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Abstract: The centrosome is not only the largest and most sophisticated protein complex
within a eukaryotic cell, in the light of evolution, it is also one of its most ancient organelles.
This special issue of “Cells” features representatives of three main, structurally divergent centrosome
types, i.e., centriole-containing centrosomes, yeast spindle pole bodies (SPBs), and amoebozoan
nucleus-associated bodies (NABs). Here, I discuss their evolution and their key-functions
in microtubule organization, mitosis, and cytokinesis. Furthermore, I provide a brief history
of centrosome research and highlight recently emerged topics, such as the role of centrioles
in ciliogenesis, the relationship of centrosomes and centriolar satellites, the integration of
centrosomal structures into the nuclear envelope and the involvement of centrosomal components in
non-centrosomal microtubule organization.

Keywords: centrosome; centriole; cilium; basal body; spindle pole body; SPB; nucleus-associated
body; NAB; microtubules

1. Introduction

The centrosome is a non-membranous, nucleus-associated organelle that functions as the main
microtubule organizing center (MTOC) in many eukaryotes and thus, also as an organizer of the
mitotic spindle. With a number of, in some cases, more than 100 different proteins and a size of more
than 0.5 µm the centrosome is the largest and most elaborate protein complex in a eukaryotic cell.
In animal cells, the centrosome consists of a pair of cylindrical arrangements of short microtubules,
called centrioles, which are embedded in a pericentriolar matrix (PCM) serving as a scaffold for
microtubule-nucleation complexes. In vegetative cells, the whole structure is linked to the nuclear
envelope and nuclear lamina through LINC (linker of the nucleus and cytoskeleton) complexes (see [1]
and references therein). Yet, centrioles are absent in many fungi and amoebozoans. Instead their
centrosomal structures consist of various plaque-like structures that are also associated with a
microtubule-organizing matrix. In fungi, they are often called spindle-pole bodies (SPBs) or, as in
amoebozoans, nucleus-associated bodies (NABs) (Figure 1) ([2], Ito and Bettencourt-Dias in this issue of
Cells [3]). In this review, I will use the term centrosome to subsume all these structures, as evolutionarily
related organelles fulfilling common functions should be addressed with a common name. I will
use the common abbreviations SPB and NAB when specifically referring to fungal or Dictyostelium
centrosomes, respectively. While the function as an MTOC and all associated functions related to
microtubules are common to all known centrosomal structures in various eukaryotes, the centrosome’s
involvement in cell locomotion through cilia and its related role in signaling pathways are restricted to
centriole-containing centrosomes.
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Figure 1. Schematic comparison of centrosomal structures in animals (A), Dictyostelium (B), and 
budding yeast (C). Functionally or topologically related structures are drawn in corresponding colors. 

2. Centrosome Research Retrospective 

Starting from the first description of an enigmatic organelle involved in the meticulous 
separation of two sister chromatids into two daughter nuclei in the late nineteenth century, it took 
more than a century until the centrosome disclosed its secrets. The early work, published around the 
1890s is inevitably associated with the names of three famous early cell biologists, the Belgian 
Edouard van Beneden and the two Germans Theodor Boveri and Walther Flemming. The now 
common terms “centriole”, “chromatin”, and “mitosis” go back to Walther Flemming, who 
developed novel techniques to stain tissues derived from salamander gills and fins. He produced 
numerous, detailed drawings of dividing cells and first postulated that the filamentous structures 
forming the mitotic spindle are responsible for transport of chromatids and that all nuclei originate 
from nuclei (“omnis nucleo ex nucleo”) (Figure 2A). His main body of work was published in 1882 in 
his ground-breaking book “Cell substance, nucleus and cell division” [4]. 

 

Figure 2. Historic drawings of mitotic figures. (A) Salamander peritoneal endothelial cells by Walther 
Flemming, 1882 [4]. (B) Fertilized Ascaris egg with multipolar spindles and unequal distribution of 
chromosomes by Theodor Boveri, 1888 [5]; public domain because of age. 

The term “centrosome” was first introduced by his colleague Theodor Boveri (see Müller–
Reichert and co-authors in this issue of Cells [6]). By observing cell divisions in fertilized nematode 
eggs he and van Beneden independently found that this self-replicating organelle was the main 
organizer of cell division [7,8]. Thus, the still valid “once-and-only-once” rule in centrosome 
duplication goes back to their findings in 1887 [7]. Boveri also realized that centrosomes determine 
the planes of cell division and that overduplication of centrosomes leading to supernumerary 

Figure 1. Schematic comparison of centrosomal structures in animals (A), Dictyostelium (B),
and budding yeast (C). Functionally or topologically related structures are drawn in
corresponding colors.

