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Abstract

This thesis is concerned with Data Assimilation, the process of combining model
predictions with observations. So called filters are of special interest. One is inter-
ested in computing the probability distribution of the state of a physical process in
the future, given (possibly) imperfect measurements. This is done using Bayes’ rule.
The first part focuses on hybrid filters, that bridge between the two main groups of
filters: ensemble Kalman filters (EnKF) and particle filters. The first are a group of
very stable and computationally cheap algorithms, but they request certain strong
assumptions. Particle filters on the other hand are more generally applicable, but
computationally expensive and as such not always suitable for high dimensional
systems. Therefore it exists a need to combine both groups to benefit from the
advantages of each. This can be achieved by splitting the likelihood function, when
assimilating a new observation and treating one part of it with an EnKF and the
other part with a particle filter.

The second part of this thesis deals with the application of Data Assimilation to
multi-scale models and the problems that arise from that. One of the main areas of
application for Data Assimilation techniques is predicting the development of oceans
and the atmosphere. These processes involve several scales and often balance rela-
tions between the state variables. The use of Data Assimilation procedures most
often violates relations of that kind, which leads to unrealistic and non-physical pre-
dictions of the future development of the process eventually. This work discusses the
inclusion of a post-processing step after each assimilation step, in which a minimi-
sation problem is solved, which penalises the imbalance. This method is tested on
four different models, two Hamiltonian systems and two spatially extended models,
which adds even more difficulties.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit Daten Assimilation - die Kombination von
Modellvorhersagen mit Beobachtungen. Sogenannte Filter sind dabei von beson-
derem Interesse. Diese Algorithmen berechnen die Wahrscheinlichkeitsverteilung
des Zustandes eines physikalischen Prozesses in der Zukunft unter der Bedingung,
dass wir (meist) fehlerbehaftete Messungen vorliegen haben. Der erste Teil bezieht
sich auf Hybridfilter, welche eine Brücke zwischen den beiden Hauptgruppen von
Filtern schlagen: Ensemble-Kalman-Filter (EnKF) und Teilchenfilter. Die erst-
genannten sind sehr stabil und rechnerisch unaufwändig, aber basieren auf recht
starken Voraussetzungen. Teilchenfilter hingegen sind allgemeiner aber recheninten-
siv und daher nicht immer geeignet für höherdimensionale Systeme. Daher besteht
die Notwen-
digkeit beide Gruppen zu kombinieren um von den Vorteilen beider Filter zu prof-
itieren. Dies kann erreicht werden, indem man, wenn eine Beobachtung assimiliert
werden soll, die Likelihood-Funktion in zwei Teile spaltet und auf den einen Teil
einen EnKF und auf den anderen einen Teilchenfilter anwendet.

Der zweite Teil dieser Arbeit befasst sich mit der Anwendung von Daten Assimilation
auf mehrskalige Modelle und die Probleme die daraus entstehen. Eines der Haup-
tanwendungsgebiete für Daten Assimilation ist die Vorhersage der Entwicklung von
Ozeanen und der Atmosphäre. Diese Prozesse finden auf mehreren Skalen statt und
häufig bestehen Balancerelationen zwischen den Zustandsvariablen. Die Nutzung
von Daten Assimilationstechniken zerstört diese Beziehungen häufig, was schließlich
zu unrealistischen und unphysikalischen Vorhersagen führt. In dieser Dissertation
wird vorgeschlagen, nach jedem Assimilationsschritt ein Minimierungsproblem zu
lösen, welches die Imbalance als Strafterm beinhaltet. Diese Methode wird an vier
verschiedenen Modellen getestet, zwei Hamiltonische Systeme und zwei Modelle mit
räumlicher Ausdehnung, was zusätzliche Schwierigkeiten schafft.
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Chapter 1

Introduction

1.1 Motivation

Most physical processes can be modelled by differential equations. For example the
flows in the atmosphere that determine the weather can be described by the Navier-
Stokes equations. For a given initial state, a model allows us to predict the state
of the system at a point in time that lies in the future. There are several problems
though. First of all, the initial state is usually not known exactly in practical
applications. For chaotic systems, the predicted state can differ drastically from the
truth even if the error in the assumed initial state was very small. Another issue
is that the differential equations might not be solvable analytically and therefore
require a discretisation (and therefore approximation of the solution). The third
problem is that the models that are used are usually prone to modelling errors and
do not describe the system perfectly. Thus, predicting the future state of a physical
process using the model alone seems to be impossible.

This painful experience was also encountered by Lewis Fry Richardson during what
is today considered as the first attempt in numerical weather prediction (NWP).
The Norwegian scientist Vilhelm Bjerknes stated in 1904 that the future state of
the atmosphere is theoretically determined by the primitive equations of motion,
mass, state and energy (Bjerknes (1904)). Bjerknes pointed out though, that these
equations were too complex to be solved exactly and should be simplified and solved
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1.2. THE (DISCRETE) FILTERING PROBLEM

numerically. Richardson imagined huge halls, representing the globe, in which count-
less computers would solve Bjerknes equations to predict the state of the atmosphere
all around the world. He came up with a numerical scheme to integrate the model of
the atmosphere by hand in 1922 and tried to predict the change in surface pressure
over six hours. Unfortunately, the forecast he got was profoundly wrong because
of two reasons: the time step he used for the discretisation was too large and the
initial conditions were too noisy.

Edward Lorenz stated in the 1960s, that even if the model describing the evolution
of the atmosphere was perfect, due to its chaotic behaviour, there will always be an
upper limit to the predictability of the weather (Lorenz (1963)).

Most often, one has some observations of the process whose state one would like to
predict. For example, one can measure the pressure, the temperature, the humidity
and such similar quantities in the atmosphere. These measurements have a dimen-
sion much smaller than the state space and therefore the estimation of the state
from the data alone would be an ill-posed problem. Nevertheless, it is essential to
use such additional information to successfully predict the state of a chaotic system
like the weather, by reinitialising the model again and again as observations become
available.

This process of combining model predictions with data, is called Data Assimilation.
Despite the aforementioned difficulties, real-time NWP using Data Assimilation be-
came operational in the 1950s and the forecasting skills improved drastically towards
the end of the 20th century due to the expansion of computational power and avail-
ability of satellite data. The main Data Assimilation algorithms, namely variational
Data Assimilation, Kalman filters and particle filters, will be described in detail in
chapter 2.

1.2 The (discrete) filtering problem

Let x ∈ Rd be a random vector that characterizes the state of a physical process. The
vector x is distributed according to a known probability distribution with probability
density function (pdf) π0(x). The temporal evolution of the process is described by

2



1.2. THE (DISCRETE) FILTERING PROBLEM

the equation

xk+1 =M(xk) + ηk (1.2.1)

with xk = x(tk), M : Rd → Rd and ηk ∈ Rd is a random vector that describes the
model error.
Observations yobs

k ∈ Rp become available at discrete time points tk, k = 1, 2, ... and
are distributed according to the likelihood function π(yobs

k |x).
The filtering problem is to find the probability distribution πk(x|yobs

1:k ) of the state
at time tk given observations up to time tk, i.e. yobs

1:k .
This can be done by applying an iterative procedure that consists of two stages.
The first part is propagating the pdf from tk to the next time point at which a
measurement is available, namely tk+1. Thus, we want to obtain πk+1(x|yobs

1:k ), which
we call the prior or forecast and this is achieved by using the Chapman-Kolmogorov
equation

πk+1(x|yobs
1:k ) =

∫
π(x|x′)πk(x′|yobs

1:k )dx′. (1.2.2)

The so called transition kernel π(x|x′) describes the probability for ending up in
state x at time tk+1 when starting at x′ at time tk under the model equation (1.2.1).

Figure 1.1: Propagation of the posterior density from the last time step tk to obtain
the prior density of the next time step tk+1. The propagation of the mean (magenta)
and of a reference solution (black) can also be seen.
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1.2. THE (DISCRETE) FILTERING PROBLEM

In Figure 1.1 a schematic depiction of the first stage, the propagation of the distri-
bution via equation (1.2.2), is presented.

The second stage of a sequential Data Assimilation method is the application of
Bayes’ theorem to include the information about the new measurement yobs

k+1. The
distribution of interest is called the posterior or analysis and can be obtained via

πk+1(x|yobs
1:k+1) =

π(yobs
k+1|x)πk+1(x|yobs

1:k )∫
π(yobs

k+1|x)πk+1(x|yobs
1:k )dx

. (1.2.3)

The denominator is just a normalisation constant such that the integral of the
posterior equals one, which is a necessary property of a probability distribution. We
can simplify and work with the proportionality relation

πk+1(x|yobs
1:k+1) ∝ π(yobs

k+1|x)πk+1(x|yobs
1:k ). (1.2.4)

(a) prior (b) posterior

Figure 1.2: The prior density function with the observation on the left side and the
posterior density function with the observation on the right side.

Figure 1.2 shows the second step of the iterative algorithm, namely the transfor-
mation of the prior distribution into the posterior distribution via equation (1.2.3).
One can see how the mass is becoming more concentrated around the observation.

4



1.3. FOCUS OF THIS WORK

1.3 Focus of this work

If the initial distribution and the measurement errors are Gaussian and the model
is linear, all prior and posterior distributions will be Gaussian and there exists
an algorithm, called the Kalman filter (Swerling (1958), Kalman (1960), Kalman
& Bucy (1961)), which is known for providing the exact solution to the filtering
problem. However, these assumptions are rarely satisfied in practice. Another
problem is that one has to store and update the covariance matrix which becomes
computationally challenging for high-dimensional systems.

Therefore, in practice a Monte-Carlo approximation of the Kalman filter is often
preferred. Instead of forwarding the probability distribution according to the model,
one can consider an ensemble of solutions at a certain point in time x1,a

k , ..., xM,a
k (the

superscript ’a’ will be explained later) and evolve them in time, obtaining the forecast
ensemble x1,f

k+1, ..., x
M,f
k+1. The superscript ’f’ emphasizes that this is the forecast.

There are several algorithms that use that strategy to obtain an approximation
for the prior mean and covariance matrix by their empirical equivalents and then
apply the classic Kalman formulas to them, obtaining the empirical posterior mean
and covariance matrix and then produce samples from that, yielding the analysis
ensemble x1,a

k+1, ..., x
M,a
k+1. The superscript ’a’ emphasizes that this is the analysis.

These algorithms belong to the group of ensemble Kalman filters. For example, see
Evensen (1994), Burgers et al. (1998), Tippett et al. (2003).

The second big group of sequential filter algorithms are particle filters, as for ex-
ample described in Del Moral (1996), Gordon et al. (1993), Reich (2013). These
methods use importance sampling and do not assume Gaussianity. Therefore they
are consistent in the infinite ensemble size limit in contrast to the ensemble Kalman
filters. On the other hand, particle filters suffer from the curse of dimensionality
and require a much bigger ensemble size than Kalman filters (Doucet (1998), Snyder
et al. (2008), Snyder et al. (2015)).

One part of this thesis explores hybrid approaches between an ensemble Kalman
filter and a particle filter that exploits the advantages of both groups of filters.
Existing approaches can be found in Bengtsson et al. (2003), Mandel & Beezley
(2009), Sun et al. (2009), Papadakis et al. (2010), Dovera & Della Rossa (2011) and
Frei & Künsch (2013). The method which is part of this thesis, has been developed
by Chutsagulprom et al. (2016).

5



1.3. FOCUS OF THIS WORK

The second focus of this work is on imbalances. Many physical processes act on more
than one scale. For example processes in the atmosphere include waves with different
frequencies ranging from planetary waves to sound waves. If we want to forecast
the behaviour of the whole system, we cannot just ignore the small-scale activities
but we have to include them in the model. Often there exist balance relations
between the large- and small-scale dynamics of a system, which are approximately
preserved under the model evolution. When unbalanced model states are fed into
the model, oscillations on the small scale arise and ultimately that leads to non-
physical and unrealistic predictions of the system state. The general problem of
unbalanced fields for numerical weather prediction is of great importance since a
long time, as can be read in Lynch’s book ’The Emergence of Numerical Weather
Prediction: Richardson’s Dream’ (Lynch (2006)).

An easy example is the stiff spring pendulum, which is a Hamiltonian system with
Hamiltonian

Hε(q, p) =
1

2
‖p‖2 +

1

2ε2
(‖q‖ − 1)2 + g0

(
0 1

)
q (1.3.1)

and equations of motion

q̇ = ∇pH = p (1.3.2)

ṗ = −∇qH = − 1

ε2

(
q − q

‖q‖

)
− g0

(
0

1

)
. (1.3.3)

The state variable is x = (q, p) ∈ R4 containing the position q and the momenta p.
The parameter ε determines the stiffness of the spring and g0 is the gravitational
constant. If the spring is balanced at the beginning the pendulum would approxi-
mately move on the circle with radius 1 around the origin. The balance equation
can therefore be formulated as

g(q) = ‖q‖ − 1 (1.3.4)

and the so-called slow manifold (a notion introduced by Leith in 1980) is the set

{q ∈ R2 : ‖q‖ = 1}. (1.3.5)

If we start with an either elongated or compressed spring, or impulses that are not
tangential to the slow manifold, high frequency oscillations are excited.

6



1.4. OUTLINE

The filter algorithms that we consider are called linear ensemble transform filters
(LETFs) and have the characteristic of producing an analysis ensemble, which is a
linear combination of the forecast ensemble:

xj,ak =
M∑
i=1

xi,fk dij, j = 1, ...,M. (1.3.6)

That means, that non-linear balance relations are usually not preserved under an
assimilation step. In case of our pendulum, the assimilation step would elongate
(or compress) the spring, leading to high frequency oscillations of the spring that
are artificially introduced by the Data Assimilation procedure. The phenomenon
of Data Assimilation techniques producing unbalanced fields has been studied for
example in Bloom et al. (1996), Lorenc (2003a) and Ourmières et al. (2006).

In spatio-temporal systems, problems can arise due to the finite ensemble size. It is
therefore necessary to apply some kind of localisation technique as in Houtekamer
& Mitchell (1998), Houtekamer & Mitchell (2001), Hamill et al. (2001), Ott et al.
(2004), Szunyogh et al. (2005) and Hunt et al. (2007). Unfortunately, localisation
leads to even more imbalances, which is, for example, discussed in Houtekamer &
Mitchell (2005), Cohn et al. (1998), Lorenc (2003b), Mitchell et al. (2002), Oke et al.
(2007), Kepert (2009) and Greybush et al. (2011).

There exist many approaches on how create more balanced analysis fields in the
Data Assimilation context, for example Machenhauer (1977), Baer & Tribbia (1977),
Thépaut & Courtier (1991), Lynch & Huang (1992), Bloom et al. (1996), Polavarapu
et al. (2000), Gauthier & Thépaut (2001), Neef et al. (2006), Watkinson et al. (2007),
Bergemann & Reich (2010), Cotter (2013) and Gottwald (2014). We developed a
new strategy to overcome this issue, presented in Reinhardt et al. (2017).

1.4 Outline

We commence the scientific content of this thesis by providing an introduction to
the broad area of Data Assimilation in chapter 2. We will give an explanation of
variational Data Assimilation, followed by a description of Kalman filters, including
ensemble Kalman filters. Afterwards, particle filters will be presented, in particular
the sequential importance resampling and the ensemble transform particle filter. At

7



1.4. OUTLINE

the end of chapter 2, some common issues that arise when doing Data Assimilation,
due to the finite sample sizes and at times high dimensions of the problems on hand,
will be discussed. Two techniques to help deal with these issues, namely localisation
and inflation, will be presented.

Chapter 3 addresses hybrid filters, i.e. possibilities to bridge between the two big
groups of filters: Kalman based filters and importance sampling based filters. Two
different approaches will be presented and the performance of these filters on two
different models, namely the Lorenz-63 and the Lorenz-96 model, will be illustrated.
Both are popular toy models in the field of Data Assimilation since they possess
important key properties of models of the atmosphere and the oceans, the main
application areas for Data Assimilation.

In chapter 4, multi-scale models and the difficulties they pose concerning Data
Assimilation are explored. Namely, invalidation of balance relations between the
variables that act on different scales and eventually unrealistic results. At first four
multi-scale models will be introduced, two of which are spatially extended. After
presenting some existing methods to prevent imbalances, our new approach will be
explained and finally the results of our numerical experiments in which we applied
that approach to the four models will be shown.

8



Chapter 2

Basics

2.1 Variational Data Assimilation

The method of variational Data Assimilation has been developed in the context of
numerical weather prediction. One seeks the minimiser of a cost functional. In three
dimensional variational Data Assimilation (3D-Var), we assume we have obtained
a prior estimate of the state of a model at time tk+1 by propagating the posterior
estimate of the previous time point

xfk+1 =M(xak). (2.1.1)

We ignore the possible existence of a model error as in (1.2.1), but we model the
general uncertainty in the forecasts by a fixed background error covariance matrix
P b, which is constant in time. We assume that the new incoming observation can
be modelled by yobs(tk+1) = Hxk + εk with ε ∼ N (0, R), i.e. the measurement error
is assumed to be normally distributed with mean 0 and covariance matrix R. Now,
the forecast xfk+1 is updated to the analysis by minimising the cost functional

J (x) =
1

2

(
xf
k+1 − x

)T (
P b
)−1 (

xf
k+1 − x

)
+ (2.1.2)

1

2
(yobs(tk+1)−Hx)T R−1 (yobs(tk+1)−Hx) .

