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Abstract: The laboratory mouse is the most common used mammalian research model in biomedical
research. Usually these animals are maintained in germ-free, gnotobiotic, or specific-pathogen-free
facilities. In these facilities, skilled staff takes care of the animals and scientists usually don’t pay much
attention about the formulation and quality of diets the animals receive during normal breeding and
keeping. However, mice have specific nutritional requirements that must be met to guarantee their
potential to grow, reproduce and to respond to pathogens or diverse environmental stress situations
evoked by handling and experimental interventions. Nowadays, mouse diets for research purposes
are commercially manufactured in an industrial process, in which the safety of food products is
addressed through the analysis and control of all biological and chemical materials used for the
different diet formulations. Similar to human food, mouse diets must be prepared under good sanitary
conditions and truthfully labeled to provide information of all ingredients. This is mandatory to
guarantee reproducibility of animal studies. In this review, we summarize some information on
mice research diets and general aspects of mouse nutrition including nutrient requirements of mice,
leading manufacturers of diets, origin of nutrient compounds, and processing of feedstuffs for mice
including dietary coloring, autoclaving and irradiation. Furthermore, we provide some critical views
on the potential pitfalls that might result from faulty comparisons of grain-based diets with purified
diets in the research data production resulting from confounding nutritional factors.

Keywords: animal experimentation; diet; nutrition; ingredients; lard; fibers; fructose; diet coloring;
autoclaving; irradiation

1. General Aspects of Mice in Biomedical Research

The laboratory mouse derived from the house mouse (Mus musculus) has been first used in
biomedical research as a model system since the 17th century [1]. The earliest documentation of the
use of mice in scientific research was done in the year 1664 in England, where Robert Hooke in his
study used this animal model to study the biological consequences of an increase in air pressure [1].
In the 19th century, mice were used for a couple of breeding experiments, in which coat color or
behavioral mutations were studied. Since that, these rodents have been used in many research areas.
In 1981, a first genetically engineered transgenic mouse model was introduced that expressed the
herpes simplex virus thymidine kinase [2].
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Thereafter, both transgenic and knockout mouse models have become essential tools in the field
of immunology, oncology, toxicology, genetics, and many more. These models allow the determination
of the general consequences of alterations in individual genes and their cooperation with other
genes. Particularly, inbred mice, which are “isogenic organisms” (nearly) identical to each other in
genotype and phenotype, are frequently used for such studies. In respective experiments, these highly
similar “linear test animals” are most suitable to establish reproducible results and conclusions.
Moreover, testing in mice is a central part of drug development for humans, in which they are vital as
a means for pre-clinical safety and efficacy testing before starting a human trial with a candidate drug.
Therefore, it is not surprising that experimental work in mice has developed as an integral part of
biomedical research in the building of basic knowledge. Exemplarily, mice experiments have developed
as the gold standard to confirm a proposed disease-associated mechanism in hepatology research,
in particular, non-alcoholic fatty liver disease (NAFLD) [3]. Specialized protocols have been developed
closely mimicking typical clinical situations, including cholestasis, poisoning, metabolic injury, portal
hypertension, inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma [3]. During the last
decade, the individual steps in such procedures were summarized in highly standard operating
protocols (SOPs) to achieve uniformity in performance and outcome [4].

At the end of 2013, the seventh report on the statistics on the number of animals used for
experimentation and other scientific purposes in the member states of the European Union (EU) was
published [5]. This concise dispatch contains detailed information about the number of laboratory
animals used for biomedical research in 2011 in the 27 member states with the exception of France.
According to this report, a total of 11.5 million animals were used in biomedical research in 2011.
From these, mice are the most commonly used species with 60.9% (~7 million animals) of the total
use [5]. Although precise numbers for the worldwide total numbers of mice in biomedical research
are not really available, first conservative estimates of annual laboratory animal use suggested at
least 115.3 million animals to be sacrificed for scientific purposes in the year 2005 [6]. If globally the
frequency of mouse usage in all kinds of animal studies is the same as in the EU (~61%), this means
that about 70.2 million mice are annually sacrificed by scientists and clinical researchers. However,
the strict implementation of the three Rs (replacement, reduction, and refinement) concept for animal
experimentation proposed by Russell and Burch in 1959 [7] that is now mandatory standard in
biomedical research in many countries [3], the introduction of relevant replacement methods [8],
and finally the increasing political and public concern about animal experimentation influencing
people‘s view toward the use of animals in research [9] have led to a significant reduction in animal
number [5].

Nonetheless, all these laboratory mice bred for scientific purposes and kept in laboratory must be
supplied with food. When estimating that each of the 70.2 million mice typically eat 3.5–3.75 g of food
per day (10–15% of their body weight) [10] and assuming that the life span of a mouse in a typical
setting of an Institute for Laboratory Animals Science is about six months (Tolba and Weiskirchen,
unpublished), it can be calculated that about 44.23–47.39 million kg dietary food products are necessary
to feed these mice. Surely, this value is a high underestimation because potential losses due to throwing
away, passing of expiration dates, unwanted food spoilage, and many other circumstances have
not been taken into account in this simplified calculation. Moreover, based on special requirements
necessary in the individual mice experiments, a large variety of companies have developed dedicated
to developing and providing products that meet the unique challenges for all kinds of experiments.

Such “special needs” are considered in products manufactured and marketed as “custom diets”.
In comparison to “standards diets” or “chows”, these products are more expensive in formulation
because they require costly dietary manipulation such as the addition of vitamins, minerals, special
fats, cholesterol, proteins, dietary fibers, drugs or other compounds. Unfortunately, in the literature the
terminology of diets is used somewhat inconsistently. Different reports use terms such as “mouse diet”,
“rodent chow”, “custom diet”, “defined diet”, “purified chow”, “special diet”, “purified ingredient
diet”, “grain-based diet”, “standard chow”, and many others. However, there are basically only
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two types of diets, namely the “grain-based diets” and “purified ingredient diets”. While “grain-based
diets” are made out of grain, cereal ingredients, and animal by-products, “purified ingredients diets”
are composed of highly refined ingredients [11].

In addition, rodent diets may require sterilization techniques when animals sensitive to normal
or opportunistic microbes, such as immune compromised or germ free mice, are investigated.
Food sterilization or decontamination is possible by exposure to γ-irradiation or by high-vacuum
autoclaving. Highly sensitive diets can also be vacuum-, gas-, or modified atmosphere-packed
(i.e., nitrogen-purged), which minimizes the risk of spoilage by oxidation.

Therefore, all these circumstances illustrate that the production of standard and customized diets
intended to be used as mice feed is a complex business and a science in itself. We here will summarize
some important issues on leading manufacturer, the production and diversity of mice research diets,
their ingredients, and treatments during production.

2. Producers of Mouse Diets

Usually most laboratory mice are kept in centralized, well-designed, managed animal facilities,
which allow efficient, economical and safe animal experiments. Depending on the design and size of
the animal facility, the mice are either kept in high barrier, specified pathogen free (SPF) areas with
restricted access to animal facility staff only or in low barrier (conventional) areas with additional access
for licensed scientists. Usually, trained and skilled staff takes care of the animals and scientists usually
don’t care about the formulation and quality of diets the animals receive during normal breeding and
keeping. However, scientists investigating certain immunodeficient strains, analyzing diet-induced
impairments, or conducting experiments in which nutritional factors interfere with the outcome of
their experiments are more interested in the products feed to their mice.

Grain-based diets are commercially manufactured in an industrial process and the safety of
products should be addressed through the analysis and control of all biological and chemical
materials used in the production process. Companies with an international reputation for quality
often are certified by quality assurance systems and work in strict accordance with the guidelines
provided by either local (e.g., England: Food Standards Agency, FSA; France: French Agency for
Food, Environmental and Occupational Health & Safety, ANSES) and/or international institutions
such as the International Organization for Standardization (ISO), the European Commission
(e.g., https://ec.europa.eu/food/safety/animal-feed_en) or the good manufacturing practices (GMP)
of the World Health Organization (WHO). If necessary, these specifications must then be adapted
locally by the responsible animal welfare authorities. These guidelines or directives ensure that
manufacturing, testing processes, and labeling and batch processing record are clearly defined,
validated, reviewed, and documented, providing the basis to conduct good laboratory practice (GLP)
studies. Furthermore, these regulations guarantee that mouse diets are prepared under good sanitary
conditions and truthfully labeled to provide information of all ingredients. As such, they are rather
similar to the guideline used for human foods.

3. The Production Process

3.1. Grain-Based Diets

Grain-based diets are made in “closed formulas” containing natural ingredients such as soybean
meal, ground corn, fish meal, animal byproducts, and very high levels of both soluble and insoluble
fibers [12]. In addition, such chows frequently contain non-nutritive but biologically active compounds
such as phytoestrogens and toxic heavy metals. Grain-based diets for biomedical research purposes
are made in accredited facilities using SOPs that guide all facets of diet production. Each diet formula
is manufactured by a fixed formula or are produced by supplementation of a “constant nutrition”
designed and supervised by a nutritionist. Depending on the ingredients, fixed formulas can reduce
variation of nutrients from batch-to batch. However, grain-based diets may still be subject to variation

https://ec.europa.eu/food/safety/animal-feed_en
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due to the complex nature of the ingredients in these diets, which contain multiple nutrients and
non-nutrients known to be subject to variation. Different work steps are integrated into a linear
sequence within the production process (Figure 1).
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Figure 1. Schematic overview about the production process of mouse diets. Pellet and extruded diets
are produced from the same raw materials. In a first step, the different ingredients are put together in
the intended proportion, mixed, grinded to the desired density, and moistened to a desired moisture
content (pellet diets: ~14–16%; extruded diet: >20%). Pellet diet is then processed in a pellet mill and
dependent on the water content included either directly cooled or dried to a moisture content lower
12.5%. Thereafter, this diet is packed and sterilized for example by irradiation. In contrast, during
the production of an extruded diet, the conditioned materials are then forced through an opening of
a perforated plate or die to create a product in desired shape and size. It is then dried to moisture
content of 8–12%, cooled, and packed. These diets are more or less germ-free because of the high
temperature in the extruder barrel and drier. If necessary, these diets can be further sterilized by
autoclaving before use. However, the high temperature during the extruding process already warrants
low concentrations of microorganisms.

Key steps in the production process of grain-based diets in large quantities are the choice
and delivery of raw materials (Figure 2A–C), quality control of these materials (Figure 2D–E),
compilation and assignment of lot numbers (Figure 2F), and the computer-controlled mixing of
individual compounds (Figure 2G–I) in suitable mixers. When producing an “extruded diet”, the mixed
substances are then mixed with steam and hot water and fed into the extruder barrel and forced through
the die opening to form a product in desired shape and size (Figure 2J–L). During this process the
quality and moisture content is continually monitored and/or adjusted. The final product is then packed
in multilayer paper bags or sacks (Figure 2M) and screened for unwanted stray metal particles by
passing through an in-line metal detection capability (Figure 2N). The packed diets are then transported
and stocked in suitable facilities with controlled temperature and humidity conditions to avoid food
spoilage (Figure 2O). From there, the diets are quickly retrievable on demand.
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Figure 2. Overview of some work steps in the production of an extrusion diet in large scale. (A,B) The
first step in production of mouse diets is the selection, procurement and approval of high quality
bulk ingredients. In this regard, each company might have a different source of raw materials.
(C–E) From each bulk, samples are taken and screened by a well-trained technician for mycotoxins
(e.g., aflatoxin, vomitoxin, fumonisin), protein, fat, fiber, and moisture using near infrared spectroscopy
and approved/certified test kits. (F) When quality is assured, each lot of raw material receives a lot
number that is used to track each ingredient through the entire production process. (G–I) The different
ingredients are mixed together in a certified mixer, in which flow from ingredient bins, scales and
processing is critically monitored. (J–L) To produce an extruded diet form, the mixed ingredients are
sent first to a post grind hammer mill and then to an extruder, in which the mixture is forced through
a die. In this device, the product is expanded by a stream that is injected under pressure. In a next
step, the product is passed through a dryer and several screeners to ensure that no metallic traces
or other unwanted compounds are passed through. The moisture and bulk density of the product
is evaluated and recorded. (M,N) Finally, the diet is packed in packing lines and once validated for
unwanted stray metal particles by an in-line metal detection capability. (O) All diets are stocked in
suitable facilities from which they are quickly retrievable on demand. All images were kindly provided
by Dr. Jörg Lesting (Envigo Teklad Diets, Madison, WI, USA). A well-arranged movie showing the
complete manufacturing process is viewable online at: https://www.envigo.com/p/teklad/.

https://www.envigo.com/p/teklad/
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3.2. Purified Diets

Purified diets are composed of refined ingredients that have undergone further processing and the
composition is open to the researcher [12]. They usually contain a standardized and balanced quantity
of proteins, carbohydrates, fats and fibers provided as a mixture of casein, corn starch, soybean oil
and cellulose. Therefore, these diets should be always constant in composition from batch to batch.
Importantly, they can be individually tailored with all kinds of compounds and further changed in
regard to their relative amount of standard ingredients.

