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Abstract
This work focuses on the dynamics of particles in a confined geometry with position-dependent
diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells
connected by narrow passage ways. We consider three functional forms for the diffusivity,
corresponding to the scenarios of a constant (D0), as well as a low (Dm) and a high (Dd) mobility
diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the
diffusivity, channel shape and external force, the system exhibits complex and interesting
phenomena. By calculating the probability density function, mean velocity and mean first exit time
with the Itô calculus form, we find that in the absence of external forces the diffusivity Dd will
redistribute particles near the channel wall, while the diffusivity Dm will trap them near the cell
centre. The superposition of external forces will break their static distributions. Besides, our results
demonstrate that for the diffusivity Dd, a high dependence on the x coordinate (parallel with the
central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity
Dm, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In
addition, it shows that a large external force can weaken the influences of different diffusivities;
inversely, for a small external force, the types of diffusivity affect significantly the particle
dynamics. In practice, one can apply these results to achieve a prominent enhancement of the
particle transport in two- or three-dimensional channels by modulating the local tracer
diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down
the diffusivity along the central line, which may be a relevant effect in engineering
applications. Effects of different stochastic calculi in the evaluation of the underlying
multiplicative stochastic equation for different physical scenarios are discussed.

1. Introduction

The dynamics of many practical systems are restricted within the confines of structured and
inhomogeneous environments. Examples include the motion of particles in specific Lorentz gases, e.g., a
triangular lattice of immobile reflecting disks [1, 2], protein folding [3–5] and polymer looping [6, 7] in
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confined spaces, transport of particles in nanopores, zeolites and gel networks [8–10], or protein diffusion
in the mammalian cell cytoplasm [11]. In many cases, such structured environments can be viewed as
confined channels with different boundaries and properties [12–14]. The behaviours of systems in these
confined channels have been studied by virtue of the analytical Fick–Jacobs (FJ) equation and numerical
simulations of the dynamic equations [15–20]. Results for symmetric periodic channels indicate that the
mean transport velocity may be proportional to large external forces in the confined environment [19–22].
For asymmetric channels, it was found that the shape of the confinement contributes to the moving
direction and mean displacement [20, 23], which can be applied to fine separation of mixtures and also the
design of many devices [24, 25]. Time-dependent and deformable boundaries were discussed to explore the
activity in living cells [26, 27]. In addition, the interaction of hydrodynamics and entropic effect on
colloidal diffusion were studied in corrugated channels [28, 29]. However, all these discussions above
assume that the diffusion coefficient of the environment in confined channels is a constant, i.e., it is
independent of the particle position in the channel. Although a term of position-dependent diffusion
coefficient appears in the FJ equation, it is used to describe the entropic effects of the boundary and does
not focus on the intrinsic position-dependence of diffusion coefficients in a practical environment [30].

Consider, for instance, a protein in a biological cell with a fixed geometrical shape and varied thickness
as well as local porosity and crowding, its diffusivity is not spatially invariant, but depends on the position
[11, 31, 32]. Additionally, some related experiments reveal that the diffusion coefficient may also depend on
time [32–35]. Inter alia, many other systems, including the heterogeneity induced by macromolecular
crowding in the cytoplasm and nucleoplasm or the accumulation of large cellular organelles in a perinuclear
region [36], the intermittent motion of lipids in a protein-crowded membrane [37, 38], and the scaling
exponent of a virtual movement [39] also lead to similar effects. Meanwhile, it has been verified that such a
position-dependence can result in the violation of classic laws [40–46], such as substantial deviations from
the Stokes–Einstein law for protein diffusion in an Escherichia coli cell. Following these observations,
Cherstvy et al put forward alternative theories and various non-ergodic and anomalously diffusive regimes
induced by different position-dependent diffusion coefficients [36, 44]. Smyshlyaev and Chen applied a
position-dependent diffusion coefficient to the boundary feedback control of a diffusive system and proved
the Mittag-Leffler stability of the system [45, 46]. Several other works have since focussed on
position-dependent diffusive systems [47–50], to name but a few.

Differing from a constant diffusion coefficient, the presence of a position-dependent diffusivity involves
the problem of how to interpret multiplicative noise in a stochastic equation, particularly, a noise-induced
drift, which varies by choosing different integral forms, such as Itô, Stratonovich and isothermal integrals
[44, 51]. It is found that the probability distribution generated within the isothermal integral formulation
effects the required Boltzmann distribution, which is correct in thermal equilibrium state [48–50], while
the Itô and Stratonovich integrals lead to ‘athermal’ forms. Generally, the Itô interpretation is employed in
economics and biology due to their features of being ‘only related to the latest past’; the Stratonovich
integral finds applications in physical systems, such as electrical circuits driven by multiplicative noises (see
[51], and references therein). In particular, it finds that with decreasing the mass of particles a second-order
Langevin equation can reduce to a first-order one with different noise-induced drifts, depending on the
relationship between friction and diffusion coefficients [51–53]. For example, a second-order Langevin
system with a constant friction coefficient but a position-dependent diffusivity will converge to a first-order
equation without noise-induced drift. In addition, when the diffusivity gradient is generated not by
mobility gradients but by a varying temperature field, thermophoresis effects are to be taken into account
[54–57]. Although termophoresis is a nonequilibrium phenomenon, experiments show that with a
shallow temperature gradient the system can still reach a local equilibrium state [54]. Under the assumption
of the fluctuation–dissipation theorem a noise-induced drift is introduced in the isothermal integral sense
to quantify the effect of thermophoresis [55, 56]. However, for a constant friction coefficient, the drift
disappears [51–53]. Thus, it is hard to determine the exactly correct stochastic interpretation, which may
indeed subtly depend on the exact values of the system parameters [58]. The presence of active motion
within live biological cells is yet another relevant reason why athermal interpretations are needed. This is a
non-trivial problem still requiring more investigation. In this work, we use the Itô integral form by
assuming a constant friction coefficient, however, results in the isothermal integral sense are discussed in
the appendix A.

For the fact that channel confinement and position-dependent coefficients are quite typical for complex
environments, we here investigate the diffusivity-induced dynamics in a confinement. Particularly, the
position-dependence of the diffusivity may induce nontrivial behaviours [30]. It was confirmed that, in a
closed circular domain (e.g., a ‘cell’), the position-dependence can lead to anomalous diffusion and weak
ergodicity breaking [30, 44, 59–62]. So far, several kinds of position-dependent diffusivity models have been
proposed and studied. In [63–66], the dynamics of particles in two concentric regions with two diffusivities
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was investigated. Moreover, diffusion coefficients with a power-law form [44, 67], or modelled by a Feller
process [68] were studied. Cherstvy used a diffusion coefficient depending on the radial distance to a cell
centre, corresponding to a radially dependent mobility [36] mimicking the local diffusivity variation in
biological cells [11]. In fact, being opposite to a high-mobility centre, the diffusion with a low-mobility
centre is also meaningful and applicable in practical systems. In addition, instead of a dependence on the
purely geometric distance r = x2 + y2, it is also reasonable to add a modulation parameter to adjust the
dependence on the two coordinates, i.e. r = σx2 + y2. In this paper, we consider two kinds of
position-dependent diffusivities with distance modulation parameter, corresponding to high-mobility and
low-mobility unit cell centre (or a heat source and a cold flow) respectively. The dynamics of particles in a
confined channel under such diffusivities and the longitudinal transport behaviours are analysed in
detail.

This paper consists of the following sections. In section 2, the model of channel diffusion with varying
diffusivity is introduced. Two forms of position-dependent diffusion coefficients as well as their major
properties are described. We also outline the numerical simulation method. In section 3, the probability
density functions for different diffusivities are calculated. The influences of diffusivity, channel shape and
external forces are presented and explained. In section 4, the transport properties of particles and influences
of the position-dependence are studied by calculating the mean velocity. In section 5, the mean first exit
time and first exit time distribution from a cell centre to either bottleneck with vicinal unit cells is
determined to analyse the escaping behaviours. Finally, conclusions are drawn in section 6.