9



2.1. VARIATIONAL DATA ASSIMILATION

Solving this minimisation problem is essentially solving the ill-posed inverse problem
Hx = yobs(tk+1) using a weighted L2 norm ‖x− xf

k+1‖(P b)−1 as regularisation.

The gradient of J is given by

∇xJ (x) =
(
P b
)−1 (

xf
k+1 − x

)
+HTR−1 (yobs(tk+1)−Hx) . (2.1.3)

Therefore, the solution can be calculated explicitly as

xa
k+1 =

((
P b
)−1

+HTR−1H
)−1 ((

P b
)−1

xf
k+1 +HTR−1yobs(tk+1)

)
. (2.1.4)

Using the Sherman-Morrison-Woodbury formula

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1 (2.1.5)

we get

xa
k+1 =

(
P b − P bHT

(
R +HP bHT

)−1
HP b

) (
P b
)−1

xf
k+1 (2.1.6)

+
((
P b
)−1

+HTR−1H
)−1

HTR−1yobs(tk+1) (2.1.7)

= xf
k+1 − P bHT

(
R +HP bHT

)−1
Hxf

k+1 (2.1.8)

+
((
P b
)−1

+HTR−1H
)−1

HTR−1yobs(tk+1). (2.1.9)

Since ((
P b
)−1

+HTR−1H
)−1

HTR−1 = P bHT
(
R +HP bHT

)−1
, (2.1.10)

we finally obtain

xa
k+1 = xf

k+1 − P bHT
(
R +HP bHT

)−1 (
Hxf

k+1 − yobs(tk+1)
)
. (2.1.11)

An extension of this method is the four dimensional variational Data Assimilation
(4D-Var). In this procedure, a fourth dimension, namely time, is additionally taken
into account. There, we consider a whole time window tk−s, ..., tk, which we shift

10



2.2. KALMAN FILTERS

w.l.o.g. to t0, ..., ts, and the cost functional becomes

J (x) =
1

2

(
xf

0 − x
)T (

P b
)−1 (

xf
0 − x

)
(2.1.12)

+
1

2

s∑
i=0

(
yobs(ti)−HMi(x)

)T
R−1

(
yobs(ti)−HMi(x)

)
. (2.1.13)

Here,Mi(x) stands for the i-th fold application of the modelM on x.

2.2 Kalman filters

The Kalman filter was invented in 1958 by Swerling (Swerling (1958)). Two years
later, the Hungarian Rudolf E. Kálmán, gave a more complete and general descrip-
tion (Kalman (1960), Kalman & Bucy (1961)) and published it in a more prestigious
journal. That’s why it was named after him. A complaint by Swerling to the AIAA
Journal was ignored.

Let x0 ∼ N (µ0, P0), an initial Gaussian distribution π0 with mean µ0 ∈ Rd and
covariance matrix P0 ∈ Rd×d. Let the model and the measurements be linear with
normally distributed errors,

xk+1 = Axk + ηk, ηk ∼ N (0, Q) (2.2.1)

yobs
k = Hxk + εk, εk ∼ N (0, R), (2.2.2)

with A,Q ∈ Rd×d, H ∈ Rp×d and R ∈ Rp×p. Again, the first part of the sequential
procedure is the propagation of the probability distribution in time to obtain the
prior πk+1(x|yobs

1:k ) at time tk+1. We have given the posterior πk(x|yobs
1:k ) ∼ N (x̄a

k, P
a
k )

at time tk, where the superscript ’a’ denotes the analysis mean and covariance. We
use the Chapman-Kolmogorov equation (1.2.2) with transition kernel

π(x|x′) ∝ exp

(
−1

2
(x− Ax′)TQ−1(x− Ax′)

)
(2.2.3)

to obtain

πk+1(x|yobs
1:k ) ∝ exp

(
−1

2
(x− Ax̄a

k)
T(AP a

kA
T +Q)−1(x− Ax̄a

k)

)
. (2.2.4)

11



2.2. KALMAN FILTERS

The prior distribution at time tk+1 is therefore Gaussian with

x̄fk+1 = Ax̄a
k (2.2.5)

P f
k+1 = AP a

kA
T +Q, (2.2.6)

where the superscript ’f’ denotes the forecast mean and covariance.

For the assimilation step we have to apply Bayes’ formula (1.2.4) with the likelihood
function

π(yobs
k+1|x) ∝ exp

(
−1

2
(yobs
k+1 −Hx)TR−1(yobs

k+1 −Hx)

)
. (2.2.7)

This leads to

πk+1(x|yobs
1:k+1) ∝ exp

(
−1

2

[
(yobs
k+1 −Hx)TR−1(yobs

k+1 −Hx)+ (2.2.8)

(x− x̄f
k+1)T(P f

k+1)
−1

(x− x̄f
k+1)

])
∝ exp

(
−1

2
(x− x̄a

k+1)T(P a
k+1)−1(x− x̄a

k+1)

)
. (2.2.9)

When we expand the argument of the exponential in (2.2.8) and complete the square,
we deduce

P a
k+1 =

(
(P f

k+1)
−1

+HTR−1H
)−1

(2.2.10)

x̄a
k+1 = x̄f

k+1 − P a
k+1H

TR−1(Hx̄f
k+1 − yobs

k ). (2.2.11)

For details see Reich & Cotter (2015).

We see, that x̄a
k+1 agrees with the solution (2.1.11) of the minimising problem from

the 3D-Var method, for P b = P f
k+1. This is no coincidence. The exponent in (2.2.8)

agrees with the negative cost functional in 3D-Var. Therefore the 3D-Var solution
maximises the posterior probability and gives the so called MAP (maximum a-
posteriori probability) estimate. However, that this estimate agrees with the mean
is a special feature of Gaussian distributions.

The prior covariance matrix P f
k+1 is usually very large and therefore computationally

expensive to invert. Using the Sherman-Morrison-Woodbury formula (2.1.5) we

12



2.2. KALMAN FILTERS

rewrite

P a
k+1 = P f

k+1 − P f
k+1H

T(HP f
k+1H

T +R)−1HP f
k+1. (2.2.12)

We define the so called Kalman gain matrix

K = P f
k+1H

T(HP f
k+1H

T +R)−1 (2.2.13)

and finally obtain the Kalman formulas

x̄a
k+1 = x̄f

k+1 −K(Hx̄f
k+1 − yobs

k+1) (2.2.14)

P a
k+1 = P f

k+1 −KHP f
k+1. (2.2.15)

The term Hx̄f
k+1 − yobs

k+1 is called innovation and the Kalman gain matrix K deter-
mines the weight we give the innovation. If the observation error is large compared
to the uncertainty in our forecast, K will be relatively small and we stay close to the
forecast. If R is relatively small compared to P f

k+1, K will be large and we therefore
include more information about the measurements.

Since all involved distributions in this case are Gaussian for all time, it is sufficient
to keep track of the mean and covariance matrix and therefore formulas (2.2.5),
(2.2.6), (2.2.14) and (2.2.15) yield the whole algorithm.

If all the assumptions of having a linear model, a linear observation operator, a Gaus-
sian initial distribution and a Gaussian measurement error are met, the Kalman filter
indeed yields the exact solution to the filtering problem. However, these assump-
tions are very restrictive and rarely met in practical applications. Another issue
is that storing and updating the covariance matrix becomes excessively computa-
tionally expensive for high dimensional systems. This can, in fact, be remedied via
ensemble Kalman filters which we introduce in the following section.

2.2.1 Ensemble Kalman filters

Ensemble Kalman filters are essentially Monte Carlo approximations to the original
Kalman filter. If the assumptions for the Kalman filter hold, the ensemble Kalman
filter converges to the true solution of the filtering problem with increasing ensemble
size and is the best linear unbiased estimator (BLUE). But even if the system is non-
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2.2. KALMAN FILTERS

linear and the distributions are not exactly Gaussian, ensemble Kalman filters still
produce reasonable results. They are sufficiently robust.

The idea is that one starts with an ensemble of initial states x1
0, ..., x

M
0 such that the

empirical mean and covariance

x̄0,M =
M∑
i=1

xi0 (2.2.16)

P0,M =
M∑
i=1

(xi0 − x̄0,M)(xi0 − x̄0,M)T (2.2.17)

coincide with the mean and covariance of the initial distribution π0(x). Each en-
semble member at time tk is propagated until time tk+1 using the model. By that
we obtain the forecast ensemble at time tk+1 and we can deduce the empirical mean
and covariance of the prior distribution by

x̄f
k+1,M =

M∑
i=1

xik+1 (2.2.18)

P f
k+1,M =

M∑
i=1

(xik+1 − x̄k+1,M)(xik+1 − x̄k+1,M)T. (2.2.19)

Now, one can apply the Kalman formulas (2.2.14) and (2.2.15) to obtain the ap-
proximations of the posterior mean and covariance x̄a

k+1,M and P a
k+1,M .

However, we need an analysis ensemble instead of just the mean and covariance for
iterating the algorithm further. Therefore we have to create samples x1

k+1, ..., x
M
k+1,

such that their empirical mean and covariance coincide with x̄a
k+1,M and P a

k+1,M

respectively.

In what follows we drop the time index for simplicity. The simplest approach for
creating a suitable analysis ensemble is the Ensemble Kalman filter with perturbed
observations (EnKF) proposed in Burgers et al. (1998). The update of the ensemble
members is carried out as

xa
i = xf

i −K(Hxf
i − yobs − ξi), i = 1, ...,M (2.2.20)
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tk

yobs

t

x(t)

Figure 2.1: Systematic representation of an ensemble based filter

with the Kalman gain matrix

K = P f
MH

T(HP f
MH

T +R)−1. (2.2.21)

Here, ξi ∼ N (0, R), i = 1, ...,M are independent identically distributed Gaussian
random variables with the same covariance as the measurements. It is necessary to
ensure that the empirical covariance matrix of the analysis ensemble coincides with
the posterior covariance matrix that is obtained by applying the Kalman formula to
the empirical covariance matrix of the forecast ensemble. In the first formulation of
an ensemble Kalman filter in Evensen (1994), this perturbation of the observations
was missing and had to be corrected. In Figure (2.1) one can see a systematic
representation of an ensemble based filter.

This approach involves stochasticity and therefore introduces sampling issues. A
simple deterministic way to create a suitable analysis ensemble would be

xa
i = x̄a

i + (P a
M)

1
2 (P f

M)−
1
2 (xf

i − x̄f
M). (2.2.22)

Since P f
M and P a

M are usually very large matrices the computation of their square
roots is computationally not affordable in practice.

A less expensive way to create an analysis ensemble deterministically is the Ensemble
square root filter (ESRF), see for example Tippett et al. (2003). In order to derive
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that algorithm we write the ensemble covariance matrix in terms of the ensemble
anomalies matrix

P f
M =

1

M − 1
Af(Af)T (2.2.23)

with

Af :=
[
(xf

1 − x̄f
M) (xf

2 − x̄f
M) · · · (xf

M − x̄f
M)
]
∈ Rd×M . (2.2.24)

The Kalman formula for the covariance matrix (2.2.15) then becomes

P a
M = P f

M −KHP f
M (2.2.25)

= P f
M −

(
P f
MH

T
(
HP f

MH +R
)−1
)
HP f

M (2.2.26)

=
1

M − 1
Af(Af)T − 1

M − 1
Af(Af)THT

(
HP f

MH +R
)−1

H
1

M − 1
Af(Af)T

(2.2.27)

=
1

M − 1
Af

(
I − 1

M − 1
(HAf)T

(
HP f

MH +R
)−1

HAf

)
(Af)T (2.2.28)

=
1

M − 1
Aa(Aa)T. (2.2.29)

Now we seek a matrix S ∈ RM×M that satisfies

SST = I − 1

M − 1
(HAf)T

(
HP f

MH +R
)−1

HAf (2.2.30)

such that

Aa = AfS. (2.2.31)

We use the Sherman-Morrison-Woodbury formula (2.1.5) again and get

S =

(
I +

1

M − 1
(HAf)TR−1HAf

)− 1
2

. (2.2.32)

For taking the square root of a matrix one can use singular value decomposition and
therefore the algorithm has a complexity of O(M3). With that, the update for the
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mean (2.2.14) becomes

x̄a
M = x̄f

M −
1

M − 1
AfS2(Af)THTR−1(Hx̄f

M − yobs) (2.2.33)

=
M∑
i=1

xf
iwi (2.2.34)

with weights wi being the i-th entry of the column vector

w =
1

M
1− 1

M − 1
S2(Af)THTR−1(Hx̄f

M − yobs). (2.2.35)

The ensemble update is then defined as follows:

xa
j =

M∑
i=1

wix
f
i +

M∑
i=1

(xf
i − x̄f

M)sij (2.2.36)

=
M∑
i=1

xf
id

KF
ij (2.2.37)

where

dKF
ij = wi + sij −

1

M
. (2.2.38)

This is the form of a general linear ensemble transform filter (LETF). All the filters
we consider in this thesis belong to that group. This depiction emphasizes that the
posterior ensemble is a linear transformation of the prior ensemble.

2.2.2 Kalman-Bucy filter

In the classical Kalman filter, we assume that the observations become available
at discrete points in time. However, if they are coming in continuously, we need a
continuous formulation of the Kalman filter. We look at a linear model, which is
not discretised and given as a Itô stochastic differential equation

dx = Ax dt+Q
1
2 dw(t). (2.2.39)
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The observations are given by

dyobs = Hx dt+R
1
2 dr(t). (2.2.40)

A and Q are again d × d matrices, H ∈ Rp×d, R ∈ Rp×p and w(t) and r(t) denote
Brownian motion.

A continuous formulation of the classical Kalman filter is the Kalman-Bucy filter,
see Jazwinski (1970). It describes the propagation of the mean and the covariance
matrix by the two differential equations

dx̄ = Ax̄dt+ PHTR−1(dyobs −Hx̄dt) (2.2.41)
dP

dt
= AP + PAT +Q− PHTR−1HP. (2.2.42)

If we want to only look at the assimilation part of the procedure, the equations
simplify to

dx̄ = −PHTR−1(Hx̄dt− dyobs) (2.2.43)
P

dt
= −PHTR−1HP, (2.2.44)

by just leaving out the evolution of the mean and covariance due to the model. An
ensemble formulation of the Kalman-Bucy filter has been derived in Bergemann &
Reich (2012) and is given by

dzi = −1

2
PMH

TR−1(Hzidt+Hz̄dt− 2dyobs). (2.2.45)

We will see later on, that this formulation of the EnKF will be useful when dealing
with the problem of imbalances.

2.3 Particle filters

Although ensemble Kalman filters provide relatively good approximations of the
solution of the filtering problem, particle filters may be better suited when the as-
sumptions for the Kalman filter are strongly violated, i.e. when the model or the
observation operator become very non-linear or the initial distribution or the mea-
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surement error are highly non-Gaussian. These filters do not assume a certain fam-
ily of distributions but approximate the filtering distribution by using the empirical
measure determined by the ensemble members. It is a non-parametric approach,
whereas the Kalman filter based filters are parametric approaches. However, the
disadvantage of particle filters is that they require a significantly bigger ensemble
size. In fact, the number of required particles increases exponentially with the di-
mension of the model. This is colloquially known as the curse of dimensionality and
prohibits the use of particle filters for large scale Data Assimilation problems.

All the particle filters are based on importance sampling. The development of this
sampling technique began in the 1950’s with Kahn (1950) and Kahn (1956). Let X
and X ′ be random variables with densities πX and πX′ respectively such that the
measure µX is absolutely continuous with respect to the measure µX′ . Assume we
want to approximate the expectation value of X but have samples x′1, ..., x′M from
X ′. We use

E[X] ≈
M∑
i=1

wix
′
i (2.3.1)

with importance weights

wi ∝
πX(x′i)

πX′(x′i)
, (2.3.2)

with a normalisation constant chosen such that
∑M

i=1wi = 1.

We can use that sampling method for numerically solving the filtering problem, since
we have given samples of the prior distribution πf but want to find the mean of the
posterior πa. At time t1, the first point in time where observations become available,
the pdf of the posterior is given as π1(x)π(yobs

1 |x) and the weights therefore become

wi,1 ∝
π1(xf

i,1)π(yobs
1 |xf

i,1)

π1(xf
i,1)

= π(yobs
1 |xf

i,1), i = 1, ...,M. (2.3.3)

Applying that sequentially and propagating the ensemble members according to the
model equations, we get

wi,k+1 ∝ wi,kπ(yobs
k |xf

i,k), (2.3.4)

with w0
i = 1

M
. The posterior distribution is then estimated via the weighted empir-
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ical distribution

πk+1(x|yobs
1:k+1) =

M∑
i=1

wk+1
i δ(x− xf

i,k+1), (2.3.5)

where δ(x − xf
i,k+1) denotes the Dirac measure centred at xf

i,k+1. This procedure
is called sequential importance sampling (SIS) first coined by in Del Moral (1996).
For M → ∞ formula (2.3.5) should converge to the true solution of the filtering
problem but due to the finite ensemble size a phenomenon called filter degeneracy
occurs (Doucet (1998), Bickel et al. (2008), Snyder et al. (2008)). That means that
after a while the weights will become extremely non-uniform, i.e., one weight tends
to 1 whereas the others converge to 0. This can be also described by the effective
ensemble size:

Meff :=
1∑M

i=1w
2
i

. (2.3.6)

If the weights become highly non-uniform Meff tends to 1, whereas for the optimal
case of uniform weights, Meff is equal to the actual ensemble size M .

