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Abstract: Forest structure is a crucial component in the assessment of whether a forest is likely
to act as a carbon sink under changing climate. Detailed 3D structural information about the
tundra–taiga ecotone of Siberia is mostly missing and still underrepresented in current research
due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can
provide important knowledge for the understanding of vegetation properties and dynamics. In this
study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid
calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric
point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia.
Subsequently, we detected individual tree tops using a variable-window size local maximum filter
and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this,
we successfully detected 67.1% of the validation individuals. Simple linear regressions of observed
and detected metrics show a better correlation (R2) and lower relative root mean square percentage
error (RMSE%) for tree heights (mean R2 = 0.77, mean RMSE% = 18.46%) than for crown diameters
(mean R2 = 0.46, mean RMSE% = 24.9%). The comparison between detected and observed tree height
distributions revealed that our tree detection method was unable to representatively identify trees
<2 m. Our results show that plot sizes for vegetation surveys in the tundra–taiga ecotone should
be adapted to the forest structure and have a radius of >15–20 m to capture homogeneous and
representative forest stands. Additionally, we identify sources of omission and commission errors and
give recommendations for their mitigation. In summary, the efficiency of the used method depends
on the complexity of the forest’s stand structure.

Keywords: UAV; photogrammetry; remote sensing; structure from motion; tundra–taiga ecotone;
point cloud; forest structure
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1. Introduction

Arctic biomes are projected to change dramatically due to global warming, which is amplified in
the polar regions [1,2], while interactions between boreal forests and the atmosphere are influencing
the global climate via a positive feedback loop [3,4]. These changes can be primarily observed at biome
transitions, among which the tundra–taiga ecotone (also called forest tundra or tundra–taiga transition
zone) is the most prominent in the northern hemisphere stretching over more than 1.9 million km2 [5].
The tundra–taiga ecotone is the transition zone between dense boreal forest and treeless tundra. Here,
warming temperatures lead to a shrubification of the tundra, latitudinal northward and altitudinal
upward transition of the treeline [6], and a densification of existing forest stands [7,8]. To predict
potential changes for the treeline, models can be made to simulate this process [9,10]. However,
crucial field data for validation is scarce from these remote study areas, since the region is vast,
the infrastructure poor, and the vegetation period only very short.

Remote sensing has therefore become a valuable tool for studying the tundra–taiga ecotone
(e.g., [5,11–15]), but freely available multispectral optical data are limited by their spatial and temporal
resolution and are often insufficient for the validation of field measurements as small-scale features
and processes dominate the structure of the tundra–taiga ecotone. Moreover, space- or air-borne
acquisitions are often restricted by high temporal and spatial cloud cover in the Arctic. Assessments
of forest structure and metrics are traditionally acquired by field work. Time restrictions allow only
a few individuals to be recorded, while subjective data acquisition hampers the quality, and objective
measurements are often not feasible. Ultra-high resolution optical data rapidly obtained by unmanned
aerial vehicles (UAVs) at the plot level can build a bridge between in situ and coarse resolution Earth
observation data and potentially be used for upscaling approaches. Light detection and ranging (lidar)
delivers high-precision point clouds and has become a widely used method in geoscience and forest
applications (e.g., [16–22]) but is less mobile and requires more experience to operate.

Structure-from-Motion (SfM) and Multi View Stereo (MVS) techniques are advanced computer
vision methods that use multiple (depending on the target resolution and area of interest, tens to
thousands of) overlapping images for the reconstruction of 3D point clouds [23]. The SfM algorithm
matches features within a series of overlapping images (ideally > 75% overlap), approximates the
camera position of each image, and reconstructs the pixel positions by applying a bundle adjustment.
SfM data collection and operation is more cost effective than lidar scanning [24,25]. However,
photogrammetric approaches do not allow us to record multiple laser returns and only allows
forest-structure reconstruction if the tree spacing is sufficiently large to identify ground in between and
below the canopy. Despite this, UAVs are still an attractive alternative to traditional data-collection
methods and to the more expensive airborne lidar. With worldwide increasing usage of UAVs for both
recreational and commercial photography or cinematic purposes, small off-the-shelf systems with
high-resolution RGB cameras have become very affordable. SfM processing has been streamlined
and the generation of point clouds can be achieved through open source and commercial software
suites. Furthermore, a wide range of point cloud post-processing and classification software is
available, tailored to various applications and needs. The resulting point clouds contain for each
point the XYZ position, either in a local or projected coordinate system multispectral intensity values,
and a classification code (e.g., unclassified, ground, or vegetation).

SfM has successfully been used for studying forest stand structure and biomass stocks (e.g., [26–31]).
Bohlin et al. [32] combined airborne SfM with a lidar-derived digital terrain model to obtain tree
height, stem volume, and basal area of boreal forest stands and validated them with field data on
24 sites. Fritz et al. [33] conducted a UAV survey using consumer grade cameras and compared
the point cloud to a high-resolution lidar point cloud of the same study site. St-Onge et al. [34]
obtained photogrammetric point clouds from boreal forest stands, detected and segmented individual
tree crowns, and then classified them using structural and spectral tree metrics. In comparison to
a lidar dataset, they found that the photogrammetric classification performed better. The biomass
of tropical forest was estimated by Ota et al. [35] using both lidar and SfM canopy height models.
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Their validation showed that lidar-based estimations had lower root mean square error (RMSE) values.
Newer segmentation methods address the biggest limitation of 2D methods and are based on the
point cloud: Ferraz et al. [36] developed a 3D Adaptive Mean Shift (AMS3D) algorithm capable of
segmenting tree crowns in all layers of a tropical forest stand. A top to bottom morphological point
classification segmentation was developed by Li et al. [21] with data from a small footprint discrete
return lidar. A novel approach by Ayrey et al. [37] clustered points in vertically stacked layers and
segmented the trees by linking the clusters between the layers. Pirotti et al. [38] reviewed and compared
different tree segmentation algorithms used in previous studies on lidar and photogrammetric point
clouds. They noted that the algorithm from Li et al. results in the highest precision but also requires the
highest computation time. Some algorithms already address limitations regarding the segmentation
of understory vegetation [39–41]. In conclusion, the most convenient option for our study area is
an initial 2D segmentation based on a canopy height model because the method is well established and
most forest stands in the tundra–taiga ecotone have wide tree spacing with visible ground vegetation
in between.

