
Mathematisch-Naturwissenschaftliche Fakultät

Niels Hellwig | Dylan Tatti | Giacomo Sartori | Kerstin Anschlag |  
Ulfert Graefe | Markus Egli | Jean-Michel Gobat | Gabriele Broll

Modeling Spatial Patterns  
of Humus Forms in Montane  
and Subalpine Forests

Implications of Local Variability for Upscaling

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 1128
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-472265
DOI https://doi.org/10.25932/publishup-47226

Suggested citation referring to the original publication:
Sustainability 11 (2019) 1, 48 
DOI https://doi.org/10.3390/su11010048 
ISSN (online) 2071-1050





sustainability

Article

Modeling Spatial Patterns of Humus Forms in
Montane and Subalpine Forests: Implications of
Local Variability for Upscaling

Niels Hellwig 1,2,3,* , Dylan Tatti 4,5 , Giacomo Sartori 6, Kerstin Anschlag 1, Ulfert Graefe 7,
Markus Egli 8, Jean-Michel Gobat 4 and Gabriele Broll 1

1 Institute of Geography, Osnabrück University, Seminarstraße 19ab, 49074 Osnabrück, Germany;
kerstin.anschlag@uni-osnabrueck.de (K.A.); gabriele.broll@uni-osnabrueck.de (G.B.)

2 Institute of Earth and Environmental Science, Potsdam University, Karl-Liebknecht-Straße 24-25,
14476 Potsdam, Germany

3 Faculty of Business Management and Social Sciences, Osnabrück University of Applied Sciences,
Caprivistraße 30a, 49076 Osnabrück, Germany

4 Functional ecology laboratory, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland;
dylan.tatti@bfh.ch (D.T.); Jean-Michel.Gobat@unine.ch (J.-M.G.)

5 Division Agronomie, Haute école des sciences agronomiques, forestières et alimentaires HAFL, Länggasse
85, 3052 Zollikofen, Switzerland

6 Museo Tridentino di Scienze Naturali, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy;
giacomo.sartori@sfr.fr

7 IFAB Institut für Angewandte Bodenbiologie GmbH, Tornberg 24a, 22337 Hamburg, Germany;
ulfert.graefe@ifab-hamburg.de

8 Department of Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
markus.egli@geo.uzh.ch

* Correspondence: niels.hellwig@uni-potsdam.de; Tel.: +49-541-969-2033

Received: 1 November 2018; Accepted: 19 December 2018; Published: 21 December 2018 ����������
�������

Abstract: Humus forms are a distinctive morphological indicator of soil organic matter decomposition.
The spatial distribution of humus forms depends on environmental factors such as topography,
climate and vegetation. In montane and subalpine forests, environmental influences show a high
spatial heterogeneity, which is reflected by a high spatial variability of humus forms. This study
aims at examining spatial patterns of humus forms and their dependence on the spatial scale in
a high mountain forest environment (Val di Sole/Val di Rabbi, Trentino, Italian Alps). On the
basis of the distributions of environmental covariates across the study area, we described humus
forms at the local scale (six sampling sites), slope scale (60 sampling sites) and landscape scale (30
additional sampling sites). The local variability of humus forms was analyzed with regard to the
ground cover type. At the slope and landscape scale, spatial patterns of humus forms were modeled
applying random forests and ordinary kriging of the model residuals. The results indicate that the
occurrence of the humus form classes Mull, Mullmoder, Moder, Amphi and Eroded Moder generally
depends on the topographical position. Local-scale patterns are mostly related to micro-topography
(local accumulation and erosion sites) and ground cover, whereas slope-scale patterns are mainly
connected with slope exposure and elevation. Patterns at the landscape scale show a rather irregular
distribution, as spatial models at this scale do not account for local to slope-scale variations of humus
forms. Moreover, models at the slope scale perform distinctly better than at the landscape scale. In
conclusion, the results of this study highlight that landscape-scale predictions of humus forms should
be accompanied by local- and slope-scale studies in order to enhance the general understanding of
humus form patterns.
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1. Introduction

Humus forms are a distinctive morphological indicator of soil organic matter decomposition,
since they integrate both the sequence of organic horizons (OL = litter, OF = fragmented residues, OH
= humified residues) above the mineral soil and the soil structure in the mineral soil as a result of
soil biological activities [1–3]. Hence, the spatial arrangement of humus forms corresponds to spatial
patterns of soil ecological processes. In montane and subalpine forests, this relationship has been
recently investigated for microannelid assemblages, microbial communities, and chemical properties
of the topsoil [3–6].

