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Abstract: During the last few decades, the rapid separation of the Small Aral Sea from the isolated
basin has changed its hydrological and ecological conditions tremendously. In the present study, we
developed and validated the hybrid model for the Syr Darya River basin based on a combination of
state-of-the-art hydrological and machine learning models. Climate change impact on freshwater
inflow into the Small Aral Sea for the projection period 2007–2099 has been quantified based on the
developed hybrid model and bias corrected and downscaled meteorological projections simulated
by four General Circulation Models (GCM) for each of three Representative Concentration Pathway
scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical
period with a Nash–Sutcliffe efficiency of 0.72 and a Kling–Gupta efficiency of 0.77. Results of
the climate change impact assessment showed that the freshwater inflow projections produced by
different GCMs are misleading by providing contradictory results for the projection period. However,
we identified that the relative runoff changes are expected to be more pronounced in the case of more
aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further
assessment of climate change impacts on hydrological and ecological conditions of the Small Aral
Sea in the 21st Century.

Keywords: Small Aral Sea; hydrology; climate change; modeling; machine learning

1. Introduction

During the last few decades, the Aral Sea basin has attracted the particular attention of the
scientific community as a clear example of human induced ecological disasters [1,2]. Not only the rapid
drying of the Aral Sea, but also considerable changes of the physical and biological characteristics of
its residual basins [3,4] have converted the Aral Sea basin into a natural laboratory where irreversible
ecosystem and water balance shifts have been detected [5,6]. Therefore, keeping the hand of the
scientific community on the pulse of current and projected changes in the Aral Sea basin remains
crucial to mitigating possible environmental risks in this region [7].

The separation of the northern part of the former Aral Sea from the isolated basin, the Small Aral
Sea, was triggered by drying processes in the late 1980s and has been intensified by Kokaral Dike’s
construction in 2005. Kokaral Dike aims to limit water exchange between the Small Aral Sea and other
residual basins. Therefore, its main purpose is to accumulate runoff from the Syr Darya River, which
is the primary source of the freshwater inflow into the sea. As a result, during the period from 2005
to 2017, the volume of the Small Aral Sea has raised to 27.5 km3, and the salinity has decreased to
8–11 g/kg on average [8]. This confirms the partial success of the Small Aral Sea restoration project;
but also deteriorates the situation of other residual basins, which lost the natural connection with the
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additional freshwater source coming from the Syr Darya River [3]. Therefore, the reliable assessment
of the Syr Darya River runoff as the closest approximation of the total freshwater inflow into the Small
Aral Sea plays a crucial role in understanding current and projected changes in the Aral Sea basin
hydrology.

The Syr Darya River is among the largest and highly vulnerable river basins in Central Asia.
Advanced water management and irrigation systems, as well as thirteen large reservoirs control
the utilization of freshwater resources for agricultural, industrial, recreational, and social needs.
This complex structure of the Syr Darya River basin coupled with observational data scarcity develops
a challenge for any approach aimed at the accurate assessment of the Small Aral Sea freshwater budget
formation [5,9–11]. Therefore, the majority of studies assessing the climate change impact on the
hydrological regime focus on individual regions or river basins within the Syr Darya River basin, e.g.,
the mountainous zone and Ferghana Valley [12–17]. To our knowledge, only a few modeling studies
have considered the entire basin of the Syr Darya River to quantify the effects of climate change on
runoff. Aus der Beek et al. [9] within their study analyzed global change impacts on the Syr Darya
River runoff for the period 1958–2002. Lutz et al. [10] within their report described the impact of
climate change on runoff generation based on five Global Circulation Model (GCM) projections for
the period 2021–2030 and 2041–2050. A simplified approach for assessing annual freshwater inflow
based on hypothetical and general circulation model-based scenarios of future climate temperature
and precipitation has been applied by Shibuo et al. [18] and Jarsjö et al. [19] using the Porflow model
without any parameter calibration. Thus, the literature review underlines the lack of studies devoted
to climate change impact assessment on freshwater inflow into the Small Aral Sea.

The objective of this study is to assess the current and projected changes in freshwater inflow
into the Small Aral Sea. For this purpose, we developed and extensively validated the hybrid model
for the entire basin of the Syr Darya River based on a combination of state-of-the-art conceptual
hydrological and machine learning models. Then, projected changes in the runoff to the Small Aral Sea
for the period 2007–2099 were quantified based on the developed hybrid model and meteorological
projections simulated by four GCMs for each of three Representative Concentration Pathway (RCP)
scenarios (RCP2.6, RCP6.0, and RCP8.5). The present study tries to answer the following pertinent
research questions:

1. How well does the state-of-the-art machine learning model simulate freshwater inflow into the
Small Aral Sea?

2. What are the main drivers that affect freshwater inflow simulation?
3. How well do different runoff projections represent the historical period (2007–2016)? What are

the most reliable runoff projections for climate change impact assessment (2017–2099)?
4. To what extent will the intra-annual regime of freshwater inflow transform due to projected

climate change?
5. What are the projected changes in climatic annual freshwater inflow?
6. To what extent will the key driver of freshwater inflow formation transform due to projected

climate change?

