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Abstract
The Ornstein–Uhlenbeck process is a stationary and ergodic Gaussian process, that is fully
determined by its covariance function and mean. We show here that the generic definitions of the
ensemble- and time-averaged mean squared displacements fail to capture these properties
consistently, leading to a spurious ergodicity breaking. We propose to remedy this failure by
redefining the mean squared displacements such that they reflect unambiguously the statistical
properties of any stochastic process. In particular we study the effect of the initial condition in the
Ornstein–Uhlenbeck process and its fractional extension. For the fractional Ornstein–Uhlenbeck
process representing typical experimental situations in crowded environments such as living
biological cells, we show that the stationarity of the process delicately depends on the initial
condition.

1. Introduction

The Ornstein–Uhlenbeck process is one of the most fundamental physical processes, originally devised to
describe the velocity distribution and relaxation of a Brownian particle under the influence of a
velocity-dependent friction. The Ornstein–Uhlenbeck process belongs to the class of Gaussian and
Markovian processes, and it is described in terms of the stochastic Langevin equation [1–3]4

dx + λxdt = σdBt · (1)

Here dBt is the increment of the well-known Brownian motion (Wiener process) Bt, and λ and σ are
positive constants. 1/λ defines a natural dynamic time scale, and σ is the intensity of the fluctuations.
Under certain conditions discussed below the Ornstein–Uhlenbeck process is the only non-trivial process in
the class of Gauss–Markov processes that has a stationary solution [5]. Physically, overdamped Brownian
particles in an optical tweezers trap [6] or tethered to an anchor by a flexible polymer [7] are adequately
described in terms of an Ornstein–Uhlenbeck process. The Ornstein–Uhlenbeck process is also used as a
phenomenological model for the confinement observed in the tracer diffusion in critical random
environments [8]. A wide field of applications of the Ornstein–Uhlenbeck process lies in finance. The
Ornstein–Uhlenbeck process was adopted in 1970s by Vašíček to model the evolution of the interest rate of
financial markets [4]. Extending this Vašíček model, Hull and White took into account explicitly time
dependent drift μ and λ [9]. There are other variants of the Vašíček model, for instance, the jump-extended
Vašíček model in which an exponential jump noise following a Poisson distribution is added to equation (1)
[10]. There also exist extensions of the Ornstein–Uhlenbeck process to non-Gaussian processes with
applications in finance [11], including option pricing [12], commodity derivative pricing [13] and
electricity pricing [14]. Such models have also been utilised to model neural activity [15] or to study the

4 In the original notation, the Langevin equation is formulated for the velocity co-ordinate. Having contemporary optical tweezers
experiments in mind we use the overdamped formulation in terms of the position co-ordinate. We also note that in mathematical
finance the Langevin equation (1) with an additional drift μ, dx + λ(x − μ)dt = σdBt is used [4].
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statistics of neuron spikes [16]. The Ornstein–Uhlenbeck process corresponds to the continuous-time
analogue of a discrete-time autoregressive AR(1)-process [17–19].

In a direct extension of the Ornstein–Uhlenbeck process (1) one replaces the white Gaussian noise dBt

by power-law correlated fractional Gaussian noise [20]. In absence of the damping term this so-called
fractional Brownian motion captures the motion of diffusive particles in viscoelastic environments, such as
artificially crowded media [21–23], lipid bilayer membranes [24–26], or the cytoplasm of living biological
cells [27–29]. The correlations in the noise effect anomalous diffusion of the form 〈x2(t)〉 � tα [30, 31].
Combined with a Hookean restoring force exerted by optical tweezers a tracer particle in a biological cell
[28, 32] then follows the fractional Ornstein–Uhlenbeck process [33]. Formally, the fractional
Ornstein–Uhlenbeck process is still Gaussian and stationary, yet it is strongly non-Markovian. As we will
see this causes fundamental differences. We note that in finance power-law correlations are frequently
observed in the dynamics of stock structure and price dynamics [34], commodity prices [35], and return of
the closing values of the financial indices [36–38]. There exist several studies modelling such long-ranged
correlated processes with ARFIMA, GARCH, and FIARCH processes, and to quantify the cross-correlation
of mutually dependent processes [38, 39].

With modern microscopic techniques it is possible to track single sub-micron tracer particles and even
single molecules through complex media such as live biological cells [6, 40]. The time-series extracted from
such single-particle trajectories are typically evaluated in terms of time-averaged physical observables [41,
42]. To address the motion of a Brownian or fractional Brownian particle under the action of an external
potential by analysing a single trajectory of its movement, it is essential to understand whether the physical
process governing the motion of the particle is ergodic, or not [31, 43, 44]. To infer the ergodic property of
a given Gaussian process it is sufficient that the associated two-time covariance function solely depends on
the difference of the two times [45]. This property rests on the fact that for Gaussian processes all properties
can be deduced from the mean and covariance function [46, 47]. An indirect approach to deduce the
ergodic property of the process is to compare the behaviour of the mean squared displacement (MSD) and
the time averaged MSD [31, 48–50].

We here scrutinise the exact ergodic and stationary behaviour of the regular and fractional
Ornstein–Uhlenbeck processes and show that they fundamentally differ in some of their behaviour, despite
of the fact that both are ergodic. In particular, we elucidate the precise role of the initial condition and
invalidate the general belief that the assertion of an equilibrium initial condition necessarily recovers the
stationary property of the process. We first analyse the detailed statistical properties from the covariance of
the Ornstein–Uhlenbeck process in section 2, including the ensemble- and time-averaged MSDs and the
effect of the initial condition. Section 3 provides an analogous analysis for the fractional
Ornstein–Uhlenbeck process. In section 4 we discuss our results and conclude. Some mathematical details
are deferred to the appendix.

2. Ornstein–Uhlenbeck process

We define the Ornstein–Uhlenbeck process in terms of the stochastic differential equation (1), in which dBt

is the increment of Brownian motion Bt with the covariance function [51]

Cov(Bt , Bs) =
〈(

Bt − 〈Bt〉
) (

Bs − 〈Bs〉
)〉

= min(t, s). (2)

In this formulation, Gaussian white noise corresponds to the time derivative of the increment, dBt/dt. After
solving the stochastic differential equation (1), x(t) is formally obtained as

x(t) = e−λt

(
x0 + σ

∫ t

0
eλsdBs

)
, (3)

where x0 = x(t = 0) defines the initial condition. Since Bt is a continuous process, via integration by parts
the above equation is recast into

x(t) = e−λt

(
x0 − σλ

∫ t

0
Bse

λsds

)
+ σBt , (4)

with B0 = 0. The MSD for a random process x(t) is defined as

〈Ω2(t)〉 = 〈[δx(t) − δx0]2〉, (5)

where δx(t) = x(t) − 〈x(t)〉. The MSD can also be written in terms of the covariance function,

〈Ω2(t)〉 = Cov(x(t), x(t)) + Cov(x0, x0) − 2Cov(x(t), x0). (6)

2
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For the Ornstein–Uhlenbeck process the MSD then assumes the following expression,

〈Ω2(t)〉 = Var(x0)
(
1 − e−λt

)2
+

σ2

2λ

(
1 − e−2λt

)
, (7)

where Var(X) stands for the variance of a random variable X. Note that in the limit λ→ 0 of free Brownian
motion this notation leads to the MSD limλ→0〈Ω2(t)〉 = σ2t. The time-averaged MSD (TAMSD) is defined
as [31, 41, 48]5 〈

