (cf. Eq. (216]))

f(,0) = g*(0)9p In

o =Sn,(0) = 277/0 P,(n)dn . (2.49)

16The forcing phase 1 might have a stochastic component correlated with the protophase 6.
In this case, additional terms arise, but this is not discussed for simplicity.
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Then we havd'] P,(¢) = 1/2n. The transformation of the forced current
model yields

$=w+2mPu(S, (0))F(1, S, () =w + Q¥ ) . (2.50)

Eq. 350) provides the effective phase dynamics of a periodically forced
stochastic phase oscillator in a standard form, with an effective coupling func-
tion ) that heavily depends on the noise intensity. Let us note that, corre-
sponding to Eq. (248), the effective coupling function may be decomposed as
Q= Q — (@ into a deterministic and an osmotic contribution as well.

Now, it is possible to quantify the local effect of the forcing phase ¢ on
the state of the oscillator. As already noted, the naive quantity f(1,6)/h(0)
(cf. Eq. (2:42)), obtained from a perturbative approximation, might not be
well-defined for noise-induced oscillations. Using the forced current model, a
local effect is provided by k(v,6) = F(i,0)/H,,(0) for the protophase, and
correspondingly k(, ¢) = Q(1, p)/w for the phase.

The effective coupling function Q(1), ¢) can be estimated from an observa-
tion™ ©n, ¥, by the pointwise average

<30n+1 - Qpn71>
2At

V=1, pn=p

However, we have seen that the coupling still incorporates statistical effects due
to its osmotic part. From the perspective of bivariate signal analysis, the term
Q contains physical information of the interactions of oscillations, whereas the
osmotic term @ may be viewed as a statistical artifact. In an experimental
setup it might unfortunately not be easy to separate the deterministic from
the osmotic contribution.

From a dynamical perspective, Eq. ([2350) is puzzling because it implies
the appearance of synchronization which may not exist in stochastic systems
(cf. Sec. [L22)). The riddle is resolved by the phenomenon of masking (see
Sec. [Z5.2]).

To give a first example of an effective coupling, the local effect computed
in terms of the protophase (1), 0), and the phase k(, p) are compared for the
forced Adler equation (see Fig. 27)). The local effect provides information not
only on the strength of coupling, but also where in state space the two phases
interact the strongest. For example, k(v,0) is strongly localized in a neigh-
borhood of the zero crossing 6, with h'(6s) < 0 for noise-induced oscillations.
This means that this neighborhood is most sensitive to the applied coupling.
However, the current velocity is slow in the neighborhood which is, therefore,
significantly extended when transformed to the phase . Correspondingly,
the sensitive neighborhood of § transformed to the phase ¢ is stretched. In
Fig. 27 this effect is illustrated with the forced Adler equation at parameter
values a = 0.9 and o = 0.7 for which it shows noise-induced oscillations. The
coupling strength &£ = 0.2 was chosen bigger than the excitability threshold

1"This definition of phase slightly differs from the one presented in Ref. ]
18First, the transformation (Z49) has to be applied to obtain ¢, = S,,(6,).
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but small enough to allow for an easy numerical computation. The forcing
frequency €2 = 1 was chosen to be faster then the mean frequency of the forced
oscillator w = 0.4 to avoid masking (see Sec. [Z5.2). It is seen that (v, 0) is
rather flat outside a neighborhood of 65, whereas for x(1, ¢) the neighborhood
is stretched (cf. right plot of Fig. ZT). The described effect may not be as
pronounced depending on the oscillator under consideration.

Figure 2.7:  Compared to (1, 0) (left plot), the local effect k(1), ) of the
forced Adler equation [Eq. (2:2))] in terms of the phase ¢ (right plot) is stretched
in regions of # where the current velocity is small which is at § ~ 7, here shown
for a =09, 0 = 0.7, k = 0.2 and Q = 1 (cf. last paragraph of Sec. 225.7)).
Numerically, the coordinate 6 was transformed to ¢ instead of the function.

2.5.2 Properties of Effective Coupling

Two phenomena of the effective coupling function are explained in the weak
coupling limit. The first phenomenon is associated to noise-induced oscilla-
tions for which the weak coupling limit may not be applied if noise is also
weak. The second phenomenon resolves the conceptual problem of effective
synchronization implied by Eq. (2350).

In the weak coupling limit, a separation of time scales exists. This can be
utilized by averaging Eq. (Z50) over the external phase ¢. In this way, an
equation for the phase difference A = ¢ —Qt is obtained in the standard Adler
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form (cf. Eq. (TI3))

A=w—Q+qA),

1

2m
08)=5- | QA+ v

(2.52)

The function ¢ is called average effective coupling. It also decomposes into a
deterministic and an osmotic contribution ¢ = ¢ — ¢:

2m
W8 =5 [ QWA+ vy,
) Con (2.53)
i) = 5= [ QA+ uan.

In the following, we show that ¢(A) diverges in the limit of weak noise for
noise-induced oscillations. Furthermore, we demonstrate how synchronization,
implied in Eq. (252), is effectively avoided by an average masking of ¢(A) by
G(A) as the frequencies of oscillations and forcing converge.

Divergence For Small Noise

The deterministic part of the average effective coupling ¢(A) is rewritten in
terms of = STH(A + ) as

08 = o [ Qs av
o (2.54)
= zw/ P2(O)F(S(6) — A, 8) db .

Note, that the marginal probability density is squared in this integral.

First, the limit of small noise is considered. Then, the osmotic term G(A)
may be dropped. For noise-perturbed oscillations and small coupling the prob-
ability density has the limit P,,(#) = C'/h(0), leading to the average effective

coupling L
. w? [T E(S(0) - A,0)
lim g(A) = - /0 - (2.55)

For noise-induced oscillations, the limit [Eq. (2355)| is not valid anymore.
Therefore, let us again consider Eq. (2354]). Unless the coupling is strong
enough to excite the stochastic phase oscillator, P,,(#) will become bounded
to a small interval around the fixed point of the autonomous oscillator as noise
vanishes. The interval is proportional to the maximal amplitude of the cou-
pling. Therefore, the integral over P2 (6) will become large unless F'(1),0) has
special properties in this interval. For weakly coupled noise-induced oscilla-
tions it is therefore expected that

max[ lim |q(A)|}—>oo. (2.56)

A max g(0)—0
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For additive noise, let us also consider the limit ¢ — co. The osmotic term
G(A) vanishes which leads to the simple expression

lim ¢(A) = ! /027r F(0—A,0) do . (2.57)

o—00 97

The theory is illustrated with the forced Adler equation at small coupling
strength £ = 0.01 and by varying the noise amplitude o. For such a weak
coupling the difference between P,,(0) and P(0) |[Eq. (23)] is small: The re-
sulting error is of O(k?). Therefore, P() was used in the computation of the
deterministic part of the average effective coupling ¢(A). For noise-perturbed
oscillations computed at a = 1.1 (left plot of Fig. 2.8)), it was found that in the
limit o — 0 the coupling converges to a finite function (cf. Eq. (2355)) whereas
for noise-induced oscillations at a = 0.9 (right plot of Fig. Z8]), the coupling
diverged (cf. Eq. (Z50)). The result suggests that a weak coupling approxi-
mation should be considered with care if analyzing noise-induced oscillations
in the limit of weak noise: Effectively, coupling may not be weak.
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Figure 2.8: The deterministic normalized part of the average effective coupling
G(A)/k [Eq. 2353)| of the forced Adler equation [Eq. (Z43)] converges as the
noise amplitude o vanishes for noise-perturbed oscillations (a = 1.1, left plot),
and it diverges for noise-induced ones (a = 0.9, right plot), here shown for
k =0.01 . (Contour lines are drawn for |¢(A)/k| =1 and 2 .)
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Masking of Coupling

In Eq. (252), the implied synchronization of the effective phase model to the
forcing phase is apparent (cf. Sec. [L2:2)). This is puzzling because stochas-
tic phase oscillators cannot synchronize. As shown in this section, the riddle
is resolved by the appearance of average detailed balance for the transversal
variable A = ¢ — 1, that masks the average effective coupling function as the
forcing frequency approaches the mean frequency.

Let us demonstrate the masking of coupling for a constantly growing forcing
phase 1) = Qt. The Fokker-Planck equation of oscillator (2.42), given by

0P = =0 [(Hin(0) + F(1,0)) P(0,¢)] — Q,P(0,¢) , (2.58)

is transformed to the variables # and A = S(f) — ¢ as followd™}: For some
function G(A, 0) the differential in the new variables is dG = OAGdA + 0G0 .
Replacing the differential dA = 27 F,,df — di, leaves us with the differential
of G(0,v) in the old variables dG = (27 P,,0nG + 0G) df — OAG dip. Thus,
the partial derivative operators have to be replaced as

89 — 27er8A + 89 s

2.59
aw — —8A . ( )

After the substitution in Eq. (2Z358]), we integrate over 6:

0P = — [27P(0)0s + O] [(Hm + F) P] + Q0P

= —0a[(w — Q-+ 27P, (0)F) P| — 0 [(Hon(0) + F) P / do |
O P(A) = —0a ((W — Q) Pu(A) + 27 / - pm(e)FPde>
= —0a(Ja) .

In the small coupling limit the stationary probability density factorizes into
the marginal densities: P(#,5(0) — A) = P,,(0)P,,(A). Using the average

probability flux of the transversal variable Jn = %, we obtain:
w—
=——=w-—-0 A). 2.
P A) Y +q(A) (2.60)

With Eq. (2.60), we arrive at the same result for the average effective dynamics
of A [Eq. (252)]. But now, the approximation used in Eq. (2.52) is understood
bette@. Furthermore, it can be easily seen that as w approaches €2 the average
effective coupling ¢(A) vanishes for all A because Ja vanishes exactly (detailed
balance). In this way, synchronization is avoided.

19 Actually, the procedure is standard.
20That is, the factorization of the joint probability density into marginals.
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A similar derivation is possible for all types of (n, m)-relations of frequencies
as in nw = mQ. Here, it can be shown that the (n, m)-th Fourier component
of Q(v,0) is missing through the mechanism of masking.

Let us present numerical evidence for the masking of coupling using the
forced Adler equation (Fig. 29). The coupling strength & = 0.01 was chosen
to be small compared to the mean frequency at a = 1.5 and ¢ = 1, and the
average effective coupling ¢(A) was computed for different values of the forc-
ing frequency () around the value of the mean frequency w of the autonomous
Adler equation. As §2 approaches w, the deterministic and the osmotic parts of
the average effective coupling exactly cancel. Therefore, the oscillator does not
“feel” the forcing on average. Therefore, as w— {2 approaches zero, the function
flattens. The contour lines of ¢(A; Q) as a function of two variables drawn for
values close to zero illustrate the effect. Note that the masking of coupling is a
general effect observable for forced and also bidirectional interacting stochastic
phase oscillators. Moreover, it does not depend on the excitability property of
the system, but only on the effective coupling strength. We also illustrate the
effect of masking on the full effective coupling Q (v, ¢). For this, we compute
Q(v, ) at an arbitrary value of the forcing frequency €2 and compare it to the
case €0 = w where the masking is strongest. As seen from Fig. 210l the “reso-
nant” (1, 1)-Fourier component in the coupling function is obviously missing,
i. e. masked.
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Figure 2.9: If the coupling is sufficiently weak, the normalized average effective
coupling ¢(A)/k |[Eq. (Z52))] of the forced Adler equation [Eq. (2.43)] vanishes
as () approaches w, here shown for a = 1.5, k = 0.01 and 0 = 1 . (Contour

lines are drawn for ¢(A;w — Q)/k = £0.05 for illustration.)
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Figure 2.10: The normalized effective coupling Q (v, v)/k [Eq. (Z50)] of the
forced Adler equation [Eq. (Z43])] shows a diagonal (1,1)-Fourier mode at an
arbitrary forcing frequency 2 = 2.5 # w (left plot). For Q = w (right plot), the
component is not visible anymore and the total power of the effective coupling
is diminished, here shown for a = 1.5, k = 0.01 and ¢ = 1.0 .

