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Abstract 

Salt pans also termed playas are common landscape features of hydrologically closed basins in arid 

and semiarid zones, where evaporation significantly exceeds the local precipitation. The analysis 

and monitoring of salt pan environments is important for the evaluation of current and future 

impact of these landscape features. Locally, salt pans have importance for the ecosystem, wildlife 

and human health, and through dust emissions they influence the climate on regional and global 

scales. Increasing economic exploitation of these environments in the last years, e.g. by brine 

extraction for raw materials, as well as climate change severely affect the water, material and 

energy balance of these systems. Optical remote sensing has the potential to characterise salt pan 

environments and to increase the understanding of processes in playa basins, as well as to assess 

wider impacts and feedbacks that exist between climate forcing and human intervention in their 

regions. Remote sensing techniques can provide information for extensive regions on a high 

temporal basis compared to traditional field samples and ground observations. Specifically, for salt 

pans that are often challenging to study because of their large size, remote location, and limited 

accessibility due to missing infrastructure and ephemeral flooding. Furthermore, the availability of 

current and upcoming hyperspectral remote sensing data opened the opportunity for the analyses 

of the complex reflectance signatures that relate to the mineralogical mixtures found in the salt 

pan sediments. However, these new advances in sensor technology, as well as increased data 

availability currently have not been fully explored for the study of salt pan environments. The 

potential of new sensors needs to be assessed and state of the art methods need to be adapted 

and improved to provide reliable information for in depth analysis of processes and characterisation 

of the recent condition, as well as to support long-term monitoring and to evaluate environmental 

impacts of changing climate and anthropogenic activity. 

This thesis provides an assessment of the capabilities of optical remote sensing for the study of salt 

pan environments that combines the information of hyperspectral data with the increased 

temporal coverage of multispectral observations for a more complete understanding of spatial and 

temporal complexity of salt pan environments using the Omongwa salt pan located in the south-

west Kalahari as a test site. In particular, hyperspectral data are used for unmixing of the 

mineralogical surface composition, spectral feature-based modelling for quantification of main 

crust components, as well as time-series based classification of multispectral data for the 

assessment of the long-term dynamic and the analysis of the seasonal process regime. The results 

show that the surface of the Omongwa pan can be categorized into three major crust types based 

on diagnostic absorption features and mineralogical ground truth data. The mineralogical crust 
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types can be related to different zones of surface dynamic as well as pan morphology that 

influences brine flow during the pan inundation and desiccation cycles. Using current hyperspectral 

imagery, as well as simulated data of upcoming sensors, robust quantification of the gypsum 

component could be derived. For the test site the results further indicate that the crust dynamic is 

mainly driven by flooding events in the wet season, but it is also influenced by temperature and 

aeolian activity in the dry season. Overall, the scientific outcomes show that optical remote sensing 

can provide a wide range of information helpful for the study of salt pan environments. The thesis 

also highlights that remote sensing approaches are most relevant, when they are adapted to the 

specific site conditions and research scenario and that upcoming sensors will increase the potential 

for mineralogical, sedimentological and geomorphological analysis, and will improve the 

monitoring capabilities with increased data availability.  



v 
 

Zusammenfassung 

Salzpfannen, auch Playas genannt, sind häufige Landschaftsformen endorheischer Becken in ariden 

und semi-ariden Zonen, in denen die Evaporation den lokalen Niederschlag deutlich übersteigt. Die 

Analyse und das Monitoring von Salzpfannen sind wichtig für die Bewertung des aktuellen und 

zukünftigen Wandels dieser Systeme. Salzpfannen haben große Bedeutung für das lokale 

Ökosystem, für die Gesundheit von Mensch und Tier, und durch ihre Staubemissionen können sie 

das Klima auf regionaler und globaler Ebene beeinflussen. Die zunehmende industrielle Nutzung 

dieser Räume in den letzten Jahren, z.B. durch Soleförderung zur Rohstoffgewinnung, sowie der 

Klimawandel haben erhebliche Auswirkungen auf ihre Wasser-, Stoff- und Energiebilanz. Die 

optische Fernerkundung bietet das Potenzial diese Landschaftsformen zu charakterisieren, 

Veränderungen zu erkennen und das Prozessverständnis zu fördern, sowie umfassende 

Auswirkungen und Rückkopplungen zwischen klimatischen und anthropogenen Einflüssen in diesen 

Regionen zu erkennen. Im Vergleich zu traditionellen Feldmethoden bietet der Einsatz von 

Fernerkundung eine Basis für großräumige und wiederholte Untersuchungen. Das gilt insbesondere 

für Salzpfannen, die aufgrund ihrer Größe, abgelegener Lage und durch begrenzte Zugänglichkeit, 

aufgrund fehlender Infrastruktur und episodischen Überschwemmungen, häufig schwer zu 

untersuchen sind. Darüber hinaus eröffnete die aktuelle und zukünftig gesteigerte Verfügbarkeit 

von hyperspektralen Fernerkundungsdaten die Möglichkeit zur detaillierten Analyse der 

Reflexionseigenschaften der komplexen Mineralogie und Sedimenteigenschaften von 

Salzpfannenoberflächen. Der Einsatz neuer Sensorik sowie die erhöhte Datenverfügbarkeit sind 

jedoch derzeit noch nicht ausreichend für die Untersuchung von Salzpfannen erforscht. Das 

Potenzial neuer Sensoren muss bewertet und die aktuelle Methodik angepasst und verbessert 

werden, um zuverlässige Informationen für die Charakterisierung und Analyse des aktuellen 

Zustands zu liefern, sowie eine langfristige Überwachung und Bewertung der Auswirkungen von 

Klimaveränderung und der anthropogenen Aktivität auf Salzpfannen und deren Regionen zu 

ermöglichen. 

Diese Arbeit bietet eine Bewertung des Potentials der optischen Fernerkundung für die 

Untersuchung von Salzpfannen. Der Fokus liegt insbesondere auf der kombinierten Nutzung der 

analytischer Stärke von hyperspektralen Daten mit der erhöhten zeitlichen Auflösung von 

multispektralen Beobachtungen, um ein gesteigertes Verständnis der räumlichen und zeitlichen 

Komplexität von Salzpfannen zu erreichen. Als Testgebiet hierfür dient die Omongwa Salzpfanne in 

der Süd-Westlichen Kalahari. Im Rahmen dieser Arbeit werden hyperspektrale 

Fernerkundungsdaten für die spektrale Entmischung der mineralogischen 
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Oberflächenzusammensetzung und für die Quantifizierung mittels spektraler Parameter genutzt. 

Gleichzeitig ermöglicht die multitemporale Klassifikation von Multispektraldaten die Beurteilung 

der Langzeitdynamik und die Analyse des saisonalen Prozessgeschehens. Die Ergebnisse zeigen, 

dass die Oberfläche der Omongwa-Salzpfanne in drei Hauptklassen, dominiert von verschiedenen 

Evaporitmineralen, eingeteilt werden kann, die aufgrund diagnostischen Absorptionsmerkmalen 

und durch die Analyse von in-situ Daten unterschieden werden können. Diese mineralogischen 

Hauptklassen korrelieren mit Zonen unterschiedlicher zeitlicher Dynamik, sowie mit dem 

morphologischen Aufbau der Salzpfanne, die die räumliche Verteilung von Oberflächenwasser 

während episodischer Flutungen und die Ausfällung von Salzen während der Trockenzeiten 

beeinflussen. Des Weiteren konnte auf Grundlage hyperspektralen Daten von aktuellen Sensoren, 

sowie anhand simulierten Daten von in Planung befindlicher Sensoren eine robuste Quantifizierung 

der Gipskomponente in den Oberflächensedimenten abgeleitet werden. Für das 

Untersuchungsgebiet deuten die Ergebnisse der Zeitreihenanalyse darauf hin, dass die 

Krustendynamik und Oberflächenmineralogie hauptsächlich durch die wiederkehrenden 

Überschwemmungsereignisse in der Regenzeit geprägt sind, aber auch durch die Temperatur und 

äolische Aktivität in der Trockenzeit beeinflusst wird. Zusammenfassend zeigen die Ergebnisse, dass 

die optische Fernerkundung großes Potenzial zur genaueren Erforschung von Salzpfannen bietet 

und detaillierte Informationen zu saisonalen und langzeitlichen Veränderungen liefern kann. Die 

Arbeit hebt auch hervor, dass der Einsatz von Fernerkundungsmethoden am erfolgreichsten ist, 

wenn sie an die lokalen Bedingungen und die Forschungsfrage angepasst werden. Der Ausblick 

zeigt, dass zukünftige Sensoren die Möglichkeiten für die Erforschung dieser Räume weiter erhöhen 

und ein systematisches Monitoring durch die größere Datenverfügbarkeit verbessert wird.  
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Chapter I - Introduction 

1. Rationale and Structure 

Salt pans or playas are common landscape features of hydrologically closed basins in arid and 

semiarid zones, where evaporation significantly exceeds the local precipitation (Shaw & Bryant, 

2011). Although these environments represent only a small proportion of modem drylands, 

approximately ~5% after Cooke & Warren (1973), locally, they are of high ecological and economic 

significance, and even influence the regional and global climate through dust emissions. Specifically, 

for the southern Kalahari, Lancaster (1978) describes pans as “the principal geomorphic feature 

[...], which breaks the monotony of this otherwise almost featureless sand plain” that regionally 

can cover more than 20% of the land surface (Goudie & Wells, 1995). In Namibia and Southern 

Africa, any depression that holds water after a period of rain is called a pan. The term pan will be 

used synonymous with the term playa, defined by Neal (1975) as the flat central portion of the 

depression that may be covered by water after rain. The term salt or saline in conjunction with pan 

or playa refers to hydrologically closed depressions, where the evaporation exceeds water inflows 

and which sediments therefore contain a significant proportion of evaporite minerals such as 

sodium chloride (NaCl, ‘common salt’), calcium carbonate (CaCO3), calcium sulphate in its hydrous 

form (gypsum, CaSO4 · 2H2O) or its dehydrated form (anhydrite CaSO4) (Fookes & Lee, 2018). 

Scientifically, salt pans have become increasingly important for the elucidation of 

palaeoenvironmental conditions from their sediments and landforms (M. Telfer, 2006), whilst also 

have being recognised as major sources for atmospheric dust (Prospero, Ginoux, Torres, Nicholson, 

& Gill, 2002), which calls for a regular monitoring of these environments (Shaw & Bryant, 2011). 

Salt pans can provide valuable information on the environment, because their morphological, as 

well as sedimentary and mineralogical characteristics can be related to fluvial or aeolian processes 

and climate drivers that controlled their formation or later modified them (Robert G. Bryant, 1999). 

The information gained from pans often have importance beyond their size, with environmental 

processes not only affecting the pan surrounding, but their emissions influence the climate on 

regional and even global scales (Lancaster, 2009). The composition of exposed salt pan surfaces can 

also affect human health, e.g. directly through emissions of heavy metals and small dust particles 

(Plumlee & Ziegler, 2003), as well as by providing suitable living conditions for microbes or fungi 

that can potentially functions as pathogens (Bultman, Fisher, & Pappagianis, 2013), which are 

determined by the pan environment and its dynamics. The various sediments and minerals of playa 

lake basins can also have economic significance and may take on greater relevance with the ever-
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increasing demand for natural resources (Chapman, Rothery, Francis, & Pontual, 1989; Matter & 

Tucker, 1978). The economic potential of salt pan deposits is already known since decades, e.g. as 

an exploitable source for uranium in the energy sector or as agricultural fertilizer (Reeves, 1978). 

The importance further increased in recent years specifically by growing demand for lithium for 

energy storage technology that is currently fuelling a boom in exploration for new sources and 

feasibility studies (Kavanagh, Keohane, Garcia Cabellos, Lloyd, & Cleary, 2018). Some of the most 

promising lithium sources are salt pans of the closed drainage basins in the Andes of South America 

(Godfrey et al., 2013). Remote sensing can not only contribute to the exploration, but may be even 

more relevant in the monitoring of such economic exploitations and their influence to the pan 

dynamic, as well as the environmental consequences of such activities. For example, the extraction 

of salt rich brines is reported to cause drastic changes in the pan surface properties (Bowen, Kipnis, 

& Raming, 2017), and can lead to increased activity in pan emissions, due to reduction in 

groundwater level (Pelletier, 2006). The direct and indirect environmental impacts of industrial salt 

extraction also threaten the traditional use of salt pans for domestic purposes, e.g. to provide cattle 

with essential salt nutrients for their diet (Saayman, 2013). Furthermore, the pans of the Kalahari 

region are a preferred wildlife habitat as they provide natural mineral licks, protection from 

predators and an ephemeral source of drinking water (Bergström & Skarpe, 1999; Parris & Child, 

1979; Selebatso, Bennitt, Maude, & Fynn, 2018). Finally, salt pan environments serve more exotic 

uses such as testing ranges for high speed vehicles and jet engines (Carpenter, Wallace, & Hamre, 

2002), and provide a unique setting for geotourism (Dowling & Newsome, 2018), that are also 

challenged by degradation of the surface crust due to climate change and/or economic exploitation 

(Bowen et al., 2018). 

However, the observation and monitoring of playa environments is a challenging task. Many of the 

processes related to formation and evolution of these landforms and their sediments are difficult 

to monitor using conventional ground-based instrumentation because of: (1) high-magnitude and 

low-frequency events such as episodic flooding; (2) strong seasonal patterns, which can include a 

change in the dominant process regime (e.g. from fluvial to aeolian during the season); (3) changes 

that are spatially discrete and uncorrelated to the development of the whole salt pan environment 

and therefore missed by point based observations (Millington, Jones, Quarmby, & Townshend, 

1987). From a practical perspective, the application of ground-based observation and monitoring is 

further challenged by limited accessibility to salt pans, in time of partial or total flooding, as well as 

by generally harsh climatic and working conditions and limited infrastructure in these often remote 

and extensive arid areas (Robert G. Bryant, 1996). To overcome these difficulties a fair number of 
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studies have applied remote sensing techniques to study salt pan evaporite environments and were 

able to provide spatial information on pan surfaces in terms of evaporite mineral distribution 

supported by field observations. Most of them rely on optical multispectral satellite sensors (e.g. 

Alanazi & Ghrefat, 2013; Robert G. Bryant, 1999; Millington et al., 1989; White & Eckardt, 2006) 

that often do not provide the necessary spectral resolution to cover the spectral complexity of 

evaporite mineral assemblages on salt pan surfaces (Hubbard & Crowley, 2005). In comparison, 

analysis based on advanced hyperspectral imagery are more sensitive for the identification and 

quantification of a wider range of evaporite minerals (Robert G. Bryant, 1999; Kodikara et al., 2012), 

and usually achieve higher modelling results (Hubbard & Crowley, 2005). However, currently 

hyperspectral data are not as easily available as multispectral data and therefore only provide a 

mono-temporal assessment of the playa environment. In the frame of the BMBF funded SPACES 

GeoArchive project this thesis provides an assessment of the capabilities of optical remote sensing 

for the characterisation of salt pan environments that combines the information of hyperspectral 

data with the increased temporal coverage of multispectral observations for a more complete 

understanding of spatial and temporal complexity of salt pan environments. 

The thesis comprises five main chapters. Chapter I gives an overview of the general research 

background, presents the specific research framework and poses main research objectives and 

research questions. Chapters II-IV present consecutive stand-alone manuscripts, whose sub-

objectives contribute to the overall thesis. Chapter II provides a spatial comprehensive study of the 

surface mineralogy of the Omongwa salt pan using hyperspectral EO-1 Hyperion data and the 

assessment of the long-term surface dynamic covering the last 30 years since 1984 by exploiting 

the rich data archive of the multispectral satellites of the Landsat-series. Results are linked to the 

morphology of pan setting for interpretation of the pan’s depositional environments. Following this 

assessment, Chapter III evaluates the capability of hyperspectral sensors at laboratory, airborne 

and spaceborne scale for the quantification of the mineralogical fraction in the salt pan surface 

sediments using the example of the gypsum mineral and proposes a robust and transferable 

approach in support of regular monitoring using current and upcoming hyperspectral sensors. 

Chapter IV focuses on temporally dense seasonal and inter-annual analysis using well established 

multispectral data of the Landsat OLI sensor that cover the surface changes of three major wet-dry 

cycles and provides an assessment of climatic parameters, such as the pan’s moisture regime and 

aeolian activity that may drive the observed surface changes. The mineralogical classification 

provided in Chapter II based on hyperspectral data is also used in Chapter III to assess the potential 

and limitation of the crust type mapping using broad multispectral bands of the Landsat OLI sensor. 
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Finally, Chapter V builds a synthesis form the previously established results and provides an outlook 

regarding further research demands, as well as an assessment of complementary research 

approaches.   
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2. Research Background 

The research background provides an overview of state of the art in optical remote sensing for pan 

environments in general (Section I-2.1) and the potential of advanced hyperspectral remote sensing 

in particular (Section I-2.2), as well as on the physical properties and dynamic of playa environments 

(Section I-2.3). 

2.1 Optical remote sensing for pan environments 

Optical remote sensing has the potential to characterise playa environments and to increase the 

understanding of processes in playa basins, as well as to assess wider impacts and feedbacks that 

exist between climate forcing and human intervention in their regions (Shaw & Bryant, 2011). 

Optical remote sensing of salt pans surfaces is based on the spectral reflectance properties of the 

different mineralogical and organic components present in the salt pan surface sediments. The 

Visible and Near-Infrared spectral range (VNIR, 0.4 – 1 μm) is primarily influenced by the highly 

reflective properties of salt minerals, such as halite and sedimentary components such as 

weathered silicate or carbonate minerals that depend on the lithological background of the playa 

environment (Robert G. Bryant, 1996; J.K. Crowley, 1993; Drake, 1995). The region is further 

influenced by the broad absorption features of metal (mainly iron)-oxides and hydroxides as well 

as organic matter introduced into the pan sediments. The Short-Wave Infrared (SWIR, 1 – 2.5 μm) 

spectral region is predominantly sensitive to a wide variety of minerals, like clays, carbonates and 

sulphates that have more discrete or sharp absorption features that are mostly too narrow to be 

accurately identified by broadband multispectral data (Chabrillat, Goetz, Krosley, & Olsen, 2002; 

Hunt, Salisbury, & Lenhoff, 1971). In addition to these chemical components, most physical 

properties of the salt pan surface such as the texture and roughness of the sediments, as well as 

water content affect the shape of the spectral curve through changes in baseline height and 

influence the absorption feature intensities (E. Ben-Dor et al., 2009). 

Optical multispectral remote sensing data have been used to map and monitor the playa 

environments with evaporite surfaces on many different scales and sensors. Castañeda, Herrero, & 

Casterad (2005) used Landsat data to map depositional environments for the pans of the Monegros 

area in Northern Spain. Her studies focus on the differentiation of vegetated, wet, watery, and dry 

bare ground, which are robustly separable with multispectral data. For more complex 

differentiation of sedimentary surfaces in terms of evaporite mineralogy or clay rich crust types a 

number of studies used field samples and field or laboratory spectroscopy to determine which 

evaporite minerals can be differentiated and mapped with optical remote sensing. E.g. Chapman et 
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al. (1989) and Flahaut et al. (2017) could capture the majority of the mineralogical information and 

map mineral zones within the salt pans of the Andean highlands in Southern America using a 

combination of multispectral Landsat data and field spectroscopy and relate this information to 

local bedrock as well as hydrochemical conditions. For the endorheic basins of Northern Africa, the 

so-called Chotts, a rich basis of scientific studies has applied optical remote sensing for the study of 

these playa environments. Among their many results, they show that it is possible to differentiate 

evaporite rich sediments, most notably gypsum and halite dominated surfaces, using Landsat data 

and to apply this knowledge for the analysis of sediment transport processes (Abbas, Deroin, & 

Bouaziz, 2018; Drake, Bryant, Millington, & Townshend, 1994; Millington et al., 1989). For example 

the work of Bryant (1999) on the Chott el Djerid showed that the abundance of gypsum in the salt 

pan surface sediments can be estimated using mineralogical information from ground reference 

samples to calibrate Landsat based linear mixture models with good results, but a limited samples 

size (r² > 0.8, n = 12). Similar remote sensing studies by White & Eckardt (2006) on the Makgadikgadi 

pan complex in northern Botswana used MODIS and Landsat data to estimate abundancies of 

calcium carbonate in a similar methodological approach with more mixed results (r² ≈ 0.36-0.51). 

However, already the relative mineralogical information on calcite surface distribution was useful 

to assess aeolian, fluvial and groundwater processes of the pan system (White & Eckardt, 2006). 

2.2 Hyperspectral remote sensing 

Whereas multispectral systems cover the optical region in a few very broad spectral channels, 

hyperspectral sensors, also termed imaging spectrometers, register hundreds of narrow, 

overlapping spectral bands that compose a continuous spectrum (Meer & Jong, 2007). Commonly, 

but not exclusively, the starting point of hyperspectral sensors is defined to begin with a band-pass 

smaller than 20 nm for each spectral band (Veraverbeke et al., 2018). The high spectral resolution 

enables a wide range of applications that require an accurate identification of materials or 

estimation of physical parameters, but usually require more sophisticated and complex data 

analysis methods to account for the higher dimensionality and size of the hyperspectral data 

(Bioucas-Dias et al., 2013). Over the last decades, hyperspectral remote sensing has opened the 

optical-reflective domain of the VNIR and SWIR part of electromagnetic spectrum with a large 

number of available hyperspectral radiometers today at ground or field level (e.g. ASD FieldSpec, 

Spectral Evolution PSR+), with imaging spectrometers mounted on aircrafts (e.g., AVIRIS, HyMap, 

HySpex, AisaFenix), and is currently emerging at the spaceborne scale with the integration of such 

sensors on earth-observing platforms (Bioucas-Dias et al., 2013; Guanter et al., 2018; Plaza et al., 

2009). Regarding the satellite level, the only publicly available source of hyperspectral imagery that 
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covers the VNIR-SWIR spectral range in the last years has been acquired by the Hyperion sensor 

mounted on NASA’s Earth Observing-1 (EO-1) satellite (Ungar, Pearlman, Mendenhall, & Reuter, 

2003). The mission launched in 2000 and was originally planned with a lifetime of only one year and 

a technical exploration objective, specifically to enable the development of future Earth imaging 

technologies, but the mission did finally run for more than 16 years until the satellite was 

decommissioned in 2017 (Franks et al., 2017). Compared to controlled conditions in the laboratory, 

imaging spectroscopy at the air- and spaceborne level is encumbered by problems such as changes 

in viewing and illumination angles, atmospheric attenuation and relatively low signal-to-noise ratios 

(Eyal Ben-Dor, Irons, & Epema, 1999). Although these challenges that influence the quality of the 

remote sensing data still exist, major progress has been made to account for geometric, 

atmospheric and sensor related quality issues with state-of-the-art sensor design and processing 

approaches (Plaza et al., 2009; Richter & Schläpfer, 2002). Careful and sensor adapted calibration, 

application of normalisation techniques, as well as noise management can significantly improve the 

data basis even for sensors affected by high background noise (Datt, McVicar, Niel, Jupp, & 

Pearlman, 2003). 

For the remote sensing of playa environments, the availability of hyperspectral data opened the 

opportunity for the analyses of the complex reflectance signatures that are the result of 

mineralogical mixtures found in the sediments of playa environments (Ghrefat & Goodell, 2011; 

Hubbard & Crowley, 2005). The advent of imaging spectrometers mounted on airplanes in the 

1990s and use of hyperspectral data could provide major insights on the link between the salt pan 

mineralogy and surface reflectance in the VNIR-SWIR spectral range for a wide range of evaporite 

minerals over selected test sites (James K. Crowley, 1991; J.K. Crowley, 1993; Drake, 1995). These 

studies showed that many evaporite surfaces exhibit spectral absorption features that are related 

to their molecular properties and originate from the absorption of electromagnetic radiation due 

to either electronic or vibrational processes (Clark, King, Klejwa, Swayze, & Vergo, 1990). For 

evaporite minerals the vibrational processes mainly caused by excitation of atomic-bonds of the 

ion groups carbonates (CO3), sulphates (SO4), nitrates (NO3), or ammonium (NH4) that can be 

exploited for their discrimination by hyperspectral remote sensing (James K. Crowley, 1991; Drake, 

1995). Although some evaporite minerals may have absorption features in a similar position, the 

large variations in number, spacing, size and shape of these features mean that their spectra can 

still be differentiated and considered diagnostic, especially if the specific evaporite environment is 

considered in the analysis. The identification of a particular suite of evaporite minerals further 

allows to distinguish between different brine and playa types and gives inside to specific 
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environmental conditions that are related to their formation (Drake, 1995). Hyperspectral data 

have also been proven useful for the related topics such as the general assessment of salinity (E. 

Ben-Dor, 2002; Farifteh, Meer, & Carranza, 2007), as well as the classification of halophytic 

vegetation of salt pans and irrigated soils (Dehaan & Taylor, 2001; A. Dutkiewicz, Lewis, & 

Ostendorf, 2009). 

Currently, the main limitation for hyperspectral remote sensing approaches is still the data 

availability, coverage and frequency of observations, which prevents more extensive use or 

multitemporal assessments. Technical constraints in the definition of imaging spectrometers and 

the fraction of radiant flux available to the sensors usually make it necessary to trade spatial 

resolution as well as the sensor’s footprint (also called swath width for line scanners) against higher 

spectral coverage and resolution, as opposed to multispectral sensors that are typically designed 

to maximize spatial and temporal resolution. According to these technical properties, major synergy 

lies in the complementary use of high frequency multispectral observations combined with the 

analytic strength of hyperspectral data (Guanter et al., 2018). Recent advances in optical remote 

sensing such as the European Space Agency’s multispectral Sentinel-2 satellite (Drusch et al., 2012), 

the just launched hyperspectral mission of the Italian Space Agency PRISMA (Hyperspectral 

Precursor of the Application Mission) (Loizzo et al., 2018), as well as a wide range of upcoming 

hyperspectral missions, like the German Aerospace Agency’s EnMAP (Environmental Mapping and 

Analysis Program) (Guanter et al., 2015) with scheduled for launch end of 2020 and the Italian-

Israeli SHALOM (Spaceborne Hyperspectral Applicative Land and Ocean Mission) satellite, which is 

designed to provide higher spatial resolution of 10 m and a focus on commercial applications 

(Feingersh & Ben-Dor, 2015), will offer an improved databasis for exploitation of hyperspectral 

techniques, as well as synergetic use with multispectral imagery. A further hyperspectral sensor 

with the scheduled for 2022 is the Earth Surface Mineral Dust Source Investigation (EMIT), which 

will be mounted to the exterior of the International Space Station (ISS), with the direct mission 

objective to determine the mineral composition of natural sources that produce dust aerosols 

around the world (R. Green et al., 2019). Currently under discussion are also the next generation of 

hyperspectral satellite missions like ESA’S new Sentinel candidate the Copernicus Hyperspectral 

Imaging Mission (CHIME) (Nieke & Rast, 2018), as well as NASA’s Biology and Geology (SBG). Both 

of these satellites will be designed to operationally acquire hyperspectral imagery over larger areas 

and much more frequently than the previous listed tasking missions. The technical developments 

of these sensors and platforms will provide new opportunities for improved characterisation and 
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monitoring of complex salt pan environments and their dynamics in the context of climate change 

and anthropogenic impact.  
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2.3 Playa environments and their dynamic 

English-speaking geoscientists have turned to a variety of foreign language terms to describe the 

flat, mainly barren, periodically flooded and often salt-crusted basin of arid areas. Next to several 

other terms, these features have been called playas, salinas, salt pans or flats (Fookes & Lee, 2018). 

These flat, shallow depressions floored with mostly layered sediments are often salt rich and dry 

except when flooding turns them into a temporary, also termed ephemeral, saline lake 

environment (Eugster & Hardie, 1978). Salt pans can vary in size from small salt flats of less than 1 

km² in areal extent to giants thousands of square kilometres in area, such as the Etosha and 

Makgadikgadi pan in Namibia or the salt pan at Lake Uyuni, Bolivia that covers more than 10,000 

km². Continental saline pans occupy the lowest areas of closed arid basins. The flat, salt-encrusted 

pan surface often is surrounded by a brine-soaked mudflat permeated with evaporite minerals that 

grew within the sediment, and this saline mudflat in turn grades outward into a dry mudflat (Eugster 

& Hardie, 1978). This lateral zonation, which is sometimes termed ‘bulls eye’ pattern, relates to the 

properties of the depositional environment and reflects the sedimentological, hydrological and 

geomorphological condition of the local pan system. In these zones different abundances of 

minerals dominate the top sediment layer influenced by e.g. different subsurface hydrological 

conditions, as well as the lithological background of the pan basin. The occurrence of evaporite 

minerals is mainly related to their solubility and the pan’s hydrological condition. Often less soluble 

carbonates can be found at the edge of the pan, followed by a succession of sulphates to chlorides 

towards the topographically lower, central pan area (B. F. Jones, 1965; Shaw & Bryant, 2011). In 

most settings a small but noticeable topographic break separates the mudflat from the sloping 

surface of surrounding terrain that can have the form of alluvial fans in major basins (Robert G. 

Bryant, 1996) or sand dunes in the case of the smaller pans of the Kalahari (Lancaster, 1986). 

