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Abstract: Biosensors for the detection of benzaldehyde and aminobutyric acid (GABA) 

are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in 

a polymer containing bound low potential osmium redox complexes. The electrically 

connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V  

(vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly 

influenced by the ionic strength. The effect is similar with the soluble osmium redox 

complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic 

efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, 

the pH-optimum is high and can be switched to low pH-values at high ionic strength. This 

offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed 

with enzyme wired onto a screen-printed electrode in a flow cell device. The response time 

to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and 

the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative 

standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the 

biosensor, a response to succinic semialdehyde was also identified. Based on this response 

and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing  

GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.  
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1. Introduction 

Recent investigations on the periplasmatic aldehyde oxidoreductase from Escherichia coli (PaoABC) 

showed great potential of this enzyme for bioanalytical application and development of bioelectronic 

devices [1–3]. In E. coli, this enzyme is involved in detoxification of aldehydes to their less toxic acids 

to avoid cell damage [1]. PaoABC exhibits high catalytic activity for oxidation of different aromatic 

aldehydes, which are oxidized to respective carboxylic acids. The net reaction can be described with 

the following equation: 

R-CHO + H2O → R-COOH + 2 H+ + 2 e− 

PaoABC is regenerated through the concomitant transfer of two electrons to a variety of synthetic 

electron acceptors. Despite the similarity to other molybdoenzymes of the xanthine oxidase family, 

PaoABC has a different pH-behaviour because it is active at acidic and basic conditions depending on 

the electron acceptor and ionic strength conditions [3]. Under steady state conditions, the turnover of 

PaoABC is maximal at pH 4 for ferricyanide and reaches the maximum above pH 9 with a cationic 

metal complex the [Os(N,Nʹ-dimethyl-2,2ʹ-biimidazole)3]2+/3+. Thus, with the right choice of electron 

acceptor, biosensor operating conditions may be tuned. 

Benzaldehyde oxidation in the presence of ferricyanide as electron acceptor is very fast with this 

enzyme. Benzaldehyde is a reactive, toxic, skin irritant substance which is produced in the millions of 

pounds per year [4–7]. Recently, we developed a biosensor for determination of benzaldehyde in 

pharmaceutical formulas on the basis of PaoABC entrapped in a polyvinylalcohol hydrogel and 

ferricyanide mediator [2]. The sensitivity was comparable or better than that of the alternative  

methods for benzaldehyde measurement including HPLC/UV [4,7–10], SPR-immunosensor [11], 

chemiluminescence [12], and differential pulse voltammetry on mercury drop electrodes [5]. However, 

this biosensor operates at high working potential, where unspecific oxidations are possible, and 

comprises the experimental inconvenience to add mediator to the solution. These points can be improved 

by using immobilized low potential mediators. 

Redox hydrogels based on poly(4-vinylpyridine) and poly(N-vinyl)imidazole functionalized with 

various Os-complexes comprise attractive properties for the electrical communication between 

oxidoreductases and conductive supports and as hydrophilic matrixes, in which enzymes get stabilized 

and the permeation of the substrate is rapid. They are therefore attractive for the development of 

electrochemical biosensors [13–16] and biofuel cells [17–21] as has been demonstrated already using a 

variety of different enzymes, among them glucose oxidase [13,17,22,23], glucose dehydrogenase [24], 

cellobiose dehydrogenase [25,26], pyranose dehydrogenase [16,25], laccase [17], bilirubin oxidase [19,20], 

and sulphite oxidase [14].  

In this work, PaoABC was electrically wired in an electron-conducting redox hydrogel that contains 

the redox complex [Os(N,Nʹ-dimethyl-2,2ʹ-biimidazole)3]2+/3+. This redox polymer has a low potential 

and contains mobile 13-atom-long tethers between the cationic redox center and the polymer backbone 



Biosensors 2014, 4 405 

 

 

which introduces high mobility for the electron shuttling in the swollen polymer [23]. A shift of the 

optimum operational pH for the biosensor is expected since PaoABC is oxidizing benzaldehyde with 

the soluble [Os(N,Nʹ-dimethyl-2,2ʹ-biimidazole)3]2+/3+ at highly basic conditions [3]. This will allow 

coupling of further enzymes to enlarge the spectrum of bioanalytic applications of immobilized 

PaoABC. Here, we describe a biosensor comprising PaoABC immobilized in such a redox polymer 

with particular attention to pH and ionic strength and demonstrate its potential for benzaldehyde 

biosensing in a flow-cell arrangement. In addition, due to the substrate spectrum and the ability to tune 

the pH-optimum a novel biosensor utilizing coimmobilized GABA-aminotransferase (GABA-T) and 

PaoABC for the determination of the neurotransmitter γ-aminobutyric acid (GABA) is also reported.  