Let us comment on the not-so-weak coupling case, as well. In this case,
the condition leading to Eq. (Z60) is not fulfilled. As a result, the coupling
is not perfectly masked anymore. However, synchronization may still not be
observable because a current-like model of high-dimensional oscillators has a
Hamiltonian structure, as it was noted in Ref. @]

After a throughout treatment of one-dimensional stochastic phase oscilla-
tors, we demonstrate how to construct an effective phase model for general
stochastic oscillations which do not allow for an analytic treatment. To il-
lustrate this construction, based on the observations of the oscillations, we
take a noise-driven FitzHugh-Nagumo model as a paradigmatic example of an
excitable system (cf. Sec. [L3)):

dx ) x3 )
— = — — —
dt 3
2.61
i 261

i r+a+ c&(t)+bcosQt .
Together with a noisy force o£(t) that, for the chosen parameter values a = 1.1
and e = 0.05, induces oscillations, we have incorporated a periodic force b cos (2t
for which we determine the effective phase coupling.

Although we do not have analytical expressions for the mean frequency
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Figure 2.11:  The estimated effective coupling Q(v = Qt,¢) |[Eq. (ZE1)| of
noise-induced oscillations of the forced FitzHugh-Nagumo model [Eq. (ZGT)]
depends on the noise amplitude o, here shown for a = 1.5, b = 0.1, 2 = 1.3,
and for o at 0 = 0.08 (left plot: w ~ 0.62), and o = 0.11 (right plot: w ~ 0.95).
This could be due to the excitability (cf. Fig.2.8)) or frequency-induced masking

(cf. Fig. 29)).

and the probability density, these characteristics can be obtained from the
observations (z,,¥y,) = (x(nAt),y(nAt)). After adopting the simplest choice
for the protophase § = tan~!(y/z), we performed a transformation to the phase
¢ according to Eq. (Z49). With long enough time series ¢,, and 1), at hand,
we determined the effective coupling function (v, ¢). For this we used a least
squares fit to approximate the dependence of the central difference ([Z51]) on
and ¢ with a double Fourier series (see Ref. ﬂﬂ] for details). Both effects, the
increase of effective coupling for vanishing noise and the masking of coupling,
were observed in numerically obtained effective coupling functions for forced
noise-induced oscillations of the FitzHugh-Nagumo model. In Fig. 211l we
want to present an interesting case in order to illustrate certain pitfalls that
may arise in the interpretation of effective coupling functions estimated from
observed oscillations. Here, the effective coupling function was computed for
two noise intensities corresponding to w ~ 0.62 and 0.95, whereas the forcing
frequency was chosen as 2 = 1.3. One can see in Fig. 21T that the amplitude
of ) decreases with increasing noise intensity. The change in amplitude may
have been related to a more pronounced masking of coupling induced by the
frequency shift (cf. Fig. 2.9]), or to the generic decrease in effective coupling for
stronger noise (cf. Fig. [28]). For an exploration of the extent to which the two
effects participate, it is necessary to reconstruct the deterministic or osmotic
part from data. However, this cannot be done reliably unless the correct states
are identified to be in the same phase. For this, it is necessary to generalize
the concept of standard isophases, a problem which we address in Chap.
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2.6 Stochastic Phase Resetting

In this section, a theory of phase resetting of stochastic phase oscillators is
developed. The first passage model represents the phase resetting curve of the
stochastic phase oscillator correctly, whereas the current model does not.

The theory of phase resetting is concerned with the response of regular
oscillations to a brief pulse, a kick, applied at a certain protophase o with a
certain strength and direction k (cf. Sec. [L2:2)). The freely rotating period 7'
is compared to the period Ty («) wherein the kick is applied by computing the
phase resetting curve , 10]

T — Tk(a)

P k)=2
RC(a, k) =27 T

(2.62)
It gives the shift in the uniformly rotating phase shown by the oscillations due
to the kick. For example, Eq. (ZI7) provides the phase resetting curve of the
current model |Eq. (ZI1))|, whereas Eq. (2:32]) provides it for the first passage
model [Eq. 221, if one sets 6, = 6, + k for cither2], Up to here, the quan-
tities appearing in Eq. (2.62]) are only well-defined for limit-cycle oscillations.
We extend the applicability of Eq. ([2:62)) to the stochastic oscillations shown
by stochastic phase oscillators (cf. Refs. “ﬂ, @]), and discuss the results in
terms of effective phase theory.

A kick applied at a time ¢’ with scalar strength &, representing a brief pulse,
is introduced to our basic model (ZT]) by

é(t) = h(6(t)) + g(0(t)(t) + ko(t' —t) . (2.63)

The stochastic phase resetting curve is computed by a comparison of the kicked
and unkicked stochastic phase oscillator. For this, quantities appearing in
Eq. (Z62) are interpreted as follows: Quantity 7" is given by the mean period
of the unkicked oscillator. Quantity Ty () is computed for the kicked oscillator
as the mean first passage time of the unwound protophase starting at § = a+k
(value just after the kick) to reach the boundary 6§ = o + 27.

The kicked stochastic Adler equation

0(t) = a+ cos O + o&(t) + ko(t' —t) . (2.64)

serves as our basic model. Being infinitely fast, the additz’u kick is applied
numerically by shifting the state 6(t') by k.

By the above interpretation of Eq. (Z.62]), the stochastic phase resetting
curve can be calculated using the mean first passage times T'(«, ). From
Eq. (228) it is deduced that T'(«, 5) + T(3,0) = T'(«,d). This is related to
the Markov property of §(¢), and it allows us to express Ty («) as

Ti(@) =T — T(a,a + k) . (2.65)

21For one-dimensional systems, the kick k = k is scalar.
22In the model, the phase sensitivity k& does not depend on the protophase 6 (cf. Sec. [22).
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For Eq. (262), it follows that PRC(a, k) = 27T (o, + k)/T. This can be
rewritten in terms of R(6) using Eq. (223

PRC(a, k) = 27 / R(6) df . (2.66)

This is the exact formula for the stochastic phase resetting curve of a kicked
general stochastic phase oscillator (2.]).

The theory is illustrated in Fig. 2.12] where we show the stochastic phase
resetting curve PRC(«) for noise-induced oscillations of the kicked Adler equa-
tion with a small pulse strength k& = 7/16. For weak noise, the oscillator be-
comes very sensitive at certain protophases were the first passage velocity is
slow. For example at 0 = 0.1 (squares), a kick with strength & = 7 /16 applied
to the protophase 6 can have almost a 16-fold effect on the phase ¢. On the
other hand, PRC(«) is negligibly small at protophases « were the dynamics
is fast. For neuronal oscillators the corresponding states are said to lie in the
refractory period @]

o
m mo=0.1
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Figure 2.12:  For noise-induced oscillations of the kicked Adler equation

[Eq. ([Z64)], the stochastic phase resetting curve PRC(a, k) [Eq. (260)] is
heavily dependent on the noise amplitude o (values as indicated). For weak
noise (squares), PRC(a, k) is maximal if the pulse just suffices to kick the

oscillator beyond the unstable fixed point (red vertical line), here shown for
a=09and k=m/16 .

Let us discuss how the stochastic phase resetting curve |Eq. (2.66)| is repre-
sented by the effective phase models. It is easily seen that the phase resetting
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curve
a+k

Ag(a, k) = 2 / P9) b (2.67)

derived for the current model [Eq. (ZI])| does not correspond to that of the
stochastic phase oscillator, whereas the phase resetting curve

a+k

AY(a, k) =2m / R(0) db (2.68)

[0}

derived for the first passage model [Eq. ([22I)] yields the correct formula.
Let us explain why the current model fails: In Sec. 2.2], it was seen that the
current velocity is constructed as “H = J/P” which leads to the stationary
solution (2.12)). However, the stationary state is broken in the phase resetting
procedure, because the time evolution of #(t) starts from the definite value
0 = a + k. Consider for example the moment right after the resetting of an
oscillator with additive noise, where P(0,t") = (8 —a—k). The probability flux
is calculated by integrating Eq. (24]), and one obtains 27.J(a + k) = h(a + k)
which does not coincide with the stationary flux w/2w. Deviations to the
stationary solution (2.I2)) are most prominent in the excitable regime where
2rJ (o + k) = h(a + k) < 0. In this case, the time-dependent current model

- J(6,1)
0= - 2.69
P(0,1) (2.69)
has non-monotonic dynamics. Therefore, it does not yield a good phase de-

scription.

The phase resetting curve of stochastic phase oscillators can be understood
in a more intuitive way. Again, the basic idea is that a pulse kicks the system
from a phase 0, to a phase 0y = 6, + k. Let us compute the time-dependent
ensemble average of unwound protophases ©12(t) = (A(t)) with respect to the
two probability densities P 5(0,t = 0) = §(612 — 0) (with and without kick).
Asymptotically, the densities assume the same stationary state leading to a
constant average velocity lim;_(f(t)) = w. Thus in the limit ¢ — oo, the
phase difference AG(t) = Oy(t) — O4(t) is a constant, and it is equal to the
corresponding value of the phase resetting curve PRC(6,, k).

To give a numerical example, two groups, each containing 1000 realizations
of the Adler equation at @ = 0.95 and ¢ = 0.2, with one group starting at
01 = 0. — 0.2 and the other at 6 = 6, + 0.2. Here, 6, is the unstable
fixed point @ = —cosf,. For each group an average over realizations was
performed to obtain the average dynamics ©(t) = ((t)). While asymptotically
uniformly rotating (cf. top plot of Fig. ZI3]), initially, ©(¢) has systematic
non-uniformities such that the initial phase difference AG(0) = 0 — 0, widens
(cf. bottom plot of Fig. ZI3). Asymptotically, it reaches the value Ay =
Z(0y) — Z(0:) as correctly predicted by the stochastic phase resetting curve
|[Eq. ([266])] and the first passage model [Eq. (268])]. Let us note that the

result is in line with the constant ensemble velocity of the stochastic phase

¥(t) = Z(0(1)) (cf. Eq. @2.34)).
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Figure 2.13: Two trajectories of ©(t), each one averaged over 1000 realizations
of the Adler equation [Eq. (Z2)] (and then taken modulo 27), were computed
starting at two distinct initial conditions ¢y » = 64 £ 0.2 (top plot, +: dashed,
—: solid), here shown for @ = 0.95 and o = 0.2 . They showed after an initial
non-uniformity a constant growth rate, such that the initial phase difference
AO(0) = 0y — 0, widens (bottom plot, solid line) to the value PRC(6,,0.4) =
A (61,0.4) [Eq. 268)] (red dotted line) as predicted by the first passage model
[Eq. @2I)]; the corresponding prediction of the current model [Eq. (267
(blue dashed line) is not correct.

2.7 Conclusions

In summary, two useful formulations of the effective phase theory for an in-
variant description of stochastic oscillations were presented each one relying
on different definitions of phase velocity. While the concept of average time
spent in an interval led to the current model, a velocity definition based on
mean first passage times led to the first passage model. For noise-perturbed
oscillations, it was shown that respective effective velocities converge as noise
vanishes, whereas for noise-induced oscillations, they do not. The current
model could be extended to characterize continuous interactions effectively, as
exemplified with the periodically forced stochastic phase oscillator. The first
passage model, on the other hand, was shown to exhibit the correct phase
resetting curve in reaction to a brief pulse.