This study aims to derive forest metrics from ultra-high resolution photogrammetric point clouds
along a bioclimatic transect in NE Siberia, from the treeless tundra and summergreen open forests of
central Chukotka to the dense mixed tree species stands of SW Yakutia (Figure 1). For this, a processing
pipeline is developed, starting with the reconstruction of 3D point clouds from multispectral UAV
images, to the geostatistical analysis and subsequent validation using field data. Past fieldwork has
included time-consuming measuring of tree metrics. Tree height and crown diameter, in particular,
have inconsistent or high uncertainties. Our results could accelerate future fieldwork, by saving time
on measuring variables that can reliably be calculated from photogrammetric point clouds and by
having a better understanding of the scale-dependent differences in the tree stand structure along
the studied transect. Further, we evaluate the compatibility of the canopy height model-based tree
segmentation method with the different types of stand structures encountered and highlight limitations
and typical issues as well as giving recommendations for parameter optimization.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 24 
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has much tree cover but also many dead trees lying on the forest floor, either windthrown or a result 
of fire disturbance. 
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The approximate plot locations were chosen beforehand based on landsat images. They 
represent dominant forest systems found in the region and are homogeneous in their spectral signal. 
In the field, the exact position was determined using the same criteria from the visual perspective. 
Two 30 m long tape measures were laid out along the main cardinal directions, intersecting in the 
plot center, marking the main axes of a circular area with a radius of 15 m (Figure 2). A minimum of 
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Figure 1. Overview of the study region in NE Siberia and the selected forest sites. Type I: larch
dominated, low density; Type II: larch dominated, ultra-high density; Type III: mixed tree species,
high density.
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2. Materials and Methods

2.1. Study Sites

Our study sites cover a bioclimatic gradient in north-eastern Russia (Figure 1) from extremely
open larch forest with mean tree heights around 5 m in the vicinity of Lake Ilirney in central Chukotka
(tundra–taiga ecotone, 67.36◦N 168.32◦E) to dense mixed tree species stands near Lake Khamra in
south-western Yakutia (boreal forest biome, 59.99◦N 112.98◦E). We selected 10 plots with strong
differences in stand structure that are representative of their region and classified them into three
distinctive forest types (Types I, II, and III; see below) to help understand what kind of forests the
methods are suitable for and to clarify their limitations. The representative plots for each forest type
were chosen from a total set of 64 plots based on multiple criteria: the similarity of species composition
within one type and the overall similarity of stand structure based on our field data including tree
cover, density, and average vegetation heights; the availability and completeness of the UAV data and
its quality in terms of light conditions during flight; and the exclusion of plots that did not produce
good point clouds because flight height was too low above the canopy.

2.1.1. Type I: Open, Larch Dominated Stands

Type I sites (EN18001, 03, 12, 14, 26 and 27) are located in the proximity of Lake Ilirney. Larches
(Larix cajanderi Mayr.) are the only tree forming vegetation. The herb layer consists of cotton-sedges
(Eriophorum spp.), mosses, berries (e.g., Vaccinium uliginosum L., Vaccinium vitis-idaea L.), lichens,
and dwarf- and low-shrub forming tree taxa such as dwarf birch (Betula nana L.), willow (Salix spp.),
and infrequent Siberian dwarf pine (Pinus pumila (Pall.) Regel) and green alder (Alnus viridis (Chaix.)
D.C.). The micro-topography of lowland sites is dominated by mounds of cotton-sedges, while better
drained sites lack this species and hence show less micro-relief.

2.1.2. Type II: Dense, Larch Dominated Stands

Type II has a similar species composition to Type I, but is characterized by a higher tree density
and cover. The site EN18030 (68.4055◦N, 164.533◦E) is located approximately 200 km west of Lake
Ilirney and is characterized by extremely densely spaced narrow crowns. Field observations suggest
that the area has experienced regular fire events, which have controlled the current stand structure.
Outside the plot, but within the homogeneous stand, a few very large trees survived the fires.

2.1.3. Type III: Dense, Mixed Tree Species Stands

Type III includes sites EN18070, 80, and 83. They are located in central to south-western Yakutia and
subject to different levels of disturbance. The stands are dominated by varying amounts of summergreen
Dahurian larch trees (hybridization zone of Larix gmelinii (Rupr.) Rupr. and L. cajanderi), and evergreen
Siberian pine (Pinus sibirica Du Tour) and Siberian spruce (Picea obovata Ledeb.), with occasional birch
(Betula spp.) and Siberian fir (Abies sibirica Ledeb.). Alder and willow form large shrubs up to heights of
4 m. In contrast to the other plots, EN18070 was not meant to be homogeneous and representative for
the region, but rather a transect itself reaching from a dense forest out into an open meadow. EN18080
has very open crowns, most likely due to a fire. EN18083 has much tree cover but also many dead
trees lying on the forest floor, either windthrown or a result of fire disturbance.

2.2. Data Acquisition

The approximate plot locations were chosen beforehand based on landsat images. They represent
dominant forest systems found in the region and are homogeneous in their spectral signal. In the field,
the exact position was determined using the same criteria from the visual perspective. Two 30 m long
tape measures were laid out along the main cardinal directions, intersecting in the plot center, marking
the main axes of a circular area with a radius of 15 m (Figure 2). A minimum of 10 individuals of
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each tree and shrub species present were selected, for which we measured the stem diameter at breast
height and at the base, identified damages (e.g., fire scars, wind damage, broken or dead terminal
shoot, multi-stems), estimated the maximal and perpendicular to maximal crown diameter, tree height
(or length: distance from the stem base to the top), crown start height, vitality in six categories, and cone
quantity and quality. The position of the individuals was either recorded using a standard GPS device
or noted as coordinates in the local grid. Additionally, we estimated the height of all trees > 20 cm in
the four quadrants separated by the tape measures.