In the semiarid to arid landscapes of southern Africa pan depressions often represent the lowest 

local runoff point in the weakly developed drainage systems that is occasionally blocked by sand 

dunes or that got disconnected by shifts of the regional tectonic. Regionally, pans dominate the 

morphology of parts in eastern Namibia, north-western Botswana, and northern and western South 

Africa (Lancaster, 1978, 1986). Occasionally, strong precipitation events lead to transient runoff in 

sometimes relictic or ephemeral river systems, as well as to rising groundwater that leaches the 

rocks of the catchment during its subsurface flow and transports solute rich brines along the 

gradient that often discharges into such pan depressions. In consequence, pans are filled 

temporally with water from several days up to a few weeks depending on the amount of 

precipitation and infiltration capacity of the pan sediments. Solutes which are produced and 
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deposited in local or regional depressions are stored within the internal drainage system to form 

salt pans (Goudie & Thomas, 1985). Local environmental factors such as precipitation, surface 

drainage, and aeolian activity can substantially influence the sedimentology and morphology of pan 

structures (P. D. Roy, Smykatz-Kloss, & Sinha, 2006). The most dominant process for the build-up 

for the evaporite rich sediments is the regular cycle of flooding and desiccation. A general model 

for the process dynamic of salt pans and its effect on their surface composition is provided by the 

saline pan cycle after (Lowenstein & Hardie, 1985) (Figure 1). 

 

Figure 1. The saline pan cycle within a playa basin (Chivas, 2007 modified; based on Lowenstein & 

Hardie, 1985). 
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It describes that the episodic formation and dissolution of surface crust follows a cycle of flooding, 

evaporation, and desiccation of the playa surface (Chivas, 2007; Lowenstein & Hardie, 1985). These 

pan cycles are mainly driven by the surface water balance that effect evaporite sediment deposition 

and dissolution (Bowen et al., 2017; Warren, 2016), but are also influenced by air temperature, 

humidity and wind regime (Lowenstein & Hardie, 1985). 

3. Aims and Objectives 

The general objective of the thesis is to evaluate the potential of current and upcoming advances 

in optical remote sensing data to further the understanding of salt pan environments by addressing 

their spatial and temporal complexity. In particular, 1) the liberation of Landsat data archives over 

a decade ago (Wulder, Masek, Cohen, Loveland, & Woodcock, 2012) opened the way for detailed 

analyses of longer term and high frequency changes of the earth surface through the use of 

adequate methodologies that must be adapted to the high temporal data dimensionality, and 2) 

the emergence of hyperspectral satellites such as the Hyperion EO-1, as well as upcoming 

hyperspectral missions, provide analytical potential, that will be assessed in the frame of this thesis. 

This objective is addressed by adapting and applying state-of-the-art methods of multispectral and 

hyperspectral optical remote sensing data over the Omongwa salt pan test site in the southwestern 

Kalahari. For the test site specifically, the objective of this work aims at the better understanding 

of the natural process regime that drives the seasonal and inter-annual dynamic of the Omongwa 

salt pan. For this purpose, the spatial distribution of surface mineralogy and crust types is derived 

and the temporal dynamic of the pan surface crust types is assessed. Furthermore, remote sensing-

based approaches are developed that allow an efficient and robust derivation of evaporite 

abundances in the surface sediment mixture in order to support regular monitoring using current 

and upcoming hyperspectral sensors. Methodologically, this research focuses on a combined 

approach that exploits: 1) the spectral information provided by hyperspectral remote sensing to 

differentiate the mineralogy of playa surface sediments, 2) the temporal coverage, monitoring 

capabilities and archived acquisitions of Earth Observing multispectral satellite missions to assess 

the surface changes and the general dynamic of such environments. A major step in this work is the 

assessment of the sedimentological and mineralogical variability of this specific salt pan setting and 

the effect on the spectral properties of the surface that are observable by spectroscopic techniques, 

as well as the translation of this insight to the different remote sensing scales and an assessment 

of the limitations of the used sensors and applied approaches.  
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Based on the objectives the following research questions will be addressed in this thesis: 

(1) What can optical remote sensing contribute to the characterisation of the salt pan 

depositional environment? 

(2) Can mineralogical crust components of salt pan environments be robustly mapped and 

quantified by current and upcoming hyperspectral sensors? 

(3) What processes can be characterised by multitemporal remote sensing regarding seasonal 

pan changes and their link to the climatic drivers? 

 

  



Chapter I - Introduction 

14 
 

4. Research Framework 

The research framework provides an overview of the test site (Section I-4.1), and lists the remote 

sensing and ground-truth data (Section I-4.2) used throughout the chapters. 

4.1 Study Area 

The Omongwa pan is located in east Namibia - part of the western Kalahari - approximately 260 km 

south-east of Windhoek (Figure 2). With a size of ~20 km2 it is the largest one in a series of pans 

that appear to be aligned along a former branch of the Nossob River system, with a southward 

palaeodrainage direction (Kautz & Parada, 1976; Lancaster, 1986; Mees, 1999). 

The salt pan evolved in calcareous deposits of Kalahari Group, which are exposed in the paleo river 

valley and in interdune space of shallow dunes (Mees, 1999; D. Thomas & Shaw, 1991; Veleen & 

Baker, 2009). Prominent outcrops of this calcareous material appear along the pan margins (Mees, 

2002), e.g. ~1 m high scarp at the north-eastern margin of Omongwa pan. The pan is situated in the 

north-eastern Aranos Basin, which is part of the super-regional inland sedimentary Kalahari Basin 

that resulted from the uplift of the Great Escarpment in the Cretaceous. During the following 

Tertiary until Late Pleistocene re-occurring changes in moisture and sedimentary regime enabled 

both pedogenic and groundwater calcretes to cement early Kalahari deposits especially along river 

courses like the former Nossob tributary in the study region (Miller, 2008). The Kalahari Group is 

relatively thin in this region with a thickness of < 10 m (SACS 1980), which have been recognised 

from the cuttings of several water boreholes in the Aminuis region (JICA 2002; Miller 2008). One 

borehole (WW26165) directly north of the Omongwa pan revealed only 1 m of Kalahari Group 

deposits (JICA STUDY TEAM, 2002). They overlie more than 50 m of Pre-Kalahari basalts of the 

Kalkrand Formation. The surroundings landscape of the pans are generally covered by the reddish 

sands of the Kalahari Group (Lancaster, 1986; Miller, 2008), which are classified as Rubi-Feralic 

Arenosols, ARo (red, iron rich, sandy soils) according to the WRB system (FAO 2006), whereas the 

calcareous deposits along the paleo riverbed, in which the Omongwa pan is situated, form greyish 

soils that classify as Petric Calcisols, CLp (soils with secondary lime accumulation and strongly 

cemented layers) (Veleen & Baker, 2009). 
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Figure 2. (a) Map of Southern Africa with the location of the study site in the western Kalahari after 

Genderjahn et al. (2018). (b) RGB imagery of Omongwa pan (Digital Globe, September 2013, 

provided by Google Inc.). (c) Picture of Omongwa pan in its desiccation state with devolved bright 

salt crust in October 2013. (d) Image of Omongwa pan in a partially inundated state after rainfall in 

March 2016 and (f) in the beginning of desiccation a few days later. 
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The modern surface is mostly dry throughout the year (Figure 2c) except when surface flooding by 

seasonal rainfall turn the pan or parts of into a shallow lake (Figure 2d). Surface runoff from the 

surrounding savannah landscape is very minor due to by restriction by lateral longitudinal dunes 

and a lunette dune at the southern pan margin (Mees, 1999). At some locations small inflows 

channels locally impact the pan’s surface hydrology and fluvial sediment influx. Most significant is 

an inflow channel located at the north-eastern pan margin that forms a small drainage line that was 

dammed up into a small man-made water retention basin, from which the runoff occasionally 

drains into the pan and flows along the northern pan margin.  

Climatically, the western Kalahari area is defined as hot desert climate by the Köppen–Geiger 

climate classification. The mean annual rainfall is 200–250 mm recorded for the period of 1982–

2002 with high monthly, seasonal, and inter-annual variations and a mean annual temperature of 

about 21°C. On average 90% of the total precipitation occurring in the wet season from December 

to April (Atlas of Namibia Project, 2002). The potential evapotranspiration (ETP) is of above 3000 

mm for the region a, with a maximum in July and August, where the maximum temperature can 

reach 48 °C. With a precipitation to potential evaporation ratio (P/ETP) of about 0.08 it is classified 

as arid close to hyper-arid zone. In the region, the main wind direction is north to north-west. The 

surface is mostly unvegetated except the north-western area that builds a small sub-basin and 

supports patches of halophytic vegetation that is sparse at its centre and increases in direction of 

the pan margin. The mostly unconsolidated material of the salt pan surface provides ideal 

conditions for aeolian activity. In general, salt playa surfaces experience deflation during dry 

periods, with transport in the dominant wind direction forming dunes on the playa and at its 

margins (Shaw & Thomas, 1989). However, it is also possible that aeolian material (mainly in the 

form of dust) can be brought into the basin from elsewhere. As such, playa basins can also be 

defined as open aeolian systems. 
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4.2 Data Basis 

A multi-spatial, multitemporal, and spectral scale approach was used to address the research 

questions. A unique data set of spaceborne multispectral time-series data and hyperspectral 

ground-based, airborne, spaceborne and simulated spaceborne data at fine to coarse spatial 

resolution have been combined with sedimentological and mineralogical ground truth data 

acquired at different seasons throughout three field campaigns (Figure 3 and Table 1. Remote 

Sensing Database.). 

 

Figure 3. Schematic of the multi-scale data basis of the thesis and remote sensing devices used. 
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In-situ and Laboratory Spectral Data 

In-situ reflectance measurements and surface sampling of the test site took place during three field 

campaigns in October 2014, June 2015 and March 2016, which respectively represent the end and 

beginning of the dry season, as well as the end of the wet season. Field spectra of untouched 

surfaces were collected along transects into the pan and for sites of interest representative for the 

variability of surface conditions and sediment mixtures using an ASD (Analytical Spectral Devices) 

FieldSpec 3 point spectroradiometer, covering the VNIR-SWIR spectral range with 3 to 10 nm 

spectral resolution resampled to sampling interval of 1 nm (ASD Inc., 2015).  

Mineralogical Ground-truth Data 

During three field campaigns a total of 49 samples of top surface curst have been collected (see 

Figure 4). Mineralogical characterization of the field samples was carried out using a PANalytical 

Empyrean powder X-ray diffractometer (XRD) with a theta-theta-goniometer, Cu-Kα radiation 

(λ = 0.15418 nm), automatic divergent and anti-scatter slits and a PIXcel3D detector. Diffraction 

data were recorded from 4.5° to 85° 2ϴ with a step-size of 0.0131 and a step time of 60 s. The 

generator settings were 40 kV and 40 mA. All samples were crushed and powdered to a grain size 

of <62 micron. These samples were used for the qualitative and quantitative mineral analysis. A few 

samples were also powdered to <10 micron, but no strong differences in intensities were observed. 

The qualitative phase composition was determined using the software DIFFRAC.EVA (Bruker), and 

the quantitative mineralogical composition of the samples (in weight %) was calculated using a 

Rietveld based method implemented in the program AutoQuan (GE SEIFERT; Taut, Kleeberg, and 

Bergmann 1998). 
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Figure 4. Locations of field surface samples (Basemap source: DigitalGlobe RGB image, September 

2013, provided by Google Inc. (Mountain View, CA, USA)). 

 

Table 1. Remote Sensing Database. 

Sensor GSD 
No. of 

Bands 
Time Images Provider 

Landsat TM 
30 7 1984-2015 98 USGS 

Landsat ETM+ 
30 8 1999-2003 16 USGS 

Landsat OLI 
30 11 2013-2017 77 USGS 

Airborne HySpex 
2.4 416 06.06.2015 1 

Dimap/GF
Z 

Spaceborne 

Hyperion 
30 198 07.09.2014 1 USGS 

Spaceborne EnMAP 

(simulated) 
30 242 06.06.2015 1 GFZ 

*Ground Sampling Distance 
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Spaceborne Landsat Multispectral Imagery 

For the long-term multitemporal surface dynamic analysis of chapter II all available, cloud free 

Landsat images of the study area at World Reference System-2 path/row 176/76 were acquired 

through the USGS EarthExplorer data portal (http://earthexplorer.usgs.gov/). The time series 

covers the last 3 decades (1984-2015) and is composed of imagery from three different satellite 

and sensor generations of the Landsat Mission. From a total of 146 cloud-free scenes, the majority 

(98 of them) originate from Landsat 5 (TM), 16 from Landsat 7 (ETM+) and 32 from Landsat 8 (OLI). 

The three sensors have the same spatial resolution of 30 m, but slightly different spectral coverage 

or even additional bands (Chander, Markham, & Helder, 2009). Only the six reflective bands (Blue, 

Green, Red, NIR, MIR, and SWIR) common to all sensors are used. The Landsat data were pre-

processed to top of atmosphere (TOA) reflectance by the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) (Masek et al., 2013). For seasonal and intra seasonal analysis of chapter 

III all available Landsat 8 Operational Land Imager (OLI) images of the study area at World Reference 

System-2 path/row 176/76 were acquired through the Google Earth Engine public data catalogue 

(Gorelick et al., 2017) that host the extensive USGS Tier 1 and 2 Landsat Collection. The OLI sensor 

has seven reflective bands (Coastal Blue: 443 nm, Blue: 482 nm, Green: 562 nm, Red: 655 nm, NIR: 

865 nm, SWIR I: 1609 nm, SWIR II: 2201 nm) at a spatial resolution of 30 m (USGS, 2016). The time-

series covers ~4.5 years (04/2013-10/2017) with a temporal resolution of 16 days. From the total 

94 scenes 17 had to be excluded due to cloud cover over the salt pan. 

Airborne HySpex Hyperspectral Imagery 

The airborne datasets used in chapter III were obtained at an altitude of 2850 m above ground level 

over the Omongwa pan on the 6th June 2015 during a GFZ/DIMAP airborne campaign (http://dimap-

spectral.com/). The hyperspectral data have been acquired using two HySpex cameras (Norsk 

Elektro Optikk) in nine flightlines with alternating SE/NW heading under blue sky conditions at 

10:30-12:00 UTC with a sun elevation angle of 40-45° and sun azimuth angle of -10° to 20°. The NEO 

HySpex system consists of two push-broom hyperspectral cameras (VNIR-1600 operating over the 

0.4-1.0-µm and SWIR-320m-e operating over 1.0-2.5 µm range) with a total of 416 wavebands and 

a spectral resolution of 3.7 nm (VNIR-1600) and 6.0 nm (SWIR-320m-e) (Norsk Elektro Optikk, 

2017). The original ground sampling distance (GSD) of the image captured was 1.2 m for the VNIR 

spectrometer and 4.4 m for the SWIR-320m-e camera with a field of view expander. 

Spaceborne Hyperion Hyperspectral Imagery 

The EO-1 Hyperion hyperspectral image used in chapter I and II has been acquired on the 

7th September 2014 at 07:34 UTC with a sun azimuth of 63° and a sun elevation of 36°. The 

http://earthexplorer.usgs.gov/
http://dimap-spectral.com/
http://dimap-spectral.com/
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Hyperion sensor covers the VNIR and SWIR spectral region (400-2500 nm) with 198 calibrated 

bands of ~10 nm width at a spatial resolution of 30 m. The spatial extent is 7.5 km wide 105 km 

long. The signal-to-noise ratio (SNR) is specified as ~140:1 to 190:1 for the VNIR and 96:1 - 38:1 for 

the SWIR detector (Pearlman et al., 2003). 

Simulated EnMAP Hyperspectral Imagery 

For the comparison of current and upcoming hyperspectral spaceborne sensors in chapter III 

EnMAP hyperspectral imagery were simulated using the EnMAP End-to-End Simulation tool (EeteS). 

EeteS has been developed by the GFZ as part of the scientific preparatory program to provide a 

complete and accurate simulation of image generation, calibration, and the processing chain (Segl 

et al., 2012). EeteS simulation was applied on the preprocessed airborne HySpex mosaic and 

provides simulated imagery comparable to the expected data quality of the EnMAP reflectance 

product (Level-2A) at 30 m resolution. The EnMAP sensor consists of a dual-spectrometer 

instrument measuring in 242 spectral bands between 420 and 2450 nm with a spectral sampling 

distance varying between 5 and 12 nm (Guanter et al., 2015). It has a measured signal-to-noise ratio 

of 400:1 in the visible and near-infrared and 180:1 in the shortwave-infrared parts of the spectrum 

that is considered in the EeteS sensor model (Segl et al., 2012). 
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5. Thesis Structure and Author Contribution 

This thesis contains an introduction (Chapter I), three main chapters representing three 

manuscripts (Chapter II-IV), and an overall synthesis and discussion (Chapter V). Chapter II and III 

are original publications that have been published in peer-reviewed and ISI listed scientific journals 

and the tried (Chapter IV) has been submitted to a peer-reviewed and ISI listed scientific journals 

and is currently awaiting review. All work represents stand-alone independent research. There is 

some overlapping general information between publications particular in the description of the 

study area, introductory and methods part as all work was conducted at the same test site and 

spectroscopic methods, e.g. field reflectance measurements and laboratory analysis were applied 

throughout this research. 

Chapter II - Analyses of Recent Sediment Surface Dynamic of a Namibian Kalahari Salt Pan Based 

on Multitemporal Landsat and Hyperspectral Hyperion Data 

Authors: Robert Milewski, Sabine Chabrillat and Robert Behling 

Remote Sensing, 2017, 9(2), 170. https://doi.org/10.3390/rs9020170 

This first published manuscript presents a spatial comprehensive study of the surface mineralogy 

of the Omongwa salt pan using hyperspectral EO-1 Hyperion data combined with the assessment 

of the long-term surface dynamic covering the last 30 years since 1984 by exploiting the rich data 

archive of the multispectral satellites of the Landsat-series. This information combined with the 

morphology of pan setting is used for interpretation of the pan’s depositional environments. R. 

Milewski developed the overall idea and approach supported by S. Chabrillat. R. Milewski 

conducted the fieldwork, image processing and analysis, generation of figures and tables, and wrote 

the manuscript. R. Behling contributed to the methodological programming and adaptation of the 

IR-MAD as well as fieldwork. S. Chabrillat contributed to data interpretation and manuscript review. 

Chapter III - Assessment of the 1.75 µm Absorption Feature for Gypsum Estimation Using 

Laboratory, Air- and Spaceborne Hyperspectral Sensors 

Authors: Robert Milewski, Sabine Chabrillat, Maximillian Brell, Anja M. Schleicher and Luis 

Guanter 

International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 69–83. 

https://doi.org/10.1016/j.jag.2018.12.012 

This second published manuscript presents an assessment of the capability of hyperspectral sensors 

at laboratory, airborne and spaceborne scale for the quantification of the mineralogical fraction in 

the salt pan surface sediments using the example of the gypsum mineral and proposes a robust and 

transferable approach in support of regular monitoring using current and upcoming satellite data. 

https://doi.org/10.3390/rs9020170
https://doi.org/10.1016/j.jag.2018.12.012
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R. Milewski developed the overall idea and approach supported by S. Chabrillat. R. Milewski 

conducted the field and laboratory work, the image processing and statistical analysis, generation 
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Abstract 

This study combines spaceborne multitemporal and hyperspectral data to analyse the spatial 

distribution of surface evaporite minerals and changes in a semi-arid depositional environment 

associated with episodic flooding events, the Omongwa salt pan (Kalahari, Namibia). The dynamic 

of the surface crust is evaluated by a change-detection approach using the Iterative-reweighted 

Multivariate Alteration Detection (IR-MAD) based on the Landsat archive imagery from 1984 to 

2015. The results show that the salt pan is a highly dynamic and heterogeneous landform. A change 

gradient is observed from very stable pan border to a highly dynamic central pan. On the basis of 

hyperspectral EO-1 Hyperion images, the current distribution of surface evaporite minerals is 

characterized using Spectral Mixture Analysis (SMA). Assessment of field and image endmembers 

revealed that the pan surface can be categorized into three major crust types based on diagnostic 

absorption features and mineralogical ground truth data. The mineralogical crust types are related 

to different zones of surface change as well as pan morphology that influences brine flow during 

the pan inundation and desiccation cycles. This combined information is used to spatially map 

depositional environments where the more dynamic halite crust concentrates in lower areas 

although stable gypsum and calcite/sepiolite crusts appear in higher elevated areas. 

1. Introduction 

Natural salt pan environments, also known as salt flats or playas, are some of the most 

geomorphological dynamic environments on Earth (Millington et al., 1989; Shaw & Bryant, 2011). 

According to (Neal, 1975), there are approximately 50,000 salt pans on Earth. Although the area of 

individual salt pans is small, mostly less than a few square kilometres, except for prominent 

examples such as Salar de Uyuni (Bolivia) or Etosha pan (Namibia), the study of salt pan is important 

because of increasing population, agricultural demand and the hydrology of these dry regions 

becoming greatly stressed (Rosen, 1994). Salt pans are also one of the biggest sources of mineral 

dust emission in arid regions (Prospero et al., 2002; Washington, Todd, Middleton, & Goudie, 2003) 

especially in the southern Africa Kalahari desert (Botswana, Namibia, Republic South Africa) 

(Vickery, Eckardt, & Bryant, 2013) and the specific salt pan mineralogy influences the susceptibility 

for dust emission (Buck, King, & Etyemezian, 2011; Nield et al., 2015; Reynolds et al., 2007). For 

continued advances in understanding dust sources a spatially and temporally detailed assessment 

of their surface sediments is necessary (Katra & Lancaster, 2008). Salt pans are also a potential 

significant carbon stock in the Kalahari environment (A. D. Thomas, Dougill, Elliott, & Mairs, 2014) 

and the dynamic of salt pan surfaces is of great importance for the understanding of the carbon 
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cycle and carbon fluxes of a pan systems. Furthermore, the sensitive interrelation between regional 

changes in climate patterns and tectonic activity within continents is often record in the pan 

sedimentary deposit, and insights on current surface processes are needed for a proper 

interpretation of paleoenvironmental conditions (Robert G. Bryant, 1996). 

The harsh nature (Drake, 1995) and limited accessibility of salt pan environments makes them hard 

to study by conventional field mapping. This problem is exacerbated by ephemeral nature of salt 

pan evaporite minerals that is caused by sedimentological processes occurring at the surface as 

well as changes of the brine composition and the associated sequence of minerals one can expect 

to form in episodic dry-wet-dry cycles. The saline pan cycle described by e.g. Lowenstein and Hardie 

(Lowenstein & Hardie, 1985) provides a conceptual model of pan process dynamic and its effect on 

the pan deposits and associated evaporite mineralogy. In this model, the stages of salt pan cycles 

are described beginning at the desiccation stage (dry saline pan), followed by the flooding stage 

(brackish pan), then by the evaporative concentration stage (saline pan) and finally the return to 

the first status, the desiccation stage (dry saline pan). The ephemeral nature of salt pan evaporite 

minerals also emphasises the need for multitemporal observations (Drake, 1995; Shaw & Bryant, 

2011). Over the last decades a limited number of studies have applied remote sensing techniques 

to study salt pan evaporite minerals and were able to provide spatial information on pan surfaces 

in terms of evaporite mineral discrimination supported by field observations. Most of them rely on 

traditional optical multi-spectral satellite sensors (Alanazi & Ghrefat, 2013; Robert G. Bryant, 1996; 

Chapman et al., 1989; J. Li, Menenti, Mousivand, & Luthi, 2014; Millington et al., 1989; White & 

Eckardt, 2006) that often do not provide the necessary spectral resolution to cover the spectral 

complexity of evaporite mineral assemblages on salt pan surfaces (Hubbard & Crowley, 2005) and 

only provide a mono-temporal assessment. In comparison analysis based on advanced 

hyperspectral imagery, also named imaging spectroscopy, are more sensitive for the identification 

and quantification of a wider range of evaporite minerals (Robert G. Bryant, 1996; Kodikara et al., 

2012), and usually achieve higher modelling results (Hubbard & Crowley, 2005). EO-1 Hyperion is 

the first hyperspectral satellite that operates across the full solar- reflective spectrum with nominal 

spectral coverage form 0.4 µm – 2.5 µm and 10 µnm spectral response functions (R. O. Green, 

Pavri, & Chrien, 2003). Although the applications of Hyperion imagery is limited by the sensor's 

relatively low signal-to-noise ratio (Alanazi & Ghrefat, 2013; Thome, Biggar, & Wisniewski, 2003), 

spectral mapping results with Hyperion data compare reasonably well with results obtained from 

airborne hyperspectral sensors, including Hyperspectral Mapper (HyMap) (Anna Dutkiewicz, Lewis, 

& Ostendorf, 2008) and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (J. K. Crowley, 
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Hubbard, & Mars, 2003; F. A. Kruse, Boardman, & Huntington, 2003). Nevertheless, the availability 

of hyperspectral data, spaceborne or airborne, is very limited, which prevents time-series analyses 

of salt pan surfaces. 

In this context, this paper is looking at the potential of modern remote sensing analyses for the 

study of the surface processes and dynamics of salt pans. This study combines both the potential 

of hyperspectral EO-1 Hyperion satellite data for the identification and mapping of major salt crust 

types and the potential of freely available 30 years Landsat time-series archives evaluating the 

temporal stability of the pan surface, linked with accurate elevation information from LIDAR data. 

The Omongwa salt pan in Namibian Kalahari, one of the largest and most studied salt pans in its 

region, is known for episodic flooding events and ongoing formation of evaporates minerals at the 

surface (Mees, 1999; Mees & Van Ranst, 2011). The Omongwa salt pan is taken as the object of 

investigation in this paper, as representing other extended saline pan bodies in arid regions of the 

world that could be similarly studied with newly available remote sensing data. The pan’s spatial 

extend allows it to be complete covered by current spaceborne hyperspectral datasets (Hyperion) 

and therefore presents a suitable opportunity to test the potential of such datasets on a regionally 

important site with coherent coverage. The focus of the paper is placed on the development of the 

relationships between evaporite mineral mapping, time-series based surface dynamic and pan 

morphology to differentiate depositional environment of the investigated salt pan. State-of-the-art 

methodological tools in optical remote sensing for change detection analyses based on 

multitemporal Landsat data and for surface spectral mapping based on hyperspectral imagery are 

used in order to deepen our knowledge and understanding of the surface processes in the 

Omongwa pan. 

2. Study Area 

The Omongwa pan is located in eastern Namibia near Aminuis, ~260 km south-east of Windhoek 

(Figure 5). With a size of ~20 km2 it is the largest one in a series of pans that appear to be aligned 

along a former branch of the Nossob River system, with a southward paleodrainage direction (Kautz 

& Parada, 1976; Lancaster, 1986; Mees, 1999). The climate in the Aminuis region is hot and semi-

arid. It classifies as BWh according to the Köppen scheme (Köppen & Geiger, 1930) with average 

annual temperature and yearly precipitation of 19.8 °C and 200-250 mm respectively. The rainfall 

is highly seasonal with 90% of the total precipitation occurring in the wet season from December 

to April. The inter-annual precipitation variation is very high, resulting in occasional draught years 

with down to ~40% of the average amount (Atlas of Namibia Project, 2002). The salt is very flat with 
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a mean elevation of ~1200 m above sea level. The surrounding Kalahari landscape is characterized 

by an undulating linear dune system typically in a NW-SE direction (as shaped by the prevailing 

winds) with elevation magnitudes of ~1-3 m between dune crest and interdune valley. South of the 

pan a lunette dune rises up to ~50 m above the pan floor level. 

 

Figure 5. Location and overview of the Omongwa salt pan showing surface sample location, position 

of lunette dunes and extent of EO-1 Hyperion image (Basemap source: DigitalGlobe RGB image, Sep 

2013, provided by Google Inc.). 

The pan evolved in calcareous deposits of Kalahari Group which are exposed in the paleo river valley 

and in interdune space of shallow dunes (Mees, 1999; D. Thomas & Shaw, 1991; Veleen & Baker, 

2009). Along these paleo river courses, Early Kalahari deposits were cemented by pedogenic and 

groundwater calcretes driven by re-occurring changes in moisture and sedimentary regime during 

the Tertiary until the Late Pleistocene (Miller, 2008). Prominent outcrops of calcareous material 

appear along the pan margins (Mees, 2002), e.g., ~1 m high scarp at the north-eastern margin of 
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Omongwa pan. Detailed mineralogical information of the pan deposits are known from a diagonal 

sampling survey from the SW to NE of Omongwa pan conducted by F. Mees (Mees, 1999) in 1991 

and 1992. The upper lithological unit (top ~50 cm) of the pan deposits are a mainly sand-sized 

detrital grains with varying contents in halite (>30%), gypsum (5-40%) and calcite (10-20%) mixed 

with the clay and mica minerals sepiolite, muscovite, and smectite. The lower units have evaporite-

filled cracks in the upper part (vadose zone) and generally increase in calcite content with depth 

until the calcareous mudstone bedrock is met in up to 3.5 m below the surface (Mees, 1999). It is 

further noted that the mineralogy of the pan is sensitive to changes of the hydrological conditions. 