2. Model description

The model we study here consists of a confining channel in which the test particle experiences a
position-dependent diffusion coefficient. The channel has a deformable structure, whose upper bound is
defined as

w (x) =

⎧⎨
⎩

(b + h) − h cos
(
πx/L1

)
, 0 � x < L1

(b + h) + h cos
[
π (x − L1) /L2

]
, L1 � x < L

. (1)

Correspondingly, the lower bound is −w (x). Here L is the period of w (x), L1 =
(
1 + q

)
L/2 and

L2 =
(
1 − q

)
L/2. By adjusting the parameter q, one obtains different shapes of channels, such as

left-skewed (q < 0), symmetric (q = 0) and right-skewed (q > 0) structures, as shown in figure 1. The
maximum width of the channel is 2(b + 2h), and the width of the bottleneck to vicinal chambers is 2b.
When q = 0, the widest position is located in the middle of the unit cell. This leads to a symmetric form
of w (x). For any nonzero q, the widest position is always biased either to the left or right with respect to the
cell mid-point. This leads to an asymmetric w (x). In the following, we denote the part labelled L1 as the
left-hand side (lhs) of a unit cell. Similarly, the part labelled L2 is the right-hand side (rhs) of a unit cell, see
figure 1(a).

Generally, the movement of a particle confined by the channel ±w(x) can be modelled by the
second-order Langevin equation

mr̈ = γ ṙ + F (r) +
√

2D (r)η (t) , (2)

where m is the mass of the test particle, r = (x, y) is the coordinate, γ is the friction coefficient,
F (r) = [F, 0]T is the potential force, D(r) is the position-dependent diffusion coefficient, and

η (t) =
[
ηx (t) , ηy (t)

]T
is a vector of independent Gaussian white noise components with zero mean and

correlation function ηi (t) ηj (s) = δijδ (t − s) , i, j = x, y. In this work, we assume an environment with a
constant friction coefficient γ determined by the ambient liquid. F � 0 is a constant external force, under
which particles within the channel will perform a net flow for nonzero external force, such that the mean
particle velocity is non-zero. D(r) is a position-dependent diffusion coefficient. As mentioned above, we
envisage this spatial modulation to stem from the local porosity of the medium determining the local
mobility of the particle, or, alternatively, from a temperature field in the sense of weak gradients such that
the thermophoretic effects can be neglected. When we consider an overdamped particles, i.e. γ � r̈, the
inertial term can be neglected, namely, the system (2) can be reduced to the overdamped form

ẋ = F +
√

2D
(
x, y

)
ηx (t) ,

ẏ =
√

2D
(
x, y

)
ηy (t) . (3)
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Figure 1. Schematic presentations of a periodic channel, superimposed to a countour plot of the diffusion coefficient D(x, y). (a)
Top view of Dd

(
x, y

)
. The left cell is shown for σ = 0.1; the middle cell for σ = 1; the right cell for σ = 10. The width of the

bottleneck is 2b, and the width of the widest part is 2 (b + 2h). Here, we set b = 0.025L, h = 0.25L and L = 2.0. The black
dash-dotted line is the channel with q = −0.4. (b) Top view of Dm

(
x, y

)
. The left cell is shown for σ = 0.1; the middle cell for

σ = 1; the right cell for σ = 10. The black dash-dotted line is the channel with q = 0.4.

Equation (3) can be also obtained by assuming m → 0, which is treated by the Itô interpretation [51, 52]
(see above). Thus, we evaluate equation (3) within the Itô integral in this work, unless noted otherwie.
However, we also provide results with isothermal integral interpretation in the appendix for comparison. In
[44], Cherstvy et al employed a power-law form D (x) = D0|x|a of the diffusivity in a one-dimensional
system, where a can be either positive or negative. Whereafter, in the two-dimensional case, they extended it
to D

(
x, y

)
= D0A/

[
A +

(
x2 + y2

)]
, where A is a small positive number to avoid ‘death’ or ‘explosion’ of

D
(
x, y

)
at the origin [36]. For such a D

(
x, y

)
, the diffusivity depends symmetrically on both coordinates.

However, in complex environments [11], the diffusivity may be coordinate-sensitive, namely, the gradient
of D

(
x, y

)
is asymmetric. In this work, due to the intrinsic asymmetry of the channel geometry we take the

asymmetry into account. Without loss of generality, we discuss the following two forms of D
(
x, y

)

Dd

(
x, y

)
= D0A/

[
A + crσ

(
x, y

)]
, (4)

Dm

(
x, y

)
= D0

[
A + crσ

(
x, y

)]
, (5)

where D0 is a constant, and A is set A = 0.01 here. rσ
(
x, y

)
describes the distances between particles and

the cell centre, which is defined as rσ
(
x, y

)
= σx̄2 + y2. c = 1/max

[
rσ
(
x, y

)]
is the inverse of the

maximum of rσ
(
x, y

)
, which is superimposed to scale the distance weights. x̄ is determined by

x̄ = x − �(x − 0.5L) /L�L, where the operator �·� means rounding up to an integer. Namely, |x̄| is the
distance to the cell centre in the x axis. σ is to modulate the dependence of rσ

(
x, y

)
on the two coordinates.

When σ < 1, rσ
(
x, y

)
depends more on the y direction than the x direction, while for σ > 1, rσ

(
x, y

)
depends more on the x direction than the y direction. Namely, a small change on x will lead to a large
difference of rσ

(
x, y

)
. In this case, rσ

(
x, y

)
is x-sensitive. When σ = 1, rσ

(
x, y

)
is the classical distance

function, which symmetrically depends on both coordinates [36].
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Generally speaking, Dd

(
x, y

)
is inversely proportional to the distance between the current position and

the cell centre (kL, 0) (k is an integer). With the increase of the distance to the centre, the diffusivity
increases, see figure 1(b). At the centre’s position

(
x, y

)
= (kL, 0), the diffusion coefficient Dd

(
x, y

)
= D0 is

the largest. Particles located here are the most mobile ones. For a given position
(
x, y

)
�= (kL, 0),

Dd

(
x, y

)
< D0, i.e., the diffusion coefficient here is smaller compared with the cell centre. For the case

D
(
x, y

)
= Dm

(
x, y

)
, the situation is opposite. Dm

(
x, y

)
is proportional to the distance between

(
x, y

)
and

the cell centre (kL, 0). With the increase of the distance to the centre, the diffusivity increases, see
figure 1(b). At the cell centre, Dm

(
x, y

)
takes its minimum value AD0, and the particles here have the lowest

activity. At other positions
(
x, y

)
�= (kL, 0), larger rσ

(
x, y

)
implies larger Dm

(
x, y

)
. Correspondingly, the

higher the mobility of the particle, and the more likely it is for particles to move away from their original
positions.

Some related studies have shown that when the diffusion coefficient is a constant D0, in the case of no
bias, particles at each position are equally mobile, and homogeneously fill the entire space of the channel [2,
19]. When we consider a non-constant diffusion coefficient, it is clear that the system may exhibit new
interesting phenomena, such as inhomogeneous distribution of the particles. In this work, we intend to
investigate the transport of particles driven by an external force in a position-dependent diffusive
environment in the Itô sense of the stochastic equation. For ease of argument, we neglect wall-induced
diffusion effects and hydrodynamics. Moreover, a low particle concentration and a large constant friction
coefficient are assumed to make sure that thermophoretic effects are very weak when the diffusivity results
from the temperature gradient. However, we also provide results with respect to the isothermal integral
which is relevant to thermophoresis [55, 56] in the appendix. To explore and characterize the effects of
the position-dependent D

(
x, y

)
, some statistical indicators are calculated, including the steady-state

probability density function (PDF), the mean velocity, and first exit time density (FETD) and mean first exit
time (MFET). Their definitions are given below.