δ2(Δ)
〉
=

1

T −Δ

∫ T

0

〈
(δx(t +Δ) − δx(t))2〉 dt, (8)

where T is the total measurement time and Δ is called the lag time. For the Ornstein–Uhlenbeck process,
the TAMSD yields in the form〈

δ2(Δ)
〉
=

σ2

λ

(
1 − e−λΔ

)
+

(
Var(x0) − σ2

2λ

)(
1 − e−λΔ

)2 1 − e−2λ(T−Δ)

2λ(T −Δ)
. (9)

2.1. Properties of the Ornstein–Uhlenbeck process
Since the Ornstein–Uhlenbeck process is a Gaussian process, it suffices to know the covariance function and
mean to infer its properties. The mean of x(t) according to equation (4) is 〈x(t)〉 = e−λt〈x0〉. The covariance
function of the process is

Cov (x(t1), x(t2)) =

(
Var(x0) − σ2

2λ

)
e−λ(t1+t2) +

σ2

2λ
e−λ|t2−t1|. (10)

Recall that a Gaussian process is stationary and ergodic if the covariance function at two times exclusively
depends on the time difference, that is, Cov(x(t1), x(t2)) = G(|t2 − t1|) in terms of the continuous function
G. The covariance (10) satisfies the requirements of stationarity if (i) t1 or t2 are significantly larger than

1/λ, or (ii) if Var(x0) = σ2

2λ . The first condition is asymptotic with respect to 1/λ: the process loses the
memory of its initial condition after the correlation time 1/λ. The second condition is valid for all times, it
corresponds to starting the process with the equilibrium distribution.

The equilibrium stationary distribution can be deduced from the Fokker–Planck equation of the
Ornstein–Uhlenbeck process [52]

∂P(x, t)

∂t
= λ

∂

∂x
(xP(x, t)) +

σ2

2

∂2

∂2x
P(x, t), (11)

where P(x, t) is the probability density function of the process. The solution for P(x, t) is [3, 52]

P(x, t) =

√
λ

πσ2
(
1 − e−2λt

) exp

(
− λ

σ2

(x − x0e−λt)2

1 − e−2λt

)
. (12)

In the stationary limit t � 1/λ the stationary probability density function is given by
P(x) = [λ/(πσ2)]−1/2 exp(−λx2/σ2), for which the variance becomes

Var(x) =

∫ ∞

−∞
P(x)x2dx −

(∫ ∞

−∞
P(x)xdx

)2

=

∫ ∞

−∞

√
λ

πσ2
e−

λx2

σ2 x2dx =
σ2

2λ
. (13)

Assume that the distribution of x0 satisfies the stationary distribution, Var(x0) = σ2/(2λ), from
equations (7) and (9) one arrives at

〈Ω2(t)〉 = σ2

λ

(
1 − e−λt

)
, (14)〈

δ2(Δ)
〉
=

σ2

λ

(
1 − e−λΔ

)
. (15)

The fact that MSD and TAMSD are equivalent for an equilibrium stationary initial distribution is the direct
consequence of the stationary property of the process, that can be directly inferred from the covariance
(10). Thus, MSD and TAMSD indeed coincide. Yet there exists an intrinsic problem regarding the way MSD
and TAMSD are defined, and the equivalency between the two is only valid under the strict conditions that

5 Note that for simplicity we use the term TAMSD for expression (8). More precisely, the definition without the angular brackets is
called TAMSD, and the angular brackets denote an additional average over an ensemble of individual trajectories [31, 41, 48].
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the equilibrium initial condition is met and that the process is both Gaussian and Markovian, see the next
section for the non-Markovian fractional Ornstein–Uhlenbeck process.

Compare the pairs of equations (7) and (9) as well as (14) and (15). In the first pair, (7) and (9), we note
the existence of two time scales in the TAMSD, Δ and T, the latter of which does not exist in the definition
of the MSD. This effects a disparity in inferring the stationary state in a consistent way from MSD and
TAMSD. From the MSD, the stationary state is reached when the expression ceases to depend on t, that is
when t � 1/λ. In contrast, for the TAMSD the stationarity condition depends on the interplay between lag
time Δ and measurement time T. The observation time T identifies the total time the process has been
monitored to evolve, and one identifies the stationary state of the process when T � 1/λ. Yet Δ signifies
the magnitude of the time window in the sliding average, comparing two instances of the process.
Necessarily, Δ < T, however, also the lag time Δ needs to be compared with the natural dynamical time
scale imposed by 1/λ. There exist two distinct regimes: (i) if Δ is much smaller than 1/λ the fluctuations
present in the system during this time interval have not relaxed. Therefore any statistical inference cannot
be justified although the overall process has reached stationarity for T � 1/λ. (ii) Stationarity is reached
when T � 1/λ and Δ � 1/λ, as long as Δ � T is simultaneously fulfilled. Obviously, for the trivial case
T < 1/λ the process cannot be stationary. When the initial condition is chosen to be the equilibrium
distribution, Var(x0) = σ2/2λ, we see from equations (14) and (15) that the situation is different: here
stationarity is reached once t � 1/λ for the MSD and Δ � 1/λ for the TAMSD. Note that the signature of
T disappears (an indication of stationarity). The caveat here is that, for the MSD, asserting the equilibrium
initial condition, which implies the stationary property of the process, does not imply the independence of
the MSD of t, in contrast to the case of the TAMSD, in which the dependency on T disappears.

This discrepancy also manifests itself in the asymptotes of MSD and TAMSD when the equilibrium
initial condition is not asserted. The asymptotes of MSD and TAMSD in the stationary state read

lim
t�1/Δ

〈Ω2(t)〉 = Var(x0) +
σ2

2λ
, (16)

lim
T�Δ�1/λ

〈
δ2(Δ)

〉
=

σ2

λ
. (17)

Indeed, for the MSD the stationary value asymptote depends on the variance Var(x0) of the chosen initial
distribution. This contradicts the common intuition that, once the process reaches its stationary state, any
trace of the initial condition must have vanished. In contrast, Var(x0) is absent from the limiting value of
the TAMSD. Knowing that the Ornstein–Uhlenbeck process is stationary and ergodic, these observables,
suggesting non-ergodic behaviour, are thus unsuitable. In particular, the above difference could potentially
lead to wrong conclusions for the ratio of noise strength σ2 and trap strength λ depending on which
measure is chosen for the evaluation of an experiment.

This discussion elucidates the fundamental difference between the generic definitions of the MSD and
the TAMSD, essentially quantifying different properties of a random process. Thus, while the MSD
quantifies the dispersal of an ensemble of walkers at a given time instant t with respect to the initial
condition, the TAMSD quantifies how increments of the process evolve as function of the lag time. We now
embark for modified definitions of these most widely used physical observables for stochastic processes for
the case of the Ornstein–Uhlenbeck process.