More specialized diets produced on request of the customer are usually prepared in much lower
quantities. The production process is more laborious and the equipment used such as the mixers are
much smaller (Figure 3A). Furthermore, most of these diets are irradiated and are delivered in smaller
heat-sealed packages. To avoid mix-ups of these customized diets with other diets, these products are
frequently colored with artificial food colors. Therefore, the appearance of these diets can be highly
diverse (Figure 3B). Of course, such products are more expensive because of the labor-intensive work
process and the often expensive ingredients requested by the customer.
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Figure 3. Production of customized purified mice research diets. (A) The manufacturing of a mouse
diet used for basic and clinical research is a complex and highly-controlled process resembling that
of producing bakery products for humans. Shown is a mixer in which the ingredients are blended.
After that a known amount of water (based on the diet formula) is added and the product is properly
shaped. The wet powdered diet is forced through a spinning die and without added heat, the pellets
from their cylindrical shape, are cut to approximately the same length and then dried under low
humidity conditions to remove the water added for pelleting. Dependent on the production process,
different amount of diet ranging from several kilograms to several tons can be produced in a single
batch. (B) Color coding by the addition of non-toxic dyes allow discriminating the different food
products in animal facilities, in which animals are kept requiring different nutrients. The images
depicted were kindly provided by Dr. Matthew Ricci (Research Diets, Inc., New Brunswick, NJ, USA).

High-fat diets (HFD) are widely used in studies of diet-induced obesity (DIO) and metabolic
injury [13]. Diets enriched with different dietary fibers such as barley beta-glycan, apple pectin, inulin,
inulin acetate ester, inulin propionate ester, inulin butyrate ester or combinations thereof have recently
been shown to induce specific differences in cecal bacteria composition [14]. The beneficial effects
of inulin-enriched diets and their modulatory role in microbiota composition were also sufficient to
reduce inflammatory gene expression in hippocampus of APOE4 transgenic mice that develop systemic
metabolic dysfunction and symptoms of Alzheimer’s disease [15]. In line, the supplementation with
galactooligosaccharide improved the intestinal barrier in hyperlipidemic mice lacking the low-density
lipoprotein receptor (LDLR) [16]. In mice, dietary fructose impairs mitochondrial size, function,
and protein acetylation, thereby decreasing fatty acid oxidation and development of metabolic
dysregulation [17]. Strikingly, the exposure of mice in utero and in the pre-weaning period to a methyl
donor-supplemented diet provoking DNA methylation resulted in significant attenuation of repetitive
motor behavior development that persisted through early adulthood [18].
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All these examples show that the diet has tremendous impact on mouse health and disease and
that profound changes in the composition of diets may affect the reproducibility or outcome of mice
experimentations. The knowledge of the composition of a diet during an experiment is highly crucial
to maximize experimental reproducibility requiring highly standardized conditions.

To reduce experimental variation among laboratories, the American Institute of Nutrition (AIN)
established a committee in 1973 with the aim to establish general guidelines in preparing dietary
standards for nutritional studies with laboratory rodents [19]. These recommendations should help
scientists with limited experience in experimental nutrition and facilitate interpretation of results
among experiments and laboratories [19,20]. The first diets introduced by the respective committee,
i.e., AIN-76 and AIN-93, contained fixed formula supporting growth, reproduction and lactation [20].
Although subsequent changes in respective diets were introduced later, these nutritional guidelines
are still applicable today and provide a global standard for purified mouse diets [19].

In line with these efforts, small size feed suppliers or larger companies accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care (AAALAC) or other councils produce
and/or market standardized mouse diets with fixed formulation, which allow reducing the fluctuation
in study results (Table 1).

Table 1. Representative producers of mouse chows.

Company Principal Office Homepage

Research Diets, Inc. New Brunswick, NJ, USA https://www.researchdiets.com/

Ssniff Spezialdiäten GmbH Soest, Germany http://www.ssniff.com/

Altromin Spezialfutter GmbH & Co. KG Lage, Germany https://altromin.de/

BioServ Flemington, NJ, USA https://www.bio-serv.com/

Envigo Teklad (formerly Harlan Teklad) Madison, WI, USA https://www.envigo.com/

CLEA Japan, Inc. Tokyo, Japan https://www.clea-japan.com/

Specialty Feeds Glen Forest, Western Australia,
Australia http://www.specialtyfeeds.com

Safe Augy, France www.safe-diets.com/

LabDiet St. Louis, MO, USA https://www.labdiet.com/

TestDiet St. Louis, MO, USA https://www.testdiet.com

Dyets, Inc. Bethlehem, PA, USA https://dyets.com/

Special Diets Services (SDS) London, UK http://www.sdsdiets.com/

4. Pasteurization

Pasteurization is a term named for the French scientist Louis Pasteur for a mild heat-treatment
process used to destroy pathogenic microorganisms and preventing of spoilage of foods and beverages.
For pasteurization of milk, for instance, a low-temperature, long-time process (LTLT) for 30 min heating
at 63 ◦C or a 15 sec high-temperature short-time process (HTST) is used to inactivate large (but not all)
spoilage-causing vegetative forms of microorganisms [21]. Beside LTLT and HTST, very short heating
to 138 ◦C or above for at least 2 sec (ultra-pasteurization) is used for specialized applications [21].

Autoclaving referring to a process of sterilization under pressure is believed to be one of the most
efficient methods of sterilization and common practice in many research institutions [22]. This method
is inexpensive, convenient and guarantees the destruction of all microorganisms including spores and
viruses. Therefore, pasteurization is commonly used for “sterilization” of mouse diets (Figure 4).

Usually, animal diets are autoclaved at 121 ◦C for 20 min, which can result in pellet hardness
resulting in a significant reduction in wastage and in apparent and true consumption of the pelleted
diet [23]. In addition, losses of pantothenate, vitamin A and vitamin D were found during autoclaving,
while thiamine, riboflavin and pyridoxine were less affected [24]. In particular, autoclaving at higher

https://www.researchdiets.com/
http://www.ssniff.com/
https://altromin.de/
https://www.bio-serv.com/
https://www.envigo.com/
https://www.clea-japan.com/
http://www.specialtyfeeds.com
www.safe-diets.com/
https://www.labdiet.com/
https://www.testdiet.com
https://dyets.com/
http://www.sdsdiets.com/
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temperatures for shorter period were more detrimental than autoclaving for longer time intervals at
lower temperatures [24]. Therefore, feed fortification with vitamins is potentially necessary, especially
after autoclaving at high temperatures to ensure that the maintained mice receive an adequate and
balanced supply with these essential nutrients.
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Figure 4. Sterilization of mouse diets by autoclaving. (A) Industrial autoclaves that can be used for
sterilization of large batches of rodent diets must have large capacities. In principal, these devices
are large pressure chambers, in which the goods are sterilized by subjecting them to a pressurized
saturated steam at 121 ◦C (249 ◦F) maintained for about 20 min in a locked chamber. Different
electronically-controlled valves and lines regulate steam flow and temperature in the steam chamber.
(B,C) A typical industrial computer-controlled autoclave is depicted. (D–F) Autoclaves used for food
production can be highly variable in size. Images showing different autoclaves from Steriflow (Roanne,
France) were kindly provided by Kai Bergner from Vos Schott GmbH (Butzbach, Germany). A vivid
3D animation video of a typical water cascading process for sterilization by autoclaving can be found
at: https://youtu.be/bWD87VVtzKU.

In addition, it is known that this procedure exerts undesirable effects on feed quality due to
production of toxic compounds (e.g., acrylamide) and reduction of the overall nutritional value [22].
The autoclaving of a standard rodent diet resulted in a 14-fold increase in acrylamide, while the content
of endogenous acrylamide in diets subjected to irradiation was reduced [25]. The forming of acrylamide
is strongly correlated to the temperature used for sterilization [22,25]. In addition, autoclaved food
products with high quantities of acrylamide produce elevated concentrations of epoxides, which are
highly reactive chemicals, acting as mutagens [22]. Therefore, investigators and institutions should
consider the detrimental and toxic effects that autoclaving might provoke in mouse diets.

5. Irradiation

In some cases, the diets are irradiated with γ-rays to eliminate remaining microorganisms residing
in the feed. The microbial reduction strategies are often used to sterilize diets used for animals kept
under SPF conditions [26]. In a typical sterilization process, the required dose depends on the “initial
bioburden” and irradiation doses of between 20 and 30 kGrays (kGy) are used most frequently to
treat diets intended for SPF animals, while larger doses (40–50 kGy) are recommended for diets
intended for gnotobiotic or germ-free animals [26]. The physical unit Gy is defined as the absorption

https://youtu.be/bWD87VVtzKU
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of one J of radiation energy per kg of irradiated material. For irradiation of large quantities of mouse
diets, the pallets of product are loaded onto conveyors moving around the γ-ray source. In most of
the commercial facilities for food irradiation, cobalt-60 (60Co) is the most common source of γ-rays.
The respective facilities contain a number of safety systems, which are designed to avoid exposure of
personnel to radiation. Furthermore, such irradiation devices are girded by a thick shield that hampers
the penetration of γ-rays to the outside (Figure 5).

Nutrients 2020, 12, x FOR PEER REVIEW 9 of 41 

 

on the “initial bioburden” and irradiation doses of between 20 and 30 kGrays (kGy) are used most 
frequently to treat diets intended for SPF animals, while larger doses (40–50 kGy) are recommended 
for diets intended for gnotobiotic or germ-free animals [26]. The physical unit Gy is defined as the 
absorption of one J of radiation energy per kg of irradiated material. For irradiation of large quantities 
of mouse diets, the pallets of product are loaded onto conveyors moving around the γ-ray source. In 
most of the commercial facilities for food irradiation, cobalt-60 (60Co) is the most common source of 
γ-rays. The respective facilities contain a number of safety systems, which are designed to avoid 
exposure of personnel to radiation. Furthermore, such irradiation devices are girded by a thick shield 
that hampers the penetration of γ-rays to the outside (Figure 5). 

 

Figure 5. Irradiation of large batches of mouse diets. To minimize the risk of diet spoilage by 
pathogenic organisms, diets can be exposed to ionizing radiation. For irradiation in large scale, the 
packed diets are most commonly irradiated with γ-rays from a cobalt-60 (60Co) source that has high 
penetration depth and dose uniformity and is able to penetrate relatively dense products. When not 
in use, the radiation source is stored in a water-filled storage pool, which absorbs the radiation energy. 
This Cherenkov radiation results in a blue appearance of the water bath, which is commonly known 
as “blue glow”. For radiation, the 60Co rods are lifted out from this pool and the emitted energy is 
directed to the goods to be irradiated or the goods are moved around the γ-ray source. The facility is 
surrounded by a thick concrete wall to avoid radiation leakage into the environment. The photos of 
the irradiation facility and the blue glow were kindly provided BGS Beta-Gamma-Service GmbH & 
Co. KG (Wiehl, Germany, ©BGS/M. Steur). 

