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Geometry controlled anomalous diffusion in
random fractal geometries: looking beyond the
infinite cluster

Yousof Mardoukhi,†ab Jae-Hyung Jeon†bc and Ralf Metzler*ab

We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a

random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an

ensemble of realisations of percolation clusters are performed for a wide range of percolation densities.

Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared

displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other

complementary physical observables associated with ergodicity are studied, as well. It turns out that

the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit

of very long observation times as the percolation density approaches the critical value. This apparent

non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We

demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed

in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of

purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is

known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a

power-law BT�h with h o 1 due to the fractal structure of the accessible space. These results provide

useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related

process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle

tracking experiments are provided.

1 Introduction

Roughly a century after Jean Perrin’s groundbreaking experiments
on Brownian motion using an elaborate single particle tracking
method in 1908,1 nowadays sophisticated single particle tracking of
submicron tracer particles and even single molecules have become
a routine tool in the study of passive and active transport dynamics
in living biological cells as well as in various crowded fluids
in vitro.2 Distinguished from traditional ensemble averaging
experiments single particle tracking enables one to directly
access the diffusive properties of the tracer particles without
any loss of information due to ensemble averaging. Based on the
single particle tracking technique it was revealed that the tracer
motion in ‘superdense’3 biological or complex environments
often exhibits anomalous diffusion such that its ensemble averaged

mean squared displacement (MSD) grows non-linearly with
time in the form

hr2(t)i C ta (1)

with the anomalous diffusion exponent a. We distinguish
subdiffusion for 0 o a o 1 and superdiffusion with a 4 1.
Examples for subdiffusion include the diffusion of messenger
RNA molecules3 and lipid granules in living cells,4–7 and the
motion of phospholipid molecules and proteins in the membranes
of living cells or in silico membranes.8–12 As examples from in vitro
systems we mention the anomalous diffusion of microbeads in
polymer networks or gels13–16 and in artificially crowded media17,18

as well as colloidal suspensions.19,20 Examples for superdiffusion
due to active motion in living cells were provided in ref. 21–25.
Effective superdiffusion on surfaces is also observed due to bulk
mediation effects.26,27

Theoretically an anomalous diffusion process characterised
by the law (1) may be governed by different stochastic models,
each of them underlying a unique physical process.28–30 Despite
the common scaling (1) of the ensemble averaged MSD some of
these processes are ergodic in the Boltzmann–Khinchin sense
that the long time average of physical observables such as the
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MSD converges to the corresponding ensemble average while in
other, weakly non-ergodic processes both kinds of averages
remain disparate.28–32 One process, that was identified as
stochastic mechanism behind the motion of tracers in living
biological cells and structured environments is the continuous
time random walk.33 Continuous time random walks give rise to
weakly non-ergodic subdiffusion due to multiple binding or caging
events characterised by a long-tailed distribution of waiting times
between successive motion events which features a diverging
mean waiting time.28,29,31 Fractional Brownian motion and the
associated fractional Langevin equation describe Gaussian pro-
cesses in which the power-law correlated displacements give rise
to anomalous diffusion.34–40 Such self-affine Gaussian processes
have a fractal path and are ergodic, and they were shown to occur
in viscoelastic environments.40,41 Another popular ergodic model,
which in many ways appears similar to fractional Brownian
motion, are random walks on fractal structures.28–30,42,43 Fractals
with their scale-free geometry were popularised by Mandelbrot
in the 1980’s to more closely resemble natural objects such as
mountains or coastlines than do classical geometrical bodies.44

De Gennes coined the concept of ant in the labyrinth:45 random
fractals such as the statistically self-similar continuum or
discrete percolation models effect the subdiffusion of a random
walker due to the existence of bottlenecks and cul-de-sacs on all
scales.42,43,46–49 Among a variety of applications, this model was
used to describe the obstructed diffusion in highly crowded
random environments, for instance, the cytoplasm of cells, cell
nuclei, and biological membranes.15,50–55 Recently models of mixed
origins of anomalous diffusion processes were also suggested.29

Following the advances in single particle tracking techniques
it has become possible to garner sufficient evidence to diagnose
the statistical characteristics of a stochastic process on the single
trajectory level. To identify a specific anomalous diffusion process
behind observed data allows one to learn more about the
physical nature of the system and predict secondary quantities
such as the first passage behaviour responsible for (bio)chemical
reactions.29,31,56–59 Weakly non-ergodic processes in Bouchaud’s
sense exhibit the above-mentioned disparity between the ensemble
averaged MSD (1) and the time averaged MSD defined below, even
in the limit of long measurement times. Moreover, these processes
exhibit ageing, the dependence of observables on the time span
between initiation of the process and start of the measurement,
and the amplitude of individual time averages fluctuates
significantly. This behaviour is shared by continuous time
random walks31,60–64 and its variants65–67 as well as heterogeneous
diffusion processes with space dependent diffusivity.68–70 In con-
trast, stochastic motion driven by power-law correlated Gaussian
noise and the random motion on fractals are the key ergodic
anomalous diffusion processes.29,71 Another class of weakly non-
ergodic processes corresponds to scaled Brownian motion with a
power-law time dependent noise strength.72–75 It is known that the
discrimination between them based on data analysis is challen-
ging, as both models share the same asymptotic scaling behaviour
of the velocity autocorrelation functions.76 Theoretical tests differ-
entiating the two were recently proposed on the ground that the
fractal dimension—or the number of visited sites—is smaller than

the dimensionality of the embedding Euclidean space—or the
total number of sites in space.56,77 We here explore in more detail
the exact ergodic properties of de Gennes’ random ant-in-the-
labyrinth motion. Specifically, we analyse the single particle diffu-
sion on two-dimensional percolation clusters at varying densities.
Special emphasis is put on the ergodic properties of the motion
revealed by the time averaged MSD. Remarkably, our simulations
reveal that the fluctuations in the time averaged MSD have a
unique statistical feature of geometrical origin which is signifi-
cantly different from that of fractional Brownian motion.