(a) M = 50, step 1 (b) M = 50, step 4 (c) M = 50, step 7

(d) M = 150, step 1 (e) M = 150, step 4 (f) M = 150, step 7

Figure 2.2: The weights of the sequential importance sampling after 1,4 and 7 time
steps for M = 50 and M = 150.
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Figure 2.3: The time evolution of the effective ensemble size Meff .

To illustrate that problem, we conducted an experiment and applied the SIS pro-
cedure to a model (the slow-fast Lorenz96 model, which will be described and used
later in this thesis again), with the ensemble sizes M = 50 and M = 150. In Figure
2.2 the weights are depicted and it is noticeable that they become more non-uniform
from step 1 to step 4 and finally step 7. In Figure 2.3 we can see the effective sample
size (2.3.6) plotted against time steps forM = 150. It is already significantly smaller
than the actual M in the first step and it rapidly converges towards 1.

2.3.1 SIR

A way to deal with this issue is including a resampling step in the algorithm if the
effective sample size drops below some tolerance value. Often, M

2
is used as tolerance

value. In that case a new ensemble of M equally weighted members is created from
the forecast ensemble xf

i. This is called sequential importance resampling (SIR),
which is the standard particle filter and has been invented by Gordon et al. (1993).

One way to resample is by applying multinomial resampling. It works by draw-
ing M times from a multinomial distribution Mult(M ;w1, ..., wM) with outcomes
1, ...,M and respective probabilities w1, ..., wM , which are our importance weights.
Ni denotes the amount of times the index i was drawn, and our new ensemble will
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then consist of Ni copies of particle i for i = 1, ...,M . Algorithm 1 shows how to
implement the calculation of the quantities Ni.

Algorithm 1 Multinomial Resampling
1: Ni := 0 ∀ i = 1, ...,M

2: for l = 1, ...,M do

3: draw u from uniform distribution U [0, 1]

4: solve i∗ = arg mini≥1

∑i
j=1 wj ≥ u

5: Ni∗ = Ni∗ + 1

6: end for

However, the resampling step basically creates copies of ensemble members with
high weights. In case the underlying model is deterministic, those particles will
remain equal. Therefore the ensemble size still has to be very high. See for example
Snyder et al. (2008) and Snyder et al. (2015).

In this filter, a posterior particle xa
i is drawn from the prior ensemble {xf

1, ..., x
f
M}

and thus can be written as

xa
j =

M∑
i=1

Mtijx
f
i, (2.3.7)

with
∑M

i=1 tij = 1
M

and E[
∑M

j=1 tij] = wi.

2.3.2 ETPF

Another approach is the ensemble transform particle filter (ETPF), which was devel-
oped by Reich (2013). We first define a coupling of two probability measures µX1 and
µX2 as the tuple Z = (X1, X2) with the marginal distributions X1 ∼ µX1 , X2 ∼ µX2

and the joint distribution Z ∼ µZ . The set of all possible joint measures is denoted
by Π(µX1 , µX2).

As an example we consider two univariate GaussiansX1 ∼ N (µ1, σ1), X2 ∼ N (µ2, σ2).
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The possible joint distributions are of the form

Z ∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
, (2.3.8)

where ρ ∈ [−1, 1] is the correlation coefficient. In Figure 2.4 we can see two different
couplings of X1 and X2 for µ1 = 1, µ2 = −1, σ1 = 1, σ2 = 0.6 for choices of ρ = 0.1

and ρ = 0.9.

(a) ρ = 0.1 (b) ρ = 0.9

Figure 2.4: Two different couplings between two Gaussian random variables X1 ∼
N (1, 1), X2 ∼ N (−1, 0.6).

As ρ → 1, the variance σ2
c = (1 − ρ2)σ2

2 of the conditional distribution π(x2|x1)

converges to zero and therefore, the conditional distribution converges to a Dirac
delta distribution. This kind of coupling is called a deterministic coupling and it
possesses a transport map T , such that X2 = T (X1) and µZ(dx1, dx2) = δ(x2 −
T (x1))µX1(dx1)dx2. The pdf of the conditional distribution can be written formally
as π(x2|x1) = δ(x2 − T (x1)). Such a coupling always produces a non-zero covari-
ance cov(X1, X2). In certain situations, for example when looking for a coupling
between the prior and posterior distribution, it can be necessary to find a coupling
that maximises the covariance between two measures. It can be shown, that this
simultaneously minimises the so called L2-Wasserstein distance

W (µX1 , µX2) =
√

E[(‖X1 −X2‖)2], (2.3.9)

which is known as the Monge-Kantorovitch problem.

The ETPF is based on this optimisation problem. Having the prior ensemble and
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2.3. PARTICLE FILTERS

the importance weights at hand, instead of the classical resampling step of the SIR,
we solve the following optimal transport problem:

T ∗ = arg min
T∈RM×M , tij=(T )ij≥0

{
M∑
i,j=1

tij‖xf
i − xf

j‖2

}
(2.3.10)

with respect to

M∑
i=1

tij =
1

M
,

M∑
j=1

tij = wi. (2.3.11)

The solution of that problem is a stochastic matrix which presents the optimal
coupling of the prior and posterior distribution in the sense that it minimises the
Euclidean distance

E[‖X f
M −Xa

M‖2]. (2.3.12)

The two marginals are the prior and the posterior distribution. The analysis ensem-
ble is given by

xa
j =

M∑
i=1

Mt∗ijx
f
i (2.3.13)

=:
M∑
i=1

dPF
ij x

f
i (2.3.14)

When we compare this to (2.3.7), we see that this procedure is a special case of re-
sampling, in fact it is a resampling that maximises the correlation between the prior
and posterior by creating an equally weighted posterior ensemble whose members
differ as little as possible from the prior ensemble members. It can be shown that
the ETPF is consistent in the sense that 1

M

∑M
j=1 f(xa

j) → E [f(Xa)] for M → ∞,
see Reich (2013).
However, example 8.11 in Reich & Cotter (2015) shows that even in the ETPF,
the covariance matrix is permanently underestimated and rejuvenation (explained
in the next section) is necessary. In Acevedo et al. (2017), a second-order accurate
version is presented. This means both, the first and second moment are estimated
correctly by the proposed algorithm.

Solving problem (2.3.10) with common algorithms makes the ETPF more expen-
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2.4. LOCALISATION AND INFLATION

sive than the ESRF since it would be of complexity M3 log(M). The FastEMD
algorithm by Pele & Werman (2009) reduced this complexity. However, for a one-
dimensional optimal transport problem, the solution can be computed with linear
complexity and therefore we consider an approximation by updating the components
of xf

i sequentially and then for each k = 1, ..., d solve

M∑
i,j=1

tij|xf
i,k − xf

j,k|2. (2.3.15)

2.4 Localisation and Inflation

In real world applications of Data Assimilation techniques, the dimension of the
state space d is usually much larger than the affordable ensemble size M . The em-
pirical covariance matrix only has rank M − 1 and is consequently not representing
the real covariance properly. Therefore, all ensemble based filters have the major
drawback of underestimating the error covariance matrix. This was first mentioned
in Houtekamer & Mitchell (1998). The systematic underestimation leads to overcon-
fidence in the forecast and therefore the observations become less influential which
can ultimately cause filter divergence. This issue can be remedied with the so called
multiplicative ensemble inflation, which was first introduced in Anderson & Ander-
son (1999). The idea is to artificially increase the ensemble spread by redefining the
update for the samples via

x̂f
i := x̄f

M + α(xf
i − x̄f

M) (2.4.1)

with α > 1, before the assimilation step. Another approach is additive inflation,
also called particle rejuvenation as in Pham (2001). In this method, one just adds
random values

ξi ∼ N (0, τ 2P a), i = 1, ...,M (2.4.2)

to the posterior ensemble members after the assimilation step, with P a being the
ensemble covariance matrix and τ > 0 a parameter, controlling how much the par-
ticles are changed. One mostly uses multiplicative inflation for ensemble Kalman
filters and rejuvenation for particle filters.
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2.4. LOCALISATION AND INFLATION

In particular, spatio-temporal systems exhibit problems due to the finite sample
size effects of filtering algorithms. Let the state space be Rd and we introduce
the notation of zi(xk) as the value of the i-th ensemble member, i = 1, ...,M ,
at grid point xk, k = 1, ..., d. Spurious correlations between grid points that are
physically distant from each other can occur in the empirical covariance matrix.
E.g. the covariance matrix might suggest that there is a high correlation between
the temperature in Tokyo and Berlin, which is not true in reality. A technique called
localisation can help to overcome this issue. There are two approaches, B-localisation
and R-localisation. The first one was invented in Houtekamer & Mitchell (1998) and
replaces the ensemble covariance matrix by

P̂ f
M = C ◦ P f

M . (2.4.3)

Here, ◦ denotes the Schur product and C is a suitable matrix. One possibility is to
choose

Cst = ρ

(
‖xs − xt‖

rloc

)
, (2.4.4)

with localisation radius rloc, ‖xs−xt‖ being the distance between grid points xs and
xt in physical space and ρ denoting the Gaspari-Cohn-function (Gaspari & Cohn
(1999))

ρ(z) =


−1

4
z5 + 1

2
z4 + 5

8
z3 − 5

3
z2 + 1, z < 1,

1
12
z5 − 1

2
z4 + 5

8
z3 + 5

3
z2 − 5z + 4− 2

3z
, 1 ≤ z ≤ 2,

0, z > 2.

(2.4.5)

Example 2.4.1. We draw samples from the distribution N (0100, I100), i.e. the
samples are in R100 and are normally distributed with mean 0 and the covariance
matrix being the identity. In Figure (2.5) we can see drastic spurious correlations in
the ensemble covariance matrix, using 10 samples compared to using 1000 samples.
We apply B-localisation with localisation radii 1, 10 and 20 and in Figure (2.6), we
can see that it significantly reduces the spurious correlations.

This straight forward approach cannot be applied when the ensemble covariance
matrix is not explicitly stored and updated, as in the case of the ESRF. Therefore,
Hunt et al came up with the idea of R-localisation (Hunt et al. (2007)), inventing
the local ensemble transform Kalman filter (LETKF). We write the update step of
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Figure 2.5: Estimation of the covariance matrix with M = 1000 ensemble members
(left) and M = 10 ensemble members (right).
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Figure 2.6: Localised empirical covariance matrix with localisation radius 1 (left),
10 (middle) and 20 (right).
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2.4. LOCALISATION AND INFLATION

a LETF separately for each grid point xk as

za
j (xk) =

M∑
i=1

zf
i(xk)dij(xk). (2.4.6)

With B-localisation, the components of the prior covariance matrix, that represent
long distance correlations between the grid points are artificially reduced. In con-
trast, with R-localisation, the components of the observation error covariance matrix
Rk that is used for the update of zj(xk) are altered. This is done in such a way,
that the observation error is artificially increased for those components, that are
spatially far away from the grid point xk. For each k = 1, ..., d, we define a diagonal
localisation matrix Ck ∈ Rp×p by

(Ck)ll = ρ

(
‖xl − xk‖

rloc

)
, (2.4.7)

with l = 1, ..., p being the indices of the grid points on which we have observations.
With that we define

R̃−1
k = Ck ◦R−1. (2.4.8)

When applying the ESRF separately for every k = 1, ..., d, we replace R by R̃k in
formulas (2.2.30) and (2.2.35), yielding Sk and wk respectively.

Therefore, when updating the value of zi at grid point xk the observation error for
observations that are outside twice the localisation radius are formally set to infinity.
This leads to not taking those observations into account.

Other works about localisation in Kalman based filters include Ott et al. (2004) and
Szunyogh et al. (2005), where the ESRF is also applied in every gridpoint separately
but in contrast to the LETKF, the matrices S, A and P f

M in formula (2.2.30) are
built using only grid points in the vicinity of the currently updated grid point. This
also makes the routine suitable for parallelisation.

van Leeuwen (2017) explains that the motivation for localisation in particle filters
is different from Kalman based filters, since these methods do not rely on the esti-
mation of the covariance. However, one wants to reduce the number of observations
at each grid point to avoid filter degeneracy. One cannot apply the concept of R- or
B-localisation to a standard SIR since the resampling step would destroy any spatial
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2.4. LOCALISATION AND INFLATION

regularity. However it is possible with the ETPF, which has been done by Cheng &
Reich (2015).

Publications dealing with the theoretical need for localisation of particle filters in-
clude Bengtsson et al. (2003), van Leeuwen (2003) and Rebeschini & van Handel
(2015), while practical methods (besides the aforementioned ETPF) are presented
in Poterjoy (2016) and Peny & Miyoshi (2016).
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Chapter 3

Hybrid filter

3.1 Likelihood Splitting

As aforementioned, ensemble Kalman filters are not consistent in the non-Gaussian
and non-linear case and particle filters suffer from the curse of dimensionality. To
exploit the advantages of both classes, there have been several studies about com-
bining the two families of filters. Those include modified particle filters in which the
EnKF posterior is used as a proposal distribution instead of the prior (Papadakis
et al. (2010), Mandel & Beezley (2009)), several approaches of approximating the
forecast distribution as a sum of Gaussians (Bengtsson et al. (2003), Sun et al.
(2009), Dovera & Della Rossa (2011)), the EnKPF by Frei & Künsch (2013), which
bridges between the EnKF and the SIR and a couple of hybrid variants suggested
by Nerger (2018) that bridge between the ETKF by Bishop et al. (2001) (another
variant of an ensemble Kalman filter) and the NETF by Tödter & Ahrens (2015)
(another variant of a particle filter).

We introduced a hybrid filter that bridges between the ESRF and the ETPF in
Chutsagulprom et al. (2016). In contrast to the EnKPF by Frei and Künsch from
2013, in this hybrid filter, the concept of localisation can be applied. However,
Robert & Künsch (2017) provide a way to apply localisation to the EnKPF.

30



3.1. LIKELIHOOD SPLITTING

The basic idea is to split the likelihood as follows given α ∈ [0, 1]:

π(yobs|x) ∝ exp

(
−1− α

2
(Hx− yobs)TR−1(Hx− yobs)

)
× (3.1.1)

exp
(
−α

2
(Hx− yobs)TR−1(Hx− yobs)

)
.

We have seen that both the ESRF and the ETPF belong to the class of linear
ensemble transform filters and therefore yield coefficients dKF

ij and dPF
ij determined

by (2.2.38) and (2.3.14) respectively.
For the prior ensemble xf

1, ..., x
f
M , we can now treat both factors of the likelihood

(3.1.1) separately. We apply an ESRF to the first factor and obtain

dKF
ij (α) = wKF

i (α)− 1

M
+ sij(α) (3.1.2)

with wKF
i (α) being the i-th entry of

wKF(α) :=
1

M
1− 1− α

M − 1
S(α)2(HAf)TR−1(Hx̄f

M − yobs) (3.1.3)

and (sij(α)) = {S(α)}ij with

S(α) :=

(
I +

1− α
M − 1

(HAf)TR−1HAf

)− 1
2

. (3.1.4)

Then, we apply an ETPF to the second one by calculating the importance weights

wPF
i (α) ∝ exp

(
−α

2
(Hxf

i − yobs)TR−1(Hxf
i − yobs)

)
(3.1.5)

and solve the optimal transport problem (2.3.10) obtaining t∗ij(α) and therefore ul-
timately dPF

ij (α). This leads to two different implementations of the hybrid filter:

(A) ETPF-ESRF

xh
j =

M∑
i=1

dPF
ij (α)xf

i (3.1.6)

xa
j =

M∑
i=1

dKF
ij (α)xh

i (3.1.7)
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(B) ESRF-ETPF

xh
j =

M∑
i=1

dKF
ij (α)xf

i (3.1.8)

xa
j =

M∑
i=1

dPF
ij (α)xh

i . (3.1.9)

The bridging parameter α can be chosen as a fixed value in [0, 1] with α = 0

corresponding to a pure ESRF and α = 1 to a pure ETPF. It can also be chosen
adaptively at every time step. For that, we recall the effective sample size of an
ETPF,

Meff(α) =
1∑M

i=1 w
PF
i (α)2

(3.1.10)

and consider the ratio

Meff(α)

M
=: θ. (3.1.11)

We now choose α such that θ is equal to a fixed reference value in
(

1
M
, 1
]
and note

that θ → 1 implies the weights converging towards uniformity, corresponding to the
ESRF (α = 0), whereas θ → 1

M
means, that the hybrid filter converges towards the

ETPF (α = 1).
However, this approach still leaves us with a tuning parameter. Another idea uses
the rule of thumb, that the spread of a good ensemble should be close to the RMSE√√√√1

d

d∑
k=1

(x̄k − xref
k )2, (3.1.12)

with d being the dimension of the state space (Stephenson & Doblas-Reyes (2000)).
A measure of the spread is spread(t) :=

√
1
d
Tr(PM(t)) where PM(t) is the empirical

covariance matrix at time t. Since the reference solution is obviously not available,
we have to use the RMSE in the observation space

RMSEobs =

√√√√1

p

p∑
k=1

(
(Hx̄)k − yobs

k

)2
, (3.1.13)

with p being the dimension of the observation space. Then we can choose α at each
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3.1. LIKELIHOOD SPLITTING

time point tn where we apply the filter, such that the difference |spread(tn)−RMSEobs(tn)|
is minimal. This can simply be done, by calculating the ensemble mean x̄ for each
α ∈ {0, 0.1, 0.2, ..., 1} and with these ten values at hand, one can choose the α, that
produced the smallest RMSEobs. Admittedly, this means, calculating the analysis
mean ten times, but since only the mean and not the whole ensemble is needed to
determine the RMSE, one does not have to solve the optimal transport problem,
which is part of the ETPF, when computing the optimal α.