Although it is often argued that the doses used to destroy microorganisms are rather low, 
caution is advised because γ-rays at these doses have profound effects on some the integrity of the 
individual ingredients of the diet. This was impressively shown in a systematic study, in which the 
amounts of fat, protein, carbohydrate, and vitamins was investigated, showing that γ-rays at a dose 
of about 30 Gy have profound and selective effects on the stability of vitamin A and peroxide content 

Figure 5. Irradiation of large batches of mouse diets. To minimize the risk of diet spoilage by pathogenic
organisms, diets can be exposed to ionizing radiation. For irradiation in large scale, the packed diets are
most commonly irradiated with γ-rays from a cobalt-60 (60Co) source that has high penetration depth
and dose uniformity and is able to penetrate relatively dense products. When not in use, the radiation
source is stored in a water-filled storage pool, which absorbs the radiation energy. This Cherenkov
radiation results in a blue appearance of the water bath, which is commonly known as “blue glow”.
For radiation, the 60Co rods are lifted out from this pool and the emitted energy is directed to the goods
to be irradiated or the goods are moved around the γ-ray source. The facility is surrounded by a thick
concrete wall to avoid radiation leakage into the environment. The photos of the irradiation facility
and the blue glow were kindly provided BGS Beta-Gamma-Service GmbH & Co. KG (Wiehl, Germany,
©BGS/M. Steur).

Although it is often argued that the doses used to destroy microorganisms are rather low, caution
is advised because γ-rays at these doses have profound effects on some the integrity of the individual
ingredients of the diet. This was impressively shown in a systematic study, in which the amounts of
fat, protein, carbohydrate, and vitamins was investigated, showing that γ-rays at a dose of about 30 Gy
have profound and selective effects on the stability of vitamin A and peroxide content of dry animal
diets [26]. In line, a more previous study summarizing the main finding of published literature showed
profound losses of the vitamins C, B1, E, and A in food after its irradiation [27]. Moreover, destruction
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of highly polyunsaturated fatty acids up to 98% and destruction of fatty acids with two double bonds
up to 46% with accompanying lipid peroxide formation after irradiation with doses of 2–10 kGy [28],
in which the effective dose of γ-rays refers to the amount of radiation that penetrate in the middle of
the product to be irradiated.

6. General Remarks on the Origin of Nutrients in Purified Diets

In nature, mice have an extremely diverse diet, consuming practically any food source to which
they have access. In order to be fed up, wild mice spend many of their active hours (~20 h) searching
for these food products. Contrarily, the amount of time taken for a laboratory mouse to gnaw and eat
well-balanced food directly from the cage hopper is considerably less [29]. Ideally, these preformed
diet products are nutritionally either complete for various life stages from breeding through long-term
maintenance, or adapted to special needs occurring during husbandry and housing. Global sold mouse
diets contain a well-balanced mixture of proteins, carbohydrates, fats, vitamins, minerals, and potential
additives that may be modified for the special needs of the biomedical research undertaken. In these
formulations, substances that have been reported to have adverse confounding effects on experimental
results or are toxic to the animals should as far as possible be omitted and should conform to the
nutrient requirements of mice established by the National Research Council (see below). When properly
stored at room temperature or cooler, depending on the composition of the diet, with ideally lower 50%
relative humidity, these diets are usually stable for 6–12 months. To prevent continuous exposure to
light and air, the storage in the original packaging or closed containers is recommended. Special diets
enriched with temperature-sensitive additives may require the storage at lower temperature (4 ◦C or
−20 ◦C). To avoid contamination, the products should be stocked in a proper environment.

The individual substance classes of which a diet is composed may originate from different sources
(Table 2). The respective source may have an impact on energy intake, feed efficiency, apparent nitrogen
and fat digestibility, composition of gut microbiota, and of course, of body weight development in
mouse [30].

Table 2. Typical purified ingredients for special nutritional requirements of diets.

Substance Class Representative Compounds

Proteins Casein, soy protein isolate, egg white protein; crystalline amino acids

Carbohydrates Sucrose, fructose, corn starch, (nondigestable oligosaccharides)

Fats Lard, corn oil, safflower oil, Menhaden oil; soybean oil

Vitamins
Vitamin A, vitamin D, vitamin E, vitamin K, vitamin B12, biotin, choline, folates,

niacin, pantothenic acid, vitamin B6 (pyridoxine, pyridoxal, pyridoxamine),
riboflavin, thiamine, vitamin C

Minerals Dicalcium phosphate, sodium selenite

Fibers Cellulose, guar gum, pectin, carboxymethylcellulose, carrageenan, xanthan gum,
gum arabic, inulin, fructooligosaccharides

Additives Genistein, daidzein, cholesterol, myo-inositol

Special additives Doxycycline, tamoxifen

6.1. Proteins

Casein, soy protein isolate, egg white proteins often serve as sources for proteins in respective
chows. Caseins are the most frequent protein constituent in animal milk from cow, sheep and buffalo
containing with an intrinsically disordered structure forming large colloidal particles with calcium
phosphate to form casein micelles [31]. It is enriched in proline, which distorts protein folding into
α-helices and β-sheets preventing the formation of higher proportions of secondary and tertiary protein
structures. However, casein proteins are important nutritionally because of their high phosphate
content due to which they bind significant quantities of calcium ions [31].
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Compared to casein, soy protein isolate has a hypocholesterolemic effect [32] due to a lower
intestinal absorption of cholesterol, increased steroid excretion, and a greater biological activity in
decreasing hepatic lipogenic enzymes [32]. As a consequence, mice fed soy protein isolate or soy
protein isolate hydrolysate diets have lower body weight, lower plasma cholesterol and glucose levels
compared to animals that are fed with a casein diet [32].

Egg white contains proteins high in amino acid balance, only low quantities of carbohydrate,
and is almost free of fat [33]. Compared to other diets, the consumption of egg white in mice has
no significant impact on total cholesterol, high density lipoprotein (HDL), low density lipoprotein
(LDL), or triglyceride levels, and suppresses food intake, dietary fat absorption, and fat accumulation,
thereby preventing the formation of glucose tolerance [34,35]. However, white egg supplementation is
supposed to induce oral desensitization and immune tolerance in mice [36]. Nowadays, egg white
as a protein source is not often used. Nevertheless, this protein source can be helpful in studies
analyzing effects of zinc-deficient diets. This is due to the fact that the zinc-binding capacity of casein
is about 8.4 µg–30 µg/mg casein [37,38], while the maximal amount of bound zinc in egg white
products is estimated to be only 1.3–1.6 ng/mg [39]. Moreover, egg white contains large quantities
of the anti-nutrient avidin having strong affinity for biotin, preventing its absorption across the
gastrointestinal tract [40]. Therefore, supplementation with biotin is sometimes necessary when using
egg white as the major protein source.

Chemically-defined diets containing crystalline amino acids as the sole source of nitrogen as
an alternative to complete proteins have also been successfully used for mouse maintenance [41].
It has been shown already decades ago that amino acid rations, when properly compounded, will
provide a rate of growth in mice closely approaching that obtained with casein [42].

6.2. Carbohydrates

It is well-known that mice become obese when offered free access to sugars, but it is not established
whether specific sugars are more likely to cause DIO [43]. Most common in purified diets as sugar
sources are sucrose, fructose, and corn starch. The disaccharide sucrose is a disaccharide composed
of glucose and fructose produced naturally in plants and after oral uptake efficiently hydrolyzed by
sucrose in the intestinal mucosa to its constituent monosaccharides [44]. Free glucose elicits a glycemic
and insulinemic response that stimulate the uptake of this sugar into cells, while fructose is mainly
metabolized in hepatocytes via insulin-independent mechanisms not regulated by energy supply [44].
Sucrose has an energy of 16.8 kJ (4 kcal) per gram. Interestingly, sucrose stimulates higher daily intakes
than isocaloric fructose solution in mice [43]. In animals, the fruit monosaccharide fructose produces
profound metabolic disturbances, including insulin resistance, impaired glucose tolerance, high insulin
and triglyceride levels, hypertension, dyslipidemia, and microvascular hepatic steatosis [45]. However,
the susceptibility to sugar-induced obesity varies with strain [45]. It has an energy density of 15.75 kJ/g
(3.75 kcal/g) and feeding mice with a high fructose diet induces hepatic lipid accumulation by activating
lipogenic gene expression and de novo lipogenesis [46]. Therefore, this sugar is supposed to be one
of the key dietary catalysts in the development of non-alcoholic fatty liver disease [47]. Interestingly,
elevated uptake of fructose in mice can result in dysbiosis, increased hepatic lymphocyte infiltration,
and further inflammation of gut, liver and fat tissue [47].

Corn starch also known as “cornflour” is a glucose polymer, highly branched carbohydrate
(e.g., the starch) derived from the endosperm of the kernel of corn (maize) grain. In its pure form
it is a tasteless, odorless, and cold water insoluble powder. In the body, starch is hydrolyzed by
amylases into its constituent sugars. Its energy content is about 15.95 kJ/g (3.8 kcal/g). Depending on its
formulation, certain glucose polymers may resist digestion in the small intestine in mammals and arrive
in the colon where they will be fermented by the gut microbiota resulting in a large variety of products
including short chain fatty acids (acetate, propionate, butyrate) that provide as a prebiotics a range
of physiological benefits [48]. This should be critically kept in mind when performing experimental
studies analyzing the impact and composition of gut microbiota on energy homeostasis, development
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of obesity and its metabolic consequences [49]. Similarly, the feeding of C57BL/6J mice with HFD
supplemented with resistant starch derived from maize resulted in an altered gut bacteria composition
and corroborated with a significant shift in the liver metabolome [50].

6.3. Fats

A normal rodent diet contains about 10 kcal% fat, while diets enriched with 30–60 kcal% are
defined as HFD, provoking significant weight gain and insulin resistance [51]. Typical fat constituents
in mouse diets are lard, corn oil, safflower oil, or Menhaden oil.

6.3.1. Lard

Lard is a semi-soft fat derived from adipose tissue of the pig and contains a high content in
saturated fatty acid (~30%) and <1% trans-unsaturated fatty acids (i.e., trans fats). In some cases,
lard is hydrogenated or treated with bleaching and deodorizing agents, emulsifiers, and antioxidants
to improve its stability. The energy content of lard is about 37.6 kJ/g (9 kcal/g). Interestingly, in rodents
lard-based HFD accentuated the increase in weight gain and the development of obesity and insulin
resistance more than a diet that was based on hydrogenated vegetable-shortening diets, suggesting
that the outcome of consuming HFD is strongly dependent on the used fat constituent [52]. Moreover,
lard-based diets were significantly more inferior than soybean oil in protecting mice after application
of the powerful hepatotoxin carbon tetrachloride twice a week for three weeks, which is a model to
generate liver necrosis and steatosis, potentially indicating its less antioxidant activity [53].

6.3.2. Corn Oil

Refined corn oil is derived from the germ of maize and typically contains 99% triacylglycerols with
59% polyunsaturated fatty acid (e.g., linoleic acid), 24% monounsaturated fatty acid (e.g., oleic acid),
and 13% saturated fatty acid (e.g., palmitic acid, stearic acid, arachidic acid) [54,55]. It is categorized as
one of the richest sources of health-promoting phytosterols and tocopherols protecting against DNA
damage, hypertension, platelet aggregation, hypercholesterinemia, and diabetes [54]. In line with
these beneficial effects, high corn oil dietary intake was shown to improve health and longevity of
aging mice when fed at normal energy balance [56]. In addition, disease development and progression
as well as deposition of extracellular matrix within the liver in a mouse model of non-alcoholic
steatohepatitis (NASH) was significantly reduced when the HFD was composed of corn oil instead of
non-trans fats [57].