2. Experimental Section  

2.1. Chemicals  

Benzaldehyde, potassium ferricyanide, and citric acid-monohydrate were from Sigma-Aldrich 

(Deisenhofen, Germany). Poly (ethylene glycol) (400) diglycidyl ether (PEGDGE) was purchased  

from Polysciences (Warrington, PA, USA). Poly (4-vinylpyridine)-[osmium-(N,N′-methylated-2,2′-

biimidalzole)3]2+/3+ (osmium containing polymer, Os-polymer) prepared according to a published 

procedure [23] was a generous gift from Lo Gorton (Lund University, Sweden). 

Sodium hydrogen phosphate monohydrate, tris (hydroxymethyl) aminomethane (Tris) from Serva 

GmbH (Heidelberg, Germany) and sodium chloride from Roth (Karlsruhe, Germany) were used.  

The buffers used were citrate-phosphate buffer (McIlvaine’s buffer with 0.2 M Na2HPO4 and 0.1 M 

citric acid) in the pH-range from 4.0–8.0 and 50 mM Tris, 0.1 M KCl at pH 7.0–9.0. For  

pH-dependence we used citrate-phosphate buffer (ionic strength 50 mM) in the pH-range 4–7 and 

Tris/KCl (ionic strength 50 mM) in the pH-range 7–9. The ionic strength of solutions was varied 

simply by addition of an appropriate amount of KCl. 

All chemicals were of analytical grade and used without further purification. All solutions were 

prepared with deionized water (Millipore, Eschborn, Germany). 

Aldehyde oxidoreductase from E. coli (PaoABC, activity 20 U·mg−1, 53 µM) was expressed and 

purified as described earlier [1]. The amount of active enzyme was determined to be of 49% of the 

total enzyme on the basis of the difference of the spectra after reduction with benzaldehyde (active 

enzyme) and with dithionite for the complete reduction (total enzyme). The activity of PaoABC was 

200 U·mL−1 using benzaldehyde (0.5 mM) as a substrate and the electron acceptor ferricyanide (0.1 mM) 

in citrate-phosphate buffer pH 6. minobutyrate-2-oxoglutarate transaminase (GABA-aminotransferase, 

GABA-T) from E. coli was isolated and purified with modifications described in the literature [27,28]. 

E. coli total DNA from strain MG1655 was used to amplify GABA-aminotransferase which allowed 

cloning into the expression vector pET15b (Invitrogen). The resulting plasmid was designated pKS3 

and expresses GABA-T with an N-terminal His6-tag fusion. The plasmid was transformed into E. coli 

BL21(DE3) cells and His6-GABA-T was expressed 4 h after induction with 100 µM IPTG. The 

recombinant protein was purified by affinity chromatography using nickel-nitrilotriacetic acid (Ni-NTA) 

resin (QIAGEN, Valencia, CA). The enzyme concentration was determined to be 205 µM utilizing the 

spectrum at λ = 280 nm using an extinction coefficient of ε = 15,840 M−1·cm−1.  
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2.2. Apparatus and Procedure  

The stationary electrochemical experiments were performed with a home-made three-electrode 

electrochemical cell with a volume of 1 mL placed in a Faraday cage. A platinum wire (diameter  

0.5 mm, Goodfellow, Germany) was used as counter electrode and Ag|AgCl|KCl (1 M) reference 

electrode against which all potentials are reported. The working electrodes were of spectrographic 

graphite (custom made configuration from a 3 mm spectrographic graphite bar, Ringsdorff-Werke, 

Germany). Amperometric measurements were performed using the Biometra EP30 potentiostat 

(Göttingen, Germany). Voltammetric measurements were carried out with CH Instrument Model 440 

(Austin, USA) and Gamry Reference 600TM potentiostat (Gamry, USA). Square Wave Voltammetry 

measurements were done with following parameters Esw = 50 mV, f = 50 Hz, ΔE = 4mV. 