The point based mineralogical description together with the analysis of the general pan 

environment is very helpful for the evaluation of the remote sensing based mapping of the surface 

mineralogy as it provides a baseline for the interpretation of this study. In general, the Kalahari 

Group is relatively thin in this region with a thickness of < 10 m (SACS (The South African Committee 

for Stratigraphy), 1980), which has been recognised from the cuttings of several water boreholes in 

the Aminuis region (JICA STUDY TEAM, 2002; Miller, 2008). One borehole (WW26165) directly north 

of the Omongwa pan revealed only 1 m of Kalahari Group deposits (JICA STUDY TEAM, 2002). They 

overlie more than 50 m of Pre-Kalahari basalts of the Kalkrand Formation. The surroundings 

landscape of the pans are generally covered by the reddish sands of the Kalahari Group (Lancaster, 

1986; Miller, 2008), which are classified as Rubi-Feralic Arenosols, ARo (red, iron rich, sandy soils) 

according to the WRB system (FAO (Food and Agriculture Organization of the United Nations), 

2006), whereas the calcareous deposits along the paleo riverbed form greyish soils that classify as 

Petric Calcisols, CLp (soils with secondary lime accumulation and strongly cemented layers) (Veleen 

& Baker, 2009). 

The pan lacks significant surface inflow, as surface runoff is minimized by the high infiltration rates 

of the Kalahari sands and topographically limited to by distance of the next dune crest. The 

hydrogeological situation of the study region is very complex due to the occurrence of several pre-

Kalahari normal faults as well as rapid facies changes in the Kalahari Group deposits (Miller, 2008; 

Stone & Edmunds, 2012). Borehole data near Aminuis suggest that the groundwater level is reached 

below the Kalahari Group deposits between 13-43 m in the Pre-Kalahari basalt layers (JICA STUDY 

TEAM, 2002). However, the calcareous mudstone of the Omongwa pan is likely to support a locally 

perched groundwater tables above the regional aquifer due to its low permeability. This is 

supported by the observations of fluctuating groundwater levels of 25-150 cm between the wet 

and the dry season 1991-1992 (Mees, 1999) as well as temporally formation of shallow open 

waterholes fed by groundwater discharge (Lancaster, 1986). 
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3. Materials and Methods 

3.1. Field and Laboratory Analysis 

Two field campaigns for surface characterisation and sampling took place in October 2014 and June 

2015, which represent the end and beginning of the dry season respectively. Prior to both visits 

small precipitation events of <5 mm led to slight moist conditions in the central part of the 

Omongwa pan (Namibian Ministries of Agriculture, Basic Education and Health, office Aminuis, 

2015), which limited the accessibility to the most outer ~500 m of the pan, and lead to a sample 

size of 17 surface samples. 

Fieldwork consisted of acquisition of surface samples and field reflectance spectroscopy 

measurements along transects into the pan and for sites of interest representative for the 

variability of surface conditions and presumed sediment mixtures of the pan (see Figure 5). 

Sampling was performed in homogeneous areas collecting the top surface crust (<2 cm). These 

samples were composed of 5 to 10 sub-samples collected at random locations within a 5 m wide 

square around the centre point for each site of interest. Prior to sampling, field spectra of the 

untouched surfaces were collected at the selected locations using an ASD (Analytical Spectral 

Devices) FieldSpec 3 point spectroradiometer, covering the VNIR-SWIR spectral range (ASD Inc., 

2015). Per site of interest, 5 spectra were acquired at nadir configuration from 1 m height with a 

~25 cm target radius from the centre of each location. The measurements were calibrated to a 

barium-sulphate white reference standard to determine relative reflectance, and were 

subsequently corrected for detector offset and averaged for higher signal-to-noise ratio. All spectra 

and centre of sampling location were geolocated using the Global Positioning System (GPS). 

Geochemical and VNIR-SWIR spectral analyses of surface samples were conducted in the laboratory 

including the parameters mineralogy, grain size, pH, and conductivity. Initial sample preparation 

comprised of sub-sampling and drying at 105 °C. After the removal of organic material and 

carbonates using 10% H2O2 and 17% HCl respectively, sample texture was determined by a 

combination of wet-sieving (particles >63 µm) and sedimentation (particles <63 µm) following 

(German Institute for Standardization, 2002). Electrical conductivity was measured in a 1:5 ratio 

with bi-distilled water after (German Institute for Standardization, 1997) and pH in a 0.01M CaCl2 

suspension after (German Institute for Standardization, 2002). The sub-samples used for powder X-

ray diffraction (XRD) were crushed in a vibrating disc mill to a particle size <63 µm. Powder samples 

were measured using Cu-Kα radiation. Diffractograms were recorded from 5° to 85° 2θ using a 
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PANalytical Empyrean diffractometer. Results were analysed using the software Bruker EVA for 

mineral identification and Seifert AUTOQUAN for quantification. Laboratory spectral 

characterisation was performed with the ASD FieldSpec 3 point spectroradiometer under 

controlled light illumination simulating spaceborne observations (sensor nadir viewing, light source 

azimuth 35°). Finally, two spectral libraries of Omongwa sediment surfaces were created associated 

with field and laboratory optical signatures. 

3.2. Remote Sensing Change Detection Analyses 

The multitemporal analysis uses all available, cloud free Landsat images of the study area at World 

Reference System-2 path/row 176/76 acquired through the USGS EarthExplorer data 

portal (http://earthexplorer.usgs.gov/). The time series covers the last 3 decades (1984-2015) and 

is composed of imagery from three different satellite and sensor generations of the Landsat 

Mission. From a total of 146 cloud-free scenes, the majority (98 of them) originate from Landsat 5 

(TM), 16 from Landsat 7 (ETM+) and 32 from Landsat 8 (OLI). The three sensors have the same 

spatial resolution of 30 m, but slightly different spectral coverage or even additional bands 

(Chander et al., 2009). Only the six reflective bands (Blue, Green, Red, NIR, MIR, and SWIR) common 

to all sensors are used. On average the data series is composed of 5 images per year, but the 

distribution is highly irregular. Data gaps occur during the mid 1980es and from late 2011 to early 

2013 when Landsat 5 data were discontinued and Landsat 8 was not yet operative. Between 2003-

2013 data availability further decreased to 1-4 scenes/year after the failure of the Scan Line 

Corrector (SLC) of the Landsat 7 ETM+ sensor, which makes the data unusable for change-detection 

approaches such as in this study. 

The Landsat data were pre-processed to top of atmosphere (TOA) reflectance by the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2013) including the 

conversion of calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance and 

reduction of in scene-to-scene variability due to different solar/sensor geometry and Sun/Earth 

distance. Top of atmosphere (TOA) reflectance is used to normalize scene radiances differences 

due to variations in solar illumination, sensor viewing geometry, and seasonality (Earth-Sun 

distance). Surface reflectance products for all optical bands are also available (Masek et al., 2006; 

USGS, 2015). However the atmospheric correction applied by LEDAP follows the popular dense 

vegetation (DDV) approach (Kaufman et al., 1997), which is known to provide limited accuracy in 

arid environments (Maiersperger et al., 2013), as it depends on finding sufficient and evenly 

distributed dark objects like dense vegetation or water bodies that are completely absent in the 

http://earthexplorer.usgs.gov/
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study area. Because of the lack of such surfaces in the study area, it is unclear on which basis the 

estimation of the aerosol properties is performed and it is likely that an artificial bias is introduced 

to the data instead of a correction. Furthermore, the provisional AOT estimation for the Landsat 8 

OLI images is based on coarse (0.05 deg) MODIS data (Vermote, Justice, Claverie, & Franch, n.d.), 

which can lead to tilling artefacts in the processed image (USGS, 2015) that were also identified on 

images of the Omongwa pan. Due to the current limitations in corrections to surface reflectance 

especially applied in arid areas, TOA reflectance is used in this paper for the change detection 

analyses. An adapted procedure for change detection analysis is used that limits the atmospheric 

influence. 

In a first step, to restrict the change detection analyses to the dynamic of the pan surface deposits 

in dry state, Landsat images related to pan flooded state have to be excluded from the dataset. For 

this purpose, Xu’s Normalized Differenced Water Index (NDWI) (Xu, 2006), a band ratio using the 

green and mid-infrared (MIR) band, is derived from the Landsat record. This adaption of the NDWI 

is sensitive even to shallow water bodies (W. Li et al., 2013). A conservative threshold of 0.5 was 

selected to filter scenes featuring surface water. This restriction robustly excludes images that show 

an inundated pan surface, as well as scenes which have significant moisture in the top layer of pan 

deposits. Exactly how the selected NDWI threshold relates to the water content of the surface 

sediments is scene dependent and cannot be profoundly estimated from the remote sensing image. 

A total of 30 scenes were water covered or in very wet surface conditions and discarded for further 

analyses. 

On the remaining 116 Landsat images a change detection analysis is applied. The described 

discontinuities and gaps of the Landsat record restrict popular approaches of time series analyses 

based on temporal trajectories like the Breaks For Additive Season and Trend (BFAST) (Verbesselt, 

Hyndman, Newnham, & Culvenor, 2010) and Reversed Ordered Cusum (ROC) (Pesaran & 

Timmermann, 2002) procedures. Discontinuous datasets do not meet the need of many curve-

fitting time series methods to establish a “stable” reference model from historical data (DeVries, 

Verbesselt, Kooistra, & Herold, 2015), e.g. 16-day time series over 2 years (Verbesselt, Zeileis, & 

Herold, 2012). Accordingly, a temporally more robust approach of bi-temporal change detection, 

the Iterative-reweighted Multivariate Alteration Detection (IR-MAD) developed by A.A. Nielsen 

(Allan Aasbjerg Nielsen, 2007) is selected. The IR-MAD has been successfully used for different 

applications and sensors, e.g., to detect changes caused by floods from coarse AVHRR imagery 

(Liao, Zhu, & Gong, 2000), mining activity (Mezned, Dkhala, & Abdeljaouad, 2015; Pathak, 2014) 
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and forest disturbance from Landsat data (Colditz, Llamas, Gebhardt, Wehrmann, & Equihua, 2015), 

as well as earthquakes from high resolution imagery of GF-1/PMS and GeoEye-1 (Hoja, Krauss, & 

Reinartz, 2013; Y. Ma et al., 2016). The core idea of MAD is to find maximum differences between 

two images by removing correlations between them as much as possible (L. Zhang, Liao, Yang, & 

Lin, 2007). The MAD algorithm transforms two sets of multivariate observations (in this case two 

multispectral satellite images covering the same geographical area acquired at different points in 

time) into a difference between two linear combinations of the original variables explaining 

maximal change (i.e. the difference explaining maximal variance) in all variables (wavelength) 

simultaneously (Allan Aasbjerg Nielsen, 1994). IR-MAD is an improvement of the MAD approach. In 

order to increase the detection of observations, whose status over time is uncertain, weights are 

put on difficult observations that exhibit small change according to their change probability in the 

previous run. In each iteration a better no-change background is identified, achieving a better 

separability between the change and no-change classes (Allan Aasbjerg Nielsen, 2007). 

The IR-MAD can be classified as a bi-temporal linear data transformation type of change detection 

(Coppin, Jonckheere, Nackaerts, Muys, & Lambin, 2004). This change-detection approach is most 

suitable to observe the type of changes that can be expected in the salt pan environment, due to 

the following properties: 1) It can detect modifications (changes in crust composition) and not only 

discrete conversions (crust type A to crust type B); 2) it is sensible to progressive as well as abrupt 

changes (slow deflation of particles, loss and build-up of new crust after inundation); 3) it can work 

with the temporal sampling rates of the observations (irregular, data gaps) (Coppin et al., 2004). A 

further advantage over most other change detection methods is that IR-MAD is invariant to linear 

transformations of the original image intensities (Allan A. Nielsen, Conradsen, & Simpson, 1998; 

Allan Aasbjerg Nielsen, 2007). The method is robust to differences in atmospheric conditions or 

sensor calibrations at two acquisition times, which greatly reduces the requirements on radiometric 

correction or normalization (L. Zhang et al., 2007). This is an important advantage for this study 

because it limits the atmospheric influence on the change detection result when using TOA 

reflectance data. A general constraint to bi-temporal change detection methods such as the IR-

MAD is the loss of data due to a number of contaminations or errors like SLC-off data gaps (DeVries 

et al., 2015) and cloud cover (Ju & Roy, 2008). Although well-performing correction approaches 

have been proposed for data gaps with information derived from neighbouring pixels 

(Aghamohamadnia & Abedini, 2014) or even other sensors (Chen, Zhu, Vogelmann, Gao, & Jin, 

2011), interpolation or the inclusion of extraneous data can introduce additional errors 
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(Alexandridis et al., 2013; Bédard, Reichert, Dobbins, & Trépanier, 2008). For this, SLC-off 

acquisitions as well as clouded scenes are discarded. 

In this study, the python implementation of IR-MAD by (Canty, 2014) is used to which some 

modifications were made that allow for batch processing of the Landsat image stack. For the 

Omongwa pan subset a total of 115 bi-temporal change maps are produced. The IR-MAD processing 

always converged to a no-change background before hitting the defined maximum of 50 iterations. 

Besides providing the basis for the no-change probability calculation, the sum of squared, 

standardized MAD variates, also called χ2 image (Canty & Nielsen, 2012) is used as a general 

measure of change of the pan surface similar to (Hoja et al., 2013; Liang, Hoja, Schmitt, & Stilla, 

2011; Allan Aasbjerg Nielsen, Hecheltjen, Thonfeld, Canty, & others, 2010). From each bi-temporal 

IR-MAD analysis of the Landsat dataset, the final χ2 image is used to derive aggregated change over 

the time-series to differentiate dynamic pan areas from radiometrically more stable regions. 

3.3. Remote Sensing Surface Characterisation 

3.1.1. EO-1 Hyperion mineralogical mapping 

One EO-1 Hyperion hyperspectral image is used in this study. It has been acquired on the 

7th September 2014 at 07:34 UTC with a sun azimuth of 63° and a sun elevation of 36°. The 

Hyperion sensor covers the VNIR and SWIR spectral region (400-2500 nm) with 198 calibrated 

bands of ~10 nm width at a spatial resolution of 30 m (Pearlman et al., 2003) similar to the Landsat 

imagery. The spatial extent is 7.5 km wide 105 km long. The signal-to-noise ratio (SNR) is specified 

as ~140:1 to 190:1 for the VNIR and 96:1 - 38:1 for the SWIR detector (Pearlman et al., 2003). 

An automated pre-processing chain for EO-1 Hyperion data developed by (Rogass, Guanter, et al., 

2014) is used that provides georeferenced surface reflectance data. The L1 radiance data (L1R), L1T 

radiance terrain corrected data, acquisition parameters from the metadata and an ASTER 30 m 

DEM, freely distributed through the USGS EarthExplorer data portal 

(http://earthexplorer.usgs.gov/) are used. Data processing includes rescaling to radiance, removal 

of the spectrally overlapping bands, bad band detection, reductions for dead pixel and erroneous 

detector columns, as well as corrections for intra-band spatial shifts, keystone, erroneous co-

registration, radiometric miscalibration. Part of the processing chain is the atmospheric correction 

as proposed in (Guanter, Richter, & Kaufmann, 2009; Guanter, Segl, et al., 2009) originally designed 

for the EnMAP Box (van der Linden et al., 2015). It includes a complex Radiative Transfer Modelling 

(RTM), Aerosol Optical Thickness (AOT), Columnar Water Vapour (CWV) retrieval as well as spectral 

Smile and adjacency correction (Rogass, Guanter, et al., 2014). Georeferencing is performed via 

http://earthexplorer.usgs.gov/
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GCP (Ground Control Point) selection and first-order transformation using ENVI 5.3 (Harris 

Geospatial Solutions, 2015) between the corrected image and the orthorectified L1T Hyperion 

image. The geometrical transformation is applied at the end on the results to prevent resampling 

effects on the spectral analyses. The pre-processing chain was used previously for geological 

applications e.g. by Mielke et al. (Mielke, Muedi, et al., 2016; Mielke, Rogass, Boesche, Segl, & 

Altenberger, 2016) proving that it can deal with the sensor limited quality and still delivers 

reflectance data that are adequate for mineralogical identification analyses. 

Spectral mixture analyses (SMA) (Adams, Smith, & Johnson, 1986; J.W. Boardman & Kruse, 1994) 

implemented in ENVI 5.3 (Harris Geospatial Solutions, 2015) is used to determine the mineralogy 

of the pan surface based on the EO-1 Hyperion image. SMA is a physically-based model that 

transforms radiance or reflectance values to physical variables that are linked to the subpixel 

abundances of surface components within each pixel (Joseph W. Boardman, 1993; Tompkins, 

1997). SMA proved useful specifically for the mapping of salt and gypsum surfaces (Robert G. 

Bryant, 1996; Shrestha, Margate, van der Meer, & Anh, 2005), but also in a wide range of other 

applications, like vegetation e.g. (Garcia-Haro, Gilabert, & Melia, 1996), mineralogical and 

lithological mapping e.g. (Chabrillat, Pinet, Ceuleneer, Johnson, & Mustard, 2000; F. Kruse, Lefkoff, 

& Dietz, 1993), soil degradation assessment (Metternicht & Fermont, 1998). The SMA analysis 

assumes a linear mixing of the scene constituents in the sensor field-of-view and is particularly 

adapted to arid landscapes with aerial mixing. In SMA, the reflectance of a pixel is determined by 

the sum of the reflectance of each material within a pixel multiplied by its fractional cover. Most 

crucial for the quality of an unmixing model is the selection of endmembers that account for the 

spectral variability of the data, while remaining physically meaningful (Dennison & Roberts, 2003; 

Tompkins, 1997). Instead of focusing on specific absorption features, SMA uses the whole 

reflectance of the VNIR-SWIR selected endmember to map subpixel abundances. This is especially 

helpful in the study of salt affected surfaces that often do not show diagnostic absorption features 

outside of the known water (vapour) absorption region (Farifteh, van der Meer, van der Meijde, & 

Atzberger, 2008). The inherent dimensionality of the EO-1 Hyperion data is examined via minimum 

noise fraction transformation (A. A. Green, Berman, Switzer, & Craig, 1988) and image endmembers 

are extracted from the edges of the data cloud. Following (Joseph W. Boardman, Kruse, & Green, 

1995), candidate endmembers extracted from the image are further redefined in minimum noise 

fraction transformed space to assign the purest and least noisy pixel spectra as final endmembers. 

In order to focus on the fractional cover of different mineralogical crust types and to reduce the 
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spectral variability of the data set, the areas outside the Omongwa pan are excluded from the image 

for SMA analyses using an albedo threshold. 

3.1.2. LiDAR digital surface model 

Airborne Light Detection and Ranging (LiDAR) data were acquired with a Riegl LMS-Q780 at an 

altitude of 2850 m above ground level over the Omongwa pan on June 6 2015 during a GFZ/DIMAP 

airborne campaign (http://dimap-spectral.com/). The pan surface was partly moist, but not flooded 

at the time of overflight. A total of nine flightlines were recorded with a swath width of ~3 km and 

an overlap of approximately 60% and an average point density of 2.1 pts/m². Fundamental accuracy 

assessed through calibration flights showed ±10 cm vertical and ±15 cm horizontal accuracy within 

a of 95% confidence level. For the topography of the Omongwa pan a 1 m grid Digital Surface Model 

(DSM) was generated from the first return LiDAR mass point data by converting the points to a 

Triangulated Irregular Network (TIN) surface mesh and the TIN to a regular raster grid with Natural 

Nearest Neighbour interpolation using the program Terrasolid TerraScan. Values are given in 

meters above sea level (a.s.l.) 

4. Results 

4.1. Field and Laboratory Analysis 

Field observations showed highly heterogeneous pan environments that could be grouped into  

three different crust types (Figure 6a-c): a) Halite (NaCl) is present over the whole pan surface in 

variable amounts, and is identifiable as bright white surfaces, with puffy structure and blisters; 

b) The sulphate mineral gypsum (CaSO4·2H2O) is a major constituted of the crust at the pan margin 

and appear as a smoother and darker surface; c) Carbonate crust appears in the form of some 

sediment accumulation mixed with salt composition, linked with carbonate outcrops at the border 

of the pan (Figure 6e). Surface roughness as well as the general brightness are very variable 

between the crust types and are also affected by anthropogenic disturbances (Figure 6f). In general, 

the pan surface is bare of any vegetation with the exception of the most northern part that is 

sparsely covered with patches bushes that increase in density in the direction of the pan margin 

(Figure 6d). 

http://dimap-spectral.com/
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Figure 6. Different types of pan surfaces composed of detrital and evaporite mineral mixtures and 

environments of the Omongwa pan in October 2014 and June 2015. (a) bright efflorescent halite 

crust, puffy salt blisters; (b) smooth structure gypsum surface; (c) rough carbonate / sepiolite crust; 

d) vegetated patches of the north-eastern pan area; (e) ~50 cm high outcrop of the carbonatic 

mudstone bedrock, northern pan margin; (f) surface disturbed by cattle treading at the southern 

pan margin; length of pen used for scale ~13 cm. 

From field spectral measurements as well as laboratory geochemical analysis, the major 

mineralogical components in the salt pan sediments could be identified and related to the different 

crust types. Figure 7 shows the field spectra for the three representative crusts types and Table 1 

the geochemical results of all samples. According to the XRD analysis, Omongwa halite field 

endmember (sample 141, Figure 6a) is almost pure halite (NaCl) (94%) mixed with small amounts 

of gypsum (CaSO4·2H2O) (3%). The associated field spectrum shows a constant high reflectance 

level in the VNIR with almost no slope, which is typical for pure halite (Hunt et al., 1971) or halite 

rich salt pan sediments (Anna Dutkiewicz et al., 2008). The absorption and general lower reflectance 

level of the Omongwa halite field spectrum compared to standard laboratory halite powder spectral 

reflectance from the USGS spectral library (Clark et al., 2007) originates from the partially moist 

conditions at the time of field spectral acquisition as well as from the intermixture with some 

gypsum at that location. Laboratory spectral measurements of this sample after air drying for 

several days result in reflectance level up to 70% in the VNIR, close to reference halite spectral 

characteristics. The field spectrum of the second crust type (sample P65, Figure 6b) is characterised 
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by strong absorption features in the SWIR at ~1750 nm and ~2200 nm as well as the unique triplet 

absorption around 1500 nm, which are characteristic for gypsum spectral properties (F. M. Howari, 

Goodell, & Miyamoto, 2002; Hunt et al., 1971; Khayamim et al., 2015). The XRD analysis also 

confirms the high gypsum content (83%) mixed with some halite. The third surface crust type 

(sample P68, Figure 6c) is dominated by high calcite (CaCO3) content (45%), mixed with the clay 

mineral sepiolite (Mg4Si6O15(OH)2·6H2O) (16%). The associated field spectrum shows a strong 

absorption feature at ~2340 µm. Both calcite and sepiolite have their characteristic absorption 

features at this wavelength (Hunt et al., 1971). 

 

Figure 7. Field spectra (straight lines) of the three characteristic pan surface types of the Omongwa 

pan associated with halite crust (sample 141), gypsum crust (sample P65), and sepiolite/calcite crust 

(sample P68) and USGS laboratory spectra (Clark et al., 2007) (dotted lines) of the main minerals. 

The grey overlay indicates wavelength regions of atmospheric absorption and sensor lower signal-

to-noise ratio not useable for Hyperion analyses.  
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Table 2. Properties of Omongwa surface samples. Location of field samples are shown in Figure 5. 

Label 
Mineralogy (bulk XRD) semi-quantitative estimates [%] 

pH 
EC 

[dS/m] 

Grain size [%] 

quartz halite gypsum calcite sepiolite dolomite clay silt sand 

P62 79 - 21 - - - 7.9 1.9 2 3 95 

P63 19 5 75 - - - 8.6 17.6 1 4 95 

P64 17 36 47 - - - - - - - - 

P65 3 14 83 - - - 8.5 42.3 5 4 91 

P66 13 41 44 - 1 - - - - - - 

P67 3 46 45 - 5 - 8.4 80.7 4 40 56 

P68 36 3 - 45 16 - 8.3 10.8 4 37 59 

P69 28 15 - 41 15 - 8.7 36.5 8 39 53 

P70 32 16 26 15 11 - 8.6 33.7 2 34 64 

P71 26 7 - 47 6 14 - - - - - 

141 1 94 3 - - - - - - - - 

142 63 9 15 7 5 - 8.8 23.4 7 24 69 

143 1 52 38 4 5 - 8.3 129.7 6 73 21 

151 64 21 7 9 - - 9.1 48.2 2 17 81 

161 14 3 79 3 - - 8.2 11.6 2 11 88 

171 27 50 17 4 - - 9.0 98.0 4 24 72 

172 41 17 33 8 - 1 8.7 42.3 2 16 82 

 

4.2. EO1 Hyperion Analyses 

Four images endmembers are extracted from the Hyperion imagery and shown in Figure 8. Overall, 

the main spectral properties of the first three extracted endmembers are similar to the field spectra 

of the different crust types. However, some differences are observed due to variable sensor 

characteristics and surface conditions. The extracted Hyperion endmember spectrum (EM 1 in 

Figure 4) for halite crust has a high reflectance level around 70% and significant spectral slope in 

the shorter wavelength compared to the field halite spectrum. The higher general albedo can be 

attributed to the dry conditions of the central pan surface at the time of Hyperion image acquisition, 

whereas the differences in the shorter wavelength could result from a higher proportion of silicates 

exposed due to the larger Hyperion pixel or that are present in the central part of the pan not 

accessible during the field campaigns. In the image endmember that corresponds to the gypsum 

crust (EM 2 in Figure 8) the triplet absorption around 1500 nm visible in the gypsum field spectrum 

is within the water vapour atmospheric absorption bands and cannot be observed, but the other 

absorption features at ~1750 nm and ~2200 nm are well defined. The characteristic absorption 

feature of the calcite and sepiolite crust at ~2340 nm exceeds the usable spectral range of the 

Hyperion scene. However, the left slope and shoulder of the absorption feature can still be 

identified at ~2300 nm in the image endmember (EM 3 in Figure 8). Because the observed 
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absorption at ~2300 nm can originate from both minerals, we refer this endmember as 

calcite/sepiolite. In the surface reference samples analysed by XRD the minerals mostly occur 

together with ~2-3x higher share of calcite. Besides the spectrally and mineralogically well-defined 

endmembers of halite, gypsum, and calcite/sepiolite, a fourth image endmember had to be added 

to account for the spectral variability within the scene. This endmember is associated with 

disturbed halite crust of lower reflectance (EM 4 in Figure 8). 

 

Figure 8. Hyperion endmember image spectra used for the spectral mixing analysis. Arrows indicate 

the position of diagnostic absorption features for gypsum and calcite / sepiolite crust. 

Figure 9 show the SMA result of the identified pan crust components based on the Hyperion image. 

Each abundance map represents the fraction of the surface type on the Omongwa salt pan in 

a) bright halite crust, b) gypsum crust, c) calcite and sepiolite crust, d) disturbed, dark crust. In 

general, all endmembers have their abundances well mapped with no component exceeding 1. The 

accuracy of the unmixing model is assessed through the root mean squared error (Figure 9e). The 

RMSE image shows that the overall pan surface is well explained with the linear mixture of the four 

selected endmembers except for higher RMSE areas at 1) the North-East corner and western pan 

border associated with heavy cattle disturbances, 2) the mainly diagonal SW-NE lines crossing the 

pan, which are used as driving shortcuts across the pan during the dry season as well as cattle path 

ways, and 3) the parallel, vertical stripes (~11°),  associated with remaining sensor noise that were 

not removed through the pre-processing procedure. In general the performance of the unmixing 

model is very good with an overall mean RMSE of ~1% comparable to equivalent studies, e.g., 

(Ghosh, Kumar, & Saha, 2012) achieved an mean RMSE of ~2% using linear unmixing on Hyperion 

data to map salt effect soils or (Xia Zhang, Shang, Cen, Shuai, & Sun, 2014) getting the same accuracy 
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range for the abundances of vegetation, soil and limestone bedrock. The SMA mapping shows that 

more than half of the pan surface is dominated by halite crust in variable amounts (Figure 9a). The 

highest abundances are mapped in the central part and in a circular shape in the southern half of 

the pan, whereas the border region and the anthropogenic pathways have minimal fractions of 

halite crust. In most regions the distribution of gypsum crust appears to be inversely related to the 

halite crust. Highest gypsum composition is found at the southern pan border, in the south-central 

circular shape and in a ~1.5 km long stripe in the northern pan area (Figure 9b). The occurrence of 

calcite and sepiolite crust is confined to the northern part of the pan and to the pan border (Figure 

9c) close to outcrops of the carbonatic bedrock that were observed in the field (Figure 6e). The 

disturbed, dark crust endmember (Figure 7d) is mainly associated with the cattle and human 

disturbance of the salt crust through the pathways crossing the pan and at the border regions (e.g., 

Figure 6f). In these areas the top crust is at partly removed and the subsurface material is exposed. 