As mentioned, the dietary intake of corn oil is known to improve health and longevity of mice,
which corroborates with reversing aging-increased blood lipids and decreasing serum pro-inflammatory
markers [56]. In addition, the olfactory cues and the oily texture of corn oil are important orosensory
factors provoking a strong appetite in mice [57]. However, other reports showed that the excess dietary
intake of polyunsaturated fatty acids is associated with loss of spontaneous physical activity and
development of insulin resistance [58]. In addition, polyunsaturated fatty acids are subject to oxidation.
Therefore, the AIN recommended the supplementation of antioxidants in formulations containing
large quantities of corn oil [19].

6.3.3. Safflower Oil

The safflower (Carthamus tinctorius) or safflor is a thistle-like annual plant of the Asteracea family
from which vegetable oil can be extracted from its seeds. Safflower seed oil is flavorless and colorless
and in its composition similar to oil from sunflowers, olives, and peanuts, typically containing high
content of linoleic acid (63–72%), oleic acid (16–25%) and linolenic acid (1–6%) [59]. In particular,
the high content of linoleic acid was shown to have highly beneficial health-promoting effects by
reducing the expression of lipogenic enzymes and increasing the activity of hepatic fatty acid oxidation
enzymes [60].
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6.3.4. Menhaden Oil

The forage fish menhaden (Brevoortia tyrannus) belongs to the herring family and forms large
flocks occurring on the North American Atlantic coast from Nova Scotia to Florida and related forms
are also found up to the coasts of Argentina. The oil derived of these animals is rich in omega-3
polyunsaturated fatty acids such as eicosapentaenoic acid (EPAc) and docosyhexaenoic acid (DHAc),
both supposed to have anti-inflammatory activities [61]. Recently, it was demonstrated that EPAc and
DHAc supplementation in the context of HFD partially mitigated reductions in insulin sensitivity and
maintaining cell function [62]. Moreover, the polyunsaturated fatty acids in menhaden oil prevented
high-fat diet-induced fatty liver disease in mice [63].

6.4. Vitamins

Mice, like humans, require some essential micronutrients in small quantities that cannot be
synthesized by their own. These vitamins are organic molecules and must be obtained through the
diet, or alternatively synthesized by microorganisms in the gut flora. They have diverse biochemical
functions and are commonly sub-classified as either water-soluble (vitamin C, vitamin B1, vitamin B2,
vitamin B3, vitamin B5, vitamin B6, vitamin B7, vitamin B9, vitamin B12) or fat-soluble factors (vitamin
A, vitamin D, vitamin E, vitamin K). In comparison to fat-soluble vitamins that can accumulate in the
body, water-soluble vitamins are readily excreted from the body. Deficient intake (primary deficiency),
malfunction during absorption or use of a vitamin (secondary deficiency), or increased consumption
results in hypovitaminosis. In contrast, excess intake results in hypervitaminosis occurring mainly
only with fat-soluble vitamins (e.g., vitamin A and D). The different vitamins are involved in many
biochemical processes (Table 3). Therefore, any shortage might result in complex illnesses potentially
affecting different organs. General guidelines defining the nutrient requirements of the mouse are
available (see below) [10].

Table 3. Biochemical function of water-soluble and fat-soluble vitamins.

Vitamin
Sub-Class Vitamin Compound (Alternate

Names)/Members Biochemical Function Reference

Water-soluble

Vitamin C Ascorbic acid
Maintenance of redox balance; co-substrate for

several enzymes; intracellular antioxidant;
electron donor

[64]

Vitamin B1 Thiamine Coenzyme in the catabolism of sugars
and amino acids [65]

Vitamin B2 Riboflavin Coenzyme in flavoprotein enzyme reactions
(e.g., FAD); antioxidant [66]

Vitamin B3 Niacin (nicotinic acid)

Coenzyme involved in protein, fat and
carbohydrate metabolism (e.g., Nicotinamide

adenine dinucleotide (NAD); hydrogen carrier;
antioxidant, reducing agent

[67]

Vitamin B5 Pantothenic acid
Coenzyme in synthesis and metabolism of

proteins, carbohydrates and fats; required for
synthesis of coenzyme A

[68]

Vitamin B6

pyridoxine, pyridoxal, pyridoxamine
and their respective

mono-phosphorylated derivatives

Coenzyme in many enzymatic reactions
(decarboxylations, transaminations, eliminations,

racemizations, transsulfurations,
interconversions); antioxidant

[69]

Vitamin B7 Biotin (vitamin H)

Coenzyme for carboxylases: pyruvate
carboxylase, 3-methylcrotonyl-CoA carboxylase,
propionyl-CoA carboxylase, and coenzyme for

acetyl-CoA carboxylase 1 and 2

[70]

Vitamin B9

Folic acid (folacin), folate
pteroyl-L-glutamic acid,

pteroyl-L-glutamate,
pteroylmonoglutamic acid

Coenyzme in single-carbon group (methyl-,
methylene-, formyl group) transfer reactions [71]

Vitamin B12 Cobalamin Coenzyme for the methionine synthase and
methylmalonyl-CoA mutase [72]
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Table 3. Cont.

Vitamin
Sub-Class Vitamin Compound (Alternate

Names)/Members Biochemical Function Reference

Fat-soluble

Vitamin A Retinol, retinal, retinoic acid,
provitamin A carotenoids

Modulator of immune system; low-light and
color vision; wound healing; hormone (binding

to retinoic acid receptors); metabolic
effects; reproduction

[73,74]

Vitamin D
Group of secosteroids (e.g.,

ergocalciferol, cholecalciferol and
others);

Binding to vitamin D receptor acting as a
transcription factor; calcium and phosphate

homeostasis; immune system; cell proliferation
and differentiation; bone formation; innate and

adaptive immunity

[75,76]

Vitamin E α/β/γ/δ-tocopherols,
α/β/γ/δ-tocotrienols

Antioxidant and radical scavenger; modulator of
gene expression; enzyme activity regulator

(e.g., protein kinase C)
[77]

Vitamin K
Phylloquinone (vitamin K1),

menaquinones MK-4 through MK-10
(vitamin K2)

γ-glutamyl carboxylation; relevant in blood
coagulation and bone metabolism; modulator of

transcriptional activity; agonist of steroid and
xenobiotic nuclear receptor; neural stem cell

differentiation modulator

[78]

Based on the heterogeneous character of the different vitamins, their stability is highly variable.
Quantitatively deterioration in content over time of vitamins can be affected by many factors, including
temperature, moisture, oxygen, light, pH, oxidizing and reducing agents, catalytic activity of metals,
mutual damage by other vitamins, detrimental compounds (e.g., sulphur dioxide), or combination
of these factors [79]. For example, vitamin B12 is decomposed by light, alkali, acids, and oxidizing
or reducing agents, while on the contrary vitamin B2 (riboflavin) and vitamin B3 (niacin) are rather
stable [79].

In addition, during production and handling of mouse diets, there are several factors affecting
the stability of vitamins during extrusion. These occur for example during handling of raw material,
mixing, conditioning, processes, changes in moisture, heat or pressure treatments during extrusion
and expansion [80]. Aspects of stability of vitamins and reduced levels of vitamins during processing
of fish feed were concisely discussed by Riaz and coworkers [80]. Since the production of grain-based
diets is rather similar, the reported values should be comparable with these values. For the different
vitamins, the factors affecting vitamin destruction during processing and storage are different (Table 4).
Sufficient supply with vitamins in mouse diets can be guaranteed by food fortification.

Table 4. Vitamin losses during pelleting, extrusion and storage of feeds and factors affecting
vitamin deterioration.

Vitamin Factors Affecting Vitamin Stability during
Processing and Storage

Vitamin C (ascorbic acid) Moisture, heat, oxidation, light, iron
Vitamin B1 (thiamine) Oxidation
Vitamin B2 (riboflavin) Light

Vitamin B3 (niacin) Rather stable
Vitamin B5 (pantothenate) Oxidation, light
Vitamin B6 (pyridoxine) Oxidation, reduction

Vitamin B7 (biotin) Oxidation
Vitamin B9 (folic acid) Oxidation, light, microbial

Vitamin B12 (cobalamin) UV light, interaction with other water-soluble
vitamins, heat, pH

Vitamin A (retinol, retinal, retinoic acid, provitamin A carotenoids) Oxidation, light, (trace elements)
Vitamin D (cholecalciferol) Stable

Vitamin E (α/β/γ/δ-tocopherols, α/β/γ/δ-tocotrienols) Oxidation, light, oxidized fat
Vitamin K (menadione) Oxidation

Information of this table was taken in simplified and modified form from [80] and complemented
with data from [79,81].
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6.5. Minerals and Trace Elements

Minerals, also known as macrominerals or micronutrients, are inorganic elements which generally
occur in large quantities, while trace elements or microminerals normally are present only in small
amounts in organisms. Calcium, phosphorus, chloride, magnesium, phosphorus, potassium, sodium,
and chloride are the elements playing vital roles in the body [82]. They regulate the proper composition
and function of the body fluids, tissue, bone, teeth, muscles and nerves. Some of them also have
function as a coenzyme in metabolic reactions and guarantee biochemical functions in body homeostasis,
including energy production, growth, wound healing and proper utilization of vitamins and other
nutrients. Essential trace elements required in smaller amounts by animals and plants are iron, zinc,
copper, nickel, molybdenum, manganese, selenium, iodine, and others. These elements are involved in
vital enzymatic reactions by acting as cofactors or by stabilizing cellular structures [82]. Based on their
involvement in hundreds of biological processes, inadequate mineral and trace element intake can
result in severe health conditions that can affect nearly all organs and tissues. These can be highly
variable and become most evident after chronic shortage (see below).

6.6. Fibers

In its simplest definition, fibers are non-starch polysaccharides composed of a large number of
monosaccharides that are linked through covalent bonds [83]. The term “dietary fibers” is often used to
designate the sum of non-starch polysaccharides with its complex fibrous, tasteless organic polymers
(i.e., the lignin) forming key structural materials in the supportive tissue of plants of which it is
derived of [83]. Based on its composition, these dietary fibers have different physiochemical properties
regarding size, hydration, viscosity, fermentability, and impact on satiety. In addition, the proportion
of the cell wall components varies from plant to plant and is further dependent on the age and type
of plant tissue.

Dietary fibers are roughly grouped into soluble and insoluble fibers. Soluble fibers (non-cellulosic
polysaccharides, arabinoxylans, β-glucans, some hemicelluloses, pectins, gums, mucilages, inulin)
dissolves in water and are broken down in the gut some of which form a thick, spread-out gel,
while insoluble fibers (cellulose, some hemicelluloses, lignin, resistant starch) are left intact as food
moves through the gastrointestinal tract [84]. Some soluble fibers block the uptake of fats and are used
as a fermentable energy source for gut bacteria. On the contrary, insoluble fibers are indigestible and
speed up the elimination of toxic waste in the digestive tract through promoting bowel movement in
the colon, thereby preventing constipation.

Fibers can be further sub-classified as neutral detergent fiber (NDF) and acid detergent fiber
(ADF), in which NDF is the complete fraction of insoluble residue following neutral detergent digestion
and ADF is the harder to digest part of the fiber. In other words, ADF is the sum of cellulose and lignin
and NDF is the sum of ADF and hemicellulose. ADF is the fraction of fibers that contain virtually no
fermentable ability and reduces overall digestible energy from the diet and NDF is a measure of most
of the fiber in the diet (except for soluble fiber, which is not part of this fraction). Therefore, a high
content of ADF in a diet will provide lower amounts of energy than a diet with lower ADF amount [85].