The paper is organized as follows. In Section 2, we describe the study area. In Section 3, we
describe the data sources and methodology used in our study. We report the results and discuss them
in various contexts in Section 4. Section 5 provides a summary and conclusions.

2. Study Area

The main part of the Small Aral Sea basin (Figure 1) is occupied by the Syr Darya River and its
tributaries. Based on different estimates, the Syr Darya River at Kazalinsk contributes from 7.4 km3 [10]
to 30 km3 [18], or around 40 km3 [16] of freshwater inflow into the Small Aral Sea annually. About 70%
of the annual runoff of the Syr Darya River originates in Kyrgyzstan’s mountain ranges, and the main
contribution of this volume corresponds to the Ferghana Valley river basins [16]; about 80% of this
volume occurs between March and September [20].
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Figure 1. Study area. The Syr Darya River basin has been delineated into four zones to support the
proposed modeling chain (Section 3.1): the single Zone of runoff Formation (FZ) and three Zones of
runoff Transformation (TZ1, TZ2, TZ3).

3. Materials and Methods

3.1. Modeling Chain Overview

To develop the hydrological model for the entire basin of the Syr Darya River, in the present study,
we elaborated the modeling chain, which consists of six interconnected blocks (Figure 2).

First, we delineated the Syr Darya River basin into four zones (Figure 1): the single Zone of runoff
Formation (FZ) and three Zones of runoff Transformation (TZ1, TZ2, TZ3). The rationale behind the
Syr Darya River basin delineation is to represent individual parts of the basin that significantly differ
by hydrological conditions, water management, and irrigation use. We followed the same delineation
scheme, which was proposed in our previous study [21]. FZ delineation strategy follows [10,15] and
maps the upstream area of Syr Darya River and its tributaries where most of the freshwater coming to
the Syr Darya River basin forms. TZ1 delineation maps mainly the Ferghana Valley, while the proposed
delineation strategy of the remaining part into two individual zones of runoff transformation (TZ2 and
TZ3) is highly subjective. TZ2 was delineated as the Syr Darya River subbasin between the Karaozek
(downstream) and Bekabad (upstream) runoff gauges, and TZ3 maps the remaining part between the
Karaozek (upstream) and Kazalinsk (downstream, outlet) runoff gauges. In summary, FZ serves as
the main source of the freshwater coming to the Small Aral Sea; TZ1 represents the zone of the most
intensive water use in the basin, and TZ2 and TZ3 act as additional (mainly) water loss regulators. As
was shown in our previous study [21], the proposed delineation strategy helps to represent the Syr
Darya River basin as a complex system that consists of many parts, the accounting of which makes
the representation of basin functioning more diverse. This high diversity in basin representation then
helps us to produce the diverse input data for machine learning models, which is crucial for their
efficient application.
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Figure 2. Flowchart of the modeling chain. The colored boxes in the bottom row of the figure represent
the corresponding color code for the six blocks of the proposed modeling chain described in Section 3.1.

In the second block, we developed a gridded runoff dataset for FZ both for historical and
projection periods based on the results of the HBV (Hydrologiska Byråns Vattenbalansavdelning
model) hydrological model calibration and its parameters’ regionalization (Section 3.3). The rationale
for this was to develop the homogeneous source of runoff data that covers the entire FZ with both
gauged and ungauged areas.

Then, we extracted runoff from the FZ alongside precipitation and temperature time series from
FZ and three TZs in the third block. In the fourth block, the extracted time series were used to prepare
input data for a machine learning model both for historical and projection periods (Section 3.4). Then,
in the fifth block, we extensively calibrated and validated the efficiency of machine learning models to
simulate freshwater inflow into the Small Aral Sea for the historical period. In the last (sixth) block
of the proposed workflow, we simulated the projections of freshwater inflow using the developed
machine learning model.

3.2. Runoff and Meteorological Forcing Data

Observed monthly runoff data for selected basins were provided by the Global Runoff Data
Centre (GRDC). Runoff data availability was the main limit for the developing and validation of our
methodology because of the majority of available observations provided by GRDC lie in the interval
from 1975 to 1985. Observed monthly runoff data (daily data averaged by months) for the Syr Darya
River at Kazalinsk, which serves as a proxy for freshwater inflow estimation, were provided by Yasavi
International Kazakh-Turkish University (2018, personal communication) for the period from January
1993 to June 2014. Unfortunately, these data have not been published anywhere before and could be a
matter of questionable quality. However, to our knowledge, the runoff measurement methodology
at Kazalinsk gauge station has not been changed for the last few decades (i.e., the measured water
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level is transformed into runoff using an established rating curve), which provides us some level of
confidence in observational data.