2.2. Generalised definitions of the ensemble-averaged MSD
We propose to recalibrate the definition of the MSD in the generalised form

〈Ω2
Δ(t)〉 =

〈
(δx(t +Δ) − δx(t))2

〉
, (18)

where the subscript Δ indicates the generalisation. This modified MSD describes the dispersal of the process
from time t to t +Δ; in other words, the dispersal of increments in which the mean effect of the initial
condition and the drift are removed. We can rewrite expression (18) in terms of the covariance function in
the form

〈Ω2
Δ(t)〉 = Cov (x(t +Δ), x(t +Δ)) + Cov (x(t), x(t)) − 2Cov (x(t +Δ), x(t))

=
σ2

λ

(
1 − e−λΔ

)
+

(
Var(x0) − σ2

2λ

)(
1 − e−λΔ

)2
e−2λt . (19)

In the limit λ→ 0 of free Brownian motion, this definition produces limλ→0〈Ω2
Δ(t)〉 = σ2Δ, which is the

same expression as obtained for the classical definition, albeit with t replaced by Δ. In this generalised

4
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formulation the integrand of the TAMSD (8) is exactly the generalised expression of the MSD given by
equation (18), that is, 〈

δ2(Δ)
〉
=

1

T −Δ

∫ T−Δ

0

〈
Ω2

Δ(t)
〉

dt (20)

which readily yields equation (9). We observe that for equilibrium initial conditions, Var(x0) = σ2/2λ, the
generalised expressions for MSD and TAMSD yield exactly the same result (σ2/λ)[1 − exp(−λΔ)].

3. Fractional Ornstein–Uhlenbeck processes

The fractional Ornstein–Uhlenbeck process is the extension of the normal Ornstein–Uhlenbeck process (1),
in which the increments of Brownian motion are substituted by the increments of fractional Brownian
motion, BH

t . Here H is the Hurst exponent, which is allowed to vary in the interval H ∈ (0, 1] [20]. The
fractional Ornstein–Uhlenbeck process is therefore given by the stochastic differential equation [33]6

dx + λxdt = σdB̃H
t . (21)

Here dB̃H
t is the increment of fractional Brownian motion B̃H

t .7 The tilde is introduced here to denote the
extension of fractional Brownian motion to the negative time domain, such that

B̃H
t =

⎧⎨⎩BH
t , if t � 0

BH
−t , otherwise

. (22)

Fractional Brownian motion with Hurst parameter H ∈ (0, 1], is a continuous centred Gaussian process
defined by the covariance function [20]

Cov
(

B̃H
t1 , B̃H

t2

)
=

1

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
. (23)

For H = 1/2, B̃1/2
t reduces to conventional Brownian motion. From the definition above the following

properties are deduced in one dimension, (i) BH
0 = 0 and

〈
B̃H

t

〉
= 0 for all t ∈ R. (ii) B̃H

t has stationary

increments and

〈(
B̃H

t

)2
〉

= |t|2H . (iii) The trajectories of B̃H
t are continuous.

For t ∈ [0,∞), the formal solution of equation (21) is

x(t) = e−λt

(
x0 + σ

∫ t

0
eλt′dBH

t′

)
. (24)

Since fractional Brownian motion is a continuous process this integral exists [59]. Integrating by parts the
equation above can be rewritten in terms of BH

t in the form

x(t) = e−λt

(
x0 − σλ

∫ t

0
BH

t′ eλt′dt′
)
+ σBH

t · (25)

Then the covariance function becomes

Cov (x(t1), x(s2)) = e−λ(t1+t2) Var(x0) + σe−λt1
〈

x0BH
t2

〉
+ σe−λt2

〈
x0BH

t1

〉
− σλe−λ(t1+t2)

(∫ t1

0
eλt′1

〈
x0BH

t′1

〉
dt′1 +

∫ t2

0
eλt′2

〈
x0BH

t′2

〉
dt′2

)
− σ2λe−λt1

∫ t1

0
eλt′1

〈
BH

t′1
BH

t2

〉
dt′1 − σ2λe−λt2

∫ t2

0
eλt′2

〈
BH

t′2
BH

t1

〉
dt′2

+ σ2λ2e−λ(t1+t2)

∫ t1

0

∫ t2

0
eλ(t′2+t′1)

〈
BH

t′1
BH

t′2

〉
dt′2dt′1 + σ2

〈
BH

t1
BH

t2

〉
. (26)

We note that while free fractional Brownian motion, corresponding to the limit λ→ 0, is ergodic [49, 60,
61], transient non-ergodicity occurs when the process is confined. Namely, for an harmonic external
confinement (the Ornstein–Uhlenbeck process, that is) it was shown analytically and experimentally that

6 This is sometimes called fractional Ornstein–Uhlenbeck process of ‘the first kind’. The fractional Ornstein–Uhlenbeck process of ‘the
second kind’ is a Gaussian process that is the integral of Doob’s transformation of fractional Brownian motion [53].
7 Note that this process should not be confused with the ‘fractional Ornstein–Uhlenbeck’ process based on continuous time random
walks with scale-free, power-law distributed waiting times or jump lengths. In these cases, in the Fokker–Planck equation (11) the time
derivative or the second-order spatial derivative, respectively, are replaced by a fractional differential operator [30, 31, 54–58].
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the relaxation of the MSD is exponential while a slower power-law relaxation is observed for the TAMSD
[23, 62].

When x0 is fixed or the distribution of x0 is independent of the fractional Brownian motion all terms
involving

〈
x0BH

t

〉
vanish. Therefore the covariance function simplifies to

Cov (x(t1), x(t2)) = e−λ(t1+t2) Var(x0)

− σ2λe−λt1

∫ t1

0
eλt′1

〈
BH

t′1
BH

t2

〉
dt′1 − σ2λe−λt2

∫ t2

0
eλt′2

〈
BH

t′2
BH

t1

〉
dt′2

+ σ2λ2e−λ(t1+t2)

∫ t1

0

∫ t2

0
eλ(t′2+t′1)

〈
BH

t′1
BH

t′2

〉
dt′2dt′1 + σ2

〈
BH

t1
BH

t2

〉
. (27)

After calculating the integrals (see appendix A for details) the covariance of the fractional Ornstein–
Uhlenbeck process reads

Cov (x(t1), x(t2)) =

[
Var(x0) +

σ2

2
eλt1 t2H

1

(
1 +

λt1eλt1

2(2H + 1)
M(2H + 1, 2H + 2,−λt1)

− λt1e−λt1

2(2H + 1)
M(2H + 1, 2H + 2,λt1)

)
+

σ2

2
eλt2 t2H

2

(
1 +

λt2eλt2

2(2H + 1)
M(2H + 1, 2H + 2,−λt2)

− λt2e−λt2

2(2H + 1)
M(2H + 1, 2H + 2,λt2)

)]
e−λ(t1+t2)

− σ2

2
|t2 − t1|2H

(
1 − λ|t2 − t1|e−λ|t2−t1|

2(2H + 1)
M

(
2H + 1, 2H + 2,λ|t2 − t1|

)

+
λ|t2 − t1|eλ|t2−t1|

2(2H + 1)
M

(
2H + 1, 2H + 2,−λ|t2 − t1|

))
, (28)

where M(a, b, z) is Kummer’s function of the first kind (the confluent hypergeometric function of the first
kind [63]). The integral representation of this function is given by

M(a, b, z) =
Γ(b)

Γ(b − a)Γ(a)

∫ 1

0
eztta−1(1 − t)b−a−1dt· (29)

For H = 1/2 the covariance function (28) consistently reduces to expression (10) of the regular
Ornstein–Uhlenbeck process (note that M(2, 3, x) = 2(1 − ex + xex)/x2).