There are a large number of fiber sources used to dilute the nutrient and energy density of the
diets (cf. Table 2). When fibers are included in rodent chows, the weight of the cecum and colon
may increase and microbial fermentation results in short-chain fatty acid (SCFA) production such as
acetate, propionate and butyrate having beneficial effects on mice health [86,87]. Moreover, addition
of fibers that dilute the nutrient density of the diet will have effects on food intake and body weight
and further impact the fecal and urinary nitrogen excretion as a result of microbial fermentation [10].
In humans, diets with a high content of fibers are suggested to have beneficial effects, including
increasing the volume of fecal bulk, decreasing the overall time used for intestinal transit, promoting
the elimination of toxic waste, stimulating the intestinal flora, and finally reducing the onset risk of
metabolic syndromes (Figure 6) [88]. Comparable to humans, a low-fiber diet was shown to promote
expansion and activity of colonic mucus-degrading bacteria, suggesting respective diets are ideally
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suited as nutritional models for analyzing aspects of colonic mucus layer dysfunction and altered
pathogen susceptibility [89].
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Figure 6. Beneficial effects of dietary fibers in humans. The ingestible parts of plants help to speed up
the elimination of toxic waste in the digestive tract through promoting bowel movement in the colon and
reacting with bacteria in the lower colon, thereby producing short chain fatty acids (acetate, propionate,
butyrate) causing cancer cells to self-destruct. Inadequate fiber intake during malnutrition results in
distortion of the mucosa, reduced intestinal barrier function, and inflammation. Similarly, fiber-free
diets provoke degradation of mucus layer and barrier dysfunction in mouse.

7. Nutrient Requirements of the Mouse

Mice as humans need a balanced, fresh and healthy diet that meets their nutritional needs.
Nutrients designed for rats, guinea pigs, hamsters or other herbivores are not necessarily suitable
for mice, because they need sufficient quantities of essential amino acids, fatty acids, vitamins, and
minerals that might vary in content to other animals.

When housed under a standard 12-h light/12-h dark cycle, mice typically consume the majority of
their food during the dark period, with short bouts of feeding during the light period [90]. There are
a number of factors impacting food uptake, including strain differences, genetic background in
transgenic and knockout mice, age, stress, habituation, forced movement, and discomfort resulting
from drug treatments or surgeries. Moreover, the energy balance in female mice is strongly affected by
hormonal variation associated with the estrous cycle [90].

Detailed guidelines for the nutrient requirements of laboratory animals were first published in
1962 and updated several times [10]. In the most recent edition, published in 1995, the composition of
an adequate nutrition of mice maintained in conventional animal facilities is in detailed listed (Table 5).
It should be noted that mice kept in a germ-free SPF facility or subjected to experimental-induced
stress have altered nutrient requirements that should be adapted accordingly.
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Table 5. Nutrient requirements of mice maintained in conventional animal facilities *.

Nutrient Amount (per kg Diet)

Lipid 50 g

Linoleic acid 6.8 g

Protein (N × 6.25) ** 180–200 g

Amino acids Arginine: 3 g; histidine: 2 g; isoleucine: 4 g; leucine: 7 g; valine: 5 g; threonine: 4 g;
lysine: 4 g; methionine: 5 g; phenylalanine: 7.6 g; tryptophan: 1 g

Minerals
Calcium: 5 g; chloride: 0.5 g; magnesium: 0.5 g; phosphorus: 3 g; potassium: 2 g;
sodium: 0.5 g; copper: 6 mg; iron: 35 mg; manganese: 10 mg; zinc: 10 mg; iodine:

150 µg; molybdenum: 150 µg; selenium: 150 µg

Vitamins

Retinol: 0.72 mg (= 2400 IU); cholecalciferol: 0.025 mg (1000 IU); RRR-α-tocopherol:
22 mg (= 32 IU); phylloquionone: 1 mg; biotin: 0.1 mg; choline: 2 g; folic acid:

0.5 mg; niacin: 15 mg; Ca-pantothenate: 16 mg; riboflavin: 7 mg; thiamine-HCl:
5 mg; pyridoxine-HCl: 8 mg; cobalamin: 10 µg

* The information depicted for individual nutrients was taken from the National Research Council (NRC)
guidelines [10]. According to these guidelines, the nutrient requirements are expressed on an as-fed basis for diets
containing 10% moisture and 16–17 kJ metabolizable energy per g and should be adjusted for diets of differing
moisture and energy concentration. ** This calculation of this parameter assumes that the average nitrogen (N)
content of proteins is about 16 percent, which led to the use of the calculation N × 6.25 (1/0.16 = 6.25) to convert
nitrogen content into protein content. The amount of protein is given for animals maintained under regular
growth conditions.

It was demonstrated some years ago that the composition of the commensal gut microbiota
in humans correlates with diet and health in the elderly [91]. Moreover, in aged mice some of the
alterations associated with aging can be rescued by fecal transfer [92]. In this context, it should be noted
that the eating of fresh feces, which is a natural behavior of mice, is possibly not only helpful to better
absorb nutrients/minerals they need to stay healthy, but is further a requirement to slow down the
aging processes caused by nutritional deficiencies. The consequences of a chronic shortage in a specific
nutritional compound have been best documented in mouse studies in which diets were fed lacking
individual substances. Such studies have shown that the permanent lack in a specific component
evokes severe consequences (Table 6).

Table 6. Consequences of insufficient supply with selected nutritional components.

Component Consequences of Insufficient Supply References

Fat Alterations in composition and functionality of synaptosomal
plasma membranes [93]

Protein
Decreased host immune defense; reduced numbers of splenocytes,

lower quantities of glutathione in several organs; less food ingestion
and weight gain during pregnancy resulting in fewer viable pups

[94,95]

Phe, Thr, Trp, Met, Lys, Leu, Ile, Val Massive reduction of abdominal fat mass after 7 days, most likely via
increased energy expenditure [96–99]

Calcium Development of osteoporosis-like symptoms with reduced femur
length and reduced density of various bones [100]

Magnesium
Hypomagnesemia reduced bone growth and chondrocyte functionality;
During embryogenesis embryotoxic effects (retardation, disturbed bone

development and skeletal malformations) are induced
[101,102]

Phosphorus Severe growth retardation with a 50% reduction in body weight;
reduced formation of milk droplets [103,104]

Potassium
Hypokalemia results in decrease in luteinizing hormone and

testosterone provoking testicular impairments that is also seen in a fall
in the weight of seminal vesicles

[105]

Copper Development of anemia, duodenal hypoxia and alterations in intestinal
iron absorption [106]

Iron
Development of pronounced splenomegaly; anemia with reduction in

hemoglobin and hematocrit levels with higher risk of developing
deep dental caries

[107,108]
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Table 6. Cont.

Component Consequences of Insufficient Supply References

Manganese
Growth retardation and malfunction of reproductive organs and
ovulation; congenital debility of young animals with loss of both

equilibrium and coordination
[109,110]

Zinc Reduced immune responses after challenging with pathogen indicated
by greater weight loss, stool shedding, mucus production and diarrhea [111]

Iodine Development of carcinoma of the thyroid; formation of oxidative stress
and DNA modifications [112,113]

Selenium

Potentiate the development of autoantibodies; reduction of amino acid
levels and elevation of mononucleotides resulting in dysregulated

metabolomes and age-associated decline of protein synthesis;
development of widespread pyogranulomas

[114–116]

Thiamine
Reduction of energy state in the liver; reduction of blood glucose,

insulin, triglycerides, cholesterol, liver glycogen; increase
of serum lactate

[117]

Biotin Impairment of mitochondrial structure and function; intoxication with
propionyl-CoA; systemic inflammation [118]

Vitamin D

Increased expression of sex steroid receptors in myometrium; increased
expression of proliferation-related genes; promotion of fibrosis,

inflammation, and immunosuppression; enhancement of DNA damage;
increased lipid deposition in skeletal muscle and muscle

fiber disorganization

[119,120]

Vitamin A Breakdown of oral tolerance; reduction of iron absorption [121,122]

Linoleic acid Reduction results in lower concentrations of circulating, small bowel
and hepatic endocannabinoids; lower feed efficiency and weight [123]

Choline

Amplification of liver fat accumulation in phases of high fat
consumption; lowering of fasting plasma insulin; improvement of
glucose tolerance; reduction of fibroblast-like cells in circulating

tumor cells and less metastasis

[124,125]

The resulting phenotypes resulting from chronic shortage in specific elements or compounds can
vary dramatically. The nutritional status impacts growth, reproduction, longevity and determines the
response to pathogens, environmental stress, and organ function. Therefore, the avoidance of inadequate
intake is one important factor in guaranteeing the welfare of the mouse kept in an animal facility.

8. Representative Examples of Diet-Induced Obesity and Fatty Liver Disease

The composition of a diet has strong impact on the health of an organism. It influences the
composition of the gut microbiota and overfeeding or fasting can cause disease. Therefore, scientists
frequently use such model to analyze aspects of diet-related diseases. On the contrary, lifelong caloric
restriction is an effective experimental tool to reprogram hepatic fat metabolism and to extend life span
in diverse species [126].

In biomedical research, mice are the most widely used animals and the nutrient requirements might
depend on development state, reproductive activity, age, and stress factors induced by the experimental
conditions. Moreover, there is a great danger that mice, when housed in standard laboratory under
ad libitum feeding conditions having continuous access to food but virtually no environmental
stimulation become overfed and sedentary and are potentially not suitable as proper controls in animal
experiments [127]. Similarly, unwanted contaminants such as pesticides, mycotoxins, heavy metals,
nitrosamines, nitrates, nitrites, phytoestrogens with estrogenic activity, and polychlorinated biphenyls
in dietary products may affect the outcome of animal studies when present at a sufficient high
concentration [128]. Maximum allowable concentrations of these undesirable substances in mouse diets
are also specified by the guidelines provided by organizations such as the US Environmental Protection
Agency (EPA), the Food and Drug Administration (FDA), the British Association for Research Quality
Assurance (BARQA), or the Society of Laboratory Animal Science, GV-SOLAS [128].

Therefore, depending on the research question, the nutritional requirements must be carefully
considered. Contrarily, the usage of specific diets in mice is widely applied to induce diseases mimicking
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human pathologies including liver disease, metabolic dysfunctions (insulin resistance, diabetes type 2),
heart failures, immune system alterations, neurological disorders, or even cancer. These diet-induced
models are enriched in specific fats, sugars, toxins, metals, or alternatively lack essential nutrients
that are indispensable for the proper synthesis of essential nutrients. In particular, studies analyzing
aspects of the immune system require special needs in regard to sterility and compounds that might
interfere with the composition of the gut microbiome or function.

In most countries, the feeding of diets provoking the formation of disease or animal suffering
require permission of responsible animal welfare authorities and should be carried out in an ethical
framework that minimize fear, pain, stress and suffering of animals. This is best done, when respective
experiments are carried out following established SOPs providing details about the scientific
background, its implementation, experimental details (handling, concentrations, duration of procedure,
biometric aspects, readout systems), and about the animal burden associated with this procedure [4].
The diversity of mouse diets is extremely versatile. The diets might vary in size, form, color and of
course in nutritional composition (Figure 7).
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Figure 7. Diversity of mouse diets. (A) Diets can be produced in different appearance. (B) Diets can be
produced in variable shape and color. (C) Uncolored diet, (D) yellow-stained diet, (E) blue stained
high-fat diet, and (F) doxycycline hylate added diet. These figures were kindly provided by Dr. Dr. habil.
Annette Schuhmacher (Ssniff Spezialdiäten GmbH, Soest, Germany).

Nowadays, a large number of diet-induced disease models are established in biomedical research.
Most common are models to induce atherosclerosis, obesity, diabetes type 2, or liver damage.
In the following, we will discuss some aspects of representative diets used in hepatology research,
in particular, NAFLD. These are a typical control diet and four diets that are used to induce fatty
liver injury, namely a diet to induce DIO, a typical Western diet (WD), a diet rich in fat, fructose
and cholesterol (FFC), and the so called methionine-choline deficient (MCD) diet. Representative
compositions of such diets are given in Table 7.