2. Centrosome Research Retrospective

Starting from the first description of an enigmatic organelle involved in the meticulous separation
of two sister chromatids into two daughter nuclei in the late nineteenth century, it took more than
a century until the centrosome disclosed its secrets. The early work, published around the 1890s is
inevitably associated with the names of three famous early cell biologists, the Belgian Edouard van
Beneden and the two Germans Theodor Boveri and Walther Flemming. The now common terms
“centriole”, “chromatin”, and “mitosis” go back to Walther Flemming, who developed novel techniques
to stain tissues derived from salamander gills and fins. He produced numerous, detailed drawings
of dividing cells and first postulated that the filamentous structures forming the mitotic spindle are
responsible for transport of chromatids and that all nuclei originate from nuclei (“omnis nucleo ex
nucleo”) (Figure 2A). His main body of work was published in 1882 in his ground-breaking book “Cell
substance, nucleus and cell division” [4].
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Figure 2. Historic drawings of mitotic figures. (A) Salamander peritoneal endothelial cells by Walther
Flemming, 1882 [4]. (B) Fertilized Ascaris egg with multipolar spindles and unequal distribution of
chromosomes by Theodor Boveri, 1888 [5]; public domain because of age.

The term “centrosome” was first introduced by his colleague Theodor Boveri (see Müller–Reichert
and co-authors in this issue of Cells [6]). By observing cell divisions in fertilized nematode eggs he
and van Beneden independently found that this self-replicating organelle was the main organizer
of cell division [7,8]. Thus, the still valid “once-and-only-once” rule in centrosome duplication goes
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back to their findings in 1887 [7]. Boveri also realized that centrosomes determine the planes of cell
division and that overduplication of centrosomes leading to supernumerary centrosomes results in
multipolar spindles. In 1914, Boveri was the first to suggest that the origin of malignant tumors is
related to centrosome amplification [9] (Figure 2B). He also was the first to realize that—on a cellular
level—chromosomes reflect the hereditary traits postulated by Gregor Mendel three decades earlier.
Boveri also first postulated that the first centrosome within a zygote originates from the fertilizing
sperm cell, while the unfertilized egg lacks a centrosome [7]. This holds true for many animal species
and is discussed in detail in the both the reviews of Avidor–Reiss and Gruss in this issue of Cells [10,11].
After these groundbreaking works of the late nineteenth century centrosome research became stuck in
its descriptive character and poked along until the late 80s of the twentieth century with a relatively
low number of key papers, despite the centrosome’s central importance for cellular function. For a
long time, reasons for slow progress in the molecular characterization of centrosomes were: (1) lack of
effective centrosome isolation protocols in conjunction with the centrosome’s tight attachment to the
nucleus in vegetative cells; (2) the scarcity of centrosomal material (as there is only one centrosome
per cell); and (3) the resulting low amounts of mRNAs encoding centrosomal proteins, causing an
underrepresentation in cDNA libraries. Thus, it took until 1986 when yeast Cdc31p was the first
component of a centrosomal structure to be characterized on the molecular level [12] and until 1988 for
its mammalian orthologue centrin [13]. The next milestone was the identification of a new tubulin
isoform, γ-tubulin [14], which soon emerged as the key component for our understanding of the
centrosome’s role as a microtubule organizer [15]. At that time the origin of centrosomes and their
modes of duplication were still mysterious and the discussion whether centrosomes derived from
endosymbionts continued and could harbor their own DNA [16], a theory which was finally refuted in
the nineties (reviewed by [17]). A few further centrosomal proteins including pericentrin, centriolin,
and CP224 were cloned with the aid of autoantibodies from scleroderma patients [18,19] or monoclonal
antibodies raised against isolated Dictyostelium centrosomes [20]. However, molecular characterization
of the majority of centrosomal proteins known to date had to await the completion of the various
genome projects and refinement of peptide mass fingerprinting by mass spectrometric methods.