This paper is organised as follows. In Section 2 we gather the
information on the simulation procedure, the definitions of the
averaging procedures used in our analysis, and the well known
diffusion dynamics on percolation clusters in the framework of
ensemble averages. In Section 3 we present our simulation
results on the single trajectory level including the time averaged
MSD, the amplitude scatter distribution of the time averaged
MSD, and the ergodicity breaking parameter. In particular,
we analyse the rôle of clusters other than the infinite cluster.
In Section 4 we discuss our results and conclude.

2 Methods
2.1 Simulation scheme

Our study is based on a two-dimensional square lattice with periodic
boundary conditions, as commonly used in other studies.50,77,78

On this underlying structure we generate our random percolation
environments. The system size varies depending on the load of
the simulations. For instance, to simulate individual trajectories
for analysis in terms of the time averaged MSD a lattice of 4096 �
4096 is considered whereas in more computationally expensive
simulations such as labelling clusters with different sizes, the
lattice size is set to 1024 � 1024. Each site is either filled with
probability p or vacant with probability 1 � p. Here we follow
the convention that p refers to the obstacle density in space.50

Percolation theory states that as the percolation density p
approaches the critical value pc from above—that is for decreasing
obstacle size—separated finite clusters merge and the correla-
tion length �x of clusters diverges as �xB |p� pc|

�n with n = 5/36.48

At the percolation threshold pc and for lower obstacle densities
p o pc there exists an infinite cluster of empty sites spanning
the entire volume.42,48 The probability that a given site belongs
to the infinite cluster at criticality scales as PNB ( p� pc)

b where
b = 43/18.42,48 Concurrently as p - pc the crossover length rc

from anomalous to normal diffusion used below diverges as
rc B | p � pc|�n+b/2. Thus at p = pc anomalous diffusion of the
form (1) prevails at all times.42,48,50 Simultaneously the percolation
geometry forms scale-free fractal objects over all length scales
larger than the lattice constant.42,48,50,79 ‡ For obstacle percola-
tion considered here the critical percolation threshold is pc =
0.407256.48 § This critical case is depicted in Fig. 1.

‡ Note that for finite sized fractals with lower and upper bound the power-law
behaviour levels off at both ends in sigmoidal fashion.80

§ Often one considers the percolation of accessible sites, in that case the
percolation threshold is 1 � pc E 0.59.
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In our simulations, after a random geometry with label z of
given density p is generated a tracer particle starts to diffuse at its
centre if it is vacant. Otherwise a randomly chosen vacant site close
to the centre is chosen. In our Monte Carlo simulation, at every unit
time step dt = 1 the tracer particle jumps to the nearest vacant
site with probability 1/4 on our two-dimensional lattice. Uniform
random numbers were generated by the ranðÞ function taken
from Numerical Recipes.81 On an isolated unit cluster no move is
allowed and the random walker becomes completely localised. In
the limit of p - 0 the diffusivity of the tracer particle is that of a

free two-dimensional lattice, K ¼ a2

4dt
where a is the lattice con-

stant. Our typical simulation time was 106 time steps, unless
indicated otherwise. For the evaluation of physical observables Nz

random percolation geometries were generated at a given percola-
tion density p, and N tracer trajectories for each percolation
geometry were recorded. For the efficiency of the simulation study,
the number Nz was varied from 50 to 10 000 and N from 3 to 1000
depending on the observables. In each case sufficiently large
samples were chosen to ensure a proper statistical convergence.
Information on Nz and N used in the evaluation of each observable
are provided in the text and in the figure captions.

2.2 Ensemble averaged mean square displacement

Let us first address the potential ambiguity in defining ensemble
averages in percolation systems.42 For a given fractal geometry z
the MSD of an ensemble of particles starting at the origin at time
t = 0 is given by

rðtÞ2
� �

z¼
1

N

XN
i

riðtÞ2 (2)

where we choose the coordinate systems such that ri(0) = 0. The
MSD hr(t)2iz will in general assume different values for different
realisations z.¶ To avoid the dependence on the specific realisation,
an additional (disorder) average of the form

gr2ðtÞh i ¼ 1

Nz

XNz

z

rðtÞ2
D E

z
; (3)

is defined, where Nz counts the different realisation z over which
the average is taken. In what follows we refer to this quantity as the
ensemble averaged MSD. We note that we did not average over
initial positions for a given realisation z, however, we expect this
averaging to be equivalent to the disorder averaging over different
z. We also note that similar questions on the averaging arise in the
analysis of diffusion in quenched energy landscapes.82

Prior to our study of single trajectories below we here briefly
summarise the ensemble averaged MSD for particles diffusing
in percolation geometries, and we compare these results with
our current Monte Carlo simulation. The ensemble averaged
MSD has two distinct scaling regimes over time for percolation
densities below the percolation threshold pc, namely42,43,47,48,50

gr2ðtÞh i ’
t2=dw ; jrjo rc

t; jrj4 rc

(
: (4)

Thus, the diffusion is transiently anomalous below the cross-
over length rc( p), corresponding to times shorter than the

crossover time tc ’ rdwc . Here the classical notation involves
the walk dimension dw of the diffusing particle. Generally
dw 4 2 implying subdiffusion with 0 o a = 2/dw o 1. In the
simplest case when we have no obstacles ( p = 0) all sites are
accessible to the random walker and we have normal diffusion
at all times. In this case the crossover length rc vanishes. This
case is shown in Fig. 2(a). At finite percolation densities below
the percolation threshold, 0 o p o pc, the crossover length
roughly corresponds to the average cluster size of locally fractal
structures: local bottlenecks and cul-de-sacs generate anomalous
diffusion, which eventually crosses over to normal diffusion
when the typical distance travelled by the random walker exceeds
rc. This case is shown in Fig. 2(b). We note that compared to the
obstacle-free case p = 0, the effective diffusion coefficient in the
case 0 o p o pc has a reduced value. At the percolation
threshold p = pc E 0.407256 the percolation geometry is fractal
on all available scales, and the crossover length rc diverges.
Concurrently, the anomalous diffusion regime ranges over all
time scales.8 For the square lattice the anomalous diffusion
exponent is 2/dw E 0.7,50 which is again confirmed by our
simulations, see Fig. 2. Indeed, Fig. 2(c) documents the anomalous
diffusion at criticality. Anomalous diffusion in effectively two
dimensional geometries was indeed verified by NMR measurements

Fig. 1 Sample realisation of a random percolation geometry at the percolation
threshold p = pc on a square lattice of size 1024 � 1024. The copper coloured
structure representing the vacant sites of an infinite cluster accessible to the
random walker constitutes a statistically scale-free, fractal object.