3.1.1 Examples

Let us consider the well known Lorenz-63 model (Lorenz (1963)):

ẋ = σ(y − x) (3.1.14)

ẏ = x(ρ− z)− y (3.1.15)

ż = xy − βz. (3.1.16)

The equations are derived from Saltzman’s model for atmospheric convection and
describe a 2-dimensional fluid layer being uniformly heated from below and cooled
down from above. Hereby, x describes the intensity of convective motion, y the tem-
perature difference between ascending and descending currents and z is proportional
to the deviation from linearity of the vertical temperature profile. The parameters
σ, ρ, β represent physical parameters as for example the Prandtl number and the
Rayleigh number. For the standard parameter setting of σ = 10, ρ = 28 and β = 8

3

the system is chaotic with the famous butterfly shaped attractor, which can be seen
in Figure 3.1.
We apply the hybrid filter to it, observing only the x-component of the state vector
with an observation interval of ∆tobs = 0.12 and an observation error variance of
R = 8. We use a rejuvenation of 0.2, an initial variance of the ensemble of 1. We
conduct the experiment for 105 assimilation cycles for different ensemble sizes. The
results in terms of the time averaged RMSE (see 3.1.12), with

RMSE(t) =

√√√√√√1

3

∥∥∥∥∥∥∥
x̄(t)

ȳ(t)

z̄(t)

−
xref(t)

yref(t)

zref(t)


∥∥∥∥∥∥∥

2

(3.1.17)

plotted against the bridging parameters α and θ are presented in Figure 3.2. We can
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Figure 3.1: Attractor of the Lorenz-63 model with parameters σ = 10, ρ = 28, β =
8
3
.

M=15

M=20

M=25

M=30

M=35

(a) fixed α

M=15

M=20

M=25

M=30

M=35

(b) adaptive α

Figure 3.2: RMSE values for the hybrid filter (ETPF-ESRF) applied to the Lorenz-
63 model plotted against the bridging parameter α on the left and against θ on the
right. Both plots also contain the result of the error-vs-spread criterion to choose α
as dotted lines for every ensemble size.
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M=15
M=20
M=25
M=30
M=35

Figure 3.3: RMSE values for the hybrid filter (ESRF-ETPF) applied to the Lorenz-
63 model plotted against the bridging parameter α.

clearly see that even for a small ensemble size of M = 15, the bridging parameter α
being larger than zero (which would correspond to the pure ESRF) is beneficial. The
larger the ensemble size, the larger is the optimal value of α. For the adaptive case,
θ = 1 corresponds to the pure ESRF and for all ensemble sizes larger than M = 15

we can see that a choice of θ < 1 yields a smaller error. Overall, we obtain worse
results with the adaptive approaches than for fixed α and it seems like the error-vs-
spread criterion works slightly better than using the effective sample size for smaller
ensemble sizes but worse for larger ones. In fact, the optimal results achieved by the
adaptive approach which is based on the effective ensemble size become comparable
to the optimal results of the hybrid using a fixed bridging parameter for larger
ensemble sizes.

In Figure 3.3, we show the results for using version (B), the ESRF-ETPF implemen-
tation for fixed α. This approach does not work that well, presumably because the
prior distributions are more non-Gaussian than the posterior distributions. There-
fore it is beneficial to treat the prior ensemble at first with an ETPF and only apply
the ESRF afterwards.

As we have seen, R-localisation is applicable to both, the ESRF and the ETPF.
We can therefore use a localised hybrid filter for spatially extended systems. Let us
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consider the Lorenz-96 model (Lorenz (1996)):

żl = (zl+1 − zl−2)zl−1 − zl + F, l = 1, ..., 40, (3.1.18)

which is another chaotic toy model for dynamics in the atmosphere. Here, the zl
can be thought of as values of some atmospheric quantity on a latitude circle. As
in equations describing processes in the atmosphere, this model contains external
forcing (the constant F ), internal dissipation (described by the linear term) and
some kind of advection (simulated by the quadratic terms). Another important
property of this model is, that the total energy

E =
1

2

40∑
l=1

z2
l (3.1.19)

is preserved under the advective part (zl+1 − zl−2)zl−1 of the model evolution. This
model becomes chaotic for somewhat large values of F and we will use F = 8 for all
experiments with this model throughout this thesis.
We apply the ETPF-ESRF hybrid filter to that model with observing every other
grid point in time intervals of ∆tobs = 0.11 and an error variance of R = 8. We use
a rejuvenation parameter (see formula (2.4.2)) of τ = 0.2 and an initial variance of 1

again and we choose the localisation radius to be 4. We perform 50,000 assimilation
cycles and show the results for different ensemble sizes from M = 20 up to M = 40

in Figure 3.4. Figure 3.5 shows the same results for only M = 20, 25 and M = 30

on a smaller window of the bridging parameter and compares it to the results of
the adaptive hybrid. As in the experiment with the Lorenz-63 model, we plot the
results of the error-vs-spread criterion for the adaptive choice of α as dotted lines.

Again, it is clearly visible that a value of α greater than 0 but smaller than 1 is better
than choosing α = 0 or α = 1. The optimal α increases with the ensemble size again,
which is to be expected. Again, we obtain poorer results with the adaptive approach
than with the fixed bridging parameter. The error-vs-spread criterion yields again
comparable results to the choice of α via the effective sample size, which are again
worse than the results for fixed α.
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M=20
M=25
M=30
M=40

Figure 3.4: RMSE values for the hybrid filter (ETPF-ESRF) applied to the Lorenz-
96 model plotted against the bridging parameter α ∈ [0, 1].

M=20

M=25

M=30

(a) fixed α

M=20

M=25

M=30

(b) adaptive α

Figure 3.5: RMSE values for the hybrid filter (ETPF-ESRF) applied to the Lorenz-
96 model plotted against the bridging parameter α ∈ [0, 0.6] on the left and against
θ ∈ [0.75, 1] on the right.

37



3.1. LIKELIHOOD SPLITTING

Figure 3.6: Pdfs of bimodal distributions with increasing distance between the two
modes.

3.1.2 Adaptive choice of α via KL-divergence

In this section we present a different idea on how to choose the bridging parameter
α adaptively for a very specific case. Therefore we created M samples X1

i , ..., X
M
i

for i = 1, ..., 11 of eleven different distributions. The first distribution P1 is Gaussian
with mean µ1 = 0 and variance σ2 = 1. The other distributions Pi, i = 2, ..., 11

are consisting of two Gaussians. One being P1 and the second one being a Gaussian
with mean µi = i− 1 and variance σ2 = 1 for i = 2, ..., 11. Therefore the two humps
of the two Gaussians are increasingly far apart with increasing i. Figure 3.6 shows
the pdfs of some of the distributions.

The Kullback-Leibler-Divergence (KL-Divergence) (Kullback & Leibler (1951))

KL(p||q) =

∫ ∞
−∞

p(x)log
p(x)

q(x)
dx (3.1.20)

measures the ’inefficiency’ that occurs when a true underlying distribution with pdf
p is approximated by another distribution with pdf q. It can, therefore, be seen as a
kind of distance measure between two distributions. This is only a heuristic, since it
is not symmetric and it does not satisfy the triangle inequality. We now estimate the
KL-Divergence of the distribution represented by our sample, that is the distribution
with pdf p, and a theoretical Gaussian distribution with mean µ = X̄i and variance
σ2 = 1

M−1

∑M
k=1(Xk

i − X̄i)
2, being the distribution with pdf q. I.e. we are taking the
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Figure 3.7: Estimated KL-Divergence between a bi-modal distribution (with in-
creasing distance between the two modes) and a Gaussian.

empirical mean and variance as the mean and variance for the Gaussian we want to
compare the ensemble to. To get an estimate for (3.1.20) we need to approximate
p(x) (q(x) is given, since it is the pdf of a Gaussian). In order to do so, for each
i = 1, ..., 11 we first create the empirical distribution function from the samples
X1
i , ..., X

M
i

F̂M(t) =
1

M

M∑
j=1

1Xj
i<t

(3.1.21)

and afterwards we approximate its derivative, by first smoothing it via convolution
with a mollifier φ(x) = 1

ε
cexp

(
− 1

1−|x|2

)
, with c being a normalisation constant

and ε a tuning parameter, influencing how intense the smoothing is going to be.
Afterwards, we apply the difference quotient. The KL-Divergence is estimated in
that way for every distribution Pi 1000 times (every time drawing a new ensemble
of size M from Pi) and then the average KL-Divergence over those 1000 repeats is
taken. In Figure 3.7 you can see the results for M = 10 and 50.

Those results are exactly what we would expect, the larger the distance of the two
Gaussians forming Pi, the larger the KL-Divergence becomes. Clearly, for i = 1,
meaning µ1 = 0, the KL-Divergence between P1 and the reference Gaussian must
be 0, but due to our finite samplesize, the estimate of the KL-Divergence is not.
Therefore we normalise the estimated KL curve by subtracting the first entry. Hence,
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Figure 3.8: Effective sample size normalised by actual sample size of samples from
bimodal distributions (with increasing distance between the two modes).

we define a parameter

p1(i) := KL(i)−KL(1), i = 1, ..., 11. (3.1.22)

We repeat the same procedure with the ratio of the effective sample size Meff =∑M
i=1

1
w2
i
and M , and set a second parameter

p2(i) :=
Meff(i)

M
, i = 1, ..., 11. (3.1.23)

In Figure 3.8, p2 is plotted against the distance of the two modes of the distributions.

Now, for every distribution Pi, i = 1, ..., 11, we set xref
i = X∗i with X∗i being a

randomly picked sample from the ensemble X1
i , ..., X

M
i and yobs

i = xref
i + ε, with

ε ∼ N (0, ρ). From the definition of yobs
i , it follows that the observation operator

is H = 1 and the measurement error variance is ρ. A hybrid filter is applied 1000
times to every distribution Pi (every time to another ensemble drawn from Pi) with
α = 0, 0.1, ..., 1. Each time the α that yields the minimal RMSE after applying the
Hybrid filter is chosen, where α = 0 means applying a pure EnKF and α = 1 means
applying a pure ETPF. After the 1000 repeats we take the average of the chosen α.
In Figure 3.9 you can see the results for ρ = 5, forM = 10 and 50. Note that we only
applied a single assimilation step and not a sequential procedure in time. Therefore
the phenomenon of weight degeneracy in the ETPF part of the hybrid filter does not
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Figure 3.9: Chosen ’optimal’ α for the hybrid filter plotted against the distance of
the modes of the bimodal distribution that the ensemble represents.

come into effect strongly and the ’optimal’ α are therefore much larger than they
would be in a time dependent sequential application. This is especially noticeable
in the fact that the ’optimal’ α for i = 1 (meaning the underlying distribution is
purely Gaussian) is approximately 0.5, which makes sense since in that case both,
the ESRF and the ETPF, should be unbiased estimators.

Now we want to learn how to choose the optimal α, knowing p1 and p2 of the
ensemble. On taking the ansatz

α(p1, p2) = β1 + β2 p1 + β3 p2 + β4 p
2
1 + β5 p

2
2 + β6 p1p2, (3.1.24)

define the matrix

AM =

1 pM1 (1) pM2 (1) pM1 (1)
2

pM2 (1)
2

pM1 (1)pM2 (1)
...

...
...

...
...

...
1 pM1 (11) pM2 (11) pM1 (11)

2
pM2 (11)

2
pM1 (11)pM2 (11)

 . (3.1.25)

We also have the vector (
αM(1) · · ·αM(11)

)
(3.1.26)

at hand, as we just explained how to experimentally find the ’optimal’ α. We fit the
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parameters with the results from M = 10 and M = 50 by solving the linear system

 A10

A50


 β1

...
β6

 =



α10(1)
...

α10(11)

α50(1)
...

α50(11)


(3.1.27)

to obtain 

β1

β2

β3

β4

β5

β6


=



2.47

−1.53

−4.79

0.14

2.89

2.34


. (3.1.28)

Now this β can be used to estimate the curves αM for different M , by creating the
matrix AM and calculating

α̃M = AMβ. (3.1.29)

We can see in Figure 3.10 the experimental curves αM for M = 10, 20, 30, 50 and
the estimated curves α̃M for the same sample sizes in comparison. Note that the
experimental results forM = 20 and 30 have not been used for fitting the parameters
β1, ..., β6.

One can see upon inspection that the estimated choice of α is very close to the α
that was actually chosen in the experiment in order to minimise the RMSE.
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(a) M = 10 (b) M = 20

(c) M = 30 (d) M = 50

Figure 3.10: Estimated and experimental curves α̃M and αM respectively for the
hybrid filter applied to bimodal distributions.

3.2 Gaussian mixture approach

Another approach to bridge between the group of Kalman filters and particle filters is
the following: given a forecast ensemble xf

i, i = 1, . . . ,M , and a bridging parameter
α ∈ [0, 1], we define the prior distribution to be the following Gaussian mixture:

πf
α(x) =

1

M

M∑
i=1

N (x; x̄f
i, (2α− α2)P f

M). (3.2.1)
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Here,

P f
M =

1

M − 1

M∑
i=1

(xf
i − x̄f)(xf

i − x̄f)T (3.2.2)

denotes the empirical covariance matrix,

x̄f =
1

M

M∑
i=1

xf
i (3.2.3)

is the empirical mean, and

x̄f
i := xf

i − α(xf
i − x̄f) (3.2.4)

are the centres of the components of the Gaussian mixture. By this definition, the
mean and covariance matrix of πf

α are equal to x̄f and P f
M respectively, regardless

of the value of the bridging parameter α. For α = 1, the prior (3.2.1) reduces into
a single Gaussian and for α = 0, it leads to the empirical measure

πf
0(x) =

1

M

M∑
i=1

δ(x− xf
i) . (3.2.5)

This approximation goes back to Liu & West (2001).

If we assume that the likelihood is Gaussian with linear forward model H and
measurement error covariance matrix R, then the posterior distribution is again a
weighted Gaussian mixture, see for example Alspach & Sorenson (1972). In partic-
ular, the weights are given by

wi ∝ exp

(
−1

2
(Hx̄f

i − yobs)
T((2α− α2)HP f

MH
T +R)−1(Hx̄f

i − yobs)

)
. (3.2.6)

The centres and covariance matrix of the posterior Gaussian mixture follow from
applying a Kalman filter to each mixture component separately. Hence, we can
calculate a Kalman gain matrix

K =
(2α− α2)P f

MH
T

ρ+ (2α− α2)HP f
MH

T
(3.2.7)
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and from this,

x̄h
i = x̄f

i −K(Hx̄f
i − yobs), (3.2.8)

P a
M = (2α− α2)P f

M −KH(2α− α2)P f
M . (3.2.9)

Then, the posterior is given by the formula

πa
α(x) =

M∑
i=1

wi N (x; x̄h
i , P

a
M). (3.2.10)

Again note that α = 1 leads to equal weights while α = 0 leads to the classic
importance weights associated with (3.2.5).

The analysis means (3.2.8) have a superscript ’h’ here, because they are not yet
representing the final centres, but rather an intermediate step. In fact, we can now
apply an ETPF by solving the optimal transport problem (2.3.10) for the ensemble
x̄h

1, ..., x̄
h
M with the weights given by (3.2.6). This produces equally weighted analysis

centres (x̄a
i )
M
i=1 for each Gaussian mixture component. Afterwards, one has to sample

from each component to obtain the analysis ensemble. In the following examples,
we do that via

xa
i = x̄a

i + (P a
M)

1
2
(
(2α− α2)P f

M

)− 1
2 (xf

i − x̄f
i) (3.2.11)

but for higher dimensional problems, this will be too expensive and one can use an
EnKF or ESRF.

As mentioned in the beginning of this chapter, adapting the Kalman filter to be ap-
plied to Gaussian mixtures, has already been done, in order to represent the involved
probability distributions in a less restrictive way than assuming actual Gaussianity.
See for example Bengtsson et al. (2003), Sun et al. (2009) and Dovera & Della Rossa
(2011). Although these approaches base on the same concept of representing the
posterior in the form (3.2.10), they do not include a bridging parameter that controls
the proportion of the Kalman filtering and the importance sampling in the update
step. There is also no ETPF used in the other approaches to produce equally
weighted analysis centres.
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M=15
M=20
M=25
M=30
M=35

Figure 3.11: RMSE values for the Gaussian mixture hybrid filter applied to the
Lorenz-63 model plotted against the bridging parameter α. Remark: now α = 0
corresponds to ETPF and α = 1 corresponds to EnKF.

3.2.1 Example: Lorenz-63

We apply this again to the Lorenz-63 model with the same setting as before in the
beginning of this chapter. It turns out, that this approach does not work quite as
well as the first hybrid approach (which was based on the likelihood splitting), at
least for this example. The results can be seen in Figure 3.11. Again, it can be
seen for all ensemble sizes but M = 15, that the RMSE becomes the smallest for an
α ∈ (0, 1). The optimal α is decreasing with increasing ensemble size, since in this
case, α = 0 corresponds to a pure ETPF and α = 1 to a Kalman filter. However, in
general, the errors are bigger than with the hybrid, that was based on splitting the
likelihood (compare to Figure 3.2).