We relied on a consumer grade DJI Phantom 4 quadcopter. The standard built-in camera of the
type FC330 is a 12 megapixels RGB frame camera with a 94◦ field of view (FOV). It is tiltable on three
axes via a gimbal and has a built in GPS/GLONASS receiver, automatically geo-tagging the images.
The flight planning was executed with a free smartphone Android-application called Pix4Dcapture [42].
With no internet access in the field for over a month, we relied solely on the smartphone’s GPS position
to manually set up the flight plans standing in the center of the plots. Each flight consisted of two
successively flown flight patterns (Figure 2). We used a double grid pattern with 50 × 50 m grid
extent and 30 m height above take-off elevation (ATOE). The camera was in near nadir position (facing
80◦ forward) to ensure the best image quality for the generation of orthomosaics. The sideways and
frontal overlap was set to 85% and the flight speed to approximately 1 m/s. Additionally, a circular
mission along a 25 m radius circle at 30 m ATOE acquired images with the camera pointing at the plot
center at take-off elevation, which equals a camera angle of 90−

(
atan
(

30 m
25 m

)
·

180
π

)
= 39.8◦. We used this

approach to gain a better image coverage of the crown sides and the ground below the forest canopy.
The capture interval angle was set to 10◦ or lower, resulting in a minimum of 36 images in a full circle.
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Figure 2. Generic Unmanned Aerial Vehicle data acquisition and flight pattern consisting of a double
grid (blue) and a circular mission (orange). The two 15 m long grid lines (red) divide the plot area into
four quadrants of similar size (yellow).

2.3. Ground Classification and the Derivation of Digital Elevation Models

The first step in our processing chain (Figure 3) was the reconstruction of dense point clouds
in Agisoft PhotoScan Professional [43] using SfM and MVS techniques. In this manuscript, we refer to
SfM and include the processing chain of SfM and MVS. We tuned the parameter settings to capture as
much detail of the complex tree structures as possible. To achieve that, the alignment and dense cloud
generation quality was set to highest and ultra-high. The depth filtering in the dense cloud generation
was changed from the default to a mild filtering to preserve more detail. PhotoScan automatically
integrated the GPS information of the images’ EXIF headers and geo-referenced all products.
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Abbreviations: UAV = Unmanned Aerial Vehicle, DSM = Digital Surface Model, DTM = Digital Terrain
Model, CHM = Canopy Height Model.

To create a digital terrain model (DTM) the point cloud needed to be separated into two subsets,
the first containing the higher vegetation and the second the remaining points representing the ground
cover and lower vegetation (lying dead wood, shrubs, and the herb layer). For this step—called ground
classification—a variety of morphological filters can be applied [44–46]. The Cloth Simulation Filter
(CSF) after Zhang et al. [47] is a morphological filter that was developed for discrete return lidar point
clouds and performs particularly well in conditions with highly variable micro-topography containing
very few, or no, true ground points. It inverts the topography, or point cloud, and then simulates a piece
of cloth being placed on top of the terrain, dropping into depressions and enclosing the high spots
depending on the stiffness of its fabric. This simple design makes it very computationally effective
(<3 s for point clouds with 30 million points). The filter is implemented in the R-package RCSF [48]
and has three main parameters that should be adjusted. The scene parameter or rigidness adapts the
algorithm to the overall site morphology and determines the first order stiffness of the cloth and can be
1 for flat scenes, 2 for minor relief, and 3 for steep slopes. The cloth resolution sets the cloth’s cell size.
It should be set to a value that ensures flexibility for following the micro-topography, or low noise,
while not being smaller than the inner diameter of the high vegetation bodies. The third parameter is
the classification threshold that is the maximum distance between the cloth and a point to be classified as
ground. All parameters used for the analysis of the sites are found in Table 1. The classes are stored in
separate LAS files for convenient further analysis.

Table 1. The applied parameters in the Cloth Simulation Filter ground classification are adjusted to the
micro-topography and the quality of the point cloud.

Sites Rigidness Cloth Resolution (m) Classification Threshold (m)

EN18001/03/12 1 0.1 0.1
EN18014/26/27 1 0.2 0.1

EN18030/80 1 0.2 0.2
EN18070 2 0.2 0.3
EN18083 2 0.1 0.2
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The ground point clouds were rasterized on a 3 cm grid using a Triangular Irregular Network (TIN)
algorithm, which performs a linear Delaunay interpolation within each triangle of the TIN. The next
step was filtering the DTM with a local minimum moving window filter (15 × 15 px matrix) to shift
the DTM below the herb layer and closer to the true ground (bare earth). This step was left out for
sites that were characterized by low point densities and noisy ground to prevent pits from getting
amplified (sites EN18030/80/83). Subsequently, a local mean filter of the same window size mitigates
the effect of the micro-topography being forwarded to the CHM and closes potential pits from low
outlier points. A digital surface model (DSM) is a raster interpolating between the highest points in
each grid cell. Again, a 3 cm resolution grid is used to rasterize the full point cloud and the elevation
value of the highest point in each cell is assigned as the new raster value. Single cells or small areas
that do not contain any points (NA cells) get interpolated using TIN-interpolation (as for the DTM).
For reconstructed DSMs with many apparent holes in the crowns, we used a different approach (sites
EN18030/70): the interpolation during rasterization was disabled and the resulting holes in the DSM
were filled with the DTM values of these cells. This prevents floating fragmented crowns belonging
to multiple individuals without ground points below them from getting merged into a single large
artificial crown by the interpolation.