We showed that the current model exhibits the same mean frequency and
invariant distribution density as the stochastic oscillations. The first passage
model, on the other hand, exhibits the correct mean first passage density in
place of the distribution density. While for deterministic oscillations the two
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densities are equal, for stochastic oscillations they can differ, especially for
noise-induced ones. Therefore, the two effective models provide different defi-
nitions of an invariant phase of stochastic oscillations, while for deterministic
oscillations the invariant phase remains unambiguous.

In the characterization of interactions, we were able to characterize periodi-
cally forced stochastic oscillations by an effective coupling function between the
phase of oscillations and the phase of the forcing. While it has been previously
shown how such coupling functions can be estimated from observed oscillations
[@], we now extended the understanding of the properties of coupling functions
by the analytical analysis of the periodically forced stochastic phase oscilla-
tor. Importantly, it was shown that the effective coupling function heavily
depends on both, the frequencies of oscillation and the noise amplitude. Par-
ticularly for noise-induced oscillations, the effective coupling function diverges
as noise-vanishes because the oscillator becomes increasingly more sensitive to
external forces in the region of excitability. Furthermore, we found that the
effective coupling function can be heavily masked dependent on the relative
frequencies of the forcing and the forced oscillations (cf. Fig. ZI0). The result
implies that a detection of directional coupling from observed oscillations can
be biased which can lead to faulty conclusions on the coupling structure.

On the other hand, we also characterized the response of stochastic oscil-
lations to a brief pulse by the stochastic phase resetting curve. It was found
that the curve heavily depended on the noise amplitude as well, especially for
noise-induced oscillations (cf. Fig. Z12). Furthermore, we found that the first
passage model has the same phase resetting properties as the stochastic oscil-
lations, as opposed to the current model. Therefore, it is possible to estimate
the stochastic phase resetting curve from observed oscillatory data by using

formula (2.35]).
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Chapter 3

Phase Reduction of Irregular
Oscillations

The standard procedure of phase reduction follows the criterion that states are
in the same phase if they become indistinguishable in the course of time. For
two states of a limit-cycle oscillator, this is exactly the cases if they collapse
to the same state on the limit-cycle, which leads to the concept of standard
isophases (cf. Sec. [L2)). The limit-cycle’s foliation of standard isophases has
been used to derive the reduced stochastic dynamics of noise-perturbed limit-
cycle oscillations. It should be noted, however, that this is clearly a pertur-
bative approach because the full stochastic dynamics may not anymore obey
the criterion of standard phase reduction. This is most obvious for irregu-
lar oscillations that underlies no limit-cycle, such as chaotic or noise-induced
oscillations.

Therefore, we propose a generalization of standard isophases without any
reference to a limit-cycle, that is also based on the criterion of distinguishabil-
ity: A generalized isophase is defined as a Poincaré section, such that all return
times to the section are constant. For stochastic oscillations, this condition is
formulated in an average sense leading to the notion of average isophases.
They allow for a phase reduction of noise-induced, noise-perturbed and non-
Markovian oscillations in a unified way. Average isophases can also be esti-
mated from observed oscillations, which is illustrated with a signal of regular
human respiration. The treatment of chaotic oscillations is more problematic:
It is argued that generalized isophases exist neither exactly due to chaotic phase
diffusion, nor optimally due to unstable periodic orbits. Therefore, isophases
can only be obtained approximately which breaks their strict invariance. How-
ever, we demonstrate by the example of Rossler’s oscillator, that good approx-
imate isophases still lead to a qualitatively better phase description.

In the first section of this chapter, the generalized concept of standard
isophases is introduced together with a numerical scheme for their construc-
tion from observed oscillations. In Sec. B2l the average isophases of noise-
perturbed, noise-induced and non-Markovian oscillations are discussed by con-
sidering modified versions of the Landau-Stuart oscillator. The applicability
of the numerical scheme is demonstrated by a signal of regular human respi-
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Figure 3.1: Each of three variants of a family of Poincaré sections (red lines)
yield the same definition of oscillation for the Réssler oscillator [Eq. (LIT)]
(grey trajectories). But their respective phase definitions do not coincide be-
cause different sets of states are identified to be in the same phase.

ration. In Sec. B3] generalized isophases of chaotic oscillations are discussed
in detail: The relationship between the isophases, chaotic phase diffusion, un-
stable periodic orbits, and their Floquet multipliers is explained. At the end
of the section, certain aspects of the phase reduced dynamics of the Rossler
oscillator are discussed.

3.1 Concepts of Generalized Isophases

In this section, the concept of standard isophases, applicable for limit-cycle
oscillators, is generalized for an application to irregular oscillations. The gen-
eralized isophases can be estimated from observed oscillations by a numerical
scheme that is presented thereafter. Furthermore, other possible routes to a
phase reduction of irregular oscillations are discussed.

A definition of irregular oscillations shown by the trajectory of a system
corresponds to a 27-periodic family of Poincaré sections J(¢): The trajectory
completes one oscillation if it consecutively passes all sections of the family. To
all states that lie on the same Poincaré sections, the same value of phase ¢ is
assigned. With a definition of phase, the mean frequency [Eq. (L22])] and phase
diffusion coefficient |Eq. (L23))] may be computed as well. In Fig. Bl three
variants of a family of Poincaré sections for the Rossler oscillator are illustrated.
Even though their associated mean frequencies and diffusion coefficients are
equal, their corresponding sections clearly identify different states to be in
the same phase. Therefore, an additional condition is needed to define the
phase in a non-arbitrary and invariant way. For this, we demand that the
dynamics of the phase variable should be in a certain sense independent of the
amplitudes a parameterizing the Poincaré sections. If the amplitude dynamics
is dissipative, states in the same phase will become indistinguishable in the
course of time and the criterion that is stated above is fulfilled. Starting from
a family of arbitrary Poincaré sections, the arbitrary phase dynamics may still
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depend on the amplitudes. Then, one needs to find a phase correction A(x)
that eliminates this dependence via the transformation

0=¢p—Ax). (3.1)

Each of this sections I(6) of constant 6, called generalized isophases, is defined
according to the following condition: The return times of I(6) must be equal
to some characteristic periodEl Tenar- The definition avoids any reference to
a limit-cycle or a coordinate system. More precisely, we compute the time
interval T'(x) that is needed, starting at a state x € I(f), to return to I(0)
after one oscillation was performed, and we compare T'(x) t0 Tepar. A family
of generalized isophases 1(6) obeys the condition:

2
For each x in I(0) : T(x) = Tehar = = (3.2)

char

The dynamics of 6(t) is invariant under any nonlinear transformations of state
space because return times do not depend on the specific coordinate system.
If we are dealing with a limit-cycle oscillator, conditions (L3 and (B.2) define
the same isophases on its basin of attraction. Our strategy for a construction
of generalized isophases is to find a phase correction A(x) such that I(0) fulfills

condition (B3.2).
To give an analytically tractable example of generalized isophases, let us
consider the unstable Landau-Stuart oscillator governed by

F=r(r?—1); p=a—rkr?. (3.3)

It is exactly solvable: For the initial conditions r(0) = R and ¢(0) = ®, it has
the well-known solutions

_ P2 —1/2
r(t) = [1 + L RQR eﬂ ,
o(t)=(a—r)t—kInr(t)+®+rxInR .

(3.4)

Oscillator (B3] shows an unstable periodic orbit (UPO) with frequency w =
a — k. Depending on the initial conditions, its state performs oscillations for
R < 1, or it diverges in finite time for R > 1. For the corresponding stable
oscillator, the non-isochronicity parameter x quantifies how much isophases
curve in phase space leading to an amplitude dependence of ¢ (see Sec. [L2.1]).
We will see that this is also true for the generalized isophases of oscillator (B3]).

As the characteristic period we chose that of the UPO: Ty, = %” In order
to obtain a phase that rotates independent of r, we set 6 = wt + ® + kln R.
Inserting 6 into Eq. ([B4]), we find that generalized isophases I(6) are solutions
to the equation

0=p+rlnr. (3.5)

If return times are not constant the set cannot be invariant. Furthermore, the criterion
may be formulated also using the characteristic frequency wenar = 27/ Tehar-
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For each (®,R) € I(A) the return time of 6(t) is constantly equal to Tipar
because 6(t) rotates independent of the state. Therefore, condition ([B.2]) is ful-
filled. Furthermore, the phase correction [Eq. (B1])] is given by A(r) = —kInr.
As for the stable Landau-Stuart oscillator [Eq. (LH)], it is governed by the
non-isochronicity parameter x as well, but the correction has the opposite sign.
Therefore, we must conclude that the shape of a generalized isophase has no im-
mediate implications on the amplitude dependence of frequency (cf. Sec. [L2.]).
Alternatively, one may think of the unstable Landau-Stuart oscillator as
a seldom visited part of state space of a bigger system that has a different
characteristic frequency Ti’; = wp = w + Aw. Now, Ty, is different from the
period of the UPO. Therefore, condition (3.2)) cannot be fulfilled on the orbit’s
states. To fulfill the condition for states off the orbit, we now seck a phase
with the dynamics 6 = wy. Therefore, we rewrite Eq. B4) in terms of wyt:

o(t) =wit + P+ KkIn R — klnr — Awt(r) . (3.6)

Here, we need to rewrite time as a function of radius. We get

1
t(r) = 5 In|r? —1| —Inr +1In (3.7)

R
i
After the substitution, a uniformly rotating phase is given by 6 = wot + ® +
kln R+ Awln(v/1 — R?/R). Comparing the result with Eq. (31), the phase

correction is given by
A
A(r):—(ﬁ—Aw)lnr—Twlnh’Q—H : (3.8)

While condition (B.2)) is fulfilled at all states, but those of the orbit, the phase
correction diverges as In|1 — r| in the limit » — 1. Thus, the generalized
isophase winds itself infinitely often around the limit-cycle (cf. Fig. B.2)). As
we will see in Sec. B3] the divergent behaviour of phase correction is a generic
property to UPOs that has implications for approximations of the generalized
isophases of chaotic oscillations.

From the example we have seen that generalized isophases may not exist
everywhere. In fact, it is given evidence in Sec. that for chaotic oscillations
the isophases may exist nowhere. In this case, condition ([B2]) can only be
fulfilled in an approximate way. Formally, a (small) recurrence error e(x)
modifies the condition that characterizes an approrimate isophase:

For each x in I(0) : T(x) = Topar + (%) . (3.9)

In the example, the singularity of the phase correction [Eq. (B:8))| can be fixed
in an arbitrary way by allowing a non-zero recurrence error for states close to
the limit-cycle. For states xy on the period T orbit, the recurrence error is
bounded by the inequality (Ineq.)

|8(X0)| Z |T - Tcharl . (310)
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Figure 3.2: The unstable Landau-Stuart oscillator [Eq. (B3])], here shown for
a =2 and k = 1, has a generalized isophase I(0) [Eq. (8H)] similar to that of
the usual Landau-Stuart oscillator [Eq. (LH)] if the frequency of the unstable
periodic orbit is chosen as characteristic (blue dashed line): wepar = w = 1. If
Wenar 18 shifted by Aw = 0.1, the phase correction [Eq. (B:8])] shows a singularity
at r = 1 where the isophase (red solid line) winds itself infinitely often along
the limit-cycle (black dots).

A good approximate isophase has a recurrence error close to the bound (BI0).

For stochastic oscillations, the return time of a Poincaré section is defined as
the time interval which it takes the phase variable to growﬁ by 27. In this way
multiple crossings of the section are avoided. The return time, interpreted
as a first passage time, is a random variable and therefore, not suitable for
condition ([3.2). Therefore, the average of the return time (7'(x)) conditional
on the initial state x is used in the characterization of average isophases 1(0):

2T

For each x in I1(0) : (T(x)) = Tepar = (3.11)

char

As the characteristic period one uses the mean period of stochastic oscillations.