For modern studies related to contemporary water resources’ assessment on vast territories,
it is essential to use global gridded data products as the only spatial and temporal continuous
source [21,22]. For this reason, all models for the historical period were driven by precipitation
and temperature data from the EWEMBI (EartH2Observe, WFDEI and ERA-Interim data Merged
and Bias-corrected for ISIMIP) reanalysis [23,24]. EWEMBI reanalysis has global coverage for the
period 1979–2016 with daily temporal resolution and 0.5◦ spatial resolution. Model simulations
for the projection period were driven by climate simulation data taken from the fifth phase of the
Coupled Model Intercomparison Project (CMIP5; [25]). In our study, we used data produced by four
GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5) for each of three RCP scenarios
(RCP2.6, RCP6.0, and RCP8.5). The same dataset was also used in the ISIMIP2b (Inter-Sectoral Impact
Model Intercomparison Project, stage 2b) project [26]. This dataset was bias corrected and statistically
downscaled with EWEMBI as a reference dataset [27] and will be further referred to as EWEMBI RCP.
The coverage, spatial, and temporal resolution of EWEMBI RCP were the same as EWEMBI, but it
covered the period from 2006 to 2099.

Potential evapotranspiration was another required forcing variable for all models, and it was
derived based on the temperature based equation proposed by Oudin et al. [28] for both historical and
projection periods based on EWEMBI and EWEMBI RCP data, respectively.

3.3. Runoff Reanalysis Development

To develop gridded runoff reanalysis data for FZ of the Syr Darya River basin (Figure 1), we
adopted the same two-step methodology as was presented in Ayzel and Izhitskiy [21], but using the
EWEMBI dataset as the forcing data for the historical period. For the first step, we calibrated the
parameters of the HBV hydrological model (Hydrologiska Byråns Vattenbalansavdelning, in [29])
against the entire period of runoff observations [30] for each of the 24 available river basins. In the
present study, we used the version of the HBV hydrological model with 14 parameters, as was
proposed in Beck et al. [31]. The calibration range for each parameter was also set according to the
study by Beck et al. [31]. The calibration was performed in an automated manner using the algorithm
of differential evolution [32] and the Nash–Sutcliffe Efficiency (NSE; Section 3.5), as an objective
function algorithm tries to maximize. As a result, for each basin, we had an optimal set of model
parameters.

Second, to transfer the optimal set of HBV model parameters to (meteorological forcing) grid cells’
centroids, we implemented a common regionalization technique based on spatial proximity [33]. For
each corresponding EWEMBI grid cell in FZ, we transferred the entire set of optimal model parameters
(except the single one related to runoff routing) from the nearest (by distance) basin, which also showed
positive NSE for a calibration period [21]. Then, we ran the HBV model forced by both EWEMBI and
EWEMBI RCP datasets in a grid cell-wise mode. That allowed us to simulate runoff in every grid cell
in FZ. As a result, we developed gridded runoff reanalysis for the FZ of the Syr Darya River basin. The
developed reanalysis had daily temporal and 0.5◦ spatial resolution and covered the periods 1979–2016
and 2006–2099, which were consistent with EWEMBI and EWEMBI RCP, respectively.

3.4. Machine Learning

The main difficulty in the assessment of the freshwater inflow into the Small Aral Sea was to
account for its transformation through advanced water management and irrigation systems. Therefore,
our hypothesis was that an appropriate machine learning model could reproduce runoff transformation
complexity within the Syr Darya River basin developing robust input-output mapping. To confirm
this hypothesis successfully, we needed two critical components: (1) appropriate input data, (2) a
machine learning model with a high generalization capacity to map input data to the output (which
was freshwater inflow into the Small Aral Sea).
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Feature engineering is an essential part of any routine machine learning model development,
which aims to prepare appropriate (for a particular problem) input data [21]. In the present study, we
used two classical implementations of feature engineering techniques to enrich the representativeness
of input data: (1) adding features that were shifted in time (e.g., temperature for the last month;
as in [34]); (2) adding the features that aggregate the temporal information by a moving window
(e.g., moving average of the temperature for the last two months). To develop appropriate input
data, we first collected non-transformed monthly time series of runoff from FZ and precipitation
and temperature from FZ and three TZs. Then, we independently shifted each time series from 1 to
12 months back and independently calculated the moving window time series with window sizes
from 2 to 12 also for each of the non-transformed time series. Therefore, we imply that monthly
freshwater inflow into the Small Aral Sea was estimated based on the runoff from TZ and precipitation,
temperature, and potential evapotranspiration from FZ and three TZs’ evolution of the preceding
year. The resulting dimension of input data for the historical period was 246 × 312, where 246 is the
length of the monthly time series from January 1994 to June 2014 and 312 is the total number of input
features (thirteen non-transformed and 299 transformed (13 × 12 + 13 × 11)). For the projection period,
the same procedure was independently implemented for each GCM and RCP scenario data in the
EWEMBI RCP dataset, resulting in the dimensions of 1116 × 312, where 1116 is the length of monthly
time series from January 2007 to December 2099.