From the local to the landscape scale, different factors and processes influence spatial soil
ecological patterns [7,8]. Study areas in the high mountains were found to be characterized by a
high small-scale variability of humus forms related to micro-topography and local ground cover
differences [9–11]. At the landscape scale, environmental factors such as climate, relief, parent material,
vegetation, and land use shape landscape units with different humus systems [12–15]. In mountain
environments with similar geological conditions, relief is the most decisive factor, as it controls
mesoclimate, hydrological processes, erosion dynamics and vegetation zones [16–18].

Spatial patterns of soil properties are frequently predicted by applying quantitative modeling
methods [19]. Spatial modeling often relies on geostatistical methods [20] or on modeling
soil-landscape relationships [21,22]. Numerous studies have applied spatial modeling of soil properties
from the farm or regional scale [23] up to the global scale (e.g., [24–26]).

Mountain areas are characterized by a complex terrain. Therefore, geostatistical approaches are
not that suitable to model the variability of soil properties. Recent studies have demonstrated that an
investigation of the soil-landscape interrelationship is more promising for modeling and predicting
patterns related to soil organic matter decomposition in montane and subalpine forests [3,6,27,28].
These studies focused either on the slope or on the landscape scale. However, the relationship between
the spatial scale and soil ecological patterns remained unclear. In order to enhance the understanding of
the interplay of environmental influences and soil organic matter decomposition processes in montane
and subalpine forests, detailed, complementary cross-scale analyses are required.

The aim of this study was to examine the spatial patterns of humus forms and their dependence
on the spatial scale in montane and subalpine forests of the Italian Alps. We addressed the following
research questions:

• Which spatial patterns of humus forms occur at the local scale? Does the local variability coincide
with local site factors, especially vegetation cover?

• What are the main influencing factors of humus form patterns at the slope and the landscape scale?
• How do spatial models combining random forest with ordinary kriging of the model residuals

perform depending on the spatial scale?

2. Materials and Methods

2.1. Study Area

The study area includes the valleys Val di Sole, Val di Rabbi, Val di Peio and Val di Vermiglio,
located in the Italian Alps (Autonomous Province of Trento) (Figure 1). The dominant parent materials
are paragneiss, schist and phyllite, all yielding acidic weathering products [27,29,30]. Spatial patterns
of mesoclimate and soil properties are related to the highly variable mountain topography. Mean
annual air temperature varies between 2 ◦C at the tree line and 8 ◦C at the lower slopes of Val di
Sole [31].
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Figure 1. Study area and sampling sites (modified from [30]). Investigation sites are designated as 
N1–N3 (north-facing slopes) and S6–S8 (south-facing slopes) at the local scale and RN1–RN30 
(north-facing slope) and RS1–RS30 (south-facing slope) at the slope scale. 

All investigations in this study refer to the forested valley slopes within the study area (ca. 800–
2200 m a.s.l.). Figure S1 shows the distribution of forest tree species within the study area. The main 
tree species of these forests are European larch (Larix decidua Mill.) and Norway spruce (Picea abies 
(L.) H.Karst.). From ca. 1900 m a.s.l. up to the tree line, Entic Podzols, Albic Podzols and Umbric 
Podzols are the main soil classes, whereas the forests below are characterized by Haplic Cambisols 
(Dystric) and Umbric Podzols ([32], according to [33]). 

2.2. Experimental Design 

We analyzed humus forms at three different spatial scales on the basis of three sets of 
investigation sites (Figure 1). Humus forms were classified as described by Hellwig et al. [3] 
according to Ad-hoc-AG Boden [34] and Graefe [35]. Similar to other international humus form 
classifications (e.g., [36–38]), this approach relies on the characterization of organic layers above the 
mineral soil and of the biogenic soil structure in the mineral soil (details are given in Reference [3]). 

At the local scale, we investigated six sampling sites located at three different elevation levels 
(approximately 1200 m, 1400 m and 1630 m a.s.l.) at north-facing slopes (N1–N3) and at south-facing 
slopes (S6–S8) (Figure 1). These sites have been selected and described in detail for previous soil 

Figure 1. Study area and sampling sites (modified from [30]). Investigation sites are designated
as N1–N3 (north-facing slopes) and S6–S8 (south-facing slopes) at the local scale and RN1–RN30
(north-facing slope) and RS1–RS30 (south-facing slope) at the slope scale.