3.1.1 Obtaining Generalized Isophases from Data

Starting point of an iterative construction of generalized isophases is a suitable
vector time series x; = x(jAt) with N data points, which is obtained by
numerical simulation or by embedding observed oscillations ﬂﬁ] One needs
to find a transformation to cylindrical coordinates x; — (¢;,a;), such that ¢;
grows by 27 in the course of one oscillation —i. e. the coordinates define a family
of arbitrary Poincaré sections. For example, the cylindrical coordinates (ILI9)
of the Rossler oscillator are well-suited for the construction.

2Phase is always chosen such that it grows.
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As a zeroth order approximation Hj(.o) to a good phase that rotates inde-
pendent of amplitudes, we can chose the arbitrary phase ¢ of the cylindrical
coordinates. Accordingly, the Poincaré section I,(0(®)) approximates the gen-
eralized isophase. For each value 0§0) of the unwound phase, the return time
To(x;) =~ 1(j)At of I (9](.0)) is estimated, for which 91((0}) +j—9§0) ~ 2. The return
time will not yet fulfill condition ([3:2]). Using a sequence of phase corrections
A,,(x) a better phase

0 = o) — Au(x)) (3.12)

is computed. The return time 7,(x) to the corresponding section I,,(6™)
should fulfill condition (B:2) with increasing accuracy. Setting Ag(x) = 0, the
next approximate phase correction A,,1(x) is, therefore, computed from the
mth using the nonlinear iteration scheme

A1 (x) = A (x) + g Wi (%) [T (x) =T . (3.13)

In this formula, differences in return times are transformed to differences in
phase with the local frequency

o' _ gtm)
Wi (x;) ~ % : (3.14)

Furthermore, a parameter k € (0, 1) controls the speed of convergence of the
algorithm. After a sufficient large number M of iterations, I,;(#™)) should
fulfill condition (B.2]) up to a wanted accuracy.

To be able to fulfill the approximate condition [Eq. (8:9])| for chaotic os-
cillators or the average condition |[Eq. ([BII])| for stochastic oscillators, the
numerical scheme must be modified in the same way: The return times of (™
are replaced by average return times

Tin(x) ~ A1) | =x (3.15)

that are averaged over a neighborhood of x. For chaotic oscillations, the av-
erage prevents the recurrence error of the mth iteration &,,(x) from becoming
an increasingly complex function (see Sec. B.3]).

For stochastic oscillations, one should additionally perform an, at least,
point-wise average of the local frequency |[Eq. [BI4])]. But for some cases,
this is not enough because the average local frequency may not point in the
direction of growth of phase for some states (cf. Sec. B.2)). As a consequence,
the next phase correction A,,,; would be worse than the previous one. This
is fixed by using the mean frequency w:

Aps (%) = A () + g w[To(x) = T] . (3.16)

Typically, & has to be chosen smaller in this equation than in Eq. (813]) be-
cause this scheme has worse convergence properties.

98



The local average can be implemented by demanding certain smoothness
conditions for T},,(x) using, for example, smoothing splines, finite polynomials
or kernel functions M] In this work, we use standard smoothing splines to
approximate a generalized isophase parameterized by a single amplitude for
which A(a) is a scalar function “ﬁ] To find a global phase correction A(p,a)
for all states, we use polynomial basis functions: For each of the amplitudes
a; we use the powers a’, and for the phase variable ¢ we use trigonometric
polynomials (expip)”. For example in 1+ 2 dimension&ﬁ, where we can write

x = (p,r, h), the phase correction is defined by the coefficients ¢,

Ny Nh N‘P

Ap,r h) = Z ZZcmnl rmpele (3.17)

m=0 n=0 [=0

The coefficients are computed via a linear least squares fit ﬂ@]

3.1.2 Other Routes to an Invariant Phase

Before we proceed to discuss generalized isophases of stochastic and chaotic
oscillations, we wish to mention other routes towards a definition of optimal
phase, that do not rely on the statistics of return times, but on the average
speed of phase. This is reminiscent of the difference in definitions of the current
model and the first passage model of effective phase dynamics presented in the
previous chapter.

The invariant phase of limit-cycle oscillators has the special property of
constant growth § = w. In Ref. |, the usefulness of the approach in data
processing was discussed, and we want to repeat the main theoretical issues:
In order to generalized the condition to irregular oscillations of a state x(t), we
demand for the dynamics of its phase 0(x(t)) to grow with the mean frequency

(5o

In order to proceed, let us be specific in considering a stochastic oscillator
governed by the Langevin equation @]

—w. (3.18)

x(t)=x

% = F(x) + G(x)&(t) . (3.19)

Performing the derivative leads to

(Goen)

The equation can be treated numerically by parameterizing 0(x) as in Eq. ([8.1])
and estimating the time derivatives of x. Here, we wish to discuss two possible
ways to interpret the appearing average:

- <(X(t)7 V) 9(X>>|X(t):x =w, (320)

x(t)=x

3This is a regular cylinder with an angle (phase variable) ¢, a height h and a radius 7.
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In a perturbative approach, the time derivative x is replaced by the deter-
ministic part F(x) @Iﬁ@] The resulting isophases are given by their deter-
ministic counterpart: They are standard isophases. This approximation can
only work for noise-perturbed oscillations (see Sec. [[2.2)). However, if the sys-
tem under considerations shows noise-induced oscillations, standard isophases
do not exist. In such cases the approach must fail to give arbitrary results.
Motivated by the results of Sec. P22 %X can be replaced by the multi-
dimensional current velocity v(x) from the stationary Fokker-Planck equation
associated to Eq. (319). This is equivalent to the theoretical description of
Eq. (319) via an effective model X = v(x). The velocity can even be estimated
component-wise, and efficiently from observed oscillations by ﬂﬂ]

o (xp(tFT) = xp(t = 7))
i) = iy DT

(3.21)
x(t)=x
For one-dimensional stochastic phase oscillators this approach leads to reason-
able results (cf. Eq. (2.14])), but for higher-dimensional systems this approach
fails: In Ref. [@], it has been pointed out that, for example, a two-dimensional
effective model underlies a Hamiltonian structure. Therefore, isophases still
cannot be found.

3.2 Average Isophases of Stochastic Oscillations

In this section, average isophases of stochastic oscillations are presented. First,
we outline certain convergence properties of the scheme ([B.I3]) by a noisy
Landau-Stuart oscillator. Then, we discuss the isophases of noise-perturbed,
noise-induced and non-Markovian oscillations by other modifications of the
Landau-Stuart oscillator. Furthermore, the benefit of average isophases for
the analysis of observed irregular oscillations is demonstrated by the example
of regular human respiration.

Let us start with a somewhat degenerate example of noise-perturbed oscil-
lations for which noise does not change isophases. The Landau-Stuart oscil-
lator [Eq. (L4)] is perturbed by multiplicative Gaussian noise £(t), with the
property (£(t)&(t')) = 20(t — ), interpreted in the Stratonovich sense [70]:

U = (1+ia)V — (14 ir)| VPV 4 o WE(R) (3.22)
In polar coordinates ¥ = re?, the dynamics transforms to
F=r(1—7%)+rof(t), p=1+r(l-1?), (3.23)

where we set & = 1 + & to ensure that ¢(t) has a positive mean frequencyﬂ.

For the deterministic system at ¢ = 0, the standard isophases are defined
by the transformation to the phase 6 = ¢ — kInr. Taking the time derivative
for o # 0 yields the dynamics

0 =14 oré(t) . (3.24)

4An oscillation is defined by the growth of ¢(t) by 2.
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From this, two insights are gained: The noise induces an effective diffusion
in the system’s phase dynamics of amplitude D = k%02 Furthermore, the
mean return time is independent of r, and therefore, the average isophases of
oscillator (B.23)) are equal to the deterministic ones’: The phase correction is

A(r)=rlnr.

Knowing the exact phase correction, we examined the convergence of scheme
(BI0) applied to time series ¥,, = W(nAt) of oscillator (B:23)). Here, we were in-
terested in the interplay of the damping parameter k of the scheme [Eq. (B13])]
and the non-isochronicity parameter . It was found that for larger x, the
scheme became less stable, and therefore £ had to be chosen smaller to en-
sure convergence. Furthermore, The optimal value of k, qualified by a fast
convergence, was smaller for a larger non-isochronicity.

The scheme was started with the polar (cylindrical) coordinates (¢, r). To
measure the distance between the mth approximate phase correction and the
theoretical expectation an error function was defined:

Bk, k) = \//1 [An(r) = rlnr” , (3.25)

™ —To

The limits of integration ry = min, r, + 0.1 and r; = max,r, — 0.1 were
chosen arbitrarily in the range of the available time series r, = |¥,|, because
elsewhere the estimation was not expected to be good. In Fig. B3 a compari-
son of E5(k, k) as a function of k is presented for two values k = 1 and xk = 3,
calculated for ¢ = 0.2. In addition, the values of Ey(x) are drawn (horizontal
lines). If E,,(k, k) > Ey(k), the scheme was said to diverge. From the figure,
it is seen that for stronger non-isochronicity (red curve) k has to be chosen
smaller to assure convergence. Let us note that the scheme [Eq. (BI3])] can be
made arbitrarily stable by choosing a sufficiently small value of k.

3.2.1 Noise-induced and Noise-perturbed Oscillations

To analyse a simple example of noise-induced oscillations, the Landau-Stuart
oscillator [Eq. (3:23)] was modified to

i =r(1—1%) +ro€(t), §=a+cosp— 5t (3.26)

First, let us discuss its deterministic dynamics for ¢ = 0: The nullcline of the
radius variable is given by the circle r = 1. If it intersects the nullcline of

phase, which is the circle
sing + «
ri(e) =/ — (3.27)

5Notably, we have found a non-trivial stochastic oscillator for which average isophases are
degenerate in the sense that noise does not change them.
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Figure 3.3: The error function E3(k,x) [Eq. B23)] (here for K = 1 and 3,
curved lines) illustrates that for stronger non-isochronicity (larger ), k has to
be chosen smaller to assure convergence. (Divergence is indicated by a crossing
of the horizontal line corresponding in color.) This one marks the value Ey(k)

of the initial error. The estimation of phase correction was performed using
time series of length T'= NAt = 10°-0.05 s and N, = 2 (cf. Eq. (317)).

the dynamics (3.26]) has two fixed point (cf. dashed lines in left plot of Fig. 3.5]).
This is true for | — 5| < 1. If noise is then switched on by choosing a
o # 0, the state can perform noise-induced oscillationdd (see top left plot of
Fig. B4). Noise-perturbed and noise-induced oscillations differ in frequency
and coherence of oscillations, yet, their stereotypical excursions can be quite
similar (cf. top plots of Fig. B.4]).

Let us describe our expectations on average isophases by the example of
noise-induced oscillations of oscillator ([3.20). We divide a noise-induced os-
cillation in a phase of excursion at ¢(t) &~ 7 and a phase of relaxation at
©(t) ~ 0. Noise excites the phase of relaxation to perform an excursion with
varying amplitudes (r(¢) during the excursion). However, The information on
the amplitude of excursion is gradually lost during the relaxation. If the return
time is dominated by the period of relaxations, we can expect for the excursion,
that the isophases have a tendency to be aligned along the radial direction.
For the relaxation, the non-isochronicity will be stronger. Estimated average
isophases of oscillator ([8.20]) confirm this qualitative description (see left plot
of Fig. B.H): The non—isochronicityﬁ at the excursions is small compared that of
the relaxation. The same qualitative behaviour is observed for noise-perturbed
oscillations (cf. right plot). Apparently, the effect of noise is stronger if the
dynamics is slow leading to a loss of information on the previous amplitude of
the previous oscillation. We conclude from the example that average isophases
apply to noise-induced and noise-perturbed oscillations in a unified way.