Experiments under anaerobic conditions were performed in a glove box (Coy, USA) in the atmosphere 

of 2% H2 and 98% N2.  

The flow experiments were carried out using a small custom made setup equipped with a  

screen-printed electrode composed of a 1 mm (diameter) carbon and Ag|AgCl electrode (Type:  

BST2-WE-C001, RE-Ag/AgCl, BST, Germany) described earlier in [14]. The measurements were 

performed using the Biometra EP30 potentiostat (Göttingen, Germany) and the currents were recorded 

with a DUO analog-digital converter (WPI, Berlin, Germany). 

2.3. Electrode Modification  

2.3.1. Benzaldehyde Biosensor 

The spectrographic graphite electrodes were polished on wet emery paper (P2000, Schröder, 

Germany) and washed thoroughly with Milli-Q water, sonicated for 2 min, and then rinsed with  

Milli-Q water and dried at 95 °C [29]. The pretreated electrodes were than modified with 5 µL of  

54 µM PaoABC and 1 µL of a freshly prepared PEGDGE solution (2.5 mg·mL−1 in water) and after  

5 min with 2.5 µL of osmium containing polymer solution (10 mg·mL−1 in water). For the modification 

of the screen-printed electrodes, the 1 mm (diameter) carbon working electrode was modified with  

2.5 µL of 54 µM PaoABC, 2.5 µL of osmium containing polymer (10 mg·mL−1 in water) and 1 µL of 

a freshly prepared PEGDGE solution (2.5 mg·mL−1 in water). The freshly modified electrodes were 

put under vacuum for 25 min for complete cross-linking reaction before placing the electrode into the 

respective electrochemical cell. Electrodes prepared for later use were kept at 4 °C. The study of pH 

and ionic strength was performed in the following way. We started at pH 7. Then, the biosensor 

response was measured in three different (pH or I) solutions (three times for each curve). After this, 

the next measurement was made in standard buffer in order to have reference points in the course of 

the experiment. 

2.3.2. GABA-Biosensor 

To fabricate the GABA-biosensor a premixed solution, including 2.5 µL of PaoABC (54 µM),  

2.5 µL of GABA-T (205 µM) and 1 µL of a freshly prepared PEGDGE solution (2.5 mg·mL−1 in water), 

was placed on top of the polished end of the 3 mm (diameter) polished spectrographic graphite 
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electrode. After 5 min, 2.5 µL of osmium containing polymer (10 mg·mL−1 in water) and 1 µL of a 

freshly prepared PEGDGE solution (2.5 mg·mL−1 in water) were spread on top of the first layer of the 

electrode and allowed to stand overnight (4 °C and constant humidity). Prepared electrodes were kept 

at 4 °C for later use. 

3. Results and Discussion 

3.1. PaoABC in Osmium Containing Polymer  

PaoABC was immobilized on spectrographic graphite electrode in the redox polymer and covalently 

crosslinked by addition of PEGDGE to the mixture. In the absence of substrate, the midpoint of 

oxidation and reduction peaks of the bound osmium complexes can be seen in cyclic voltammetry at 

−0.182 V and catalytic enhancement in the presence of benzaldehyde (Appendix Figure A1A). The 

reaction sequence and a typical steady state response curve of the PaoABC biosensor for addition of  

5 µM benzaldehyde is represented schematically in Figure 1. The addition of benzaldehyde resulted in 

the rapid appearance of an oxidation current at the PaoABC-biosensor when the electrode is polarized 

at 0 V. Benzaldehyde is oxidized to benzoic acid with concomitant reduction of the Moco-site of the 

enzyme. The reducing equivalents are then flowing from reduced catalytic Moco-site of PaoABC 

through a series of redox cofactors to osmium and further to the electrode. As a result, a catalytic 

oxidation current is generated proportional to benzaldehyde concentration with a lower limit of 

detection of 0.5 µM benzaldehyde. Blank experiments with the electrode modified with the polymer 

containing osmium complexes in the absence of enzyme showed almost no response (less than 1 nA) 

upon addition of 20 µM benzaldehyde. In order to find the optimum working potential, the oxidation 

currents towards the same concentration of benzaldehyde were measured at different potentials. The 

highest responses were obtained between −50 mV and 50 mV (Appendix Figure A1B). Therefore,  

0 mV working potential was used for all further experiments.  