¶ Only for random walker exclusively seeded on the infinite cluster, that is, for
obstacle percolation densities p r pc, the MSD hr(t)2iz for different realisations z
of the geometry will converge to approximately the same value.
8 More accurately, anomalous diffusion is observed when the random walker
samples distances above several lattice constants a and will be eventually
terminated in our periodic boundary conditions when the percolation structure
is fully sampled.
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in computer generated percolation clusters milled into stacked
plastic sheets.83,84 Above the percolation threshold the diffusion
is more and more reduced. In particular, only finite, disjunct
clusters remain such that the MSD eventually saturates to a
plateau, see Fig. 2(d).

3 Probing the ergodic behaviour of
diffusion on percolation geometries
3.1 Time averaged mean squared displacement

To explore the ergodic properties of the diffusion process on
percolation clusters in addition to the ensemble averaged MSD
we now consider the time averaged MSD defined in terms of the
moving average

d2ðDÞ ¼ 1

T � D

ðT�D
0

½rðtþ DÞ � rðtÞ�2dt (5)

of a single trajectory r(t).28,29,31 Here D is the lag time corresponding
to the width of the window slid along the time series, and T is the
total observation (measurement) time. The time averaged MSD (5)
provides information on the diffusive properties of a single particle
and is routinely applied to evaluate experimental single particle
tracking data. Typically diffusive processes, that are ergodic in the
Boltzmann–Khinchin sense, have the property that for sufficiently
long observation times T (formally, T - N), the time and
ensemble averaged MSDs converge to each other,

lim
T!1

d2ðDÞ ¼ r2ðDÞ
� �

: (6)

In agreement with previous numerical studies,77 our simulations
indeed demonstrate that this ergodicity relation is satisfied for our
random walker on the percolation geometry for any percolation
density if we average the time averaged MSD over both N individual
simulated trajectories (index i) and over an ensemble of Nz

percolation geometries z,

g
d2ðDÞ
D E

¼ 1

N �Nz

X
i;z

di;z2ðDÞ: (7)

As seen in Fig. 2, this mean time averaged MSD—represented by
the yellow solid line—coincides with the ensemble averaged MSD
(black circles) for all cases. The equivalence between the two
quantities for Nz = 50 is not significantly improved when the
sample size is increased tenfold to Nz = 500 (not shown).

However, the equality between the ensemble averaged MSD
(7) and individual long time averaged MSDs is not always
fulfilled. To demonstrate this fact we show in Fig. 3 individual

time averaged MSD traces d2ðDÞ along with the ensemble

average
g
d2ðDÞ
D E

(black solid line) from Fig. 2. As long as p o

pc the individual d2ðDÞ follow nicely the mean
g
d2ðDÞ
D E

except

for long lag times D E T when the statistic for the time
averaging becomes insufficient (Fig. 3(a) and (b)). In this case
the cluster turns from a fully accessible two-dimensional lattice
at p = 0 to a geometry with growing but localised clusters of
obstacles at 0 o p o pc. The connectivity remains high such
that, independent of the initial position, eventually the random
walker explores the entire structure, apart from inaccessible
areas of sufficiently small measure. Right at the percolation
threshold p = pc shown in Fig. 3(c) we already observe signifi-

cant deviations from the mean
g
d2ðDÞ
D E

: a smaller number of

Fig. 2 Ensemble averaged MSD gr2ðtÞh i (black circles) and mean time

averaged MSD
g
d2ðDÞ
D E

(yellow solid line) for four different percolation

densities: (a) p = 0, (b) p o pc, (c) p E pc, and (d) p 4 pc. In each panel the

inset depicts gr2ðtÞh i
.
t versus t on a double logarithmic scale, the slope is

a � 1. Note the terminal Brownian scaling for p o pc with a reduced
diffusivity for the finite percolation density (b). The numbers of the random
geometries and trajectories used for the plot are Nz = 50 and N = 1000.

Fig. 3 Individual time averaged MSD curves d2ðDÞ and their mean
g
d2ðDÞ
D E

(thick black curve, as already shown in Fig. 2). In each panel the variation of
the individual time averaged MSD curves represents 10 different trajectories
on each of the overall 50 different simulated percolation geometries.
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traces d2ðDÞ show confinement leading d2ðDÞ to enter a plateau

much earlier than the crossover time of
g
d2ðDÞ
D E

. This is due to

the fact that at criticality, when the percolation geometry is
fractal, the size of the accessible regions is scale-free and finite
accessible clusters of all sizes are created in addition to the
incipient infinite cluster. When seeded on such a finite cluster
the time averaged MSD of the emanating trajectory will show
a plateau depending on the very size of the visited cluster. We
thus encounter a non-ergodic scenario in which the irreproducibility
of trajectories stems from the quenched geometry. This non-ergodic
behaviour is strengthened above the percolation threshold, p 4 pc,

as shown in Fig. 3(d). Individual traces d2ðDÞ exhibit a pronounced

scatter around the average
g
d2ðDÞ
D E

. In the sense of Bouchaud’s

definition32 the fact that once seeded on a specific cluster the
random walker cannot pass to an unconnected cluster is referred
to as strong ergodicity breaking. It denotes the case when the
phase space of a system consists of disjoint subvolumes and
access to each subvolume is determined by the initial position of
the particle. It is intrinsic for the percolation system in that it is
reproducible when simulations are performed with the same
number of runs for given trajectory length T. Moreover, a typical
scatter of amplitudes of the plateaus always occurs at any
trajectory length T. It is in fact noteworthy that albeit these
features of individual tracer motion the ensemble average
remains ergodic within the error of our simulations.