To estimate these quantities, we apply a numerical method, in which stepwise iterations are performed
to reflect the influences of the position-dependent diffusivity. Considering the superposition of confined
channels, we assume a reflective boundary condition here. In the calculation, we add an alternative
noise-induced term corresponding to the Itô and isothermal integral form respectively. The detailed
algorithm applied here reads [15, 26]:
Step 1. According to the discrete form of equation (3), iterate the position ri = (xi, yi) at the ith step, as

xi = xi−1 + FΔt + αΔt
∂D

(
xi−1, yi−1

)
∂x

+
√

2D
(
xi−1, yi−1

)
Δt × ζx

i−1,

yi = yi−1 + αΔt
∂D

(
xi−1, yi−1

)
∂y

+
√

2D
(
xi−1, yi−1

)
Δt × ζ

y
i−1,

where Δt is the time step, and ζx
i and ζ

y
i are independent Gaussian random numbers obeying N(0, 1). α is a

parameter taking the value 0 or 1. When α = 0, equation (3) corresponds to the Itô interpretation; α = 1 to
the isothermal interpretation.
Step 2. If ri is inside w(x), update i to i + 1 and update D

(
xi−1, yi−1

)
to D

(
xi, yi

)
, and then return to step 1

to calculate the (i + 1)th step’s position ri+1 = (xi+1, yi+1);
Step 3. Else if ri is outside w(x), the particle will collide with w(x). Then, the dichotomy and elastic
reflection are used to deal with this case as follow:

(a) Find the intersection (denote as point O(xp, yp)) between w(x) and the line from ri−1 = (xi−1, yi−1) to ri

by using the dichotomy.

(b) Calculate the slope k of w(x) in the point O(xp, yp).

(c) Based on the elastic reflection condition, calculate the position r′i = (x′i, yi
′) of the particle after the

collision, as

xi
′ = xi +

2k

1 + k2

[(
yi − yp

)
− k

(
xi − xp

)]
,

yi
′ = yi −

2

1 + k2

[(
yi − yp

)
− k

(
xi − xp

)]
.

(d) Determine the relationship between ri
′ and w(x). If ri

′ is inside w(x), let ri = ri
′, return to step 2;

otherwise, considering O and ri
′ as points having the same meaning as ri and ri−1, and repeat

step 3.
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3. Steady state probability density function (PDF)

The PDF is a useful quantity to evaluate how particles spread in the channel. In an open environment, the
movement of particles will not be limited by boundaries. There, the probability evolution can be described
by a Fokker–Planck equation (FPE) with natural boundary conditions P

(
|x| →∞, |y| →∞, t

)
= 0, in the

sense of Itô integral
∂P

(
x, y, t

)
∂t

= −F
∂P

(
x, y, t

)
∂x

+Δ
[
D
(
x, y

)
P
(
x, y, t

)]
, (6)

where Δ is the Laplace operator. As known, when F = 0 and D
(
x, y

)
= D0, the solution is

P
(
x, y, t

)
= 1

4πD0t exp
(
− x2+y2

4D0t

)
according to Einstein’s results. With increasing t, for a fixed point,

P
(
x, y, t

)
decreases quickly to zero, which indicates that particles will spread widely on the plane. In this

way, the probability that particles stay within a certain region will decrease. However, when we add a closed
reflective boundary in such a region, particles will move inside without flowing out, and the total
probability will always be unity. Taking the periodic boundary w(x) into account, one is mainly concerned
with the dynamics in the x direction. In the y direction, due to the confined channel, it can be regarded to

be homogenous, which means in the steady state ∂2

∂y2 P
(
x, y

)
= 0. Based on this assumption, the FJ equation

is developed, starting from the FPE, to describe the PDF in confined channels, which under the condition of
D
(
x, y

)
= D0 takes the form [19, 20, 23–26]

∂P(x, t)

∂t
=

∂

∂x

D0(
1 + (w′(x))2)1/3

e−A(x) ∂

∂x
eA(x)P (x, t) , (7)

where A (x) = −Fx/D0 − ln [2w(x)] is the effective potential combining the influences of F and w(x). The
steady-state PDF can be solved with a periodic boundary condition, i.e. P (X) = P (X + L). However, when
D
(
x, y

)
�= D0, the corresponding FJ equation has not been derived yet. Thus, in the following, we evaluate

the PDFs with the numerical technique given above. The PDFs are calculated by

P
(
xi, yj

)
=

N∑
k=1

1

N
I
{

xi −Δx/2 < xk � xi +Δx/2, yj −Δy/2 < yk � yj +Δy/2
}

(8)

in which I {·} is an indicator function and N is a large positive integer to ensure enough sample data. The
overline has the same meaning as previously. Δx and Δy are the statistical intervals in the two directions,
where xi and yj are the middle values of the ith and jth statistical interval, respectively. Next, we show our
results and discussions with respect to the parameters q, F and σ.

Figure 2 is the result for a constant diffusion coefficient, i.e. D
(
x, y

)
= D0. Under this condition, the

dynamics of the particles induced by D0 is essentially the same at any position. When F = 0, regardless of q,
D0 is the only factor affecting the movement of the particles, and causes a homogeneous distribution in the
channel, as shown in figure 2(a). This phenomenon can be observed through the uniform colour in
figure 2(a). To be precise, we here calculate the density of the marginal PDF, which is defined as the ratio
between P(x) and the corresponding channel width. The horizontal dashed lines in figure 2(a) demonstrate
the uniform distribution of particles in the y direction. This result is different from systems in open
environments, but coincides with the assumptions and results of the FJ equation. When F �= 0, both F and
D0 affect the transport of the particles, and lead to a completely different PDF as presented in figure 2(b).
It shows that an F > 0 will destroy the original homogeneous distribution and pushes particles to the right.
However, because of the bottleneck effect, particles are hampered to passage from one cell to another, and
accumulate ahead of the right-hand side bottleneck. This increases the PDF of the right-hand side cell larger
than that of the left-hand side part. We note that in practical simulations, the FJ equation is also valid for
small F. This can be verified by the changes of colours in the y direction and the red dash lines. Although
the red lines are not horizontal and straight, the difference is not excessively large. In this case, the FJ
equation is approximately applicable.

Another interesting phenomenon is that the PDF is also related to the shape of the channel. When
q < 0, the lhs of the cell is wider and the rhs is relatively narrower. When moving to the right, particles will
likely collide with the walls closed to narrow passage ways. Thus, particles crowd ahead of the long narrow
part, which results in the large red colour region in figure 2(b1). When q = 0, the rhs of the cell has a larger
space than that of q < 0. The number of collisions is less than for q < 0. Hence, the red colour region
becomes more concentrated and smaller. Conversely, for q > 0, the cell has an even larger space on the right
side. This leads to a more concentrated PDF on the right.

The impact of Dd(x, y) on the PDF is detailed in figure 3. The maximum of Dd

(
x, y

)
locates at the cell

centre (KL, 0) and gradually decreases with increasing rσ
(
x, y

)
. It is clear that σ affects the dependence and
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Figure 2. Steady-state PDFs for D
(

x, y
)
= D0. q = −0.4, 0 and 0.4 from the left to the right. The yellow lines are the marginal

PDFs with respect to x. The dashed red lines are the densities of the corresponding marginal PDFs, which are calculated by
P (x) /width. (a) F = 0; (b) F = 1.0.

sensitivity of Dd(x, y) along both axes: when σ > 1, Dd(x, y) decreases faster in the x direction; when σ = 1,
Dd(x, y) decreases equally in both directions; when σ < 1, Dd(x, y) decreases faster in the y direction. Thus,
with increasing σ, the shape of Dd(x, y) in the x direction becomes progressively narrower, while that in the
y direction becomes wider and wider. As we discussed previously, particles tend to leave the region with
large diffusivity and accumulate in the region with small diffusivity. Correspondingly, for F = 0 in
figure 3(a), particles prefer to remain in the upper and lower corners for σ < 1. When we increase σ, their
distributions gradually change from the vertical corners towards the bottlenecks. Moreover, with growing σ,
the particles become more focussed at the bottlenecks. Similarly, for decreasing σ, they are more focussed at
the vertical corners. These variations can be seen clearly by the marginal PDFs in figure 3(a4). With the
increase of σ, the marginal PDFs change from unimodal to bimodal shapes. It is clear that when particles
are focussed at the vertical corners, their passage from one cell to another will be impeded. However, even
though particles gather at the bottleneck, it does not always accelerate the transport. This phenomenon
will be demonstrated in detail later. When we calculate equation (3) with isothermal interpretation (α = 1),
the results are significantly different. As shown in figure A1(a), although the PDFs still have the conditioned
position preference, they are almost uniformly distributed with slight variations. This phenomenon is
consistent with previous work at thermodynamic equilibrium. Related work involved fraction Brownian
motion with the reflecting boundary condition can be found in [69, 70]. However, it should be noted that
the observed diffusion gradients come from particle-wall effects or the preciseboundary structure, which
has a different regime with the temperature gradient. This is in contrast to our model, we assume a constant
friction coefficient, where fluctuation–dissipation theorem does not holds. For non-equilibrium systems
such as living biological cells only experiments can determine the correct calculus. In the limits considered
here the Itô calculus appears appropriate.