Figure 1. Illustration of the reaction sequence of the biosensor with PaoABC entrapped in 

osmium containing polymer on a spectroscopic graphite electrode and mediated electron 

transfer and (right) example of the steady state current response of the PaoABC/Os-

polymer-sensor upon addition of benzaldehyde (5 µM in citrate-phosphate buffer pH 8) at 

the working potential +0 mV (vs. Ag|AgCl, 1 M KCl).  

 



Biosensors 2014, 4 408 

 

 

Figure 2 shows the pH-dependence of the catalytic current obtained for PaoABC in the osmium 

containing polymer determined by measuring the amperometric responses towards 5 µM benzaldehyde 

in the range of pH 4.5–9. The response is strongly pH-dependent. The highest signals with PaoABC in 

osmium containing redox polymer were obtained at pH 9. Lower pH diminishes the response and at 

pH 4.0 no response is recorded and the immobilized enzyme is irreversibly inactivated. The opposite 

behavior was observed for ferricyanide both in solution and with PaoABC immobilized in a 

polyvinylalcohol hydrogel [1,2]. The electrochemical properties of osmium containing polymer with 

PaoABC were also studied at different pH-values in the absence of substrate by using cyclic 

voltammetry evaluating the cathodic and anodic peak currents and the standard potential. The biosensor 

showed no dramatic change in the voltammograms with the variation of pH (Appendix Figures A2–A4). 

This underlines also that the pH profile is not a result of structural changes in the polymer and thus 

electron transfer capability.  

Figure 2. pH-dependence of amperometric response of PaoABC/Redoxpolymer-sensor 

towards 5 µM benzaldehyde, ■—in citrate-phosphate buffer pH 4–7, ●—in Tris buffer  

pH 7–9, working potential 0 mV (vs. Ag|AgCl|1 M KCl), n = 3. 

 

The redox polymer consists of the polymeric backbone and covalently bound osmium complexes 

acting as mediators. In a recent work, the interaction between PaoABC and structurally similar soluble 

electron acceptor, [Os(N,Nʹ-dimethyl-2,2ʹ-biimidazole)3]2+/3+, with a close standard redox potential  

(−0.216 V) was studied [3]. The maximum catalytic oxidation current with the soluble complex was 

observed also at pH 9. At pH-values lower than pH 5.8 no catalytic signal was detected. Thus, the  

pH-dependencies of PaoABC in the osmium complex containing polymer and in the solution look 

similar. This indicates that the electron transfer between osmium redox complex and enzyme plays an 

essential role and is enabled at pH higher than 6.  

3.2. pH-Dependence at Different Ionic Strengths for PaoABC Immobilized in Osmium Complex 

Containing Redox Polymer 

Interestingly, the pH-optimum of PaoABC with osmium redox complex is very close to the calculated 

pI-value of FAD-containing subunit of PaoABC [3]. Taking into account that the osmium containing 
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polymer carries positively charged redox moieties, electrostatic interactions should play an important 

role. If electrostatic interactions are essential for the electron transfer reaction, increasing salt 

concentration must have a great effect on the current generation due to shielding of charges making 

electrostatic interactions weaker and thus electron transfer slower. This is indeed observed for 

measurements in alkaline region. 

The pH-dependence of the amperometric responses for PaoABC immobilized in osmium redox 

complex modified polymer towards 5 µM benzaldehyde depends on ionic strength (Figure 3). The 

variation of ionic strength was achieved by the adjustment of the ionic strength of buffers to 50 mM, 

and the further addition of 500 mM KCl and 1 M KCl. 

Figure 3. The effect of ionic strength on the amperometric response of PaoABC/ 

Redoxpolymer-sensor towards 5 µM benzaldehyde in citrate-phosphate buffer (pH 4–7),  

in Tris buffer (pH 7-9). ■—in the absence of KCl, and ●—with 0.5 M KCl and ▲—1 M 

KCl, working potential 0 mV (vs. Ag/AgCl, 1 M KCl), n = 3. 

 

The addition of KCl results in a decrease of the response of the PaoABC-biosensor in the alkaline 

region and increase of response in acidic solutions from no response up to 40% of the highest 

amperometric response at pH 9, while the response around pH 6.5 is low and not influenced (Figure 3). 

