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Abstract: Using two crystals for spontaneous parametric down-conversion in a parallel setup,
we observe two-photon interference with high visibility. The high visibility is consistent with
complementarity and the absence of which-path information. The observations are explained as the
effects of entanglement or equivalently in terms of interfering probability amplitudes and also by the
calculation of a second-order field correlation function in the Heisenberg picture. The latter approach
brings out explicitly the role of the vacuum fields in the down-conversion at the crystals and in
the photon coincidence counting. For comparison, we show that the Hong–Ou–Mandel dip can be
explained by the same approach in which the role of the vacuum signal and idler fields, as opposed
to entanglement involving vacuum states, is emphasized. We discuss the fundamental limitations of
a theory in which these vacuum fields are treated as classical, stochastic fields.

Keywords: complementarity; vacuum fields; entanglement; Hong-Ou-Mandel effect; spontaneous
parametric down-conversion

PACS: 42.50.Ar; 42.50.Dv

1. Introduction

Entanglement is of interest not only as a basic feature of quantum theory, but also for
applications in quantum optics including quantum cryptography [1], quantum imaging [2], quantum
spectroscopy [3,4], and metrology [5], among others. The strong correlations implied by entanglement
have long been of interest in connection with quantum interference effects [6] and various classically
counterintuitive experimental results, and there have been many investigations of entanglement with
suitable experiments and associated theoretical analyses.

Entanglement contains some of the surprising features of quantum theory and demonstrates
correlations stronger than are possible in classical physics. Different approaches were taken in the
past, such as the introduction of hidden parameters, to explain these observations. However, it was
shown that such hidden parameters are inconsistent with quantum theory and experiment. As we
show in this paper, the explicit consideration of vacuum quantum fields allows an intuitive description
of quantum-optical effects in spontaneous parametric down-conversion that are typically explained
by entanglement.

Spontaneous parametric down-conversion (SPDC) has been one of the most useful tools in
quantum-optical investigations of entanglement. In this paper we revisit SPDC from a perspective
somewhat different from much of the previous work on the subject. For this purpose, we investigated
the interference of two biphotons generated in two parallel, pumped down-conversion crystals as
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in [7], but with no further coupling, as in [8,9]. Our experimental results are in agreement with the
earlier work (but with much greater interference visibility), but it seems worthwhile to describe and
analyze them from the perspectives taken in our recently-reported work [7,10] and to formulate in
more detail the analyses outlined in that work. In doing so, the question arises as to the extent to which
the experimental results we show can be understood in a classical, stochastic treatment of the vacuum
field. We discuss the difficulties posed by such an intuitive approach to the signal and idler vacuum
fields, which can nevertheless account for some of the effects observed in SPDC [11].

In analyzing our earlier experiments, we considered in particular the role of vacuum fields and
complementarity in different SPDC setups. SPDC is especially interesting in this regard because the
down-converted photons result from nonlinear mixing of the pump field with the vacuum fields at the
crystals, and therefore, the statistical properties of the generated signal and idler fields reflect those of
the vacuum fields involved in the three-wave mixing process. It has been demonstrated that, in spite
of the random character of these vacuum fields, a phase memory effect could be observed if the same
vacuum mode takes part in the down-conversion in two crystals [9,12]. Using an extended version of
this experiment with three down-conversion crystals, it was shown that the absence of correlations
between the vacuum fields at different crystals results in an incoherent background photon count.
However, this effect of the different vacuum field modes taking part in the down-conversion could be
completely overcome, and almost perfect coherence could be observed, in the stimulated process with
coherent laser radiation, distinct from the pump laser, fed into a previously open vacuum mode [7].

We begin in the following section by describing the experiment with two down-conversion
crystals. In this experiment, there are a total of four open vacuum entrances, two at each crystal,
involved in the three-wave-mixing processes generating the two down-converted biphotons. No
first-order coherence is observed between the single-photon signal and idler fields, but high-visibility
interference is observed when photons are counted in coincidence, consistent with complementarity
and the absence of which-path information (Section 3). In Section 4, a Heisenberg picture analysis
of these results is presented. In this description, there is no first-order coherence observed between
the single-photon signal and idler fields because the vacuum fields at the four open entrances are
uncorrelated, whereas second-order, “intensity” correlations of these vacuum fields result in the
observed interference effect when photons are counted in coincidence. The same formalism is then used
in Section 5 to describe the Hong–Ou–Mandel (HOM) dip [13], where we show that this consequence of
entanglement and quantum interference can again be explained equivalently in terms of non-vanishing
intensity correlations of the vacuum fields. The vacuum signal and idler fields in both the two-crystal
experiment and the HOM effect make explicit contributions not only to the generation of the signal
and idler photons, but also to the photon coincidence counting rate. In Section 6, we discuss further
the simplified Heisenberg picture theory employed in Sections 4 and 5 and its relation to a more
complete SPDC theory. Section 7 addresses the question of the extent to which the vacuum field in
these experiments can be regarded as a classical stochastic field. Our results are summarized and
discussed further in Section 8.