In the present study, we used the eXtreme Gradient Boosting machine on decision trees (XGB; [35])
as a machine learning model for freshwater inflow prediction. XGB is a robust and high performance
machine learning technique usually showing a better prediction performance in comparison with
conventional linear models [21,36]. The core idea behind the XGB model is to combine simple decision
tree models [37] with gradient boosting [38] in a way that the next decision tree is trying to minimize
an error of the previous decision tree. This approach became the “Swiss-knife” for modeling complex
relationships in multidimensional nonparametric data because of its parsimony, high robustness to
overfitting, and computational efficiency without presuming any a priori knowledge of the system
behavior we tried to model [39]. To determine which input data features contributed to the XGB’s
ability to predict freshwater inflow into the Small Aral Sea, we ranked input data features according
to their corresponding feature importance for prediction. Feature importance calculation was based
both on the number of times a particular variable was selected for splitting during base learners’
construction and the measure of corresponding splits’ homogeneity (Gini index or mean decrease
in impurity; [35]). Namely, the importance of a single feature was estimated for a single decision
tree by progressively calculating the improvement in the Gini index (i.e., reduction in node purity)
achieved by using the particular feature to perform the corresponding split, weighted by the number
of observations in the corresponding node. Then, the calculated feature importance was averaged
across all of the decision trees used in the XGB model.

To obtain predictions in an ensemble manner and extensively validate the model setting, we
used a Leave-One-Out cross-validation technique (LOO; [40]). The idea behind LOO is to validate
independently the performance of the machine learning model on every observational point. This
way, LOO involves using a single observation as the validation set and the remaining observations as
the training set. As a side result, we obtained 246 calibrated XGB models (according to the number
of runoff observations we used). That allowed us to simulate the projections of freshwater inflow
into the Small Aral Sea in an ensemble manner: first, we independently simulated 246 realizations of
freshwater inflow using a particular combination of the GCM and RCP scenario and then calculated
the ensemble mean.

3.5. Metrics

In the present study, we used two community-approved metrics for the efficiency assessment of
runoff simulations: Nash–Sutcliffe Efficiency (NSE; Equation (1); [41]) and Kling–Gupta Efficiency
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(KGE; Equation (2); [42]). Both metrics are optimal with a value of one; higher values show better
efficiency of runoff simulations.

NSE = 1 − ∑Ω(Qsim − Qobs)
2

∑Ω(Qobs − Qobs)2
(1)

KGE = 1 −
√
(r − 1)2 + (

σsim
σobs

− 1)2 + (
µsim
µobs

− 1)2 (2)

where Ω, Qsim, Qobs, and Qobs are the period of evaluation, simulated, observed, and mean
observed runoff; r, σsim, σobs, µsim, and µobs are the linear correlation between observations and
simulations, standard deviation in observations, standard deviation in simulations, simulation mean,
and observation mean.

According to Moriasi et al. [43] and Kling et al. [44], model runoff simulation can be considered to
be “satisfactory” if NSE > 0.5 and “good” if KGE > 0.75, respectively.

4. Results and Discussion

4.1. Simulation of Freshwater Inflow into the Small Aral Sea for the Historical Period

We began our study having GRDC’s observational runoff data with a monthly temporal resolution
for 24 basins located in the runoff Formation Zone (FZ) of the Syr Darya River basin. However, the
results of the HBV model calibration for two of 24 basins showed negative NSE values. Thus, these
basins were not considered for further performance evaluation, nor the development of the gridded
runoff dataset for FZ. Figure 3 shows the results of HBV model calibration for 22 basins located in
the runoff Formation Zone (FZ) of the Syr Darya River basin. The mean NSE and KGE were 0.75
and 0.84, respectively. Inter-comparison of calibration results with different studies showed high
consistency among different approaches for runoff modeling in the mountainous part of the Syr
Darya River [15–17,20]. Moreover, there was a distinct improvement in the HBV model calibration
results compared to the results we obtained in our previous study, where the mean NSE was about
0.58 [21]. This improvement goes mainly to the considerable improvement of precipitation estimation
in EWEMBI reanalysis over ERA-40 reanalysis, which we used previously.

Figure 3. Results of HBV model calibration for 22 basins located in the runoff formation zone of the Syr
Darya River basin. The boxplot box represents the Interquartile Range (IQR , the difference between
the the 25th and 75th quantiles); the whiskers represent ±1.5 × IQR from the 25th and 75th quantiles,
respectively; the yellow line denotes the median value. KGE, Kling–Gupta Efficiency.

Additionally, we validated the developed gridded runoff dataset for FZ of the Syr Darya River
basin (Section 3.3) in terms of the comparison of simulation efficiency (both in NSE and KGE) of
modeled monthly runoff time series that were calculated based on the calibrated HBV model (HBV),



Water 2019, 11, 2377 8 of 19

on the one hand, and extracted from the developed gridded runoff reanalysis (will be further referred
to as HBV-REG), on the other hand, for 22 basins located in FZ (Figure 4). Results showed good
consistency between simulation efficiencies calculated using a lumped model setting with optimal
parameters (HBV) and the developed gridded runoff reanalysis (HBV-REG). However, there was a
distinct decrease in both NSE and KGE for the reanalysis product, especially for the basins with the
smallest (under 500 km2) and biggest (over 12,000 km2) catchment areas. It underlines the limitations
of the proposed parsimonious regionalization technique based on spatial proximity being used for
runoff reanalysis development. In particular, the obtained runoff estimates based on the use of the
corresponding runoff reanalysis dataset should be carefully diagnosed both for the small basins where
local factors affect runoff formation the most and for large basins where the spatial heterogeneity of
runoff formation processes should be explicitly considered, as well as runoff routing mechanisms
cannot be neglected [31].