When we add an external force, say F = 5 in our dimensionless units, the particles will be forced to
move within the channel. Due to the narrow space at the bottlenecks, collisions with the walls will be
extensive, and particles will be hindered to get through the bottleneck. Therefore, many particles will likely
gather around there. Moreover, Dd(x, y) has large values near the cell centre. This increases their tendency to
move near the channel walls, while avoids crossing the cell centre. As shown in figure 3(a), when σ < 1, the
particles gather at the vertical corners, and close to the channels. For F > 0, the interaction of the external
forces and the gradient of diffusivity tends to push particles to collide with the walls, which results in large
amounts of particles near the right-hand side bottleneck. This can be seen from the shift of the peak
position of the marginal PDF, and the tendency will be enhanced by the sticky wall effects [71]. When
σ = 1, the forced particles will have a higher probability to move away from the channels than for σ < 1.
Therefore, it is easier for particles to pass through the bottleneck, and results in higher particles
concentrations on the lhs of the cell. Correspondingly, the marginal PDF changes from a symmetric to a
right-skewed shape. For even larger σ > 1 and F = 0, particles gather around the bottleneck, being
separated by a high diffusivity region. Under the driving of F, one might expect that σ > 1 is a better
condition than σ = 1 to promote the transport. In fact, when particles move from the left to the right,
their trajectories will steer clear of the centre region (see the baby blue and white areas in figure 3). For
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Figure 3. PDFs for varying Dd

(
x, y

)
. From left to right σ = 0.1, 1.0, and10.0. The fourth column is the marginal PDF

corresponding to the former three figures. The red line corresponds to σ = 0.1, the black line to σ = 1.0, and the blue line to
σ = 10.0. (a) F = 0, q = 0; (b) F = 5.0, q = 0; (c) F = 5.0, q = 0.4.

σ < 1, the trajectories from the left to the right distribute around the cell centre with two clearly separating
branches. For σ = 1, the trajectories concentrate near the cell centre with two very close branches, which is
indeed more beneficial for transport than σ < 1. For σ > 1, although the branches merge into one, the
trajectories spread widely, which is not certainly better than σ = 1. In next section, we show that the mean
velocity for σ = 1 is indeed larger.

In figure 2(b), the rectification effect of the channel shape is shown. Here, we take q = 0.4 as an example
to illustrate the PDF for Dd(x, y). In this case, when the particles move to the right, the collisions with the
channel walls may reverse the direction of mean motion, while for a flat wall, the collisions may only induce
a difference in the moving direction without changing the sign of the velocity. Thus, in figure 3(c), we
find that more particles gather along the rhs of the channels as compared to that of q = 0. Similar to
figure 3(b), with increasing σ, more particles appear near the right bottleneck, and the PDF gets more
condensed.

Comparing with the isothermal case, particles will not steer clear of the central area for F > 0. This is
caused by the interaction between the noise-induced drift and the diffusion term, which will counteract the
effect of Dd(x, y), and leads to a relatively homogenous distribution for F = 0. Therefore, under the
driving of an external force, particles are more concentrated in figures A1(b) and (c) than in 3(b)
and (c).

In figure 4, we consider Dm(x, y), which has a shape opposite to that of Dd(x, y). According to the
definition, the minimum of Dm

(
x, y

)
locates at the cell centre, and increases with rσ

(
x, y

)
. For σ = 1,

Dm

(
x, y

)
has equal sensitivity to both coordinates. For σ < 1, Dm

(
x, y

)
shows less sensitivity to the x

coordinate, while for σ > 1, Dm

(
x, y

)
depends more on the x coordinate. As the particles are more easily

trapped at positions with low diffusivity, the PDFs have a peak at the centre with different shapes
(figure 4(a)). With increasing σ, the top views of the PDFs change from a horizontal ellipse-like shape
(corresponding to σ < 1) to a vertical ellipse-like shape (corresponding to σ > 1). According to the
marginal PDF in figure 4(a4), particles are more focussed around x = 0 for σ > 1. Decreasing σ will induce
broader and broader tails of the marginal PDF. However, for the isothermal interpretation, although
particles still prefer to stay in the central area, the PDFs vary slightly. They are close to an uniform
distribution, due to the interaction between the noise-induced drift and the diffusion term, see figure A2(a).

In figure 4(b), we analyse the influences of F. For σ = 0.1 in figure 4(b1), F completely redistributes the
particles and drives them to move from near the centre to the bottleneck. This causes the PDF to appear like

8



New J. Phys. 22 (2020) 053016 Y Li et al

Figure 4. PDFs for Dm

(
x, y

)
. From left to right, σ = 0.1, 1.0, and10.0. The fourth column is the marginal PDF of its former

three figures. The red line corresponds to σ = 0.1, the black line to σ = 1.0, and the blue line to σ = 10.0. (a) F = 0, q = 0. (b)
F = 5.0, q = 0. (c) F = 5.0, q = 0.4.

a ‘stick’, spreading along the whole cell length L and getting restricted within a narrow band in the y
direction. In this case, the particles mainly stay away from the walls, which will reduce the collision
probability and benefit particles passing through the bottleneck. For σ = 1, F pushes the particles to the
right, and shift the peak position of the PDF to near the right-hand side bottleneck. For σ = 10, we get a
similar phenomenon as for σ = 1, but the PDF is less concentrated. From figure 4(b4), we find that a larger
σ leads to a thinner left tail, whose peak position is also further away from the right-hand side bottleneck.
This indicates that with increasing σ, particles gather near the right and wait to crowd out the bottleneck.
Comparing these three scenarios, it shows that σ = 0.1 responds strongly to F, and such a parameter is
convenient for particle transport. The PDFs for the isothermal case (see figure A2(b)) are generally similar
to figure 4(b), because a large F = 5 overwhelms the influences of noise-induced drift. For a very small F,
however, the PDF will be significantly different (not shown).

Basing on the influences of F, q will further reshape the PDF. When σ = 0.1, a broad right-hand side cell
space and a horizontal stick-like distribution of particles make more particles move towards the right-hand
side bottleneck. However, the steep right-hand side walls will prevent particles from passing through the
bottleneck fluently, which induces particles to stay close to the walls. For large σ, the distributed area of the
particles almost does not change, but the colour in this area becomes lighter, which is induced by a wider
distribution in the y direction. For a comparison with the isothermal case, see figure A2(c).

In this section, the influences of position-independent D(x, y) on the PDF are studied with different
parameters, including F, q and σ. In summary, all these parameters can modulate the shape of PDF. In the
absence of F, particles tend to stay along the walls for Dd(x, y), while near the cell centre for Dm(x, y). A
positive external force will drive the particles to the right direction further compared to the force-free case.
Taking q into account, it will significantly reshape the PDF.