2. Experiment

The experimental setup consisted of two Beta Barium Borate crystals (BBO1 and BBO2) for the
generation of the down-converted signal and idler photon pairs. The crystals had a length of 4 mm
and were arranged in parallel. As shown in Figure 1, the signal channel s1 of BBO1 is overlaid with
the signal channel s2 of BBO2 at the beam splitter BS1, and the idler channel i1 is overlaid with the
idler channel i2 at the beam splitter BS2.

The single signal photons were counted at the peak wavelength of 808 nm using a filter with a
bandwidth (FWHM) of 2 nm, and the idler photons were counted at the peak wavelength of 632 nm
with a bandwidth of 3 nm. The two cw, 355-nm nearly diffraction-limited pump fields from the laser
(Genesis, Coherent, Inc., Santa Clara, CA, USA) had a bandwidth of about 45 GHz, corresponding
to a coherence length of about 1.5 mm, and were synchronized, but could be delayed with respect
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to each other with a delay line in front of BBO1. To vary the length of the signal and the idler
single-photon interferometers, the 100% reflecting mirrors could be moved, resulting in phase shifts for
the signal fields (upper mirror in Figure 1) and for the idler fields (lower mirror in Figure 1). Photons
were counted with single-mode, fiber-coupled photodiodes (SPCM-AQRH-13, Perkin Elmer, Inc.,
Waltham, MA, USA) at Positions A and B. The whole setup was aligned with an Electron Multiplying
Charge Coupled Device (EMCCD) camera (Ixon, Andor, Inc., Belfast, UK) at Positions A and B. The
pump power at each crystal was about 30 mW. Photon count rates at Detectors A and B were 25,000
photons/s from crystal BBO1 and 26,000 photons/s from BBO2. With a high probability, no more than
one photon pair was in the apparatus during the measurement interval of 2 ns, so that stimulated
down-conversion could be neglected in these experiments. All the observed interference effects were
based on the coincidence counting of a single photon pair, either from BBO1 or from BBO2.

Figure 1. Two-photon interference setup with two synchronously-pumped spontaneous parametric
down-conversion (SPDC) crystals BBO1 and BBO2. The rate of counting signal and idler photons in
coincidence at Detectors A and B is measured as a function of the path delay of the pump field. The
pump intensity is sufficiently weak such that with high probability, only one signal-idler photon pair is
present during a measuring period. BS, beam splitter.

3. Results

In the first experiment, the coincidence count rate was measured as a function of the signal path
delay. The result is shown in Figure 2.

Figure 2. Counting rate for single signal photons at Detector A in coincidence with single idler photons
at Detector B as a function of the signal path delay (see Figure 1).

This measurement was done over a wide range of delays in order to determine the coherence
length of the fields. From Figure 2, the coherence length of the signal field can be estimated to be
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80 µm, in good agreement with the bandwidth of the spectral filter; the coherence length of one of
the biphoton fields determines the coherence length in the second-order interference measurement.
In a second measurement, the spatial resolution of the delay line was increased in order to exhibit the
biphoton interference in more detail, as shown in Figure 3.

The “fringe” spacing in this biphoton interference measurement is in very good agreement with
the 808-nm wavelength of the signal field. From the data shown in Figure 3, the maximum visibility
at zero delay was 94%. Similar results were obtained when the path delay for the idler photons was
varied. In that case, the fringe spacing in the biphoton interference is in agreement with the idler
photon wavelength of 632 nm. Since both crystals were “coupled” only by the pump laser radiation,
the observed biphoton interference with visibility ∼=1 may seem surprising.

Figure 3. Counting rate for single signal photons at Detector A in coincidence with single idler photons
at Detector B as a function of the signal path delay as in Figure 2, but with higher resolution.

The influence of the pump is shown by also varying Pump 1 path delay (Figure 4). It is seen that
the visibility of the biphoton interference is now even higher, with a value of V = 98%. The fringe
spacing is the wavelength of the pump laser, confirming the phase memory effect [9,12] in this
measurement. The coherence length evaluated from this type of measurement, over a wide range of
path delays, is the coherence length of the pump laser, 1.5 mm.