These four diets are some examples of diets commonly used in experimental hepatology research
as nutritional models to induce a spectrum of disorders associated with accumulation of excess fat
in the liver. The most common form is NAFLD and a more serious condition named non-alcoholic
steatohepatitis (NASH). NAFLD and NASH and are the most prevalent liver diseases in Western
society and the third leading cause for liver transplantation in the US [129]. Furthermore, there is
evidence that NAFLD precedes and is associated with the metabolic syndrome characterized by obesity,
diabetes, insulin resistance, and hypertension [130]. Phenotypically, patients with NASH/NAFLD are
characterized by liver cell injury and damage, inflammation, and an increased risk for liver fibrosis
and carcinogenesis [129]. Based on the eminent importance of NAFLD, several experimental dietary
mouse models were developed to mimic the pathogenesis of human NASH and NAFLD.
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Table 7. Composition of representative mouse diets used in hepatology research *.

Component Control Diet DIO ** Diet WD Diet FFC Diet MCD Diet

Crude nutrients
[%]

Crude protein (N × 6.25) 17.6 24.4 17.3 19.7 15.0
Crude fat 7.1 34.6 21.1 20.0 10.0

Crude fibre 5.0 6.0 5.0 5.1 3.0
Crude ash 3.2 5.3 4.2 4.4 3.3

Starch 38.2 0.1 14.4 0.1 19.2
Dextrin 13.1 15.4 0 10.9 0
Sugar 11.2 9.4 34.3 34.2 45.1

N free extracts 63.1 26.3 49.8 46.2 67.3

Minerals
[%]

Calcium 0.55 0.92 0.76 0.78 0.59
Phosphorus 0.37 0.64 0.45 0.50 0.46

Sodium 0.15 0.20 0.24 0.20 0.16
Magnesium 0.10 0.23 0.10 0.13 0.06
Potassium 0.55 0.97 0.54 0.77 0.36

Fatty acids
[%]

C 4:0 - - 0.80 - -
C 6:0 - - 0.53 - -
C 8:0 - - 0.29 - -
C10:0 - - 0.63 - -
C 12:0 - 0.07 0.72 0.02 -
C 14:0 0.02 0.44 2.22 0.07 -
C 16:0 0.84 7.93 5.60 2.04 1.09
C 17:0 0.01 0 0.14 0.01 0.01
C 18:0 0.26 4.37 2.05 2.38 0.19
C 20:0 0.03 0.11 0.04 0.14 0.03
C 16:1 0.01 0.94 0.38 0.08 0.01
C 18:1 1.78 13.97 4.65 11.65 2.58
C 18:2 3.69 4.64 0.38 2.14 5.53
C 18:3 0.41 0.49 0.11 0.19 0.09

Amino acids
[%]

Lysine 1.47 2.20 1.43 1.63 1.40
Methionine 0.55 0.86 0.93 0.61 0

Cystine 0.37 0.45 0.07 0.43 0.35
Threonine 0.78 1.07 0.76 0.86 0.80

Tryptophan 0.23 0.33 0.22 0.26 0.18
Arginine 0.69 0.95 0.67 0.77 0.98
Histidine 0.53 0.74 0.52 0.59 0.45

Valine 1.23 1.70 1.20 1.37 0.81
Isoleucine 1.00 1.38 0.97 1.11 0.80
Leucine 1.75 2.42 1.71 1.95 1.10

Phenylalanine 0.92 1.27 0.89 1.02 0.74
Phenylalanine +Tyrosine 1.85 2.56 1.80 2.06 1.24

Glycine 0.35 0.52 0.34 0.39 2.31
Glutamic acid (+Glutamine) 3.97 5.50 3.88 4.43 3.96
Aspartic acid (+Asparagine) 1.31 1.82 1.28 1.45 0.95

Proline 2.02 2.80 1.97 2.25 0.35
Serine 1.06 1.46 1.03 1.18 0.35

Alanine 0.53 0.81 0.52 0.59 0.35

Vitamins
[mg per kg]

Vitamin A *** 1.20 4.50 4.50 1.32 5.85
Vitamin D3 **** 0.025 0.0375 0.0375 0.0275 0.055

Vitamin E 75 150 150 90 135
Vitamin K (as MNB) 4 20 20 4 45

Thiamine (B1) 12 25 26 13 22
Riboflavin (B2) 16 16 16 18 22
Pyridoxine (B6) 7 16 16 7 22
Cobalamin (B12) 0.025 0.03 0.03 0.028 0.03

Nicotinic acid 29 47 49 32 98
Pantothenic acid 15 55 55 17 60

Folic acid 2 16 16 2 2
Biotin 0.2 0.3 0.3 0.2 0.4

Choline 1130 1140 920 920 0

Trace elements
[mg per kg]

Iron 49 168 49 68 42
Manganese 22 95 22 30 53

Zinc 41 65 41 58 29
Copper 10 13 11 14 6
Iodine 0.3 1.2 0.3 0.4 0.2

Selenium 0.2 0.2 0.2 0.2 0.1
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Table 7. Cont.

Component Control Diet DIO ** Diet WD Diet FFC Diet MCD Diet

Other ingredients
[mg/kg] Cholesterol 0 ~230 2070 20,000 0

* The concentration of the individual components were taken from Ssniff diets with order numbers E15712
(control), E15742 (DIO), E15721 (Western diet), E15766-3402 (NASH diet), and E15653 (MCD diet), respectively. **
Abbreviations used are: DIO, diet-induced obesity; FFC, fat-, fructose- and cholesterol-rich diet; HF, high fructose;
MCD, methionine-choline deficient; MNB, menadione nicotinamide bisulfite; WD, Western diet. *** 1 mg Vitamin A
corresponds to 3333 IU. **** 1 µg Vitamin D3 corresponds to 40 IU. Percentages [%] are given in relation to the whole
weight of the diet. Underlined values mark special features in the respective diet.

When comparing a diet used for DIO with a control diet, the most striking difference is the
high-fat content of the DIO diet (cf. Table 7). Typically, mice fed a DIO diet containing 40–60% of
calories from fat for 7–30 weeks increases their body weight and propensity to develop pre-diabetic
symptoms and metabolic syndrome. This type of diet is, therefore, often used in studies investigating
aspects of food intake, energy expenditure, glucose tolerance, insulin resistance, and elevated blood
pressure [130,131]. When using this model, a slight increase in body weight can be noticed already
after 2–4 weeks, while the body weight gradually increases thereafter and is 20–30% higher in mice
after 16–20 weeks compared to chow-fed mouse [132]. However, the outcome of the DIO model is
influenced by many factors, including genetic background, gender, age, and environmental factors
such as cage placement, mice density, and mice handling [132].

While in a typical control diet, the fat and sugar content is not higher than 10%, a WD is
characterized by a high content of fat combined with a high amount of a sugar as sucrose or fructose.
In some cases, these diets are enriched with trace of SCFA such as C4:0 (butyric acid) and medium-chain
fatty acids (MCFA) such as C6:0 (caproic acid), C8:0 (caprylic acid), and C10:0 (capric acid) are added
to these diets. The rationale of this supplementation is the notion that ghrelin activation requires
acetylation of its third residue, serine, with caprylic acid by ghrelin O-acyltransferase [133].

After prolonged feeding of a DIO diet or WD to mice for 30–50 weeks, the animals become
severely obese, fat deposition occurs, ectopic fat accumulates in the body and the liver size significantly
increases (Figure 8).
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Figure 8. Diet-induced obesity and high-fat diets. (A,B) Comparison of mice receiving either
a grain-based diet (A) or a diet enriched in fat (B) for prolonged times. While the body weight
of the mice receiving a control diet was 25 g, the mouse fed a diet enriched for the same time was
52 g. (C–F) In obese animals, excess fat deposition and ectopic fat accumulation in the body occurs
(C,E). In addition, the liver size is much higher in animals that received a diet rich in fat compared
to animals at same age fed a grain-based diet (D,F). Depicted figures in (A,B) and (C–F) were kindly
provided by Dr. Angela Schippers (Department of Pediatrics, UKA, Aachen, Germany) and Anastasia
Asimakopoulou (IFMPEGKC, UKA, Aachen, Germany), respectively.
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In cardiovascular research, WDs enriched in cholesterol, cholate, sucrose, and/or saturated fatty
acids have also atherogenic effects and are frequently used to induce or accelerate atherosclerosis in
mice [134,135].

Diets highly enriched in fructose rapidly induce an early diabetic state in mice [136,137]. In the liver
fructose can be converted in several steps to glycerol-3-phosphate and metabolized by de novo
lipogenesis to fatty acids, which can then be esterified to triglycerides (Figure 9A). Therefore, the chronic
intake of excess dietary fructose leads to increased formation of triglycerides that accumulate in the
liver (Figure 9B), insulin resistance and formation of very low density lipoprotein, attributes that are
hallmarks in NAFLD [46].
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Figure 9. Fructose metabolism and consequences of increased fructose uptake. (A) The metabolism
of fructose is initiated by phosphorylation of fructose to fructose-1-phosphate, which is subsequently
hydrolyzed to form dihydroxyacetone phosphate and glyceraldehyde. Glyceraldehyde can also be
converted to dihydroxyacetone phosphate or metabolized to glycerol 3-phosphate. Dihydroxyacetone
phosphate can be isomerized via glycerol to glyceraldehyde 3-phosphate. Dihydroxyacetone phosphate
can be further reduced to glycerol-3-phosphate or converted into glyceraldehyde 3-phosphate, and
subsequently sequentially to phosphoenolpyruvate, pyruvate, and lactate. Pyruvate is central in
feeding the citric acid cycle by transferring acetyl groups to coenzyme A, which is essential for the
generation of fatty acids. Fatty acids can be esterified to glycerol-3-phosphate to generate triglycerides.
Compound images were prepared with the Jmol program (www.jmol.org), version 14.2.15 using the
compound identification (CID) nos. 5984, 65246, 751, 753, 1005, 754, 668, 754, 107735, 444493, 91435,
985, and 11147, respectively, (B) feeding of a fructose-enriched diet for 4–8 weeks results in progressive
accumulation of hepatic fat in mice, which become evident in Oil Red O stain. Interestingly, the fat
deposition is higher in female mice than in male littermates. More details about the biological effects
and pathomechanism of fructose-induced fatty liver disease can be found elsewhere [46,47].
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Interestingly, fructose-induced steatosis and damage induced by feeding a diet enriched in 60%
fructose for four to eight weeks was more severe in female than in male mice, suggesting that respective
diets provoke gender-specific differences during progression of disease [47]. Feeding of fructose in
combination with fat and cholesterol for four days was already sufficient to induce hepatic triglyceride
accumulation demonstrating that individual “unhealthy” compounds within a diet can be additive or
synergistic [138]. Moreover, the feeding of fructose (60%) for four to eight weeks provoked impairment
of olfactory epithelium, resulting in reduced olfactory behavioral capacities [139].

Other diets are characterized by the lack of essential components. In the MCD, sulfur-containing
supplements are missing that cannot be synthesized de novo. When missing the essential amino
acid methionine, S-adenosylmethionine (SAM or AdoMet) representing a common co-substrate
involved in transmethylation, transsufuration, aminopropylation that further blunts inflammatory
reactions, cannot be synthesized [140]. The lack of this compound results in lower quantities of cysteine,
lecithin, phosphatidylcholine and many other macromolecules (Figure 10A) provoking significant fat
accumulation and fibrosis progression in liver (Figure 10B).

Chronic shortage in methionine is, therefore, associated with a progressive physiopathology
characterized by increased oxidative stress, hepatic upregulation of pro-inflammatory and
pro-fibrogenic genes, liver damage as indicated by increased levels of aminotransferases, and
manifestation of other NASH-associated symptoms [13]. Similarly, a shortage in choline, which
is an integral part of phosphatidylcholine, sphingomyelin, and acetylcholine, results in significant
intrahepatic lipid accumulation through a decreased production of very low density lipoproteins
(VLDL), down-regulation of key enzymes involved in triglyceride synthesis, and impaired de novo
lipogenesis [13]. As a consequence, harmful reactive oxygen species (ROS) are generated and the
inefficient β-oxidation causes ballooning of hepatocytes, diffuse necrosis, and hepatic fibrogenesis, and
on long-term liver cancer [13,141].