On closer inspection of the covariance function, unlike for the case of the regular Ornstein–Uhlenbeck
process above, in which the equilibrium distribution of the initial condition yields a stationary covariance
function (see equation (10)), we notice that there is no possible form for Var(x0) such that the covariance
function (28) would exclusively depend only on the time difference between the two time points of the
process. In other words, there is no initial condition, such that Cov(x(t1), x(t2)) = G(|t2 − t1|) for any given
t1 and t2. Asserting an equilibrium initial condition does not fulfil the requirement of an ergodic and
stationary process for any t � 0. Indeed, let us assume that the x0 have an equilibrium distribution
corresponding to the normal distribution N (0, ξ2) with variance [33, 53, 59],

ξ2 =
σ2Γ(2H + 1) sin(πH)

πλ2H

∫ ∞

0

|x|1−2H

1 + x2
dx =

σ2

2λ2H
Γ(2H + 1). (30)

Here the integral is calculated in appendix D. This result can also be obtained by recalling that

x0 = σe−λt

∫ 0

−∞
eλt′dB̃H

t′ . (31)

Integration by part leads to the expression〈
x2

0

〉
=

σ2λ2

2

∫ 0

−∞

∫ 0

−∞

〈
B̃H

t1 B̃H
t2

〉
dt1dt2, (32)

which yields the result (30). Observe that by substituting the variance of x0 in equation (28) the covariance
function would still depend on the absolute times t1 and t2. To provide a hint why this is the case, recall our
earlier assumption on x0. Our assumption that x0 and BH

t are not correlated yielded a covariance function
which is not stationary for finite t1 and t2. It asymptotically approaches the stationary covariance function

when t1 and t2 tend to infinity. Furthermore, observe that x0 and B̃H
t are correlated in the case of fractional

Ornstein–Uhlenbeck process, since the driving noise has a long-range memory.
This is also reflected in the generalised MSD and TAMSD. Since the closed analytical expressions for the

generalised MSD and TAMSD are too cumbersome to be presented here, we refer to Appendix B and

6
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Figure 1. Left panels: generic MSD and TAMSD (5) and (8) for the non-stationary solution of the fractional Ornstein–
Uhlenbeck process (24) as function of time. In all three cases, T = 100. Right panels: generalised MSD and TAMSD (18) and (8)
for the stationary solution of the same process. From top to bottom the rows correspond to subdiffusion with H= 1/4, Brownian
motion with H = 1/2, and superdiffusion with H = 3/4. The parameters are σ = λ = 2 = Var(x0) = 2. Note the discrepancy
between the generic definitions of MSD and TAMSD, despite the fact that the process has reached the stationary state.

observe that indeed the generalised expressions for MSD and TAMSD differ from one another. As we show
now, in the stationary state ergodicity is indeed fulfilled.

To proceed, we note that the fractional Ornstein–Uhlenbeck process has the stationary solution [53]

xs(t) = e−λtσ

∫ t

−∞
eλt′dB̃H

t′ , (33)

indicated by the subscript s. Note that to achieve this stationary solution the domain of t has been changed
to t ∈ (−∞,∞). For this case

lim
t→∞

[xs(t) − x(t)] = lim
t→∞

[
e−λt (xs(0) − x(0))

]
= 0, (34)

from which it is inferred that every stationary solution xs(t) of the Langevin equation (21) has the same
distribution as x(t) in the long-time limit. Consequently, we deduce that the covariance function for the
stationary solution is given by (see appendix C for details)

Cov (xs(t1), xs(t2)) = −σ2

2
|t2 − t1|2H

+
σ2

4λ2H
e−λ|t2−t1|

(
Γ(2H + 1) +

(λ|t2 − t1|)2H+1

2H + 1
M(2H + 1, 2H + 2,λ|t2 − t1|)

)
+

σ2

4λ2H
eλ|t2−t1|

(
Γ(2H + 1) − (λ|t2 − t1|)2H+1

2H + 1
M(2H + 1, 2H + 2,−λ|t2 − t1|)

)
.

(35)

7
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Figure 2. Relaxation dynamics of the normal and fractional Ornstein–Uhlenbeck process as described by the standard MSD (left
panels), compared to the cases of the generalised MSD and the TAMSD (right panels). In all panels we plot the absolute value of
the difference of the plateau value and the respective MSD or TAMSD. From top to bottom the corresponding Hurst coefficients
are H = 1/4, H = 1/2, and H = 3/4. For the anomalous cases in the top and bottom rows, the generalised MSD and the
TAMSD show a distinct power-law relaxation. The γ-shape for the case H = 1/4 is due to the fact that the functions slightly
overshoot the plateau value at intermediate time scales (compare figure 1). Note the different scales (linear versus logarithmic) of
the time axis.

Obviously, the covariance function for the stationary solution depends only on the time difference between
the two time points. With the use of equations (19) and (35) the generalised MSD and TAMSD are given by

〈Ω2
Δ(t)〉 =

〈
δ2(Δ)

〉
=

σ2

λ2H
Γ(2H + 1) (1 − cosh(λΔ)) + σ2Δ2H

− σ2λΔ2H+1

2(2H + 1)

(
e−λΔM(2H + 1, 2H + 2,λΔ) − eλΔM(2H + 1, 2H + 2,−λΔ)

)
.

(36)

From this equivalency we conclude that the fractional Ornstein–Uhlenbeck process is ergodic in the sense
of the generalised MSD.

Figure 1 details the functional behaviour of the different MSDs. In the left panels for the non-stationary
case, as expected the disparity between the generic MSD (5) and the TAMSD (8) is distinct. In contrast,
using the generalised MSD (18) for the stationary solution the expected ergodic behaviour is restored.

For completeness, figure 2 shows how the two different versions of the MSD and the TAMSD approach
the plateau value for different values of H. As can be seen for normal diffusion with H = 1/2 the relaxation
is always exponential. In contrast, we recover a power-law relaxation for the TAMSD and for the generalised
definition of the MSD. While this power-law form for the TAMSD was discussed earlier [62] and verified
experimentally [23], the full agreement between the TAMSD and the generalised MSD is a distinct
behaviour following from our definition (18) here.

8



New J. Phys. 22 (2020) 073012 Y Mardoukhi et al

4. Conclusions

It is commonly assumed that asserting equilibrium initial condition is sufficient and necessary for a
confined stochastic process to remain stationary at all times t � 0. We here demonstrated that for the case
of the fractional Ornstein–Uhlenbeck process this is in fact not true. Generally, for any process which is not
a Markov process one should bear in mind that due to long range correlations the assumption that the
process is stationary requires one to take into account the entire history of the system. Therefore, asserting
any assumption on the initial condition of the process would perturb the stationary state of the process,
even in the case when this initial condition is the equilibrium distribution.

Moreover, we revealed another subtle point on how to define the stationary state of the process based on
generalised definitions of the MSD and the TAMSD. While it is often believed that the sufficient condition
to infer that the process has reached its stationary state is given when in the TAMSD the observation time
tends to infinity. In this statement, though, it is neglected that Δ needs to be considered, as well. Indeed,
while the lag time should remain significantly below the observation time, Δ � T, the lag time needs to be
much larger than the natural dynamic time scale of the process, Δ � 1/λ.