The subsurface is usually less concentrated in evaporite minerals and more mixed with the clastic, 

quartz-rich material of the pan. This is reflected by the geochemical analyses of subsurface field 

samples 142 (halite: 9%, quartz: 63%) and 172 (halite: 17%, quartz: 41%), directly sampled under 

the surface crust of samples 141 (halite: 94%, quartz: 1%) and 171 (halite: 50%, quartz: 27%), 

respectively at a depth at a depth of ~10 cm. The sub-surface samples show decreased halite and 

increased quartz content compared to surface samples (Table 1). In addition to mineralogical 

differences, the physical properties of the salt pan surface are altered by cattle trampling, 

increasing the surface roughness (Baddock, Zobeck, Van Pelt, & Fredrickson, 2011), which may also 

cause the reflectance to decrease even at similar salt content by casting micro shadows 

(Metternicht & Zinck, 2003). The rougher surface crust is also likely to be more moist (Nield et al., 

2016) adding to the decrease in reflectance. 
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Figure 9. Hyperion mineralogical analysis: Endmember abundances and RMSE of linear spectral 

unmixing analysis: (a) halite, (b) gypsum, (c) calcite /sepiolite, (d) disturbed, dark crust, (e) RMSE, 

(f) RGB (R: 641 nm, G: 549 nm, B: 457 nm) true colour Hyperion image 

4.3. Remote Sensing Change Detection Analyses 

Figure 10 shows the result of the IR-MAD analysis. It represents the mean of the 115 IR-MAD χ2 

images derived from the Landsat scene dry surface conditions of the period 1984-2015. The change 

magnitude map reveals that the salt pan is a highly dynamic and also heterogeneous landform. 

Compared to the changes of pan surface, the magnitude of spectral change in the surrounding 

Kalahari savannah is insignificant, which include the seasonal dynamic of the vegetation. Other 

change signals outside of the pan are of anthropogenic origin associated with housing activity in 

the south-west of the pan (see few pixels south of the pan in Figure 10) and a gravel road in the 

north of the pan. Within the pan, a gradient of change is determined from a very stable pan border 

to a highly dynamic central pan. The small northern sub-pan, where P68 and P69 are located (Figure 
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5), is very stable compared to the main pan body. The changes in the central part of the pan are 

very heterogeneous. Two regions of highest change (red colour in Figure 10) are identified located 

in the north of a circular area in the central southern part of the pan and a corridor in the northern 

part of the pan. In relation to the highest change in the pan centre, several distinctive regions of 

lower change can be identified. For example, straight lines crossing the pan as well as the 

mentioned circular shape have lower change magnitude compared to their surroundings. The 

largest of these lines crosses the pan centre and is associated with a pathway that connects 

settlements in the west and north-east of the pan. 

 

Figure 10. Landsat multitemporal analysis: Change magnitude map that represents the mean of 115 

IR-MAD χ2 images (1984-2015).  
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5. Discussion 

5.1. Pan Surface Characterisation 

The combined remote sensing results over the Omongwa pan based on Landsat change detection 

analyses, Hyperion mineralogical identification and mapping and the LIDAR elevation model are 

summarized in Figure 11. Hyperion mineralogical identification agrees with the findings of previous 

studies (Mees, 1999) based on conventional point-based field sampling. The main mineralogical 

constituents of the top layer of the pan deposits described in (Mees, 1999), namely: quartz, halite, 

gypsum, calcite and sepiolite could be identified in our XRD analyses and furthermore Hyperion 

satellite imagery was able to provide spatial distribution of the major crust types and abundance 

maps over the whole pan. However, no indication of muscovite or smectite (described to occur in 

traces in Mees, (1999) were found in our analysed field samples nor were these minerals recognized 

in the spectral properties of in-situ or laboratory measurements. This discrepancy may be the result 

of different sampling locations or depth. In this study the top <2 cm of the pan deposits was 

sampled, unfortunately (Mees, 1999) does not provide spatial differentiation of the mineralogy or 

state the specific sampling depth, which prevents further evaluation. Another possible explanation 

is a change in exposed surface mineralogy. The mineralogical data published by (Mees, 1999) were 

sampled in 1991 and 1992. During this >20-year time frame the surface alteration e.g. by 

redistribution of surface particles du to surface flooding (Lowenstein & Hardie, 1985) and or wind 

erosion (Reynolds et al., 2007) are possible scenarios. The formation of fresh halite crust after 

significant rainfall and flooding events may superimpose underlying less soluble (e.g. clastic) 

minerals (Chivas, 2007) and hide these (minor) components from surface observations, especially 

in the central halite dominated, dynamic part of the salt pan. The detection of minor crust 

components may be also limited by the low signal-to-noise ratio of the Hyperion data (Alanazi & 

Ghrefat, 2013; Thome et al., 2003). However, the spectral properties of the most abundant crust 

components are represented in the selected endmember spectra of the generalised major crust 

types. Figure 11 shows that the different areas of surface change appear to be well correlated to 

the crust mineralogical mapping as well as pan morphology. Areas associated with high change 

magnitudes are located in the central part of the pan, which is dominated by halite mineralogy and 

lower topographical areas. Gypsum crust is the second most abundant crust type of the Omongwa 

pan (Figure 11b). Unlike the halite crust, the gypsum area mapped with Hyperion is associated with 

more stable or intermediately dynamic surface regions in the multitemporal analysis (Figure 11a) 

and slightly higher topography (Figure 11c). Although the difference in pan height of 10-15 cm 
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between halite dominated and gypsum mixed crust is rather small, it seems to be enough to affect 

the surface mineralogy. 

 

Figure 11. Omongwa pan remote sensing analysis: (a) Landsat change magnitude map (1984-2015); 

(b) Hyperion mineralogical map (09/2014); (c) DEM derived from LiDAR survey. A---B locates the 

spatial transect shown in Figure 13. 

Figure 12 presents the relationship between endmember abundance and digital elevation model 

resampled to Hyperion spatial scale. For clarity not all Hyperion pixels are shown, rather a Random 

Stratified Sampling (RSS) pixel selection is represented. RSS is used to respect the pixel distribution 

over all elevations and put emphasis on the extreme elevations that represent ~33% of the total 

pan area. The figure shows that pan depressions (areas lower than 1227.25 m, ~18% of the total 

pan area) are dominated by halite crust and higher topographical positions (areas higher than 

1227.4 m, ~15% of the total pan area) are dominated by gypsum crust, whereas the majority of 

pixels with more mixed crust abundances are present at the medium elevations. 
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Figure 12. Relationship of pan surface elevation and crust endmember abundance. 

5.2. Interpretation of Pan Surface Processes and Depositional Environment 

The interpretation of the observed differences in pan surface dynamic, mineralogy and morphology 

based on the remote sensing findings confirms that Omongwa pan follows the conceptual model 

of the depositional cycle of salt pan environments given by Lowenstein & Hardie (Lowenstein & 

Hardie, 1985), and that this sediment dynamic can be spatially mapped with advanced remote 

sensing analyses such as in this paper. The conceptual model describes the reaction of pan deposits 

to a precipitation event. The stages of these pan cycle are: (1) desiccation stage (dry saline pan), 

(2) flooding stage (brackish pan), (3) evaporative concentration stage (saline pan) and the return to 

(1) desiccation stage (dry saline pan). Starting from the dry pan state (stage 1) ephemeral 

inundation events occur that cover parts or rarely even total surface area of the pan. Evaporite 

minerals will be dissolved by undersaturated meteoric water and redistributed over the pan mainly 

following the topography (stage 2). Halite is one of the less stable (more soluble) evaporite minerals 

and will be quickly leached into the brine and removed from the uppermost surface layer (Warren, 

2016), whereas gypsum and calcite are more stable (less soluble) (Smith & Compton, 2004) and 

therefore are more likely to remain in the surface crust in higher abundancies, which is what we 

observe in the Hyperion mapping where high gypsum and calcite areas are more concentrated on 

the borders of the pan, which are also the most stable areas as identified in the Landsat time-series 

change analyses. After some time of continued evaporation, the increasingly concentrated brine 

will accumulate in the local depressions (stage 3). In these saline brine pools, the dissolved solutes 

will (re-)precipitate in reversed order of solubility. Gypsum crystals will form first in the brine pool 
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and halite will be the last evaporite mineral that forms on top of the other deposits (Warren, 2016) 

resulting in a most pure efflorescent salt crust surface layer. In summary, the increasing 

concentration of brine leads to a horizontal zonation of evaporite minerals ordered by solubility. 

Such a ‘bulls eye’ effect of lateral zonation of evaporite minerals from carbonates at the edge, 

through sulphates to chlorides in the topographically lower, central part are also observed in other 

salt pans (B. F. Jones, 1965; Shaw & Bryant, 2011). Influences that complicate this idealised model 

of evaporite mineral deposition and zonation that lead to a more complex distribution are 1) high 

groundwater levels during flooding events that affect the surface brine chemical composition and 

its saturation stage in respective to the ions of evaporite minerals (Smith & Compton, 2004), 

2) strong winds can move the standing waterbody on the very low-angle salt pan (Millington et al., 

1989) during the brine concentration stage (stage 3) ignoring the minimal elevation differences. 

Subsurface brines of the Omongwa pan that were sampled in 1991 at the end of the raining season 

by (Mees, 1999) were Na-K-Cl-SO4 dominated with a total dissolved solids concentration of about 

260 g/L, which basically reflect the elemental composition of the mapped surface evaporite 

minerals. When the diluted meteoric water mix with these groundwater brines it lowers the 

potential for dissolving the surface crust evaporite minerals. 

The highest change magnitude in the halite crust region detected with the multitemporal remote 

sensing analyses correlates very well with the regular build-up of bright efflorescent halite crust 

described by the model of the pan depositional cycle. During each flooding-and-desiccation cycle, 

the surface albedo will significantly lower after a rainfall event due to (partly) dissolved halite curst 

and potentially from some remaining moist sediments at the surface and will increase again, when 

the surface has dried and the halite crust is reformed. This means, episodic flooding events are 

likely to be the main driver for the observed Landsat change in surface reflectance linked to crust 

dynamic. The reformation of a surface salt crust during the desiccation stage is typical for the wet 

playas type with shallow (< 5 m), fluctuating ground water table described by (Reynolds et al., 

2007). In these types of salt pans capillary action in the sediments allows for continuous 

evaporation from shallow ground water that results in the formation of evaporite minerals in the 

capillary fringe zone as well as directly on the surface (Reynolds et al., 2007). This categorisation is 

supported by the observed evaporite filled cracks and fissures in the first 50 cm of sediments 

reported by (Mees, 1999) throughout vertical profiles of the Omongwa pan. These efflorescent salt 

crusts that form directly from evaporation at the surface are commonly very soft and fluffy and 

have a high potential for dust emission even under moderate winds (Buck et al., 2011). The soft 

consistency of the upper ~10 cm of halite rich sediments has been also observed for the Omongwa 
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pan (Mees, 1999). Over time theses soft surfaces have the potential to become crusted surfaces 

sufficiently thick to shut down all dust emission, through receding groundwater levels during the 

dry season or extended periods without rainfall (Reynolds et al., 2007). However, the high change 

magnitudes in the Landsat multitemporal analysis indicate that the halite crust is periodically 

dissolved and reprecipitated, thus do not support that in Omongwa long-remaining hard layered 

halite crusts are regularly formed. 

Following the idea of (Robert Gavin Bryant, 1993), proportion maps of the mineralogical crust type 

can be used to classify the depositional environment of a salt pan. In this study the approach is 

adapted to the different geomorphological setting of the Omongwa pan (bordering calcite bedrock 

instead of clastic alluvial facies) and complemented by the topographic information and the change 

detection result. Figure 13 shows an exemplary South-North profile of Hyperion mineralogical 

mapping compared with Landsat ~30 years dynamic mapping and LiDAR topography that crosses 

the different depositional zones of the Omongwa pan (location of the profile is giving in Figure 11c). 

Six zones with three different levels of activity are recognised. The most southern surface is 

dominated by high proportions of gypsum crust (40-90%) with some calcite / sepiolite crust (up to 

30%) and lower gypsum content at the very beginning. This very stable gypsiferous surface 

represents the southern pan margin with increasing topography in direction of the lunette dune. 

As the profile moves north an increase in halite crust abundance (up to 70%) and a decrease in 

gypsum abundance (around 30%) is observed. This mixture dominated saline mud flat (Robert 

Gavin Bryant, 1993) is more active compared to the pan margin, but still more stable than the lower 

central depression of the salt pan. Further north the gypsum fraction in the surface sediment 

quickly declines and halite increases further. This very dynamic region dominated by high halite 

proportions (between 50-95%) can be interpreted as the central area of saline pan sediments 

(Robert G. Bryant, 1996; Lowenstein & Hardie, 1985). This is the aforementioned region where 

build-up of bright efflorescent halite crust alternates with more moist phases and lower surface 

albedo in each recurring inundation cycle. To the north the saline pan zone is bordered by a slight 

increase in topography (~10 cm) that results in conditions similar to the southern mud flat with 

lower surface dynamic and mineralogical mixture of halite, gypsum, but also northward increase of 

calcite / sepiolite. North of this elevated ridge position the halite fraction increases again and 

comparable condition to the central saline pan are met. This linear shaped depression in the north 

of the pan originates from a short, poorly developed channel that feeds into the depression at the 

north-eastern pan margin and is active during significant rainfall events (Figure 11c). The channel 

was observed to hold water for several days after a rainfall in October 2014 and June 2015. The 
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transect ends at the stable pan margin dominated by the calcite / sepiolite mudstone bedrock that 

seems to deposit into the adjacent halite dominated depression. Additionally, anthropogenic 

disturbance lead to modification of the original salt crust especially at the pan border, where the 

fresh efflorescent halite crust is removed and mineralogically more mixed material emerges from 

the subsurface that is less cohesive and can more easily contribute to dust emission. 

 

Figure 13. Spatial profile through the Omongwa salt pan (A-B, SW to NE, marked in Figure 11c). Pan 

topography, vertical exaggeration ~10^4 (filled graph) is shown with Landsat change magnitude 

(top), and Hyperion mineralogical abundances (bottom). 

6. Conclusions 

In this paper combined multitemporal and hyperspectral remote sensing analyses over the 

Omongwa salt pan in the Namibian Kalahari region are used to spatially differentiate and map 
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depositional environments within the pan that deepen our knowledge of the local surface 

processes. Additional field and laboratory measurements and LiDAR topographical survey support 

the interpretation. The results show that the major salt pan mineralogical crust types (halite, 

gypsum, sepiolite/calcite, disturbed dark crust) could be spatially and spectrally well differentiated 

by Spectral Mixture Analysis on the basis of to EO-1 Hyperion imagery. The spatial distribution 

patterns of the mineralogical crust types correlate well with the Landsat ~30 years change map of 

the pan surface derived with IR-MAD analysis. A Highly dynamic pan centre is identified that is 

dominated by halite crust, whereas at the more stable pan margins and the southern parts of the 

pan gypsum and calcite / sepiolite crusts are more common. The surface change map relates well 

to different susceptibility to pan inundation events according to the solubility of the evaporite 

minerals as described in conceptual models of the depositional cycle within salt pan environments. 

Whereas halite is more easily dissolved even by small precipitation events, gypsum and calcite are 

more likely to remain in the surface layer. Our analyses provide for the first time a deep 

understanding of the spatial distribution of the fresh efflorescent salt crust formation and the 

influence of pan morphology. The change detection map also does not support the presence of 

long-lasting stable halite crust but rather confirm and detail the dynamic aspect of the distribution 

of halite crust, due to climatic and anthropogenic influences. The study also shows that the detailed 

morphological information provided by the LiDAR DSM could complement the analysis of surface 

mineralogy and dynamic and could contribute to the classification of salt pan’s depositional 

environment related to topographical position. While dynamic halite crust dominates most of the 

surface area and especially the lower regions, more stable gypsum and calcite/sepiolite crust 

appear to concentrate in higher areas. 

The results demonstrate the potential of current advanced remote sensing optical methodologies 

for the improvement of our knowledge on pan surface processes. To further deepen the 

understanding of the pan environment and its responses to climatic events, future work should 

focus on high temporal monitoring of hydrological parameters like groundwater flow, precipitation 

and flooding events that could lead to insights into major driving factors for the observed surface 

change and mineralogical patterns both in the dry and in the wet seasons. Further improvement on 

the classification of the pan surface and its properties lies in the combination of the presented 

approach with RADAR based multitemporal assessments of the surface roughness. Nevertheless, in 

this paper with newly available Earth observation techniques the full complexity of a saline pan 

dynamic could be spatially described, combining mineralogical and topographical mapping with ~30 

years change detection analyses. The Omongwa pan is presented as an exemplarily object of study 
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to test the potential of new remote sensing techniques. The approach used in this study are not 

pan-specific and could be well transferred and applied for the study of arid landscapes and salt pan 

characterisation in the region and in others arid regions of the world. The proposed framework of 

methods is also relevant regarding upcoming remote sensing technology. For example, regarding 

the planned and upcoming Earth Observation missions equipped with high quality imaging 

spectrometers, like the German Environmental Mapping and Analysis Program (EnMAP) mission 

(Guanter et al., 2015), hyperspectral analyses, such as the proposed mineralogical pan surface 

characterization, will become available even for extensive sites on a more regular temporal basis. 

A better wider characterisation of pans mineralogy would also support further studies on pan 

susceptibility for wind erosion and contribute to assessment of potential dust emissions. 
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Abstract 

High spectral resolution (hyperspectral) remote sensing has already demonstrated its capabilities 

for soil constituent mapping based on absorption feature parameters. This paper tests different 

parameterizations of the 1.75 µm gypsum feature for the determination of gypsum abundances, 

from the laboratory to remote sensing applications of recent as well as upcoming hyperspectral 

sensors. In particular, this study focuses on remote sensing imagery over the large body of the 

Omongwa pan located in the Namibian Kalahari. Four common absorption feature parameters are 

compared: band ratio through the introduction of the Normalized Difference Gypsum Index (NDGI), 

the shape-based parameters Slope, and Half-Area, and the Continuum Removed Absorption Depth 

(CRAD). On laboratory soil samples from the pan, CRAD and NDGI approaches perform best to 

determine gypsum content tested in cross validated regression models with XRD mineralogical 

data (R² = 0.84 for NDGI and R² = 0.86 for CARD). Subsequently the laboratory prediction functions 

are transferred to remote sensing imagery of spaceborne Hyperion, airborne HySpex and simulated 

spaceborne EnMAP sensor. Variable results were obtained depending on sensor characteristics, 

data quality, preprocessing and spectral parameters. Overall, the CRAD parameter in this 

wavelength region proved not to be robust for remote sensing applications, and the simple band 

ratio-based parameter, the NDGI, proved robust and is recommended for future use for the 

determination of gypsum content in bare soils based on remote sensing hyperspectral imagery. 

1. Introduction 

Soils and sediments in arid and semi-arid regions can be strongly affected by the accumulation of 

the evaporite mineral gypsum (CaSO4 · H2O) (Herrero, Artieda, & Hudnall, 2009), which has a 

significant effect on soil fertility, plant development and productivity (Soil Resources, Management 

and Conservation Service & FAO, 1990). Gypsiferous soils can be found in abundance in wetlands 

or arid salt pan environments around the world, where information on content and spatial 

distribution of gypsum is needed for the evaluation of environmental processes, as gypsum is 

strongly coupled to the biogeochemical sulphur cycle (F. D. Eckardt, Drake, Goudie, White, & Viles, 

2001) and relates to hydrological conditions like groundwater level, flow and the geomorphology 

of the region (Shaw & Bryant, 2011). Information on gypsum can also contribute to facies 

characterisation (Robert G. Bryant, 1996; Ghrefat & Goodell, 2011; Mees, 1999), as well as mineral 

exploration efforts (Bharti, Kalimuthu, & Ramakrishnan, 2015; Ferrier & Wadge, 1996). Gypsiferous 

soils are also reported to cause poor soil aggregation and structure (Poch & Verplancke, 1997), 

water retention properties (Moret-Fernández & Herrero, 2015), reduced soil pore space and water 
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infiltration rates (Poch, Coster, & Stoops, 1998), which often leads to low crop yields (Soil 

Resources, Management and Conservation Service & FAO, 1990). However such soils can be 

productive and managed profitably, but they need to be studied properly first (Etesami, Halajian, 

& Jamei, 2012). In small quantities, gypsum may even be favourable for plant growth (Alphen & 

Romero, 1971) and is recommended as a chemical soil amendment (Lee, Seo, Ro, & Yun, 2016), 

especially for reclamation of sodic soils (Qadir, Schubert, Ghafoor, & Murtaza, 2001). In contrast to 

traditional field and laboratory methods for the analysis of soils mineralogical constituents, optical 

high spectral resolution remote sensing has the capability for fast and cost-effective regular 

monitoring of top-soil mineralogical properties over extended areas (E. Ben-Dor et al., 2009). In 

contrast to many other evaporite minerals, that basically do not have diagnostic absorption 

features in the optical or thermal spectral range (e.g. halite), gypsum is characterized by multiple 

distinctive absorption features in the visible, near-infrared (VNIR) and shortwave-infrared (SWIR) 

spectral region (Hunt et al., 1971). These spectral properties distinguish gypsum from most other 

surface materials and allow to estimate its abundance in the soil mixture via reflectance 

spectroscopy in the laboratory as well as potentially by remote sensing through air- and spaceborne 

sensors. 

Previous studies at laboratory scale have shown that the gypsum content of mixed samples can be 

reliably quantified under a controlled laboratory environment using statistical techniques like 

Partial Least-Squares Regression (PLSR) (Khayamim et al., 2015) or Penalized Spline Regression 

(PSR) (Weindorf et al., 2016). However statistical approaches like PLSR need a high amount of well-

distributed calibration data that is costly and often difficult to come by for remote and extensive 

areas regularly covered by remote sensing data. The resulting regression models or other, 

generalist machine learning approaches are also highly adapted to the local and present conditions, 

which limits their spatial and temporal transferability. These limitations are especially meaningful, 

when models are transferred to other regions, in which different soil mineral components, such as 

clays, may overlap the spectral regions that are used by these approaches for the estimation of 

gypsum content trained with the total spectral range. Studies that applied PLSR for the estimation 

of soil parameters have observed that the resulting models often find correlations with spectral 

features that do not belong to the target soil parameter, but are caused by co-correlations that may 

only exist for the specific test site and therefore question the robustness and transferability of PLSR 

models (e.g. Bartholomeus et al., 2008; Brown, Bricklemyer, & Miller, 2005), especially in the 

transfer from laboratory to the airborne level of data (Peon et al., 2017). Less sophisticated 

regression methods using spectral parameters, e.g. band ratios, are easier to transfer among 
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sensors and can be used as a more robust alternative to PSLS modelling, mainly because they are 

based on known physical characteristics of the target material (e.g. D. Li et al., 2012; Peon et al., 

2017). Furthermore, the application of gypsum estimation on the remote sensing scale is 

challenged by factors like atmospheric absorption, illumination condition and sensor viewing 

geometry (Richter & Schläpfer, 2002). Especially with the planned and upcoming earth observation 

missions equipped with imaging spectrometers (e.g. EnMAP, PRISMA, SHALOM), hyperspectral 

analyses have to become more robust to different acquisition conditions and transferable to other 

areas, without the need for large calibration data sets to support regular monitoring of the 

geosphere. Most hyperspectral remote sensing studies working on gypsum assessment provide the 

identification of gypsum minerals or the classification as gypsiferous soils using methods such as 

Support Vector Machines (SVM) (Gleeson et al., 2010), Spectral Angle Mapper (SAM) (Bharti et al., 

2015; Shrestha et al., 2005), Spectral Feature Fitting (SFF), Match Filtering (MF) and Spectral 

Mixture Analysis (SMA) (A. Dutkiewicz et al., 2009; Gleeson et al., 2010). All of these studies need 

an extensive training data set or rely on scene dependent selection of target spectra (endmember) 

for the gypsum analysis and do not provide quantitative estimates of gypsum abundance. 

In this frame, the aim of this study is to evaluate suitable absorption feature based parameters for 

gypsum estimation from hyperspectral remote sensing data that can provide relative quantitative 

assessments without the use of training data or a selection of endmember spectra, and also can 

provide absolute quantification when ground truth data are available. For model calibration, 

empirical prediction functions based on spectral absorption feature have the advantage that they 

are directly related to the known physical properties of the material, and bear the potential to 

develop repeatable and transferable methods to regions of similar environmental conditions 

(Mulder, de Bruin, Schaepman, & Mayr, 2011). These methods are generally less prone to data 

inherent noise compared to exclusively statistical multivariate based prediction methods like PSLR 

(Bayer, Bachmann, Rogge, Müller, & Kaufmann, 2016) and can still provide relative quantitative 

assessments without the use of training data. Furthermore, such techniques can be incorporated 

in present software toolboxes for soil properties mapping such as the HYSOMA/EnSoMAP 

(Chabrillat et al., 2011; Chabrillat, Guillaso, Rabe, Foerster, & Guanter, 2016), which opens the 

analytical potential for a broad non-expert community and soil applications. 

In this study gypsum models based on different parameters for the absorption features are first 

calibrated and tested under controlled laboratory conditions. Subsequently, the gypsum prediction 

functions are applied to hyperspectral imagery of different sensors and scales to evaluate the 
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approach under variable conditions, e.g. different sensor radiometry, spectral and spatial 

resolution. Specifically, spaceborne EO-1 Hyperion imagery (Pearlman et al., 2003), airborne 

HySpex imagery (Norsk Elektro Optikk, 2017) as well as a simulated dataset of the upcoming EnMAP 

sensor (Guanter et al., 2015) are considered for the evaluation of gypsum retrieval methods based 

on absorption features parameters for future large-scale quantification of soil gypsum content. 

This study focuses on the Omongwa salt pan test site, which is a natural playa basin located in the 

Namibian Kalahari region. The Omongwa pan presents a large (~5x3 km) exposure of vegetation-

free, unconsolidated and evaporite rich sediments with a high range in local gypsum abundances 

and high variability in surface mineralogical mixtures.  
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2. Material and Methods 

2.1. Field and Laboratory Data 

Field campaigns for sampling acquisition took place on 14-16 October 2014, 4-6 June 2015 and 3-

5 March 2016 at the Omongwa pan located in the south-western Kalahari, Namibia. The properties 

and mineralogy of the pan deposits were extensively studied and discussed by F. Mees and 

colleagues (Mees, 1999; Mees, Casteñeda, Herrero, & Ranst, 2012; Mees, Hatert, & Rowe, 2008). 

The top soils of the pan are mainly gypsiferous, low in organic matter and consist of sand-sized 

detrital grains with varying mixtures of quartz, gypsum, halite and calcite with minor content of clay 

minerals sepiolite and montmorillonite, with variable spatial distribution along the pan (Mees, 

1999; Milewski, Chabrillat, & Behling, 2017). The climate in this region is semi-arid with average 

precipitation of 200-250 mm (Mees, 1999). Figure 14 shows the location of the study area, and 

spatial distribution of surface sample acquisition. The sampling focused on areas with high gypsum 

content along the border of the pan, and following a gradient sampling scheme from high to low 

gypsum content towards the centre of the pan. Towards the slightly lower elevated pan centre the 

top crust contains less gypsum and is increasingly dominated by halite, which is enriched in the top 

sediments through capillary rise during the pan’s desiccation stage (Milewski et al., 2017). 
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Figure 14. Omongwa pan test site and sample location (Basemap source: DigitalGlobe RGB image, 

September 2013, provided by Google Inc. (Mountain View, CA, USA)). 

A total of 49 top surface crust (<2 cm) samples were collected in homogeneous areas. For 16 of 

these samples it was possible to isolate the very top surface crust from the more mixed layers 

below. All samples were composed of 5 to 10 sub-samples collected at random locations within a 

5 m wide square around the centre point for each site of interest. Prior to sampling, field spectra 

of the untouched surfaces were collected at the selected locations using an ASD (Analytical Spectral 

Devices) FieldSpec 3 spectroradiometer, covering the VNIR-SWIR spectral range 420-2450 nm with 

3 to 10 nm spectral resolution and 2151 wavelengths resampled to 1 nm (ASD Inc., 2015). Per site 

of interest, 5 spectra were acquired at nadir configuration from 1 m height with a ~25 cm target 
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radius from the centre of each location. All samples were air-dried, and divided into homogeneous 

sub-samples for spectral and chemical analyses. 

Laboratory spectral characterisation over bulk samples was performed with the same 

spectroradiometer, but under controlled environmental and illumination conditions simulating 

spaceborne observations (sensor nadir viewing, light source azimuth 35°). A spectral library 

associated with the optical signatures of the 49 soil samples were created using ENVI 5.3 (Harris 

Geospatial Solutions, 2015) after correcting the detector offset and averaging the 5 measurements 

per target. 

Mineral characterization was carried out using a PANalytical Empyrean powder X-ray 

diffractometer (XRD) with a theta-theta-goniometer, Cu-Kα radiation (λ = 0.15418 nm), automatic 

divergent and anti-scatter slits and a PIXcel3D detector. Diffraction data were recorded from 4.5° 

to 85° 2ϴ with a step-size of 0.0131 and a step time of 60 s. The generator settings were 40 kV and 

40 mA. All samples were crushed and powdered to a grain size of <62 micron. These samples were 

used for the qualitative and quantitative mineral analysis. A few samples were also powdered to 

<10 micron, but no strong differences in intensities were observed. The qualitative phase 

composition was determined using the software DIFFRAC.EVA (Bruker), and the quantitative 

mineralogical composition of the samples (in weight %) was calculated using a Rietveld based 

method implemented in the program AutoQuan (GE SEIFERT; (Taut et al., 1998). 