Cholesterol-enriched diets are widely used in studies investigating aspects of the metabolic
syndrome. When mice were fed with a high (1%) cholesterol diet for 12 weeks, animals developed
hyperlipidemia, hyperinsulinemia, and showed hepatocyte hypertrophy with extensive intracellular
accumulation of lipid vacuoles and droplets [142]. It is suggested that in atherogenic diets, which
are enriched for example in cholesterol and cholic acid, cholesterol is the key component driving
oxidative stress resulting in steatohepatitis and insulin resistance [143]. In addition, these diets induced
immune-related responses that may be related to liver damage in 12 inbred mouse strains tested [144].

In sum, these examples demonstrate that “unhealthy” diets enriched in or lacking of ingredients
usually part of a balanced diet are suitable to provoke hepatic damage. Therefore, these diets are
most popular in biomedical research to investigate mechanisms of initiation and progression of liver
disease. However, many of these studies draw conclusions by comparing health aspects of animals
fed a grain-based diet with a purified diet such as HFD. However, the effects of the dietary fat will
be confounded with the effects of other components that differ between the diets. This fact has been
already critically highlighted twelve years ago in a thought-provoking commentary in which 35
studies published in five prestigious high-impact journals were critically evaluated in regard to their
performance [145] and this trend has continued as demonstrated by a more recent survey of a larger
sampling of the same journals [11]. This exemplarily illustrates the fact that it is critical to draw
conclusions when comparing dietary effects obtained in animals receiving either “grain-based diets” or
“purified diets”. Although diets are normally produced in fixed formulation, minor differences might
also result when comparing findings obtained with diets produced by different companies. However,
these variations should be relatively negligible.
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Figure 10. Choline and methionine are essential dietary supplements. (A) Methionine is an essential
sulfur-containing amino acid that is part S-adenosylmethionine (SAM), which is indispensable as
a methyl group donor in pathways driving synthesis of nucleic acids, proteins, lipids, and secondary
metabolites. Choline is an integral part of phosphatidylcholines, sphingomyelins and necessary
precursor for the synthesis of the neurotransmitter acetylcholine. Choline is necessary for production
of very low density lipoproteins (VLDL), down-regulation of key enzymes involved in triglyceride
synthesis, and proper function of de novo lipogenesis. Compound images were prepared with the
Jmol program using the compound identification (CID) nos. 305, 6137, and 34755. (B) Mice fed
a methionine-choline deficient (MCD) diet for four weeks develop severe hepatic liver damage,
steatosis, ballooning, lobular inflammation, and fibrosis. In hematoxylin eosin (H & E) stain, the
architectural changes are visible. In Oil Red O stain, the increased fat accumulation during the diet is
assessable, while the Sirius Red stain is suitable to demonstrate increased deposition of collagens. Space
bars correspond to 100 µm (H & E) or 50 µm (Oil Red O, Sirius Red). More details about the biological
effects and pathomechanism of MCD diet-induced fatty liver disease can be found elsewhere [13].

9. Special Ingredients

For some studies, mouse diets are fortified with special ingredients (Figure 11). Since the
mid-1990s many genetically modified mice were developed, in which the transgene is directed under
the control of a tetracycline (Tet)-dependent regulatory system [146]. In these “Tet-on” or “Tet-off”
systems, doxycycline is preferable as an inducer in these systems due to its high biological potency,
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excellent tissue penetration, and its widespread availability [146]. This compound is rather stable in
food products and its concentration is not significantly influenced by storage at room temperature or
by exposure to light [146].Nutrients 2020, 12, x FOR PEER REVIEW 26 of 41 
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Figure 11. Some special ingredients in mouse diets used in biomedical research. Doxycycline, tamoxifen,
genistein, daidzein, cholesterol, myo-inositol are compounds that are added to specific diets. Compound
images were prepared with the Jmol program using the compound identification (CID) nos. 54671203,
2733526, 5280961, 5281708, 5997, and 892, respectively.

In other genetically-modified mouse systems, proteins are expressed as fusions with a modified
estrogen receptor ligand binding domain. In these systems, the binding of this moiety to tamoxifen
results in a conformational change that allows the fusion protein to translocate to the nucleus.
The nuclear translocation of a dominant active transcription factor induces transcriptional activation of
susceptible genes, while the expression of a dominant negative receptor fusion might provoke
silencing of respective genes. Using this concept, also several inducible tamoxifen-dependent
Cre recombinases (from English causes recombination) such as the estrogen receptor-dependent
recombinase (CreER recombinases) were cloned that are widely used in biomedical research. They can
direct the excision of LoxP-flanked DNA to generate genome modifications in mice [147]. However,
using these models and respective diets enriched in tamoxifen, it should be noticed that this drug
could influence locomotor activity, social interaction and anxiety in mice requiring critical planning of
experimental design [148].

The isoflavone genistein is a phytoestrogen with antioxidant activity targeting numerous
intracellular targets leading to retardation of atherogenic activity, possessing suppressive effects
on both the cell-mediated and humoral components of the adaptive immune system, and inhibiting
cancer progression by inducing apoptosis or inhibiting proliferation [149]. On the molecular level,
it was shown that this compound inhibits a large number of enzymes, including adenosine triphosphate
(ATP)-utilizing enzymes such as tyrosine-specific protein kinases, topoisomerase II and enzymes
involved in phosphatidylinositol turnover [150]. Moreover, this substance has anti-angiogenic effects,
modulates estrogen activity, and impacts DNA methylation and/or chromatin modification [151].
Based on this complex repertoire of activities, many mice studies have been performed with
genistein-enriched diets. In one study, in which aspects of energy expenditure were analyzed in obese
mice, 600 mg genistein/kg diet fed for a period of four weeks resulted in significantly increased food
consumption without affecting body weight [152]. In a WD, the supplementation of 1.5 g genistein/kg
diet decreased mouse food intake, body weight, and improved glucose metabolism [153]. In a study
analyzing the impact of genistein on DNA methylation a concentration of 300 mg genistein/kg diet
for four weeks was applied [154]. In the respective investigation, it was shown that male mice fed
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a casein-based diet containing genistein showed significantly higher DNA methylation in prostate
than control male mice [154].

Similar to the biological effects of genistein on energy expenditure, diets enriched with a related
isoflavone daidzein-rich isoflavone aglycone extract at 0.6% of the diet was able to reduce HFD induced
body weight gain via reduced hepatic production of triglycerides and subsequent reduction of adipose
tissue mass [155]. It was, therefore, suggested that the beneficial effects of daidzein and genistein on
food intake and body weight gain in mice are mediated by alterations within the liver X receptor (LXR)
signaling pathway [153].

The sugar myo-inositol representing one of nine distinct stereoisomers of inositol is a structural
component of many second messengers and lipids such as phosphatidylinositol and its derivatives.
Interestingly, when chronically given, this substance has insulin-sensitizing potential in mice
provoking a significant decrease in white adipose tissue [156]. Diets enriched in myo-inositol at
2.64 g myo-inositol/kg diet also showed potent reduction in the number, size, and stage of lesions in
cancer-prone transgenic mice through triggering alterations in macrophage recruitment and phenotype
switching [157].

These examples show that special diets have become an essential research tool in biomedical
research. The companies specialized in the production of rodent diets offer limitless custom formulated
diets for virtually each application. The fields of applications are numerous, including addition of special
fibers, fat, or sugars to modulate the murine microbiome, incorporation of metals or environmental
toxins such as microplastic to test their toxicity, feeding of “drug diets” to test the safety of compounds,
and many others. The mentioned representative examples of special ingredients demonstrate the
high diversity that is possible to modulate diets for a specific purpose. Custom research diets spiked
with substances or lacking essential compounds are one critical puzzle piece of biomedical research
that help to unravel individual risk factors contributing to disease formation. Usually these diets are
produced in small quantities are formulated after consultation with the manufacturers.

10. Diet Coloring

Food colorants can be divided into three groups: (i) Naturally-derived colors used for food coloring
may originate from crushed insects (e.g., carmine), saffron, turmeric, carrot, beet or their color-making
ingredients, such as riboflavin and β-carotene. These can be extracted with or without intermediate
of final change of identity from biological sources. The addition of these colors to foodstuffs only
needs to be approved in the country in which the product is sold or manufactured. (ii) In addition,
several mineral or synthetic inorganic colors such as iron oxide, titanium dioxide, chromium oxides
are certified as natural food colorings, or for use in drugs, cosmetics, medical devices, or animal food.
In particular iron oxides black, red and yellow are intended to be used as colorings and restore color to
animal feeding stuffs at a recommended concentration between 500 and 1200 mg/kg without posing
a risk to the environment [158]. Since these dyes are highly stable and excreted essentially unchanged
in the faces of the animal, they are also considered as safe additives. In many cases, they can be added
without requiring to be certified by regulatory bodies when applied in amounts not exceeding preset
maximum concentrations. (iii) On the contrary, artificial food colors also categorized as synthetic food
dyes or certified color additives are dyes produced by chemical synthesis. In the US, these synthetic
compounds must be approved for their usage by the FDA. Once approved, these food dyes are typically
named by Federal Food, Drug and Cosmetic Act (FD&C) numbers, while in the European Union
and Switzerland certified color additives are classified with European (E) numbers. In some cases,
these synthetic dyes are classified as “coal-tar colors” because they were originally produced from
petroleum or coal. Actually, the usage of seven colorings and their lakes are permitted in food products
in the US (Table 8, Figure 12).



Nutrients 2020, 12, 163 27 of 40

Table 8. Dyes allowed for artificial coloring in the US.

Food and Drug
Administration (FDA)

Name
Organic Compound Color E Number ADI *

(mg/kg bw/d)

Chemical Abstracts
Service (CAS)

Number

Federal Food, Drug
and Cosmetic Act

(FD&C) Blue No. 1

Brilliant Blue FCF (Acid Blue 9, D&C
Blue No. 4, Atracid Blue FG) blue E133 0–6 3844-45-9

FD&C Blue No. 2 Indigotine (Indigo Carmine, Acid
Blue 74, Murabba, Sachsischblau) indigo E132 0–5 860-22-0

FD&C Green No. 3 Fast Green FCF (Food Green FCF,
Food Green 3, Green 1724) green E143 *** 0–12.5 2353-45-9

FD&C Red No. 3 Erythrosine (Erythrosin B, Acid Red
51, Pyrosin B, Food Red No. 3) pink E127 0–0.1 16423-68-0

FD&C Red No. 40 Allura Red AC (Food Red 17,
Curry Red) red E129 0–7 25956-17-6

FD&C Yellow No. 5 Tartrazine (Tatrazol Yellow, Acid
Yellow 23, Food Yellow 4) yellow E102 0–10 1934-21-0

FD&C Yellow No. 6 Sunset Yellow FCF (Orange Yellow S,
Food Yellow 3) orange E110 0–4 2783-94-0

Citrus Red 2 **
Citrus Red (2,5-Dimethoxy-1-

Phenylazo-2-naphthol, CI 12156, CI
Solvent Red 80)

red E121 ***
Only approved for
use to color orange

peels (US)
6358-53-8

Orange B ** Acid Orange 137 (LS-128771,
Schembl132534) orange not allowed

***

Only approved for
use in hot dog and

sausage casings
(US)

53060-70-1

* Acceptable daily intake (ADI) values are given for humans and were taken from the Joint FAO/WHO Expert
Committee on Food Additives (JECFA, https://www.who.int/foodsafety/areas_work/chemical-risks/jecfa/en/) or
from the Internationally Peer Reviewed Chemical Safety Information (http://www.inchem.org). Abbreviations used
are: bw, body weight; ** Dye allowed by the FDA for limited applications. *** The usage of this dye in food products
is forbidden in the EU.
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Figure 12. Artificial coloring of mouse diets. The artificial dyes Brilliant Blue, Indigotine, Fast Green,
Erythrosine, Allura Red, Tatrazine, Citrus Red 2, Sunset Yellow, and Orange B or using their lakes
has been permitted by the US Food and Drug Administration to color food products. These dyes are
also approved for mouse diets. Compound images were prepared with the Jmol program using the
compound identification (CID) nos. 19700, 2723854, 16887, 12961638, 33258, 164825, 22830, 17730, and
11685735, respectively.