Also, with the soluble osmium complex a drop of activity has been observed recently in the basic 

pH-range indicating a minor influence of the pH on the polymer [3]. This effect appears most probably 

because of the weakening of electrostatic attraction when increasing the salt concentration. However, 

the activation effect of the wired PaoABC at pH 4 was not observed in the previously published 

solution experiments [2] and may be attributed to the 30 mV higher reduction potential of the bound 

osmium complex compared to the free and/or to the hydrogel matrix. These results show the importance 

of the electrostatic effect on the electron transfer between positively charged osmium redox moieties 

and prove that wired PaoABC is active either at alkaline and acidic conditions.  

3.3. Biosensor for Benzaldehyde  

The potential of the wired PaoABC for biosensing was exploited for two cases, a benzaldehyde 

biosensor and a coupled enzyme approach for a GABA-biosensor.  
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For the benzaldehyde biosensor PaoABC was immobilized in the osmium containing polymer on a 

carbon screen printed electrode and crosslinked with PEGDGE. The sensor was placed in a flow 

system. A catalytic oxidation current was observed when the benzaldehyde sample was flushed through 

the system (Appendix Figure A5). The signal appeared rapidly and reached the maximum within a few 

seconds. The signal returned quickly to the baseline when the flowing solution changed to buffer.  

In order to increase the sensitivity the amount of redox polymer and enzyme was enlarged by  

step-by-step immobilization of enzyme/polymer layers one on the top of the previous layer similar to 

the strategy described recently [14].  

Figure 4 shows that the charge increased with increasing polymer layers and thus reveals growing 

loading with electroactive osmium complexes. In contrast, the amperometric catalytic response towards 

200 µM benzaldehyde showed only a minor change when the first layer was covered with a second 

layer. Thus, already with two layers maximum sensitivity was obtained (further layers dropped the 

sensitivity). The biosensor with four layers showed in spite of the higher redox polymer content 

decreased amperometric responses most probably due to the increased resistance for substrate diffusion. 

Figure 4. Effect of loading the 1mm diameter screen-printed working electrode with PaoABC/ 

Redoxpolymer Left: The amperometric responses of PaoABC/Redoxpolymer-biosensor 

towards 200 µM benzaldehyde as a function of the number of successive immobilization 

steps, 50 mM Tris buffer, pH 8.0, working potential 0 mV, n = 3. Right: The anodic (blue) 

and cathodic (green) peak areas obtained from CVs in the absence of substrate for the 

electrodes with different number of layers. For the first layer, 2.5 µL PaoABC, 2.5 µL  

Os-Polymer and 1 µL PEGDGE were deposited. The next layers were prepared by deposition 

of each 1 µL PaoABC, 1 µL Os-P, and 1 µL PEGDGE. 

  

Figure 5 shows that the response of the biosensor with two layers of redox polymer shows also an 

optimum at alkaline pH in 50 mM Tris-buffer, 100 mM KCl. Despite the effect of KCl on the sensor 

sensitivity at alkaline pH, 100 mM KCl was added for sake of reference to electrode stability. The 

curve is much broader than the initial pH-dependence with a lower enzyme loading. This is a typical 

behavior of enzyme sensors with diffusion-limited response. 

Under optimum conditions for the PaoABC-biosensor the sensor response in the concentration 

range between 10 and 150 µM increases with a slope of 0.15 nA/µM benzaldehyde with the detection 

limit of 5 µM (signal to noise ratio 3:1) as shown in Figure 6 for repetitive measurements made with 
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one biosensor. Using the geometric area of the working electrode surface, the estimated sensitivity is 

here 19 nA/cm2 per µM benzaldehyde. Addition of benzaldehyde quickly changes the oxidation current 

with an average response time of 30 s and a total measuring time of 3 min.  

Figure 5. Amperometric response in a flow system cell with PaoABC/Redox-polymer-modified 

screen-printed carbon electrode towards 200 µM benzaldehyde, flow rate 300 µL/min,  

50 mM Tris, 100 mM KCl, working potential 0 mV, n = 3. 

 

Figure 6. The calibration curve of PaoABC/Redox-polymer-modified screen-printed carbon 

electrode in a flow cell, flow rate 300 µL/min, 50 mM Tris, 100 mM KCl, pH 9.0, working 

potential 0 mV, n = 3 measurements per concentration with one electrode. 