4. Transport properties

The steady-state PDF describes the static distribution of particles, and thus provides only very limited
information about the dynamical evolution of the particles. To explore the transport behaviours of the
particles in the presence of an external driving force F, we calculate the mean velocity 〈v〉 in this section.
This is an important and commonly used indicator to measure the mean velocity of particles, and it is
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Figure 5. 〈v〉 in dependence on F and q under the condition D
(

x, y
)
= D0.

defined as:

〈v〉 = lim
t→∞

1

N

N∑
n=1

xn (t) − xn (0)

t
. (9)

Here, xn (t) is the position of the nth realization at time t. N is the total number of trajectory. 〈v〉 is
calculated here for the three kinds of D(x, y) with respect to the parameters F, σ and q.

First, we consider the simplest case D
(
x, y

)
= D0. By solving the given FJ equation (7), one can derive

the steady-state probability current J (x, t). As known, in a ratchet potential, the mean velocity can be
obtained by J = 〈v〉L. Thus, we get an explicit expression for D

(
x, y

)
= D0, which has proved to be

accurate for small external forces in [23]

〈v〉 = 1∫ L
0

1
eA(x)−eA(x+L)

∫ x+L
x

e−A(z)

D0

(
1 + (w′(z))2)1/3

dzdx
. (10)

However, to be consistent with the other two cases, here we use numerical simulations to obtain 〈v〉 to
avoid inaccuracies, especially for large external driving forces.

As shown in figure 5, for a fixed q, 〈v〉 increases monotonously with F as expected. This is intuitive. In
addition, the effects of q on 〈v〉 are presented. In the absence of F, 〈v〉 is practically zero as it should. In fact,
when q = 0, for F = 0 the particles move to either direction with equal probability, which induces a zero
net current. When q �= 0, however 〈v〉 is nonzero due to the ratchet effect, but with a very small magnitude
not shown in detail in figure 5. Ratchet effects are always used to rectify the system current by setting an
asymmetric periodic potential. When F > 0, particles are forced to move to the right. Besides, with
increasing q, the channel changes from left-skewed to right-skewed shapes. Namely, the right-hand side
space in a cell relatively increases. Thus, particles are increasingly directed to the right. However, a steep
right-hand side channel boundary will increase the collisions between particles and walls, and make it
difficult to locate the bottleneck. Consequently, a decreasing trend of 〈v〉 is generated for large q.

Secondly, 〈v〉 for Dd

(
x, y

)
are studied in figure 6. It is obvious in figures 6(a) and (b) that the influence

of F has the same trend as that of D
(
x, y

)
= D0. Namely, with increasing F, 〈v〉 increases monotonously,

and for large F, it is almost linearly increasing. Moreover, for a fixed F, with increasing q, 〈v〉 decreases. In
figure 6(b), the black line corresponds to the 〈v〉 for the case D0 which is smaller than that of Dd

(
x, y

)
.

Generally, in the absence of external forces, a small diffusivity will induce a long time for the particles to
move significantly away, and is thus detrimental for particle transport. However, under external forces, the
particles are forced to move preferentially in one direction. A large diffusivity will result in extensive
fluctuations and disturb the movement. Thus, a small diffusivity is preferred in this situation to get a larger
〈v〉. Because Dd

(
x, y

)
� D0, it is no surprize that Dd

(
x, y

)
induces a larger 〈v〉. Considering σ, we find that

〈v〉 firstly increases for 0 � σ � 1,and then decreases very slowly with σ > 1. These slight changes are quite
different from the significant differences of the PDFs in figure 3. Moreover, when σ = 0, 〈v〉 shows a sharp
decline compared to σ > 1. For σ = 0, Dd

(
x, y

)
only depends on the y variable, which leads to a ridge-like

shape of the diffusivity along the x direction and induces a horizontal groove-like gap separating particles to
the vertical corners (refer to figure 3). This will greatly increase the collision probability with the cell walls
and induce a small 〈v〉. Recalling figure 3(b), the trajectories from the left to the right have two separating
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Figure 6. 〈v〉 for Dd

(
x, y

)
. (a) σ = 0.1; (b) q = 0; (c) F = 1.0; (d) F = 10.0. In (c) and (d), the black lines are 〈v〉 for D0, and

the insets are the ratio between vσ=1.0 for Dd

(
x, y

)
and 〈v〉 for D0 with respect to different q.

branches for small σ; become two close-by paths for σ = 1; and spread widely for a large σ. Therefore, 〈v〉
reduces sharply for σ = 0, and decreases slowly for σ > 1.

In addition, we calculate 〈v〉 in the q − σ plane for F = 1 and F = 10, respectively. In figure 6(c), 〈v〉
generally increases with decreasing q. It is small for small σ and large q, while large for small q and σ ≈ 1.
In fact, when q = 1, each cell has an upright wall at the right side. Such a channel shape will reflect the
particles back repeatedly, and is detrimental for particles to locate the bottleneck. The black line
corresponds to 〈v〉 of D0, which is smaller than 〈v〉 of Dd

(
x, y

)
for small q, but larger for large q. Thus, even

if Dd

(
x, y

)
� D0, for large q, its 〈v〉 can be smaller. In the inset, we calculate the ratio 〈vσ=1〉/vD0 between

〈vσ=1〉 and 〈v〉 of D0 to examine the enhancement effect of Dd

(
x, y

)
on 〈v〉. It shows that for F = 1, the

ratio increases slightly first and then decrease fast with q, which indicates that Dd

(
x, y

)
enhances the

transport for a small q and suppresses it for a large q. For F = 10 in figure 6(d), the variation of the
amplitude of 〈v〉 induced by σ becomes relatively small. Furthermore, as shown in the inset, the ratio first
increases and then decreases. This shows that for large q, the influences of σ on 〈v〉 change from
suppression to enhancement with F = 10. Thus, a larger F can weaken the enhancement effect of Dd

(
x, y

)
for small q, but increases it for extremely large q.

For the isothermal case, due to the interplay between F and the noise-induced drift, the result is
relatively similar with the Itô case for a large F. However, for a small F, the variation of 〈v〉 becomes quite
complex. As shown in figure A3(b), for F = 0.4, with increasing σ, 〈v〉 goes through three periods, i.e.
decreasing, increasing and decreasing. However, σ = 1 is still an optimal point to achieve the largest speed
for q = 0 and fixed F. Additionally, for a small F, 〈v〉 varies totally differently for q near −1 and 1, however,
for a large F, 〈v〉 will always increase for different q. A detailed discussion is provided in the caption of
figure A3.

Next, we consider the diffusion coefficient Dm

(
x, y

)
in figure 7. From figure 7(a), we see a similar shape

of 〈v〉 as in figures 5 and 6(a). Note that 〈v〉 for large F and large q is larger than those for D0 and Dd

(
x, y

)
.

However, 〈v〉 for very small q does not change significantly. This indicates that channels with a steep left
wall are not sensitive to the types of diffusivity. In figure 7(b), we find that 〈v〉 decreases monotonously with
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Figure 7. 〈v〉 for Dm

(
x, y

)
. (a) σ = 0.1; (b) q = 0; (c) F = 1.0; (d) F = 10.0. In (c) and (d), the black lines are 〈v〉 for D0, and

the insets are the ratio between vσ=0 for Dm

(
x, y

)
and 〈v〉 for D0 with respect to different q.

σ for a fixed F. This phenomenon is opposite to that for Dd

(
x, y

)
which shows an increasing trend. As

discussed before, Dm

(
x, y

)
has its minimal value at the cell centre. This facilitates the trapping of particles

and keeps them near the cell centre. Especially with increasing σ, the PDF of the force-free case changes
from a transverse distribution to a vertical one. Thus, for small σ value, it is profitable for particles to pass
through the bottleneck. In contrast, a large σ will impede the process. Consequently 〈v〉 decreases with
increasing σ. It should be pointed out that when σ = 0, Dm

(
x, y

)
only depends on the y variable, and has a

groove-like shape along the x direction. Thus, particles can easily gather along the x axis and effectively
avoid colliding with channel walls. This will significantly accelerate the directed movement of particles,
which is an ideal condition for transport.