Usually the dyes used in rodent diets are applied as ionic salts rendered partially insoluble by
interaction with a metal such as calcium or aluminum. The FDA defines these water-soluble dyes
as “lakes”, in which the proportions of dye to metal are more or less fixed and given in percentages
(e.g., FD&C Red No. 40, aluminum lake, 36–42%).

Commonly, the dyes for coloring of food are used to modify the appeal of food for humans [159].
However, in comparison to humans, mice do not have the visual ability to distinguish the abundance

https://www.who.int/foodsafety/areas_work/chemical-risks/jecfa/en/
http://www.inchem.org
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of colors [160]. Instead, the uptake of food by a mouse is strongly dependent on smell perception and
olfactory system that are extremely important for controlling energy homeostasis [161]. The coloring of
mouse diets is, therefore, in principle of no importance for the animals. However, the coloring has
some useful properties. They allow the researcher to distinguish one diet from another and they ensure
that contamination and transmissions to other diet products during the production pipelines can be
recognized. In the following, we will give some short information about the artificial colors used for
food coloring.

Brilliant blue (FD&C Blue No. 1, E133) is a reddish-blue triarylmethane water-soluble dye used
as a blue colorant. It has reasonable stability when exposed to light, heat and acidic conditions,
but it has overall low oxidative stability [162]. This dye is considered harmless and most of the
dye is excreted undigested [163]. There is no evidence that this dye in rats or mice is carcinogenic,
or neurotoxic [164]. However, this dye can act as purinergic inhibitor without pharmacological
selectivity, thereby modulating some organ and tissue functions [162]. In addition, a recent report
has demonstrated that this dye showed significant greater absorption in septic patients with reduced
intestinal barrier function [165]. The daily maximum FDA-approved uptake of Brilliant blue for humans
is 12.5 mg/kg body weight/day, while the EU scientific committee suggested an acceptable daily intake
(ADI) of 10 mg/kg body weight/day [162].

Indigotine (FD&C Blue No. 2, E132) or indigo is a dark blue water-insoluble anionic pyrrole-based
dye originally isolated from the leaves of certain tropical plants. Nowadays this dye is one of the most
used coloring agents in the textile industry and synthesized by various methods [166]. In toxicity studies,
indigo carmine, representing an organic water-soluble salt derived from indigo by sulflonation, showed
no genotoxicity, developmental toxicity or modification of hematological parameters. An ADI up to
5 mg/kg body weight is presently considered as harmless [167]. Moreover, in traditional Chinese
medicine, indigo as “Qing-Dai” alone or in combination with other compounds is used as an overall
safe and effective drug for treatment of sun stroke, convulsions associated with epilepsy, cough,
chest pain, hemoptysis, and phlegm and childrens convulsions [167]. In rodents, the majority of this
dye is not absorbed, but readily broken down in the gastrointestinal tract to 5-sulfoanthranilic acid that
is absorbed and excreted mostly in the urine [164].

Fast Green FCF (FD&C Green No. 3, E143) is a FDA-approved triphenylmethane dye, while its
usage as a food dye is prohibited in the EU [168]. When administered orally 200 mg of this dye to
rats, the dye was excreted unchanged in the faeces and no dye was found in the urine [169]. Mice fed
diets containing up to 2% Fast Green FCF for 78 weeks, showed no lesions attributed to feeding of the
color [170]. The estimate of temporary ADI for man is set up to 12.5 mg/kg body weight [171].

Erythrosine (FD&C Red No. 3, E127) is a cherry-pink poly-iodinated xanthene used as artificial
red colorant in foods, drugs and cosmetics [172]. In the past, this dye was commonly used in many
countries but is less commonly used in the US, where it is most often replaced by Allura Red AC
(FD&C Red No. 40). Chronic toxicity and carcinogenicity studies performed in rats and mice revealed
an increased incidence of thyroid follicular cell hyperplasia and adenomas in animals that received
4% erythrosine in the diet for 30 months following in utnero exposure [173]. However, this dye is
non-mutagenic and thus the observed tumorigenic activity is most likely not the result of genotoxic
initiation [174]. However, the dye has negative effects on thyroid function and therefore the temporary
ADI is only in the range of 0–0.05 mg/kg body weight [175].

Allura Red AC (FD&C Red No. 40, E129) is a highly popular red azo dye that may cause allergic
reaction such as urticaria or asthma, especially when administered together with orther synthetic color
additives [167]. However, in general this dye at 0–7 mg/kg of body weight per day is considered as
safe [167]. In the US population, Allura Red AC belongs to the three highest cumulative eaters-only
exposures of FD&C color additives in food products [176,177]. Although the European food safety
authority expressed concerns about the usage of Allura Red AC as a food color additive, the dye has
no genotoxic activity in different test systems [178].
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Tartrazine (FD&C Yellow No. 5, E102) is a water-soluble yellow monoazo dye used all over
the world for food coloring. In a community-based, double-blinded, placebo-controlled food study,
this dye in a mix with other artificial color additives provoked increased hyperactivity in young
children [179]. However, the compound has an overall low toxicity with and LD50 value of greater
than 2 g/kg body weight and an ADI for humans of 0–7.5 mg/kg body weight was established [177].
Similarly, in mice high-dose level in excess of this ADI were shown to produce only a few adverse
effects in neurobehavioural parameters during the lactation period that were however unlikely produce
any adverse effects in humans [180].

Sunset Yellow FCF (FD&C Yellow No. 6, E110) is an orange azo dye supposed to have no
carcinogenicity, genotoxicity, or developmental toxicity in mice [181]. According to the WHO/FAO
guidelines, the ADI was increased in year 2014 from 0–1 mg/kg body weight per day to 0–4 mg/kg body
weight [182]. When high content of Sunset Yellow FCF (up to 5% for 23 months) were fed to mice, the
mortality rate was not significantly different than in mice receiving no dye and the histopathological
changes in organ and tissue observed were considered unrelated to the dietary administration of
Sunset Yellow FCF [182].

Citrus Red (Citrus Red 2, E121) is an yellow to orange dye. Testings in mice showed that the feeding
of diets containing 3% Citurs Red 2 caused increased morbidity and mortality in both sexes [183].
Based on a number of similar reports suggesting that Citrus Red 2 has carcinogenic effects, the FDA
approved this dye only for limited applications such as coloring the peel of oranges, while in the EU it
is not permitted at all [168]. However, there it was recommended that this dye should not be used as
a food additive [184]. Therefore, this dye should not be incorporated into rodent diets.

Similarly, Acid Orange 137 (Orange B) is approved in the US for use in small traces (150 ppm)
only in Frankfurter and sausage casings, while it is forbidden as a food additive in the EU [164,184].
Structurally, it is a pyrazolone dye that is reduced in the gut to form naphthionic acid [184]. In rodents
this dye induces lymphoid atrophy of the spleen, bile-duct proliferation, and moderate chronic nephritis
when applied for long-term [184]. Therefore, the usage of this dye as a food additive is forbidden in
the EU [168].

In sum, the FDA has approved seven synthetic color additives for usage in food products. Three of
them (Fast Green FCF, Citrus Red No. 2, and Orange B) are not permitted in the EU as food additives.
Although the impact of artificial dyes on mice has not been intensively investigated, there are some
studies showing that individual artificial dyes or combinations thereof might be neurotoxic when
applied in high concentration [185]. However, typically the concentration necessary to induce adverse
effects in male and female mice are extremely high. Brilliant blue FCF for examples showed no adverse
effects even at high dietary concentration (7354 mg/kg/day and 8966 mg/kg/day) in male and female
mice for 104 weeks [186]. These concentrations are far beyond the concentrations that are used for diet
coloring of mice research diets.

11. Diversity of Diet Ingredients may Confound Data Interpretation

As discussed above, many papers using nutritional models in mice draw conclusions about
dietary effects from comparison of grain-based diets with purified diets [145]. However, such
mismatched diets potentially hamper the investigator’s ability to draw useful conclusions from
otherwise well-designed studies [11]. The reproducibility of research findings is adversely affected
by the use of improper control diets in metabolic disease research and the lack of adequate diet
descriptions in resulting publications [11]. In many publications, grain-based diets referred vaguely as
“chow diet”, “normal diet” or “control diet” are compared with purified ingredient diets also named
as purified diets or semi-purified diets. Grain-based diets are made with grain, cereal ingredients,
and animal by-products that may be somewhat variable from formulation to formulation, while
purified diets are composed of highly refined ingredients [11]. Given these inherent differences between
these diets, data produced from them should not be compared to each other or matched to one
factor specifically different (e.g., fat or sugar composition). In particular, soluble fibers fermented
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by bacteria in the gut to SCFAs can for example change the gut pH, absorption of bile acids, and
chelation of minerals [11]. Exemplarily, Chassaing and coworkers have demonstrated impressively
that mismatched diets can result to erroneous conclusions [187]. In their study, the authors investigated
the extent to which HFD-induced adiposity is driven by fat content vs. other factors that differentiate
purified HFD, grain-based diet, and compositionally-defined diets (i.e., purified diets). Interestingly,
the study revealed that high-fat content and lack of soluble fiber are both acting as obesogenic factors
promoting rapid and marked loss of cecal and colonic mass and increased adiposity [187]. Therefore,
the diet with its ingredients has to be considered as a key environmental factor that critically affects the
outcome of a specific experiment. Properly matched “control diets” are therefore an indispensable
prerequisite to draw conclusions regarding diet-driven phenotypic differences in respective studies.

12. Conclusions

Nutritional factors are crucial in laboratory animal science. To guarantee reproducibility of mouse
experiments, it is necessary that they receive reliable food with constant composition. There are
many providers that have concentrated on the production of grain-based and purified diets. Some are
certified and produce their products according to national and international guidelines. The ingredients
used are analyzed extensively and the production process guarantees nutrient stability and purity.
Besides modification of the different ingredients of a diet, diets can be produced in varying shape,
grains and colors using approved non-toxic food dyes. γ-rays and pasteurization are frequently used
to sterilize diets fed in SPF facilities. However, these treatments might result in vitamin loss and
formation of toxic substances, including acrylamide and peroxide radicals. An important but largely
underestimated problem in conducting animal experimentation relying on nutritional models is the
impact of confounding factors when choosing unsuitable control diets. These factors might impact the
outcome of a specific experiment and incorrect conclusions. Confounding factors in this context are all
ingredients differing between the control diet and the intervention diet. Likewise, the coloring with
dyes such as Erythrosine and Tartrazine that have already shown to have biological effects in mice or
humans should be ommitted for diet coloring. If an investigator has special requirements or wishes for
his dietary interventions, it is urgently advisable to contact the manufacturer of the diet product before
starting an animal experiment. In most cases, the manufacturers of diets offer consultations with expert
nutritionists to assist the scientists in the selection of the right diet for the planned study requirement.
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DIO Diet-induced obesity
EPA Environmental Protection Agency
EPAc Eicosapentaenoic acid
EU European Union
FAO Food and Agriculture Organization of the United Nations
FD&C Federal Food, Drug and Cosmetic act
FDA Food and Drug Administration
FFC fat, fructose and cholesterol-rich diet
FSA Food Standards Agency
GLP Good laboratory practice
GMP Good manufacturing practices
HDL High density lipoprotein
HFD High-fat diet
ISO International Organization for Standardization
JECFA Joint (FAO/WHO) Expert Committee for Food Additives
LDL Low-density lipoprotein
LDLR Low-density lipoprotein receptor
MCD Methionine-choline-deficient diet
MND Menadione nicotinamide bisulfite
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NRC National Research Council
SAM S-Adenosylmethionine
SPF Specified pathogen free
SOP Standard operating protocol(s)
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