3. Emergence of Centrosomal Model Organisms

With the initiation of genome projects for certain organisms representing the various eukaryotic
and metazoan supergroups, model organisms for centrosome research emerged during the nineties
of the last century. Centriole-containing centrosomes were mainly studied in the green algae
Chlamydomonas (see also Wingfield and Lechtreck in this issue of Cells [21]) and among animals in
mammalian cells, Drosophila and Caenorhabditis elegans worms. The latter model was particularly useful
to study mitosis and spindle assembly in early embryonic development [6]. For acentriolar centrosomes
the main models were Saccharomyces cerevisiae and Schizosaccharomyces pombe as representatives of fungi,
and the amoeba Dictyostelium discoideum. In the early nineties, ultrastructural data were available
mainly for various animal centrosomes, yeasts and Dictyostelium amoebae [22]. Due to their lower
structural complexity and the expected lower molecular complexity, acentriolar centrosomes from
yeast and Dictyostelium appeared attractive for molecular and functional analyses, in particular since
these organisms provided a much better genetical tractability than animal cells. Moreover, at that
time, many researchers interpreted the simplicity of these centrosomes as a sign for an evolutionarily
more ancestral structural and molecular composition. Of course, lower complexity promised an easier
experimental approach to elucidate the role of the still numerous centrosomal components and their
centrosomal functions. Indeed, with regard to the identification of protein components and functions,
the yeast spindle pole body was ahead of the game compared to other model organisms, especially
in the pre-proteomic era. Availability of the complete genome in conjunction with the establishment
of effective procedures for centrosome isolation were the prerequisite for the next milestone, i.e.,
the disclosure of complete centrosomal protein inventories. Isolation protocols were established
for centrosomes from mammalian cells, yeast and Dictyostelium [23–26]. In 1998, budding yeast
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was the first organism for which an almost complete centrosomal protein inventory was obtained
by mass spectrometric peptide mass fingerprinting using isolated SPBs as the protein source [27].
Similar approaches resulted in comparable lists in the order of ~100 centrosomal protein components
for centrosomes from mammals, Drosophila, Dictyostelium, and C. elegans [28–32].

4. Evolution of Centrosomal Structures

Our current view on centrosomal evolution [33] is not only based on careful analyses of these
molecular data in conjunction with structural data [34], it has also been strongly influenced by a revised
classification of eukaryotes. According to this, the last eukaryotic common ancestor (LECA) gave rise to
five supergroups, the Excavata, SAR (Stramenopile, Alveolata, Rhizaria), Archaeplastida, Amoebozoa,
and Opisthokonta together with a few taxonomic side groups of yet undefined relationship [35]. Thus,
the idea that simple, acentriolar centrosomes were ancestral to centriole-containing centrosomes was
filed away, since it is much more likely that the LECA already possessed centrioles, which were
secondarily lost in some amoeboid or sessile organisms after their cilia or flagellae were dispensable
for locomotion [3]. According to this theory the primary function of centrioles was the role as a basal
body for formation of locomotory cilia and flagellae [21]. In animals, cilia have not only locomotory
functions. Many cell types possess primary cilia as sensory organs, e.g., in hedgehog or non-canonical
wnt signaling [36]. The loss of centrioles/basal bodies in various phyla and in conjunction with
locomotory cilia suggests that the important sensory role of non-motile cilia was acquired only later in
evolution. In this issue of Cells, Ito and Bettencourt-Dias propose an ancestral PCM core structure that
is common to all centrosome types, and that it was this PCM that attracted specific precursor proteins
of the duplicating SPB or NAB structures [3]. The latter then replaced centrioles as the core duplicating
structures after their loss due to their dispensability in non-motile or amoeboid cells. As highlighted
in their paper and also in the contribution of Pitzen et al. in this issue of Cells [37], CDK5RAP2 and
its orthologues play a key role as PCM scaffolding proteins for γ-tubulin complexes in this context.
Yet, the concept that centriole-containing centrosomes are most likely more ancestral than acentriolar
centrosomes not at all devalues research on model organisms possessing no centrioles. On the contrary,
these organisms are still valuable in comparative centrosome biology as they allow the identification of
the shared proteins, which are essential for all centrosomal functions unrelated to cilia/centrioles, i.e.,
centrosome duplication, nuclear attachment, microtubule organization, and cytokinesis [3]. The first
two aspects, centrosome duplication and nuclear attachment, are especially well analyzed in budding
yeast and reviewed by Rüthnick and Schiebel in this issue of Cells [38]. Due to closed mitosis, in which
there is no nuclear envelope breakdown, the newly formed second SPB has to insert into the nuclear
envelope in order to allow the formation of a bipolar spindle. The insertion of SPBs into the nuclear
envelope shares many similarities with the interphase insertion of new nuclear pore complexes
(NPCs) [39,40]. Both processes require a fusion event between the inner and outer nuclear membranes
and end up with an inserted large protein complex flanked by a highly-curved membrane. In fact, the
conserved component Ndc1 is involved in the SPB insertion network as well as in NPC formation [38].
Similarly in animal cells, NPCs and centrosomes share several proteins such as Gle1, Nup62, Nup133,
and Nup188 [41–45] suggesting co-evolution of the two gigantic protein complexes, which most
likely were both features of the LECA [46,47]. Insertion of centrosomes into the nuclear envelope
is also an important process in a further acentriolar model, i.e., Dictyostelium amoebae. Employing
mutants with supernumerary centrosomes, Koonce and Tikhonenko report in this issue of Cells that
only centrosomes engaged at the nuclear envelope are capable of participating in mitotic spindle
formation [48]. Furthermore, they show that centrosomes, independently of their nuclear engagement,
are capable of driving the formation of cleavage furrows, which are not only important for cytokinesis
but ultimately may also lead to the formation of cytoplasts (i.e., nucleus-free cell fragments) containing
supernumerary centrosomes. This was first shown in 2003 in Dictyostelium cells overexpressing
CP224 [49]. Later it was recognized, that the formation of cytoplasts may be one means to control the
number of supernumerary centrosomes also in animal tumor cells [50].
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Moreover, regarding spindle formation, research of the last two decades revealed that the
organization of microtubules is much more complex than assumed previously, when the centrosome
was considered the sole or at least most important microtubule organizer, especially during
mitosis. In 1998, careful analyses using Xenopus oocyte extracts revealed that centrosomes are
dispensable for spindle formation and that a bipolar spindle can be organized solely by chromatin
associated proteins [51]. Here, the small GTPase Ran is rendered into its GTP form through the
chromatin-associated GTP/GDP exchange factor Rcc1, which together with Aurora A activates several
spindle assembly factors [52–55]. The latter organize γ-tubulin complexes to nucleate microtubules,
which become arranged in a bipolar spindle through the activity of motor proteins including dynein,
a bipolar Eg5-like kinesin and a chromokinesin [11]. Further examples for non-centrosomal microtubule
organization also in interphase have been especially well-investigated in Drosophila. Here the
centrosome is not essential for zygotic development and various non-centrosomal MTOCs have
been described in different tissues (reviewed by Megraw and co-authors in this issue of Cells [56]).