Figure 4. Results of HBV model calibration for 22 basins located in the runoff formation zone of the Syr
Darya River basin (HBV) in comparison with results of runoff estimates extracted from the developed
gridded runoff reanalysis for the same basins (HBV-REG, Section 3.3). The boxplot box represents
Interquartile Range (IQR, the difference between the 25th and 75th quantiles); the whiskers represent
±1.5 × IQR from the 25th and 75th quantiles, respectively; the yellow line denotes the median value.

The obtained results of XGB model calibration and validation for the historical period (January
1994–June 2014) were also promising (Figure 5). Calculated NSE and KGE reached 0.72 and 0.77,
respectively. To our knowledge, the use of the proposed machine learning workflow with extensive
feature engineering technique and advanced XGB model outperformed every approach that has
been used previously for freshwater inflow simulation into the Small Aral Sea. Therefore, Ayzel and
Izhitskiy [21] reached NSE of 0.56 for modeling the Syr Darya runoff at Kazalinsk for the period
1975–1985 and Aus der Beek et al. [9] reached NSE of 0.58 for the Syr Darya at Tyumenaryk. The
obtained efficiency of the XGB model for freshwater inflow simulation also refers to the upper part
of NSE range as in Gudmundsson and Seneviratne [34], who provided monthly runoff predictions
for a set of European basins using a similar machine learning technique. That underlines the crucial
importance and high value of using state-of-the-art machine learning techniques for runoff modeling
in (semi-)arid river basins with complex water management and irrigation systems.

However, it should be mentioned that an extensive model intercomparison project is needed to
separate the effects of model structure (e.g., data driven or process based) or different forcing data
on runoff prediction efficiency. Unless we do so, we cannot say for sure if the higher performance of
the proposed XGB model was due to its advanced hybrid structure or just due to the considerable
improvement of precipitation estimation in the newest reanalysis products.
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Figure 5. Results of XGB model calibration and validation for the historical period (January 1994–June
2014).

The results of feature importance analysis revealed which input data features contributed the most
to XGB’s ability to predict freshwater inflow into the Small Aral Sea (Figure 6). Thus, runoff-related
features of FZ were the most influencing factors, followed by temperature, precipitation, and potential
evapotranspiration related features of FZ as well. This result underlines the significant value of the
gridded runoff reanalysis development for FZ and, moreover, the importance of involving physically
based models in the research workflow, as they contribute valuable information for machine learning
models. The results of feature importance analysis also showed that information from FZ had a
dominant influence on XGB’s performance, followed by information from TZs. This result underlines
the importance of keeping future research focus on FZ as the zone that influences freshwater formation
in the Syr Darya River basin the most [10,13,15–17,45]. Furthermore, for every delineation zone,
temperature related features were ranked higher than precipitation and potential evaporation ones.
This finding confirms the results of Aus der Beek et al. [9] and Shibuo et al. [18] who reported the
influence of rising temperatures on the increase of water demands by irrigation sector.

Figure 6. Feature importance of input data variables showing their relative contribution to the XGB
ability to predict freshwater inflow into the Small Aral Sea.

4.2. Reliability of Freshwater Inflow Projections on the Historical Period

Before the assessment of climate change impact on freshwater inflow into the Small Aral Sea for
the projection period (2007–2099), it is critical to evaluate if there is a bias in GCM driven projections
for the historical period [13]. Climatological annual hydrographs for the Syr Darya River at Kazalinsk
using EWEMBI data and historical GCM projections (EWEMBI RCP) for 2007–2016 are shown in
Figure 7. There was a large bias between the EWEMBI and EWEMBI RCP driven climatological annual
hydrographs for the historical period.
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Figure 7. Climatological annual hydrographs for the Syr Darya River at Kazalinsk for the period from
2007 to 2016.

The notable differences between different GCMs used in the ISIMIP2b project in projecting changes
of temperature and precipitation were been diagnosed and extensively discussed by Frieler et al. [26].
In this study, the authors pointed out that while at a global scale, different GCMs can behave nearly
similarly, regional differences may be substantial and further lead to contradictory results in trend
assessment [26]. Among the possible causes of contradictory GCM behavior could be the differences
in model structure, spatial resolution, physical processes representation, and accounting for regional
climate features [46].

Additionally, the contribution of different GCMs to the uncertainty of the projected runoff for the
historical period was more significant than the contribution of RCP scenarios. This finding confirms
the results of Nasonova et al. [47] who found the same discrepancies in EWEMBI RCP driven runoff
projections for eleven large scale basins located on different continents. This result also calls into
question the wide spread practice of using the ensemble mean of different GCM driven projections for
assessing the impact of climate change on runoff [19]. Based on this, we decided not to average the
results of runoff projections provided by different GCMs and RCP scenarios, but took into account all
available single runoff projections.