With the example of oscillator ([B:26]), we wish to explain why the scheme

60scillations are characterized through a growth of ¢(t) by 2.
"The non-isochronicity is the radius dependence of phase.
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Figure 3.4: The modified Landau-Stuart oscillator [Eq. (828)] for o = 0.1
and a = 5.95 shows incoherent stereotypical noise-induced oscillations (top
left plot). Noise-perturbed oscillations (o = 6.5) are more coherent (top right
plot). For both cases, the mean period 7' is positive (bottom plot).

(B13) had to be modified for an application to stochastic oscillations: For radii
greater then that of the circular nullcline of r(t), the stationary probability
current in the direction of the phase variable J,, of oscillator (B.26) changes
directions. While J,, points into the direction of growing phase ¢ within the
circle, it points in the opposite direction outside of it. Therefore, a locally
averaged frequency [Eq. (BI4])] will not convert differences in average return
times into differences in phase variable because the average has the wrong sign.
To account for this, it is essential to use Eq. (3.10), where the mean frequency
with the correct sign is used for all states, rather than Eq. (B.13)).

3.2.2 Non-Markovian Oscillations

The definition of average isophases is applicable to non-Markovian oscillations
as well. If, for example, there exist hidden variables, the corresponding aver-
age return times are computed according to the marginal probability density.
This is always possible as long as variables of the system are accessible, that
show the oscillations. Then, the isophases are optimal only for the given set
of variables. Incorporating different variables will result in different average
isophases because other marginal densities are used.

To illustrate the argument, white noise in the Landau-Stuart oscillator
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Figure 3.5: Average isophases (red lines) of oscillator (B:20]), estimated with
the scheme (BI0]), depend on the separation of time scales of excursion and
relaxation phase, here shown for ¢ = 0.1 . As the time scales separate (from
right: a = 6.5; to left: o = 5.95), the excursions of different radius can hardly
be distinguished by their return times, and the isophases in the excursion align
along the radial direction. Dashed lines mark the nullclines of the radial (blue
line) and angular (red line) dynamics. The conditions of estimation were (left;
right): NA¢ =5-10-0.1; 105-0.1, M = 40; 35, k = 0.02, N, =2 and Ny = 5 .

[Eq. 23)] is replaced by an Ornstein-Uhlenbeck process ¢ that has an ex-
ponential auto-correlation function ] The full system is described by the
three-dimensional Langevin equation

F=r(1—=r?)+ro(, p=2—-1%,
¢ 1 (3.28)

But we still want to regard only the radius variable r and the phase variable ¢
to obtain average isophases. Without (, variables (¢, ) are non-Markovian].

Let us discuss the limiting cases of small and large time scale v on which
correlations of ¢ decay. For v = 0, we have seen that average isophases are
given by the deterministic ones. This is different for v # 0. Let us consider
the dummy variable ¢y = ¢ — Inr. Its dynamics is given by

. ¢ 1
v=1-0(C; (=—-=+—/7L@) (3.29)
TV
We see that the mean period of oscillations (here parameterized through )
is Tehar = 1 because the mean of ( is zero. Still, ¢ does not provide a phase

because r and ( are correlated. We can integrate Eq. (3:229) and obtain
(t) = (0) =t + oy [C(t) = ¢(0)] . (3.30)

S(E)E()) =20(t —t').
9However, (¢,r) are proper cylindrical coordinates still describing what we mean by oscil-
lation.
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By requirement, we do not have information on ¢ and we need to express it in
terms of r to obtain average isophases. Therefore, we first average Eq. (3.30).
To obtain ((r) we need to make an adiabatic approximation by setting 7 = 0,
in which 7 is enslaved by . We get o((r) = r? — 1. Substituting this together
with the point-wise averaged good phase 6 = ¢ to Eq. (830) we obtain the
result

0=¢—Inr—y(r’—1) . (3.31)

Here, an addition term appears in the phase correction A(r) = ~(r* —1)
proportional to the time scale of (¢).

In Fig. B.6, numerical estimates of the average isophases are compared to
the analytical result [Eq. (B:31)] for different values of 7. As we already know,
the average isophase is equal to the standard one for v = 0 (cf. Eq. (331))).
For other values of 7 in an intermediate range, the approximate formula (3.31)
seems be a good approximation as well as seen for v = 0.5 and v = 5 despite of
an irrelevant phase shift (red line). However, the average isophase is not valid
anymore if the state is perturbed away from its equilibrium. For example,
a kick applied in the radial direction is not well described by the average
isophase because after the kick the hidden variable ( is biased compared to its
equilibrium according to the new radius.

We conclude that a valid phase description of non-Markovian oscillations
is possible by using average isophases.

3.2.3 Average Isophases of Regular Respiration

In the following, we apply the method of average isophases to one of the
datasets of regular respiration described in Ref. |[61]. The Approach can lead
to a novel classification of breathing patterns as well as to a definition of
phase and associated quantities, that depends less on the choice of arbitrary
phase. The breathing period based on the average isophase is compared to the
standard marker-based breathing period from Ref. [61].

Scalar Respiratory Signal

We obtained datasets of respiratory signals of the “fantasia database” described
in Ref. @], and accessible on www.physionet.org ] It is described that
using a belt around the breast, two-hour-measurements of a continuous signal
of relative change in lung volume sampled at 250 Hz were taken (see Ref. @]
for details). Here, the data from subject £1006 were analysed.

Preprocessing and Embedding of Data

By visual inspection, episodes of regular respiration could be identified as
stereotypical oscillations interrupted by episodes of irregular respiration (top
left plot of Fig.B7)). In addition, unidentified high frequency components were
present in the data (top right plot). In a first step, the former difficulty was
overcome by a visual preselection of time segments containing episodes of reg-
ular respiration. For this, periods of irregular respiration where avoided with a
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Figure 3.6: Estimated average isophases of oscillator ([3:28) (colored solid
lines) depend on the correlation time v of the colored noise. The approximate
formula [Eq. (831))] (dashed lines) works good in the whole range of v (ap-
proximating dashed and solid lines are correspondent). The shown trajectory
was computed for v = 0.5 (gray line bundle). The conditions of estimation
were: NAt =10°-0.1, M =10, k = 0.5, and N, = 9.

safety margin of 80 seconds. Thereafter, the high frequency components were
filtered by applying a (50, 50, 2)-Savitzky-Golay ﬁlte?E |. In this way 14
scalar time segments of regular respiration x,, sampled for At = 0.004 seconds
were obtained, each containing between 10 and 100 breaths.

Different embedding techniques may be successfully applied to the prepro-
cessed data. For example in Ref. “ﬂ], a (non-local) delay embedding in four
dimensions was performed which made a description of respiration by a de-
terministic model possible. In favor of an easy interpretation, a differential
embedding was chosen in this study ﬂﬁ] Using the same Savitzky-Golay fil-
ter, the normalized first and second derivatives z,, and ,, were estimated from
data. From an inspection of the embedded data it was concluded that the reg-
ular part of dynamics is effectively two-dimensional (bottom plots of Fig. B.1).
In the (&,x) projection, the trajectory attained a broad band of states en-
circling a center of rotation (left plot), whereas the second derivative &, was
linear anti-correlated to z,, (right plot). Therefore, the second derivative was

YA (ng,n,., m)-Savitzky-Golay filter uses n; (n,.) data points to the left (right) of the central
point to fit a polynomial of degree m. The polynomial is used to correct the center.
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not used for the computation of average isophases.

z(t)(a.u.)

Figure 3.7: Top plots: Time segments of respiratory data were preprocessed
by excluding irregular breaths (left: red vertical line), and measurement noise
was removed by application of (50,50, 2)-Savitzky-Golay filter (right: grey to
red dashed line). Bottom plots: The embedding in the state space (&,x)
reveals irregular oscillations (left), while the state space (#,x) shows linear
anti-correlation (right). (a. u.: arbitrary units)

Construction of Average Isophases

After finding a suitable embedding, polar coordinates were chosen by ¢, =
tan~t(z,/2,) and 7, = /22 + 2. They serve as a starting point for the
estimation of average isophases by the scheme (B.I3]). For each preprocessed
and embedded time segment of regular respiration, the isophases were esti-
mated and compared. During the iterative estimation, the convergence was
checked visually. Convergence was reached after M ~ 50 iteration steps at
k = 0.05. Another problem posed the polynomials used for an estimation of
return times 7,,(¢, 7). To allow for sufficient smoothing we fixed the param-
eters N, = 3 and N, = 2. We also inspected the estimation upon changing
these parameters in a certain range to validate the robustness of each fit. For
datasets containing at least 50 oscillations it was found that the isophases did
not change qualitatively.

Dependent on the time segment, estimated average isophases demonstrated
characteristic patterns that could be ordered in two groups (cf. Fig.B.8)). These
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groups (A: plots (a,b) and B: plots (c,d)) differed by form and skewness of
the isophases. Unlike for example the heart beat, the timing and depth of
respiration, that shape the isophase, are under the control of the conscious
mind. Therefore, the pattern of the isophases observed in groups A and B is
unexpectedly coherent. This coherence provides evidence for the applicability
of the approach. Moreover, more valuable information might be hidden in the
classification.

Figure 3.8: Time segments of regular respiration (gray line) containing 89 (a),
53 (b), 52 (c) and 51 (d) oscillations together with estimated average isophases
I(0) (red dots) illustrate similarity in groups A (a,b) and B (c,d). The begin
of respiratory cycles as defined in Ref. [61] (black vertical line) can be different
from the corresponding isophase Ij;(7/2) as seen in group A. The conditions
of estimation were: At = 0.004 s, M = 50, k = 0.05, and N, = 2, Ny = 3.
(a. u.: arbitrary units)

Distribution of Inter-breath Intervals

In Ref. [@], fractal scaling properties of human respiratory dynamics was stud-
ied by performing detrended fluctuation analysis of time series of inter-breath
intervals. Such a breathing period was measured as the time between two
markers defined as local maxima of the respiratory signal. In our context, the
breathing period is defined as the time it takes for the phase to grow by 2.
Therefore, let us interpret the marker-based approach in the context of phase
dynamics. A local maximum is defined by the conditions & = 0 and & < 0.
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Therefore, the marker-based breathing period is equivalent to the return time
of the Poincaré section Iy = Iy(7/2) = {x > 0, © = 0} (cf. Fig. B.J)).

The estimation presented in Fig. suggested the possibility of an optimal
definition of breathing period using average isophases. Therefore, we compared
two calculations of the breathing period, one using the section I and the sec-
ond one using the corresponding estimated average isophase Iy = Iy (7/2)
(cf. Fig. BF)). For the comparison, we computed return times T} of the re-
spective sections [, and compared them. The comparison shown in Fig. B.9]
demonstrates that although the two periods strongly correlated, for group A
there were also significant deviations between them. Contrary, for group B the
periods are almost indistinguishable which was expected from the similarity of
the respective Poincaré sections (see especially plot (d) of Fig. B.g]).

0 50 100 150 200 250 300
Time (sec.)

§ 3.8 . e 7 ]
s 3.6f I %o, 1

3.41 . PP ol i

Figure 3.9: The breathing period Ty, computed as in Ref. ﬂa], shows strong
correlations to the return times T}, of the corresponding average isophase
(shown for the same data as in Fig. (a)).