 

Figure 7. Response trace of the PaoABC/Redox-polymer-biosensor, for repetitive injections 

of 200 µM benzaldehyde, 50 mM Tris, pH 9.0, 100 mM KCl, working potential 0 mV. 
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The sensor response is repeatable (Figure 7) with 1.9% relative standard deviation in a series (n = 13, 

200 µM benzaldehyde). The variation between three sensors is 14% for the measurement of 200 µM 

benzaldehyde. Sixty-eight percent of the initial sensitivity was retained after five days of measurements, 

when the sensor was stored refrigerated between the daily measurements. 

In comparison to the previously published biosensor operating with soluble mediator [2], the novel 

developed biosensor shows a broader measuring range but higher detection limit. In summary, there 

are several advantages. The described system is reagentless due to the mediator covalently attached to 

the hydrogel, the measurement is much faster and the flow-cell arrangement allows for the automation 

of the detection process. Furthermore, in a series of repetitive measurements, it shows two times 

smaller coefficient of variation than in [2]. 

3.4. Biosensor for GABA  

The γ-aminobutyric acid (GABA) is one of the major neurotransmitters in the central nervous system 

and has inhibitory function. Alteration in the concentration relative to other neurotransmitters has been 

suggested to be involved in several neuropathological disorders, such as epilepsy, Huntington’s disease, 

and Parkinson's disease, and so its accurate and continuous monitoring is of great importance [30]. The 

concentrations might vary from lower µM to mM values. For example, concentrations of 20–70 µM 

GABA have been reported for rat brain slices [31]. Direct GABA measurements are difficult, because 

GABA belongs to non-electroactive neurotransmitters and has a low extinction coefficient. In an 

enzyme based assay, a crude enzyme extract called GABAse, which is a mixture of a GABA-T and 

succinic semialdehyde dehydrogenase (SSDH) is applied for spectrophotometric measurement [32].  

In a previously reported study, we observed catalytic activity PaoABC towards oxidation of 

succinic semialdehyde [2]. Here, we considered utilizing this activity in biosensors together with 

GABA-T, which catalyzes the transfer of an amino group from GABA to 2-oxoglutarate and formation 

of succinic semialdehyde and glutamate: 

GABA + 2-oxoglutarate   TGABA
 Succinic semialdehyde + glutamic acid 

Succinic semialdehyde + H2O  PaoABC
 succinic acid + 2 e− + 2H+ 

The principle of operation of the novel system is based on the consecutive reaction of GABA-T and 

PaoABC. Succinic semialdehyde formed by GABA-T from GABA is oxidized by PaoABC to the 

respective dicarboxylic acid. GABA-T has therefore been expressed in E.coli and purified according  

to [27,28]. In the initial experiments (not shown), PaoABC and the purified GABA-T were coimmobilized 

in PVA and fixed onto a carbon electrode similar to the previously described system [2]. The 

electrochemical communication between PaoABC and an electrode was realized by the soluble mediator 

ferricyanide. The pH-profile of the biosensor reactions revealed that GABA measurements required a 

basic pH, similar to the physiological pH-optimum of GABA-T, while the pH-optimum for succinic 

semialdehyde oxidation had an optimum at acidic conditions, reflecting the pH-optimum for the 

PaoABC reaction with ferricyanide. The sensitivity for GABA was low because of the discrepancy of 

pH-optima between PaoABC with ferricyanide and GABA-T. Therefore, another mediator was 

selected, due to the fact that the pH-optimum of PaoABC can be tuned by the utilized mediator for a 

GABA-biosensor. GABA-T and PaoABC were coimmobilized in the Os-polymer and crosslinked with 
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PEGDGE on spectroscopic graphite electrode, because PaoABC immobilized with this mediator obeys 

pH optimum for benzaldehyde oxidation in the desired basic pH range [3]. Figure 8 shows that the 

highest response is indeed generated at pH 9. This pH-value is similar to the optimum of PaoABC in 

osmium containing polymer and to the pH-optimum of GABA-T.  

Figure 8. pH-Dependence of amperometric response of this biosensor towards 200 µM 

GABA, 100 mM phosphate buffer pH 5.5–7.5, 50 mM Tris buffer pH 7.5–9.0, 2 mM  

2-oxoglutarate, 0 mV (vs. Ag|AgCl|1 M KCl). 