In summary, the second-order interference measurement of the biphotons emitted from two
parallel, pumped, and otherwise uncoupled down-conversion crystals BBO1 and BBO2 shows a
fringe visibility ∼=1. The fringe spacing observed in these measurements always corresponds to the
wavelength of the delayed field.

Figure 4. Second-order interference of the single signal photons from crystals BBO1 or BBO2 at Detector
A in coincidence with the single idler photons from crystals BBO1 or BBO2 at Detector B, as a function
of Pump 1 path delay for BBO1 (see Figure 1).
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4. Theoretical Description

The interaction Hamiltonian describing the down-conversion process in a single crystal is

HI = Ca†
s a†

i e−iωpt + C∗asaieiωpt (1)

when the pump is treated as a classically-prescribed, undepleted, and spatially-uniform field of
frequency ωp. as and ai are the photon annihilation operators for the signal and idler fields satisfying
the energy conservation (ωp = ωs + ωi) and phase-matching (kp = ks + ki) conditions, and C
is proportional to the pump amplitude and the nonlinear susceptibility. To lowest order in C,
HI in spontaneous parametric down-conversion generates an entangled field state [9,14] that is
a linear superposition of the vacuum state |0s0i〉 and the two-photon state |1s1i〉 consisting of a
single-signal photon and a single-idler photon. In the Heisenberg picture, the positive frequency
(photon annihilation) parts of the signal and idler electric field operators may be expressed, to lowest
order in C, as

E(+)
s (r, t) = as(t)Us(r) ∼= [as0 + Da†

i0]Us(r)e−iωst, (2)

and
E(+)

i (r, t) = ai(t)Ui(r) ∼= [ai0 + Da†
s0]Ui(r)e−iωit. (3)

as0 and ai0 are the photon annihilation operators for the signal and idler vacuum fields, respectively, in
the absence of the pump field. The functions Us(r) and Ui(r) include the spatial dependence of the
corresponding electric fields, which are polarized according to type I phase matching in the experiments
described in the preceding sections. D, which is proportional to C, is determined by the solution of the
Heisenberg equations of motion that follow from the Hamiltonian with the interaction (1). The specific
forms of Us(r), Ui(r), and D will not be needed for our purposes.

As illustrated in Figure 5, the signal field E(+)
s in our simplified Heisenberg picture analysis has

two contributions: (i) the vacuum field in the signal mode and (ii) the field generated by the mixing in
the crystal of the pump field with the vacuum field in the idler mode. Likewise, the idler field E(+)

i
consists of the vacuum field in the idler mode plus the field generated by the mixing in the crystal of
the pump field with the vacuum field in the signal mode.

Figure 5. Signal- (idler-) photons are created by the mixing in the BBO crystal of the pump field with
the vacuum field in the idler (signal) mode, as described by Equations (2) and (3). The signal (idler)
field emerging from the crystal is the sum of the vacuum field in the signal (idler) mode and the signal
(idler) field resulting from the nonlinear mixing process described by the Hamiltonian (1).

For the two-crystal configuration of interest here,

HI = [C1a†
s1a†

i1 + C2a†
s2a†

i2]e
−iωpt + Hermitian conjugate, (4)

where the subscripts s 1, s2, i1, and i2 refer to the modes indicated in Figure 1. The two crystals are
assumed to be identical, in which case C1 and C2 are proportional to the complex amplitudes of the
pump fields at BBO1 and BBO2, respectively.
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The coincidence rate may be obtained simply from the superposition of probability amplitudes.
Suppose first that C1 = C2 ≡ C. There are two (indistinguishable) ways by which a signal photon can
be counted at A in coincidence with an idler photon at B. Referring to Figure 1, these are (i) a signal
photon s1 is counted at A and an idler photon i1 at B, and (ii) a signal photon s2 is counted at A and an
idler photon i2 at B. In Process (i), the signal field undergoes a reflection and a phase delay φ1, and the
idler field is transmitted through the lower beam splitter in Figure 1. The amplitude for Path (i) is
therefore proportional to rteiφ1 , where r and t are respectively the amplitude reflection and transmission
coefficients of the beam splitters, which are assumed to be identical. In Process (ii), the signal field
is transmitted through the upper beam splitter in Figure 1, the idler field undergoes a reflection
and a phase delay φ2, and the probability for this path is therefore proportional to treiφ2 . The total
probability amplitude for a signal photon to be counted at A in coincidence with an idler photon
at B is therefore proportional to rt[Ceiφ1 + Ceiφ2 ], and the coincidence counting rate is proportional
to |rtC|2|eiφ1 + eiφ2 |2 = 2|rtC|2(1 + cos θ), θ = φ1 − φ2. This implies the variation of the measured
coincidence rate with signal path delay shown in Figure 3, with the oscillation period determined by
the signal path delay (φ1) and therefore the 808-nm signal wavelength.