The canopy height model (CHM) equals the difference between the DSM and the DTM (CHM =

DSM–DTM), and thus normalizes the DSM to the ground. Each pixel represents the vegetation
height above the ground. In preparation for the tree segmentation, two derived versions are
calculated: an aggregated (resampling factor = 6, function = mean) CHM and a subsequently
smoothed (3 × 3 px mean) CHM. The smoothing is an important step that prevents over-segmentation
of crowns due to multiple spurious tree tops [49]. Stronger smoothing (5 × 5 px mean) can mitigate
errors from fragmented crowns as present in sites EN18083 or EN18070. All raster products were
clipped using a polygon mask created by fitting a convex hull around the XY projected points of the
point cloud using the R package concaveman [50].

2.4. Individual Tree Detection and Crown Segmentation

Individual Tree Detection (ITD) and crown segmentation was done using the R-package
ForestTools [51]. Mohan et al. [49] analyzed forest stands using canopy height models and found
that the fixed window size of a tree detection local maximum filter (LMF) should be smaller for
study sites with higher tree densities. The individual tree detection function vwf we used is based on
Popescu et al. [52] and uses a dynamic circular moving window LMF. The window size is therefore
different for every pixel as it calls a linear function that calculates the search window radius based
on the pixel’s height. Thus, it considers the fact that large trees usually have larger crown diameters
and prevents underestimating the number of small trees that otherwise would get incorporated into
nearby larger trees. A pixel is defined as a tree top when no higher pixel is found in its search radius.
Intuitively, the linear function should describe the allometric relationship between the tree’s height and
its crown diameter. We experimented with various set-ups and found that generally a much narrower
function works better to differentiate between closely spaced trees. This way, the search radius around
a local maximum is smaller but the crown area could, as long as there is no secondary peak, still be
indefinitely large. The implications of different formulae used in different kinds of forest structures are
shown in Table 5. The functions used in this study are listed in Table 2.

A marker-controlled inverse watershed segmentation (mcws) was conducted to identify the crown
area corresponding to the detected tree tops. This method is similar to the watershed segmentation
commonly used in hydrological analysis, where it separates the catchment basins of river networks [53].
The algorithm inverts the relief of the CHM, transforming protruding crowns into valleys. Taking the
tree top markers as seed points, the gradient of each raster cell to its neighbors is calculated to
determine the outline of the catchment or crown area. A minHeight parameter restricts the crown sides
to a minimum height. Choosing a slightly larger value compensates for the enlargement of the crowns
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due to previous smoothing and aggregating. Every detected tree from now on has a unique identifier
referred to as the TreeID.

Table 2. The linear functions used for the individual tree detection determine the search radius r
dependent on the pixel height h.

Sites r (h) Comments

EN18001/03/12/14/27 0.045 h + 0.8 Small and widely spaced trees
EN18070/26/80 0.020 h + 0.6 Narrow and tall trees

EN18083 0.020 h + 0.4 Tall trees
EN18030 0.035 h + 0.05 Narrow, closely spaced, and small trees

2.5. Forest Stand Metric Derivation

The TreeID is passed on to a new field in the trees-only-LAS file used by a function from the
rLiDAR package [54] called CrownMetrics. This function calculates a number of metrics, from which we
only use two perpendicular crown diameters. It also filters out trees that do not contain multiple points.
Tree height was calculated by finding the highest pixel value in the crown area of the unsmoothed DTM.

To validate the homogeneity of our plots within their surroundings, but still use the full extent
of the point cloud, we divided each site into zones of different sizes. We digitized the grid lines
and the plot center in PhotoScan and loaded the shape files, along with the orthophotos and CHMs,
into ArcMap [55]. A 15 m buffer zone around the center point contoured the true plot area. The four
ends of the grid lines were extended to the circle using the advanced editing toolbox. The features to
polygon tool split the buffer polygon at its intercepts with the extended grid lines to create a polygon
containing four quadrant polygon features. Starting from the plot center, six circular zones with
successively increasing diameter (5 m intervals) were created and intersected with the point cloud area.
The morphological site metrics and zonal statistics were calculated in those zones, as well as for the
whole point cloud and the four field quadrants. The slope and the aspect of the DTM were calculated
with the terrain function implemented in the raster package [56] and is based on Horn [57]. Trees that
fall in each zone were sub-sampled and the SpatialPolygonsDataframe containing the crown areas was
clipped for the calculation of the exact crown cover. Additionally, we calculated tree density as trees
per hectare, mean tree height, crown, area and crown diameter plus their standard deviations.

2.6. Validation

To validate the “synthetic forest” it was necessary to assign the FieldID (observed trees) to the
TreeID from the analysis (detected trees). As the field coordinates of the tree individuals had a high
uncertainty and marked the position of the tree’s base, not its crown, we had to manually assign those
points that were outside the corresponding crown area. We identified the crown polygons to which the
field individuals corresponded and merged their data tables with functions from the R-package sp [58].

3. Results

3.1. Point Cloud Reconstruction and Individual Tree Detection

We successfully detected a total of 4719 trees and derived individual tree, stand structure, and site
morphological metrics from 10 photogrammetric point clouds (Table 3; pre-processed point clouds are
available for download at https://doi.pangaea.de/10.1594/PANGAEA.902259).

The Type I sites have a mean tree density (ρ) of 551 trees per hectare (with a standard deviation (SD)
of 155.39 ha−1, a minimum ρ of 492.67 ha−1 (EN18001), and a maximum ρ of 773.07 ha−1 (EN18027)),
a mean tree height of 5.83 m (SD = 1.12 m), and a crown cover of 21.12% (SD = 3.43%). EN18030 as
the only example of Type II has the highest tree density of 4597 ha−1, a mean tree height of 4.82 m,
and a cover of 53%. Type III has a mean tree density of 1173 ha−1 (SD = 546.46 ha−1, minimum
ρ = 801.07 ha−1 (EN18070), maximum ρ = 1800.33 ha−1 (EN18080)), a mean tree height of 12.53 m

https://doi.pangaea.de/10.1594/PANGAEA.902259
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(SD = 6.45 m), and mean cover of 36% (SD = 5.29%). The mean crown area is highest in Type I (4.13 m2),
slightly smaller in type III (3.61 m2), and lowest in Type II (1.15 m2).