 

Figure 9. Dependence of the current response of the GABA-T/PaoABC/redox  

polymer-biosensor on the GABA concentration. Measurements were performed in 100 mM 

phosphate buffer pH 8, containing 2 mM 2-oxoglutarate. Applied potential 0 V  

(Ag|AgCl|1 M KCl). Inset shows the dependence of amperometric response on the  

2-oxoglutarate concentration.  

 

The addition of 5 µM GABA caused a current response of already 0.6 nA, i.e., 76 nA/cm2. The 

current response of the GABA-T/PaoABC/Os-polymer biosensor depends on the GABA concentration 

as is shown in Figure 9 for a measurement at pH 8, where the current response increased until 100 µM 

GABA with this biosensor. The response to GABA addition was maximal in the presence of 1 mM of 

the cosubstrate 2-oxoglutarate. These results are a first experimental proof of a biosensor for the 

inhibitory neurotransmitter GABA based on coimmobilization of GABA-T and PaoABC. Biosensors 
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for GABA are only very rarely described. Basically, only two ways to determine the GABA 

concentration with biosensors were reported. The first way is to use GABA-T and detect the glutamate 

concentration, for example, by applying glutamate oxidase and peroxidase [33]. This method has a 

better detection limit then the new PaoABC/GABA-T biosensor. However, it suffers from response to 

glutamate, which is another amino acid neurotransmitter and can be present in varying concentrations in 

the sample, and by a cosubstrate dependence. The second approach utilizes the commercially available 

product called “GABAse” [34] which appears as a non-defined mixture of GABA-T and succinic 

semialdehyde dehydrogenase (SSDH). In this case, the transamination to succinic semialdehyde is 

followed by the SSDH conversion measured also through cosubstrate concentrations. Unfortunately, it 

is not possible to vary the single enzyme concentrations in GABAse. The here described biosensor 

provides an opportunity to overcome these difficulties by using PaoABC and isolated GABA-T 

coimmobilized in osmium complex bound polymer, and represents a new principle of bioelectrochemical 

GABA-detection. 

4. Conclusions 

PaoABC aldehyde oxidoreductase was successfully immobilized in osmium containing redox 

polymer on spectrographic graphite electrode and on the carbon screen printed electrodes for a fluidic 

sensor approach. We demonstrate that the osmium containing redox polymer is a suitable redox 

mediator for PaoABC and their combination creates a stable and sensitive bioelectrochemical system 

operating reproducible as a biosensor for benzaldehyde at low potential. The described system has two 

certain advantages for biosensor approach, the lower working potential preventing the unspecific 

oxidation on the electrode and “reagentless” interface of the system where the mediator is 

coimmobilized with an enzyme and need not to be added to the solution again. Due to the absence of 

leachable components, the biosensor could be implemented in a flow cell permitting the automation of 

the measuring process, decrease of the measuring time and increased repeatability in comparison to the 

conventional approach with a soluble mediator [3]. This will be valuable for example for determination 

of benzaldehyde impurities in benzyl alcohol, a reagent which is commonly used as preservative in 

pharmaceutical formulations. 

Beyond the benzaldehyde biosensor function, we could show that the electron transfer between 

PaoABC and a redox polymer with a positively charged osmium redox complex happens at basic 

conditions (pH 9) with almost no activity at pH 4.5 and below. This behaviour is in full accordance 

with experiments done with a soluble osmium redox complex [3], but different then the previously 

described [1,2] pH-dependence with negatively charged ferricyanide having the pH-optimum at  

pH 4–5 with a mirror like shape of pH-dependence. Both mediator complexes contain a central metal 

atom, osmium or iron, and six occupied coordination sites. [Fe(CN)6]4−/3− has the standard potential 

+190 mV which is about 400 mV higher than the standard potential of the polymer bound osmium 

complex, PVP-[Os(N,Nʹ-dialkylated-2,2ʹ-biimidazole)3]2+/3+. The electrochemical half reactions of the 

polymer bound osmium complex and ferricyanide [35] are almost pH-independent (less than 10 mV/pH) 

under the conditions of these experiments. On the contrary, the potentials of PaoABC redox cofactors 

determined in noncatalytic direct voltammetry experiment are pH-dependent and show about 60 mV 

shift per pH-unit [2] (see Appendix Figure A6 for pH dependence and respective driving force). The 
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variation of ionic strength showed that the contribution of electrostatic interactions is essential and the 

polymer contribution to this effect is low. The behavior is similar to the interaction between the similar 

soluble osmium complex and PaoABC in homogeneous solution [3]. Therefore, we conclude also here 

that the redox complex interacts with the FAD-containing subunit PaoB. Moreover, at higher ionic 

strength the osmium containing redox polymer immobilized PaoABC can be activated also at lower pH 

and reveals a significant activity at pH 4.5 for benzaldehyde detection with smaller activity at pH 6–7. 