3.2.2 Example: Lorenz-96

When applying this version of the hybrid to the Lorenz-96 model, there are two
minor adjustments that need to be made. In formula (3.2.6), we have to calculate
the weights for every grid point j = 1, ..., 40 separately since we want to apply
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M=20
M=25
M=30
M=40

Figure 3.12: RMSE values for the Gaussian mixture hybrid filter applied to the
Lorenz-96 model plotted against the bridging parameter α.

localisation. Therefore, we get

yi := Hz̄f
i ∈ Rp

b := diag(HP f
MH

T) ∈ Rp

r := diag(R) ∈ Rp
(3.2.12)

wji ∝ exp

(
−1

2

p∑
k=1

ρkj
(yki − ykobs)

2

b(k) + r(k)

)
, (3.2.13)

with p being the number of observed grid points and ρkj the localisation factor
for applying R-localisation depending on the distance of the k-th and j-th grid
point. The second difference is, that in place of the P f

M we use the localised version
P̂ f
M = C ◦ P f

M as in formula (2.4.3). Thus, we are using both, R-localisation in the
weights and also B-localisation. For both, we use a localisation radius of 4. Figure
3.12 shows the values of the RMSEs for the Gaussian mixture hybrid applied to
the Lorenz-96 model in the same setting as before. For this example the Gaussian
mixture approach works quite well, and yields almost the same results as the other
hybrid (compare to Figure 3.4).
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Chapter 4

Multi-scale models

The assimilation procedure applies an instantaneous change of the state of a system
every time an observation becomes available by nudging the system closer to the ob-
servation. A multi-scale model usually fulfils some kind of balance relation between
the variables that act on the different scales. As we have seen, the analysis ensemble
is a linear transformation of the forecast ensemble and therefore the analysis ensem-
ble members will no longer be balanced, unless the balance relation of the model
is linear. When those unbalanced model states are fed into the model equations,
high frequency oscillations are excited. The general problem of unbalanced initial
conditions leading to non-physical predictions and introducing fast oscillations when
considering systems with more than one time scale, and ways in which to mitigate
this issue, has been investigated by several researchers, since it has been a problem
in the field of numerical weather forecasting from the beginning. In his book ’The
Emergence of Numerical Weather Prediction: Richardson’s Dream’ (Lynch (2006)),
Lynch writes that the reason why Richardson’s forecast of the change of surface
pressure failed so drastically was that he started off with an unbalanced initial field.
One of the other interesting points he presents is that, while the existence of the
so-called slow manifold, introduced by Lynch in 1980, can be proven for some very
simple equation systems, there have been many papers discussing the existence of a
slow manifold in more complicated models. Lorenz published two papers, one called
’On the existence of a slow manifold’ (Lorenz (1986)) and one ’On the nonexistence
of a slow manifold’ (Lorenz & Krishnamurthy (1987)) in 1986 and 1987 respectively.
Other examples include Jacobs (1991), Lorenz (1992), Boyd (1994), Fowler & Kem-
ber (1996) and Camassa & Tin (1996). Lynch’s conclusion is that, despite it being
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generally accepted that a slow manifold for realistic atmospheric models does not
exist in the mathematical sense, the fast oscillations are of small amplitude and the
atmosphere stays close to a balanced state. The issue of Data Assimilation tech-
niques producing unbalanced fields has been studied for example in Bloom et al.
(1996), Lorenc (2003a) and Ourmières et al. (2006).

In this chapter we will first introduce the concept of multi-scale models, balance
and the issues of Data Assimilation methods in this context, by initially considering
highly-oscillatory Hamiltonian models followed by spatially extended models. This
discussion will be accompanied with a review of existing methods to prevent imbal-
ance caused by Data Assimilation and afterwards, a new method will be introduced.
At the end of this chapter, this method will be tested on the mentioned models in
form of numerical simulations and the results will be presented.

4.1 Highly-oscillatory Hamiltonian models

Lynch states on page 137 in his book, that ’the solutions to the balance problem
for this system [the stiff spring pendulum] have much wider applicability and are
relevant to the problems arising in general forecasting models’. Let us consider a
generalisation of that. The highly-oscillatory Hamiltonian system is a model with
energy

Hε(p, q) =
1

2
pTM−1p+

1

2ε2
g(q)TKg(q) + V (q), (4.1.1)

where M ∈ RN×N is a diagonal matrix of masses, V : RN → R is a potential,
g : RN → RL, L ≥ 1 is the balance relation, K ∈ RL×L is a diagonal matrix of
force constants and ε > 0 is a stiffness parameter. For reasons of simplicity, we use
M = I. The equations of motion are given by

q̇ = p (4.1.2)

ṗ = −ε−2G(q)TKg(q)−∇qV (q), (4.1.3)

where G(q) := Dg(q) ∈ RL×N denotes the Jacobian matrix of g at q. This type of
model is problematic concerning its numerical treatment for the limit ε→ 0.
If we want a solution (pε(t), qε(t)) to be of bounded energy, i.e.

Hε(pε(t), qε(t)) = O(ε0), (4.1.4)
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the imbalance g(qε(t)) must be of order ε. In other words, solutions qε(t) have to
stay close to the so called slow manifold

M = {q ∈ RN : g(q) = 0}. (4.1.5)

Since G(q)T denotes the derivative of g(q), its columns are orthogonal to the curves
defined in equation (4.1.5) at q and give the fast direction of the momentum at that
point. Let B(q)T be orthogonal to G(q)T in the sense that G(q)B(q)T = 0 and
therefore a matrix containing the tangential vectors of the curves in point q and the
slow direction of the momentum. We can now decompose the momentum vector
into the fast and the slow part via

p = pfast + pslow (4.1.6)

= G(q)Tpx +B(q)Tpy, (4.1.7)

which is equivalent to

B(q)Tpy = p−G(q)Tpx, (4.1.8)

with px, py ∈ RL×1. Since G(q)B(q)T = 0, we get G(q)
(
p−G(q)Tpx

)
= 0 and from

that

px =
(
G(q)G(q)T

)−1
G(q)p. (4.1.9)

Hence, the fast part of the momentum vector p is

pfast = G(q)Tpx (4.1.10)

= G(q)T
(
G(q)G(q)T

)−1
G(q)p. (4.1.11)

Note that

pslow = p− pfast. (4.1.12)

From (4.1.10) follows

pT
fastpfast = pT

xG(q)G(q)Tpx (4.1.13)

= (G(q)p)T (G(q)G(q)T
)−1

G(q)p (4.1.14)
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and from that we can deduce that the Hamiltonian describing the energy of the fast
oscillations looks as follows

Hε
osc(q, p) =

1

2
(G(q)p)T(G(q)G(q)T)−1G(q)p+

1

2ε2
g(q)TKg(q). (4.1.15)

Let us define the fast position variable x := g(q) and the fast impulse is px as defined
above. The oscillatory Hamiltonian with respect to these variables is the following

Hε
osc(x, px) =

1

2
pT
x (G(q)G(q)T)pT

x +
1

2ε2
xTKx. (4.1.16)

and with

ẋ = ġ(q) = G(q)p = G(q)G(q)Tpx = ∇pxH
ε
osc (4.1.17)

ṗx = g̈(g) = −G(q)

[
∇V (q) +G(q)TK

ε2
g(q)

]
+ gqq[p, p] (4.1.18)

≈ −G(q)G(q)T 1

ε2
Kx (4.1.19)

we see that this system is harmonic in x and px with frequency

ωε =

√
G(q)G(q)T

K

ε2
. (4.1.20)

We will consider two different scenarios that fit into that model family to investigate
how Data Assimilation procedures destroy balance relations and to demonstrate how
we are able to overcome that issue with a post-processing step after the assimilation.

4.1.1 Scenario A

The first one provides a simple class of toy problems that represent balanced flow
regimes in atmosphere-ocean dynamics, see Reich & Hundertmark (2011). We look
at solutions qε(t), pε(t) of (4.1.2)–(4.1.3) with bounded first derivative

q̇ε(t) = O(ε0) and ṗε(t) = O(ε0). (4.1.21)
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Looking again at equation (4.1.3)

ṗ = −ε−2G(q)TKg(q)−∇qV (q),

we can deduce
∇qV (qε) + ε−2G(qε)Kg(qε) = O(ε0) (4.1.22)

and therefore g(qε(t)) = O(ε2). Formula (4.1.15) describes the oscillatory Hamilto-
nian as the sum of its kinetic energy part and its potential energy part. The law of
equipartition of energy, first postulated by John James Waterston in 1845, states,
that both parts must be equal in a statistical sense. It follows

Hε
osc(q

ε(t), pε(t)) = O(ε2) (4.1.23)

and consequently G(qε(t))pε(t) = O(ε). From now on zε(t) = (qε(t), pε(t)). The
tangent manifold of the models we consider in this scenario is defined by

TM = {(q, p) ∈ R2N : g(q) = 0, G(q)p = 0}, (4.1.24)

and solutions with żε(t) = O(ε0) stay ε-close to it, see for example Rubin & Ungar
(1957) and Bornemann & Schütte (1997).
To fulfill (4.1.23) at the initial time, we use initial conditions of the form

qε0 := q0
0 + ε2q̃0 (4.1.25)

pε0 := p0
0 + εp̃0 (4.1.26)

with (q0
0, p

0
0) ∈ TM and q̃0, p̃0 ∈ RN .

Looking at the limit for ε→ 0, the main results of Rubin & Ungar (1957) state that
solutions to the initial value problem

q̇ε = pε qε(0) = qε0 (4.1.27)

ṗε = −ε−2G(qε)TKg(qε)−∇qV (qε) pε(0) = pε0 (4.1.28)

converge to solutions (q, p) of the differential algebraic limit system

q̇ = p q(0) = q0
0 ∈M (4.1.29)

ṗ = −G(q)TKλ−∇qV (q) p(0) = p0
0 ∈ Tq0M (4.1.30)

0 = g(q) . (4.1.31)
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Hereby λ ∈ RL is the corresponding Lagrange multiplier, which is determined by

0 = g̈(q) = −G(q)
[
∇V (q) +G(q)TKλ

]
+ gqq(q)[p, p]. (4.1.32)

In order for the constraint formulation (4.1.29)–(4.1.31) to be consistent with the
balanced free dynamics, it is necessary that

g(qε) = ε2λ(qε, pε), (4.1.33)

where λ(q, p) is determined by (4.1.32). It is demonstrated by Reich (1995), that
we can improve the zero-order balance relation (q, p) ∈ TM therefore by (4.1.33).

It should be noted that initial conditions of the form

qε0 := q0
0 + εq̃0 q0

0 ∈M, q̃0 ∈ RN (4.1.34)

pε0 := p̃0 p̃0 ∈ RN . (4.1.35)

lead to an oscillatory energy (4.1.15) which is of order O(ε0). In this case, an addi-
tional force term appears in the limiting equations (4.1.29)–(4.1.31), as we will see
later in this chapter. See also Rubin & Ungar (1957), Takens (1980), Bornemann &
Schütte (1997) for more details.

We now describe the stiff elastic double pendulum as an example of (4.1.27)-(4.1.28)
as we will use it later for numerical experiments. It corresponds to system (4.1.1)–
(4.1.3) with q, p ∈ RN=4 and

g(q) =

(
‖q1‖ − l1

‖q1 − q2‖ − l2

)
, (4.1.36)

with q1 and q2 denoting the two mass points of the systems and l1 and l2 the lengths
of the two pendulums. Thus, for this example we have

G(q)T =


q1x
‖q1‖

q1x−q2x
‖q1−q2‖

q1y
‖q1‖

q1y−q2y
‖q1−q2‖

0 − q1x−q2x
‖q1−q2‖

0 − q1y−q2y
‖q1−q2‖

 . (4.1.37)

It is a simple interacting multi-scale model which is useful for Data Assimilation
experiments due to its chaotic behaviour. In Figure 4.1 we show how the positions
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of a solution with initial conditions of the form (4.1.25)–(4.1.26) develop in time
compared to a solution that has more general initial conditions, and in Figure 4.2 we
show the time evolution of the total energy (4.1.1) and the oscillatory energy (4.1.15)
for both sets of initial conditions. Here, we used ε = 10−3, V (q) = 10(q2 + q4), K =

diag(1, 0.04), l1 = l2 = 1 to create these figures. We will also use these values in
later parts for numerical experiments.

q1

-2 -1 0 1 2

q 2

-2

-1

0

1

2 ∥g(qε0)∥ = 0, ∥G(qε0)p
ε
0∥ = 0

∥g(qε0)∥ = 0, ∥G(qε0)p
ε
0∥ = 5

Figure 4.1: Evolution in time of a solution of the double pendulum model with
initial conditions of the form (4.1.25)–(4.1.26) compared to a solution that has more
general initial conditions, i.e. unbalanced initial velocity.

In Figure 4.3 we rerun the balanced solution for a series of decreasing values of ε
and monitor values of g(q). As one would expect g(q) is of order ε2 and g̃ := g(q)−
ε2λ(q, p) is slightly better preserved under the model dynamics than g, especially
for small values of ε.

4.1.2 Scenario B

This second scenario couples the model (4.1.2)–(4.1.3) to a heat bath, which gives
rise to Langevin dynamics of the form

q̇ = p (4.1.38)

ṗ = −ε−2G(q)TKg(q)−∇qV (q)− γp+
√

2γkBTẆ , (4.1.39)
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time
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H
ε
(q
,p
)

-2

0

2

4

6

8

10

12

14

∥g(qε0)∥ = 0, ∥G(qε0)p
ε
0∥ = 0

∥g(qε0)∥ = 0, ∥G(qε0)p
ε
0∥ = 5

(a) Hε(q, p)

time
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H
ε os
c(
q,
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ε
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(b) Hε
osc(q, p)

Figure 4.2: Evolution in time of the total energy and the energy of the fast variable
for a solution of the double pendulum model with initial conditions of the form
(4.1.25)–(4.1.26), shown in black, compared to a solution that has more general
initial conditions, shown in red.
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1
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1
(q
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(a) g1(q)
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2
(q
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(q
(t
))
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100

g2

g̃2

(b) g2(q)

Figure 4.3: Time-averaged values of g1(q(t)), g2(q(t)) and g̃1(q(t)), g̃2(q(t)) with
g̃(q) := g(q) − ε2λ(q, p) for a series of balanced solutions of the double pendulum
model corresponding to decreasing values of the stiffness parameter ε.

where γ > 0 is the friction constant, T the temperature, kB the Boltzmann constant,
and W (t) standard N -dimensional Brownian motion. Model (4.1.38)–(4.1.39) has
the invariant distribution

πε(q, p) ∝ e−H
ε(q,p)/kBT (4.1.40)
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and the energy is finite in the sense of

E[Hε(q, p)] =

∫
R2N

Hε(z)πε(z) dz = O(ε0). (4.1.41)

This scenario arises from statistical mechanics and in particular from molecular
dynamics simulations; see Reich (1995), Bornemann & Schütte (1997), Reich (2000).

We define the action variable

Jε(q, p) :=
Hε

osc(q, p)

ωε(q)
(4.1.42)

which is nearly conserved in time, for harmonic oscillators with slowly varying fre-
quency, i.e. Jε ≈ const. For thermally embedded systems, this is not the case.
Instead, it exists a stochastic differential equation for the evolution of Jε, we refer
the reader to Reich (2000).
Furthermore, we can define a correcting force term

Fcorr(q) := −Jε(t)∇qω
ε(q), (4.1.43)

which represents the influence of the harmonic oscillations normal to TM on the
slow motion of the system. The existence of (4.1.43) makes estimating the model
state via Data Assimilation techniques even harder as it requires estimation of Jε(t)
to predict the slow motion along the constraint manifoldM.

The example from that family of models that we will use for our experiments is the
elliptic elastic pendulum which is given by

q̇ = p (4.1.44)

ṗ = −ε−2G(q)Tg(q)−

(
g0

0

)
− γp+

√
2γkBTẆ (4.1.45)

g(q) =
√
qTAq − 1, (4.1.46)

with q, p ∈ R2. The matrix A = diag(1, α) gives the geometry of an ellipse with
α > 0.

For the moment we assume no stochastic forcing i.e. γ = 0 and obtain the Hamil-
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tonian

H(q, p) =
pTp

2
+

1

2ε2
g(q)2 + g0q1. (4.1.47)

The derivative of g(q) is given as

G(q)T =
Aq√
qTAq

. (4.1.48)

We recall the oscillatory Hamiltonian (4.1.15) and its frequency (4.1.20) and deduce

ωε =

√
qTATAq

qTAq
(4.1.49)

Hε
osc = (ωε)2px

2

2
+

1

2ε2
x2. (4.1.50)

Now we can determine the action variable as

Jε :=
1

2ωε(q)

(
ωε(q)2p2

x +
g(q)2

ε2

)
. (4.1.51)

This also enables us to find the correction force given by (4.1.43) for the limit system
with non-tangential initial conditions. We also conclude that there is no additional
correction term for the classical elastic pendulum (i.e. α = 1), since ωε = const in
this case. To consider the stochastic forcing i.e. γ 6= 0 introduced in (4.1.38)-(4.1.39)
one can repeat all coordinate changes as above, but on the level of the equations
of motion. Therefore one must split up the noise into x and y components. For a
detailed analysis of this case we refer to Reich (2000).