The Ornstein–Uhlenbeck process and its fractional extension are essential in modelling
physical systems in the presence of an external potential. They are Gaussian processes with the
difference that in the former case, the correlations are short-lived (Markov process) while in the latter
case the correlations are long-ranged. It was further demonstrated that the Ornstein–Uhlenbeck
process is stationary for all t � 0 if the equilibrium initial condition is asserted. In contrast, this
does not hold true for the fractional Ornstein–Uhlenbeck process due to the fact that the process is not
Markovian.

These results will also be important for the correct analysis of measured trajectories of generic
processes driven by fractional Gaussian noise in terms of the TAMSD, for instance, under
confinement [64]. Moreover, the finite-time ergodic properties of the normal Ornstein–Uhlenbeck
process as studied in [65, 66] should be considered in view of the generalised definitions of the MSD and
TAMSD provided here.
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Appendix A. Covariance function of the non-stationary fractional
Ornstein–Uhlenbeck process

To calculate the covariance function given by equation (27) two types of integrals need to be calculated.
One are the single integrals with respect to either t ′1 or t ′2. The other is the double integral with respect to
the t ′1 and t ′2. Throughout the integrations, it is always assumed that t2 > t1 for simplicity. Whenever the
difference between the two times is relevant, the result is written in terms of the modulus.

The single integral with respect to t ′1 is given by

∫ t1

0
eλt′1

(
t′2H
1 + t2H

2 − |t′1 − t2|2H
)

dt′1 =

∫ t1

0
eλt′1 t′2H

1 dt′1 +

(
eλt1 − 1

)
t2H
2

λ
−
∫ t1

0
eλt′1 (t2 − t′1)2Hdt′1

= t2H+1
1

∫ 1

0
eλt1qq2Hdq +

(
eλt1 − 1

)
t2H
2

λ
+

∫ t2−t1

t2

eλ(t2−q)q2H dq

=

(
eλt1 − 1

)
t2H
2

λ
+

t2H+1
1

2H + 1
M(2H + 1, 2H + 2,λt1)

− eλt2 t2H+1
2

2H + 1
M(2H + 1, 2H + 2,−λt2)

+
eλt2 |t2 − t1|2H+1

2H + 1
M(2H + 1, 2H + 2,−λ|t2 − t1|). (A.1)
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Following the same procedure one arrives at a similar expression for the integral with respect to t ′2∫ t2

0
eλt′2

(
t2H
1 + t′2H

2 − |t1 − t′2|2H
)

dt′2 =

(
eλt2 − 1

)
t2H
1

λ
+

t2H+1
2

2H + 1
M(2H + 1, 2H + 2,λt2)

− eλt1 t2H+1
1

2H + 1
M(2H + 1, 2H + 2,−λt1)

− eλt1 |t2 − t1|2H+1

2H + 1
M(2H + 1, 2H + 2,λ|t2 − t1|). (A.2)

The second type of the integrals appearing in the covariance of fractional Ornstein–Uhlenbeck process is
given by∫ t1

0

∫ t2

0
eλ(t′1+t′2)

(
t′2H
1 + t′2H

2 − |t′1 − t′2|2H
)

dt′1dt′2

=

∫ t1

0

∫ t2

0
eλ(t′1+t′2)t′2H

1 dt′1dt′2 +

∫ t1

0

∫ t2

0
eλ(t′1+t′2)t′2H

2 dt′1dt′2 −
∫ t1

0

∫ t2

0
eλ(t′1+t′2)|t′1 − t′2|2H dt′1dt′2

=

(
eλt2 − 1

)
t2H+1
1

λ(2H + 1)
M(2H + 1, 2H + 2,λt1) +

(
eλt1 − 1

)
t2H+1
2

λ(2H + 1)
M(2H + 1, 2H + 2,λt2)

−
∫ t1

0

⎛⎝∫ t′1

0
eλ(t′1+t′2)(t′1 − t′2)2Hdt′2 +

∫ t2

t′1

eλ(t′1+t′2)(t′2 − t′1)2Hdt′2

⎞⎠ dt′1·

Take the last two double integrals,

−
∫ t1

0

⎛⎝∫ t′1

0
eλ(t′1+t′2)(t′1 − t′2)2Hdt′2 +

∫ t2

t′1

eλ(t′1+t′2)(t′2 − t′1)2Hdt′2

⎞⎠ dt′1

= −
∫ t1

0
eλt′1 dt′1

∫ t′1

0
eλ(t′1−q)q2H dq −

∫ t1

0
eλt′1 dt′1

∫ t2−t′1

0
eλ(t′1+q)q2H dq

= −
∫ t1

0
e2λt′1 dt′1

∫ t′1

0
e−λqq2H dq −

∫ t1

0
e2λt′1 dt′1

∫ t2−t′1

0
eλqq2H dq

= −
∫ t1

q
e2λt′1 dt′1

∫ t1

0
e−λqq2H dq −

∫ t2−q

0
e2λt′1 dt′1

∫ t2

0
eλqq2Hdq +

∫ t2−q

t1

e2λt′1 dt′1

∫ t2−t1

0
eλqq2Hdq

=
t2H+1
1

2λ(2H + 1)
M(2H + 1, 2H + 2,λt1) − e2λt1 t2H+1

1

2λ(2H + 1)
M(2H + 1, 2H + 2,−λt1)

+
t2H+1
2

2λ(2H + 1)
M(2H + 1, 2H + 2,λt2) − e2λt2 t2H+1

2

2λ(2H + 1)
M(2H + 1, 2H + 2,−λt2)

+
e2λt2 |t2 − t1|2H+1

2λ(2H + 1)
M(2H+1, 2H+2,−λ|t2− t1|) −

e2λt1 |t2 − t1|2H+1

2λ(2H + 1)
M(2H + 1, 2H+2,λ|t2− t1|).

Hence we arrive at the following expression for the double integral,∫ t1

0

∫ t2

0
eλ(t′1+t′2)

(
t′2H
1 + t′2H

2 − |t′1 − t′2|2H
)

dt′1dt′2

=
eλt2 t2H+1

1

λ(2H + 1)
M(2H + 1, 2H + 2,λt1) − t2H+1

1

2λ(2H + 1)
M(2H + 1, 2H + 2,λt1)

+
eλt1 t2H+1

2

λ(2H + 1)
M(2H + 1, 2H + 2,λt2) − t2H+1

2

2λ(2H + 1)
M(2H + 1, 2H + 2,λt2)

− e2λt1 t2H+1
1

2λ(2H + 1)
M(2H + 1, 2H + 2,−λt1) − e2λt2 t2H+1

2

2λ(2H + 1)
M(2H + 1, 2H + 2,−λt2)

+
e2λt2 |t2 − t1|2H+1

2λ(2H + 1)
M(2H+1, 2H+2,−λ|t2− t1|) −

e2λt1 |t2 − t1|2H+1

2λ(2H+1)
M(2H + 1, 2H + 2,λ|t2− t1|).