This effect looks very promising particularly for pH-responsive systems, where normally pH-responsive 

polymers are exploited, and which has gained increasing interest in last decades [15]. The system 

developed in this paper shows that PaoABC can play the role of a pH-responsive and catalytic element. 

The finding that PaoABC has a pH optimum at basic conditions being immobilized in osmium 

complex modified hydrogel is important for its application in a novel GABA-biosensor, where 

PaoABC and GABA-T were entrapped in osmium containing polymer. The choice of this immobilized 

redox mediator caused an elimination of pH-optimum discrepancy resulting in lower detection limit 

and avoids the need to add an electron mediator. Detailed optimization for a certain sample is therefore 

the subject of further studies. Our approach looks promising and can be transferred in the future to a 

microelectrode to perform measurements in body tissue.  
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Appendix 

Effect of Working Potential 

A working potential of 0 mV versus Ag/AgCl/1 M KCl is sufficiently high to achieve high catalytic 

oxidation current (Figure A1A,B). 

Figure A1. (A) Cyclic voltammogram of a PaoABC/Redox-polymer biosensor in 200 mM 

Tris-buffer pH 8.0 and after addition of 1 mM benzaldehyde. Scan rate 5 mV/s.  

(B) Amperometric responses of PaoABC/Redox-polymer biosensor to 20 µM benzaldehyde 

as a function of electrode potential, 100 mM phosphate buffer, pH 8.  

  

(A)       (B) 

Electrochemical Behavior of Redox Polymer with Bound Osmium Complexes 

The polymer bound osmium complex is poly (4-vinylpyridine)-[osmium-(N,N′-methylated-2,2′-

biimidalzole)3]2+/3+. The buffer solutions were prepared in the range of pH 5–8 with KCl—content 

from 0 M to 1 M. Cyclic voltammograms of the polymer bound osmium complex on a spectrographic 

graphite electrode were measured in these buffers, and the peak current and cathodic and anodic peak 

potentials for the transformation of Os2+/3+ in the bound complex were evaluated. There was no drastic 

change of electrochemical parameters of the redox polymer (Figures A2–A4) in solutions of different 

pH and ionic strength.  
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Figure A2. Formal potential E0 of osmium bound polymer of PaoABC/Redox-polymer 

biosensor as a function of KCl concentration at different pH values. 

 

Figure A3. Anodic peak current of osmium containing polymer of PaoABC/Redox-polymer 

biosensor as a function of KCl concentration at different pH values. 

 

Figure A4. Cathodic peak current of osmium containing polymer of PaoABC/Redox-polymer 

biosensor in buffer solutions of different pH values and increasing KCl-concentration. 
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Current Traces for Calibration Graph  

Figure A5. The responses of the PaoABC/Redox-polymer biosensor on 5–500 µM 

benzaldehyde, 50 mM Tris, pH 9.0, working potential 0 mV.  

 

 

 

The Driving Force Estimation  

Using non-catalytic voltammetry of PaoABC deposited on highly oriented pyrolytic graphite three 

distinguished reduction potentials were obtained. The values are at pH 6.5, −643 mV, −517 mV and 

−433 mV (vs. Ag|AgCl|1 M KCl) and are increasing 59 mV/pH [2]. The highest value was taken for 
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the calculation of the driving force (Figure A6). The potential is comparable to values found for FAD 

of XOD from cow milk and close to XDH determined by PFV and EPR potentiometry. We therefore 

assigned the highest peak also to FAD. In the previous paper it was also described that addition of 

benzaldehyde did not show any catalytic response unless a mediator has been added to the solution [2]. 

The slope of 59 mV/pH together with the lack of a semiquinone intermediate [1] supports the two 

proton/ two electron process. 

Figure A6. The estimated driving force between the PaoABC redox site with the most 

positive potential and osmium complex containing redox polymer () or ferricyanide (). 
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