All investigations in this study refer to the forested valley slopes within the study area (ca.
800–2200 m a.s.l.). Figure S1 shows the distribution of forest tree species within the study area. The
main tree species of these forests are European larch (Larix decidua Mill.) and Norway spruce (Picea
abies (L.) H.Karst.). From ca. 1900 m a.s.l. up to the tree line, Entic Podzols, Albic Podzols and Umbric
Podzols are the main soil classes, whereas the forests below are characterized by Haplic Cambisols
(Dystric) and Umbric Podzols ([32], according to [33]).

2.2. Experimental Design

We analyzed humus forms at three different spatial scales on the basis of three sets of investigation
sites (Figure 1). Humus forms were classified as described by Hellwig et al. [3] according to Ad-hoc-AG
Boden [34] and Graefe [35]. Similar to other international humus form classifications (e.g., [36–38]),
this approach relies on the characterization of organic layers above the mineral soil and of the biogenic
soil structure in the mineral soil (details are given in Reference [3]).

At the local scale, we investigated six sampling sites located at three different elevation levels
(approximately 1200 m, 1400 m and 1630 m a.s.l.) at north-facing slopes (N1–N3) and at south-facing
slopes (S6–S8) (Figure 1). These sites have been selected and described in detail for previous soil



Sustainability 2019, 11, 48 4 of 15

ecological studies (e.g., [6,39]). The ground cover at these sites was highly variable, with areas
differently characterized by litter, grass, fern, moss, and branches (Figure 2). Patterns of ground cover
types were in part due to local variations in relief (distribution of soil moisture and distribution of
areas of erosion and accumulation) and in forest structure (distribution of light and shadow). At each
sampling site, several samples were analyzed according to the occurrence of ground cover types within
an area of 25 m × 25 m (Figure 3). Humus forms at the local scale were sampled in the summers of
2013 and 2014.
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Figure 3. Example of the distribution of humus form profiles at the local scale (modified from
Reference [30]).

At the slope scale, we built upon the humus form analyses by Hellwig et al. [3] with reference
to 60 sampling sites: Both 30 sites on a north-facing slope (RN1–RN30) and on a south-facing slope
(RS1–RS30) in Val di Rabbi (Figure 1). The north-facing slope covers sites between the west slope
exposure (−90◦) and the east exposure (90◦) with a mean exposure of 2◦; the south-facing slope covers
sites between the south-east slope exposure (135◦) and the west exposure (270◦) with a mean exposure
of 204◦. The mean slope angles are between 38◦ and 39◦ in both datasets (value range between 25◦
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and 60◦). At the landscape scale, we investigated 30 additional sites across the study area (Figure 1).
These sites covered an optimized sample of combinations of environmental conditions as determined
with conditioned Latin Hypercube Sampling ([11], according to Reference [40]). Humus forms at
the slope and landscape scale were sampled in the summer of 2015. Table S1 shows raw data at the
landscape scale.

2.3. Spatial Analysis

We analyzed the frequencies of humus form classes for each present ground cover type based on
all samples per investigation site. At the local scale, this provides information on the spatial variability
of dominant humus forms as related to ground vegetation and micro-topography.

At the slope scale, we built upon the model results by Hellwig et al. [3] referring to the two main
characteristics of humus forms: (a) Presence of organic layers above the mineral soil and (b) biogenic
soil structure in the mineral soil. We reclassified these results to predict the occurrence of humus form
classes according to Table 1.

Table 1. Predicted humus form classes as reclassified from relative values representing the predicted
presence of organic layers above the mineral soil and the predicted biogenic soil structure in the mineral
soil (according to Reference [3]).