Comparing the breathing periods of a marker-based technique with those
computed from estimated average isophase, certain quantitative deviations
were observed (cf. Fig. B9). These deviations are intrinsic errors generated by
the arbitrary choice of markers: Other arbitrary markers would yield different
deviations. In contrast, the isophases are invariant up to statistical fluctu-
ations. Therefore, the method may lead to a better definition of breathing
period.
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3.3 Generalized Isophases of Chaotic Oscillations

In this section, we discuss the possibility and value of generalized isophases of
chaotic oscillators [Eq. (II6])]. The isophases only exist for certain subsets of
the chaotic attractor, namely embedded unstable periodic orbits (UPOs)
and their unstable manifold. For a typical chaotic trajectory that shows chaotic
oscillations, the isophases can only be approximated due to UPOs and chaotic
phase diffusion (cf. condition ([3.9)). With better approximations of the gen-
eralized isophase it winds itself around all UPOs (cf. Fig. B:2). Evidence for
this intimate relationship is provided in various ways including a comparison
of good approximate isophases and the isophases of UPOs by means of their
Floquet multipliers. After we have seen that states can only be character-
ized to be approximately in the same phase, it is shown that the isophases are
still compatible with the criterion of phase reduction if phase diffusion is weak.
Therefore, the corresponding phase variable can be described by a simple phase
equation driven by correlated noise. This is illustrated by a numerical estima-
tion of chaotic phase diffusion based on the stochastic phase dynamics, that
corresponds well to the estimate ([.24]).

Let us suppose, we had found a family of generalized isophases I(6) on
the chaotic attractor, that obeys condition ([B2]), exactly. In this case, the
characteristic period is the mean period of a typical chaotic trajectory: Tear =
T. The associated unwound phase variable 6(t) obeys 0(t + Tipar) = 0(t) + 27.
Using this property to compute the chaotic phase diffusion [Eq. (L23)], we
obtain )

D= lim ([0(nTehar) — 2mn0]7)

Tim T =0, forneN. (3.32)

By this simple calculation, it is seen that the family does not exist if the chaotic
oscillations show a non-zero phase diffusion.

3.3.1 Generalized Isophases of Unstable Periodic Orbits

Embedded in the chaotic attractor are an infinite number of unstable peri-
odic orbits (UPOs) x(t + 7) = x¢(t), each one having a different period
7 (cf. Sec. [L4)). With an arbitrary phase ¢ of the chaotic oscillator, that is
unwound, a lap number and an oscillation period

pxo(7) = 9(0(0) g 2T T (3.33)

2T -

p = =
may be assigned to the UPO (cf. Sec. [4]). Furthermore, a point set 1(0),
called orbit phase set, that obeys condition ([32) with characteristic period S
is obtained: If one fixes a zero phase by assigning 0(x¢(0)) = 6, I(0) is given
by

I(0) ={x¢(nS) | n=0,...,p—1} . (3.34)

It fulfills condition ([3.2]) for all points of the orbit. Furthermore, one may
demand that the orbit phase 6(t) grows uniformly: ¢ = v. Then, 0(t) is
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Figure 3.10: The orbit phase sets [Eq. [3.34)] of two p = 10 UPOs (red and
blue dashed lines) of the Rdssler oscillator [Eq. (LIT)| were computed and
the arbitrary phase shift of each was chosen such that the orbit phase sets
I(47/3) (red squares and blue circles) of the orbits coincided the most. The
sets approximately describe the same curve in state space.

uniquely defined. In Fig. B0, the orbit phase set for § = 47/3 of two UPOs
with lap number p = 10 are plotted. Since the orbits do not share any states,
the zero phases can be chosen separately. For example, it can be chosen such
that orbit phase sets coincide the most for each value of 8, as shown in the
figure.

The definition of orbit phase set [Eq. (834])| can be extended to the unstable
manifold W*(xg) of the UPO x¢(t) by considering the time reversed dynamics:
Asymptotically, each state x(t) € W"(xq) shares its past with a certain state
Xo(t) on the UPO:

imx(®) ~ xo(£)]| = 0. (3.35)
Then, x is assigned the same phase as xg: 0(x) = 0(x¢). This is similar to
the construction of standard isophase (cf. condition (L3)). This, so called,
orbit isophase 1(0) C W"(x) fulfills the condition of generalized isophases
[Eq. B2)] for Tepa = S.

The mean period T of a typical chaotic trajectory does not usually coincide
with the oscillation period of one of the unstable periodic orbits. Therefore,
it is useful to discuss the case of an orbit isophase 1(f) C W¥(xq) fulfilling
condition ([B.2]) for Ty, = T, as well. For a three-dimensional chaotic oscil-
lator, for which W*(xg) is two-dimensional, the situation is equivalent to the
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Figure 3.11: For a UPO of the Rossler oscillator [Eq. (LIT)], the orbit phase
set [Eq. (B34)] can be extended to the unstable manifold in two ways: One can
use as the orbit’s period S as characteristic (blue line), or the mean period (red
circles) of the chaotic attractor that is shown grey lines, here shown for the
1-orbit. Using the mean period leads to a divergence of the phase correction

as for oscillator (B3] (cf. Fig. B.2)).

unstable Landau-Stuart oscillator for which it was shown that a generalized
isophase winds itself infinitely often as it approaches the orbit (cf. Fig. B2)).
Let us consider the simplest UPO of the Rdossler oscillator that has a lap
number p = 1. Its oscillation period is S &~ 6.024 whereas the mean period of
a typical trajectory is T' ~ 6.073. Numerically, we calculate the orbit isophase
1(0) for a single value of . For Ty, = S, the orbit isophase I(0) is a smooth
curve that even resembles to a certain extent the orbit phase sets of UPOs
with large lap number (cf. Fig. and BI1). For T = T (red circles
in Fig. BII), the orbit isophase winds itself around the UPO as expected

(cf. Fig. B2).

3.3.2 Approximate Isophases

Generalized isophases of chaotic oscillations would wind themself around all
unstable periodic orbits (UPOs). Therefore, they can only be obtained
in an approximate way by fulfilling condition ([9) with a small but finite
recurrence error £(x). The characteristic period is now the mean period of a
typical chaotic trajectory. How small may the recurrence error be? Because
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of the UPOs, we can give certain bounds to e(x): For each state x, of such an
UPO with oscillation period S, we obtain the inequality

le(x0)| > |S — T . (3.36)

This gives a lower bound for the recurrence error at each state of an UPO. A
good approximate isophase has a recurrence error close to the bound (B.30]).

The numerical scheme for an estimation of generalized isophases [Eq. (313)|
is iterative providing increasingly better approximations of condition (B2]). In
the light of the weakened condition ([3.9), the recurrence error €,,(x) of the
mth iteration decreases with each further step. From the examples discussed
in Fig. and B.IT] it is expected that, as the recurrence error approaches
its natural bound [Ineq. [B30)|, the arc length — in state space — of the ap-
proximate isophase diverges as it winds itself around numerous UPOs. To
verify this idea, a sequence of approximate isophase [, starting at the ar-
bitrary Poincaré section Iy(47/3) [Eq. (LI9)] was computed for the Rossler
oscillator using smoothing splines (cf. Sec. B.II)). The results are shown in
Fig. B12l For each iteration, the arc length a,, of I,, in the boundaries of
the attractor was monitored. In addition, the standard deviation of return
times €2, = (T2 (x)) — T? was monitored as a measure of €,,(x). It was seen
that a,, diverges as £,, gets smaller (black dashed line in left plot). More
precisely, the point of divergence was estimated to be at a finite value of &,,
as expected from the lower boundary of recurrence error |Ineq. ([B.30])|]. This
could be verified further, by the standard deviation of oscillation periods of a
set of 80 UPOs computed for the Rossler oscillator: The value of the standard
deviation (red vertical line) appears to be close to the limit point lim,, . &,.
The observation gives evidence that a smooth approximate isophase is torn
apart by quasi-randomly distributed UPOs in the attractor as the approxima-
tion gets better (cf. Fig. BI3]). The isophases computed via smoothing splines
were also compared [Fig. B3] to the corresponding member of a family of
approximate isophases I(6) of the Rossler oscillator, that were modeled with
polynomial basis functions marked as a blue square in Fig. B.12] and drawn
as a blue line in Fig. BI3l This “blue” approximate isophase is similar to the
green one obtained via smoothing splines. But because smoothing splines al-
low for more discontinuity, the corresponding isophases are longer (cf. right
plot of Fig. B13).

The example illustrates that Ineq. ([B.3€) implies how good approximate
isophases can be. However, the merit of a better approximation does not
become apparent. By the example of the Réssler oscillator [Eq. (LIT)|, we want
to give numerical evidence for the qualitative advantage of better approximate
isophases, too: The key property of generalized isophases is the decoupling of
the phase dynamics from the amplitudes. Of course this decoupling is broken
in the approximation (3.9]), but the amplitude dependence becomes less regular
and may be treated as a random distortion to the phase dynamics.

The approximate decoupling of phase and amplitude dynamics becomes
most apparent for systems with weak phase diffusion. Then, the states on a
good approximate isophase will keep their information in phase longer then
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Figure 3.12: The arc length a,, as a function of &, (dashed line) of a sequence
of approximate isophases I,,(47/3) of oscillator (ILIT) diverges as the approx-
imation approaches the bound (B.36]) set by UPOs (red vertical line). The
black horizontal line marks the arc length of the arbitrary Poincaré section
Iy(47/3) [Eq. (LI9)]. The sequence of approximate isophases was computed
using smoothing splines, whereas the one marked in blue is a member of the
family presented in Fig. BI7 This one is shorter because polynomials of a
global model [Eq. (BI7)] allow for less irregularity than smoothing splines. In
this sense, they are more efficient.

their amplitude information. This is illustrated in Fig. 14l where states
starting (for ¢ = 0) at the arbitrary Poincaré section Iy(47/3) [Eq. (LI9)]
(top plots) and at a good approximate isophase Ij;(47/3) (bottom plots) are
computed at ¢ = 10 -7T". One can see that the broadening along the direction
of phase is less pronounced for the approximate isophase. More importantly,
differences in amplitude are not systematically transfered into differences in
phase, but seem to become distributed quasi-randomly along the approximate
isophase as a result of the stretching and folding mechanism.

3.3.3 Connection to Floquet Multipliers

The relationship between unstable periodic orbits (UPOs) and the approx-
imate isophases of chaotic oscillations can be strengthened by taking into ac-
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Figure 3.13: Good approximate isophases [Eq. [B3)] of the Rossler oscilla-
tor [Eq. (LIT)] (colors as in Fig. BI2) have a narrower distribution of return
times as [o(47/3) marked in black (left plot). However, they are less contin-
uous as well (right plot). Approximate isophases computed using smoothing
splines (red and green) can be less smooth than those modeled by polynomials

[Eq. BID)] (blue).

count the stability of UPOs through their unstable Floquet multiplier (cf. Ap-
pendix [A]). Tt is expected that the isophase fulfills Ineq. ([306) with better
accuracy for UPOs that are visited more often because they are less unsta-
ble. To illustrate this with the Rossler oscillator [Eq. (LIT)], a measure of
distance of a p-orbit y to the good approximate isophase I(47/3) (green cir-
cle in Fig. BI2) was introduced. The p common states of the approximate
isophase and the orbit y; € I(47/3) ordered by the orbit’s time evolution were
computed. Now, we considered the states y;’ of the orbit phase set J(«) 3 yo,
where the states yj were ordered by the orbit’s time evolution as well, starting
with y¢ = yo. Therefore, each y}f approximated y;. Now, a was varied in a
certain rang to minimize the euclidean distance

d= pz_iHy’}]_—y’“HQ (3.37)
k=0 -1 |

The minimized distance d measured how well an orbit phase set is approxi-
mated by the approximate isophase. The measure was calculated for the 80
available UPOs together with their Floquet multipliers. It was found that or-
bits showing a larger distance had a tendency to be less stable (right plot of
Fig. B10). Visually, it was observed that all analysed UPOs were well approx-
imated. For illustration, a 10-orbit and a 9-orbit from the lower and upper
range of d are displayed in state space together with the approximate isophase
as well as their respective orbit phase sets (left plot).