In figures 7(c) and (d), the influence of the parameters σ and q on 〈v〉 is analysed for F = 1 and
F = 10, respectively. As presented in both figures, for a fixed q, 〈v〉 decreases monotonously with
increasing σ. A small increase around σ ≈ 0 will induce an abrupt reduction of 〈v〉, and the loss
amplitude increases with q. In figure 7(c), for small σ, 〈v〉 keeps increasing with decreasing q; for
large σ, 〈v〉 first decreases slightly and then increases. Additionally, from the black line we find that 〈v〉
values for large σ and large q are smaller than those for D

(
x, y

)
= D0. However, for small σ and

small q, 〈v〉 is larger. Therefore, even if Dm

(
x, y

)
� D0, the channel shape can significantly rectify the

current to reduce 〈v〉 significantly for large σ. In the inset, all ratios are larger than 2.5, which means
Dm

(
x, y

)
accelerates the particle transport more than Dd

(
x, y

)
. Moreover, a moderately large q will

cause a higher enhancement. We note that the case σ = 0 is quite special, as it does not vary perceivably
with changing q. This is also true for F = 10 in figure 7(d). But there are also some differences between
small and large F. In figure 7(d), 〈v〉 increases with decreasing q, and it is always larger than for
D
(
x, y

)
= D0. The inset shows that the ratio increases monotonously. This illustrates that for small q

a large F suppresses the enhancement effect of Dm

(
x, y

)
, while for a large q it amplifies the enhancement

effect. Thus, with such a diffusivity, one can achieve fast particle transport by changing the channel shape
for given external force.
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Results for the isothermal case are provided in figure A4 for comparison. A major difference is that with
increasing σ, the amplitude variation of 〈v〉 is relatively small compared to the Itô case. For small F, with
different q, 〈v〉 first decreases and then increases, while in figure 7(c) it will decrease. A detailed analysis is
provided in the supplementary figures in appendix A.

In summary, the influence of the parameters F, q and σ is studied by calculating the mean velocity 〈v〉
for different D

(
x, y

)
. Contrasting to D0, 〈v〉 of both Dd

(
x, y

)
and Dm

(
x, y

)
can become larger. For the case

Dd

(
x, y

)
, a small σ is detrimental for particles to pass through the bottleneck, while for Dm

(
x, y

)
, a small σ

promotes the process.

5. Mean first exit time (MFET) and first exit time density (FETD)

In section 4, we explored the influence of D
(
x, y

)
on the mean velocity. Because particles may move to the

left or to the right, 〈v〉 measures the overall speed of the particles. It is hard to deduce from 〈v〉 how
precisely particles exit a cell. Thus, in this section, we study the time that particles first pass through a
bottleneck from either side. One of the most powerful measurements for such times is the FETD, which
contains rich information, such as the MFET, the variance and the most probable exit time. Numerical and
analytical techniques have been proposed to study the FETD in an open environment [72–75]. Generally,
the FETD p (τ) can be derived by counting the number of exit times that fall in a series of intervals. To do
this, we obtain a large sample set of the first exit time as

T = {t : inf {t : abs [xi (t)] � L/2} , xi (0) = 0, i = 1, 2, . . .} , (11)

where the set T contains the times that particles first exit the cell with initial position at (0, 0). Then,
counting the number of times locating in different intervals ( τk − δt/2, τk + δt/2 ], and dividing the total
number and length of the interval, we obtain the discrete FETD

p
(
τk − δt/2 < τ � τk + δt/2

)
=

1

N · δt

N∑
j=1

I
{

T(j) ∈
(
τk − δt/2, τk + δt/2

]}
, (12)

in which T
(
j
)

is the jth element in set T. δt is the statistical interval. N is a sufficiently large integer to
ensure sufficient statistics. I {·} is the indicator function. Based on the FETD, we also obtain the MFET by
the expectation formula

MFET =

∫
τp (τ) dτ. (13)

A given particle may exit from either side of a cell. Therefore, we also take the splitting probability (SP) into
account to analyse the exiting process. For simplicity, we calculate the SP to the right (the SP to the left
equals to one minus the SP to the right), which can be obtained by

SP =
1

N

N∑
j=1

I
{

xj

[
T
(

j
)]

� L/2
}
. (14)

All symbols have the same meaning with equation (11).
Firstly, the MFET for D

(
x, y

)
= D0 is presented. We uncover that the MFET decreases as F increases.

Namely, a larger F leads to shorter times particles take to reach the bottleneck. Additionally, it shows that
for a very small F the MFET is almost symmetric around q = 0; for large F, the MFET increases with q.
When F = 0, particles have equal probability to move to right and left for q = 0 (see the inset in
figure 8(c)). For q > 0, the cell is right-skewed and has a wide space at the right side. Thus, such a channel
shape is convenient for particles to diffuse to the right and then exit. This can be verified by the large SP for
q > 0 shown in figure 8(c). Similarly, for q < 0, the cell has a large left-hand side space, which is easy for
particles to pass through the left-hand side bottleneck, and induces a small SP to the right. Thus, the MFET
is exactly symmetric in dependence on q when F = 0. From figure 8(c), we can clearly see the FETDs for
different q. For large |q|, the FETD has a higher peak, which indicates a thinner tail and a smaller MFET.
This coincides with figure 8(a).

When F is relatively large, particles are forced to move to the right. In this case particles will likely exit
from the right-hand side bottleneck, rather than the left one as in the case of F = 0. The large SP in the
inset in figure 8(b) verifies this intuition. Moreover, with increasing F, the SP increases and reaches its
maximum at SP = 1, which implies that all particles consistently exit from the right-hand side bottleneck.
Figure 8(b) shows that with increasing F the FETD is concentrated increasingly at small t, namely, the peak
grows progressively higher. This corresponds to the small MFET in figure 8(a). In addition, for a large F,
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Figure 8. (a) MFET for D
(

x, y
)
= D0. (b) and (c) FETD with respect to F and q. The insets are the corresponding SP.

Parameters: (b) q = 0; (c) F = 0.

with increasing q the MFET increases. As stated above, a large q will induce a wide space at the rhs of the
cell. Although this makes it convenient to diffuse to the right, a steep right-hand side wall will make it
harder than a flat wall for particles to locate the bottleneck and exit. Therefore, the MFET increases
monotonously with q for large F.

When D
(
x, y

)
= Dd

(
x, y

)
, the variations of the MFET with the system parameters F, q and σ are shown

in figure 9. In figure 9(a), although the increase of F still results in a reduction of the MFET, the magnitude
of the MFET changes dramatically. On the one hand, when F is small, the MFET of D0 is around 3.
However, for Dd

(
x, y

)
, the MFET increases to 60. On the other hand, with increasing F, the MFET reduces

sharply rather than the slowly decreasing behaviour in figure 8. The influence of F on the FETD and SP
are similar to those of D0, so the figure is not presented here.

In addition, there are some other interesting phenomena to report. In figure 9(b), when F = 0, the
MFET first increases for 0 � σ � 1 but decreases for σ > 1. The MFET attains its maximum at σ = 1. To
get a clear insight into the distribution of first exit times, we present the FETD with respect to σ for F = 0
in figure 9(f). When σ = 0 the FETD has a maximum very close to t = 0 and a relatively thin tail. With
increasing σ the maximum becomes smaller and its location moves away from t = 0. In addition, the tail of
the FETD is very broad. Namely, there exist extremely long first exit times, which induces a large MFET.
This phenomenon corresponds to region the 0 � σ � 1 in figure 9(b). With further increase of σ the
maximum of the FETD increases, which indicates progressively shorter first exit times. Thus, the MFET
decreases, corresponding to the region σ > 1 in figure 9(b). Moreover, when F > 0 in figure 9(b) the MFET
decreases monotonously. This implies that σ shows different degrees of impacts for F = 0 and F �= 0.
Considering the isothermal case, when F = 0 in figure A5(b) the MFET first increases fast and then remains
almost unchanged with increasing σ, which is very different from the Itô case. Specially, for σ = 0, the
MFET is much smaller than the Itô case, however, for large σ, the MFET is much larger. Additionally,
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Figure 9. (a)–(d) MFETs for Dd

(
x, y

)
. (e) and (f) FETDs with respect to q and σ. The insets are the corresponding SP.