(A.3)
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Appendix B. MSD and TAMSD of the non-stationary fractional Ornstein–Uhlenbeck
process

After arriving at the covariance function for the non-stationary solution (28) the MSD of the fractional
Ornstein–Uhlenbeck processes is deduced from

〈Ω2
Δ(t)〉 = Cov (x(t +Δ), x(t +Δ)) + Cov (x(t), x(t)) − 2Cov(x(t +Δ), x(t)),

such that

〈Ω2(t)〉 = Var(x0)
(

1 − e−λΔ
)2

e−2λt + σ2(t +Δ)2He−λ(t+Δ)

[
1 +

λ(t +Δ)eλ(t+Δ)

2(2H + 1)
M (2H + 1, 2H + 2,−λ(t +Δ)

−λ(t +Δ)e−λ(t+Δ)

2(2H + 1)
M (2H + 1, 2H + 2,λ(t +Δ)

] (
1 − eλΔ

)

+ σ2t2H e−λt

[
1 +

λteλt

2(2H + 1)
M(2H + 1, 2H + 2,−λt) − λte−λt

2(2H + 1)
M(2H + 1, 2H + 2,λt)

] (
1 − e−λΔ

)

+ σ2Δ2H

[
1 − λΔe−λΔ

2(2H + 1)
M(2H + 1, 2H + 2,λΔ) +

λΔeλΔ

2(2H + 1)
M(2H + 1, 2H + 2,−λΔ)

]
. (B.1)

Before calculating the TAMSD it is worthwhile checking that in the long time limit the expression above
coincides with the earlier equation (36). In the limit t →∞ the expression in the last square brackets
remains unchanged while for the first and second square brackets it is only the second term which
contributes to a non-zero value, namely, (t +Δ)2H+1M(2H + 1, 2H + 2,−λ(t +Δ)) and
t2H+1M(2H + 1, 2H + 2,−λt). Considering the latter in the aforementioned long-time limit,

lim
t→∞

t2H+1M(2H + 1, 2H + 2,−λt) = lim
t→∞

(2H + 1)

∫ 1

0
t2H+1e−λtzz2H dz

= lim
t→∞

(2H + 1)

∫ 1

0
e−λtz(tz)2Hd(tz) = lim

t→∞

2H + 1

λ2H+1

∫ λt

0
e−qq2H dq

= lim
t→∞

2H + 1

λ2H+1
γ(2H + 1,λt) =

2H + 1

λ2H+1
Γ(2H + 1),

where γ(s, x) is the lower incomplete Gamma function. Therefore, in the limit t →∞ one indeed
consistently recovers the expression of the generalised MSD for the stationary solution of the fractional
Ornstein–Uhlenbeck process, equation (36).

The complexity in the integration of the generalised MSD for the TAMSD is due to terms of the kind
t2H+1M(2H + 1, 2H + 2,−λt) and t2H+1e−2λtM(2H + 1, 2H + 2,λt). The integration of such terms can
be achieved as follows,∫ T−Δ

0
t2H+1M(2H + 1, 2H + 2,−λt)dt = (2H + 1)

∫ T−Δ

0
t2H+1

(∫ 1

0
e−λtqq2Hdq

)
dt

= (2H + 1)

∫ T−Δ

0
t2H+1

(∫ λt

0
e−z

( z

λt

)2H dz

λt

)
dt

=
2H + 1

λ2H+1

∫ T−Δ

0

(∫ λt

0
e−zz2Hdz

)
dt·

After changing the order of the integration,

2H + 1

λ2H+1

∫ T−Δ

0

(∫ λt

0
e−zz2Hdz

)
dt =

2H + 1

λ2H+1

∫ λ(T−Δ)

0
e−zz2Hdz

∫ T−Δ

z/λ
dt

=
2H + 1

λ2H+1

∫ λ(T−Δ)

0
e−zz2H

(
T −Δ− z

λ

)
dz

= (2H + 1)(T −Δ)2H+2

∫ 1

0
e−λ(T−Δ)qq2H (1 − q)dq

=
(T −Δ)2H+2

2H + 2
M(2H + 1, 2H + 3,−λ(T −Δ)).

11
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Similarly, the second type of integration can be performed along the following steps,

∫ T−Δ

0
e−2λt t2H+1M(2H + 1, 2H + 2,λt)dt = (2H + 1)

∫ T−Δ

0
e−2λt t2H+1

(∫ 1

0
eλtqq2Hdq

)
dt

= (2H + 1)

∫ T−Δ

0
e−2λt t2H+1

(∫ λt

0
ez
( z

λt

)2H dz

λt

)
dt

=
2H + 1

λ2H+1

∫ T−Δ

0
e−2λt

(∫ λt

0
ezz2Hdz

)
dt

=
2H + 1

λ2H+1

∫ T−Δ

z/λ
e−2λt

(∫ λ(T−Δ)

0
ezz2Hdz

)
dt

= −2H + 1

2λ2H+2

∫ λ(T−Δ)

0
ezz2H

(
e−2λ(T−Δ) − e−2z

)
dz

=
(T −Δ)2H+1

2λ
[M(2H + 1, 2H + 2,−λ(T −Δ))

− e−2λ(T−Δ)M(2H + 1, 2H + 2,λ(T −Δ))
]
.

Analogously,

∫ T−Δ

0
(t +Δ)2H+1M(2H + 1, 2H + 2,−λ(t +Δ))dt

= (2H + 1)

∫ T−Δ

0
(t +Δ)2H+1

(∫ 1

0
e−λ(t+Δ)x2Hdx

)
dt

= (2H + 1)

∫ T

Δ

y2H+1

(∫ 1

0
e−λyxx2H dx

)
dy

=
2H + 1

λ2H+1

∫ T

Δ

(∫ λy

0
e−zz2Hdz

)
dy

=
2H + 1

λ2H+1

(∫ T

z/λ

(∫ λT

0
e−zz2Hdz

)
dy −

∫ Δ

z/λ

(∫ λΔ

0
e−zz2H dz

)
dy

)

=
2H + 1

λ2H+1

(∫ λT

0
e−zz2H

(
T − z

λ

)
dz −

∫ λΔ

0
e−zz2H

(
Δ− z

λ

)
dz

)
= (2H + 1)T2H+2

(∫ 1

0
e−λTqq2H(1 − q)dq

)
− (2H + 1)Δ2H+2

(∫ 1

0
e−λΔqq2H (1 − q)dq

)
=

T2H+2

2H + 2
(2H + 1, 2H + 3,−λT) − Δ2H+2

2H + 2
(2H + 1, 2H + 3,−λΔ).

And lastly,

∫ T−Δ

0
e−2λ(t+Δ)(t +Δ)2H+1M(2H + 1, 2H + 2,λ(t +Δ))dt

= (2H + 1)

∫ T−Δ

0
e−2λ(t+Δ)(t +Δ)2H+1

(∫ 1

0
eλ(t+Δ)xx2Hdx

)
dt

=
2H + 1

λ2H+1

∫ T−Δ

0
e−2λ(t+Δ)

(∫ λ(t+Δ)

0
ezz2H dz

)
dt

=
2H + 1

λ2H+1

∫ T

Δ

e−2λy

(∫ λy

0
ezz2Hdz

)
dy

=
2H + 1

λ2H+1

(∫ T

z/λ
e−2λy

(∫ λT

0
ezz2Hdz

)
dy −

∫ Δ

z/λ
e−2λy

(∫ λΔ

0
ezz2Hdz

)
dy

)

= −2H + 1

2λ2H+2

(∫ λT

0
ezz2H

(
e−2λT − e−2z

)
dz −

∫ λΔ

0
ezz2H

(
e−2λΔ − e−2z

)
dz

)
12
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= −2H + 1

2λ2H+2

(∫ 1

0
(λT)2H+1eλTqq2H

(
e−2λT − e−2λTq

)
dq

−
∫ 1

0
(λΔ)2H+1eλΔqq2H

(
e−2λΔ − e−2λΔq

)
dq

)
= −T2H+1

2λ

(
e−2λTM(2H + 1, 2H + 2,λT) −M(2H + 1, 2H + 2,−λT)

)
+

Δ2H+1

2λ

(
e−2λΔM(2H + 1, 2H + 2,λΔ) −M(2H + 1, 2H + 2,−λΔ)

)
.