Subdiffusive continuous time random walks31,60,65,67,85,86

show ageing in the sense that the particle encounters longer
and longer waiting times on its motion due to the scale free
nature of the distribution of waiting times. The amplitude of
the time averaged MSD given by the effective diffusivity there-
fore becomes a decaying function of the observation time T.
Analogous ageing effects occur for scaled Brownian motion,87

heterogeneous diffusion processes,68 and their combination.
Apart from transient ageing88 the Gaussian processes with
correlated increments of the fractional Brownian motion and
fractional Langevin equation motion types do not exhibit such
effects.9 In Fig. 4 we analyse the dependence of the time
averaged MSD on the observation time T using the data from
Fig. 3 for fixed lag time D = 100. As can be seen no significant
ageing can be detected, the traces settle towards a constant

function of T. The figure also illustrates the relatively small
amplitude scatter below and at the percolation threshold, p r
pc, as compared to the behaviour at the higher percolation
density, p 4 pc.

3.2 Time averaged occupation probability

To gather more quantitative clues on the above observations of
the time averaged MSD we determine the profile of individual
time averaged MSDs and explore how it is related to the
particles’ random paths on a given percolation geometry z. To
this end we introduce the time averaged occupation probability

PzðrÞ at the lattice point r for a given fractal geometry z in
the form

PzðrÞ ¼
tr

T
(8)

where tr is the accumulated residence time of the particle at the
lattice site r averaged over the observation time T.

Fig. 5 presents typical patterns of the time average PzðrÞ
obtained from simulations with N = 104. For the fully accessible
two-dimensional lattice ( p = 0) the time averaged occupation
probability is smoothly spread out from the origin with a
uniform radial distribution of bell shape. This is a typically
expected result for Brownian motion as well as for other ergodic
processes in which the ensemble averaged occupation prob-
ability hPz(r)i is identical with its time averaged counterpart.
This case is shown in Fig. 5(a). For growing percolation
densities below the percolation threshold we therefore observe
similar patterns, albeit local fine structure will appear due to
the existence of a finite correlation range of obstacles measured
by the radius rc introduced above. In particular, growing p will
increasingly limit the accessible range for the random walker,
that is, the occupation probability at finite T will decay faster
from the initial position. At the percolation threshold p = pc the

pattern of the time averaged occupation probability PzðrÞ
exhibits a structural fingerprint of the specific underlying

fractal geometry. Interestingly, we find that PzðrÞ may assume
two distinct patterns at the percolation threshold. Thus, while
Fig. 5(b) reveals an emerging fractal spreading pattern, Fig. 5(c)
shows a uniform distribution within a localised region—note
the different scales of the panels. How can this come about?
This phenomenon is again related to the fractal nature of the

Fig. 4 Time averaged MSD curves d2ðDÞ at fixed lag time D as a function of the observation time T for Nz = 2000 and N = 3. We here plot the same data
as in Fig. 3, for (a) p = 0.3, (b) 0.4, and (c) 0.5. For all cases D = 100 was chosen. No significant dependence on T is visible for any sufficiently small value of
D/T. The distinct, much lower lines in (a) corresponds to a very rare case of confinement. These cases become increasingly likely in (b) and (c).
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percolation geometry at criticality. In the former case, the tracer
particle diffuses on the infinite incipient fractal cluster of
vacant sites whose linear size is only limited by the size of
the simulated lattice. Thus the corresponding time averaged
MSD exhibits the anomalous scaling law (1) and the ergodic

property limT!1 d2ðDÞ ¼ r2ðDÞ
� �

is satisfied.77 The quantity

PzðrÞ also provides information on how the tracer particle
diffuses away from its starting site. It is noteworthy that the

spatial gradient of PzðrÞ has no obvious discontinuous shape.
This means that there are no sites at which the particle is
significantly trapped for much longer times than at other
neighbouring sites. In contrast to this, the latter case corres-
ponding to Fig. 5(c) represents the case in which over the
observation time T the particle visits repeatedly a small range
of sites. These are either extremely poorly connected to the
infinite cluster or completely separated. Accordingly the corres-
ponding time averaged MSD saturates (outset). As seen in our
previous analysis above the percentage of such complete con-
finement is relatively low compared to the situation above the
percolation threshold. In the latter case p 4 pc confinement
will always occur, as no infinite cluster of vacant sites remains.
Patterns such as those shown in Fig. 5(c) will then emerge for
clusters of varying size. On average clusters of decreasing size
emerge when p is increased (not shown).

3.3 Amplitude scatter distribution

We now quantify the amplitude fluctuations of individual time
averaged MSDs seen in Fig. 3 by measuring the normalised
distribution f(x) as functions of the lag time D and the observation
time T in terms of the dimensionless variable28,29,60,89

x ¼ d2ðDÞg
d2ðDÞ
D E: (9)

Fig. 6 shows the variation of the scatter distribution f(x) at two
different values of D and for fixed T = 106. As anticipated from the
time averaged MSD traces in Fig. 3 the distribution for p o pc

represented by Fig. 3(a) and (b), has a narrow, bell-shaped form.

Its centre is located at the ergodic value x = 1, and the width
becomes broader at larger lag times. This is a typical behaviour for
ergodic diffusion.89 At and above the percolation threshold p Z pc

this behaviour changes drastically, and the scatter distribution
reveals unique features that are not expected from an ergodic
diffusion process, nor are these features known from other weakly
non-ergodic processes. Consider first the longer lag time D = 103 at
p = pc. We first observe an additional peak showing up at around
x = 0 (Fig. 6(c)). This means that there is a finite contribution from
traces in which the particles undergo severely confined diffusion on
finite clusters of vacant sites. This peak corresponds to the localised
and uniformly distributed time averaged occupation probabilities

PzðrÞ shown in Fig. 5(c). Note that this peak at x = 0 is not a
statistical error due to an insufficient number of simulation runs.