Table 3. The shown metrics are calculated for the full point cloud extent.

Sites
Type I Type II Type III

EN18001 EN18003 EN18012 EN18014 EN18026 EN18027 EN18030 EN18070 EN18080 EN18083

Latitude 67.3927 67.3969 67.4021 67.3953 67.3961 67.3934 68.4055 63.0829 59.9771 59.9747
Longitude 168.3468 168.3471 168.3781 168.3491 168.3543 168.3590 164.5327 117.9850 112.9613 113.0029

Plot area (m2) 3673.84 4130.72 3895.52 4058.5 3549.85 3841.82 3769.85 9474.81 3782.64 2943.26
Mean slope (◦) 12.5 23.01 12.07 12 14.93 15.66 15.13 13.89 16.02 16.98
Mean aspect (◦) 163.22 164.96 184.41 128.24 154.25 170.48 167.97 179.63 182.8 212.09
Total detected 181 146 259 240 153 297 1733 759 681 270

Tree density (n/h) 492.67 353.45 664.87 591.35 431 773.07 4597 801.07 1800.33 917.35
Cover 0.21 0.23 0.19 0.16 0.22 0.26 0.53 0.4 0.3 0.38

Mean height (m) 6.58 6.48 4.95 3.99 6.13 6.86 4.82 14.76 5.26 17.56
SD height 3.27 3.11 2.71 2.63 3.41 3.28 1.59 5.4 4.46 8.39

Mean crown area
(m2) 4.24 6.42 2.83 2.77 5.17 3.35 1.15 4.98 1.68 4.18

SD crown area 3.84 5.83 2.43 2.85 4.18 2.75 0.74 4.26 2.09 3.98
Mean crown
diameter (m) 2.31 2.95 1.91 1.81 2.67 2.16 1.31 2.74 1.44 2.47

SD mean crown
diameter 1.33 1.44 0.94 1.1 1.2 0.99 0.45 1.23 0.92 1.29

3.2. Validation of Individual Tree Characteristics

We detected between 49% and 100% (mean = 74.8%, total detection rate of 67.1%) of the individual
trees in each surveyed site. Typically, trees that the detection method failed to recognize were smaller
than 2.5 m, but, depending on the stand structure, exceptions up to 12 m occurred as well (Table 4).
Tall undetected trees stood either very close to or under a neighboring tree. Linear regressions of
observed versus detected tree heights had a mean coefficient of determination (R2) value of 0.77 with
the highest mean correlation in Type II (R2 = 0.87, N = 1), followed by Type III (R2 = 0.82, N = 4),
and lowest in Type I (R2 = 0.73, N = 6). We removed an outlier in two cases (EN18012/14), where almost
horizontally leaning trees were surveyed.

Table 4. Validation results for individual tree metrics and stand structure for 10 field sites. Abbreviations:
Nd = number detected, NO = number observed, H = tree height, CD = crown diameter. All heights,
diameters, and corresponding root mean square error (RMSE) values are in meters.

Site
Type I Type II Type III

EN18001 EN18003 EN18012 EN18014 EN18026 EN18027 EN18030 EN18070 EN18080 EN18083

ND/NO 7/10 10/11 9/11 33/68 11/15 8/10 12/12 11/20 23/30 23/32
Percentage

ND/NO
70 91 82 49 73 80 100 55 77 72

Mean H 5.1 5.25 6.07 4.51 7.37 5.76 6.39 11.1 7.53 14.12
SD H 3.52 3.04 3.21 4.15 4.14 2.7 3.21 7.31 6.45 8.73

Smallest
detected 3.75 1.8 1.65 2.2 7 4.1 1.95 4.5 0.96 2.6

Tallest
un-detected 2.05 1.75 1.23 8 2.9 1.7 - 9 2.5 12

H R2 0.67 0.76 0.63 0.86 0.64 0.83 0.87 0.82 0.96 0.67
H RMSE 1.56 1.29 1.11 1 1.22 0.63 0.62 2 1.08 3.73

H RMSE% 28.32 21.77 18.58 3.52 22.52 16.06 9.55 26.17 7.3 28.41
Mean CD 2.1 2.42 2.42 1.99 3.1 2.56 1.51 2.95 1.54 2.42

SD CD 1.28 1.93 1.43 1.77 1.89 1.51 0.95 2.09 1.35 1.43
CD R2 0.94 0.81 0.13 0.62 0.64 0.22 0.32 0.26 0.34 0.13

CD RMSE 0.27 0.78 0.99 0.68 0.5 0.55 0.37 1.19 0.73 0.99
CD RMSE% 10.63 26.65 28.73 23.54 15.81 21.89 22.63 33.34 40.82 28.73
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The root mean square error (RMSE) varies for the three forest types with the highest mean RMSE
in Type III (2.27 m), followed by Type I (1.135 m) and lowest in Type II (0.62 m). This indicates
that the absolute errors are higher for taller trees. On average, the RMSE measures 18.46% of the
mean tree height (RMSE%). Most sites show a cone shaped distribution of data points with stronger
correlations for lower heights and higher variance with a tendency towards underestimation for greater
heights (Figure 4). The detected heights of plot EN18083 dominantly overestimate the field heights.
The regression model of EN18030 has a very pronounced interception point with the line of perfect
correlation at approximately 5.8 m, marking a change from overestimation to underestimation.