If C1 6= C2, which would be the case if, for example, the pump amplitudes at the two crystals were
different, the coincidence rate RAB as discussed above will be proportional to |rt|2|C1eiφ1 + C2eiφ2 |2.
Writing C2 = βC1 = |β|eiθβ , we have

RAB ∝ |rtC1|2[1 + |β|2 + 2|β| cos θβ], (5)

and a coincidence-rate “visibility”:

V =
Rmax

AB − Rmin
AB

Rmax
AB + Rmin

AB
=

2|β|
1 + |β|2 . (6)

We similarly define a contrast, or “distinguishability”,

K ≡ |C1|2 − |C2|2
|C1|2 + |C2|2

=
1− |β|2
1 + |β|2 . (7)

It follows that
K2 + V2 = 1, (8)

which is a special case of the more general expression K2 + V2 ≤ 1 of complementarity [15–19]. The
inequality in our case would apply if we did not make the implicit assumption that the pump fields at
the two crystals are mutually coherent.

First-order perturbation theory with the interaction Hamiltonian (4), assuming an initial state
|0s10i1〉|0s20i2〉 with no photons in the modes s1,i1,s2,i2 (Figure 1), gives

|ψ〉 = |0s10i1〉|0s20i2〉+ K
(

C1|1s11i1〉|0s20i2〉+ C2|0s10i1〉|1s21i2〉
)

. (9)

Here, |1s11i1〉 is the state with one photon in each of the modes s1 and i1, etc. The factor K need
not be specified, nor will it be necessary to normalize |ψ(t)〉 for our purposes. As discussed in [8],
the “entanglement with the vacuum” described by the state (9) implies the observed two-photon
coincidence rate. In terms of interfering probability amplitudes as discussed above, the amplitude to
count (annihilate) a signal photon s1 at Detector A in coincidence with an idler photon i1 at Detector B,
including the phase delay φ1, is proportional to 〈vac|as1eiφ1 ai1|ψ〉 = C1eiφ1 , where the vacuum state of
the field is denoted by

|vac〉 = |0s10i1〉|0s20i2〉. (10)

Similarly, the amplitude to count a signal photon s2 at Detector A in coincidence with an idler
photon i2 at Detector B is proportional to 〈vac|as2ai2eiφ2 |ψ〉 = C2eiφ2 , and the rate for counting a signal
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photon at A in coincidence with an idler photon at B is therefore proportional to |C1eiφ1 + C2eiφ2 |2.
This simple argument emphasizes the role played by entanglement with the vacuum field: to explain
the observed coincidence rate, we must include the vacuum states |0s10i1〉 and |0s20i2〉, as well as the
two-photon states |1s11i1〉 and |1s21i2〉 in describing the state of the field.

We now turn to a simplified Heisenberg picture analysis that exhibits explicitly the role of the
vacuum fields, as opposed to the vacuum states, participating in the downconversion at the two
crystals. The rate for counting a signal photon at Detector A in coincidence with an idler photon at
Detector B may be taken to be proportional to [20,21]

RAB = 〈vac|E(−)
A E(−)

B E(+)
B E(+)

A |vac〉, (11)

where E(+)
A and E(+)

B are the positive-frequency parts of the electric field operators at Detectors A

and B, E(−)
A , E(−)

B are their Hermitian conjugates, and |vac〉 is again the vacuum field state. As in
the preceding discussion, we treat A and B as effectively point detectors, since as a practical matter,
the spatial integration over detector volumes only introduces a complication of no interest for our
purposes here. We therefore ignore entirely the spatial variations of the electric fields, except, of course,
for the path delays described by φ1 and φ2. Then, to calculate the dependence of RAB on these path
delays, we can effectively take, to first-order in D,

E(+)
A =

(
[as10 + Da†

i10]reiφ1 + [as20 + Da†
i20]t

)
e−iωst (12)

and
E(+)

B =
(
[ai10 + Da†

s10]t + [ai20 + Da†
s20]reiφ2

)
e−iωit, (13)

which are obvious extensions of (2) and (3).
Suppose first that only the crystal BBO1 is pumped. Since as10|vac〉 = as20|vac〉 = ai10|vac〉 =

ai20|vac〉 = 0, and the photon operators for different modes commute,

〈E(−)
B E(+)

A 〉 = 0, (14)

i.e., the signal and idler fields in SPDC are uncorrelated [7]. The signal-idler photon coincidence rate is
found similarly; to second-order in D,