Fig. 5 Time averaged occupation probability PzðrÞ, eqn (8), distributed over three given percolation geometries. This quantity is sampled from an
ensemble of 104 particle traces on the same percolation geometry z starting from the same initial site. We show results for a two-dimensional lattice
corresponding to (a) p = 0.1, (b) at the percolation threshold with p = pc with an emerging fractal pattern, and (c) at the percolation threshold with a
localised pattern. The outsets show examples of the corresponding time averaged MSD curves for those particles.

Fig. 6 Normalised scatter distribution f(x) as function of the dimension-
less variable x ¼ d2ðDÞ

� g
d2ðDÞ
D E

for four different percolation densities. In
each panel the curves represent f(x) for the lag times D = 10 (black) and
103 (yellow), each obtained from 30 000 simulation runs corresponding to
Nz = 10 000 random geometries and N = 3 different trajectories performed
on each geometry. Each single run is of length T = 106.
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Our further investigation demonstrates that this peak is still
observed in larger simulation sets. Second, the position of the
main peak is shifted to a larger value above x = 1 while the bell-
shaped profile is preserved. For the shorter lag time D = 10 the shift
is less severe, however, one can distinguish a fine structure of
different peaks for x values closer to zero. These correspond to
clusters of different size, which can be resolved here when the
overall values of the MSD are smaller.

Remarkably, when the percolation density exceeds the critical
value pc the profile of f(x) changes again significantly. In this
overcrowded situation vacant sites exist in the form of finite
clusters, forcing the tracer particles to undergo confined diffusion.
At the shorter lag time, over which the tracer’s motion is not
seriously hampered by confinement corresponding to Fig. 6(d) at
D = 10, the distribution f has a dominant contribution at x E 1.
Concurrently, several peaks close to x = 0 reveal again a distribution
of cluster sizes. However, at longer lag times the main peak
disappears, and the distribution is monotonically decreasing with
x: localised motion becomes dominant for the statistic.

In Fig. 7 we investigate the variation of the scatter distribu-
tion at the percolation threshold, p = pc with changing observa-
tion times T for fixed lag time. It shows that the position of the
main peak remains largely unchanged while the peak gets
increasingly sharper as T is increased. In contrast the height
and width of the peak at x E 0 is quite insensitive to T. Naively
speaking this population splitting of different trajectories into a
distribution around ergodic motion x = 1 and an almost
immobile fraction again results from the coexistence of the two
distinct diffusion modes induced by the geometry: unrestricted
motion on large (infinite) clusters and confined diffusion on small,
finite clusters. The propensities of occurrence depend on the lag
time D as well as the percolation density p. At criticality both modes
are significant. We note that this behaviour is a geometry controlled

analogue of the dynamic population splitting into mobile and
immobile particles in subdiffusive continuous time random
walks85,86 and heterogeneous diffusion processes.90

Let us spin this idea forward with some analytical considera-
tions based on the cluster size (area) distribution (s). Imagine the
situation in which a random walker moves on a finite cluster of size

s and radius of gyration Rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2s2ð Þ �
Ps
i;j

ri � rj
�� ��2s

.48 In the limit

of sufficiently long trajectories (T - N) and for lag times D Z Ds,

where Ds is implicitly defined by the equivalence d2 Dsð Þ ¼ Rs
2 of

the time averaged MSD and the squared gyration radius, the time

averaged MSD is saturated to the value d2ðDÞ ’ Rs
2. As the cluster

appears fractal on length scales smaller than Rs, it can be reason-

ably assumed that the size of the cluster is s ’ Rdf
s close to the

percolation threshold, where df is the fractal dimension. We then
relate the distribution of the saturation value of the time averaged
MSD to the cluster size distribution P(s) in terms of

P d2
� �

’ df

2
s2�2=dfPðsÞ; (10)

where we used that d2 ’ s2=df omitting a proportionality constant.
Given this latter scaling relation between the saturation value of the
time averaged MSD and the size of a cluster, we can use both
quantities interchangeably.

Now assume that there are N long (T - N) trajectories of
tracer particles that performed a random walk on a randomly

generated fractal cluster and have a value d2 governed by the
distribution P. At a given finite lag time D, a tracer particle will

perform anomalous diffusion of the form d2D � 4KaDa as long as
the walker has not yet fully sampled the cluster of size s or,

equivalently, the time averaged MSD d2D has not reached the

saturation value d2. Among N sample trajectories the fraction
showing unrestricted anomalous diffusion will be

Nu ¼
dfN

2

ð1
d2D

d2df�1P d2df=2
� �

dd2: (11)

The remainder N � Nu then corresponds to saturated diffusion.
As demonstrated in Fig. 7 the scatter distribution for the free
diffusion part will be a d peak as T is increased to infinity. Thus
in the long time limit this part corresponds to the contribution
Nu

N
d d2 � d2D
� �

. For the complementary, confined fraction the

scatter distribution will be proportional to 1�Nu

N

	 

P d2
� �

.

Therefore the normalised scatter distribution in the long time
limit can be written as

f d2
� �

¼

Nu

N
d d2 � d2D
� �

þ 1�Nu=N

N

�d2df�1P d2df=2
� �

; d2 � d2D

0; d2 4 d2D

8>>>>>><>>>>>>:
(12)

Fig. 7 Dependence of the scatter distribution f(x) on the observation
time T at the percolation threshold p = pc and for the lag time D = 102.
Each distribution was obtained from 30 000 sample trajectories. The inset
shows the double-logarithmic plot of the part of the scatter distribution at
small x for T = 106. The straight line is a fit with the power-law function x�b,
see text.
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in terms of the variable d2. Here

N ¼
ðd2D
0

d2df�1P d2df=2
� �

dd2 (13)

is a normalisation constant. From eqn (12) the averaged value
of the time averaged MSD is calculated to beg

d2ðDÞ
D E

¼
ð1
0

f d2
� �

d2dd2

¼ Nu

N
d2D þ

1�Nu=N

N

�
ðd2D
0

d2dfP d2df=2
� �

dd2:

(14)

Although the exact form of P is unknown, the fact that P(s)
is a monotonically decaying distribution leads to the relationg
d2ðDÞ
D E

o d2D found in Fig. 6 and 7. Eqn (12) tells us that the

fluctuations of the time averaged MSD given by f is fully
determined by the cluster size P distribution as well as the
lag time D. In percolation theory the form

P(s) p s�tf [( p � pc)ss] (15)

based on the scaling function f (x) is invoked where t and s are
two scaling exponents.48,91 At the percolation threshold p = pc

the cluster size distribution asymptotically has the power-law
form P(s) C s�t with 2 o t o 3.48 Using this information we
find that

Nu ’
N

t� 2
d2D

df ð2�tÞ=2 ’ Dadf ð2�tÞ=2: (16)

Thus Nu slowly decreases with increasing D as t = 187/91 E 2.05
at p = pc on the square lattice. The sharp peak in f(x) is observed
even for long lag times, as evidenced in the plot for p = pc in
Fig. 6. For the distribution of finite size clusters, with the above
we find the following simplified expression of eqn (10),

P d2
� �

¼ df

2
d2df ð2�tÞ=2�1: (17)

The theoretical value of the scaling exponent of d2 in this relation
can be evaluated from the numerical estimation of df and t in
our simulations. From approximately 25 000 clusters of various
size s extracted from 9480 percolation geometries z, the fractal

dimension df is estimated via the scaling law s ’ Rdf
s of the

gyration radius as df E 1.865 with the confidence interval (1.824,
1.905) and t E 2.03 from eqn (15).** This measurement leads to
the prediction that the exponent is given by �1.028 with the
confidence interval (�1.027, �1.029). In the inset of Fig. 7 the
decaying part of the distribution f(x) at D = 103 is plotted in on a
logarithmic scale (black circles). The slope of the linear fit (blue
line) is �1.063 with the confidence interval (�1.226, �0.899),
agreeing well with the theoretically predicted value.

Above the obstacle percolation threshold, p 4 pc, when only
finite, disjunct cluster remain, the cluster size distribution P(s)
has the asymptotic form

P(s) C s�te�cs (18)

where 1/c is the characteristic cluster size.48 From this result we
obtain that

Nu ¼ Nct�2G 2� t; cd2D
df=2

� �
’ Nct�2G 2� t; cd2D

� �
; (19)

in terms of the incomplete Gamma function G(�,�). The last
transformation follows from the fact that for p 4 pc the fractal
dimension df = 2 equals the embedding Euclidean dimension,
that is d = 2 here, corresponding to the locally fully connected,
finite clusters. Consequently in this situation we face the
scaling d2 ’ s. At large lag times D satisfying the criterion

d2D � 1=c, Nu is approximated as

Nu 	
N

c
d2D

1�t exp �cd2D
� �

; (20)

and thus we obtain Nu { N. Therefore in eqn (12) the second
term involving the cluster size distribution P will dominate the
scatter distribution f. This argument supports the monotonically
decaying profiles of f at D = 103 and 105 in the plot for p = 0.5
displayed in Fig. 7 which is accordingly the very profile of P.

This also underlines the fact that at time scales for which d2D �
1=c almost all tracer particles undergo confined diffusion. In

the opposite case, at short lag times satisfying d2D 
 1=c, we see

that Nu 	
N

t� 2
d2D

2�t, which is the same as Nu at p = pc with the

replacement df - 2. This means that there are particles
performing free diffusion over short lag times D. Thus f should
have a peak around the ergodic value, as shown in the case of
D = 10 for p = 0.5 in Fig. 6.

3.4 Ergodicity breaking parameter

We now study the functional behaviour of the fluctuations of
the time averaged MSD as the observation time T is increased.
For this purpose, we use the ergodicity breaking (EB) para-
meter28,29,31,60

EBðDÞ ¼

g
d2ðDÞ
� �2� �

� g
d2ðDÞ
D E	 
2

g
d2ðDÞ
D E	 
2

¼gx2h i � 1: (21)

Here the ensemble average fh�i again means the ensemble
average over the set of trajectories as well as over the fractal
geometries z at given lag time D and the observation time T,
similar to our definition of the ensemble averaged MSDgr2h i above.

Fig. 8 shows the EB parameter as function of the observation
time T for four distinct cases. In each panel two EB curves are
plotted at lag times D = 10 and 102. At given percolation density
p the EB curves are shown on linear (left column) and double
logarithmic (right column) scales. At p = 0 when the accessible

** The box counting method gives the estimation df � 1.9191 � 0.0095 from
10 000 infinite clusters in our simulation while the accepted values in literatures
are df = 91/48 and t = 187/91 E 2.05495, respectively.
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space is the full two-dimensional square lattice the EB para-
meter displays the theoretically expected scaling behaviour

EBðDÞ � 2

3

D
T

for two-dimensional Brownian motion shown by

the dashed slope in the double logarithmic panel for p = 0, see
Fig. 8(b).29,92 In this case the fluctuation of the time averaged
MSD tend to zero as T - N: for this ergodic process the time
averaged MSD becomes identical to the ensemble averaged
MSD. This conventional convergence continues if the space is
filled with obstacles with a concentration p well below the
percolation threshold pc, as evidenced for the case p = 0.3 in
Fig. 8(d).

However, the convergence of the EB parameter behaves
quite differently when we approach the percolation threshold

at p = pc. In this case EB does not converge to zero when T goes
to infinity but, as demonstrated in Fig. 8(d), EB converges to the
finite residual value

EB1 ¼
ð1
0

x2fðxÞdx� 1 (22)

shown by the dotted horizontal line. This value was numerically
estimated from the scatter distribution in Fig. 6. The geome-
trically induced fluctuations in the time averaged MSD due to
the existence of finite clusters do not vanish even in the limit of
infinite observation time.