5. Recent Developments

After exploration of the protein inventories of the various centrosomal models, the recent
decade was marked by the characterization of the protein interaction networks between the
numerous centrosomal components. This work began mainly with co-immunoprecipitation assays,
tandem-affinity purification approaches and yeast two-hybrid analyses [31,57,58]. Most recently
it was driven forward also by proximity-dependent biotin identification (BioID) [59,60]. In this
method a centrosomal bait protein of interest is fused to a promiscuous biotin ligase and expressed
in the respective model cell line. The biotinylase then conjugates biotin residues to any lysine
residue within a proximity of ~10 nm. Biotinylated proteins can then be identified and enriched
by streptavidin conjugated to fluorophores (for microscopy) or beads (for affinity purification),
respectively. Purified biotinylated target proteins are then identified by antibodies or mass spectrometry.
Due to the extremely high affinity of the streptavidin-biotin interaction, BioID only rarely brings up
false positive interactors. In centrosome research this robust method was applied in mammalian
cells and Dictyostelium amoebae with great success [37,61–64]. In mammalian cells, these analyses
also revealed a molecular relationship between so-called centriolar satellites, i.e., microscopically
visible proteinacious granules of the pericentrosomal area. In this context, two centriolar satellite
components, CCDC14 and KIAA0753, were identified as interactors of the centrosomal protein CEP63.
As the latter interacts with the centriole duplication organizer CEP152 through the same protein
domain this provides a mechanism how CCDC14 may negatively regulate centriole duplication [65].
Our current knowledge of the still somewhat mysterious centriolar satellites and their regulation
is reported by Nielsen et al. in this issue of Cells [64]. This paper also emphasizes the importance
of superresolution light microscopy techniques, which have been the major driving force for the
elucidation of subcentrosomal protein topology within the last decade. These developments started
in 1998 with one of the first successful applications of deconvolution fluorescence microscopy for
the identification of pericentrin/γ-tubulin topology within the pericentrosomal matrix in the Doxsey
lab [66]. Deconvolution is still the most economic method to overcome Abbe’s resolution limit in light
microscopy of standard fluorescence specimens. In this computer-based method, a measured point
spread function allows the re-calculation of diffracted fluorescence light to its origin. The power of this
method is also described in this issue of Cells [37]. Further progress in the study of subcentrosomal
topology came from hardware-based superresolution techniques, i.e., from structured illumination
microscopy (SIM) [67–69], stimulated emission depletion microscopy (STED) [70], and direct stochastic
optical reconstruction microscopy (dSTORM) [71]. In case of animal centrosomes these superresolution
light microscopic analyses led to a model, in which pericentrin and CEP152 emanate from the mother
centriole as radial spokes and act as a scaffold for toroid layers of the other PCM proteins [72]. Similarly,
these methods, together with electron microscopy gave a detailed view on the arrangement of all
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SPB components within the major substructures of the SPB (i.e., inner, central, outer plaque, and half
bridge; see [73] for a review).

6. Conclusions

This issue of Cells shows that the once mysterious organelle “centrosome” has disclosed many of
its secrets, especially regarding its composition and microtubule organization. Still there are many
open questions. How is the assembly of about a hundred different centrosomal components into a
highly sophisticated topology regulated through various signaling pathways, how are centrioles/basal
bodies involved in signaling at primary cilia, how are centrosomal proteins involved in the etiology
of several devastating diseases and last not least, what is the evolutional relationship of centrosomes
with nuclear pore complexes.
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