RAB = |D|2|rt|2〈vac|ai10a†
i10ai10a†

i10|vac〉 = |D|2|rt|2. (15)

The dependence of this signal-idler coincidence rate on only the vacuum idler field reflects the
fact that a signal photon at Detector A, produced by the mixing of the vacuum idler field with the
pump field at BBO1, is accompanied by its partner idler photon at Detector B. Since [E(+)

A , E(+)
B ] = 0,

we can also write RAB in the form

RAB = 〈vac|E(−)
B E(−)

A E(+)
A E(+)

B |vac〉 = |D|2|rt|2〈vac|as10a†
s10as10a†

s10|vac〉 = |D|2|rt|2,

which can be interpreted in the same way as (15), except that now, the roles of the signal and idler fields
are switched. The fact that we can write RAB in terms of either signal or idler vacuum expectation
values simply reflects the fact that signal and idler photons are generated in (biphoton) pairs.

For the experiment of Figure 1 in which both crystals are pumped, we obtain, from (11)–(13),

RAB = |D|2|rt|2
(
〈vac|ai10a†

i10ai10a†
i10|vac〉+ 〈vac|ai20a†

i20ai20a†
i20|vac〉

+ 2〈vac|ai10a†
i10ai20a†

i20|vac〉 cos θ
)

(16)
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to lowest order in D, where again, θ = φ1 − φ2. Equivalently, since [E(+)
A , E(+)

B ] = 0,

RAB = |D|2|rt|2
(
〈vac|as10a†

s10as10a†
s10|vac〉+ 〈vac|as20a†

s20as20a†
s20|vac〉

+ 2〈vac|as10a†
s10as20a†

s20|vac〉 cos θ
)

. (17)

Since all the vacuum expectation values in (16) and (17) = 1, we obtain again RAB ∝ 1 + cos θ:

RAB = 2|D|2|rt|2(1 + cos θ). (18)

The generalization to non-identical crystals or pump fields is straightforward and of course
reproduces the complementarity relation (8).

In the derivation of RAB based on probability amplitudes, the cos θ term resulted from the
interference of the amplitudes for the two indistinguishable processes (i) and (ii). Obviously,
the interference here is similar to the interference of two probability amplitudes in the two-slit
experiment with single photons, with the difference that RAB describes the counting of two photons
(signal and idler) in coincidence. The complementarity relation (8) applies to both examples. In the
classical description of the two-slit experiment, for example, the visibility of interference fringes is
reduced when the difference in the field intensities incident on the two slits is increased. In the
experiment of Figure 1, the visibility (6) is reduced when the distinguishability of the processes (i) and
(ii) is increased.

In the Heisenberg picture calculation, the role of the vacuum fields taking part in SPDC is explicit
in Expression (16). The vacuum fields incident on BBO1 and BBO2 are associated with ai10 and ai20,
respectively, and the last term on the right-hand side of (16) is non-vanishing because these fields have
quantum fluctuations and zero-point energy, e.g., 〈vac| 12 h̄ωiai10a†

i10|vac〉 = 1
2 h̄ωi. This suggests an

interpretation along the lines of the classical theory of stochastic electrodynamics, which we discuss in
Section 7.

5. Vacuum Fields and the Hong–Ou–Mandel Dip

The same simplified formalism in which the vacuum fields play an explicit role can be used to
describe the Hong–Ou–Mandel-dip [13] (Figure 6). In this case, photons can be counted in coincidence
at Detectors A and B if (i) both signal and idler fields are reflected by the symmetric beam splitter (BS),
or (ii) both signal and idler fields are transmitted by the beam splitter. The probability amplitudes
for these indistinguishable processes are proportional to r2 and t2, respectively. The coincidence
rate is proportional to |r2 + t2|2, and a dip in the coincidence rate (RAB = 0) is then obtained when
|r| = |t| = 1/

√
2, since r = teiπ/2.

Figure 6. Hong–Ou–Mandel setup for observation of a dip in the signal-idler photon coincidence rate
at Detectors A and B. The signal and idler fields, which are assumed here to have the same frequency
and polarization, are reflected by the upper and lower mirrors, respectively and can either be reflected
or transmitted by the beam splitter (BS).
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We can also relate the HOM interference effect to “entanglement with the vacuum” by writing the
field state given by perturbation theory as

|ψ〉 = |0s0i〉A|0s0i〉B + Dt2|1s1i〉A|0s0i〉B + Dr2|0s0i〉A|1s1i〉B, (19)

similarly to (9), where now, A and B refer to field modes incident at A and B. The transition amplitudes
implied by this state imply RAB ∝ |r2 + t2|2, as above.