The EB curves shown in Fig. 8 converge towards EBN in
good agreement with the algebraic form

EBðDÞ ¼ k
D
T

	 
h

þEB1: (23)

Here h and EBN Z 0 are, respectively, the associated scaling
exponent and the limiting value of EB at T - N, and k is a
proportionality constant. In Fig. 10 we show the functional
relations of the exponent h and of EBN versus the percolation
density p as estimated from the EB curves. In Fig. 8 (left) the
solid lines depict the best fit to eqn (23). We mention the
following noteworthy aspects of the results: (i) for percolation
densities p sufficiently below the percolation threshold pc the
EB parameter follows that of normal Brownian diffusion, that
is, h = 1 and EBN = 0, as mentioned above. (ii) For the opposite
regime of high obstacle densities, p 4 pc, we find h = 1 and a
non-zero value EBN of the residual EB parameter that tends to
increase with the percolation density p. In this regime the
Brownian convergence speed EB B T�1 is derived from the long
time confined Brownian motion of tracer particles. The value
EBN a 0 is attributed to the heterogeneity of the saturation values
of the time averaged MSD and is thus geometry controlled. This
statement is also consistent with the fact that EBN depends on the
lag time D in Fig. 8(g) and (h), due to the different resolution set

by the value d2D. (iii) Close to the percolation threshold pc the
behaviour of the EB parameter is distinguished from these two
regimes. As p is increased towards the critical point pc, h consis-
tently decreases from unity. Thus when the space becomes fractal
on all length scales we find that h E 0.80 and EBN a 0.

We emphasise that the estimated value h o 1 at pc is a
genuine convergence property due to the fractal structure of
the explored space. To rule out the possibility that the value
h E 0.8 o 1 is due to the small finite clusters responsible for
EBN a 0, we plot in Fig. 9 the EB curves after excluding the
contribution of the smallest clusters of size s = 1. The unit sized
clusters are the most dominant contribution among the finite
clusters, see the form of P(s), and results in the vanishing time

averaged MSD, d2 ¼ 0. Fig. 9 shows that after removing these
unit size clusters the EB parameter always converges to EBN = 0
for all p values. However, the convergence exponent h remains
at h E 0.8, compare also Fig. 10. We note that the convergence
law of the EB parameter is not the same as that of fractional
Brownian motion, although both models share the same
anomalous diffusion scaling (1) and are ergodic (for the present

Fig. 8 Ergodicity breaking parameter EB on linear scales (left column) and
on double logarithmic scales (right column) as function of the observation
time T. The red curves correspond to D = 102 and the blue curves
represent D = 103. The black solid lines depict the best fits with eqn (23).
The grey lines in the double logarithmic plot for p = 0 (b), correspond
to the EB parameter for normal Brownian motion with D = 102 and 103.
The dashed lines in the double logarithmic plots show the asymptotic
behaviour of EB. The results are from Nz = 3000 percolation geometries
and N = 3 trajectories.
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case in the sense of the disorder average). For fractional
Brownian motion EB was found to have the convergence form

EB � D
T

for 0o ao
3

2
, EB � D

T
logT for a ¼ 3

2
, and EB �

D
T

	 
4�2a
for

3

2
o ao 2.92–94 Thus, compared to fractional Brow-

nian motion the fractal geometry-induced subdiffusion has a
slower convergence to ergodicity. The observed characters of
the EB parameter also differ from those of other diffusion
models such as scaled Brownian motion, heterogeneous diffu-
sion processes, and continuous time random walk.60,68,95

Therefore, the EB convergence law provides useful information
for unveiling the physical origins of anomalous diffusion
processes found in complex random media.

4 Conclusion

Based on extensive Monte Carlo simulations we studied the
ergodic properties of single particles diffusing in random two-
dimensional fractal geometries modelled by a percolation
geometry at varying percolation density of obstacles. While
the asymptotic equality between the ensemble averaged MSDgr2ðDÞh i and the time averaged MSD

g
d2ðDÞ
D E

averaged over all

individual trajectories and many percolation geometries is
observed at any percolation density, individual time averaged
MSDs do not always behave like this average and are thus non-
ergodic. As we showed here this non-ergodic behaviour is
geometry controlled and thus corresponds to strong ergodicity
breaking due to a topologically disconnected phase space.
Thus, at low obstacle densities p { pc the single particle
diffusion exhibits typical ergodic behaviour as seen in the
scaling law of the time averaged MSDs, their scatter distribu-
tion, and the ergodicity breaking parameter. In this case, the
ensemble averaged MSD shows no disparity with individual
time averaged MSDs as long as the observation time is suffi-
ciently long. Close to the percolation threshold p E pc, how-
ever, such a typical ergodic character is no longer observed.
There exists a fraction of time averaged MSDs which signifi-

cantly deviate from the averaged curve
g
d2ðDÞ
D E

. Using the time

averaged occupation probability PzðrÞ we demonstrated that
these outliers correspond to trajectories when the particles
motion is restricted on finite clusters of gyration radius Rs

significantly smaller than the system size. Other particles
moving on the infinite cluster at criticality, however, do show

the convergence to the ensemble averaged MSD gr2ðDÞh i on the
single trajectory level. We thus observe ergodic motion for a
fraction of particles conditioned to move on the infinite

Fig. 9 Ergodicity breaking parameter as a function of the observation
time T when clusters with s = 1 are removed. The double logarithmic plot
shows a linear behaviour of EB versus the observation time T, independent
of the percolation density p. The red curve corresponds to D = 102 and the
blue curve represents D = 103. The black solid lines for the linear scales
plots are the best fits to eqn (23), the dashed black lines in the double
logarithmic plots show the slope of the EB curves. Same numbers for Nz

and N as in Fig. 8.

Fig. 10 (a) Variation of the scaling exponent h and (b) the residual ergodicity
breaking parameter EBN as function of the percolation density p. Values from
fit of the scaling function (23) to the EB curves in Fig. 8 and 9. The results are
reported for D = 10. Red diamonds: fit from Fig. 8 including the smallest
clusters of size s = 1. Blue circles: fit from Fig. 9 neglecting the smallest clusters.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
O

ct
ob

er
 2

01
5.