It seems that the orbit isophase of an UPO with a high lap number approx-
imates a good approximate isophase, well. However, the observed relationship

U The numerical optimum was always within a view degrees of the starting value.
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Figure 3.14: Initial states (marked as symbols) on the arbitrary Poincaré sec-
tion In(47/3) [Eq. (LI9)| (upper left plot) and approximate isophase I/ (47/3)
(lower left plot, marked by a green circle in Fig.[B.12]) are computed at t = 10-T
(10 average rotations), here shown for the Rossler oscillator [Eq. (ILIT)]. States
on the good approximate isophase shows less diffusive broadening in direction
of the phase than the arbitrary Poincaré section after 10 average rotations
(corresponding left plots). Moreover, states of different amplitude become in-
distinguishable only for the good approximate isophase as seen by the mixing
of colors.

displayed in the right plot of Fig. [3.18]is not clear enough to draw any precise
conclusion.

3.3.4 Correlation and Phase Diffusion

After we have identified the states of chaotic oscillations that are approximately
in the same phase, we present correlation properties of the reduced phase
dynamics by means of the frequency fluctuations of the approximate phase
variable.

Let us first consider the frequencies w, with which a typical chaotic tra-
jectory returns to an arbitrary Poincaré section J(¢). The return frequency
obeys the return frequency relation

Wnt1 = M(wy) - (3.38)

In general M (w,) is not a function because one w, may have several outcomes.
The distribution of states in the frequency state space (w,,w,+1) will be fractal
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Figure 3.15: Left plot: The good approximate isophase [Eq. (8:9)| (black
line), marked as a green circle in Fig. 312 of the Réssler oscillator [Eq. (LIT7)]
resembles the phase shift adjusted orbit isophases [Eq. ([3:34])] with varying
accuracy, here shown for a 9-orbit (red circles) and a 10-orbit (green squares).
Right plot: A distance measure d [Eq. (B37)] quantifies this accuracy. Weak
correlations to the instability of the UPOs measured by the Floquet multiplier
|p1| are observable, here shown for 80 p-orbits with p < 10.

with a dimension less than one, as shown for the section I(47/3) [Eq. (LI9)]
of the Rossler oscillator in the left plot of Fig. B 16l However, for a good
approximate isophase I(0) [Eq. (89)], the return frequency relation acquires
a special shape: Let us consider a p-orbit with oscillation period S and an
intersection x € (). The frequency of return will be close to 27/S in the
vicinity of x (cf. Ineq. (8:36])). Thus, each intersection lies close to the diagonal
of the frequency state space in a random way (cf. right plot of Fig. BI0I).
The return frequency to a good approximate isophase may be described as
a correlated random process. However, this does not tell us how fluctuations
are distributed among the phases of oscillation. For this, we considered a long
enough typical trajectory of the Rossler oscillator. Via the cylindrical coor-
dinates (LT9]), we obtained the approximate phase variable 6,, = 6(nAt) of a
family of approximate isophases (blue square in Fig. and Fig. B17). In
order to eliminate “deterministic” non-uniformities of the dynamics, #,, was ad-
justed using Eq. (L2). Then, the numerical derivativdd § ~ (Ons1—0n_1)/2At
was estimated. It serves as an estimate of the phase velocity that fluctuates
around its mean value w (cf. Fig. BI8). We compared the phase velocity 0 to
that of the arbitrary phase variable ¢ |[Eq. (LI9)]. While fluctuations in the
arbitrary phase velocity ¢ depended on ¢, the fluctuations of  were almost
uniformly distributed and, notably, sometimes larger than that of the arbitrary
phase. Similar results are reported in Ref. @] We conclude that approximate
isophases do not only eliminate the amplitude dependence of the phase veloc-

12At = 0.01 was chosen small enough.
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Figure 3.16: The return frequency relation [Eq. ([B38])| of the Rossler oscil-
lator |[Eq. (LIT)] for the arbitrary Poincaré section Io(47/3) |Eq. (LI9)| can
be described as a chaotic map (left), whereas a good approximate isophase
I(47/3) |[Eq. (B9)] (green circle in Fig. B.I2)) has a random nature (right plot).
Close passages of unstable periodic orbits should lie on the diagonal (dashed
line in right plot).

ity, but they also flatten the phase dependence on its velocity fluctuations. We
suspect that the dependence will get less pronounced for better approximate
isophases.

From Fig. and B.18] it becomes apparent that the new quality of good
approximate isophases is a uniformly random influence of amplitudes on the
phase dynamics rather then a phase dependent low-dimensional deterministic
one. Therefore, we model chaotic oscillations by the stochastic phase equation

0=w+nt); 0(t) =wt+ /tn(t’) dt’ . (3.39)

Here enters their mean frequency w and an additive effective noise term 7(t)
that represents the uniform fluctuations in phase velocity (cf. Fig. B.IT]).

The stochastic phase description Eq. (:39) holds best for good approximate
isophases. Therefore, we consider a single approximate isophase that, as it
was shown, could be obtained with good accuracy (cf. Fig. B12)). To draw
a connection to the phase diffusion coefficient [Eq. (L23)], a coarse-grained
variable

o1
JAY/ NS / n(t') dt’ (3.40)
tn
is computed, and the equation is rewritten as A#f, = T,(w, — w). Let us

note that A6, can be defined for both, an arbitrary phase ¢(t) and a phase
0(t) parameterizing a good approximate isophase. Now, a relation between
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Figure 3.17:  Stereogram of Rossler’s attractor (grey line) together with return
points to chosen members I() of a family of approximate isophases (black
dots) correspond well to a family of orbit phase sets (blue and red squares)
of a 4-orbit and a 6-orbit (dashed lines). The conditions of estimation were:
NAt =10°-02s, M =30, k =02, N, =4, N, =4 and N, = 1. (See
instructions for use in Appendix [C.1])

effective noise and phase diffusion coefficient is obtained:

D=— K, ,
q=—00

K, = (A6AG,) .

(3.41)

The formula allows us to compute an estimate of the phase diffusion coefficient
from the correlations of frequency fluctuations.

The stochastic phase description [Eq. ([B39)] was tested for the Rossler
oscillator |[Eq. (LIT)|, where a good approximate isophase (green circle in
Fig. B.12) was used to compute w,. We computed the coarse-grained autocor-
relation function K, for recurrence data A#, (see top left plot of Fig. B.19]).
For this, we used time series of approximately 8000 returns. Then, Eq. (341
was evaluated to estimate the phase diffusion coefficient D. The estimation
was performed in 50 independent trials yielding on average

2.427 107
V50

The estimate is close to the value |[Eq. (I24))] obtained via the Brownian bridge
method. To illustrate how the procedure depends on the goodness of the
approximate isophase, we compared the result with an estimate obtained for

D =8395-10"" + rad s7! . (3.42)
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Figure 3.18: The phase velocity 0 of the family of approximate isophases
I (o) that is shown in Fig. of the Rossler oscillator [Eq. (LIT)] shows
fluctuations that are distributed more uniformly than the velocity ¢ of the
family of arbitrary Poincaré sections Iy(¢) [Eq. (LI9)].

the arbitrary Poincaré section Iy(47/3) |[Eq. (LI9)]. For this, the procedure
was performed exactly as for the approximate isophase yielding an estimate
D ~ 0.003 £ 0.0001 rad s~ which is two orders of magnitude to large.

It seemed that the coarse-grained variable Af,,, computed from the approx-
imate isophase of the Réssler oscillator [Eq. (LIT)|, showed a strong oscillatory
component which was also manifest in its autocorrelation function by a neg-
ative deflection at about ¢ = 7 (cf. top plots of Fig. BI9). We found that,
the phenomenon was present to a varying extent using different approximate
isophases. Though robust in this sense, it cannot be ruled out that the ob-
served oscillatory component is an artefact of the construction algorithm used
to obtain the approximate isophases.

3.4 Conclusions

In summary, we generalized the concept of standard isophases for an applica-
tion to chaotic and stochastic irregular oscillations. For stochastic oscillations,
the generalized isophases were defined in an average sense. They allowed for
a generalized method of phase reduction with which noise-perturbed, noise-
induced, and non-Markovian oscillations are treatable in a unified way. Fur-
thermore, an algorithm for the estimation of the isophases from observed os-
cillations was proposed, and it was successfully applied to signals of regular
human respiration. For chaotic oscillations, generalized isophases could only
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Figure 3.19: The coarse-grained variable A, [Eq. (8:40)| (top left plot) shows
oscillatory fluctuations that are reflected in its autocorrelation function K,
|[Eq. (341))] by a negative deflection (top right plot). Bottom plot: Cumula-
tive probability distributions of 50 estimates of the phase diffusion coefficient,
computed from Eq. (841 (red line), and using the Brownian bridge method
(Appendix [B]) (blue line) show comparable mean values (red vertical lines).
The distribution of the former (red) values is broader because less data was
used.

be defined in an approximate way. Still, good approximate isophases of the
Rossler oscillator led to a qualitatively better phase reduction in which chaos
was treatable as a uniformly random perturbation to the phase dynamics.

In order to obtain a reduced phase dynamics of irregular oscillations, states
of the same phase have to be identified along certain Poincaré sections. For
weakly perturbed limit-cycle oscillators standard isophases allow for an invari-
ant identification because they are based on the limit-cycle. But whenever
a stable limit-cycle is absent or cannot be inferred, the theory of generalized
isophases is needed. Because the definition of the isophases is solely based on
their return times, they remain invariant under coordinate transformations,
even without the presence of a limit-cycle.

The return times of generalized isophases are constructed to be constant
on average for stochastic oscillations, and approximately constant for chaotic
oscillations. Therefore, the phase variable will return to the isophase inde-
penden of the initial state. On the other hand, the information contained
in the amplitude variable that makes states of the same phase distinguishable

13The independence is either on average for stochastic oscillations or approximatively for
chaotic ones.
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will decay due to dissipation. Therefore, all states starting on the same gen-
eralized isophase become indistinguishable in the course of time, again in an
average or approximate sense. Importantly, an application of the theory to
quasi-periodic oscillations will not fulfill this criterion, because for these, the
amplitude information will not decay.

The theory was shown to be applicable to non-Markovian stochastic os-
cillations. However, the claimed invariance of a generalized phase reduction
of such oscillations has to be weakened: For a certain set of variables, the
average isophases will not depend on the coordinate system. But taking into
account additional variables can lead to a different identification of states.
This observation is particularly important for the construction of isophases
from observed oscillations: In the example of regular human respiration, the
second time derivative could have possibly contained additional information
that would have influenced the shape of estimated isophases if the derivative
had been taken into account.

Generalized isophases of chaotic oscillations can neither be obtained exactly
because of phase diffusion, nor optimally because of the unstable periodic
orbits (UPOs): An increasingly better approximation of an isophase be-
comes singular at all UPOs, whereas the best isophase (which is singular) is
bounded by the diversity of their oscillation periods. However, UPOs can have
a constructive role as well. A comparison of orbit phase sets with approxi-
mate isophases yields a good correspondence (cf. Fig. BI7). Therefore, the
orbit phase sets can possibly be used to infer a good approximate isophase. It
should be noted, however, that for less phase-coherent chaotic oscillators, such
as the Lorenz system, the relationship between orbit phase sets and approxi-
mate isophases is less pronounced (see Appendix [().
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Chapter 4

Summary and Outlook

The goal of this work was the construction of an invariant phase description
of stochastic and chaotic irregular oscillations and their interaction with the
surrounding. For this it was necessary to interrelate different phase values of
stochastic oscillations to each other. Furthermore, those states of irregular
oscillations had to be identified that are in the same phase. We interrelated
different phase values using the phase velocities of two deterministic effective
phase models of the stochastic oscillations. This allowed us to invariantly char-
acterize periodic forcing as well as pulse-like interactions. On the other hand,
we identified all states of the same phase by a criterion that generalizes the
concept of standard isophases. In this way, a phase value could be uniquely
attributed to each state of all types irregular oscillations in a unified way.
Together, the concept of generalized isophases and the effective phase theory
provide a unified and invariant description of irregular oscillations that can be
easily adopted as a method of data processing.