2.2 Remote Sensing Data 

2.2.1 Spaceborne EO-1 Hyperion 

The EO-1 Hyperion hyperspectral image used in this study has been acquired on the 7th September 

2014 at 07:34 UTC with a sun azimuth of 63° and a sun elevation of 36°. The Hyperion sensor covers 

the VNIR-SWIR spectral region (400-2500 nm) with 198 wavelengths of ~10 nm bandwidth at a 

spatial resolution of 30 m (Pearlman et al., 2003). The signal-to-noise ratio (SNR) is specified as 

~140:1 to 190:1 for the VNIR and 96:1 to 38:1 for the SWIR detector (Pearlman et al., 2003). 

An automated preprocessing chain for EO-1 Hyperion data developed by (Rogass, Guanter, et al., 

2014) is used that provides georeferenced surface reflectance data. The L1 radiance data (L1R), L1T 

radiance terrain corrected data, acquisition parameters from the metadata and an ASTER 30 m 

DEM, freely distributed through the USGS EarthExplorer data portal 

(http://earthexplorer.usgs.gov/) are used. Data processing includes rescaling to radiance, removal 

of the spectrally overlapping bands, bad band detection, reductions for dead pixel and erroneous 

http://earthexplorer.usgs.gov/
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detector columns, as well as corrections for intra-band spatial shifts, keystone, erroneous co-

registration, radiometric miscalibration. The processing chain includes the atmospheric correction 

as proposed in (Guanter, Richter, et al., 2009; Guanter, Segl, et al., 2009) originally designed for the 

EnMAP Box (van der Linden et al., 2015). It includes a complex Radiative Transfer Modelling (RTM), 

Aerosol Optical Thickness (AOT), Columnar Water Vapour (CWV) retrieval as well as spectral Smile 

and adjacency correction (Rogass, Guanter, et al., 2014). Georeferencing is performed via GCP 

(Ground Control Point) selection and first order transformation using ENVI 5.3 (Harris Geospatial 

Solutions, 2015) between the corrected image and the orthorectified L1T Hyperion image. The 

geometrical transformation is applied at the end of the correction process on final mineralogical 

mapping results to prevent resampling effects for the spectral analyses. 

2.2.2 Airborne HySpex 

The airborne datasets were obtained at an altitude of 2850 m above ground level over the 

Omongwa pan on the 6th June 2015 during a GFZ/DIMAP airborne campaign (http://dimap-

spectral.com/). The hyperspectral data have been acquired using two HySpex cameras (Norsk 

Elektro Optikk) in nine flightlines with alternating SE/NW heading under blue sky conditions at 

10:30-12:00 UTC with a sun elevation angle of 40-45° and sun azimuth angle of -10° to 20°. The NEO 

HySpex system consists of two push-broom hyperspectral cameras (VNIR-1600 operating over the 

0.4-1.0-µm and SWIR-320m-e operating over 1.0-2.5 µm range) with a total of 416 wavebands and 

a spectral resolution of 3.7 nm (VNIR-1600) and 6.0 nm (SWIR-320m-e) (Norsk Elektro Optikk, 

2017). The original ground sampling distance (GSD) of the image captured was 1.2 m for the VNIR 

spectrometer and 4.4 m for the SWIR-320m-e camera with a field of view expander. 

The preprocessing of the HySpex data to orthorectified reflectance was realized with the GFZ in-

house processing chain HyPrepAir. In a first step, physically based atmospheric correction of the 

HySpex data was carried out in sensor geometry for the separated VNIR and SWIR sensors with the 

ATCOR-4 software (Richter & Schläpfer, 2016) based on the radiative transfer model MODTRAN 5 

(Richter & Schläpfer, 2002). A desert aerosol model, water vapour column of 1.0 g m−2, and a 

visibility of 60 km, were selected as atmospheric parameters. Spectral smile could be detected and 

removed using the ATCOR-4 smile detection routine. In a second step, a direct geometric correction 

was realized. The VNIR sensor was used as a reference to co-register the SWIR sensors automatically 

based on a ray tracing procedure (Brell, Rogass, Segl, Bookhagen, & Guanter, 2016). Thus the SWIR 

spectra are implemented and adapted to the overlapping VNIR spectra wavelength. The used 

modules and algorithms adopted for the geometric processing are described in (Brell et al., 2016). 

http://dimap-spectral.com/
http://dimap-spectral.com/
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Then the flight stripes were composed into a single mosaic with a spatial resolution of 2.3 m without 

image feathering or colour balancing to keep the original data values. To further remove 

atmospheric attenuation and spectral artefacts an Empirical Line Calibration (ELC) (Aspinall, 

Marcus, & Boardman, 2002) implemented in ENVI 5.3 (Harris Geospatial Solutions 2015) was 

performed using field-measurements of several reflectance targets with different albedo. 

2.2.3 Simulation of Spaceborne EnMAP Data 

The simulation of the EnMAP reflectance product (Level-2A) at 30 m resolution was performed on 

the basis of the preprocessed airborne HySpex mosaic using the EnMAP end-to-end simulation 

software EeteS (Segl et al., 2012). The EeteS software follows the forward and backward processing 

schemes simulating the EnMAP image generation process, sensor calibration and data 

preprocessing. The EnMAP sensor consists of a dual-spectrometer instrument measuring in 242 

spectral bands between 420 and 2450 nm with a spectral sampling distance varying between 5 and 

12 nm (Guanter et al., 2015). It has a measured signal-to-noise ratio of 400:1 in the visible and near-

infrared and 180:1 in the shortwave-infrared parts of the spectrum that is considered in the EeteS 

sensor model (Segl et al., 2012). Sensor-like raw image data were produced using the HySpex 

airborne imagery. Next, the data were transformed to Level 1C applying a detector co-registration 

and image orthorectification, then subsequently processed to reflectance orthorectified data 

(Level-2A) applying an atmospheric correction. 

2.3. Selection and Parametrization of Absorption Feature 

The application and parametrization of spectral absorption features in general are complicated due 

to the influence and overlapping of other spectral features from multiple sources (e.g. other soil 

components or atmosphere influence). This emphasises the need for a thoughtful selection of the 

most suitable absorption feature to the application scenario. The reflectance of gypsum shows 

multiple characteristic absorption features (Figure 15). Most prominent are triple absorption 

features around 1.5 µm, as well as further features at 1.75 and 2.2 µm in the VNIR-SWIR spectral 

region (Drake, 1995; Hunt et al., 1971). 
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Figure 15. USGS laboratory spectra of the mineral gypsum (Clark et al., 2007). The major gypsum 

absorption wavelength and water vapour absorption regions are indicated. 

For remote sensing applications, the triple absorption feature at 1.5 µm is not suitable due to 

atmospheric water vapour absorption. The gypsum 2.2 µm doublet absorption could be confused 

with the 2.2 µm clay absorption feature in soils and thus is problematic for spectral discrimination, 

especially in data with low spectral quality. Therefore the 1.75 µm feature is selected as the best 

discriminator for the quantification of gypsum absorption for the most common soil mixtures and 

acquisition conditions. However, absorption features caused by vegetation coverage as well as soils 

mixed with dry plant remains e.g., starch, cellulose and several other biochemical constituents may 

overlap gypsum features and limit the capability for gypsum mapping when partial vegetation cover 

is present at the surface. Notably the dry plant pigments cellulose and lignin absorb close to the 

1.75 gypsum absorption feature (Kokaly and Clark 1999). Another overlapping absorption exists 

between gypsum and hydrocarbon based materials like oil and plastics that have an absorption 

maximum at 1.73 µm (Kühn, Oppermann, & Hörig, 2004), which can be introduced into the soil by 

environmental pollution. 

In feature parametrization, the spectral datasets are analysed for the selected spectral 

characteristics of the target material (in this case gypsum) and are transferred to numerical 

parameters or variables that describe the shape of the spectral feature. These numerical 

parameters correlate with the concentration of the target material in a mixed sample. The following 

four parameters are derived from the selected absorption feature: 1) the Normalized Difference 



Chapter III - Assessment of the 1.75 µm Absorption Feature for Gypsum Estimation Using Laboratory, Air- 
and Spaceborne Hyperspectral Sensors 

63 
 

Gypsum Ratio (NDGI), 2) the Continuum Removed Absorption Depth (CRAD), 3) the Slope, and 

4) the Half-Area (Figure 16). 

 

Figure 16. Absorption feature parameters tested for gypsum estimation. A) Normalized Difference 

Gypsum Index (NDGI), B) Continuum Removed Absorption Depth (CRAD), C) Slope and D) Half-Area. 

The exemplary gypsum spectrum is from USGS spectral library (Clark et al., 2007). 

All of the tested parameters operate in a very limited wavelength range of 60 - 100 nm (between 

1690 - 1790 nm), which provides the advantage that the analysis is more robust against spectral 

overfitting to unrepresentative correlations that may appear outside of the wavelength region of 

interest, as well as against radiometric uncertainties which is especially threatening for modelling 

from small number of observations. The wavelength positions used for the parameterization were 

chosen after testing regression models for each band combination in the wavelength range of the 

gypsum feature (1690 - 1790 nm) based on the laboratory dataset with 1 nm spectral binning. 

The Normalized Difference Gypsum Ratio (NDGI) calculates the normalized ratio between the most 

relevant narrow spectral bands of the gypsum absorption feature (Figure 16A) such as: 

 

A) B) 

C) D) 

@1690 nm   @1750 nm 
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𝑁𝐷𝐺𝐼 =  
(𝑟1690 𝑛𝑚 − 𝑟1750 𝑛𝑚)

(𝑟1690 𝑛𝑚 + 𝑟1750 𝑛𝑚)
 

, where 𝑟 is the reflectance at the stated wavelength. It follows the principles of the established 

Normalized Difference Vegetation Index (NDVI), which has been extensively used for vegetation 

analysis (Gao, 1996), and the Normalised Soil Moisture Index (NSMI) used for soil moisture 

estimation from hyperspectral imagery (Haubrock, Chabrillat, Kuhnert, Hostert, & Kaufmann, 

2008). Such band ratios are easy-to-use mathematical algorithms, transforming multi-band data 

into a single parameter showing the presence and relative quantity of the target material. They can 

be effective parameters for spectral analysis, when applied with a well-formulated rationale 

(Mustard & Sunshine, 1999). For imaging spectroscopy band ratios have already been proven 

successful for the estimation of different soil components, e.g. iron-oxide (E. Ben-Dor et al., 2006), 

clay content (Levin, Kidron, & Ben-Dor, 2007), but so far have not been tested for gypsum 

estimation.  

The second parameter tested for the gypsum estimation is the Continuum Removed Absorption 

Depth (CRAD). This parameter is derived using the continuum removal method (Clark & Roush, 

1984) integrated in the HYSOMA software (Chabrillat et al., 2011). CRAD is the difference between 

the continuum defined by the convex hull between the shoulder positions and the absorption 

maximum (Figure 16B): 

𝐶𝑅𝐴𝐷 = 1 −
𝑟1750 𝑛𝑚

𝑟𝐶1750 𝑛𝑚
 

, where 𝑟 is the measured reflectance and 𝑟𝐶  the reflectance of the convex hull at the absorption 

maximum. While the left shoulder for the gypsum CRAD calculation is well defined at 1690 nm, the 

wavelength position for the right shoulder at 1790 nm is chosen as trade-off between the ideal 

reflectance shoulder position at ~1850 nm, under laboratory conditions (with minimal atmospheric 

thickness between target and sensor), and the increasing influence of water vapour absorption at 

that wavelength range under remote sensing conditions. Spectral analysis techniques such as the 

CRAD that parameterise absorption features by their relative depth from the continuum removed 

reflectance have originally been developed for mineral mapping (Clark, 1983; James K. Crowley, 

Brickey, & Rowan, 1989). This method of waveform characterization (Okada & Iwashita, 1992) has 

been proven successful for remote sensing analysis of a wide range of applications (Van der Meer, 

2004), such as different soil components (Bayer, Bachmann, Kaufmann, & Mueller, 2012; Chabrillat 
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et al., 2011), plant materials (Kokaly & Clark, 1999), hydrocarbons (Kühn et al., 2004), as well as 

geological applications (Kokaly, King, & Hoefen, 2011; Mielke, Rogass, et al., 2016). 

The third and fourth parameters tested for the gypsum estimation are the Slope and Half-Area of 

the absorption feature. In this paper the spectral Slope is defined as the gradient of a linear fit of 

the left-hand side of the absorption feature (Figure 16C): 

𝑆𝑙𝑜𝑝𝑒 =
∑1

𝑖=1 (𝑥𝑖 − 𝑥)(𝑟𝑖 − 𝑟)

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)2

 

, where 𝑟 is the reflectance and 𝑥 the wavelength of the bands between 1690 nm and 1750 nm.  

The Half-Area represents the surface area above this wavelength range (Figure 16D) approximated 

using the trapezoidal method (Burden & Faires, 2011): 

𝐻𝑎𝑙𝑓𝐴𝑟𝑒𝑎 = ∫
𝑏

𝑎

𝑓(𝑥) 𝑑𝑥 ≈  
𝑏 − 𝑎

2𝑁
∑

𝑁

𝑛=1

(𝑓(𝑥𝑛) + 𝑓(𝑥𝑛+1)) 

on the zero scaled and inverted reflectance 𝑓 at wavelength 𝑥 with 𝑛 + 1 evenly spaced points, 

where 𝑛 is the number of bands between the left shoulder 𝑎 = 1690 𝑛𝑚 and the absorption 

maximum 𝑏 = 1750 𝑛𝑚. Both parameters include information from all wavelengths of the 

respective sensor between the left shoulder and the absorption maximum, which makes these 

shape parameters potentially more robust against random radiometric uncertainties that occur in 

single bands, compared to NDGI and CRAD parameters that only use two or three bands in their 

calculations. In imaging spectroscopy the analysis of shape-based parameters of absorption 

features is less common compared to the other types of parameterization, but nonetheless the 

concept shows promising results, e.g. for the estimation of soil components (Bayer et al., 2012). 

2.4 Laboratory Prediction Models and Transfer to Remote Sensing Imagery 

From the laboratory spectral library, the four absorption feature parameters were derived and their 

relationship to the gypsum content of the 49 soil samples were modelled using linear least squares 

regression and the performance was assessed by leave-one-out cross-validation and expressed by 

the standard performance indicators, explained variance (R2) and Root Mean Square Error (RMSE). 

The calculation of absorption feature parameters as well (The MathWorks, Inc., 2016). 

In the next step, the resulting prediction function based on the laboratory measurements spectrally 

resampled to each sensor was applied to the absorption feature parameters derived from the 

remote sensing imagery of the Hyperion, HySpex and simulated EnMAP sensor. For this purpose, 
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the image spectrum closest to each sample position was extracted. The predicted gypsum content 

of the transferred regression models were compared to the XRD measured gypsum content for the 

16 sample locations that represent comparable surface conditions between remote sensing and 

field data acquisition. It is necessary that surface conditions between sample collection and remote 

sensing data acquisitions are the same or at least in a reasonable comparable state. In previous 

analysis of the test site’s surface dynamic it was found that the gypsum crust’s mineralogical 

composition at the pan border is mostly stable in the long term (the last ~30 years) (Milewski et al., 

2017). However, in the short term the physical conditions fluctuate and can still have significant 

influence on the reflectance signal, e.g. through differences in surface roughness and moisture. 

These changes are mainly caused by rainfall events and to much lesser extent by wind erosion in 

the dry season. Therefore, only surface samples in dry conditions were selected for the model 

validation of the remote sensing data. Surface conditions during the 2014 and 2015 campaign were 

mostly dry with well-developed surface crusts that have been developed during the dry season with 

3 and 1.5 months after the last heavy precipitation events respectively for 2014 and 2015. However, 

during the March 2016 field campaign the pan sediments were still wet from the last precipitation 

events (see Figure 17). 

 

Figure 17. Precipitation estimates at the test site and dates of field sampling and remote sensing 

data acquisition (Precipitation estimates provided by TAMSAT (Maidment et al., 2014)). 

This prevented the exclusive sampling of the upper surface crust in 2016 and lead to a mixture with 

the underlying mineralogy. These mixtures cannot be used to represent the surface condition 

during the air and spaceborne data acquisition. Therefore, these samples were excluded for model 

validation based on remote sensing data and they were only used for the laboratory model 

calibration. Furthermore, samples located in changing areas such areas affected by an episodically 
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active inflow channel at the north-eastern pan border were excluded from the validation data set. 

This leaves a limited data set of 16 samples for the validation of the remote sensing based gypsum 

models and the full set of 49 samples for the calibration of the laboratory gypsum model. The 

validation samples represent a well stratified range in gypsum values (0-60%) even with the limited 

sample size.  
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3. Results 

3.1 Mineralogical Analysis of Field Samples  

The XRD analysis of the 49 field samples from the Omongwa pan’s topsoil shows a mixture of 

gypsum, halite, quartz, calcite and the clay mineral sepiolite (Figure 18) and a high variability in 

gypsum content (Figure 19) with a mean of 31% and a standard error of 28% (min. 0%, max. 85%). 

The sample distribution is positively skewed with half of the samples having a gypsum content 

below 30% and a quarter of the samples below 10%. Samples with mid-range gypsum values (40-

70%) are more sparse and a cluster of high gypsum samples of 70-80% can be observed. 

 

Figure 18. Ranges of the mineral abundance (wt. %) present in the 49 field samples (samples used 

for validation are shown in green). Mean, Standard Error of the Mean (SEM) and Standard Error 

(SE) are indicated. 

  

Figure 19. Distribution of gypsum content present in the 49 field samples. 
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3.2. Remote Sensing Data 

Figure 20 shows a colour composite of SWIR bands from the three sensors tested for gypsum 

mapping. Spectral bands of the SWIR sensor are selected, because the data quality of this spectral 

range is most relevant for the gypsum estimation function. Main differences between images are 

diagonal spatial patterns that are oriented along the path of the data acquisition. For the Hyperion 

data, vertical stripes (~11°) and spatial noise of the 1.6 µm band (red dots) are observed that 

remained after the preprocessing. Such spectral miscalibrations are often found in low SNR push-

broom sensors (Ducart, Silva, Toledo, & Assis, 2016; Rogass, Mielke, et al., 2014). For the HySpex 

airborne and the derived EnMAP imagery, a much higher radiometric contrast can be observed. The 

higher albedo of the pan centre in the Hyperion scene is mainly due to a more developed halite 

crust at time of acquisition. The surface validations samples are exclusively located at the pan 

border, which significantly reduces the risk of changes of the crust’s mineral composition between 

image acquisitions, because the gypsum border region was found to be much more stable over time 

(Milewski et al., 2017). However, some minor changes, e.g., due to aeolian processes or minor 

precipitation events may influence the model results. For the HySpex airborne and the derived 

EnMAP imagery some boundary effects between individual flight lines remain after preprocessing. 

These effects were not sufficiently removed by the applied empirical BRDF correction of ATCOR-

4 (Richter & Schläpfer, 2016). Although these effects influence the overall data quality and possibly 

the gypsum retrieval, a comparison of the remote sensing data with a reference field spectrum 

show similar behaviour between the sensors at the spectral range of interest around the gypsum 

absorption feature (Figure 21). The plot also shows the limitation in the useful spectral range to 

1770 nm due to the influence of the atmospheric absorption centred at ~1950 nm. Especially the 

Hyperion spectrum show a reduction in reflectance already at a shorter wavelength (~1780) 

compared to the spectra of the other sensors that further increase reflectance for approximately 

10-20 nm in direction of the right shoulder of the gypsum absorption feature. 
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Figure 20. SWIR colour composite (R: 1.6 µm, G: 1.7 µm, B: 2.25 µm) of Hyperion, HySpex and 

simulated EnMAP image. 

 

Figure 21. Reflectance of the ~1.75 µm gypsum absorption feature from Hyperion, HySpex and 

simulated EnMAP data at a selected ground-truth site. 

3.3. Laboratory Prediction Models 

Laboratory model performance statistics and regression plots are presented in Table 3 and Figure 

22. The performance of the gypsum prediction models shows differences of up to 14% in explained 

model variance and 4% of RMSE between different absorption feature parameters used in the 

regression. The results show that the parameters CRAD and NDGI provide the strongest gypsum 

models with R² > 0.8 and RMSE of 11% compared to the shape-based parameters Slope an Half-

 

Hyperion HySpex Sim. EnMAP 



Chapter III - Assessment of the 1.75 µm Absorption Feature for Gypsum Estimation Using Laboratory, Air- 
and Spaceborne Hyperspectral Sensors 

71 
 

Area that have R² ~ 0.7 and RMSE of 15%. In general, the residual distributions of the laboratory 

models show no strong bias for a specific range of gypsum values. Spectral resampling of the 

laboratory spectra to the respective remote sensing sensors (binning by central wavelength 

position) did not lead to significant deviations in model performance compared to the full spectral 

resolution of the laboratory spectrometer (R² decreased by 1-2%). 

Table 3. Performance of laboratory gypsum prediction models. 

  NDGI CRAD Slope Half-Area 

R² 0.84 0.86 0.73 0.72 

RMS

E 11% 11% 15% 15% 

 

 

Figure 22. Plots of predicted vs. measured gypsum content [wt. %] based on laboratory ASD spectra 

for the absorption feature parameters: A) NDGI; B) CRAD; C) Slope; D) Half-Area. The dashed line is 

the 1:1 line of predicted vs. measured results.  

 

A) B) 

C) D) 
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3.3. Models Transfer to Remote Sensing Imagery 

The gypsum prediction functions obtained by the laboratory models resampled to each sensor was 

applied to the remote sensing imagery and compared with mineralogical analysis at the 16 ground-

truth locations that provide comparable surface conditions to the remote sensing acquisitions. The 

results are summarised in Table 4. Models based on NDGI have a high performance across all sensor 

with the highest validity reached for the HySpex data (R² = 0.79), compared to Hyperion (R² = 0.71) 

and Simulated EnMAP (R² = 0.68). On the other hand, across all sensors, CRAD based models have 

the lowest performance (R² between 0.34 and 0.64) and highest RMSE, unlike in laboratory models 

where CRAD model is the best predictor for gypsum content. The Slope and Half-Area parameters, 

in general, perform slightly less good, except in the case of Hyperion, where both perform slightly 

better than the NDGI with an R² of 0.75 and 0.74 respectively for Slope and Half-Area. The 

validation plots show the performance of the laboratory prediction functions transferred to the 

tested absorption feature parameter derived from the respective sensor (Hyperion in Figure 23; 

HySpex in Figure 24; Simulated EnMAP in Figure 25). In general gypsum models transferred to 

Hyperion and EnMAP absorption features seem to overestimate gypsum content of low gypsum 

samples, while underestimating high gypsum samples. The regression of the airborne HySpex 

predictions vs. measured gypsum content (Figure 24) is much closer and parallel to the 1:1 line 

compared to the models based on the spaceborne Hyperion (Figure 23) and simulated EnMAP data 

(Figure 25). 

Table 4. Ground-truth validation of gypsum models applied to remote sensing data. 

  NDGI CRAD Slope Half-Area  

  R² 
RMS
E R² 

RMS
E R² 

RMS
E R² 

RMS
E 

 

Hyperion 
0.7
1 14% 0.64 15% 0.75 13% 0.74 13% 

 

HySpex 
0.8
1 11% 0.65 15% 0.77 12% 0.76 12% 

 

Sim. EnMAP 
0.7
7 12% 0.58 17% 0.74 13% 0.73 13% 
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Figure 23. Plots of predicted vs. measured gypsum content [wt. %] based on laboratory prediction 

function applied to the EO-1 Hyperion derived absorption feature parameters: A) NDGI; B) CRAD; 

C) Slope; D) Half-Area. The blue line is the regression line and the black line is the 1:1 line. 

 

A) B) 

C) D) 
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Figure 24. Plots of predicted vs. measured gypsum content [wt. %] based on laboratory prediction 

function applied to the HySpex derived absorption feature parameters: A) NDGI; B) CRAD; C) Slope; 

D) Half-Area. The blue line is the regression line and the black line is the 1:1 line. 
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Figure 25. Plots of predicted vs. measured gypsum content [wt. %] based on laboratory prediction 

function applied to the simulated EnMAP derived absorption feature parameters: A) NDGI; 

B) CRAD; C) Slope; D) Half-Area. The blue line is the regression line and the black line is the 1:1 line. 

Figure 26 shows the spatial distribution of the gypsum estimation based on the different absorption 

feature parameters and sensors. In general, strong differences are observed both, across sensors, 

as well as dependent on the parameter used for gypsum estimation. The spatial/spectral effects 

mentioned in section 3.2 are clearly visible. However, a more coherent spatial distribution is 

observed for the gypsum mapping between the highest performing model results of each sensor 

(Slope parameter for Hyperion and the NDGI of HySpex and Sim. EnMAP). Also, except for the highly 

dynamic area in the northeast corner of the pan that is associated with an ephemeral inflow channel 

to the salt pan (Milewski et al., 2017). The maps in Figure 26 show similar spatial features across 

sensors and parameter definition such as: 1) high gypsum content at the southern, eastern and 

northern pan boundary, 2) mid-range values at the central circular pattern, 3) low values on the 

rest of the pan surface, and 4) only few false positives in the surroundings of the salt pan. In 

agreement with the model accuracies, the gypsum maps based on the CRAD models are of lower 

quality than the maps based on the other parameters. The regression models have shown that the 

CRAD models largely underestimates the gypsum content (Figure 23-23). Accordingly the CRAD 

gypsum maps show lower values compared to the other parameters across sensors. This is 

especially apparent for the circular shape at the pan centre that represent the low-medium range 
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of gypsum samples, which fits to the residuals of the regression model that also have the highest 

deviation in this range. However, for regions with very high gypsum content, which are mainly the 

border regions, the deviations to the gypsum maps based on other parameters is not as high. The 

Hyperion CRAD based gypsum map is also most affected by noise, which is indicated by many pixels 

that show no zero gypsum values outside of the salt pan. Because the reddish soils of the savanna 

landscape do not contain any gypsum, these mappings can be labelled as false positives. The 

isolated or randomly scattered distribution of these pixels also strengthens this interpretation as 

noise. The Slope and Half-Area parameters provide very similar mapping results. 

 

Figure 26. Gypsum maps based on different parameters for gypsum absorption feature (NDGI, 

CRAD, Slope, Half-Area) and sensors (Hyperion, HySpex, simulated EnMAP). 

 

H
yp

e
ri

o
n

 
H

yS
p

ex
 

Si
m

. 
En

M
A

P
 

NDGI CRAD Slope Half-Area 



Chapter III - Assessment of the 1.75 µm Absorption Feature for Gypsum Estimation Using Laboratory, Air- 
and Spaceborne Hyperspectral Sensors 

77 
 

Figure 27 shows the gypsum mapping of the best performing parameter NDGI for the scene with 

the highest spatial resolution for the southern salt pan margin. The southern pan margin is most 

suitable for a detailed assessment, because most of the validation samples are located here and 

this area of the pan is most stable over time (Milewski et al., 2017). The centre of the subset show 

a sampling transect from the gypsum free, reddish sandy soil outside of the pan through the border 

slope region to the flat main pan area. Sample 181 in the reddish Kalahari sands outside of the pan 

area shows a gypsum content of 0%, which is consistent with the mapping result. The gypsum 

content increases to the north at the pan margin and varies there along patches with medium to 

high gypsum content (30-80%). More into the pan the gypsum content first decreases to about 20% 

(reflected at sample P66 with 24%), but increases at the beginning of the circular shape to >40%, 

which is reflected e.g. by sample 67 with 45% gypsum. 

 

Figure 27: HySpex NDGI gypsum mapping of the southern pan border. Circles show location of 

validation samples and the respective gypsum content [wt. %] as analysed by XRD. 
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4. Discussion 

The performance of the laboratory gypsum prediction models presented in this paper based on the 

1.75 µm absorption feature (R² = 0.84 for NDGI and R² = 0.86 for CRAD) are comparable to previous 

studies where soil gypsum content was predicted using PLSR method (R² = 0.86) and CRAD 

parameter (R² = 0.85) (Khayamim et al., 2015). The comparison to PLSR modelling shows that the 

reduction of spectral information to absorption feature parameters causes only marginal decrease 

in model performance, while having the advantage of being more robust and less site specific. 

Weindorf (2016) (Weindorf et al., 2016) achieved much high model performances (R² = 0.95) for 

gypsum prediction by combining hyperspectral with X-ray fluorescence (XRF) data in penalized 

spline regression (PSR) and random forest (RF) selection. However, they note that the strong 

correlation of several highly ranked wavebands are probably caused by site specific effects or 

remain unexplained (Weindorf et al., 2016). The introduction of XRF data as an additional variable 

besides reflectance is only feasible for proximal sensing and not applicable to remote sensing. 