Based on the analysis of the NSE and KGE metrics calculated between the climatological annual
hydrographs (Table 1) of different GCM driven runoff projections to simulation based on the historical
reference forcing (EWEMBI), we considered MIROC5 simulations under the assumption of the RCP2.6
scenario as the most reliable projection that mimicked seasonal runoff dynamics for the historical
period (Figure 8). Calculated NSE and KGE reached 0.93 and 0.89, respectively. Additionally, MIROC5
and IPSL-CMSA-LR simulations under the assumption of the RCP6.0 scenario could also be considered
as reliable options for further climate impact assessment. Calculated NSE and KGE reached 0.87
and 0.79 for MIROC5 under RCP6.0; 0.91 and 0.89 for IPSL-CMSA-LR under RCP6.0, respectively.
The possible reasons why MIROC5 and IPSL-CMSA-LR showed more reliable results among other
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GCMs regarding the runoff changes for the historical period (2007–2016) were their finer resolution, a
lower equilibrium climate sensitivity, a smaller temperature drift in the pre-industrial control run, and
more realistic representations of ENSO, the Asian summer monsoon, and North Atlantic extratropical
cyclones during the historical period [26,46].

Table 1. NSE and KGE metrics calculated between the climatological annual hydrographs of different
GCM driven runoff projections and the simulation based on the reference forcing (EWEMBI).

GCM and RCP NSE KGE

GFDL-ESM2M RCP2.6 0.12 0.51
HadGEM2-ES RCP2.6 0.5 0.61

IPSL-CM5A-LR RCP2.6 0.76 0.76
MIROC5 RCP2.6 0.93 0.89

GFDL-ESM2M RCP6.0 0.23 0.55
HadGEM2-ES RCP6.0 −0.43 0.36

IPSL-CM5A-LR RCP6.0 0.91 0.89
MIROC5 RCP6.0 0.87 0.79

GFDL-ESM2M RCP8.5 −0.21 0.43
HadGEM2-ES RCP8.5 0.78 0.77

IPSL-CM5A-LR RCP8.5 0.87 0.8
MIROC5 RCP8.5 0.72 0.68

Figure 8. Monthly runoff time series of the Syr Darya River at Kazalinsk calculated based on reference
reanalysis data (EWEMBI) and GCM projection by MIROC5 under RCP2.6 scenario.

4.3. Climate Change Impact Assessment on Freshwater Inflow into the Small Aral Sea

The impact of potential climate change on freshwater inflow into the Small Aral Sea derived using
the GCMs for the projection period (2007–2099) was analyzed in regard to two aspects: (1) the potential
change in the mean monthly runoff and (2) the potential change in the mean annual runoff. For
the consistent assessment of the potential change in climatological annual hydrographs, we divided
the projection period into four periods: one baseline period (P0; 2007–2016) and three prognostic
periods: P1 (2017–2044), P2 (2045–2072), and P3 (2073–2099). For these periods, the freshwater inflow
was simulated based on the EWEMBI RCP dataset of four GCMs and three climate scenarios of
the RCP family. The simulation results are shown in Figure 9. The runoff simulations based on
MIROC5 under RCP2.6 as the most reliable projection for the historical period (Figure 9, first column,
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bottom row) showed a slight increase (up to 10%) in the monthly runoff for each month. However,
if we hypothesize that the runoff for the historical period follows the track of changes projected by
MIROC5 and IPSL-CM5A-LR under the more aggressive RCP6.0 scenario, then the estimated changes
in climatological annual hydrograph were more pronounced (Figure 9, second column, last two bottom
rows). Therefore, the two models agree that the projected monthly runoff at the end of the 21st Century
(period P3) significantly decreased (down to 17% on average) for each month. However, the runoff
projections for the beginning (period P1) and the middle (period P2) of the 21st Century showed the
disagreement between the two models: e.g., MIROC5 based runoff projections showed a decrease in
monthly runoff for P1, especially for the March–June and September–December period (down to 8%
on average), and an increase in monthly runoff for P2, especially for the winter period (up to 5% on
average with maximum at February), while IPSL-CM5A-LR based runoff projections showed, on the
contrary, an increase in monthly runoff for P1 and a decrease for P2. Moreover, if at some point the
Small Aral Sea basin would turn to following the most aggressive RCP8.5 scenario (Figure 9, third
column), the two respective models—MIROC5 and IPSL-CM5A-LR—showed disagreement regarding
the period of the most substantial change in monthly runoff decrease, i.e., it could be for P2 or P3,
respectively.

Figure 9. Projected changes in annual hydrographs of the Syr Darya River at Kazalinsk. The simulations
results of MIROC5 under RCP2.6 and RCP6.0, as well as IPSL-CM5A-LR under RCP6.0 are highlighted
in grey as they reproduce the runoff changes for the historical Period (P0) (2007–2016) most reliably.