The final result for the TAMSD is then given by

〈
δ2(T,Δ)

〉
=

∫ T−Δ

0
〈Ω2(t)〉dt = Var(x0)

(
1 − e−λΔ

)2 1 − e−2λ(T−Δ)

2λ(T −Δ)

+
σ2(1 − eλΔ)

T −Δ

[
T2H+1

2H + 1
M(2H + 1, 2H + 2,−λT) − Δ2H+1

2H + 1
M(2H + 1, 2H + 2,−λΔ)

+
λΓ(2H + 1)

2Γ(2H + 3)

(
T2H+2M(2H + 1, 2H + 3,−λT) −Δ2H+2M(2H + 1, 2H + 3,−λΔ)

)

− 1

4(2H + 1)

(
e−2λΔΔ2H+1M(2H + 1, 2H + 2,λΔ) −Δ2H+1M(2H + 1, 2H + 2,−λΔ)

− e−2λTT2H+1M(2H + 1, 2H + 2,λT) + T2H+1M(2H + 1, 2H + 2,−λT)
)]

+
σ2(1 − e−λΔ)

T −Δ

[
(T −Δ)2H+1

2H + 1
M(2H + 1, 2H + 2,−λ(T −Δ))

+
λΓ(2H + 1)

2Γ(2H + 3)
(T −Δ)2H+2M(2H + 1, 2H + 3,−λ(T −Δ))

− (T −Δ)2H+1

4(2H + 1)

(
M(2H + 1, 2H + 2,−λ(T −Δ)) − e−2λ(T−Δ)M(2H + 1, 2H + 2,λ(T −Δ))

)]

+ σ2Δ2H

(
1 − λΔe−λΔ

2(2H + 1)
M(2H + 1, 2H + 2,λΔ) +

λΔeλΔ

2(2H + 1)
M(2H + 1, 2H + 2,−λΔ)

)
. (B.2)

While the expressions for the TAMSD and the generalised MSD differ, both share the same asymptote in the
long-time limit t, T →∞. Moreover, the disparity between both is expected when the system has not yet
reached the stationarity.

Appendix C. Covariance of the stationary fractional Ornstein–Uhlenbeck process

For the derivation of the covariance (35) we calculate the following integrals∫ t2

−∞
eλt′2

(
|t1|2H + |t′2|2H − |t1 − t′2|2H

)
dt′2

=
eλt2 |t1|2H

λ
+

∫ 0

−∞
eλt′2 |t′2|2Hdt′2 +

∫ t2

0
eλt′2 |t′2|2H dt′2 −

∫ t1

−∞
eλt′2 (t1 − t′2)2Hdt′2 −

∫ t2

t1

eλt′2 (t′2 − t1)2Hdt′2

=
eλt2 |t1|2H

λ
+

∫ ∞

0
e−λt′2 |t′2|2Hdt′2 + t2H+1

2

∫ 1

0
eλt2qq2Hdq −

∫ ∞

0
eλ(t1−q)q2Hdq −

∫ t2−t1

0
eλ(t1+q)q2H dq

=
eλt2 |t1|2H

λ
+

Γ(2H + 1)

λ2H+1
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2,λt2) − eλt1Γ(2H + 1)

λ2H+1

− eλt1 (t2 − t1)2H+1

∫ 1

0
e(t2−t1)xx2Hdx

=
eλt2 |t1|2H

λ
+

Γ(2H + 1)

λ2H+1
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2,λt2) − eλt1Γ(2H + 1)

λ2H+1

− eλt1 |t2 − t1|2H+1

2H + 1
M(2H + 1, 2H + 2,λ|t2 − t1|).
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Subsequently, one arrives at the following expression∫ t2

−∞
eλt′2

(
|t1|2H + |t′2|2H − |t1 − t′2|2H

)
dt′2 =

eλt2 |t1|2H

λ
+

Γ(2H + 1)

λ2H+1

(
1 − eλt1

)
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2,λt2)

− eλt1 |t2 − t1|2H+1

2H + 1
M

(
2H + 1, 2H + 2,λ|t2 − t1|

)
. (C.1)

Following the same procedure one obtains the expression below for the integral with the differential dt ′1,∫ t1

−∞
eλt′1

(
|t′1|2H + |t2|2H − |t′1 − t2|2H

)
dt′1 =

eλt1 |t2|2H

λ
+

Γ(2H + 1)

λ2H+1

(
1 − eλt2

)
+

|t1|2H+1

2H + 1
M(2H + 1, 2H + 2,λt1)

+
eλt2 |t2 − t1|2H+1

2H + 1
M

(
2H + 1, 2H + 2,−λ|t2 − t1|

)
.

The second type of integrals appearing in the covariance function is given by∫ t1

−∞

∫ t2

−∞
eλ(t′1+t′2)

(
|t′1|2H + |t′2|2H − |t′1 − t′2|2H

)
dt′1dt′2

=

∫ t1

−∞
eλt′1 |t′1|2H dt′1

∫ t2

−∞
eλt′2 dt′2 +

∫ t1

−∞
eλt′1 dt′1

∫ t2

−∞
eλt′2 |t′2|2H dt′2 −

∫ t1

−∞

∫ t2

−∞
eλ(t′1+t′2)|t′1 − t′2|2Hdt′1dt′2

=
eλt2

λ

(∫ 0

−∞
(−t′1)2H eλt′1 dt′1 +

∫ t1

0
t′2H
1 eλt′1 dt′1

)
+

eλt1

λ

(∫ 0

−∞
(−t′2)2Heλt′2 dt′2 +

∫ t2

0
t′2H
2 eλt′2 dt′2

)

−
∫ t1

−∞

∫ t′1

−∞
eλ(t′1+t′2)(t′1 − t′2)2Hdt′1dt′2 −

∫ t1

−∞

∫ t2

t′1

eλ(t′1+t′2)(t′2 − t′1)2Hdt′1dt′2·

The first two integrals are easily evaluated. In the last two integrals, by changing of variable t ′1 − t ′2 = q one
arrives at

=
eλt2

λ

(
Γ(2H + 1)

λ2H+1
+

|t1|2H+1

2H + 1
M(2H + 1, 2H + 2,λt1)

)
+

eλt1

λ

(
Γ(2H + 1)

λ2H+1
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2,λt2)

)

−
∫ t1

−∞
eλt′1 dt′1

∫ ∞

0
eλ(t′1−q)q2Hdq −

∫ t1

−∞
eλt′1 dt′1

∫ t2−t′1

0
eλ(t′1+q)q2Hdq·

The evaluation of the first double integral is straightforward and it yields e2λt1