Parameters: (a) σ = 0.1; (b) q = 0; (c) F = 0; (d) F = 0.1; (e) σ = 1, F = 0; (f) q = 0, F = 0.

when F is small the MFET does not always decrease with σ. Conversely, the MFET will first increase,
then decrease and then increase again, resulting in a minimal MFET at σ = 1. This is consistent with
figure A3.

To further explore the interplay of q and σ, the MFETs for F = 0 and F = 0.1 are displayed in
figures 9(c) and (d). When F = 0, for a small |q| the MFET first increases and then decreases with σ,
leading to a maximum for each q (for q = 0 figure 9(f) shows the corresponding FETD). However,
for extremely large |q| the MFET increases almost monotonically. Moreover, the σ of the location
of the maximum increases with |q|. It is worth noting that for q = 0 the location is at σ = 1,
which is the smallest value for different q. In fact, for q = 0, the diffusion coefficient becomes

Dσ=1
d

(
x, y

)
= D0A/

[
A +

(
x2 + y2

)
/
(
b + L/2

)2
]

and Dσ=0
d

(
x, y

)
= D0A/

[
A + y2/(b + 2h)2

]
.

For a fixed point
(
x, y

)
, it is obvious that Dσ=0

d

(
x, y

)
� Dσ=1

d

(
x, y

)
. This indicates that the particles
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diffuse more rigorously almost everywhere for Dσ=0
d

(
x, y

)
than for Dσ=1

d

(
x, y

)
. Therefore, the MEFT for

σ = 0 is smaller than for σ = 1. In addition, for σ > 1, one can verify that Dσ>1
d

(
x, y

)
> Dσ=1

d

(
x, y

)
point

by point, which induces a decreasing trend of the MFET for σ > 1. Thus, Dσ=1
d

(
x, y

)
is the smallest for all

σ. For |q| �= 0, the σ of the maximal Dσ
d

(
x, y

)
changes with the channel shapes, i.e., it is increasing with |q|.

All these factors result in the quite complex graph in figure 9(c). We present the typical FETD for σ = 1 in
figure 9(e), in which the maximum of the FETD increases with |q|. Namely, the FETD concentrates more at
small t for large |q| than for small |q|. Conversely, for σ > 1, the maximum of the FETD will decrease with
|q|, corresponding to figure 9(c) (not shown here). In the isothermal case, except for the extremely short
MFET for small σ, we find that a smaller |q| will trap particles longer, and this is opposite to the Itô case, see
figure A5(c). Moreover, the MFET generally increases with σ for large |q|.

When F = 0.1 in figure 9(d), the situation becomes totally different compared to figure 9(c). It shows
that for σ = 0 the MFET decreases with reducing q; for large σ, in contrast the MFET first decreases and
then increases. Namely, the superposition of F eliminates the maximums of MFET for F = 0, which
indicates that F is able to weaken the influence of σ. This phenomenon is verified in figure 9(b), in which
for a large F the MFET is almost unchanged for different σ. In other words, the influence of σ is very
sensitive to F, such that already small F values can effect a dramatic change. In the isothermal case, we
provide figures A5(d) and (e) for F = 0.1 and F = 1 to show the variation of MFET with respect to different
force strengths.

Next, we consider D
(
x, y

)
= Dm

(
x, y

)
. Figure 10(a) shows that the overall trend is similar to

figure 9(a), but the MFET is much larger than for D0, and smaller than for Dd

(
x, y

)
. Moreover, the MFET

varies slightly with respect to q for F > 0.
In figure 10(b), for F = 0, the MFET first decreases and then increases with σ. This can be verified from

the FETD in figure 10(f). For σ = 0, the tail of the FETD is broad, and its maximum is relatively small,
which induces a large MFET. With increasing σ the maximum of the FETD first increases and then
decreases (see the bold red and yellow lines). Correspondingly, the tail first gets thinner and then becomes
broader. Thus, we obtain the shape of the MFET marked by the red line in figure 10(b). In addition, for
F > 0 in figure 10(b) the MFET increases monotonously. Namely, a small change of F will lead to a
significant difference of the MFET. We note that when σ = 0 the MFET shows a quite dramatic descent
with only a tiny increase of F = 0 (see the red and green dots, the inset shows the large differences of the
FETDs for F = 0 and F = 0.5). This indicates that the MFET is very sensitive to F at σ = 0. An abrupt
decrease of the MFET is also observed for F = 0 in the isothermal case—but with further increase of σ the
MFET almost stay unchanged in figure A6(b) rather than increasing, as in figure 10(b). Finally, for relatively
small F a large σ value will induce a small MFET, but for large F and σ = 0 it is more likely to effect the
smallest MFET.

In figure 10(c), the behaviours of the MFET is almost opposite to figure 9(c). The MFET first decreases
and then increases, and it decreases faster for small |q|. For moderate |q|, there is a minimal MFET, located
at σ = 1 for |q| = 0. The location increases with |q| (for extremely large |q|, the minimum is located at
small σ). In fact, for q = 0, the diffusion coefficient becomes Dσ=0

m

(
x, y

)
= D0

[
A + y2/(b + 2h)2

]
and

Dσ=1
m

(
x, y

)
= D0

[
A +

(
x2 + y2

)
/
(
b + L/2

)2
]

. Obviously, for any point
(
x, y

)
one can get

Dσ=1
m

(
x, y

)
� Dσ=0

m

(
x, y

)
. Moreover, for larger σ it is easy to verify Dσ>1

m

(
x, y

)
� Dσ=1

m

(
x, y

)
. Thus, we get

the minimal MFET at σ = 1. For |q| �= 0, the corresponding σ increases, and so does the position of the
minimum. The corresponding FETD with respect to q is displayed in figure 10(e), which shows a similar
property with figure 9(e), but the maxima have a small amplitude variation. In the isothermal case,
figure A6(c) shows that the MFET for σ = 0 is much larger than that in figure 10(c). This means the
noise-induced drift will trap particles at the central area and play a negative role to the diffusion
of particles. Without external forces, a large σ is preferred to achieve fast exiting.

When F = 0.1 in figure 10(d), except for σ = 0 the variation of the MFET coincides with figure 10(c).
For σ = 0 a very small F will induce a dramatic reduction of the MFET. In fact, when σ = 0 the shape of
Dm

(
x, y

)
appears like a horizonal groove along the x axis. Such a structure is greatly beneficial for particles

transport under external forces. The reason is that particles are trapped near the x axis, which greatly avoids
collisions with channel walls. On driving by an external force, the number of collisions will be further
reduced, and particles will be rectified fast and significantly accelerated. In this sense, Dσ=0

m

(
x, y

)
is the best

condition for particle transport. In the isothermal case, figure A6(b) shows the different influence of small
and large F on the MFET. Here we provide two figures illustrating the differences in the q–σ plane with
respect to F = 0.1 and F = 1 in figures A6(d) and (e).

In this section, the MFET of particles is investigated. The MFETs for different cases indicate that the
diffusivity of the environment has a great influence on the effective transport of particles. Generally,
compared to the constant diffusivity D0 both Dd

(
x, y

)
and Dm

(
x, y

)
increase the difficulty for particles to
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Figure 10. (a)–(d): MFET for Dm

(
x, y

)
. The inset in (b) is the FETD for F = 0 and F = 0.5. (e) and (f) FETDs with respect to q

and σ. The insets are the corresponding SPs. Parameters: (a) σ = 0.1; (b) q = 0; (c) F = 0; (d) F = 0.1; (e) σ = 0, F = 0; (f)
q = 0, F = 0.

exit. However, the effects are very sensitive to external forces, with which the MFET changes dramatically,
and features non-trivial maxima and minima for different parameters.