In our simplified Heisenberg picture approach, the positive-frequency parts of the electric field
operators at Detectors A and B are

E(+)
A =

(
r(as0 + Da†

i0)e
−iωst + t(ai0 + Da†

s0)e
−iωit

)
(20)

and
E(+)

B =
(

t(as0 + Da†
i0)e
−iωst + r(ai0 + Da†

s0)e
−iωit

)
, (21)

where the signal and idler fields are assumed to traverse the same distance. Evaluating RAB =

〈vac|E(−)
A E(−)

B E(+)
B E(+)

A |vac〉 in the same way as for the two-crystal experiment, we obtain, to lowest
order in D,

RAB =
(
|t|4〈vac|as0a†

s0as0a†
s0|vac〉+ |r|4〈vac|ai0a†

i0ai0a†
i0|vac〉

+ r2t∗2〈vac|as0a†
s0ai0a†

i0|vac〉+ r∗2t2〈vac|ai0a†
i0as0a†

s0|vac〉
)
|D|2

= |r2 + t2|2|D|2, (22)

since the vacuum expectation values are all one. Since [E(+)
A , E(+)

B ] = 0, we can also write

RAB =
(
|t|4〈vac|ai0a†

i0ai0a†
i0|vac〉+ |r|4〈vac|as0a†

s0as0a†
s0|vac〉

+ r2t∗2〈vac|as0a†
s0ai0a†

i0|vac〉+ r∗2t2〈vac|ai0a†
i0as0a†

s0|vac〉
)
|D|2.

(23)

In either form, the HOM dip (RAB = 0) then follows for |r| = |t| = 1/
√

2 and the fact that r = teiπ/2

for the symmetric beam splitter.
These expressions have some similarity to those encountered in the theory of the Hanbury

Brown–Twiss intensity interference of chaotic classical fields. Thus, the first and second terms in (23),
for instance, correspond in effect to mean-squared intensities, while the third and fourth terms
effectively correspond to a (second-order) signal-idler “intensity” interference and are nonvanishing
even though there is no (first-order) interference of the signal and idler fields. The difference in the
HOM case is that the interference may be thought of as occurring between the signal and idler vacuum
field “intensities” proportional to 〈as0a†

s0〉 and 〈ai0a†
i0〉, respectively.

6. Remarks on the Simplified Theory

The theoretical approach we have taken accounts for the experimental results described in
Section 3, as well as the HOM dip, and as discussed in Section 4, it is consistent with the basic notions
of complementarity, which-path information, and the interference of probability amplitudes. It also
accounts for the main results of earlier experiments involving three crystals, induced coherence,
and stimulated down-conversion [7,10,12]. In addition to the assumption of monochromatic pump
and signal and idler fields, the applicability of this simplified theory relies on the assumption that the
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SPDC rate of generation of biphotons is very small. Consider, for example, the approximate solution
for the signal photon annihilation operator as implied by (2):

as ∼= (as0 + Da†
i0)e
−iωst. (24)

Since vacuum-field signal and idler field operators satisfy [as0, a†
s0] = [ai0, a†

i0] = 1, [as0, ai0] =

[as0, a†
i0] = 0, (24) implies the incorrect equal-time commutation relation

[as, a†
s ]
∼= 1− |D|2. (25)

In a more complete theory in which the down-conversion efficiency is not necessarily small, as is
related to as0 and a†

i0 by a Bogoliubov transformation [22]:

as = usas0 + vsa†
i0, |us|2 − |vs|2 = 1, (26)

and likewise for ai, and the correct commutation relations [as, a†
s ] = [ai, a†

i ] = 1 are satisfied. To better
appreciate the approximation (24) (and the corresponding approximation for ai), consider first the
expectation value of the number of signal photons implied by (26):

〈ns〉 = 〈vac|a†
s as|vac〉 = |vs|2〈vac|ai0a†

i0|vac〉 = |vs|2. (27)

Next, consider the expectation value of the square of the number of signal photons implied by (26):

〈n2
s 〉 = 〈vac|a†

s asa†
s as|vac〉

= |us|2|vs|2〈vac|as0a†
s0ai0a†

i0|vac〉+ |vs|4〈vac|ai0a†
i0ai0a†

i0|vac〉
= |us|2|vs|2 + |vs|4. (28)

Now, if, as in the experiments described earlier, the probability of generating more than one
biphoton in the measurement interval is very small, we can assume that 〈n2

s 〉 = 〈ns〉 = 0 or 1, i.e.,
that there is at most a single signal-idler pair generated during the measurement interval. This means
that (28) should be well approximated by (27), which in turn implies that |us|2 ∼= 1 and |vs|2 � 1.
Comparison of (24) and (26) then implies that |D| � 1. The simplified theory is therefore accurate
as long as, with high probability, there is at most a single biphoton during the measurement interval,
and we therefore require that |D| � 1.