 D
ow

nl
oa

de
d 

on
 8

/2
7/

20
20

 1
1:

18
:1

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5cp03548a


30144 | Phys. Chem. Chem. Phys., 2015, 17, 30134--30147 This journal is© the Owner Societies 2015

incipient cluster, as reported earlier.77 Due to the mix of confined
and freely diffusing trajectories, the scatter distribution of the
amplitudes of individual time averaged MSDs shown in Fig. 6 and
7 acquires an asymmetric bell shaped form around the main peak at

d2ðDÞ
� g

d2ðDÞ
D E

¼ 1 and a second peak at d2ðDÞ
� g

d2ðDÞ
D E

� 0.

As shown in Fig. 7, upon increase of the observation time T the latter
part is preserved while the main peak around the ergodic value

d2ðDÞ
� g

d2ðDÞ
D E

¼ 1 becomes a sharp, almost d function like peak.

Relating the cluster size distribution to the distribution of the time
averaged MSDs by eqn (12) we qualitatively explained the observed
behaviour of the scatter distribution f. An interesting behaviour is
also observed for the ergodicity breaking parameter defined in
eqn (21). From numerical analysis we found that EB generally
follows an algebraic decay [EB(D) � EBN] B T�h( p) towards the
finite residual EB parameter EBN reached at T - N, and h is a
scaling exponent. The exact value of EBN depends on the percola-
tion density p. As p is increased to pc the decay of the EB parameter
thus deviates from that for typical ergodic diffusion, for which h = 1
and EBN = 0. Importantly, on approximating the percolation thresh-
old, p E pc, the EB parameter has a slower convergence with scaling
exponent h E 0.8 o 1 as well as a nonzero value EBN 4 0 due to
the contribution of confined particles.

Above pc the particle diffusion always takes place on con-

fined clusters. Large fluctuations from the average
g
d2ðDÞ
D E

are

present in individual time averaged MSDs. The profile of the scatter
distribution f(x) is quite different from those for critical and lower
than critical percolation densities, see Fig. 6. At sufficiently long lag
times D the distribution decays almost monotonically with the
variable x, due to the exclusive presence of finite clusters with an
exponentially decaying distribution of cluster sizes. This is a purely
geometrical effect, as revealed in the distribution of the time
averaged MSD which turns out to be independent of the observation
time T. In both Fig. 8 and 9 the EB parameter was shown to decay as
T�1, corresponding to the convergence to zero of a Brownian
particle. This is due to the fact that in this overcrowded obstacle
regime the particle explores small clusters with local Euclidean
geometries. We note that while the specific values for the scaling
exponents and percolation thresholds vary for different lattice types
and dimensionality of the embedding dimension the generic
features revealed here remain unchanged. This claim is supported
by preliminary studies on cubic and hexagonal lattices (not shown).

Anomalous diffusion in a fractal geometry is a non-Gaussian
process42,43,48 and therefore different from the Gaussian frac-
tional Brownian motion on a fundamental level. However,
except for the Gaussianity the difference between these two
processes has not been studied in detail. In particular, it has
been said that both models share the same ergodic behaviour.
However, as revealed in our study the ergodic properties of
diffusion on fractals displays distinctly different behaviour due
to the quenched nature of the underlying geometry. Only in
certain cases (low obstacle concentration or conditional seed-
ing of the particle exclusively on the infinite cluster close to
criticality) we observe ergodic behaviour. While the statistical

fluctuations in the time averaged MSD are homogeneous for
fractional Brownian motion, the fractal geometry-induced
anomalous diffusion is heterogeneous, and the strength and
character of the heterogeneity depend on the obstacle density.
Therefore the detailed analysis of the ergodic properties is
indeed a useful measure to differentiate the type of ant-in-
the-labyrinth motion from other models, along with recently
developed theoretical tools estimating the fractal dimension
df.

56,77 An advantage of the method developed herein studying
ergodic properties is more feasible than estimating the fractal
dimension df.

As experimental single particle tracking studies become
increasingly popular our results are expected to be helpful in
analysing and interpreting experimental results for various
problems of anomalous diffusion in complex environments.
In the case of lateral diffusion in phospholipid membranes
some recent simulation studies reported that lipid diffusion
is a two dimensional fractional Brownian motion9,37 while
conventionally it was understood as diffusion on fractal
lattices.43,50,96 In addition for more complex membranes the
lateral diffusion exhibits non-ergodic continuous time random
walk type motion97 or was identified as the combination of
motion on a fractal and continuous time random walks.8 Also
fairly complex non-Gaussian ergodic motion types were
reported.98 Such a stochastic variety in the lateral diffusion
dynamics seems to be natural given the fact that biological
membranes have a composition dependent, wide range of
structural complexities. From the trajectory analyses presented
in this work one can have additional insight about the lateral
dynamics and static structural complexity of a membrane
system under investigation. For instance, if the plot of EB
versus T gives the scaling exponent h o 1 it gives a signature
that the lateral anomalous diffusion is not of fractional Brow-
nian motion type. Then the ageing test for the time averaged
MSDs along with the moment ratio evaluation further differ-
entiates the fractal induced subdiffusion from non-ergodic
continuous time random walk process. The distribution of
saturated TA MSDs and a non-vanishing EBN may be used to
obtain information on the size distribution of confining
domains in a membrane, if any. Our analysis can also be
applied to nano-particle transport in porous media.52,99 From
the profile of the distribution of the time averaged MSD one
may obtain information on the pore size distribution as well as
the porosity of a medium. Additionally the ageing test for the
time averaged MSD shown in Fig. 4 appears to be informative to
examining the nano-particle-pore interactions: if the motion
exhibits features of ageing it is likely that there are nonspecific
interactions between the particles and a porous medium which
give rise to the temporal heterogeneity in the time averaged MSD.
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C. Bräuchle, D. C. Lamb and J. Michaelis, Wiley-VCH,
Weinheim, 1908.

3 I. Golding and E. C. Cox, Physical nature of bacterial
cytoplasm, Phys. Rev. Lett., 2006, 96, 098102.
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