2λ2H+2 Γ(2H + 1). Evaluating the
second double-integral requires changing the order of integration. For the last integral one arrives at the
following,

−
∫ t1

−∞
eλt′1 dt′1

∫ t2−t′1

0
eλ(t′1+q)q2Hdq = −

∫ ∞

0
eλqq2H dq

∫ t2−q

−∞
e2λt′1 dt′1 +

∫ t2−t1

0
eλqq2Hdq

∫ t2−q

t1

e2λt′1 dt′1

− e2λt2

2λ

∫ ∞

0
e−λqq2H dq +

e2λt2

2λ

∫ t2−t1

0
e−λqq2Hdq

− e2λt1

2λ

∫ t2−t1

0
eλqq2H dq·

Subsequently,

− e2λt2

2λ2H+2
Γ(2H + 1)

− e2λt2

2λ(2H + 1)
(t2 − t1)2H+1M(2H + 1, 2H + 2,λ(t1 − t2))

+
e2λt1

2λ(2H + 1)
(t2 − t1)2H+1M(2H + 1, 2H + 2,λ(t2 − t1)).
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Summing up all the calculations, we obtain∫ t1

−∞

∫ t2

−∞
eλ(t′1+t′2)

(
|t′1|2H + |t′2|2H − |t′1 − t′2|2H

)
dt′1dt′2

=
eλt2

λ

(
Γ(2H + 1)

λ2H+1
+

|t1|2H+1

2H + 1
M(2H + 1, 2H + 2,λt1)

)
+

eλt1

λ

(
Γ(2H + 1)

λ2H+1
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2,λt2)

)
− e2λt1

2λ2H+2
Γ(2H + 1) − e2λt2

2λ2H+2
Γ(2H + 1)

− e2λt2

2λ(2H + 1)
|t2 − t1|2H+1M(2H + 1, 2H + 2,−λ|t2 − t1|)

+
e2λt1

2λ(2H + 1)
|t2 − t1|2H+1M(2H + 1, 2H + 2,λ|t2 − t1|). (C.2)

Appendix D. Variance of the normally distributed initial condition

We now perform the integration for the variance of the initial condition for the fractional
Ornstein–Uhlenbeck processes. The integral given by (30) reads

ξ2 =
σ2Γ(2H + 1) sin(πH)

πλ2H

∫ ∞

0

|x|1−2H

1 + x2
dx·

The integral can be calculated by the means of the theorem of residues. We substitute x by et and arrive at∫ ∞

0

|x|1−2H

1 + x2
dx =

1

2

∫ ∞

−∞

|x|1−2H

1 + x2
dx =

1

2

∫ ∞

−∞

e(2−2H)t

1 + e2t
dx·

Now consider the complex function f(z) = exp([2 − 2H]z)/(1 + exp(2z)) and the contour C ∪ C′ ∪ γ ∪ γ′

depicted in following figure D1.
The complex function f(z) has a simple pole at z = iπ/2 within the contour depicted in the figure. As

the theorem of residues indicates, the evaluation of the integral in equation (30) is then∮
e(2−2H)z

1 + e2z
dz =

∫
C

f (z)dz +

∫
γ

f (z)dz +

∫
C′

f (z)dz +

∫
γ′

f (z)dz

= Res

(
f (z),

πi

2

)
,

which is equivalent to the evaluation of the following integrals according to the geometry of the contour in
figure D1,

lim
R→∞

(∫ R

−R

e(2−2H)x

1 + e2x
dx +

∫ π

0

e(2−2H)(R+iy)

1 + e2(R+iy)
idy +

∫ −R

R

e(2−2H)(x+iπ)

1 + e2(x+iπ)
+

∫ 0

π

e(2−2H)(−R+iy)

1 + e2(−R+iy)
idy

)
= 2πi lim

z→πi/2

(
z − πi

2

)
e(2−2H)z

1 + e2z
.

The second and fourth integrals are identically zero when R →∞ (note that H ∈ (0, 1)). Hence, the
equation above is simplified to

lim
R→∞

((
1 − e−2πiH

) ∫ R

−R

e(2−2H)x

1 + e2x
dx

)
= 2πie−πiH ,

and consequently, ∫ ∞

−∞

e(2−2H)x

1 + e2x
dx =

2πie−πiH

1 − e−2πiH
=

π

sin(πH)
.

Readily, by substituting the result above into equation (30) we deduce that

ξ2 =
σ2

2λ2H
Γ(2H + 1).

See (figure D1) for details.
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Figure D1. Contour of integration in equation (30).

ORCID iDs

Ralf Metzler https://orcid.org/0000-0002-6013-7020

References

[1] Uhlenbeck G E and Ornstein L S 1930 On the theory of the Brownian motion Phys. Rev. 36 823
[2] Gardiner C W 2004 Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Berlin: Springer)
[3] van Kampen N G 1992 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland)
[4] Vasicek O 1977 An equilibrium characterization of the term structure J. Financ. Econ. 5 177
[5] Doob J L 1942 The Brownian movement and stochastic equations Ann. Math. 43 351
[6] Nørregaard K, Metzler R, Ritter C M, Berg-Sørensen K and Oddershede L B 2017 Manipulation and motion of organelles and

single molecules in living cells Chem. Rev. 117 4342
[7] Tolíc-Nørrelykke S F, Rasmussen M B, Pavone F S, Berg-Sørensen K and Oddershede L B 2006 Stepwise bending of DNA by a

single TATA-box binding protein Biophys. J. 90 3694
[8] Mardoukhi Y, Jeon J H, Chechkin A V and Metzler R 2018 Fluctuations of random walks in critical random environments Phys.

Chem. Chem. Phys. 20 20427
[9] Hull J and White A 1990 Pricing interest-rate-derivative securities Rev. Financ. Stud. 3 573

[10] Beliaeva A N, Nawalkha S K and Soto G M 2008 Pricing American interest rate options under the jump-extended Vasicek model J.
Deriv. 16 29

[11] Barndorff-Nielsen O E and Shephard N 2001 Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in
financial economics J. Roy. Stat. Soc. B 63 167

[12] Nicolato E and Venardos E 2003 Option pricing in stochastic volatility models of the Ornstein–Uhlenbeck type Math. Financ. 13
445.

[13] Li L and Linetsky V 2014 Time-changed Ornstein–Uhlenbeck processes and their applications in commodity derivative models
Math. Financ. 24 289

[14] Benth F E, Kallsen J and Meyer-Brandis T 2007 A non-Gaussian Ornstein–Uhlenbeck process for electricity spot price modelling
and derivatives pricing Appl. Math. Financ. 14 153

[15] Ricciardi L M and Sacerdote L 1979 The Ornstein–Uhlenbeck process as a model for neuronal activity Biol. Cybern. 35 1
[16] Shinomoto S, Sakai Y and Funahashi S 1999 The Ornstein–Uhlenbeck process does not reproduce spiking statistics of neurons in

prefrontal cortex Neural Comput. 11 935
[17] Mills T C 1990 Time Series Techniques for Economists (Cambridge: Cambridge University Press)
[18] Tsay R S 2000 Time series and forecasting: brief history and future research J. Am. Stat. Assoc. 95 638
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