In Figure 4.4 we show the evolution of q1 and q2 in the thermally embedded elliptic
pendulum with ε = 0.001, γ = 1, kBT = 16, α = 36 and g0 = 1. The initial
conditions are on the slow manifold but with an impuls, that is orthogonal to it. One
run is done with the Störmer-Verlet method and the other one with the RATTLE
method (Andersen (1983)), a numerical integration method which approximates
solutions of the constrained (limit) problem (4.1.29)–(4.1.31). Hereby the numerical
solution is as close to TM, c.f. (4.1.24), as a given tolerance independent of the time
step length. We used exactly the same realisations of the noise for both integrators.
One can see that the two solutions behave very differently, which is caused by the
RATTLE method setting the action variable (4.1.42), and therefore the correction
force (4.1.43), to almost zero. In contrast the Störmer-Verlet method does not. This
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4.1. HIGHLY-OSCILLATORY HAMILTONIAN MODELS

can be seen in Figure 4.5.
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Figure 4.4: Evolution in time of the positions of the thermally embedded elliptic
pendulum, once obtained by the RATTLE and once by the Störmer-Verlet method.
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Figure 4.5: Evolution in time of the action variable of a solution obtained by the
Störmer-Verlet method. In contrast to that, the action variable takes the value zero
under the RATTLE approximation, because x = g(q) and px are set to 0 in every
time step.
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4.2 Spatially extended models

In chapter 2.4 we have aforementioned that localisation is inevitable for spatio-
temporal systems to deal with the undesired effects of the rather small sample sizes
that we are restricted to, due to limited computational resources. An assimilation
step including localisation looks like

za
j (xk) =

M∑
i=1

zf
i(xk)dij(xk),

as already stated in equation (2.4.6), while a standard Data Assimilation step is
given by

za
j =

M∑
i=1

zf
idij,

as in equation (1.3.6). This means that the global spatial update is replaced by
seperate updates for each grid point, since the coefficients become dependent on
the grid points. Consequently, localisation introduces further imbalances. See for
example Houtekamer & Mitchell (2005), Cohn et al. (1998), Lorenc (2003b), Mitchell
et al. (2002), Oke et al. (2007), Kepert (2009) and Greybush et al. (2011). In the
following we will introduce two different spatially extended models, a variant of the
aforementioned Lorenz-96 model and the well known shallow water equations.

4.2.1 Slow-fast Lorenz-96 model

We consider again the Lorenz-96 model

żl = (zl+1 − zl−2)zl−1 − zl + 8, (4.2.1)

that we already used for experiments with the hybrid filter. Again, we choose
l = 1, ..., 40 and we apply periodic boundary conditions, i.e. z0 = z40. In Bergemann
& Reich (2010) this model is coupled with a discrete wave equation

ε2ḧl = −hl + a2[hl+1 − 2hl + hl−1], (4.2.2)
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4.2. SPATIALLY EXTENDED MODELS

with a small parameter ε > 0 that leads to the wave equation evolving on a faster
time scale than the Lorenz equation, and a parameter a > 0 that determines the
wave dispersion. As stated before, the energy

ELorenz =
1

2

40∑
l=1

z2
l (4.2.3)

is preserved in the advective part, żl = (zl+1 − zl−2)zl−1 of the Lorenz model. The
wave equation conserves the energy

Ewave =
ε2

2

40∑
l=1

ḣ2
l +

1

2

40∑
l=1

[h2
l + a2(hl+1 − hl)2]. (4.2.4)

The equations are coupled together, leading to the following model:

żl = (1− δ)(zl+1 − zl−2)zl−1 + δ(zl+1hl+1 − zl−2hl−1)− zl + 8, (4.2.5)

ε2ḧl = −hl + a2[hl+1 − 2hl + hl−1] + zl, (4.2.6)

where δ ∈ [0, 1] denotes the coupling strength between the two models. This is done
by introducing an exchange energy term

Ecoupling = −δ
40∑
l=1

hlzl. (4.2.7)

The pure wave-advection system

żl = (1− δ)(zl+1 − zl−2)zl−1 + δ(zl+1hl+1 − zl−2hl−1), (4.2.8)

ε2ḧl = −hl + a2[hl+1 − 2hl + hl−1] + zl, (4.2.9)

conserves the total energy

Etotal = (δ − 1)ELorenz + δEwave + Ecoupling. (4.2.10)

As it is desirable in physical applications, we want to find solutions to system (4.2.5)
on the slow time scale. By the bounded derivative principle, see Kreiss (1980), this
yields the conditions

żl ≈ O(ε0) (4.2.11)

ḧl ≈ O(ε0) (4.2.12)
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4.2. SPATIALLY EXTENDED MODELS

and therefore the slow manifold

M = {(z, h) ∈ (R40,R40) : −hl + a2[hl+1 − 2hl + hl−1] + zl = 0}. (4.2.13)

no Data Assimilation
EnKF

Figure 4.6: Evolution of the imbalance g of the slow-fast Lorenz-96 model with and
without application of the EnKF.

If the initial state satisfies the balance relation (4.2.13), then the system (4.2.5) will
stay in approximate balance over a fixed time interval, see for example Wirosoetisno
(2004). For the choice of parameters ε = 0.0025, δ = 0.1, a = 0.5 we can see in
Figure 4.6 on the left, that the imbalance ‖g‖, with

gl := −hl + a2[hl+1 − 2hl + hl−1] + zl, (4.2.14)

stays approximately constant. To illustrate the issue of regular Data Assimilation
techniques regarding balance in multi-scale models, the imbalance ‖g‖ is plotted
against time in Figure 4.6 without and with the application of the LETKF with a
localisation radius of rloc = 2, observing every 4th grid point (i.e. p = 10 observation
points) of z with a measurement error variance of ρ = 1.
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4.2. SPATIALLY EXTENDED MODELS

4.2.2 Shallow water equations

We consider the following model

∂th+ ∂x(hu) + ∂y(hv) = 0 (4.2.15)

∂tu+ u∂xu+ v∂yu− f 0v + g0∂xh = 0 (4.2.16)

∂tv + u∂xv + v∂yv + f 0u+ g0∂yh = 0. (4.2.17)

These are the 2-dimensional shallow water equations. They describe the evolution
of an incompressible, inviscid liquid or gas with a horizontal scale much larger than
the vertical, in response to gravitational rotational accelerations. This model can
be derived by depth-integrating the Navier Stokes equations and is widely used to
describe flows in the earth’s atmosphere and oceans. For a detailed derivation see
for example Zeitlin (2007). The variable h = h(x, y, t) describes the height of the
liquid, u = u(x, y, t) is the velocity in x-direction and v = v(x, y, t) is the velocity
in y-direction. The parameter g0 is the acceleration due to gravity, while f 0 is the
Coriolis coefficient. To conduct a scale analysis of this model, we first have to non-
dimensionalise it. For this, we choose dimensionless reference values for the state
variables, time and space as follows:

(h, u, v) = (h̃Href , ũUref , ṽUref) (4.2.18)

t = t̃Tref (4.2.19)

(x, y) = (x̃Lref , ỹLref). (4.2.20)

The derivatives with respect to the new dimensionless then beome

∂

∂t
=

∂

∂t̃

∂t̃

∂t
=

∂

∂t̃

1

Tref

(4.2.21)

∂

∂x
=

∂

∂x̃

∂x̃

∂x
=

∂

∂x̃

1

Lref

(4.2.22)
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and model (4.2.15)-(4.2.17) turns into

Lref

TrefUref

∂t̃h̃+ ∂x̃(h̃ũ) + ∂ỹ(h̃ṽ) = 0 (4.2.23)

Lref

TrefUref

∂t̃ũ+ ũ∂x̃ũ+ ṽ∂ỹũ−
f 0Lref

Uref

ṽ +
g0Href

U2
ref

∂x̃h̃ = 0 (4.2.24)

Lref

TrefUref

∂t̃ṽ + ũ∂x̃ṽ + ṽ∂ỹṽ −
f 0Lref

Uref

ũ+
g0Href

U2
ref

∂ỹh̃ = 0. (4.2.25)

The dimensionless Strouhal, Rossby and Froude numbers are given as follows

Sr :=
Lref

TrefUref

(4.2.26)

Ro :=
Uref

f 0Lref

(4.2.27)

Fr :=

√
U2

ref

g0Href

. (4.2.28)

On dropping the tilde symbols, the final dimensionless form of model (4.2.15)-
(4.2.17) is

Sr∂th+ ∂x(hu) + ∂y(hv) = 0 (4.2.29)

Sr∂tu+ u∂xu+ v∂yu−
1

Ro
v +

1

Fr2∂xh = 0 (4.2.30)

Sr∂tv + u∂xv + v∂yv +
1

Ro
u+

1

Fr2∂yh = 0. (4.2.31)

In an experimental setting, one would choose a reference velocity Uref , given a refer-
ence time Tref and length Lref , such that the Strouhal number becomes 1. Therefore,
we ignore it from now on. Majda explains in his book (Mayda (2002)), that this
model converges to the quasi-geostrophic model for Fr2 ∝ Ro ∝ ε → 0. If we let
Ro ∝ Fr2 ∝ ε→ 0 in (4.2.30) and (4.2.31), we obtain

v =
Href

UrefLref

g0

f 0
∂xh (4.2.32)

u = − Href

UrefLref

g0

f 0
∂yh, (4.2.33)

which means that the coriolis term and the pressure gradient balance each other and
consequently the flow is parallel to the isobars. This is called geostrophic balance,
and solutions (hε, uε, vε) of the full model (4.2.15)-(4.2.17) converge to solutions
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4.2. SPATIALLY EXTENDED MODELS

(h0, u0, v0) of the quasi geostrophic model. The flows in the earth’s atmosphere are
approximately in geostrophic balance, see for example Gill (1982), which makes this
example very relevant from a practical viewpoint. As in the models before, if this
balance relation is fulfilled in the initial state, it will stay approximately satifsfied, at
least over a fixed time interval, see Klainerman & Majda (1981). Data Assimilation
techniques however, can and will destroy it, leading to unphysical predictions.
The divergence of the velocity vector of a geostrophic flow is 0, because

∇ ·

(
u

v

)
= ∂xu+ ∂yv (4.2.34)

=
g0

f 0
∂x∂yh−

g0

f 0
∂y∂xh (4.2.35)

= 0. (4.2.36)

In the experiment section we will therefore use the balance function

g(h, u, v) = ∇ ·

(
u

v

)
. (4.2.37)

Let us first consider a simpler approximation of this model for the moment. The
1.5-dimensional shallow water equations

∂th+ ∂x(hu) = 0 (4.2.38)

∂tu+ u∂xu− f 0v + g0∂xh = 0 (4.2.39)

∂tv + u∂xv + f 0u = 0, (4.2.40)

assume that the surface height and velocities do not vary in y direction, therefore all
derivatives with respect to y are 0. Geostrophic balance reduces to the stationary
state

u = 0 (4.2.41)

v =
g0

f 0
∂xh. (4.2.42)

To simplify things even further, we consider a linearisation of model (4.2.38) -
(4.2.40). Therefore, we choose a motionless basic state with constant surface height,
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i.e. (h∗, u∗, v∗) with

u∗ = 0 (4.2.43)

v∗ = 0 (4.2.44)

∂xh
∗ = 0 (4.2.45)

(without the constant surface height, this state would not be motionless). Now, we
apply the model to a small perturbation of this state:

∂t(h
∗ + δh̃) + ∂x

(
(h∗ + δh̃)(u∗ + δũ)

)
= 0 (4.2.46)

∂t(u
∗ + δũ) + (u∗ + δũ)∂x(u

∗ + δũ)− f 0(v∗ + δṽ) + g0∂x(h
∗ + δh̃) = 0 (4.2.47)

∂t(v
∗ + δṽ) + (u∗ + δũ)∂x(v

∗ + δṽ) + f 0(u∗ + δũ) = 0. (4.2.48)

Using the product rule in the derivatives, ignoring terms of order δ2 (since we let
δ → 0), using (4.2.43) - (4.2.45) and afterwards dropping δ and the tilde, we get

∂th+ h∗∂xu = 0 (4.2.49)

∂tu− f 0v + g0∂xh = 0 (4.2.50)

∂tv + f 0u = 0. (4.2.51)

Note that due to the motionlessness, ∂th∗ is also implied. We choose x ∈ [−π, π]

and periodic boundary conditions from now on.

To get some insight in the imbalance that can be caused by localisation, we conduct a
simple experiment. We want to apply the EnKF with a very small localisation radius
and a very small observation error to an initially balanced ensemble of states of the
1.5D shallow water model. To create an initial ensemble, we draw M functions
h1(x, 0), ..., hM(x, 0) from GP

(
href(x, 0), Khh(x, x

′)
)
, a Gaussian process with the

Gaussian Kernel function

Khh :

{
[−π, π]2 → R

(x, x′) 7→ σ2 exp
(
−2 sin(|x−x′|)2

l2

) . (4.2.52)

We set

uj(x, 0) := 0, j = 1, ...,M (4.2.53)

vj(x, 0) :=
g0

f 0
h′j(x, 0), j = 1, ...,M. (4.2.54)
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Feeding hj(x, 0), uj(x, 0), vj(x, 0), j = 1, ...,M in the model (4.2.49) leads to

∂th = 0 (4.2.55)

∂tu = 0 (4.2.56)

∂tv = 0, (4.2.57)

i.e. the ensemble stays unaltered during the forecast of q time steps. The initial
ensemble ’covariance matrix’

P 0
M =

K̂hh(x, x
′) 0 K̂hv(x, x

′)

0 0 0

K̂vh(x, x
′) 0 K̂vv(x, x

′)

 , (4.2.58)

is assumed to be obtained in a way that P 0
M → P 0 forM →∞. The exact covariance

matrix P 0 ∈ {L2([−π, π]2,R)}3×3 is given by

P 0 =

Khh(x, x
′) 0 Khv(x, x

′)

0 0 0

Kvh(x, x
′) 0 Kvv(x, x

′)

 , (4.2.59)

with

Khv(x, x
′) := Cov(h(x), v(x′)) =

g0

f 0
Cov(h(x), h′(x′)) (4.2.60)

Kvh(x, x
′) := Cov(v(x), h(x′)) =

g0

f 0
Cov(h′(x), h(x′)) (4.2.61)

Kvv(x, x
′) := Cov(v(x), v(x′) =

(
g0

f 0

)2

Cov(h′(x), h′(x′)). (4.2.62)

The matrices P 0
M and P 0 are understood as matrices of functions. The third column

entry in the first row for example, is the covariance function between h and v.
Obviously, P 0

M stays invariant during the forecast as well.

We only observe h at one discrete point xk, which leads to the observation operator

H(z) = H

hu
v

 := h(xk) (4.2.63)

and therefore yobs = href(xk, tq) + Ξ with Ξ ∼ N (0, r). The assimilation step with
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B-localisation as described in chapter 2.4 then leads to

zaj = zfj −

ρ̃k(x)K̂hh(x, xk)

0

ρ̃k(x)K̂vh(x, xk)

 hfj (xk)− href(xk, tq)− Ξ

σ2 + r︸ ︷︷ ︸
:=c

. (4.2.64)

Here, ρ̃k(x) := ρ
(
|x−xk|
rloc

)
is defined via the Gaspari-Cohn function. This means that

we are applying the same localisation function to h, u and v. We define

fk(x) := Khh(x, xk) = lim
M→∞

K̂hh(x, xk) (4.2.65)

and

lim
M→∞

K̂vh(x, xk) = Kvh(x, xk) (4.2.66)

= Cov(v(x), h(xk)) (4.2.67)

= E

[
g0

f 0
∂xh(x)h(xk)

]
− E

[
g0

f 0
∂xh(x)

]
E[h(xk)] (4.2.68)

=
g0

f 0
∂x (E[h(x)h(xk)]− E[h(x)]E[h(xk)]) (4.2.69)

=
g0

f 0
∂xKhh(x, xk) (4.2.70)

=
g0

f 0
f ′k(x). (4.2.71)

We can finally deduce

haj (x) = hfj (x)− cρ̃k(x)fk(x) (4.2.72)

vaj (x) = vfj (x)− g0

f 0
cρ̃k(x)f ′k(x). (4.2.73)
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When we now check for geostrophic balance in the analysis ensemble,

g(zj) := f 0vaj (x)− g0 d

dx
haj (x) (4.2.74)

= f 0

(
vfj (x)− g0

f 0
cρ̃k(x)

d

dx
fk(x)

)
(4.2.75)

− g0

(
d

dx
hfj (x)− c

(
ρ̃k(x)

d

dx
fk(x) + fk(x)

d

dx
ρ̃k(x)

))
(4.2.76)

= f 0vfj (x)− g0 d

dx
hfj (x)︸ ︷︷ ︸

=0

− g0cρ̃k(x)
d

dx
fk(x) + g0cρ̃k(x)

d

dx
fk(x)︸ ︷︷ ︸

=0

(4.2.77)

+ g0cfk(x)
d

dx
ρ̃k(x), (4.2.78)

we find that it is not fulfilled in case d
dx
ρ̃k(x) 6= 0, which is the case whenever ρ̃k is

not constant, i.e., whenever any sort of localisation is applied. Therefore

δk(x) := g0cfk(x)
d

dx
ρ̃k(x) (4.2.79)

is the resulting imbalance.