For the assessment of the potential change in climatological Mean Annual Runoff (MAR), while we
simply averaged runoff simulations for P0 (2007–2016), we calculated the 30-year moving average to
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obtain an evolution of climatic runoff altogether for the projection period P1–P3 (2017–2099) [48].
The corresponding results are shown in Figure 10. There were significant differences between
different GCMs, both in expected quantitative changes in climatological MAR and their directions
(Figure 10). Thus, under the RCP 2.6 scenario, while three GCMs— GFDL-ESM2M, HadGEM2-ES, and
MIROC—agreed on the increase in MAR of 9–15% for the projection period in comparison with the
historical period, IPSL-CM5A-LR projected a decrease of 5%. Therefore, only simulation results based
on IPSL-CM5A-LR agreed with the results obtained by Lutz et al. [10] who showed that the outflow
for the Syr Darya River into the Aral Sea decreased 10.8% until 2041–2050. Moreover, GFDL-ESM2M
and IPSL-CM5A-LR showed no trend in projected MAR, while MIROC5 showed a slight decrease
of MAR on P3, but HadGEM2-ES showed a slight increase of MAR on P3. Simulation results under
the most aggressive RCP 8.5 scenario were also misleading. Thus, three GCMs—GFDL-ESM2M,
IPSL-CM5A-LR, and MIROC5—showed a substantial decrease in MAR of 7–15% for the projection
period in comparison with the historical period; but HadGEM2-ES showed an increase in MAR
up to 25%. The direction of projected changes in MAR under RCP 8.5 also differed significantly.
Thus, HadGEM2-ES and IPSL-CM5A-LR represented consistent increasing and decreasing trends,
respectively. Both GFDL-ESM2M and MIROC5 showed a significant decrease in MAR by 2070; there
was no trend for GFDL-ESM2M, but the increasing trend for MIROC5 for the period 2007–2099.
The most reliable GCMs for the historical period—IPSL-CM5A-LR and MIROC5—also showed
contrary results for projected MAR under each RCP scenario. In summary, the obtained results of
freshwater inflow simulations produced by different GCMs using different RCP scenarios underlined
a considerable uncertainty in climate impact assessment results for this region [19].

The compound effects of the projected changes of different drivers that influence the dynamics of
the freshwater inflow into the Small Aral Sea (Figure 6) complicated the identification of the primary
source of expected changes in freshwater inflow for the projection period. However, as our modeling
results for the historical period agreed on the leading role of FZ for freshwater formation in the Syr
Darya River basin with previous studies [10,13,15–17,45], we hypothesized that the projected changes
in temperature, precipitation, and runoff in FZ would have a dominant impact on total freshwater
inflow into the Small Aral Sea in the future. To reinforce our hypothesis, we analyzed the potential
change in intra-annual variation of the mean monthly air temperature in FZ (Figure 11), the potential
change in intra-annual variation of the monthly sum of precipitation in FZ (Figure 12), and the potential
change in climatological annual hydrographs of mean cumulative runoff from FZ (Figure 13).

The results showed that the future projections of air temperature agreed on two aspects: the
projected changes were expected to be more pronounced in the case of, first, more aggressive RCP
scenarios and, second, for later time horizons (Figure 11). While there was no indicated shift in
seasonality, there was a distinct systematic increase in mean monthly temperature for each month,
which was more pronounced for more aggressive RCPs and more distant periods. As a result, rising
winter temperatures can intensify snowmelt or increase the proportion of liquid precipitation [7,15];
at the same time, rising summer temperatures can intensify evapotranspiration losses or indirectly
lead to more severe rainstorms [49,50]. The obtained results were in line with the previous studies
conducted for this region [15,16].

The expected changes in precipitation for the projection period were more uncertain than the
changes in temperature and significantly differed between the analyzed GCMs (Figure 12). Thus, under
the RCP 2.6 scenario, while IPSL-CM5A-LR projected a decrease of 15–20% in precipitation amount
from February to July and an increase of 5–10% in precipitation amount from October to December,
MIROC5, on the contrary, projected precipitation changes in opposite directions, but following similar
rates. However, both models agreed on the significant systematic decrease in precipitation amount
of 10–50% under the RCP6.0 and RCP8.5 scenarios for the projection period in comparison with
the historical period. This way, as precipitation determines the potential availability of freshwater
resources, its projected changes will substantially affect the expected changes in runoff [49].
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The obtained results of the potential change in climatological annual hydrographs of mean
cumulative runoff from FZ (Figure 13) confirmed the findings of Gan et al. [13], Radchenko et al. [16],
and Siegfried et al. [17] who found a strong shift in runoff seasonality, as well as a reduction of peaks’
magnitude for the basins located in the mountainous part of the Syr Darya River. This way, runoff
from FZ, as a cumulative variable, reflected the compound effects of both changes in precipitation and
temperature in FZ.

Figure 10. The climatological mean of Mean Annual Runoff (MAR) of the Syr Darya River at Kazalinsk
for the projection period P1–P3 (2017–2099). Dashed lines represent the mean annual runoff for the
baseline period (P0; 2007–2016) calculated based on GCM projections under different RCP scenarios.
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Figure 11. Projected changes in intra-annual variation of the mean monthly air temperature in the
runoff formation zone of the Syr Darya River basin.

Figure 12. Projected changes in intra-annual variation of the monthly sum of precipitation in the runoff
formation zone of the Syr Darya River basin.