The periodic forcing and the pulse-like interaction of stochastic oscillations
were characterized by an effective coupling function and a stochastic phase re-
setting curve, respectively. The main feature of both characterizing functions
is that they intrinsically depend on the observed regime and on the noise ampli-
tude, especially for noise-induced oscillations. Thus, characterizing functions
obtained from one observation cannot be used for a prediction of the dynam-
ics at other noise amplitudes. As a drastic example, the effective coupling
function is heavily biased if the mean frequencies of stochastic oscillations and
forcing are close. Importantly, the phenomenon can lead to a faulty detection
of coupling from observed oscillations. Let us note that the periodically forced
case was treated in this work for simplicity. The effective phase theory can be
easily extended for a description of arbitrary coupled ensembles of stochastic
oscillations.

In order to perform a phase reduction of irregular oscillations, states were
identified to belong to the same isophase if they become indistinguishable in
the course of time. This criterion provides a direct generalization of standard
isophases, but without making any reference to a stable limit-cycle. In addi-
tion, the corresponding phase reduction does not depend on the specific coordi-
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nate system because generalized isophases are intrinsically invariant. General-
ized isophases are defined for stochastic oscillations in an average sense. Here, a
unified reduction of noise-induced, noise-perturbed, and non-Markovian oscil-
lations is possible. For chaotic oscillations, the isophases can only be obtained
approximately because of chaotic phase diffusion and unstable periodic orbits.
Even though this breaks the strict invariance of the phase reduction, good ap-
proximate isophases provide a qualitatively better phase dynamics for which
chaos enters the dynamics as additive correlated noise.

Under the discussed constrains, the phase description of irregular oscilla-
tions allows for a characterization of their interactions with the surrounding
that does neither depend on the observed variables nor on the parameteriza-
tion of oscillations.

Generalized isophases can possibly provide a refined understanding of emer-
gent behaviour of weakly coupled oscillating systems. For example, a theoreti-
cal phase description of weakly coupled limit-cycle oscillators can be extended
to ones of greater complexity, such as stochastic or chaotic oscillators. In this
way, more realistic models of natural systems are treatable. However, from
our current point of view, the phase description of irregular oscillations finds
its greatest field of application in the analysis of observed biophysical oscilla-
tions. For example, the continuous coupling of phase variables extracted from
different brain areas has been mostly studied in the context of linear oscilla-
tions, even though there is growing evidence for inherent nonlinearities. We
believe that this is mainly due to a lack of theoretical understanding of oscil-
lations that show big irregularities, such as those observable in the brain or
the cardiovascular system. We hope that the results presented in this work
will help to set a new methodology in the studies of biophysical oscillations.
Another field of application is neuronal dynamics, where a growing interest is
observed in the phase resetting properties of few and many neuronal oscilla-
tors. Many treatments rely on a perturbative approach that assumes a stable
limit-cycle. However, fluctuating forces as well as excitability are ubiquitously
observed properties in single and multiple neuronal systems. Therefore, a
certain indecisiveness lies in the treatment which, we hope, the stochastic the-
ory of phase resetting can repair. However, the fluctuating forces observed
in many neuronal systems show correlations beyond the validity of the white
noise approximation. Even though it was shown, that the phase reduction of
non-Markovian oscillations is possible, the loss of information through hidden
variables can bias a description of phase resetting beyond its merit. Therefore,
the presented methods should be processed further for a specific experimental
setup.
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Appendix A

Stability of Unstable Periodic
Orbits

The stability property of an unstable periodic orbit xo(t + 7) = x¢(t) of a
chaotic system [Eq. (ILI6))] is of special importance for the theoretical descrip-
tion of chaos. A linearization of Eq. (ILT0]) around the orbit yields

§ = df (xo(t)) 4, (A1)

where (t) is a tangent vector. According to Floquet theory there exists a
principal fundamental matrix solution ®(t) = P(t)exp [tA] where P(t) is 7-
periodic and A is a constant matrix. The stability of x((¢) is determined by
the Floquet multipliers p; that are the eigenvalues of ®(7). If |p;| < 1 holds
for all j the orbit is stable. If for the kth Floquet multiplier |px| > 1 the
orbit is unstable in the kth direction determined by the eigenvector to pi. The
unstable periodic orbits embedded in a chaotic attractor have stable directions
through which the trajectory approaches them and unstable directions through
which it absents itself.
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Appendix B

Estimation of Phase Diffusion

An estimation of the phase diffusion coefficient |[Eqns. ([L23]) and (26])| of
irregular oscillations is not straightforward because their mean frequency w
might not be known exactly. Let us consider the case, where w needs to be
estimated as well. In this case a Brownian bridge process is constructed with
which the diffusion coefficient can be inferred.

Starting point of the analysis is a set of N,,, sampled realizations of an
arbitrary phase variable ¢,, = ¢(nAt) each containing N data points. The ob-
servation time is T' = N At. For each unwound realization, the mean frequency
is estimated by

~ ¥YN-1 — $0
The difference 9,, = ¢, — wnAt is a realization of a Brownian bridge process
because it fulfills the conditions

60 = 5N71 =0 )
<5n> =0, (B.2)
oy 2t,(T —ty,)
An - <5n> =cC T )

if T is big enouglﬂ. Then, the coefficient of variance ¢ is an estimate of the
diffusion coefficient D. The computation of ¢ is done by a linear least-squares
fit to the data A,, which has to be computed as an average over the realizations
of the Brownian bridge.

The method was tested using realizations of the Adler equation [Eq. (22)]
at different parameters, for which estimates of the diffusion coefficient could
be compared to the analytic formula (2.8]). In conclusion, a smaller diffusion
coefficients demands for more realizations, whereas longer correlations as well
as inhomogeneities of oscillations in ¢ ask for more oscillations per realizations
in order to have a faithful estimate of D.

An illustration of the method is given in Fig. [B.1] using the Adler equation
|[Eq. (LI4)]. The dependence on 7" was analyzed in detail for the above ex-
ample. The coefficient ¢ = D was computed with N,,, = 200 as a function of
the mean number of oscillations in the realizations, which is proportional to

ITime has to be chosen the bigger the more correlations exist in the phase dynamics.
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T. To obtain a statistical ensemble each calculation was performed 50 times.
It was seen that as the number of oscillations per realization increased the
systematic error decreased whereas the statistical error remained independent
of T' (bottom plot of Fig. [B1l). The statistical variation from a single estima-
tion as shown in the top plot of Fig. [B.Il was also analyzed via bootstrapping
techniques ﬂﬁ] However, the resultant deviation was two orders of magnitude
smaller then the one obtained across different calculations.

- - Theory
20| -~ Estimation e ~
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Figure B.1: For a good estimation of the phase diffusion coefficient D = ¢
[Eq. (B.2)] of the Adler equation [Eq. (II4)] by the Brownian bridge method,
enough oscillations on average (the number is Tw/2m) for each of the N,y =
200 realizations have to be ensured (bottom plot), here shown for a = 1.2 and
o = 0.1. Then, (6?) is well represented by the theoretical curve [Eq. (B2)]
(top plot), here shown for 150 oscillations on average.

B.1 Phase Diffusion Coeflicient of the Rossler
Oscillator

The phase diffusion coefficient [Eq. (L23])] of the Rossler oscillator [Eq. (LIT)]
is computed using the Brownian bridge method (cf. Appendix [B]). Due to long
correlations present in the arbitrary phase variable ¢(t) = tan™'(y(t)/x(t))
|[Eq. (LI9)], we used N,y = 650 representations containing 16400 oscillations
for the average in Eq. (L23)) (cf. Fig. [B.2 for an illustration). The calculation
was performed 50 times yielding estimate

3.95-107°
V50
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Furthermore, the numerical cumulative distribution function C' of D, com-
puted from the 50 calculations, was compared to a Gaussian (see bottom plot
of Fig. B2). The Kolmogorov-Smirnov statistics had a value of 0.65/4/50
(red vertical line), and thus, gaussianity seemed to be a good assumption

(cf. Fig. B.2)).
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Figure B.2: The similarity of A,, (black line) and the corresponding theoretical
functions (dashed lines) at parameter ¢ = D + std(D) [Eq. (B3)] illustrate
the applicability of the Brownian bridge method for an estimation of phase
diffusion of the Rossler oscillator (top plot). Performing an estimation of ¢
in 50 independent trials yields a Gaussian distribution to a good precision.
This can be seen by comparing the cumulative distribution functions of the
estimates C'(c) (black line in bottom plot) and of a Gaussian (red dashed line).
The Kolmogorov-Smirnov statistics was 0.65/1/50 (red vertical line).
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Appendix C

Approximate Isophases of the
Lorenz System

The chaotic phase diffusion of the Lorenz system [Eq. (LI8)] is orders of mag-
nitude stronger than that of the Réssler oscillator [Eq. (LIT7)]. This is in line
with the observation that orbit phase sets |[Eq. (834])] are not as compatible
as it was seen for the Rossler oscillator in Fig. B 10 An optimal adjustment
of phase shifts leads to a broad distribution of “states of the same phase” from
which some shape can be guessed (cf. Fig. [C)). With cylindrical coordinates

" 2 =27 ’
V242 —12°
r? = (\/W— 12)2 + (2 —27)%; (€1

h=y,

p = tan

that define a monotonically growing arbitrary phase variable ¢(t), approximate
isophases can still be estimated using the scheme (B13]). The result is displayed
in Fig. [C ], where an approximate compliance of orbit isophase and estimated
approximate isophase can be recognized. However, the correspondence is much

better for the Réssler oscillator (cf. Fig. B.15]).

C.1 How to read a Stereogram

A stereogram is a plot that simulates a three-dimensional impression of an
object by means of two two-dimensional projections of it. The stereograms in
this work are produced in a “cross-view” fashion (as opposed to parallel-view).

In order to get a three-dimensional impression of the object each eye of
the observer has to get a slightly different information by means of the two
pictures. Specifically, the object on the left (right) picture is turned slightly
counterclockwise (clockwise) if viewed from above. If the right (left) eye re-
ceives information only of the left (right) picture, a three-dimensional impres-
sion emerges. For this, we suggest to focus first on getting big features in each
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Figure C.1: Stereogram of estimated approximate isophases [Eq. (B89))] (black
points) of the Lorenz attractor [Eq. (LI8)] (grey line), together with cor-
responding orbit isophases [Eq. ([B:34))] computed for all 6-orbits (red points).
Due to larger chaotic phase diffusion, the resemblance is less pronounced both,
among orbit phase sets, and among these and the approximate isophases. The
conditions of estimation were: NAt = 10*-0.2's, M = 30, k = 0.3, N, = 3,
N,=3and N, = 1.

of the pictures to coincide. After three instead of two pictures are observed
one has to focus on the middle.

Problematically, the plane of focus of the eyes have to be at a different
distance than what is suggested by their position. Therefore, the observer has
to force her eyes to refocus. If the “middle” pictures is in the focus of both
eyes the three-dimensional structure will emerge.

Looking too long at a stereogram of this work can cause dizziness.
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