This paper is the first study that is looking at the potential for the retrieval of gypsum content of 

soils based on hyperspectral remote sensing imagery that provides quantitative results, without the 

need for site specific endmember extraction. Most previous remote sensing studies provide the 

detection and mapping of gypsiferous soils, e.g. through spectral feature fitting (A. Dutkiewicz et 

al., 2009), spectral unmixing, Spectral Angle Mapper (SAM) (Shrestha et al., 2005) or Mixture Tuned 

Matched Filtering (MTMF) (Ghrefat & Goodell, 2011), but do not provide quantitative gypsum 

estimations that could be compared to this study. However, already in 1996 Bryant (Robert G. 

Bryant, 1996) correlated gypsum endmember abundances extracted from multispectral 

Landsat TM imagery to XRD mineralogy (R² = 0.9), based on low sample size (n = 12) and a 

regression model that strongly underestimates gypsum content of pure pixels (Robert G. Bryant, 

1996). While such an approach on multispectral data would allow multitemporal monitoring, it 

relies on the site-specific extraction of image endmembers for the unmixing model. 

The results of our study show that prediction models based on the 1.75 µm absorption feature can 

successfully be used to estimate gypsum abundances from hyperspectral imagery, with R2 greater 

than 0.8 for airborne hyperspectral imagery (GSD 2.4 m) and R2 greater than 0.75 for spaceborne 

hyperspectral imagery (GSD 30 m). The observed model performances vary strongly dependant on 

the parametrisation and sensors used. Across all sensor models based on NDGI show high 

performances, whereas CRAD based models have the lowest R² and highest RMSE, which is 

different from the laboratory model performance, where CRAD is the most performant parameter. 
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In contrast to NDGI and the shape-based parameters that that are directly calculated based on the 

reflectance value, the Continuum-Removed Absorption Depth (CRAD) needs to calculate the 

spectral continuum first. For this procedure it is necessary to know the reflectance values at the 

absorption centre, as well as the left and right shoulder positions of the absorption feature. For 

data acquired by airborne/satellite remote sensing the reflectance of the right shoulder of the 

gypsum feature (at ~1780 nm) is noisy, because it is very close to the absorption feature caused by 

atmospheric water vapour that reduces amounts of incident and reflected light so that information 

over these regions becomes unavailable (Clark, 1999) or at least highly affected by noise (Murphy, 

2015). In spectroscopy the continuum removed reflectance is normally preferred because it isolates 

the spectral feature from background absorption caused by other components in the mixture (Clark 

& Roush, 1984). The gypsum estimation based on Hyperion data certainly is more strongly affected 

by the water vapour absorption. Compared to the other sensors the reflectance of Hyperion is 

already reduced at a ~20 nm shorter wavelength position (Figure 21). Accordingly, the resulting 

gypsum maps show the most noise in the Hyperion CRAD image. This effect is partly explained by 

the generally lower SNR of Hyperion sensor and also the longer atmospherically pathway of the 

spaceborne sensor. The proximity of the water vapour absorption at the 1.75 µm feature is most 

likely also the reason, why expert rule software systems like the Material Identification and 

Characterization Algorithm (MICA) (Kokaly et al., 2011) include the 2.2 µm feature to identify 

gypsum despite the conflicting clay absorption at this wavelength. Thus, while the CRAD is the 

preferable parameter for gypsum estimation in the laboratory, where atmospheric influence is 

minimal, only the left-hand side of the absorption feature should be used on the remote sensing 

level and parametrization such as the NDGI are recommended for the quantitative determination 

of gypsum content as they provide robust results. Another solution might be to reconstruct the 

absorption feature with information from the left half, e.g. by inverted Gaussian modelling 

(Sunshine, Pieters, & Pratt, 1990; Whiting, Li, & Ustin, 2004). 

Concordant to the model performance from the laboratory analyses the Slope and Half-Area 

parameters perform slightly less good compared to the band ratio based NDGI, except in the case 

of Hyperion, where both perform slightly better than the NDGI (R² of 0.75 for Slope). Instead of the 

two bands that are used for the calculation of the NDGI (left shoulder and absorption maximum), 

the Slope and Half-Area include the information from 9 bands of the Hyperion sensor between 1.69-

1.75 µm. The shape-based parameters, therefore, represent more averaged spectral information, 

which might be more suitable to estimate gypsum from lower SNR sensors like the Hyperion. 

Compared to the airborne measurements the Hyperion satellite sensor can register much less 



Chapter III - Assessment of the 1.75 µm Absorption Feature for Gypsum Estimation Using Laboratory, Air- 
and Spaceborne Hyperspectral Sensors 

80 
 

irradiance and has a greater atmospheric pathway. The scene used in this study was also taken 

under less favourable acquisition conditions, e.g. 11° lower sun elevation and a 13° off nadir 

observation angle, which can have significant influence on data quality (F. A. Kruse, Boardman, 

Huntington, Mason, & Quigley, 2002; Mielke, Muedi, et al., 2016). 

The prediction models based on the airborne HySpex data in general have the highest performances 

and the predictions vs. measured regression is much closer and parallel to the 1:1 line, and with 

high data quality, the NDGI parameter performs best. The models based on the spaceborne 

Hyperion and EnMAP data seem to overestimate gypsum content of low gypsum samples, while 

underestimating high gypsum samples. Although the salt pan surface is rather homogeneous on a 

small scale and changes are more gradual, it is possible that spatial effects contribute to the 

difference in model accuracy between air- and spaceborne data. The lower ground sampling 

distance of the spaceborne sensors (30 m) may include more mixed surfaces compared to the 

ground truth samples, which could contribute to the under- and overestimation of the gypsum 

content in the Hyperion and EnMAP gypsum models, whereas the airborne HySpex data matches 

the spatial ground sampling scheme more closely. The largest variations in model accuracy across 

sensors has to be attributed to different data quality and preprocessing. 

The Hyperion sensor is also heavily affected by vertical stripes, which appear in the image along the 

direction of the push-broom acquisition resulting in false gypsum estimations. These radiometric 

artefacts also called “streaks” are often pronounced in the SWIR channels, where the incident 

energy and SNR is low (Jupp, 2001), which causes even small relative errors in miscalibration to 

have strong effects on the radiometry (Smara, 2015). No striping artefacts were observed for the 

estimations derived from the EnMAP dataset. 

Another source of uncertainty may derive from the different data acquisition dates. Although only 

samples of surfaces in comparable physical conditions were used for validation, some changes to 

soil surface mineralogy between acquisition dates cannot be excluded. A very considerable 

difference between data acquisition is observed in the North Eastern part of the salt pan. In the 

Hyperion acquisition of 2014, no significant gypsum is mapped, whereas the HySpex airborne data 

of 2015 show 40-80% gypsum content. This area is located close to an ephemeral inflow channel to 

the salt pan (Milewski et al., 2017) that may have been active in the wet season between the data 

acquisition and caused a rapid and significant surface change by material transport. While this 

drastic change does not affect the model validation, as no ground truth sample from its vicinity is 

included in the validation data set, more subtle and less obvious changes may have occurred in the 
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southern pan margin, where most of the samples used for validation were collected. However, the 

pan margin is relative stable in the long term compared to the rest of the test site, as demonstrated 

in (Milewski et al., 2017). 

In this study soils with a broad range of gypsum content are evaluated (0~85%) for gypsum 

estimation. The gypsum estimation of samples with zero to lower gypsum content (0~15%) have 

the tendency of being overestimated already by the laboratory models, which also translates to the 

remote sensing scale, whereas the models in general are most accurate in the mid-range (30-60%) 

of gypsum content. The results indicate that the presented approach is most suited for highly 

gypsiferous soils, e.g. for the Monegros agricultural area in Northeast Spain, where grain farming 

plots have 20 to 90% gypsum in the upper soil horizon (C. Castañeda, Mendez, Herrero, & Betran, 

2010) and less accurate for lower gypsum soils. However, in only slightly gypsum affected soils 

gypsum tends to concentrate at the soil surface due to evaporation and precipitate processes and 

the relative high solubility of gypsum (Funakawa, Suzuki, Karbozova, Kosaki, & Ishida, 2000), thus 

exposing higher gypsum accumulations to optical remote sensing analysis.  
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5. Conclusion 

Soils and sediments in arid regions can be strongly affected by the accumulation of the evaporite 

mineral gypsum. With the potential of regular monitoring through future hyperspectral satellite 

missions, soil quality studies would benefit from robust approaches that can estimate the 

abundance of gypsum in top-soils and are transferable and repeatable. Hyperspectral remote 

sensing has already demonstrated the potential to determine quantitative estimates of several soil 

components, but it has never been tested for the assessment of gypsum. This paper demonstrates 

the potential of the 1.75 µm absorption feature to be used as a surrogate for gypsum 

determination. This feature is found to be the most suitable for soil applications as it avoids the 

confusion with clay mineral absorption features at 2.2 µm as well as the increasing noise at the 

higher SWIR bands. However, due to its proximity to atmospheric water vapour absorption the 

parametrisation of the 1.75 mm gypsum feature was found to be critical for the accuracy of the 

quantification. For this, the spectral parameters Normalized Differenced Gypsum Index (NDGI), 

Slope, and Half-Area and Continuum Removed Absorption Depth (CRAD) were tested. Gypsum 

prediction functions were built based on laboratory spectral reflectance spectra and mineralogical 

ground truth data acquired over the Omongwa salt pan, Namibia. Best laboratory models 

performances were achieved using the NDGI and CRAD parameters (R² = 0.84 for NDGI and 

R² = 0.86 for CRAD). Subsequently, the established gypsum prediction functions were applied to 

spaceborne Hyperion, airborne HySpex, and simulated spaceborne EnMAP imagery from the test 

site.  

Validation of the results with ground-truth data shows that the 1.75 µm spectral parameters are 

able to predict gypsum content with variable performances depending on sensors used and spectral 

parameters used. For most applications, the NDGI is recommended for use due to its robustness 

regarding minimalizing the influence of the neighbouring atmospheric absorption, while still being 

sensitive to gypsum variability. Also, the Slope and Half-Area parameters provide medium to good 

model performances and possibly are favourable for lower SNR data. The CRAD parameter is found 

to be ideal under laboratory conditions but is not suitable for remote sensing analysis due to the 

proximity of the continuum endpoint definition to the atmospheric water vapour absorption. 

In general, this paper shows a new application for gypsum distribution mapping and abundance 

determination with the use of the 1.75 µm absorption feature and a robust parametrisation by the 

NDGI, which is independent of scene specific endmember definitions and provides reasonable 

results from imagery of current and future hyperspectral sensors. 
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Abstract 

Salt pans are highly dynamic environments that are difficult to study by in-situ and conventional 

methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help 

to elucidate their environmental dynamics and provide important constraints on their 

sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne 

multitemporal multispectral optical data combined with spectral endmembers to document spatial 

distribution of surface crust types over time on the Omongwa Pan located in the Namibian Kalahari. 

For this purpose, 49 surface samples have been collected for spectral and mineralogical 

characterization during three field campaigns (2014-2016) reflecting different seasons and surface 

conditions of the salt pan. An approach was developed to allow the spatio-temporal analysis of the 

salt pan crust dynamic in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 

2014 and 2017, covering at least three major wet-dry cycles. The Sequential Maximum Angle 

Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat 

time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data 

allowed the differentiation of four endmembers associated with mineralogical mixtures of the 

crust’s composition in dry conditions and three endmembers associated with flooded or muddy pan 

conditions. The dry crust endmember spectra have been identified in relation to Visible, Near-

Infrared and Short-Wave Infrared (VNIR-SWIR) spectroscopy and X-ray diffraction (XRD) analyses of 

the collected surface samples. According these results the spectral endmembers are interpreted as 

efflorescent halite crust, mixed halite-gypsum crust, mixed calcite quartz sepiolite crust, and 

gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with 

the Spectral Angle Mapper (SAM) method and significant spatio-temporal dynamic of the major 

surface crust types were observed. Further, the surface crust dynamic was analysed in comparison 

with the pan’s moisture regime and other climatic parameters. The results show that the crust 

dynamic is mainly driven by flooding events in the wet season, but it is also influenced by 

temperature and aeolian activity in the dry season. The approach utilized in this study combines 

the advantages of multitemporal satellite data for temporal event characterization with advantages 

from hyperspectral methods for the image and ground data analyses that allow improved 

mineralogical differentiation and characterization.  
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1. Introduction 

Salt pan evaporite surfaces are common features in arid regions where closed drainage basins and 

high evaporation rates favour the development of crusted surfaces mainly composed of evaporite 

minerals (James K. Crowley & Hook, 1996). Although globally these landforms occupy a limited 

proportion of the dryland area, they can appear numerous in certain environmental settings, e.g. 

along palaeodrainage lines or in interdune spaces. In parts of Namibia and Southern Africa, salt 

pans attain densities of up to 1.14 pans/km2 (Goudie & Thomas, 1985) and regionally occupy 20% 

of the surface area (Goudie & Wells, 1995). The surface crust of such salt pans are highly dynamic 

sedimentary features affected by seasonal-to interannual changes in rainfall, temperature, and 

wind ablation (Smoot & Lowenstein, 1991). 

Such salt pan environments have been recognized as a significant sources of mineral dust in arid 

regions (Prospero et al., 2002; Washington et al., 2003). The importance of their dust emissions is 

illustrated in studies from the western United States (Frie, Dingle, Ying, & Bahreini, 2017; Reynolds 

et al., 2007), Australia (Baddock, Bullard, & Bryant, 2009; Chappell, Strong, McTainsh, & Leys, 2007), 

central Asia (Ge, Abuduwaili, Ma, Wu, & Liu, 2016; Singer, Zobeck, Poberezsky, & Argaman, 2003), 

as well as north-central and southern Africa (Robert G Bryant, 2003; Robert G. Bryant, Bigg, 

Mahowald, Eckardt, & Ross, 2007; Frank D. Eckardt, Bryant, McCulloch, Spiro, & Wood, 2008; Todd 

et al., 2007; Vickery et al., 2013). The compositions of dust from these sources can have effects on 

the climate (Pratt et al., 2010), the degradation of groundwater (Wood & Sanford, 1995), soil and 

ocean fertilization (A. Bhattachan, D’Odorico, & Okin, 2015), as well as human (Plumlee & Ziegler, 

2003) and ecosystem health (Field et al., 2010). Dust type and emissivity are related to the 

mineralogical and physical crust composition (Buck et al., 2011; Mees & Singer, 2006; Reynolds et 

al., 2007). The advances in understanding of these dust sources and for modelling dust emissions 

depend on the characterisation of the salt pan surface over time (Katra & Lancaster, 2008). 

Compared to the surrounding Kalahari sands salt pans also contain a significant amount of carbon 

and can function as a sink or source, with its behaviour mainly coupled the flooding regime (A. D. 

Thomas et al. 2014). The pan sediments also archive to past environmental changes and  can be 

used to derive palaeoenvironmental conditions (Steffi Genderjahn et al., 2017; M. W. Telfer, 

Thomas, Parker, Walkington, & Finch, 2009), but insights on the current surface dynamic and its 

variability are necessary to achieve this (Robert G. Bryant, 1996). Some salt pans e.g. in the United 

States or the South American Puna plateau are also renowned for economically relevant mineral 
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resources, like boron or lithium rich brines and evaporite minerals (Godfrey et al., 2013; Reath & 

Ramsey, 2013). 

However, the ability to study salt pan surfaces with traditional field methods is limited by their large 

aerial extent and difficult access in many parts of the world, as well as by episodic surface flooding 

(Robert Gavin Bryant, 1993; Ghrefat & Goodell, 2011). Remote sensing has been used to overcome 

these problems with its potential to cover large areas and to provide multitemporal observations. 

A number of studies have applied different remote sensing techniques to study playas and have 

demonstrated the usefulness of optical sensors in the Visible Near-Infrared and Short-Wave 

Infrared (VNIR-SWIR) spectral region (400-2500 nm) for analysing the pan surface properties. E.g. 

(J.K. Crowley, 1993) showed in particular the potential value of high spectral resolution imagery as 

a tool for mapping playa evaporates in Death Valley using airborne hyperspectral AVIRIS data and 

(Kodikara, 2009) demonstrated the possibility of characterizing evaporate mineralogy and 

associated sediments in a salt pans using space-borne Hyperion data. Whereas hyperspectral 

remote sensing allows for an improved discrimination of the crusts mineralogy, which is 

recommended for complex evaporite mineral assemblages (Hubbard & Crowley, 2005), it currently 

lacks the temporal resolution needed for the analyses and monitoring of the highly dynamic 

processes of salt pan environments. Some studies demonstrated that it is possible to derive a 

number of useful mineralogical crust types (e.g. gypsum, carbonate, quartz and halite) for the 

classification of playa surface even with the broadband multispectral data, e.g. from Landsat 7 ETM 

(Epema, 1992, p. 2014; J. Li et al., 2014) or Landsat 8 OLI sensor (Flahaut et al., 2017). Nevertheless, 

a direct mineralogical characterization is not possible. A comparison study showed that Landsat 

data are able to identify general mineralogical land cover classes and produce similar mapping 

results compared to high spectral resolution spaceborne Hyperion and airborne AVIRIS data when 

linked to ground high-spectral resolution data. They point out that much of the additional 

information gained by hyperspectral data mostly account for variations in texture and moisture 

content opposed to mineral compositional variations (Ghrefat & Goodell, 2011). The main 

advantages of multispectral data for salt pan monitoring is that they are collected at a much higher 

temporal resolution compared to hyperspectral data and can cover larger areas. Newer systems 

like the Sentinel-2 satellites also provide higher spatial resolution of 10 m or less. This repeated 

coverage of such systems enables seasonal or even sub-monthly update of the surface conditions, 

which is especially useful for understanding the evaporite system dynamic and its link to climate 

drivers. 
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The scope of this study is to advance on the remote sensing analyses and process understanding of 

a highly dynamic salt pan in Namibia, based on the combination of multispectral remote sensing 

with ground-truth spectroscopic and mineralogical data, associated with the use of methods 

developed for hyperspectral remote sensing. In particular, we aim at 1) investigating the potential 

of a dense time-series of multispectral Landsat 8 acquisitions to differentiate surface crust types 

and map their development over multiple seasons, supported by VNIR-SWIR spectroscopy and XRD 

analysis for mineralogical interpretation; 2) the assessment of climate controls on crust formation. 

For this purpose, the influence of surface flooding, air temperature, as well as wind speed on the 

crust development is discussed. To the authors’ knowledge this is the first study that utilised dense 

remote sensing time-series for the mineralogical interpretation of salt pan surface crusts, allowing 

for the analyses of the temporal evolution of surface spatial changes in a highly dynamic 

environment responding to local climatic conditions. 

2. Study Area 

2.1. Regional setting 

The object of investigation in this study is the Omongwa salt pan, located in eastern Namibia near 

Aminuis, ~260 km south-east of Windhoek (Figure 28). The object of investigation in this study is 

the Omongwa salt pan, located in the south western Kalahari, approximately 260 km south-east of 

Windhoek, Namibia (Figure 1). The Omongwa salt pan has about an extent of 3 by 5 km, which 

makes it the largest in a group of regional pans that developed in calcretes of a palaeodrainage 

system. At the test site seasonal to ephemeral inundation events and subsequent drying and 

buildup of evaporite-rich sediments have been observed (Mees, 1999; Mees & Van Ranst, 2011). 
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Figure 28. Omongwa pan test site and locations of surface samples (Basemap source: DigitalGlobe 

RGB image, September 2013, provided by Google Inc. (Mountain View, CA, USA)). 

The mean annual rainfall of this area is 200–250 mm recorded for the period of 1982–2002 with 

high monthly, seasonal, and interannual variations and a mean annual temperature of about 21°C. 

The potential evapotranspiration (ETP) is of above 3000 mm for the region a, with a maximum in 

July and August, where the maximum temperature can reach 48 °C. With a precipitation to potential 

evaporation ratio (P/ETP) of about 0.08 it is classified as arid close to hyper-arid zone (Atlas of 

Namibia Project 2002) and classifies as BWh climate after the Köppen scheme (Köppen and Geiger 

1930). The precipitation is highly seasonal with over 80% of the average yearly rainfall in the wet 

season from November to April (Figure 29). The surface temperature can rise above 40° C in the 

summer months and falls below the freezing point during the winter nights. The interannual 

precipitation variation is very high, resulting in occasional draught years with down to ~40% of the 

average amount (Atlas of Namibia Project 2002).  
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Figure 29. 30-year average temperatures and precipitation in the Aminuis region based on global 

NOAA Environmental Modeling System (NEMS) weather model with ~30 km resolution. 

The topography of the salt pan is very flat with a mean elevation of ~1200 m above sea level. The 

surrounding Kalahari landscape is characterized by an undulating linear dune system typically in a 

NW-SE direction (as shaped by the prevailing winds) with elevation magnitudes of ~1-3 m between 

dune crest and interdune valley. South of the pan a lunette dune rises up to ~50 m above the pan 

floor level (Milewski, Chabrillat, and Behling 2017). A borehole transect of F. Mees (Mees 1999), 

recent sedimentary analysis by Schuller et al. (2018), as well as a previous remote sensing study by 

Milewski et al. (2017) provide detailed sedimentological and mineralogical description of the pan 

surface and sub-surface sediments. The upper part of the pan deposits are dominated by the sandy 

material that transitions to silt dominated grains in the first 5-10 cm (Schuller et al. 2018). This 

sedimentary unit contains a mixture dominated by the evaporite minerals halite, gypsum and 

calcite with minor content of clay and mica minerals sepiolite, muscovite, and smectite (Mees 1999; 

Milewski, Chabrillat, and Behling 2017). The lower units have a complex sedimentary structure that 

consist of a quartz dominated silicate matrix with distributed evaporite minerals that are highly 

concentrated along desiccation cracks and occur together with hydromorphic features. In the 

central pan area the calcite rich bedrock is met in a depth of 3 m below the pan surface (Mees 

1999). The modern surface is mostly dry throughout the year except when surface flooding by 

seasonal rainfall turns the pan or parts of it into a shallow lake. Surface runoff from the surrounding 

savannah landscape is very minor due to restriction by lateral longitudinal dunes and a lunette dune 

at the southern pan margin (Milewski, Chabrillat, and Behling 2017; Lancaster 1986). At some 

locations small inflows channels locally impact the pan’s surface hydrology and fluvial sediment 

influx. Most significant is an inflow channel located at the north-eastern pan margin that forms a 
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small drainage line that was dammed up into a small man-made water retention basin, from which 

the runoff occasionally drains into the pan and flows along the northern pan margin.  Due to the 

low permeability of the calcareous mudstone, the pan deposits are likely to sustain a locally perched 

groundwater table that fluctuate between 25 cm and 150 cm below the pan surface (Mees 1999). 

2.2 Seasonal surface dynamic 

A general model for the process dynamic of salt pans and its effect on their surface composition is 

provided by the saline pan cycle (Lowenstein & Hardie, 1985). It describes that the episodic 

formation and dissolution of surface crust evaporites follows a cycle of flooding, evaporation, and 

desiccation of the playa surface (Chivas, 2007; Lowenstein & Hardie, 1985). These pan cycles are 

mainly driven by the surface water balance that effect evaporite sediment deposition and 

dissolution (Bowen et al., 2017; Warren, 2016), but are also influenced by air temperature, humidity 

and wind regime (Lowenstein & Hardie, 1985). During the flooding stage of the saline pan cycle a 

shallow, brackish lake is formed. At the Omongwa pan shallow saline ponds cover parts of the 

surface area episodically in the wet season from December to May (Figure 30a). 

 

Figure 30. Field photos of the Omongwa pan surface in different stages of the saline pan cycle: 

(a) during a flooding event; (b) and (c) first thin crust formation shortly after evaporation of surface 

water; (d) and (e) thick efflorescent salt crust of the desiccation stage; (f) deflated surface of the 

late dry season. 

In playa environments these surface waters commonly originate from meteoric water that falls 

directly onto the surface, but can also result from perched shallow saline groundwater. The 

undersaturated surface water dissolves the evaporites of the surface crust and increases the salinity 
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of the brine (Bowen et al., 2017). With decreasing rainfall the surface brine evaporates and a thin 

salt crust begins to form atop of moist muddy sediments (Figure 30b and c). Under persistent dry 

conditions the desiccation stage of the pan cycle is reached and the crust thickens through capillary 

evaporation of the shallow saline groundwater (Figure 30d and e). Morphological features such as 

salt blisters and irregular to polygonal pressure ridges are formed by the continuous halite 

crystallization and diurnal expansion / contraction cycles of the surface crust (Melvin, 1991). In the 

late dry season between August and October a halite deflated surface is observed (Figure 30f). In 

this period of prolonged aridity the groundwater table of the pan continues to fall and a concurrent 

increase in aeolian activity may remove the upper surface layers by deflating the efflorescent halite 

crust. Although this stage is characterised by a net surface deflation (Chivas, 2007), windblown 

material can also be introduced from the pan surroundings and adhered by hygroscopic films of the 

pan surface (Smoot & Castens-Seidell, 1994). 

A previous remote sensing-based study on the Omongwa salt pan could identify and spatially map 

major mineralogical crust constituents (halite, gypsum, sepiolite and calcite) using EO-1 Hyperion 

hyperspectral imagery. Also, multitemporal remote sensing analyses showed that the Omongwa 

pan surface crusts are spatially heterogeneous and highly dynamic during the last 30 years 

(Milewski, Chabrillat, and Behling 2017). However, only the magnitude of change was characterized 

and no specific characterization on the type or direction of change was derived. 

3. Material and Methods 

3.1. Field and Laboratory Analysis 

Three field campaigns for surface characterisation and sampling took place in October 2014, June 

2015 and March 2016, which respectively represent the end and beginning of the dry season, as 

well as the end of the wet season. A total of 49 top surface crust (<2 cm) samples were collected in 

relative homogeneous areas. These samples were composed of 5 to 10 sub-samples collected at 

random locations within a 5 m wide square around the centre point for each site of interest. 

Mineralogical characterization was carried out using a PANalytical Empyrean powder X-ray 

diffractometer (XRD) with a theta-theta-goniometer, Cu-Kα radiation (λ = 0.15418 nm), automatic 

divergent and anti-scatter slits and a PIXcel3D detector. Diffraction data were recorded from 4.5° 

to 85° 2ϴ with a step-size of 0.0131 and a step time of 60 s. The generator settings were 40 kV and 

40 mA. All samples were crushed and powdered to a grain size of <62 micron. These samples were 

used for the qualitative and quantitative mineral analysis. A few samples were also powdered to 
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<10 micron, but no strong differences in intensities were observed. The qualitative phase 

composition was determined using the software DIFFRAC.EVA (Bruker), and the quantitative 

mineralogical composition of the samples (in weight %) was calculated using a Rietveld based 

method implemented in the program AutoQuan (GE SEIFERT; Taut, Kleeberg, and Bergmann 1998). 

Spectral properties of the field samples were measured in the laboratory under controlled 

environmental and illumination conditions simulating spaceborne observations (sensor nadir 

viewing, light source azimuth 35°) using an ASD (Analytical Spectral Devices) FieldSpec 3 

spectroradiometer, covering the VNIR-SWIR spectral range with 3 to 10 nm spectral resolution and 

2151 wavelengths resampled to 1 nm (ASD Inc., 2015). A spectral library associated with the optical 

signatures of the 49 soil samples were created using ENVI 5.3 (Harris Geospatial Solutions, 2015) 

after correcting the detector offset and averaging the 5 measurements per target. 

3.2. Remote Sensing Analysis 

For this study all available Landsat 8 Operational Land Imager (OLI) images of the study area at 

World Reference System-2 path/row 176/76 were acquired through the Google Earth Engine public 

data catalogue (Gorelick et al., 2017) that host the extensive USGS Tier 1 and 2 Landsat Collection. 

The OLI sensor has seven reflective bands (Coastal Blue: 443 nm, Blue: 482 nm, Green: 562 nm, 

Red: 655 nm, NIR: 865 nm, SWIR I: 1609 nm, SWIR II: 2201 nm) at a spatial resolution of 30 m (USGS, 

2016). The time-series covers ~4.5 years (04/2013-10/2017) with a temporal resolution of 16 days. 

From the total 94 scenes 17 had to be excluded due to cloud cover over the salt pan. The cloud 

screening was manually performed as the automatic cloud detection CFMask resulted in many false 

positives, likely caused by detection issues over bright targets such as salt lakes (USGS, 2017). The 

level-2 data are pre-processed to surface reflectance (SR) with version 4.2 of the Landsat 8 Surface 

Reflectance Code (USGS, 2017) to minimize atmospheric signals for analysis of surface reflectance 

and spatially constraint to focus on the salt pan area. 

Two established spectral analysis techniques are applied for the identification and mapping of the 

crust endmembers in the Landsat time-series of the Omongwa pan. First, spectral endmembers of 

the surface crust types are identified through the Sequential Maximum Angle Convex Cone (SMACC) 

algorithm (Gruninger, Ratkowski, & Hoke, 2004). Then the defined set of crust endmembers is used 

to derive the distribution of each crust type from the Landsat time-series by applying Spectral Angle 

Mapper (SAM) classification (F. Kruse et al., 1993). Both techniques have been used in a wide range 

of mineralogical and soil application(Shrestha et al., 2005; Zazi, Boutaleb, & Guettouche, 2017; Xiya 
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Zhang & Li, 2014), including mineralogical mapping of salt pan environments (Katra & Lancaster, 

2008). 

3.2.1 Salt Pan Crust Type Endmember Definition 

The crust endmembers are identified by applying the SMACC method on the Landsat time-series. 