To illustrate all this, we choose href(x, 0) = 1 + 0.2 sin(x) and set the parameters of
the kernel function to σ = 0.05, l = 1 for creating the initial ensemble. We discretise
with N = 1257 grid points and we observe the 200-th grid point of h, which is
approximately h(−2.147) with an observation error variance of r = 0.00005. Now
we apply the EnKF once with a localisation radius of rloc = 50 and once rloc = 300.

In Figure 4.7 we can see the kernel function f200(x) (see formula (4.2.65)), which
is also the limiting function of P f

1:N,200 for N → ∞. The localisation function
ρ̃k and the imbalance δk depend on the chosen localisation radius, which is why
we will denote the radius as an additional subscript. In Figures 4.8 and 4.9, the
localisation functions ρ̃200,50(x) and ρ̃200,300(x) and the resulting imbalances δ200,50(x)

and δ200,300(x) are depicted respectively. It is clear from these figures that the smaller
the chosen localisation radius, the larger will be the imbalance.
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Figure 4.7: Kernel function f200(x).

(a) Localisation function ρ̃200,50(x) (b) Imbalance δ200,50(x)

Figure 4.8: Localisation function and resulting imbalance in the 1.5D shallow water
equation when applying an EnKF with B-localisation and localisation radius rloc =
50.

4.3 Existing methods

Due to the sequential alternation between forecasting and assimilating of observa-
tions, one faces an initialisation problem every time after the analysis ensemble is
obtained and before feeding it into the model. Therefore, normal mode initialisation
as done in Machenhauer (1977) and Baer & Tribbia (1977) is a possible remedy. In
Lynch & Huang (1992) it is suggested to apply a digital filter after every assimilation
step to filter out spurious fast oscillations and this is applied to a weather prediction
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(a) Localisation function ρ̃200,300(x) (b) Imbalance δ200,300(x)

Figure 4.9: Localisation function and resulting imbalance in the 1.5D shallow water
equation when applying an EnKF with B-localisation and localisation radius rloc =
300.

model.

This is probably the most intuitive approach. Let us assume we have an analysis
ensemble {za

i (t∗)}Mi=1. For each ensemble member we create a time sequence

za
i (t∗−N), za

i (t∗−(N−1)), ..., z
a
i (t∗), z

a
i (t∗+1), ..., za

i (t∗+N) (4.3.1)

by using the model. Then we want to calculate the Fourier transform Za
i (ω) of za

i (t).

In a continuous setting, the Fourier transform of an integrable function f ∈ L1(R)

is defined by

(Ff)(ω) =

∫ ∞
−∞

f(t)e−iωtdt. (4.3.2)

This transforms the time dependent signal f into its frequency representation. Each
frequency is mapped to a coefficient, which describes the proportion of this frequency
in the original signal. The reverse transform is defined by

f(t) =
1

2π

∫ ∞
−∞

(Ff)(ω)eiωtdω. (4.3.3)

An important property of the Fourier transform is the result of the convolution
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theorem. Let ∗ denote the convolution of two functions f and g:

(f ∗ g)(x) =

∫ ∞
−∞

f(x− t)g(t)dt. (4.3.4)

The convolution theorem states that the Fourier transform of the convolution of f
and g is the same as the product of the Fourier transforms of f and g:

F (f ∗ g) = F(f)F(g). (4.3.5)

A discrete approximation of the Fourier transform of za
i (t) is given by

Ẑa
i (ω) =

N∑
n=−N

za
i (t∗+n)e−iωn. (4.3.6)

Since we want to filter out high frequencies, we multiply Ẑa
i (ω) with a cutoff function

H(ω) =

{
1, |ω| ≤ |ωc|;
0, |ω| > |ωc|.

(4.3.7)

This yields an approximation of Ẑa
i (ω), in which the coefficients that belong to

frequencies higher than ωc, have been set to zero. Finally, the inverse Fourier trans-
form has to be applied to H(ω)Ẑa

i (ω), to transform the filtered signal back into
time-domain. Due to the convolution theorem, these three steps can be summarized
to convoluting za

i (t) with the inverse Fourier transform h(t) = sin(ωct)
πt

of H(ω).

Strategies that incorporate the observational data in the model evolution in a gradual
and smooth way instead of using all the information about the observation at one
single point in time have been suggested for example in the from of incremental
analysis update (IAU) by Bloom et al. (1996) and as the so-called mollified Data
Assimilation by Bergemann & Reich (2010). In the latter, Bergemann and Reich
used their continuous formulation of the EnKF to develop this approach. The unified
differential equation (describing the model f and the EnKF step) is

dzi
dt

= f(zi)−
1

2

J∑
j=1

δ(t− tj)PHTR−1(Hzi +Hz̄ − 2yobs(tj)), (4.3.8)
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where δ(t) denotes the Dirac delta function. This is not actually a function, but
a distribution. However, it can can loosely be thought of as a map, that is zero
everywhere except for the origin where it is inifite:

δ(t) =

{
∞, t = 0

0, t 6= 0
(4.3.9)

This map is approximated by

δε(t) =
1

ε
ψ

(
t

ε

)
. (4.3.10)

Here ε > 0 is a small parameter and ψ(t) ≥ 0 is a symmetric, continuous function
with ∫ ∞

−∞
ψ(s)ds = 1, (4.3.11)

for example the standard hat function

ψ(s) = max{0, 1− |s|}. (4.3.12)

Replacing δ(s) in (4.3.8), gives the formulation of the mollified EnKF.

I partly worked together with Gottfried Hastermann, who developed a time-stepping
method that is able to seamlessly bridge between a full oscillatory model and its
stiff limiting system. This is achieved by using two integrators and bridging between
them. One integrator has to project the solution onto the slow manifold, denoted
by ψslow whereas the other, denoted by ψfast, has to be energy preserving. The full
integrator is then composed via

zn+1 = ψα(zn) (4.3.13)

ψα := αψfast + (1− α)ψslow. (4.3.14)

For the two Hamiltonian models introduced in chapter 4.1, Hastermann used the
classical symplectic Störmer Verlet method as ψfast and invented a completely new
integrator for ψslow. Integrator (4.3.13) reduces to the limit model for α = 0 and
the full model for α = 1. The idea is then to use ψαi for k steps with α1 = 0 <

α2 < ... < αk = 1 and to use ψ1 for the remaining steps in the forecasting part of
the Data Assimilation routine. For details, we refer the reader to Reinhardt et al.
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(2017).

In Cotter (2013) a highly-oscillatory Hamiltonian form of the shallow water equa-
tions is investigated and a method for stabilizing the 4D-VAR technique is suggested.

Concerning imbalances introduced by localisation, Kepert (2009) modified the way
of applying localisation into a more balance respecting manner. Gottwald (2014)
incorporated information about the balance in the observations.

For variational Data Assimilation, it appears natural to include a penalty term
describing the degree of imbalance in the minimisation problem. This has been
done for example in Thépaut & Courtier (1991), Polavarapu et al. (2000), Gauthier
& Thépaut (2001), Neef et al. (2006), Watkinson et al. (2007), Cotter (2013). This
ansatz is related to what is going to be described now.

4.4 Post-processing approach

We now describe a post-processing method that allows the enforcement of balance
relations on the analysis ensemble {za

i (xk, t∗)}Mi=1, k = 1, ..., n. From now on we
drop the time-dependence for notational convenience and introduce the notation ẑi
for the unbalanced analysis ensemble, i.e. before applying the post-processing.

After an assimilation step is carried out, we have an ensemble, that was created
using a linear transform of the form

ẑj(xk) :=
M∑
i

zf
i(xk)dij(xk) or ẑj :=

M∑
i

zf
idij (4.4.1)

for j = 1, . . . ,M, k = 1, . . . , n. We can apply the same transformation to the
forecasted values of g as well, i.e.

ĝj(xk) :=
∑
i

g(zf
i(xk))dij(xk) or ĝj :=

∑
i

g(zf
i)dij, (4.4.2)

j = 1, . . . ,M, k = 1, . . . , n. The method works the same, regardless of whether the
model has a space dimension or not. Therefore, we drop the emphasis on the grid
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points xk from here on. It is important to note that ĝj 6= g(ẑj) in general and that
g(ẑj) is usually a lot larger than ĝj.

The general idea now, is to solve M minimisation problems of the form

Jj(z) =
1

2
(ẑj − z)T A (ẑj − z) +

1

2
(ĝj − g(z))TB (ĝj − g(z))T , (4.4.3)

with j = 1, ...,M and where A is a matrix weighting the uncertainty in ẑj and B the
uncertainty about ĝj. However, this agrees with the cost functional of 3D-Var (2.1.2)
for (P b)−1 = A, R−1 = B and yobs = ĝ. In case the slow manifold was linear, the
observation operator would be Hz = g(z). In the case that is most interesting for
us, however, it is non-linear and we need to linearise g(z) ≈ g(z̄)+Dg(z̄)(z− z̄). We
can then interpret the Jacobian Dg(z̄) as linear observation operator HT. Since we
know, that the solution of that minimisation problem will coincide with the result
of applying a Kalman filter and we have M different observations ĝj, which we can
use like perturbed observations, an EnKF implementation like

za
j = ẑj − Pzz(Dg)

(
R + (Dg)TPzz(Dg)

)−1
(g(ẑj)− ĝj) (4.4.4)

seems sensible. Here, we replaced the background covariance matrix P b by the
ensemble approximation

Pzz =
1

M − 1

∑
i

ẑi(ẑi − ¯̂z)T. (4.4.5)

However, instead of using yjobs = ĝj, we introduce a damping parameter γ ∈ [0, 1]

and use yjobs = γĝj as observations. Here, as γ → 0 the observations tend to 0
and for γ → 1 they tend to ĝj, allowing us to control the amount of imbalance
we permit in the analysis ensemble. Another possibility on how to implement this
post-processing step is to use a Kalman-Bucy filter (as described in chapter 2.2.2),
leading to the following two implementations:

d

ds
zj = −PzgR−1 (g(zj)− γĝj) , j = 1, . . . ,M or (4.4.6)

d

ds
zj = −Pzz(Dg)R−1 (g(zj)− γĝj) , j = 1, . . . ,M (4.4.7)
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with zj(0) = ẑj and

Pzg =
1

M − 1

∑
i

ẑi(g(ẑi)− ḡ)T, ḡ =
1

M

∑
i

g(ẑi). (4.4.8)

In formulation (4.4.6), the empirical covariance between z and g is used directly,
which makes the observation operator HT = Dg(z̄) dispensable. Therefore, we will
mostly use formulation (4.4.7) in our experiments. Note also that implementation
(4.4.4) can be made derivative free in the same way.

It is not immediately clear, which values we should choose for R but one could use

R := Pgg =
1

M − 1

∑
i

ĝi(ĝi − ¯̂g)T. (4.4.9)

In case of a spatially extended model we choose a localized version of Pzz in (4.4.7),
i.e. we use P loc

zz := C ◦ Pzz instead of Pzz, where C is a localisation matrix as
introduced in chapter 2.4. It is important to note, that (C ◦Pzz)HT 6= C ◦ (PzzH

T).
If we want to use formulation (4.4.6), we therefore have to apply the operation g to
all lines of P loc

zz separately, to obtain P loc
zg .

In all the experiments presented in section 4.5, we use a simple forward Euler scheme
to numerically solve these ODEs. We start at zj(0) := ẑj from formula 4.4.1 and
instead of integrating them artificially in time from s = 0 until s = 1 (as it is done
in the classical Kalman-Bucy filter), we stop whenever

|g(zj)− γĝj| ≤ tol, (4.4.10)

with tol> 0 being a sufficiently small tolerance.

Note that γ = 0 implies that we nudge g(ẑj) towards zero while γ = 1 nudges
towards ĝj. When using formulation (4.4.4) the only additional computational effort
comes from applying one more EnKF each time step than in a standard sequential
Data Assimilation algorithm. Therefore, the total complexity stays O(M3). When
using the Kalman-Bucy variant, the cost depends on the tolerance value and on
the stiffness of the underlying problem as this determines the time step and the
numerical integration scheme for solving the ODE (4.4.6) or (4.4.7).
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4.4.1 Modified method for scenario B

An alternative version, that can be applied in the special case of the thermally em-
bedded highly oscillatory Hamiltonian, that we considered in chapter 4.1.2 is the
following. For this model, the distribution of the imbalance is explicitly known,
namely g(q) ∼ N (0, kBTε

2). Therefore we choose our ’measurement error’ covari-
ance R = kBTε

2. When g(q) is the observation operator, the EnKF with perturbed
observations creates the assimilated ensemble via

qa
i = q̂i −K(g(q̂i) + ξi − yobs) (4.4.11)

where ξi are identically distributed Gaussians with mean 0 and covariance equal to
the measurement error covariance kBTε

2, and yobs = 0 is our pseudo-observation.
The Kalman gain matrix is

K = Pqq(Dg)
(
kBTε

2 + (Dg)TPqq(Dg)
)−1

. (4.4.12)

This can also again be formulated in the Kalman-Bucy framework, which leads to

d

ds
qj = −Pzg

1

kBTε2
(g(qj) + ξi − yobs) , j = 1, . . . ,M or (4.4.13)

d

ds
qj = −Pqq(Dg)

1

kBTε2
(g(qj) + ξi − yobs) , j = 1, . . . ,M. (4.4.14)

4.5 Experiments

4.5.1 Hamiltonian Scenario A

For all experiments we first create a reference trajectory denoted as zref which serves
as our truth. We use this to create our observations by applying the observation
operator H after each ∆tobs time units and perturbing the resulting quantities by
adding noise with mean zero and covariance matrix R = ρI.

For the double pendulum experiment we use ε = 0.001 and a stiffness matrix K =

diag(1, 0.04). We set the gravitational constant to g0 = 10, the ensemble size to
M = 20 and we observe the coordinates of both pendulums every 0.02 time units
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ε K g0 δt M obs ∆tobs ρ ini. var. infl total time

0.001 diag(1, 0.04) 10 0.001 20 q 0.02 0.05 0.1 1.05 200

Table 4.1: Parameters for the numerical experiments with the double pendulum.

with an observation error variance of ρ = 0.05. The initial uncertainty is Gaussian
with a variance of 0.1 but all ensemble members are initially balanced. We apply
multiplicative ensemble inflation with parameter infl = 1.05 after every assimilation
step to counterbalance the underestimation of the covariance, as explained in chapter
2.4. We let the experiment run for 200 time units in total. The parameters of our
chosen setting are summarised in Table 4.1.

(a) RMSE in q (b) RMSE in p in the tangential direction

Figure 4.10: Time-averaged values of the RMSE in q and p in the tangential direc-
tion for the Kalman-Bucy post-processing method applied to the double pendulum,
plotted against different values of γ.

Figure 4.10 displays the results of the Kalman-Bucy post-processing method (im-
plementation version (4.4.7)) for different values of γ in terms of the RMSE in the
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positions and the momenta in the tangential direction:

RMSEq :=

∥∥∥∥∥∥∥∥∥


(q1
x)M

(q1
y)M

(q2
x)M

(q2
y)M

−


(q1
x)

ref

(q1
y)

ref

(q2
x)

ref

(q2
y)

ref


∥∥∥∥∥∥∥∥∥ (4.5.1)

RMSEtang
p :=

∥∥∥∥∥∥∥∥∥∥


(ptang,1
x )M

(ptang,1
y )M

(ptang,2
x )M

(ptang,2
y )M

−


(ptang,1
x )ref

(ptang,1
y )ref

(ptang,2
x )ref

(ptang,2
y )ref


∥∥∥∥∥∥∥∥∥∥
. (4.5.2)

As before qj =

(
qjx
qjy

)
, j = 1, 2 denotes the positions of the two mass points and

ptang,j =

(
ptang,j
x

ptang,j
y

)
, j = 1, 2 denotes the tangential momenta for both mass points.

We recall, that the formula to obtain the tangential momenta was given by (4.1.12).
The superscript ref means the reference solution and by (q1

x)M , we denote the en-
semble average of q1

x. It can be seen that the RMSE in the positions is smallest for
γ = 0.3, whereas the error in the tangential momenta increases with γ.

Figure 4.11: Time-averaged values of the ensemble average of the fast energy for
the Kalman-Bucy post-processing method applied to the double pendulum, plotted
against different values of γ.

The ensemble averaged fast energy of the double pendulum is depicted in Figure
4.11. As expected, this value is clearly increasing with γ.
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In Figure 4.12, on the left, we see the RMSE in q plotted against time once with the
post-processing method for γ = 0.3 (the choice of γ that yields the optimal result
in terms of the RMSE in q) and once for the normal Data Assimilation procedure,
without any post-processing. On the right we can see the same comparison for the
RMSE in p in tangential direction, where γ = 0.1 is chosen for the post-processing.
It is clearly visible that the balancing procedure has a significant positive effect on
the prediction errors.

with post-processing
without post-processing

(a) RMSE in q

with post-processing
without post-processing

(b) RMSE in p in the tangential direction

Figure 4.12: RMSE values of the double pendulum plotted against time, once using
the Kalman-Bucy post-processing and once without. On the left γ = 0.3 and on the
right γ = 0.1.