The observed crown diameters are weakly correlated with the detected crown diameters
(mean R2 = 0.46, mean RMSE = 0.67 m, mean RMSE% = 24.9%) and show a high inter-type variability
(Figure 5). Type III has a very low mean R2 of 0.24, with no clear trend towards under- or over-estimation,
whereas crown diameters of Type I sites are correlated more strongly than the average (R2 = 0.56).
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Figure 4. The validation of detected versus observed tree heights for each of the 10 study sites with
different forest structures sorted by forest type. The linear regressions (dashed red lines) show generally
a good fit with regression lines running parallel to the bisecting line in combination with high coefficients
of determination (R2) and low root mean square errors (RMSE). Type I: larch dominated, low density;
Type II: larch dominated, ultra-high density; Type III: mixed tree species, high density.
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Figure 5. Simple linear regressions (dashed red lines) of observed versus detected crown diameters.
At many sites the estimated crown diameters of large trees were smaller than recorded during fieldwork,
hence regression slopes are mostly <1 and coincide with low R2 values.

3.3. Validation of the Stand Structure

The observed height distributions of most sites show two distinctive peaks (Figure 6). The highest
counts are always found in the first two height bins (0–1 and 1–2 m) and are separated from a symmetrical
second peak that comprises taller trees by a prominent minimum. The early peaks are absent or greatly
underrepresented in the single quadrant detected distributions, which is partly due to the low number
of individuals. The field data of EN18030 has an asymmetrical single peak in the 2–4 m bins, while the
detected distribution has its (also asymmetrical) peak at 4–6 m.
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Figure 6. Height distribution validation histograms (bin size = 1 m) of the corresponding plot area
of 10 study sites ordered by forest type. Detected trees (yellow bars) show a good fit to observations
(grey bars) for larger trees but fail to reflect the observed peak usually seen in the 0–2 m bins. Type I:
larch dominated, low density; Type II: larch dominated, ultra-high density; Type III: mixed tree species,
high density.

3.4. Zonal Homogeneity Analysis

To evaluate whether the chosen plot size (15 m radius circle) was an appropriate representation of
the surrounding forest stand, we compared calculated site metrics for multiple successive growing
areas (buffer zones). The tree density typically starts either very high or low in the first zone and slowly
converges towards the point cloud mean (Figure 7). The first point of stability can give an estimate of
the homogeneity of the stand.
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Figure 7. Tree density values depend strongly on the size of the analyzed area. Black circles represent
values for the circular buffer zones around the plot center with increasing radius (the smallest zone
has a radius of 5 m ≈ 700 m2, the largest 30 m ≈ 2800 m2). In most cases the tree density converges at
a radius of 15–20 m.

Tree density of sites EN18026/80 does not converge at all within their point cloud extent.
EN18001/12/27 densities converge outside the 15 m buffer radius zone. The remaining sites
EN18003/14/30/83 converge at smaller radii than 15 m. The mean tree height is spatially more
stable and generally converges before the 15 m or even 10 m radius (Figure 8). The only exception is
EN18001, where the mean tree height only stabilizes in the 20 m buffer zone.
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Figure 8. Mean tree height is spatially more homogeneous that tree density and cover. Black error bars
display the standard deviation.

Tree cover does not stabilize within the point cloud of sites EN18027/80/83, converges in the 15 m
zone for sites EN18001/12/14/30, and in the 20 m zone of site EN18026 (Figure 9). The missing peak in
the low heights, which was observed in the quadrant validation, is more pronounced in the detected
height frequency distributions of the larger buffer zones. The distribution typically establishes the peak
in the 0–15 m zone and reaches its final shape in the 0–20 m zone, with only minor changes occurring
within larger radii.
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Figure 9. Tree cover (fraction of ground covered by tree crown area) is the most heterogeneous
of the studied metrics and often converges at large areas or not at all, indicating a heterogeneous
stand structure.

4. Discussion

4.1. Methodology Applicability for Various Forest Structures

The task of detecting individual trees based on ultra-high resolution photogrammetric point
clouds from the diverse types of forest stands encountered along the bioclimatic transect called for
flexible, computationally efficient methods [59]. Therefore, we combined a cloth simulation filter
ground-classification approach with a marker-controlled watershed crown segmentation algorithm,
which delivered good estimates of tree position, height, and crown diameter. Despite the integration
of both understory and dominant trees into our field survey (0.18–26 m), we successfully detect 67.1%
of the validation trees. This rate is relatively low compared to other studies, which either deal with
highly managed forest stands or do not consider small understory trees (e.g., [32,60,61]) and generally
yield higher detection rates of 76% to 96%. Differences in stand complexity make it very difficult
to compare detection methods across studies, as it has already been noted elsewhere [38]. Further,
Hamraz et al. [39] point out that the inclusion of understory vegetation into the segmentation process
is accompanied by an overall higher number of over-segmentation errors.

The comparison of field measured and detected crown diameters (mean R2 = 0.46,
mean RMSE = 0.673 m, mean RMSE% = 24.9%) reveals bigger relative differences than the height
validation (mean R2 = 0.77, mean RMSE = 1.135 m, mean RMSE% = 18.46%). Studies that have used
similar methods report the same issue but with higher R2 values and larger root mean square errors.
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Popescu et al. [17] derived crown diameters for multiple sites in Virginia, USA using a small footprint
lidar and report R2 values of 0.62 to 0.63 and RMSE values of 1.36 to 1.41 m. Panagiotidis et al. [30]
conducted a UAV-based SfM study in mixed conifer stands in the Czech Republic and note a mean
RMSE of 0.93 m and a mean R2 of 0.74. The weak correlation between observed and detected crown
diameters could have its origin in the quality of the available field data, which are estimations instead
of direct measurements and therefore have a decreasing precision with increasing heights. However,
even though the vertical precision of the point clouds cannot be determined due to the lack of high
precision control points, measuring the dimensions of ground features with known extend suggests
that the horizontal errors (0.53 cm, SD = 1.15 cm) are much lower than the spatial resolution of the
CHMs that were used for the analysis and can therefore be considered insignificant (Table A1). Hence,
our crown diameter predictions are probably of similar high quality, given that the delineated crown
contours are correct. This can be confirmed by visual assessment of the contours on an orthophoto.
Another contribution to the observed differences could be the pooling of multiple crowns into one
(omission errors).