The SMACC algorithm uses a convex cone model (also known as Residual Minimization) with these 

constraints to identify image endmember spectra. Extreme points are used to determine a convex 

cone, which defines the first endmember. A constrained oblique projection is then applied to the 

existing cone to derive the next endmember. The cone is increased to include the new endmember. 

The process is repeated until a projection derives an endmember that already exists within the 

convex cone or lies in a specified tolerance to an already found endmember (Gruninger et al., 2004). 

The SMACC endmember extraction method implemented in ENVI 5.4 (Harris Geospatial Solutions, 

2014) is applied on a generated pseudo image that contains the spectral information of all pixels of 

the pan surface, which allows the algorithm to derive the endmembers that are most descriptive 

for the spectral variability of the entire image time-series. The method is run with the constraint 

that the sum of the fraction of each found endmember does not exceed unity, so that a pixel cannot 

be more than 100% filled. The default coalesce value of a spectral angle of 0.1 is used to limit the 

extraction of very similar endmembers. The derived set of endmembers is then compared to the 

spectral measurements of the collected field samples to allow a thematic and mineralogical 

interpretation. For this comparison the laboratory ASD spectra measurements of the field samples 

are resampled to match the spectral characteristics of the multispectral OLI sensor and the 

reference spectra that most closely match the crust types are identified. 

3.2.2 Salt Pan Crust Type Mapping and Validation 

In the next step, set of crust endmembers established by the SMACC method is used to derive the 

distribution of each crust type from the Landsat time-series by applying Spectral Angle Mapper 

(SAM) classification, which was implemented to run in the Google Earth Engine (Gorelick et al., 

2017). The implementation of the SAM function to the Google Earth Engine allows the extension of 

the time-series to new acquisitions as soon as they enter the collection without the need for local 

download or processing of the data, which is useful for fast and regular monitoring purposes. SAM 

compares the angle between a reference spectrum vector (the identified crust types) and each pixel 

vector in n-dimensional space, where smaller angles represent closer matches to the reference 

spectrum and pixels further away than the specified maximum angle threshold in radians are not 

classified (F. Kruse et al., 1993). SAM is an solid and rapid method for mapping the spectral similarity 
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of image spectra to reference spectra with a number of advantages over other commonly used 

spectral-based classifiers: (1) it is not affected by linear offsets, which makes it robust against 

differences in solar illumination and observation geometry (Tavin et al., 2008), because the angle 

between the reference and test spectra is the same regardless of their length (F. Kruse et al., 1993) 

(2) it represses the influence of shading effects to accentuate the target reflectance characteristics 

(Girouard, Bannari, El Harti, & Desrochers, 2004) and (3) other than spectral unmixing based 

methods, it does not require all endmembers in the scene to be identified (Jollineau & Howarth, 

2008). The threshold angle for SAM classification is set to the default of 0.1 rad and any pixel that 

does not match any of the reference vectors within this angle is designated unclassified. 

A validation of the extracted endmembers and spatial distribution mapped by the SAM is performed 

by comparing the result of one specific Landsat test scene to a previously published independent 

mineralogical mapping of the Omongwa pan that is based on spectral mixture analysis of a 

hyperspectral Hyperion dataset (Milewski et al., 2017) acquired on the same day as the Landsat test 

scene. Basic accuracy measures such as producer’s and user’s accuracy as well as overall accuracy 

and the kappa coefficient (Congalton & Green, 2008) are computed to assess the Landsat 

classification with respect to the independent reference. 

3.2.3 Dynamic of Omongwa Pan Surface 

The analysis of the climate controls on crust formation is performed by estimating the variations in 

multitemporal crust type mapping, and looking at the influence of surface wetness related to the 

flooding and desiccation cycles, and the influence of air temperature as well as wind speed on the 

crust development. For this purpose, the relative areal coverage of each crust type is calculated for 

each Landsat acquisition, so that a resulting areal abundance value between 0 and 1 is obtained for 

each crust type and all crust type together with the unclassified (wet/muddy) area sum up to 1. 

These relative areal coverages of each crust type are then compared with timely available data on 

derived surface wetness and climatic variables. 

The surface wetness is directly derived from each image of the Landsat time-series using Xu’s 

Normalized Difference Water Index (NDWI) (Xu, 2006), a band ratio using the green and first short-

wave infrared (SWIR I) band. Xu’s version of the NDWI (also termed Modified NDWI) has been 

successfully used to detect flooded areas from remotely sensed data and mostly outperformed 

water indices based on different band combinations for land/water differentiation (S. K. Jones et 

al., 2017; Kelly & Gontz, 2018; W. Li et al., 2013). The NDWI band ratio is dimensionless and 

mathematically varies from -1 to 1. In general, water surfaces show larger positive values in NDWI, 
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because they absorb more radiation in the SWIR than the visible range. Values close to 1 are 

observed over clear water areas (when all radiation of the Short-Wave Infrared is absorbed). 

Whereas smaller negative values are expected over soils or vegetated areas, because these surface 

types reflect more in the SWIR than the Green wavelength (Yang, Zhao, Qin, Zhao, & Liang, 2017). 

However, in a salt pan environment, where partial or shallow flooding frequently occurs the 

situation is more complex. Therefore, the crust type abundancy is directly compared to the NDWI 

values as an indicator for surface wetness and only classified as flooded pixel, when a very high 

threshold (NDWI > 0.6) is reached. 

For the evaluation of wind and temperature influences on the pan crust dynamic, the needed 

climatic parameters are derived from the European Centre for Medium-Range Weather Forecasts' 

(ECMWF) ERA5 climate model. Modelled climate parameters had to be used, due to a lack of 

observed meteorological parameters in the vicinity of the study area. The ERA5 dataset is the most 

recent generation of ECMWF atmospheric reanalyses of the global climate. The model provides 

hourly estimates of a large number of atmospheric, land and oceanic climate variables with a 

horizontal resolution of about 31 km at the latitude of the study area. The first segment of the 

dataset from 2010 to present is already available free to public users, and the whole dataset, which 

will cover the period from 1979 to present is gradually released over the next years (Hersbach & 

Dee, 2016). From the dataset the u and v wind components in 10m height as well as temperature 

in 2m are extracted from the climate model. From the hourly u and v wind components the hourly 

wind speed is calculated. Hourly wind speed and temperature are then aggregated to monthly 

means. 

4. Results 

4.1. Crust-Type Endmember Definition 

Seven endmembers were extracted by the Sequential Maximum Angle Convex Cone (SMACC) 

method based on the spectral variability of the Landsat time-series with a remaining maximum 

relative error of 0.048. Three of the derived endmembers (blue coloured spectra on Figure 31) show 

reflectances of < 5% in the SWIR band and are related to wet surfaces associated with liquid water, 

mix water-sediments or very muddy pan sediments. 
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Figure 31. Spectra of dry crust and wet endmembers derived from SMACC analysis. 

The wet endmembers were excluded from further analysis as they do not represent a developed 

surface crust that needs dry conditions. The remaining endmembers (A-D) represent the major 

surface crust types of the Omongwa salt pan during the time-series. The spectra are mineralogically 

interpreted through a comparison with the laboratory measured spectra resampled to Landsat OLI 

bandpass and the XRD results of the collected field samples, as shown in Figure 32. The spectrum 

of class A shows a general high reflectance close to 80% with increased absorption in the visible 

spectral range. This bright crust endmember is interpreted as a very dry efflorescent salt crust 

containing mostly halite and other chlorides. These minerals show little to no absorption features 

in the optical domain except for absorbed water features (J.K. Crowley, 1993; Drake, 1995), which 

is hidden by atmospheric water vapour absorption and outside of the Landsat band designation. 

Similar spectral shapes of halite crusts were reported for playa crust in Tunisia (Robert G. Bryant, 

1996), Nevada USA (J.K. Crowley, 1993). Crust endmember B is of similar high reflectance as class 

A in the visible range but drops significantly in the NIR and SWIR bands. The comparison to ASD 

laboratory spectra shows sulphate related absorption at 1500 nm, 1750 nm and 2200 nm (Figure 

32b). 
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Figure 32. (a) Spectra of crust endmembers derived from SMACC analysis; (b) Endmember B: mixed 

halite-gypsum crust; (c) Endmember C: mixed calcite-quartz-sepiolite crust; (d) Endmember D: 

gypsum crust. Plots (b-c) additionally show the laboratory measured spectrum of the field sample 

with most similar reflectance to the endmember, as well as the mineralogical composition of the 

sample. 

The absorption around 1500 nm is very smooth and does not have the distinct triple absorption of 

more concentrated gypsum, which is caused by the high halite content (90%) in the mixture in 

relation to gypsum (>10%) (Fares M. Howari, Goodell, & Miyamoto, 2002). Additionally, the 

laboratory spectrum shows an absorption feature at 2100 nm, which is likely caused by the 

presence of thenardite (Na2SO4). Thenardite can be formed in room temperature from gypsum in 

the presents of NaCl-saturated solution (Garrett, 2001). The endmember B spectrum resembles the 

shape of mixed halite, gypsum crust described by (Chapman et al., 1989) for a playa in the Atacama 

desert, and thus is interpreted as mixed halite-gypsum crust. The reflectance curve of crust 

endmember C starts much lower in the visible bands with about 20% reflectance at 500 nm and 

increases to about 50% in the SWIR I and drops in the SWIR II band. The ASD reference spectrum 

that best matched the Landsat reflectance shows a distinct absorption feature at ~2300 nm (Figure 

32c), which is diagnostic for carbonates as well as the sepiolite clay mineral (Hunt et al., 1971). The 

XRD result confirms the presence of sepiolite with 15% in the calcite dominated sediment (55% 

calcite content), as well as the large quartz component (30%). This mixed crust type was sampled 

at the border of the salt pan and represents the allochthone influence of the Kalahari sands that 

are mostly composed of quartz, as well as the calcite host rock of the pan that outcrops at the pan 

border and which are known to have sepiolite coatings (Mees & Van Ranst, 2011). Crust 
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endmember D overall has the lowest reflectance with ~20% in the visible and SWIR II bands and a 

peak of 35% in the SWIR II (Figure 32d). The best matched reference ASD spectrum shows the 

pronounced absorption triplet around 1500 nm, as well as further weaker features at 1200 nm, 

1750 nm and 2200 nm characteristic for gypsum (Fares M. Howari et al., 2002; Khayamim et al., 

2015) that are all related to the bending and stretching overtones of the water in the gypsum crystal 

structure (J.K. Crowley, 1993). The matched field sample has the highest gypsum content (85%) of 

all collected samples alongside minor halite and quartz components (<10%), and this endmember 

is thus interpreted as gypsum crust. 

4.2. Crust-Type Mapping and Validation 

The Landsat SAM classification is validated with a mineralogical mapping result based on a 

hyperspectral Hyperion image that was acquired on the same day as the Landsat 8 OLI scene (7th 

of September 2014). For this purpose the quantitative spectral unmixing result of the Omongwa 

pan published in Milewski et al. (2017) (Figure 33b) was discretized to match the SAM crust type 

classes (Figure 33c). Owing to the lower spectral resolution and spectral range of Landsat OLI, the 

Hyperion calcite/sepiolite crust type cannot be differentiated from the featureless disturbed crust 

endmember described in Milewski et al. (2017). Consequently, these classes are merged for 

comparison with Landsat OLI. The mixed halite-gypsum crust is defined where at least 40% of a 

pixel was unmixed to halite and gypsum in the Hyperion based result. All other pixels were classified 

according to their dominating mineralogical fraction. In general, the Landsat based SAM 

classification of that date (Figure 33d) agrees very well with the independent mapping based on 

hyperspectral data (Figure 33c). The overall classification accuracy is 90% with the corresponding 

overall Kappa coefficient of 0.8 (Tab. 1), which demonstrates the very high, substantial agreement 

of the classification to the reference according to Landis and Koch (1977). The spatial distribution 

of the classification differences, where the Landsat OLI SAM does not match the independent 

mapping based on hyperspectral data, are shown in Figure 33e. Most mismatched pixels are 

registered at the class borders, which may be due to the fact that the Hyperion reference scene 

was geometrically transformed during the processing (Milewski et al., 2017). Respectively the 

largest errors of omission (28%) as well as commission (27%) are attributed to the mixed halite-

gypsum class, which has the largest boundary in relation to its total mapped area. 
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Figure 33. Comparison of Landsat 8 SAM result to classified Hyperion based unmixing of Milewski 

et al. (2017): a) Landsat RGB image from 09/07/2014; b) Hyperion based mineralogical unmixing of  

Milewski et al. (2017); c) Reclassified (discretised) mapping based on the Hyperion unmixing; 

d) Landsat OLI SAM result; e) Map of differences between Landsat OLI and Hyperion based 

classification. 
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Table 5 Comparison of crust type mapping between Landsat SAM classes and Hyperion based 

spectral unmixing of Milewski et al 2017: Producer’s accuracy (PA), User's accuracy (UA), Overall 

Accuracy and Kappa coefficient  

SAM crust type   

Efflorescent halite crust PA (%) 96% 

UA (%) 87% 

Gypsum crust PA (%) 74% 

UA (%) 90% 

Mixed halite and gypsum crust PA (%) 72% 

UA (%) 73% 

Quartz, calcite, sepiolite mixed crust PA (%) 86% 

UA (%) 93% 

Overall Accuracy 90% 

Kappa 0.8 

 

4.3. Dynamic of Omongwa Pan Surface 

Figure 34 shows the multitemporal analyses of the crust type mapping related to surface wetness 

computed from the cloud-free Landsat time-series from April 2013 to October 2017. In that period, 

at least three major flooding events are observed, with simultaneously significant seasonal as well 

as intra-annually variations in the surface crust mineralogy of the salt pan at dry conditions. The 

most common and longest exposed surface crust type identified is the mixed halite-gypsum crust 

(in orange in Figure 34). This crust type reaches its maximum areal extent (up to 60-80%) in the 

more moist periods of the year and is the first crust composition that develops after flooding events, 

which are indicated by increased NDWI. These high NDWI events not only represent surface 

flooding, but also relative wet pan surface conditions that are spectrally very different compared 

to the dry crust endmembers. With the exception of the relatively dry year of 2014, each season 

between 2015-2017 contains at least one wet event with up to 60-80% of the surface area flooded 

in the period between the end of October and the middle of May. The areas that remain dry during 

the flooding events are mostly mapped as gypsum crust (green in Figure 34) with an aerial coverage 

that seems to be more or less stable, and increases toward the end of the dry season. With receding 

surface flooding and in periods between rainfall events the mixed halite-gypsum crust (re-)develops 

fast in only two to four weeks. 
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Figure 34. Areal crust type relative abundances (stacked) and surface wetness (NDWI) of the 

Omongwa pan based on Landsat time-series (2013 – 2017); triangle marker indicate cloud covered 

scenes. 

The analyses show that further into the dry season, between July and September, after several 

months of dry conditions, the bright efflorescent halite crust appears (red in in Figure 34) and 

covers 40 to 70% of the pan surface area at its peak. In the late dry season between August and 

October the surface area becomes increasingly classified as mixed calcite-quartz-sepiolite crust 

(brown Figure 34) while the bright efflorescent halite crust disappears. The mixed calcite-quartz-

sepiolite crust has the highest variability between the years with the smallest extent of 40% in 2014 

and up to 90% in 2017. 

5. Discussion 

The results show the salt pan surface status following flooding and desiccation events in terms of 

the seasonal and inter-annual evolution of surface evaporites and surface wetness. The 

methodology developed allows to interpret the mineralogical endmembers based on Landsat data 

combined with spectroscopy and mineralogical laboratory analyses, which can thus be used for 

spatio-temporal analyses of the surface processes of the Omongwa salt pan. The methodology is 

validated with independent observations from field knowledge and hyperspectral remote sensing 

that confirms the accuracy of the spectral Landsat identification and the spatial mapping. 

5.1 Inter-annual surface flooding-desiccation cycle characterization 

For a more detailed yearly analysis of processes observed at the surface of the pan, the exemplary 

season of 2017 which is characterized by a unique major flooding event in March shown in Figure 

35 including the spatial development of surface crust types in time slices together with the surface 

wetness and the true-colour images of the pan area. Time slices are selected for their 
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representativity 3 times during the wet season, and 3 times during the dry season. The first time 

slice (7th of March) shows the peak of the flooded pan stage, where only the gypsum crust (green) 

remains at the pan margin and the central parts are completely flooded (Figure 35a). In the second 

time slice from the 10th of May the mixed gypsum-halite crust (orange) has developed at the least 

moist parts at the pan borders, but the most central parts are still in a more wet state. 

 

Figure 35. Surface dynamic of the Omongwa pan in 2017. Left: Landsat True colour (RGB), surface 

wetness (NDWI) and crust type mapping (SAM) of (a) 7 March; (b) 10 May; (c) 29 July. 

Figure 35c and Figure 36a show the successive transition of the mixed gypsum-halite (orange) to 

the bright efflorescent halite crust (red) endmember between the end of July and mid-August. All 

of the pan surface is dry by now as the efflorescent halite crust gradually develops from the pan 

margin to the more central area. Only ~4weeks later in the time slice of mid-September (Figure 

36b) almost all of the pan area is mapped as the mixed calcite-quartz-sepiolite crust endmember 

(brown), the evaporite crust endmembers have disappeared and the pan surface appears less 

bright. In the last time slice (Figure 36c) from the beginning of October the pan is flooded again 

with only some marginal areas of gypsum crust remain and the next flooding/desiccation cycle 

begins. 
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Figure 36. Surface dynamic of the Omongwa pan in 2017. Left: Landsat True colour (RGB), surface 

wetness (NDWI) and crust type mapping (SAM) of (a) 14 August; (b) 15 September; (c) 1 October. 

5.2 Influence of climatic variables on multiannual crust type dynamic 

Previous studies on the surface dynamic of evaporite environments suggests that interaction of 

water and wind are major drivers for the varying surface properties such as crust mineralogy and 

morphology (Bowen et al., 2017; Millington et al., 1987; Shaw & Bryant, 2011). For the Omongwa 

salt pan, we evaluated further the seasonal influence of surface flooding, wind speed and 

temperature on the dynamic of the surface crust over multiple years (Figure 37). 
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Figure 37. Pan surface dynamic and climatic parameters: (a) flooding dynamic based on surface 

wetness (NDWI > 0.6); (b) temperature [°C] at 2m and (dashed line) and wind speed [m/s] at 10m 

(solid line). Climate variables are derived from ERA5 and plotted over the multitemporal crust type 

areal coverage mapping (scaling is the same as in the previous figures). 

In the winter months (December to March) the pan surface dynamic is driven by the occurring 

rainfall events that dissolve most of the pan’s surface crust that either by surface flooding or more 

temporary ponding associated with very muddy sediments. In the spring/summer month (May to 

July) as evaporation and mineral crystallisation continue, and less or no rainfall event occur, the 

muddy pan surface dries out and the desiccation stage is reached. Several extensive flooding events 

are observed in 2015-2017. In the season of 2014 only minor flooding events occur (Figure 37a). 

However, the development of the crust from mainly mixed calcite-quartz-sepiolite surface to the 

more evaporite rich halite-gypsum crust is also observed in this year. This indicates that the build-

up of mixed halite-gypsum crust after the wet season does not rely on an extensive flooding event 

to redistribute the salt minerals, but results from the combined effect of evaporation and capillary 

rise to develop these crusts from subsurface brines. The development of the halite-gypsum crust 

coincides with the period of increased solar radiation indicated by the higher ambient temperature 

(Figure 37b) that also increases sediment and brine temperature, which leads to higher evaporation 

rates (Turk, 1970), as well as increased soil water diffusivity (Grant & Bachmann, 2013). The 

calcareous mudstone layer along the palaeodrainage that lies below the Kalahari sands in this 

region (Mees, 1999) may also support groundwater flow from the pan surroundings that 

concentrates at the local pan depression and further promotes capillary rise and subsequent 

evaporation processes from the shallow groundwater table. 
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During the winter months the atmospheric conditions are very dry and temperature decreases to 

the lowest monthly average <15° C in July to September (Figure 37b). In this period the pan crust 

shifts from the mixed halite-gypsum crust to much higher concentration of halite at the surface. 

This development to a very bright, halite rich surface is observed for each year. The formation of 

such efflorescent salt crust in the cold winter months can be explained by a wetting process driven 

by an increase in relative humidity amplified by the hygroscopic nature of halite. Within the pore 

space of halite rich sediments water vapour already condenses at relative humidity levels that 

otherwise hinder the occurrence of liquid water in the surrounding environment (Davila et al., 

2008). This process is mainly driven by the large temperature oscillations of the diurnal cycle. When 

the temperature on the pan surface drops during the night (even below the freezing point in 

winter), the relative humidity of the air increases. At 75% relative humidity the deliquescence point 

of halite is reached (Greenspan 1977). At that point the amount of moisture absorbed from the air 

is enough for the dissolution of the hygroscopic salt and the formation of local brines. As the 

temperature on the salt pan surface increases after sunrise (up to 30°C in winter) the brine that has 

accumulated during the night will tend to move upwards driven by capillarity and evaporation 

processes (Artieda et al. 2015). As water migrates towards the surface, the brine becomes 

successively concentrated and salts are deposited, when their solubility coefficients are exceeded. 

Carbonates are potentially deposited first, followed by sulphates, and finally halides that form a 

fresh efflorescent crust on top the more mixed sediment layers (Finstad et al. 2016). A similar 

process is described for halite efflorescence in saltpans of the hyperarid Atacama Desert (Davila et 

al. 2008; Wierzchos et al. 2012; Artieda et al. 2015). Once patches purer in NaCl form, they are 

preferentially wetted during subsequent nights, which leads to a further enrichment and the 

development of apparent bright salt crust over multiple diurnal cycles (Finstad et al. 2016). Figure 

38 show exemplary daily variation of air temperature and relative humidity in winter at the study 

site. Immediately after sunset, relative humidity increases with decrease in temperature. 

Throughout the night and early morning relative humidity reaches the deliquescence humidity 

point of halite (dotted grey line). Increasing temperatures during the day result in low humidity and 

increase in evaporation throughout the rest of the day. In the summer months, relative humidity is 

low (Figure 38a) with the exception of rainfall events, in which the air reaches saturation, which 

explains the lack of formation of halite and is confirmed by the presented results 
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Figure 38. Typical daily variation of temperature and relative humidity in a) summer and b) winter 

season (data from ERA 5 climate model). 

Wind data show strong seasonality, with the strongest winds occurring in the Late Summer Early 

Autumn month (August to October) in between the end of the dry season and the start of the new 

wet season (Figure 38c). Mean monthly wind velocities of 6-8 m/s are registered in these month, 

whereas during the rest of the year monthly wind speed averages around 4 m/s. In parallel to the 

stronger winds more surface area is classified as the mixed calcite-quartz-sepiolite crust 

endmember and less as bright efflorescent halite crust. This observation in crust developments can 

have two general causes: (1) the removal of efflorescent halite crust by wind erosion and (2) the 

accumulation of windblown material originating from the pan surroundings. Wind speed is 

considered a main driver for dust emission (Csavina et al., 2014; Lu & Shao, 2001), but to initiate 

particle movement a threshold in shear velocity (a measure of momentum transfer from the wind 

to the surface) has to be met that exceeds the cohesive force or “binding energy” of the surface 

particles (King, Etyemezian, Sweeney, Buck, & Nikolich, 2011). The magnitude of this binding energy 

is highly variable and dependent on the several physical and chemical soil parameters, e.g. particle 

size, mineralogy, moisture and organic content. Accounting for all these factors has proven very 

difficult and is generally unrealistic for a predictive model (King et al., 2011; Shao & Lu, 2000). 

However several studies on salt pan emissivity have gathered empirical data on shear velocity or 

friction velocities thresholds (𝑢𝑡) necessary for particle movement in these settings. The lower end 

of the reported shear velocities thresholds are in the range of 0.3-0.5 m/s (King et al., 2011; Roney 

& White, 2004; Sweeney, McDonald, & Etyemezian, 2011), but thresholds can also exceed 1.5 m/s 

for undisturbed clay and salt crusted playa surfaces (Gillette, Adams, Endo, Smith, & Kihl, 1980). 

The shear velocities at the surface can be estimated from the wind speed data in 10m height using 

the Prandtl‐von Kármán equation (Nickling & Ecclestone, 1981): 𝑢 =
𝑢

6.13∗𝑙𝑜𝑔(
𝑧

𝑧0
)
, where 𝑢 is the 

wind speed at height 𝑧 and 𝑧0 is the roughness length for surface open flat terrain (0.03 m) (WMO, 
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2008). Based on this equation, we calculated that the shear velocity threshold of 0.4 is reached by 

winds speeds of about 14.5 m/s in 10 m height. Figure 39 shows the hours per month that exceed 

this wind speed threshold and enable dust emission. The windiest months are September and 

October, with wind speeds exceeding 50 hours per month, with the exception of the 2014 season, 

where less than half of average hours per month are recorded. For this year with significant lower 

wind speed the endmember fraction of mixed calcite-quartz-sepiolite also covers less of the pan 

area (only 20% compared to the other years with 60-80% coverage). On the other hand the 

accumulation of windblown dust particles originating from the pan surrounding is also possible, 

since moist playas are effective dust traps, where moisture films bind the deposited particles by 

surface tension (Pye, 2015). Dust particles that settle on a bare, smooth surface are susceptible to 

re-suspension, which results in no net deposition. However, if the dust cloud passes over a moist 

ground the particles which fall to the surface may be permanently trapped (Pye, 1995). In the dry 

season this moisture can be provided by the deliquesce effect explained above. 

 

Figure 39. Monthly hours of high wind speed exposure that exceed the emission threshold of pan 

surface sediments (data from ERA 5 climate model). 

Overall, our results on the mapping of spatio-temporal crust developments at the surface of the 

Omongwa pan, linked with data on surface wetness, temperature, and wind, allow to develop new 

insights on salt pan surface processes and on drivers of Omongwa flooding/desiccation cycles, such 

as: 

1) After wet conditions at the surface of the pan due to major flooding or smaller rain events, first 

a mixed gypsum halite crust appears in less moist parts of the surfaces. Further in the dry season, 

a successive transition of mixed gypsum-halite to bright efflorescent halite crust is observed, 

where the aerial coverage of bright halite crust can reach up to 80% of the total pan surface 

after several months of dry conditions. Then a transition of bright halite to mixed calcite-quartz-

sepiolite crust type is observed at the end of the dry season that can be depending on the years 
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more or less strong. This transition precedes the arrival of wet conditions that is depending on 

the magnitude and occurrence of rain events and can lead to increased or shortened periods of 

flooding coupled with the disappearance of surface crust. 

2) After the wet season, the build-up of mixed halite gypsum crust is observed independent of the 

occurrence of big or small flooding events. Thus, the build-up of mixed halite gypsum crust at 

the beginning of the desiccation stage does not rely on an extensive flooding event to 

redistribute the salt minerals, but results from the combined effect of evaporation and capillary 

rise to develop these crusts from subsurface brines. Driven by lower temperature in the cold 

winter month an extensive efflorescent halite crust develops, due to higher relative humidity at 

night-time. 

3) In the strong wind season, of the late summer to early autumn months (August to October) 

associated with the end of the dry season and the start of the new wet season, the areal 

coverage of crust types is changing from bright efflorescent halite crust to a more mixed calcite-

quartz-sepiolite crust endmember. This change in crust development is more or less observed 

depending on the years. Nevertheless, the amount of change seems to be mainly driven by wind 

speed and exposure. This change is mostly attributed to the removal of efflorescent halite crust 

by wind erosion processes. In this time period, an increased dust emission could thus be 

expected.  
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6. Conclusions 

This study has investigated the potential of multitemporal Landsat dense time-series to spectrally 

differentiate surface crust types of variable evaporite compositions and to subsequently map their 

multi- and inter-annual changes of the Omongwa salt pan in the Namibian Kalahari region. 

Furthermore, we assessed the climatic influences on the pan surface crust during repeated flooding 

and desiccation cycles. 

A multiannual analysis of the spatio-temporal distribution of salt pan crust types was developed 

including an adapted methodology that uses Sequential Maximum Angle Convex Cone (SMACC) 

endmember selection and Spectral Angle Mapper (SAM) classification. A time-series of 77 cloud-

free Landsat 8 OLI scenes was analysed covering several pan cycles during a time period of four and 

a half years (04/2013-10/2017). The spectral interpretation of the crust types derived from Landsat 

OLI was performed based on essential information provided by laboratory spectroscopy, as well as 

mineralogical XRD analysis of 49 field samples collected during three field campaigns (2014-2016) 

reflecting different seasons and surface conditions of the salt pan. Through the implementation of 

the endmember definition and mapping code in the Google Earth Engine this time-series can be 

extended with future Landsat acquisitions to support a regular monitoring of pan processes. 

During the observation period, seasonal transitions in the surface crust were identified and related 

to the environmental process of the pan’s flooding and desiccation cycles: 

1) After a pan flooding event, a mixed halite-gypsum crust develops at the beginning of the drying 

process, which is driven by higher temperatures and capillary rise of subsurface brine. 

2) This stage is followed by a successive transition to bright efflorescent halite crust during an 

extended period of dry conditions that is mainly driven by the large temperature drop during winter 

nights and a successive rise in relative humidity that exceeds the deliquescence point of halite. 