6. Conclusions

The transport of particles in a confined channel with three scenarios for position-dependent diffusion
coefficients is studied in this work. The PDF, the mean velocity, and the MFET are calculated to illustrate
the influences of these D

(
x, y

)
. We find that, in the absence of external forces, for a constant diffusion

coefficient D0, we obtain the expected homogeneous PDF of particles. For the diffusivity Dd

(
x, y

)
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corresponding to a heat flow or mobility gradient, the PDF mainly focuses near the channel walls. By
adjusting its dependence on the x coordinate, the preferred gathering position of particles changes from
vertical corners to the bottleneck. Conversely, for the diffusivity Dm

(
x, y

)
corresponding to a cold flow, the

PDF has a peak at the cell centre. By modulating its dependence on the x coordinate, the contour plot of the
PDF changes from a horizonal ellipse-like shape to a vertical ellipse-like shape. In the presence of external
forces, the PDFs change significantly.

For the mean particle velocity, both Dm

(
x, y

)
and Dd

(
x, y

)
can lead to a larger velocity than for a

constant D0. For the case Dd

(
x, y

)
, a high dependence on the x coordinate will accelerate the transport

speed. In contrast, for Dm

(
x, y

)
, a low dependence on the x coordinate will remarkably enhance the

transport. Moreover, a large external force can weaken the influence of the position-dependent diffusivity.
In addition, we find that although Dm

(
x, y

)
and Dd

(
x, y

)
increase the mean velocity compared to D0,

particles take longer to exit a cell from the centre. Generally, Dd

(
x, y

)
can trap particles within a cell longer

than for the other two cases under the same external forces and channel shapes.
From our results, we conclude that in the presence of external forces, the diffusivity of Dm

(
x, y

)
is more

beneficial for particles to move with a high velocity in periodic channels. In particular, a zero dependence
on the x coordinate will extremely promote the process. The results can be applied to accelerate particle
transport by adding a cold fine tube along the central line of two- and three-dimensional channels in real
systems, or by introducing a gel with modulated porosity.

However, we also point out that the results in the isothermal interpretation show considerable
differences when the external force is zero or small, while for large external forces the dynamics are almost
the same. It still needs continued effort from both experiments and theories to confirm the applications of
Itô and isothermal integral for given systems.
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Figure A1. PDFs for varying Dd

(
x, y

)
, calculated in the isothermal case for α = 1. From left to right σ = 0.1, 1.0, and10.0. The

fourth column is the marginal PDF of the former three figures. The red line corresponds to σ = 0.1, the black line to σ = 1.0,
and the blue line to σ = 10.0. (a) F = 0, q = 0. Generally, the particles still tend to stay at low diffusivity areas, for example, the
upper and lower corner in (a1), all around in (a2) and left and right sides in (a3). However, the PDFs are almost uniform such
that the differences in the colourmaps are very small. Moreover, we see that the marginal PDFs vary slightly. (b) F = 5.0, q = 0.
As particles can distribute almost uniformly in the channel, they do not steer clear of the central area as seen in figure 3(b).
Further, more particles gather at the right bottleneck for σ = 0.1 than in the other cases. (c) F = 5.0, q = 0.4. We see that more
particles crowd at the right bottleneck than for q = 0, which means that the steep wall on the right is not beneficial for particles
to cross the bottleneck.

Appendix A

Here, we provide some additional figures discussed in the main text.
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Figure A2. PDFs for Dm

(
x, y

)
in isothermal case for α = 1. From left to right σ = 0.1, 1.0, and10.0. The fourth column is the

marginal PDF of the former three figures. The red line corresponds to σ = 0.1, the black line to σ = 1.0, and the blue line to
σ = 10.0. (a) F = 0, q = 0. Generally, the PDFs are almost uniform distributions such that the differences in the colourmaps are
very small. But we also find that the central area has a higher probability. Additionally, we see that the marginal PDFs are almost
the same. (b) F = 5.0, q = 0. For σ = 0.1, more particles distribute along the central line than in the other cases. For larger σ the
probability is higher at the right side. (c) F = 5.0, q = 0.4. For a right-skewed shape more particles crowd at the right bottleneck
than for q = 0. This means that a steep right side wall makes it difficult for particles to locate the bottleneck and prevents them
from crossing to the next cell.
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Figure A3. 〈v〉 for Dd

(
x, y

)
in the isothermal interpretation. (a) σ = 0.1. With increasing F, 〈v〉 almost increases linearly for

different q. But 〈v〉 increases faster for a small q than for large q. (b) q = 0. For large F, with increasing σ, 〈v〉 first increases and
then hardly varies. But for a small F, 〈v〉 first decreases, then increases and then decreases. (c) F = 1.0. We see that 〈v〉 first
decreases and then increases with σ for very small q. When q is around zero, 〈v〉 first increases and then decreases. However, for
large q, 〈v〉 always decreases. (d) F = 10.0. For large F, the effects of the noise-induced drift are very limited. 〈v〉 will increase
with σ when it is small. Generally speaking, σ ≈ 1 is an optimal choice to achieve a large 〈v〉.
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Figure A4. 〈v〉 for Dm

(
x, y

)
in the isothermal interpretation. (a) σ = 0.1. For a fixed q, 〈v〉 increases monotonously with F, and

it increases faster for a smaller q. (b) q = 0. v will first decrease, then increase with σ, and remain almost constant for large σ. (c)
F = 1.0. For fixed σ, with increasing q, 〈v〉 will decrease monotonously. For fixed q, 〈v〉 will first decrease and then increase with
σ. (d) F = 10.0. When |q| is large, 〈v〉 will decrease monotonically. But when |q| is small, 〈v〉 will first decrease and then increase.
Finally, for a fixed σ, 〈v〉 will increase with decreasing q.
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Figure A5. MFETs for Dd

(
x, y

)
in the isothermal interpretation. (a) σ = 0.1 when F = 0, the MFET decreases with |q|. For

large F, the MFET will increase with q. (b) q = 0. For F = 0, the MFET will first increase fast with σ, and then it will remain
almost constant. For small F �= 0, the MFET will first increase, then decrease and then increase, resulting in minimal MFET at
σ = 1. This is consistent with figure A3. For large F, the MFET will first decrease and then increase. (c) F = 0. The MFET is
much smaller for a small σ than for a large σ. For fixed q, with increasing σ the MFET first increases fast and then levels off. (d)
F = 0.1. Due to the interactions with the noise-induced drift, the variation of MFET with respect to q and σ is complex. It will
further change with increasing F. However, we see that a small change for F will cause a large reduction for the MFET. (e) F = 1.
With a larger F than that of (d), the MFET becomes totally different. For large q, the MFET increases almost monotonically with
σ, however, for a q > 0.9, the MFET first increases, then decreases and increases. Finally, for a fixed σ, the MFET will decrease
with decreasing q.
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Figure A6. MFETs for Dm

(
x, y

)
in the isothermal interpretation. (a) σ = 0.1 when F = 0, the MFET decreases with |q|. For

large F, the MFET will increase with q. (b) q = 0. For F = 0, the MFET has an extremely large value at σ = 0. With increasing σ,
the MFET will decrease fast and then remain almost constant. For a relatively small F, the MFET will first increase and then
decrease, but for a large F, the MFET will increase and then level off, where σ = 0 induces the smallest MFET. (c) F = 0. When
|q| is large, the MFET decreases monotonously, but for small |q|, the MFET first decreases and then increases. (d) F = 0.1. A
small external force will lead to an abrupt reduction of MFET for small σ, while it decreases less for a large σ. (e) F = 1. With a
larger F than (d), the MFET becomes totally different. For large q, the MFET firstly increases abruptly and then remains almost
constant with σ. For small q, the variation of σ impacts slightly on the MFET. Generally, for a fixed σ, with increasing q, the
MFET increases monotonously.
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