Our field estimations are likely to have high uncertainty, especially for taller trees, as exemplified
by the trumpet-shaped distribution seen in the tree height validation plots (Figure 4). The tendency for
underestimating the height of taller trees could be explained by errors in the point cloud reconstruction
of very thin tree tops. These errors have been identified and studied in detail by Andersen et al. [62].

The local maximum filter tree-detection algorithm works extremely well in open, simple structure
forest stands, yet it produces more commission and omission errors for the dense stands of Type III,
where smaller trees are more frequently overlapped by taller trees than in Type I sites. This is visible
in the quadrant validation histograms, where a relatively smaller quantity of understory trees were
detected (Figure 6), and in the height distribution of the whole point cloud (Figure A1). The prominent
peak of small trees in the field data is largely underrepresented in the tree detection analysis, as small
trees below a height of 2 m usually have narrow crowns and can hardly be distinguished from
surrounding ground vegetation and shrubs. Their presence indicates a strong rejuvenation in recent
years that could trigger a future densification of the forest stand, as has already been observed in
other arctic regions [7,8]. The peak shift seen in the quadrant height distribution validation of site
EN18030 accords with the behavior of the individual tree height validation regression and suggests
either an underestimation of the true height in the field data or an overestimation of true heights from
the analyzed point cloud.

The detection of small trees is a general limitation of current tree detection algorithms. While the
tree recruits in most biomes grow fast and can therefore be detected earlier by such methods, under the
harsh conditions of the treeline ecotone, recruits can survive under the canopy of a dominant tree for
many years with nearly no growth [63]. However, they play an important role in the tundra–taiga
ecotone, as they are an indicator of the outcome of climate warming [8,9]. Integrating spectral
classification metrics into the segmentation analysis could help distinguish small trees from surrounding
shrubs of the same height or even to determine the tree species in mixed species stands [34]. Higher
point densities in critical areas like the lower crowns and smaller individuals could be achieved by
additional imagery with shallower capture angles or even ground-based acquisitions and contribute
to better segmentation results. Such data was already collected but could not yet be integrated into
the analysis.

Our representativeness evaluation gives first insights into the relationship between the calculated
stand metrics and the minimal required plot size for representative forest inventories in treeline ecotones.
We find three types of zonal metric convergence behaviors: (1) plots that show stable tree density
values inside the 15 m radius can be called representative (EN18003/14/30/83), (2) convergence outside
the 15 m radius implies homogeneity of the stand at broader scales, for which a bigger plot radius
is necessary (EN18001/12/27), and (3) no convergence within the full point cloud extent, indicating
an unrepresentative plot choice and a heterogeneous stand structure surrounding the plot center
(EN18026/80). Most calculated metrics converge towards stability at a plot size of 20 m, indicating
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that our field data (15 m radius plot size) might not be fully representative of the surrounding stand.
Some sites do not show homogeneity at the complete point cloud extent and are thus considered to be
heterogeneous. These findings suggest that the plot size should be adapted to the stand structure in
order to deduce representative forest inventories. Yet most studies with similar approaches, albeit none
of them in a treeline ecotone, have used smaller validation plot sizes (Bohlin et al. [32] used a 10 m
radius, Li et al. [21] a 12.62 m radius, Popescu et al. [17] a 7.32 m radius, and Panagiotidis et al. [30]
a 25 × 25 m rectangular plot). To optimize future survey efforts, our information could be used for
helping to choose the required validation plot size and UAV survey dimensions.

In summary, the discussed issues underline the strong need for new, point cloud-based
segmentation methods to fully exploit the potential of 3D photogrammetric point clouds.
These algorithms should be capable of detecting subordinate individuals as well as small trees
and allow the correct segmentation of overlapping or intersecting crowns. Currently available point
cloud-based segmentation algorithms are still too inefficient for high-resolution photogrammetric point
clouds (for example, the computation time of the algorithm by Li et al. [21] exponentially rises with the
point density [38]). Some promising novel techniques initially segment the normalized point cloud into
vegetation stories to subsequently run an individual tree detection within those vertical levels [39,40],
or add an additional step after the 2D segmentation to delineate potential subordinate trees under
the dominant crown [41]. Both of these methods could have great potential for the segmentation of
understory individuals.

4.2. Challenges in the Tree Segmentation Based on Canopy Height Models

The CHM-based individual tree detection (ITD) and crown segmentation is very simple to set
up and computationally efficient, but has some major limitations that arise from the dimensionality
of the analysis. Some issues are integral to this method, while others can be controlled or mitigated
by the right parameter choice. Typical types of errors are over-segmentation (commission errors),
under-segmentation (omission errors), and the underestimation of the tree height (Table 5).

Over-segmentation occurs when an area is segmented into more individuals than exist.
Under-segmentation occurs when fewer trees than exist are detected, or are not detected at all.
Controlling parameters are the linear function and minimal height used in the ITD and the smoothing
factor used on the CHM. Generally, these parameters should be optimized to the stand structure based
on a priori knowledge and steady re-adjustment (this is only possible due to the fast computation
times). Individuals will create errors when differing in shape from the dominant structure the analysis
was optimized for. Therefore, stands with a very homogeneous structure will perform better than
stands that show high structural complexity.