Figure 13. Projected changes in annual hydrographs of the mean cumulative runoff from the runoff
formation zone of the Syr Darya River basin. Only the simulation results based on MIROC5 and
IPSL-CM5A-LR GCMs are shown as they are the most reliable for reproducing the runoff changes for
the historical period (2007–2016).
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However, while indicated changes in runoff from FZ strongly affected freshwater availability for
the downstream part of the Syr Darya River basin, they did not lead to the seasonal shifts in freshwater
inflow into the Small Aral Sea basin (Figure 9), but only developed a systematic bias of projected
changes in annual hydrographs of freshwater inflow. Thus, identified changes in freshwater availability
may have substantial implications on the transformation of water demands by the irrigation sector in
the future.

While the results of the projected changes in freshwater inflow into the Small Aral Sea were
contradictory between different GCMs and RCP scenarios, it is hard to speculate about the potential
outcomes of the projected changes for the Small Aral Sea and the hydrology of the region with high
confidence. However, if we used the freshwater inflow projection that was driven by MIROC5 GCM
under the RCP2.6 scenario as a proxy of the projected changes that are close to the ongoing changes
(business-as-usual scenario), we could expect an increase in mean annual freshwater inflow into
the Small Aral Sea of 10% for the next few decades in comparison with the historical period. This
way, the increasing amount of freshwater coming to the Small Aral Sea will eventually decrease its
salinity to a level even lower than it was during the pre-industrial period (around 10 g/kg for the late
1950s). Additionally, the surplus of freshwater can be diverted to the residual basins of the former Aral
Sea through Kokaral Dike. However, this surplus is negligible to support residual basins’ recovery.
Unfortunately, under scenarios of rising greenhouse emissions (RCP6.0, RCP8.5), there will be no
positive impact, neither on the Small Aral Sea hydrology, nor on the economy or environment of the
region. The decrease in the projected freshwater inflow into the Small Aral Sea of 7–15% in comparison
with the historical period will trigger significant changes in water management on a regional scale that
we have to be ready to mitigate.

5. Conclusions

The objective of this study was to assess the current and projected changes in freshwater inflow
into the Small Aral Sea. To this aim, we developed and extensively validated the hybrid model for the
entire basin of the Syr Darya River based on a combination of state-of-the-art conceptual hydrological
and machine learning models. Then, projected changes in freshwater inflow to the Small Aral Sea
for the period 2007–2099 were quantified based on the developed hybrid model and meteorological
projections simulated by four GCMs for each of three RCP scenarios.

As a result, at first, in our study, we demonstrated the high efficiency of the developed machine
learning model to simulate freshwater inflow into the Small Aral Sea for the historical period.
That underlined the high potential of rapidly emerging machine learning methods to be adapted
for hydrological modeling of complex hydrological phenomena in the presence of substantial data
scarcity. Moreover, we showed the critical importance of coupling the machine learning model with a
conceptual hydrological model as the latter can provide highly valuable information to be assimilated
as input data for the former.

Second, we estimated the reliability of freshwater inflow projections for the historical period
(2007–2016) produced by machine learning models based on different GCM and each RCP scenarios.
The obtained results showed the significant disagreement between freshwater inflow projections
produced by different GCMs, i.e., single GCM projections can entirely contradict each other.
Additionally, we found that the contribution of different GCMs to the uncertainty of the projected
runoff for the historical period was more significant than the contribution of RCP scenarios. As this
result calls into question the practice of using the ensemble mean of different GCM-driven projections
for assessing the impact of climate change on runoff, we underlined the importance of accounting for
all available single runoff projections separately with the focus on GCMs, which was shown to be the
most reliable.

Third, we assessed climate change impacts on freshwater inflow into the Small Aral Sea for the
projection period (2007–2099). Similar to the historical period, we showed that the freshwater inflow
projections produced by different GCMs were misleading by providing contradictory results for the
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projection period. However, we identified that the relative runoff changes were expected to be more
pronounced for more aggressive RCP scenarios. This result underlines the importance of accounting
for the high uncertainty of projected freshwater inflow scenarios for further mitigation of their impact
on regional hydrology and water management.

Fourth, we demonstrated that identified seasonal changes of projected runoff in the runoff
formation zone of the Syr Darya River basin, namely the shift in peak runoff from summer to spring
and the reduction of peak magnitude, were not reflected in the corresponding changes of freshwater
inflow into the Small Aral Sea, but only developed a systematic bias of projected changes in annual
hydrographs of freshwater inflow. However, these systematic shifts in annual hydrographs may have
substantial implications on the transformation (mostly reduction) of water demands by the irrigation
sector in the future.

In summary, our study provided a robust framework for climate change impact assessment
on freshwater inflow into the Small Aral Sea, developing a state-of-the-art hybrid model and
communicating the high uncertainty related to climate change projections produced by different
GCMs under various RCP scenarios. The developed scenarios of projected changes in freshwater
inflow into the Small Aral Sea in the 21st Century can be further utilized by many parties, e.g., for
the assessment of climate change impact on physical and biological characteristics of the Small Aral
Sea or for the development of practical measures to mitigate the environmental and social impact of
projected changes in regional hydrology.
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