3) At the end of the seasonal cycle, a transition of the bright halite crust to a mixed calcite-quartz-

sepiolite crust is observed, which correlates to increasing aeolian activity that exceed the friction 

velocities thresholds of the surface and might indicate an increase in dust emissions from the salt 

pan. 

Overall, this study shows that remote sensing analyses allow to accurately map and monitor spatio-

temporal pan surface processes in a highly dynamic environment of a large Namibian salt pan. 

Further, new insights related to the seasonal and inter-annual evolution of salt pans surfaces could 
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be revealed. These new insights were linked to surface wetness, temperature and wind magnitude 

and could provide an assessment of climate controls on the spatial extent of salt crust formation. 

With the increasing availability of repeated global multispectral satellite data, the presented 

approach can be applied to study similar pan environments and increase our knowledge on their 

spatio-temporal development and the processes that drive their evolution. Furthermore, these 

analyses can help to assess the dust emissivity of these environments and bring progress to the 

impact assessment of climate changes and land surface responses of arid environments.  
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Chapter V - Synthesis and Outlook 

The overall goal of this thesis is to give an assessment of the potential of optical remote sensing for 

the analysis of salt pan environments. In the previous chapters, this potential was investigated by 

a detailed analysis of the Omongwa salt pan regarding the characterisation of its depositional 

environment (chapter II), the estimation and quantification of a key crust component (chapter III), 

as well as the interpretation of its seasonal dynamic and climatic drivers (chapter IV). The integrated 

approach of combining hyperspectral as well as multi-temporal analysis provided numerous 

scientific outcomes that will be discussed in the following sections with respect to the overarching 

key questions defined in chapter I. 

1. Discussion of main results 

(1) What can optical remote sensing contribute to the characterisation of the salt pan 

depositional environment? 

Mapping depositional environments of playas by remote sensing techniques has been done in the 

past mainly either using monotemporal hyperspectral or few multispectral scenes as outlined in 

chapter II. In this thesis, information from hyperspectral satellite data for the identification and 

mapping of major crust types was combined with 30 years of archived multispectral data to 

evaluate the temporal stability of the pan surface and linked to accurate morphological information 

provided by an airborne LIDAR survey. The results show that the main mineralogical constituents 

of the top layer of the Omongwa pan deposits namely: quartz, halite, gypsum, calcite and sepiolite 

could be identified using laboratory analyses and successfully translated into spectral classes of 

major crust types that could be mapped using Hyperion hyperspectral satellite imagery. This 

mineralogical mapping of the surface crust appears to be well correlated to the areas of surface 

change, as well as to the pan’s morphology. Areas associated with high change magnitudes are 

located in the central part of the pan, which is dominated by halite mineralogy and lower 

topographical areas. The high change magnitudes of the central halite area are linked to the 

solubility of halite compared to the other evaporite minerals, its location in the lowest part of the 

pan, as well as to the strong radiometric contrast between bright efflorescent halite crust and 

muddy pan sediments in time of minor rainfall events. Gypsum crust is the second most abundant 

crust type of the Omongwa pan. Unlike the halite crust, the gypsum area mapped with Hyperion is 

associated with more stable or intermediately dynamic surface regions in the multitemporal 

analysis and slightly higher topography. Although the difference in pan height of 10–15 cm between 

halite dominated and gypsum mixed crust is rather small, it seems to be enough to affect the 
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surface mineralogy. Such topographic lows are known as the geochemical centre of the playa 

environment. Here, the evaporation is most intense as it is the final receptacle of runoff after 

rainfall that has acquired a heavy solute load by dissolution of preciously built crusts (Eugster & 

Hardie, 1978). For an interpretation of the depositional environment the hydrological and 

morphological context, as well as the sub-surface deposits have to be included in the analysis. From 

a hydrological and morphological point of view the Omongwa pan is part of an inland basin with 

ephemeral channel and groundwater inflow. The suspended and soluble material in those waters 

along with evaporation and condensation processes of the brine collectively have led to the 

formation of chemical and clastic sediments found in the pan depression. The evaporite minerals 

include calcite, gypsum and halite in addition to the clastic minerals, such as quartz, feldspar and 

to a minor degree muscovite, and clays (sepiolite and montmorillonite) introduced to the playa 

mainly through fluvial and aeolian processes. Horizontally the calcite abundance decreases from 

margin to the playa centre, followed by a gypsum rich facies and halite abundance that increases 

in direction to the pan centre. Figure 40 presents the interpretation of the depositional 

environment based on the remote sensing results, following the general concept of Eugster & 

Hardie (1978) 

 

Figure 40. Model of the depositional environment / evaporative facies of the Omongwa Pan. 
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This observed distribution of depositional facies is consistent with the general zonation typical of 

other playas, which resembles a bull’s eye pattern (Shaw & Bryant, 2011; Soltaninejad, Ranjbar, 

Honarmand, & Dargahi, 2018). 

Considering not only the horizontal distribution mapped by remote sensing, but information about 

the sub-surface attributes of the pan deposits described in previous studies by Genderjahn et al. 

(2018) and Mees (1999) an attempt for the reconstruction of the evolutional pathway of the brine 

can be made. Data from 1-4 m deep sediment cores show that the fraction of calcite in the pan 

deposits is increasing with depth. In the top 50 cm 10-15% in the top 50 cm and 45-70% >2 m depth, 

opposed to gypsum and halite that are most abundant in the top layer and in general decrease with 

depth. The vertical distribution can be attributed to the calcrete bedrock, in which the pan has 

evolved, the groundwater inflow and subsequent brine saturation and formation of evaporite 

minerals. Although the sediments structure is much more complex on a fine scale regarding the 

distribution of evaporite material in the silicate matrix, e.g. along desiccation cracks and the 

occurrence of other hydromorphic features (Mees, 1999), the general distribution of the main 

mineralogical component is strongly linked to the hydrology and of the playa basin (Hardie, 1968; 

Rosen, 1994) and can therefore be used to infer on the brine evolution. The distribution of the 

depositional facies of the Omongwa pan (Figure 40) base on the remote sensing analysis suggests 

a typical evolution pathway of brine concentration and evaporite formation, in which the brine 

becomes progressively depleted in carbonate and sulphates from the margins to the centre of the 

pan. In the general model of geochemical behaviour of brine evolution described by Eugster & 

Hardie (1978) the chemistry of the brine undergoes a succession of geochemical divides. Successive 

water types depend on initial water chemistry and ratios of principal ions found in the brine (James 

I. Drever, 1997). According to combined information on the evaporite assemblage from the spatial 

mapping based on the remote sensing analysis and sub-surface core data is likely that the brine 

evolution of the Omongwa pan has followed the path of a CaCO3 - Na-CaSO4 - NaCl brine described 

in the model of Eugster & Hardie (1978). Figure 41 shows the general brine evolution model of 

Eugster & Hardie (1978) and highlights the suggested brine evolution path for the Omongwa salt 

pan that results in the observed evaporite minerals assemblage. This path of brine evolution and 

crystallization path begins with the precipitation of calcite (CaCO3) and other carbonates like 

dolomite (CaMg(CO3)2)or magnesite (MgCO3), as well as the Mg-silicate sepiolite (Mg4Si6O15(OH)) 

that mainly depend on a high Mg/Ca ratio of the brine. At the Omongwa pan calcite is the main 

carbonate mineral, which is explained by the already high calcite content of the calcrete bedrock of 

the pan. However, dolomite and sepiolite were also found in some surface samples up to 
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abundances of 30% in some locations. As carbonates precipitates and solutions becomes 

progressively more concentrated, either the CO3
2- or the cations (Ca2+, Na+, Mg2+) are depleted first. 

If the carbonate-ions in the brines are depleted first sulphates are the next precipitating phase due 

to their solubility (Deocampo & Jones, 2014). 

 

Figure 41. Brine evolution model after Eugster & Hardie (1978) for the geochemical evolution of 

non-marine waters and major evaporite minerals associated with the brine types (figure after 

Deocampo & Jones (2014) modified). The brine evolution path of the Omongwa pan is highlighted 

by red arrows and mineralogical assemblages found at the test site are coloured. 

Such is the case for the Omongwa pan with extensive gypsum (CaSO4·2H2O) abundance in the pan 

sub-surface deposits, as well as in the surface crust. A new natural Na-Ca-sulphate, the so called 
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Omongwaite (Na2Ca4(SO4)6·3H2O), was found for the first time at the test site by Florias Mees et al. 

(2008), as inclusion in gypsum crystals in the upper part of the pan deposits.The mineral represents 

an end-member of a series of possible compositions, in which Na substitutes Ca in basanite 

(Ca6(SO4)6·3H2O), which happens under rapid brine concentration and saturated NaCl solutions 

(Mees et al., 2008). After carbonate and sulphate late precipitation products such as halite and 

bitter salts form by the further removal of water by evaporation from highly concentrated brines. 

At the Omongwa pan halite is found throughout pan sediments, as well as concentrated in 

efflorescent surface crust. The lack of trona in the deposits indicates very rapid brine concentration, 

as its formation is limited by the kinetics of CO2 addition to the brine (Eugster & Hardie, 1978). This 

described crystallisation sequence would be observed as a temporal successive layers in a closed 

standing water system. However, at many playa environments it was observed that the 

crystallization steps take place at different spatial positions as a result of a concentration gradient 

from the pan margin, where dilute water enters the system to highly concentrated brine at its 

centre leading to the concentric zonation of evaporite minerals. This concentration gradient was 

established by continuous sub-surface flow of brine in toward the centre of the pan coupled with 

continuous evaporation (Hardie, 1968). 

The applied approach of mapping depositional environments with the aid of remote sensing data 

and methods is transferable to a wide range of evaporite environments. However, the specific 

model of the depositional environment is built on information gained through remote sensing 

analyse, such as the spectral unmixing procedure. For this step most of the mineralogical 

components need to be identifiable by remote sensing. The use of hyperspectral data greatly 

increases the number of minerals that can be discriminated compared to multispectral analyses, 

but some minerals like halite or sylvite do not have diagnostic absorption features in the VNIR-SWIR 

spectral range and can only be indirectly assessed. Furthermore, overlapping spectral features may 

challenge an approach solely based on remote sensing data. It also has to be noted that field 

observations and in particular sedimentary analysis of the sub-surface layers provided by previous 

and concurrent studies (S. Genderjahn et al., 2018; Mees, 1999; Schuller, Belz, Wilkes, & 

Wehrmann, 2018) have been essential to confidentially differentiate the zones of the pan 

depositional environment, as well as the reconstruction of the brine evolution and hydrological 

setting. As optical remote sensing data can only provide information on the surface properties and 

status, a comprehensive understanding on the specific evaporite environment can only be achieved 

in the combination with the integration of these additional information. 
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(2) Can mineralogical crust components of salt pan environments be robustly mapped and 

quantified by current and upcoming hyperspectral sensors? 

Only a very limited number of studies explore the potential to quantify mineralogical crust 

components in salt pans. However, the quantification and monitoring of the salt crust’s mineralogy 

is highly relevant e.g. to elucidate the contribution and yet uncertain role of mineral dust emissions 

in the radiative forcing of the atmosphere (Ramaswamy et al., 2001). The discrimination and 

quantification of playa surface minerals is dependent on their spectral properties. While most of 

the salt minerals that constitute various playa environments do not have diagnostic absorption 

features in the optical spectral region, it has been shown that the abundance of gypsum can be 

estimated in soil mixtures via reflectance spectroscopy in the laboratory (Khayamim et al., 2015; 

Weindorf et al., 2016). As shown in chapter II crust types of salt pan environments associated with 

many other minerals like halite, sepiolite, calcite and sepiolite can be differentiated and mapped 

by hyperspectral remote sensing. However, these represent mixtures consisting of multiple 

mineralogical and sedimentological attributes that have been spectrally characterised through the 

selection of endmembers that are specific to these mixtures and less transferable to other settings. 

The direct quantification through the parametrisation of spectral absorption features allows for a 

more general and less site specific estimation of a mineral from the pan surface crust. Therefore 

the potential for gypsum estimation of current and upcoming hyperspectral sensors has been 

evaluated by testing robust approaches for the parametrisation of its characteristic spectral 

properties. Prediction functions for the gypsum component have been determined in the 

laboratory and subsequently transferred to the remote sensing scale. Overall, the model results at 

the laboratory scale were well within range of results obtained by previous studies, e.g. Khayamim 

et al. (2015) that used PLSR on the total spectral range. The Continuum Removed Absorption Depth 

(CRAD) parametrisation shows that most relevant information for gypsum estimation is included in 

the 1.75 region and that the method works very well in a mixture of common evaporite and silicate 

minerals often found in salt pan settings. Validation of the results with ground-truth data shows 

that the simple normalized differenced based NDGI parametrisation provides the most robust 

results for hyperspectral remote sensing application, as it minimizes the influence of the 

neighbouring atmospheric absorption, while still being sensitive to gypsum variability. The 

presented approach does not need the SWIR II spectral region for gypsum estimation, but exploits 

a feature located in the SWIR I. The solar spectral irradiance of this region more than doubles the 

irradiance in the SWIR II (Eismann, 2012). Therefore more photons reach the detectors of 

hyperspectral sensors, which leads to increased signal-to-noise levels (Guanter et al., 2015), as well 
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as more reliable quantitative analysis of surface properties (E. Ben-Dor, 2002). Furthermore, the 

developed approach is expected to also perform reasonably well for soil mixtures in an agricultural 

setting, as it does not rely on the ~2.2 µm gypsum feature that can be confused with the overlapping 

absorption features such as clay minerals, which was often included in previous studies (Gleeson et 

al., 2010; Shrestha et al., 2005) and mapping frameworks (Kokaly et al., 2011). 

(3) What processes can be characterised by multitemporal remote sensing regarding 

seasonal pan changes and their link to the climatic drivers? 

Salt pans have been described as one of the most dynamic environments with high variation in 

surface features on daily, weekly, monthly, and annual basis (Bowen et al., 2017; Robert G. Bryant 

& Rainey, 2002). Currently, the characterisation and monitoring of playa environments is 

problematic, due to the lack of records about their surface conditions, including times of inundation 

and the formation of different evaporite during the pan’s desiccation. Remotely sensed data can 

surrogate ground observations, if spectral or other features of the satellite image allow reliable 

interpretation. In this frame chapter IV describes a detailed assessment of the seasonal variation 

using dense time series of 70 multispectral images that cover a period of 4 years. This increase in 

data availability allowed to observe the pan dynamic on a sub-monthly scale, whereas previous 

studies on salt pan dynamic only provided monthly to seasonal information (Bowen et al., 2017) or 

even yearly temporal resolution for periods before the year 2000 (Carmen Castañeda et al., 2005). 

However, compared to the analysis of pan surface crust composition based on the hyperspectral 

data shown in chapter II, the reduced spectral resolution of multispectral data does not allow to 

discriminate distinct minerals and made it necessary to simplify and merge spectral classes. 

Specifically, the distinction between the crust type dominated by sepiolite and calcite had to be 

merged with surfaces that are mainly composed of quartz and feldspar, as their mixture could not 

be differentiated by the spectral analysis based on multispectral data. Yet, the much denser 

temporal resolution allows a more detailed process observation of salt pan environments, such as 

the solution and build-up of evaporite surface crusts, and provides the potential to link these 

surface changes to its climatic drivers. One of the most important processes that determines the 

pan dynamic involves the wetting and drying cycles and the precipitation–dissolution of surface 

crusts (J. I. Drever, 2005). A model of these processes of modern pan systems called the saline pan 

cycle has been developed by Lowenstein & Hardie (1985). It describes that the episodic formation 

and dissolution of surface crust evaporites follows a cycles of flooding, evaporation, and desiccation 

of the playa surface (Chivas, 2007; Lowenstein & Hardie, 1985). In chapter IV, we showed that over 
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four seasons of reoccurring key stages of the saline pan cycle could be observed and identified 

through major changes in the surface reflectance properties (Figure 42): 

 

Figure 42. Field characterisation of the seasonal pan stages for the Omongwa pan, following  the 

modified model of the saline pan cycle of Lowenstein & Hardie (1985). 

1 - Flooding stage (Figure 42A):  A shallow and brackish lake or smaller pools may form after flooding 

of the dry pan with meteoric water either directly precipitated on the pan surface, by runoff from 

the bordering dunes, or by groundwater flow through the Kalahari sands or calcrete layers. The 

dilute waters dissolve the evaporite (mostly halite rich) surface crust, as it ponds in the 

topographically low areas of the pan. Dissolution of crust depends on the degree of undersaturation 

of the inflow water, minor influxes are enough for the dissolution of halite, but the solubility of 

gypsum is at least 30 times lower (Klimchouk, 1996), which makes the sulphate mineral more 

resistant to small precipitation events. The higher stability of the gypsum rich pan regions has also 

been observed in the analysis of long-term (1984-2015) surface change magnitude (chapter 2). This 

fractional dissolution of surface crust returns preferably the most soluble constituents to solution, 

leaving behind the less soluble evaporites such as sulphates, carbonates and silicate minerals (J. I. 

Drever, 2005). In the four seasons of remote sensing data at the Omongwa pan, flooding events 

with up to 60-80% of the surface area flooded have been observed during the wet season in 3 out 

of the 4 years and one very dry year with ponding below 3% of the pan surface. During the major 

inundation events at the Omongwa pan only the gypsum and calcite rich crust types remain at the 
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pan margin surrounding a shallow water body. The monitoring of frequency and magnitude of 

inundation events is of great relevance, because it drives the pan cycle and has been recognised as 

the most important parameter for the evolution of the pan deposits and its mass budget over longer 

periods (Shaw & Bryant, 2011; Yechieli & Wood, 2002).  

2 - Desiccation stage (Figure 42B): Driven by higher temperatures and capillary rise of the sub-

surface brine an initial surface crust is formed under dry conditions. Complete evaporation of the 

ephemeral lake can occur within days in small, shallow lakes or can take years in large, deeper lakes 

(Smoot & Lowenstein, 1991). With the exception of the relative dry year of 2014, the flooding of 

each season between 2015 and 2017 3-4 month are needed for complete evaporation of the water 

pools and re-building of surface crust. At the test site the initial crust mainly contains a mixture of 

gypsum and halite that spatially grows form the pan margin into the more moist pan centre. 

3 - Efflorescence stage (Figure 42C): After the complete desiccation of the ephemeral water body, 

and prolonged dryness in the winter season the initial surface layer gets heavily enriched in halite. 

This change to very bright surface is very notable already in the visible reflectance of the pan surface 

(Figure 42C). Salt efflorescence is very common process among different evaporite environment, 

where primarily halite overgrowths the initial surface layer. Most commonly this observation is 

attributed to the continuous evaporative pumping of sub-surface brines under very high 

temperatures, e.g. for Lake Magadi, Kenya or Saline Valley, USA (Smoot & Lowenstein, 1991). 

However, at the Omongwa pan test site the transition to bright efflorescent halite crust appears in 

the winter month with moderate to cold temperatures. Driven by the large temperature drop 

during winter nights and a successive rise in relative humidity the very hygroscopic halite binds 

water vapour form the air and forms a saturated solution, when the so called deliquescence point 

of halite is exceeded (Greenspan, 1977). The repeated halite re-solution from the surface and re-

precipitation during the day leads to the build-up of pure halite crust at the surface crust. A similar 

process is described for halite efflorescence in saltpans of the hyperarid Atacama Desert (Artieda 

et al., 2015; Davila et al., 2008; Wierzchos et al., 2012). 

4 - Deflation or degradation stage (Figure 42D): At the end of the seasonal cycle, a transition of the 

bright halite crust to a much darker mixed crust composed of mainly quartz and or calcite is 

observed. The strength of this transition in the late winter month (August to October) correlates to 

the magnitude in aeolian activity at the test site and might be attributed to the removal of 

efflorescent halite crust by wind erosion. In this time period, increased dust emissions are also 

observed from the dunelands of the southern Kalahari (Abinash Bhattachan, D’Odorico, Okin, & 

Dintwe, 2013). Therefore, it is also possible that the surface changes are caused by a mixed effect 
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from (1) the removal of efflorescent halite crust by wind erosion and (2) the accumulation of 

windblown material originating from the pan surroundings. 
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2. Directions of future research 

In the frame of this thesis, the potential of current and upcoming optical remote sensing for the 

analysis of evaporite environments have been evaluated. The results showed that the recent 

advances in technology and data availability have driven the development of methods that make 

use of this increase in data amount and of analytical potential, especially for the characterisation 

of mineralogical composition, as well as for the temporal dynamic and surface processes. It can be 

expected that future research will again be driven by new developments and the combination of 

existing technologies in synergetic use with optical remote sensing. For example, the availability of 

multispectral data greatly increased after the launch of Landsat 8 in 2013 with a revisiting time of 

16 days to just under two acquisitions per month with a swath of 185 km (D. P. Roy et al., 2014). 

More recently the European Space Agency (ESA) launched the two satellites of the Sentinel 2 

constellation that since 2017 provide optical images in 13 spectral bands with a 5-day revisit period 

combined with an unprecedented ground resolution of 10 to 20 m for most bands with a large 

swath covering 290 km (Drusch et al., 2012). The combination of Landsat 8 and Sentinel 2 

potentially can provide up to 8 acquisitions per month and therefore significantly will also increase 

the potential for monitoring of salt pan processes. 

Looking towards the future, this trend of increased data availability will continue with a wide range 

of new hyperspectral satellite systems in the VNIR-SWIR spectral range that will be launched in the 

next years. Advances in sensor technology are expected to improve spectral sampling and the 

radiometric performance of these upcoming imaging spectroscopy systems, which will yield higher 

signal-to-noise ratios at a higher spatial resolution (Rast & Painter, 2019). The PRISMA (PRecursore 

IperSpettrale della Missione Applicativa) satellite mission just launched and is currently in its final 

testing phase before operational acquisition (Lopinto, Daraio, Guarini, & Loizzo, 2019). PRISMA will 

be a pre-operational system and a technology demonstrator, which will focus with its acquisition 

on the Euro-Mediterranean Regions (Rast & Painter, 2019). The system covers the VNIR-SWIR 

spectral range with 237 spectral bands at a variable spectral bandwidth between 6 and 12 nm, and 

a 30 m spatial resolution over a 30 km swath (Pignatti et al., 2015). Subsequently, towards the end 

of 2020 to early 2021, the German Environmental Mapping and Analysis Program (EnMAP) is 

expected to be launched (Pinnel, 2019). The system provides similar hyperspectral capabilities as 

PRISMA. Although primarily science-driven, the EnMAP mission will also address applications 

beyond scientific issues (Guanter et al., 2015). PRISMA and EnMAP will co-exist with other 

comparable and complementary missions, such the Italian-Israeli Spaceborne Hyperspectral 

Applicative Land and Ocean Mission SHALOM, which is planned for launch in 2022 with increased 
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spatial resolution of 10 m (Rast & Painter, 2019). The mission will focus on commercial use and on 

application for ecosystems primarily of the coastal zone (Feingersh & Ben-Dor, 2015). Another 

important mission with a focus on the observation of arid environments is the Earth surface Mineral 

dust source InvesTigation (EMIT) scheduled for 2021. EMIT is a VNIR-SWIR imaging spectrometer 

to be mounted on the international space station (ISS) with the main objective to determine the 

mineral composition of natural sources that produce dust aerosols around the world (R. Green, 

2018). The low orbit of the ISS leads to about 16 orbits per day with an approximate repeat cycle of 

every 3 days. The specific revisiting time depends on the latitude of the target with potential of 

diurnal coverage (Cynthia, Evans, & Robinson, 2019). With its explicit mission objective to study 

sources of dust emission, it can be expected to prioritize image acquisition of playa environments. 

Currently under discussion are also the next generation of hyperspectral satellite missions for the 

mid-2020s like ESA’S new Sentinel candidate the Copernicus Hyperspectral Imaging Mission 

(CHIME) (Nieke & Rast, 2018), as well as NASA’s Biology and Geology (SBG) satellite that will be 

designed to operationally acquire hyperspectral imagery over larger areas (e.g. SBG with a swath 

of 160 km) and much more frequently than the previous listed tasking missions (Pinnel, 2019). The 

technical developments of these sensors and platforms will provide new opportunities for 

improved characterisation and monitoring of complex salt pan environments and their dynamics in 

the context of climate change and anthropogenic impact. 

Future research also has great potential in the synergistic use of non-optical remote sensing, such 

as the thermal Infrared (TIR) or Synthetic Aperture Radar (SAR). The thermal infrared 

electromagnetic spectrum opens the analytical potential of remote sensing for a wide range of 

silicate minerals that are common in playa settings that cannot be accurately discriminated by 

optical remote sensing (Ramsey, Christensen, Lancaster, & Howard, 1999). Furthermore, the many 

evaporite minerals have additional features in the thermal infrared (J.K. Crowley, 1993) that can 

increase the detection in difficult mineralogical mixtures, when VNIR-SIWR and TIR information are 

combined. Until now, a very limited number of studies explored the thermal infrared region for the 

analysis of evaporite environment (e.g. James K. Crowley & Hook, 1996; Katra & Lancaster, 2008), 

and none explored the synergetic potential of both the solar reflective and the thermal emissive 

spectral domain in this context. Since mid-2018 the 6-band multispectral thermal ECOSTRESS 

(ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) camera has been 

installed on the ISS. It provides data with 38-m in-track by 69-m cross-track spatial resolution with 

potential diurnal coverage and a swath greater than 300 km (Hook, 2019), which makes it very 

interesting for large scale process monitoring of evaporite environments and should be tested. 
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The combined use of optical remote sensing and Synthetic Aperture Radar (SAR) technology also 

has great potential. Several studies showed that SAR is highly sensitive to temporal variations in 

properties like surface roughness (Archer & Wadge, 2001; Liu et al., 2016) and soil moisture of salt 

pans (Tansey & Millington, 2001). Such information on roughness and brine moisture changes can 

help e.g. for a better understanding of processes like halite efflorescence (Wadge & Archer, 2003), 

especially in combination with the spectral information from optical remote sensing. For the 

monitoring of larger test sites of at least 25 km², the passive SAR based Global Precipitation 

Measurement (GPM) mission launched in 2014 can provide precipitation estimates at high 

temporal (0.5–3.0 h), which is especially useful for less populated remote regions, where systematic 

surface measurements of precipitation are missing (Skofronick-Jackson et al., 2016). 

Regarding the methodological development, it is likely that the trend of big data analysis in 

conjunction with machine learning (L. Ma et al., 2019) will further grow and that parallelisation and 

cloud computing will facilitate the processing of the ever-growing volume in data (Cavallaro, 

Erlingsson, & Memon, 2018). Cloud infrastructures can provide the required flexibility to manage 

huge amounts of data and to efficiently process them, thus making possible to apply analysis on a 

global scale. One cloud-based platform that becomes increasingly popular is the Google Earth 

Engine (GEE) that makes the petabytes of free multi-temporal remote sensing data available on its 

webservice (Mutanga & Kumar, 2019). GEEs concept of integrated data visualization, processing 

and analysing may open the field of remote sensing to a wider community of non-remote sensing 

experts. Although this new potential of global analysis holds great promises, careful testing is 

necessary before research approaches of a specific evaporite environments can be transferred to 

other settings.  
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3. Conclusion 

This thesis provides new insights into the capabilities of optical remote sensing for the 

characterisation of salt pan environments by combining information from hyperspectral data with 

the increased temporal coverage of multispectral observations for a more complete understanding 

of spatial and temporal complexity of salt pan environments. This research has been able to show 

that optical remote sensing can be used to map the mineralogy of salt pan surfaces both 

quantitatively and semi quantitatively. It further highlights the importance of robust and adapted 

methods that can deal with imperfect remote sensing data that often is affected by atmospheric 

and radiometric noise or has been collected under none-ideal acquisition conditions. The 

combination of mineralogical mapping with long-term change analysis and morphological 

information enabled the developed of a spatial model of the test site’s depositional environment. 

The further integration of information about the sub-surface deposits with the remote sensing 

results allowed to reconstruct the path of brine evolution of this evaporite environment and 

improve the knowledge of the local hydrological and sedimentological processes. The dense 

seasonal and inter-annual remote sensing observation provided the basis to understand the specific 

seasonal cycle of inundation and desiccation stages of the playa environment, including the climate 

driving forces and their impact on surface changes. Besides the academic motivation of this 

research, the understanding of playa environments is a prerequisite for sound and sustainable 

management decisions in these regions. Although the spectral unmixing and mapping models, as 

well as the multitemporal characterisation performed in the frame of this thesis cannot directly be 

transferred to other sites of interest, the general approach and the developed framework could be 

well transferred and applied for the study of arid landscapes and salt pans of others regions of the 

world that become increasingly threatened by changing climate and anthropogenic impact. 

Many more advances in senor technology and data availability are expected throughout the next 

decade that will further improve the capabilities of optical remote sensing and will call for additional 

refinement of methods, data storage and computational solutions. E.g. the transition to big data 

analysis and cloud computing will be a major step for the scientific and applied remote sensing 

community, especially for time-series data. Furthermore, the combination with information from 

other remote sensing data, e.g. from the long-wave infrared spectral region, as well as SAR holds 

great potential that still need to be assessed in the context of salt pan environments. 
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