So far, we used an EnKF to obtain (4.4.1) and (4.4.2), but it only seems natural to try
and replace the EnKF by the ETPF or the hybrid formulation (3.1.6). Therefore we
have to use particle rejuvenation instead of multiplicative inflation (see chapter 2.4)
and also a larger ensemble size to avoid a degeneracy of weights. It turned out, that
the whole algorithm, when using full or partly ETPF, becomes very sensitive to the
choice of the rejuvenation parameter τ . A setting that worked well, is to choose the
rejuvenation parameters τq = 0.1, τp = 0.5 and τg = 0.06. We useM = 100 ensemble
members, set γ = 0.7 and let the hybrid filter run for α = 0, 0.1, ..., 1, once with
Kalman-Bucy post-processing and once without. The time-averaged RMSE values
in q are presented in Figure 4.13. One can see that using the ETPF instead of the
EnKF already eliminates the problem with the imbalances. Nevertheless, the RMSE
in q for the ETPF (α = 1) is 0.072 with and 0.076 without post-processing. Using the
EnKF together with post-processing with justM = 20 instead ofM = 100 ensemble
members yielded a smaller error of 0.058 (when using multiplicative inflation instead
of rejuvenation).
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without post-processing
with post-processing

Figure 4.13: Time-averaged values of the RMSE in q with and without Kalman-
Bucy post-processing applied to the double pendulum with the hybrid filter, plotted
against different values of the bridging parameter α.

4.5.2 Hamiltonian Scenario B

ε A g0 ζ kBT δt M obs ∆tobs ρ ini. var. time

0.001 diag(1, 36) 0 1 16 5−6 20 p 0.01 0.1 0.1 200

Table 4.2: Parameters for the numerical experiments with the thermally embedded
system.

For our experiments with the thermally embedded elliptic elastic pendulum, we use
model (4.1.44)-(4.1.46) with A = diag(1, 36). We set ε = 0.001, g0 = 0, γ = 1 and
kBT = 16. To avoid confusion with the tuning parameter in the post processing step,
which we also denote by γ, we will change the notation of the damping parameter
γ to ζ in this example. This time, we observe the momenta of the pendulum every
0.01 time units with an observation error variance of ρ = 0.1. Initial conditions are
at the slow manifold but with an impulse in the normal direction and a Gaussian
initial uncertainty with variance 0.1. We let the experiment run for 200 time units.
The setting we chose for this model can be found in Table 4.2.

Figure 4.14 shows that choosing γ too small in the post-processing method (imple-
mentation version 4.4.7) yields non-optimal results. The best result is attained for
γ = 1, i.e. when ĝj is used as observation of the balance. The influence of the
parameter γ on the action variable (4.1.42) of the ensemble is displayed in Figure
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Kalman-Bucy
EnKF perturbed obs

(a) RMSE in q

Kalman-Bucy
EnKF perturbed obs

(b) RMSE in p in the tangential direction

Figure 4.14: Time-averaged values of the RMSE for the Kalman-Bucy post-
processing applied to the thermally embedded system, plotted against different val-
ues of γ. The red dotted line shows the same for the modified post-processing
method.

Kalman-Bucy
EnKF perturbed obs

Figure 4.15: Dependence of the action variable J averaged over the ensemble and
over time of the thermally embedded system on the balance parameter γ of the
Kalman-Bucy post-processing method. The red dotted line shows the same for the
modified post-processing method.

4.15. When choosing γ too small, J will be too small and therefore the correction
force (4.1.43) will be too small as well. That leads to correspondingly erroneous
predictions of the positions and the tangential velocity.

The results of using the EnKF with perturbed pseudo-observations as post-processing,
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the modified method, that was introduced in chapter 4.4.1, are depicted as a red
dotted line in Figures 4.14 and 4.15. We obtained a RMSE in q of 0.065 and in p
in the tangential direction of 1.56, which is equal to what was yielded by the stan-
dard post-processing for medium sized values of γ. The time and ensemble averaged
action variable has a value of 15.9, which is close to the averaged action value we
obtained with the standard post-processing for high values of γ and almost coincides
with our chosen value for kBT .

In Figure 4.16, the RMSE values of the EnKF with perturbed pseudo observations
post-processing are plotted against time in comparison to the RMSE values of a
run without any post-processing. As in scenario A, both RMSEs are improved
drastically by applying the post-processing strategy.

with post-processing
without post-processing

(a) RMSE in q

with post-processing
without post-processing

(b) RMSE in p in the tangential direction

Figure 4.16: RMSE values of the thermally embedded system, plotted against time,
once using the post-processing and once without.

For this scenario and setting it was not possible to use an ETPF or hybrid formu-
lation at all, as the weights collapsed in every simulation after some time.

4.5.3 Slow-fast Lorenz-96

In the setting for the Lorenz-96, as before, we use ε = 0.0025, wave dispersion
a = 0.5 and coupling strength δ = 0.1. We apply the LETKF with an ensemble size
of M = 50, a localisation radius of rloc = 2 (R-localisation), observing every 4th
grid point of z (resulting in p = 10 observed grid points) with an observation error
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variance of ρ = 1 and an observation interval of ∆tobs = 0.05. The variance of the
initial ensemble is set to 1. The parameters are summarised in Table 4.3.

ε a δ M obs p ∆tobs ρ ini. var. rloc total time

0.0025 0.5 0.1 50 z 10 0.05 1 1 2 500

Table 4.3: Parameters for the numerical experiments with the slow-fast Lorenz-96.

In the post-processing method, we use a localised version of Pzz, namely P loc
zz =

C ◦ Pzz where C is the localisation matrix as in chapter 2.4. We used a localisation
radius of 3 for the post-processing in this experiment.

In Figure 4.17 we can see that the imbalance is drastically reduced by the Kalman-
Bucy method and controlled by the tuning parameter γ, in the sense of it increasing
monotonically with increasing γ. We didn’t include the value of the imbalance for
γ = 1, as it was 0.8 and hence much larger than the other depicted values.

Figure 4.17: Imbalance of the slow-fast Lorenz-96 model using the Kalman-Bucy
post-processing plotted against different values of γ.

The balance has a positive effect on the RMSE in z as can be seen in Figure 4.18.
It didn’t have an effect on the RMSE in h, though.

The more grid points we observed and the larger the localisation radius we used,
the smaller was the effect of the balancing until the point, where balancing was
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with post-processing
without post-processing

Figure 4.18: RMSE in z of the slow-fast Lorenz-96 model plotted against time, once
using the Kalman-Bucy post-processing and once without.

completely unnecessary.

It was possible to apply the ETPF (and a hybrid formulation) to the slow-fast
Lorenz-96 model as well, yielding comparable results as the LETKF, but every
attempt to combine the ETPF with the post-processing approach failed for this
model, in the sense that the resulting RMS errors were much higher than using the
LETKF. One could see, that the variance of the ĝj, j = 1, ...,M when using the
ETPF (or a hybrid formulation) was converging to 0 very quickly with time, while
it stayed more or less constant in time (after a short calibration phase) when using
the LETKF. Surprisingly this happened even when we applied rejuvenation to the
ensemble of ĝj, j = 1, ...,M . Applying the post-processing step with almost equal
ĝj, j = 1, ...,M is comparable to using the EnKF without perturbed observations,
which is not possible as we aforementioned in chapter 2.2.1.

4.5.4 Shallow water equations

For our experiment with the shallow water model, we consider the polar jet stream
and therefore look at a shear flow. We examine it on a square with length L = 2π

discretised with N = 32 grid points in each direction (i.e. 1204 grid points in total).
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As in Staniforth et al. (2006), we choose a scaler L̃ = 60
dx

km, such that the physical
length and width of the domain we are looking at are L × L̃ = 3840 km and the
grid width is 3840

N−1
≈ 124 km. We consider the SWE on an f -plane placed at 45◦

latitude and at a reference height ofH0 = 9665 m. The Coriolis parameter is given by
f 0 = 2 ·ω ·sin(ϕ), with ω being the angular frequency 2π

T
(T = 1 day in our case) and

ϕ is the latitude. Therefore we get f 0 ≈ 8.9 rad
day

or 1.0284×10−4 rad
s
. The acceleration

due to gravity is set to g0 = 9.81 m
s2
. We assume periodic boundary conditions and

use the time-staggered semi-Lagrangian discretisation from Staniforth et al. (2006)
with a time step of δt = 0.0139 which represents time steps of 20 minutes. The
initial state is depicted in Figure 4.19.
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-0.2

-0.1

0
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0.2

0.3

(c) v

Figure 4.19: Initial state of the reference solution for the simulations with the shallow
water equations.

At time t = 0, the height of the liquid is 1, with a small valley and elevation,
parallel to the x-axis, respectively to the left and to the right of y = π. The depth
and height of the valley and the elevation are sinusoidal depending on x. In detail,
at first H(x, y) is given as

H(x, y) =
256L2

Ng0

([
1

π
(y − π)exp

(
−2(y − π)2

)
(1 + κsin(2x)) + 1

]−1

− 1

)
+ 1,

(4.5.3)

with κ = 0.05.

The velocities u and v are chosen via

u = − g
0

f 0
∂yH (4.5.4)

v =
g0

f 0
∂xH (4.5.5)
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to get geostrophically balanced initially conditions. Afterwards H(x, y) is again
altered, such that the following balance relation is satisfied

β2[1− β2∆]−1(g0∆H − f 0ζ + 2J) = 0. (4.5.6)

Here, ∆ is the Laplacian and

ζ = ∂xv − ∂yu (4.5.7)

J = ∂xv ∂yu− ∂xu ∂yv (4.5.8)

β =
0.75 δt

√
g0√

1 + (δt)2 (f0)2

4

. (4.5.9)

This balance condition is connected to the numerical integration and as well ex-
plained in Staniforth et al. (2006). To create an initial ensemble, we use formula
(4.5.3) again, but with M different κi, drawn from N (0.05, 10−3) and an additive
perturbation in x and y with variance 10−2. Afterwards, ui and vi, i = 1, ...,M

are again given via formula (4.5.4) and finally the Hi are again adapted via formula
(4.5.6).

We apply the LETKF with localisation radii of rloc = 1 and rloc = 3. We use
M = 20 ensemble members and we observe the layer depth H on 4, 8 and 16 grid
points in each direction (i.e. 16, 64 and 256 grid points in total, respectively) with
an observation error variance of ρ = 10−8 and ρ = 10−4. The extreme setting (very
small localisation radius and very small observation error) is chosen on purpose
to elucidate the effect of Data Assimilation on the balance of the model and to
point out the effectiveness of the post-processing method. We let the model run
for a total time of T = 69.4 days and an observation time step of ∆tobs = 0.694,
which corresponds to 16 hours and 40 minutes. We also conducted experiments
with an observation interval of ∆tobs = 0.42, but there was not enough imbalance
built up during the forecasting step to make any balancing strategy necessary and
effective. In the post-processing method, we use P loc

zz as we did in the experiments
with the slow-fast Lorenz-96 model. Here, we use a localisation radius of three grid
points. For R in formula (4.4.6), we use the identity matrix in this specific case
because simulations with R as in (4.4.9) gave slightly worse results. The setting is
summarised in Table 4.4.

We conducted the experiments five times with different random seeds and averaged
over the results.
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L N f 0 g0 M obs p ∆tobs ρ rloc total time

3840 km 32 1.0284× 10−4 rad
s

9.81m
s2

20 H 4, 8, 16 0.694 days 10−8, 10−4 1, 3 69.4 days

Table 4.4: Parameters for the numerical experiments with the shallow water model.

with post-processing
without post-processing

(a) Divergence

with post-processing
without post-processing

(b) RMSE in H

with post-processing
without post-processing

(c) RMSE in u

with post-processing
without post-processing

(d) RMSE in v

Figure 4.20: Values of the divergence and RMSE for the LETKF applied to the
shallow water model, plotted against time, once with and once without Kalman-
Bucy post-processing, for rloc = 1, p = 4, ρ = 10−8.

In Figures 4.20 - 4.22, we can see the divergence and the RMSE in all three state
variables respectively plotted against time and compared to a run without any post-
processing. This is done for p = 4, 8, 16 observed grid points in each direction and
for the most extreme setting, in the sense, that the localisation radius is chosen as
small as possible, namely rloc = 1 and the observation error is very small, namely
ρ = 10−8. One can clearly see that the divergence is much smaller, when the post-
processing method is applied and for p = 4 and p = 8, this has a significant positive
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Figure 4.21: Values of the divergence and RMSE for the LETKF applied to the
shallow water model, plotted against time, once with and once without Kalman-
Bucy post-processing, for rloc = 1, p = 8, ρ = 10−8.

effect on the RMSE in all three state variables. For p = 16 on the other hand, the
balancing strategy fails to improve the RMSE values. The benefit and effect of the
balancing procedure becomes less apparent, the more grid points we observe. This
behaviour coincides with our experience from the slow-fast Lorenz-96 model.

Figure 4.23, depicts the divergence and RMSE values for p = 4, rloc = 1 and a
larger measurement error of ρ = 10−4. The post-processing reduces the error in the
fluid depth clearly but only slightly the errors in the velocities.

In Figure 4.24, the results for a larger localisation radius of rloc = 3 and p = 4, ρ =

10−8 are presented. Also for this setting, an improvement of the RMSE values was
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Figure 4.22: Values of the divergence and RMSE for the LETKF applied to the
shallow water model, plotted against time, once with and once without Kalman-
Bucy post-processing, for rloc = 1, p = 16, ρ = 10−8.

achieved by applying the post-processing.
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Figure 4.23: Values of the divergence and RMSE for the LETKF applied to the
shallow water model, plotted against time, once with and once without Kalman-
Bucy post-processing, for rloc = 1, p = 4, ρ = 10−4.

90



4.5. EXPERIMENTS

with post-processing
without post-processing

(a) Divergence

with post-processing
without post-processing

(b) RMSE in H

with post-processing
without post-processing

(c) RMSE in u

with post-processing
without post-processing

(d) RMSE in v

Figure 4.24: Values of the divergence and RMSE for the LETKF applied to the
shallow water model, plotted against time, once with and once without Kalman-
Bucy post-processing, for rloc = 3, p = 4, ρ = 10−8.
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Chapter 5

Conclusion

In this thesis we considered novel approaches to resolve issues arising in classical and
significant algorithms in the field of Data Assimilation. In the first part we focused
on hybrid filters, that bridge between ensemble Kalman filters (EnKF) and particle
filters. This was achieved by splitting the likelihood function

π(yobs|x) ∝ exp

(
−1− α

2
(Hx− yobs)TR−1(Hx− yobs)

)
×

exp
(
−α

2
(Hx− yobs)TR−1(Hx− yobs)

)
for α ∈ [0, 1] and then treating one part with the ESRF and the other one with the
ETPF. For α → 0, the hybrid filter converges towards the ESRF and for α → 1

towards the ETPF. This parameter could either be a fixed value or chosen adaptively.
For the adaptive choice we used the effective sample size of the ensemble and the
error-vs-spread criterion. We tested the hybrid approach on the Lorenz-63 and the
Lorenz-96 model and found out, that using the ETPF first, and afterwards the
ESRF, yields better results. Moreover, even for small ensemble sizes, a bridging
parameter 0 < α < 1 instead of α = 0 or α = 1, had a positive impact on the
predictions and that the best choice of α increases with increasing ensemble size.

Another possibility how to choose α adaptively is by looking at the KL-divergence
and the effective sample size. We showed, that there is a quadratic relation between
these two explanatory variables and the optimal α, using regression analysis and a
simple bimodal distribution with varying distance between the two modes and there
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for varying degree of Gaussianity.

We finally showed another way of combining an ETPF and a Kalman filter by
approximating the prior distribution by a Gaussian mixture, the posterior by a
weighted Gaussian mixture, applying the Kalman filter to each of the components of
the sum separately and finally using an ETPF to produce equally weighted analysis
centres for each Gaussian mixture component. This approach was again tested
on the Lorenz-63 and the Lorenz-96 model. Although this method worked, the
likelihood splitting was the better approach.

The second part of this thesis concerned the application of Data Assimilation to
multi-scale models and related issues. Models that act on more than one scale often
fulfil certain balance relations g(z) = 0 in the sense of staying close to a so-called
slow manifold, given initial conditions on the slow manifold. Since LETFs are linear
transformations, they destroy this balance in case g is non-linear. When dealing
with spatially extended models, the inevitable use of localisation even violates linear
balance relations. We also looked at the impact of localisation on the balance for a
linear 1.5-dimensional shallow water model analytically. Some existing approaches
on how to solve the issue were discussed and our own new strategy was presented.
The idea was to include a post-processing step after each assimilation step in the
sequential algorithm. With the analysis ensemble ẑj and the assimilated imbalance
values ĝj at hand, we can solve the minimisation problem

Jj(z) =
1

2
(ẑj − z)TA (ẑj − z) +

1

2
(ĝj − g(z))T B (ĝj − g(z))T ,

for j = 1, ...,M and A and B being matrices that weight the uncertainty of ẑj
and ĝj respectively. We formulated a way to solve this without even knowing the
gradient of g by taking advantage of the similarity of this optimisation problem to
the standard filtering problem and using the continuous Kalman-Bucy filter to solve
it.
We applied this strategy to two highly-oscillatory Hamiltonian systems, namely
the stiff spring double pendulum, which is chaotic and can be considered as a toy
model for atmosphere and ocean dynamics, and a thermally embedded elliptic stiff
spring pendulum, that has similarity to molecular dynamics simulations. We also
used two spatially extended models for testing our rebalancing approach: a slow-
fast extension of the Lorenz-96 model and the rotating 2-dimensional shallow water
equations. The method worked remarkably well with all four systems. Imbalances
were reduced and in some cases completely removed. In most of the simulations, it

93



led to a considerable improvement of the errors, in some cases it was even essential
to make the Data Assimilation algorithm work.
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