Identified inevitable errors comprise the omission of subordinate trees, whose tops are hidden
below an overlapping crown, underestimation of the height of leaning trees (if individual tree point
clouds contain absolutely no ground points the calculation of the Euclidean distance between the
highest and lowest point solves this problem), trees whose tops have not been fully reconstructed
(mostly dead, leafless, or very thin tops), and small shrub-forming trees. The latter have crowns that
reach down to the ground and get partially classified as ground points. Other errors we observed
result from exceptional individuals, which are often found in unmanaged forests and the discussed
parameters could not be optimized for.

Four important examples illustrated in Figure 10 are:

1. Horizontally elevated lying trees (usually windthrown) get detected and segmented into multiple
individuals (Figure 10b)

2. Occasional very wide or flat crowns (Figure 10c)
3. Very closely spaced tree tops (Figure 10f)
4. Occasional fragmented crowns (Figure 10e)
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Table 5. Types of issues that are associated with the use of a local maximum filter individual tree
detection in combination with a watershed crown segmentation.

Over-Segmentation
(Commission Errors)

Under-Segmentation
(Omission Errors)

Height
Underestimation

Narrow search

- Occasional wide or very flat crowns
- Occasional fragmented crowns

- Occasional complete crowns
- Leaning trees

- -

Wide search - - Occasional narrow crowns
- Partially overlapping trees -

Low min. height - Misclassified ground vegetation
- Elevated horizontal dead wood - -
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Table 5. Cont.

Over-Segmentation
(Commission Errors)

Under-Segmentation
(Omission Errors)

Height
Underestimation

High min. height - - Small trees will not be
detected -

Strong smoothing -

- Very closely spaced tree tops
- Partially overlapping trees
- Small, narrow trees will not

be detected

-

Weak smoothing

- Side branches create multiple local
maxima

- Occasional fragmented crowns
- Leaning trees with multiple local

maxima

- -

Always - - Overlapping crowns
(subordinated trees)

- Trees with thin,
leafless tops

- Leaning trees
- Small, shrub like trees

5. Conclusions

The analysis of high-resolution photogrammetric point clouds resulted in detailed forest metrics
along the studied transect ranging from the open larch forests of the tundra–taiga transition zone
in NE Chukotka to disturbed, dense, mixed tree species forest in SW Yakutia. These metrics can be
used to facilitate models and upscaling approaches to study regional vegetation dynamics such as the
treeline response to global warming in NE Siberian forest biomes. Our detection approach is based on
canopy height models. The individual tree detection using a variable window-size local maximum
filter and subsequent crown delineation using a marker-controlled inverse watershed segmentation
work efficiently and were adaptable to the encountered types of forest structures. The overall detection
rate of 67.1% can be attributed to the incorporation of understory trees into the validation process.
We found that omission and commission errors are more frequent in complex forests stands, in which
dominant trees overlap the understory and multiple tree species with varying crown structures make it
more complicated to adapt the tree detection algorithm parameters. Our detected tree heights correlate
strongly with field observations, while the crown diameters show higher absolute errors, probably
caused by imprecise field measurements. Comprehensive fieldwork is still crucial to obtain an estimate
of the true tree height distribution, as small trees (height <2 m) typically do not get identified in
the CHM-based analysis, but are very important for the recruitment and observed densification of
forest tundra stands. To help improve future fieldwork routines, the correct validation plot size needs
to be determined and segmentation errors can be mitigated by optimizing the analysis parameters.
Based on our results, we identified a strong need for computationally efficient individual tree detection
algorithms and clear guidelines and best-practice studies to use them. With these, one could use the
full potential of high-resolution photogrammetric point clouds and focus on scientific questions related
the detection of understory and subordinate trees.
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Appendix B

Table A1. The horizontal accuracy of the point cloud was tested by measuring ground control
point panels with known dimensions of 21 × 29.7 cm. The test shows that the mean XY difference
(0.52 cm, SD = 1.15 cm) is much lower than the spatial resolution of the CHMs used for the analysis
(3 cm). Abbreviations: No = Number, W = width, H = height, Wdiff = W–21 cm, Hdiff = H–29.7 cm,
MeanDiff = mean difference, SD = standard deviation.

Site No W (cm) H (cm) Wdiff (cm) Hdiff (cm)

EN18001 1 23.9 29.3 −0.4 2.9
EN18001 2 21.2 31.2 1.5 0.2
EN18001 3 21.9 28.8 −0.9 0.9

EN18003 1 22.4 30.4 0.7 1.4
EN18003 2 20.9 30.1 0.4 −0.1
EN18003 3 23 30.4 0.7 2

EN18012 1 20.3 30.4 0.7 −0.7
EN18012 2 21.5 30.4 0.7 0.5
EN18012 3 20.9 29.2 −0.5 −0.1

EN18014 1 22.5 30.3 0.6 1.5
EN18014 2 21.8 30.7 1 0.8
EN18014 3 22 30.9 1.2 1

EN18026 1 21.4 27.7 −2 0.4
EN18026 2 21.1 30.3 0.6 0.1
EN18026 3 21.4 28.7 −1 0.4
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Table A1. Cont.

Site No W (cm) H (cm) Wdiff (cm) Hdiff (cm)

EN18027 1 21 29 −0.7 0
EN18027 2 23.3 29.5 −0.2 2.3
EN18027 3 21.2 31.2 1.5 0.2

EN18030 1 20.2 29.6 −0.1 −0.8
EN18030 2 20.2 29.7 0 −0.8
EN18030 3 20.7 30.6 0.9 −0.3

EN18070 1 22.6 30.7 1 1.6
EN18070 2 23.2 32.1 2.4 2.2
EN18070 3 21.2 29.7 0 0.2

EN18080 1 21.3 28.6 −1.1 0.3
EN18080 2 22.6 30.4 0.7 1.6
EN18080 3 20.4 30.8 1.1 −0.6

EN18083 1 22.2 31.2 1.5 1.2
EN18083 2 23 26 −3.7 2
EN18083 3 22.4 32.5 2.8 1.4

MeanDiff SD

0.51833333 1.15057836
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