The relation (25) in our simplified theory does not invalidate our calculations because we have
not required [a†

s , as] = [a†
i , ai] = 1 anywhere in these calculations. We have, however, used the

commutation relation [E(+)
A , E(+)

B ] = 0 in writing (17), for instance, but this is perfectly consistent
within the simplified theory, since, from (12) and (13),

[E(+)
A , E(+)

B ] = Dr2
(
[as0, a†

s0] + [a†
i0, ai0] + Dt2[ai0, a†

i0] + [a†
s0, as0]

)
= 0, (29)

for all values of r and t.

7. Classical Stochastic Theory of Vacuum Fields

Signal-idler intensity correlations in single-crystal SPDC have been shown to follow from a
theory in which the incoming vacuum signal fields are treated as classical stochastic fields [11].
We now re-examine such an approach, following the same lines as the simplified theory we have
used in treating these correlations with quantized fields. Our approach will be semiclassical in
the sense that the fields are treated classically, while the photodetection is described by replacing
normally-ordered field correlation functions such as 〈E(−)(r1, t1E(+)(r2, t2)〉 in the quantized-field
theory by 〈〈E (−)(r1, t1)E (+)(r2, t2)〉〉, where 〈〈...〉〉 denotes an average over an appropriate classical
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ensemble. This approach is justified for our purposes by the fact that the main features of photoelectric
detection do not require field quantization [23]. The same approach is in fact implicit in the part of the
work of [11] that relates to the classical stochastic description of the vacuum fields.

For a single vacuum mode of frequency ω, the positive-frequency part of the classical stochastic
field is assumed, as in the completely classical theory of stochastic electrodynamics [24,25], to have
the form

E (+)(r, t) = αeiθe−iωt, (30)

such that α is a fixed constant and θ is a random variable having a uniform probability distribution on
the interval [0, 2π]. The appropriate averaging 〈〈...〉〉 is then an average over the phase distribution,
and it is assumed that the randomly-varying phases of different modes are uncorrelated. We can fix
the values of the α’s such that the average energy density per mode in the classical stochastic theory is
the same as the corresponding quantized-field vacuum expectation value, which for our purposes is
proportional to

〈vac|[E(+) + E(−)]2|vac〉 = 〈vac|[ae−iωt + a†eiωt]2|vac〉 = 〈vac|aa†|vac〉 = 1. (31)

Since
〈〈[E (+) + E (−)]2〉〉 = 〈〈[αeiθe−iωt + α∗e−iθeiωt]2〉〉 = 2|α|2, (32)

this requires
|α|2 = 1/2 (33)

for each field mode in the stochastic theory. As in the preceding calculations, it will suffice for our
purposes to ignore any explicit consideration of the spatial dependence of the fields.

The classical counterparts of the quantized fields (12) and (13) are

E (+)
A =

(
[αs10eiθs10 + Dα∗i10e−iθi10 ]reiφ1 + [αs20eiθs20 + Dα∗i20e−iθi20 ]t

)
e−iωst (34)

and
E (+)

B =
(
[αi10eiθi10 + Dα∗s10e−iθs10 ]t + [αi20eiθi20 + Dα∗s20e−iθs20 ]reiφ2

)
e−iωit, (35)

where θs10, θi10, θs20, and θi20 are uncorrelated random variables, uniformly distributed on [0, 2π].
Suppose first that only the crystal BBO1 in Figure 1 is pumped. The fields at A and B are

uncorrelated because of their random and uncorrelated phases, and this is consistent with the
quantized-field theory. For the signal-idler coincidence rate, we obtain

RAB = 〈〈E (−)A E (+)
A E (−)B E (+)

B 〉〉
= |αi10|2|αs10|2|r|2|t|2

+ |D|2|r|2|t|2
(

2|αi10|2|αs10|2 + |αs10|4 + |αi10|4
)

(36)

in the stochastic theory. If we ignore the first, D-independent term and replace each |α|2 in the
remaining term by 1/2 as in (33), we obtain

RAB = |D|2|r|2|t|2, (37)
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in agreement with the result (16) obtained in the quantized-field theory. In the case that both crystals
in Figure 1 are pumped, we obtain, similarly,

RAB =
(
|αs10|2|αi20|2|r|4 + |αs20|2|αi10|2|t|4 + |αs20|2|αi20|2|r|2|t|2 + |αs10|2|αi10|2|r|2|t|2

)
+

(
|αi10|4 + |αi20|4 + |αs10|4 + |αs20|4 + 2|αi10|2|αs10|2 + 2|αi20|2|αs20|2

)
|D|2|r|2|t|2

+ 2
(
|αi10|2|αi20|2 + |αs10|2|αi20|2 + |αs10|2|αi20|2 + |αs20|2|αi10|2

)
|D|2|r|2|t|2 cos θ, (38)

where again θ = φ1 − φ2. If we again ignore the D-independent term and replace every |α|2 by 1/2,
we obtain

RAB = 2(1 + cos θ)|D|2|r|2|t|2, (39)

in agreement with the result (18) derived in the quantized-field theory.
D, which was introduced in Section 4, is proportional to the lowest (second-) order nonlinear

susceptibility, the pump-field amplitude, and the interaction time of the fields in the crystals, and it has
been assumed for simplicity that it is the same for each crystal. In most SPDC experiments, |D| � 1,
as we have assumed, so that the generation of multiple biphotons during the interaction time is
negligible. (The assumption that the generation of multiple biphotons during the interaction time is
negligible is also made in the more detailed, multimode analysis of Hong and Mandel [26].) As shown
in Section 6, D � 1 is in fact required for the validity of our simplified theory.

The D-independent terms we have ignored in obtaining (37) and (39) arise from the signal and idler
vacuum fields that are present even in the absence of any pump field or crystals. In free space without
any crystals, for example, (30) implies that 〈〈E (−)E (+)〉〉 = |α|2, i.e., a photodetector would respond
to a vacuum field in free space without any sources. It would make sense, therefore, to argue that
the physically meaningful, measurable intensity should be defined by subtracting out the source-free
contribution in the classical stochastic treatment of the vacuum field [11,27]. In the calculation of
RAB, it might be argued similarly that the D-independent terms in (34) and (35) are unphysical and
should be dropped. A problem with such an argument, however, is that those terms contribute to the
D-dependent terms in RAB, and without them, the stochastic theory does not reproduce results such
as (37) or (39) that are consistent with the quantized-field theory and with the experiment, as discussed
earlier. In other words, the D-independent terms are required if we are to obtain interference effects
that appear naturally in the quantized-field theory. Thus, while a classical stochastic approach to the
vacuum field can yield results that mimic those found in the quantized-field theory, such an approach
appears to be fundamentally inconsistent.

In the quantized-field theory, there are also, of course, D-independent operators in the expressions
for E(±)

A and E(±)
B , and they do contribute explicitly to RAB. However, in the quantized-field theory,

these operators do not give rise to measurable effects in the absence of any sources, nor do they give
rise to D-independent terms in RAB. Unlike the intensity 〈〈E (−)E (+)〉〉 = |α|2 in the absence of any
sources, for example, 〈E(−)E(+)〉 = |〈vac|a†a|vac〉 = 0 in the quantized-field theory: a photodetector
does not respond to a source-free, vacuum field.

8. Concluding Remarks

The high-visibility interference of the biphotons from two parallel pumped, but otherwise
completely decoupled crystals shown in Figure 4 can be intuitively understood with a model based
on signal and idler vacuum fields. The vacuum signal and idler fields not only mix with the pump
field to generate the biphotons; the “un-mixed” parts of these fields in the same biphoton modes also
experience phase delays as they propagate to the detectors and act with the generated fields to give
the measured coincidence counting rate. This model leads to the same predictions as the conventional
picture emphasizing entanglement, complementarity, and which-path information in the coincidence
counting of signal photons at Detector A and idler photons at Detector B.
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We have also shown with our simplified model that the Hong–Ou–Mandel dip can be described
not only as an interference effect resulting from entanglement with the vacuum state, but also as
a consequence of vacuum fields. As in the simplified theory of the two-crystal experiment, the
expressions we obtained for the HOM interference (Equations (22) and (23)) involve only vacuum fields.

The vacuum-field interpretations discussed in this paper are not the only ones possible.
Our intention here has only been to show that, within the context of spontaneous parametric
down-conversion, the vacuum-field picture allows for a simple, alternative, and fairly intuitive
approach to the understanding of results obtained in different experimental configurations. While this
approach suggests an interpretation along the lines of a classical stochastic theory of the vacuum field,
we have argued that such a theory is fundamentally inconsistent because it predicts that there would
be photon coincidence counting over and above what is observed and that such coincidence counts
would be observed even in the absence of the pump fields.
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