Predicted Humus Form Class Presence of Organic Layers
above Mineral Soil

Biogenic Soil Structure in the
Mineral Soil

Moder >0.75 <0.25

Moder, partially eroded ≥0.25 and ≤0.75 <0.25

Eroded Moder <0.25 <0.25

Moder, trend to Amphi >0.75 ≥0.25 and ≤0.75

Mullmoder ≥0.25 and ≤0.75 ≥0.25 and ≤0.75

Mullmoder, eroded <0.25 ≥0.25 and ≤0.75

Amphi >0.75 >0.75

Mull, trend to Amphi ≥0.25 and ≤0.75 >0.75

Mull <0.25 >0.75

Spatial modeling at the landscape scale was based on the same approach as at the slope scale [3].
We combined a random forest [41] with ordinary kriging of the model residuals [20] to analyze the
presence of organic layers above the mineral soil and the biogenic soil structure in the mineral soil.
Random forest is a commonly used modeling technique to analyze complex non-linear relationships
between spatial patterns of a target variable and environmental influencing factors, for example
soil-landscape relationships (e.g., [42–44]). However, random forest models are limited in explaining
soil-ecological patterns [3]; thus, we used ordinary kriging of the model residuals to account for the
unexplained part of spatial soil-ecological patterns. The modeled areas comprised the closed coniferous
forests on siliceous bedrock inside the study area. The factors considered for spatial modeling are
summarized in Table 2. The mean values of the squared model residuals and explained variances
of the model were calculated to evaluate the performance of the random forest models [45]. Spatial
modeling was implemented with the statistical software R (version 3.4.0) [46] and the R package
“randomForest” [45]. Model results were reclassified to humus form classes as at the slope scale
(Table 1).
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Table 2. Environmental variables used as factors for modeling at the landscape scale.

Factor Method Reference Data Source

Elevation a.s.l.

Digital terrain model, grid width 10 m ([27],
provided by Museo Tridentino di Scienze
Naturali)

Slope

Zevenbergen & Thorne [47]

Slope exposure

Profile curvature

Planform curvature

General curvature

Insolation Böhner & Antonic [48]

SAGA wetness index Böhner et al. [49]

LS factor Moore et al. [50]

Overland flow distance to
channel network Freeman [51]

Vertical distance to channel
network

Mass balance index Friedrich [52]

Mid-slope position

Normalized height

Forest type Forest inventory data, provided by Provincia
Autonoma di Trento, Servizio Foreste e FaunaForest density

3. Results

The results regarding the relationship between humus forms and ground cover types at the local
scale are listed in Table 3. Moder humus forms prevailed at sites N2 and N3 regardless of the ground
cover type (north-facing slope, 1400 m and 1630 m a.s.l.). At site N1 (north-facing slope, 1200 m a.s.l.),
there was a mosaic of Mull, Moder and Eroded Moder. Mull was related to spots covered with fern
or moss vegetation, whereas Moder was related to litter spots (partially Eroded Moder) and to spots
with accumulation of branches. Mull, Amphi and Mullmoder were the dominant humus forms at sites
S6 and S7 (south-facing slope, 1200 m and 1400 m a.s.l.). At site S8, spots covered with grass/moss
or characterized by accumulation of branches exhibited Moder humus forms, whereas Mullmoder
humus forms dominated litter spots, which were more related to erosion processes. The relationship
between the micro-topography, the ground cover type and the small-scale variability of humus forms
is illustrated in Figure 4 by example of site S8.

The predicted patterns of humus form classes at the slope scale (as reclassified from the predicted
presence of organic layers above the mineral soil and biogenic soil structure in the mineral soil based on
Table 1) illustrate a dominance of Moder on the north-facing slope, especially above 1500 m a.s.l. The
frequency of Amphi increases from higher to lower parts of the north-facing slope. On the south-facing
slope, Mull and Amphi are dominant at low elevation, whereas Moder and Mullmoder prevail at high
elevation. Additionally, humus forms characterized by erosion are predicted at some places of both
slopes (Figure 5, see also Table S3).
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Table 3. Humus form classes at different ground cover types at the local scale (sites N1–N3 and S6–S8).
See Table S2 for raw data.

Site Ground Cover Sample Size Dominant Humus Form
Classes (according to [3])

N1 Fern 3 Mull
Moss 4 Mull
Litter 2 Moder, Eroded Moder

Branches 3 Moder

N2 Moss 4 Moder
Litter 2 Moder

Branches 1 Moder

N3 Grass 4 Moder
Moss 3 Moder
Litter 1 Moder

Branches 1 Moder

S6 Grass 4 Amphi
Litter 4 Mull

Branches 2 Amphi, Mullmoder

S7 Grass 5 Amphi, Mullmoder
Litter 3 Mull, Amphi, Mullmoder

S8 Grass/Moss 5 Moder
Litter 5 Mullmoder

Branches 1 Moder
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Figure 6 displays the predicted patterns of humus form classes at the landscape scale. The most
dominant predicted classes are Mullmoder and Moder, mostly with trend to Amphi. Mull and Amphi
spots are rare and occur mostly at low elevation close to the valley bottoms, especially on south-facing
slopes. The underlying model predictions of the presence of organic layers above the mineral soil and
of the biogenic soil structure in the mineral soil (based on random forest plus kriging of the model
residuals) are given in Figures S2 and S3. The evaluation of the random forest models (i.e., before
kriging of the model residuals) yielded 0.18 (presence of organic layers above the mineral soil) and
0.23 (biogenic soil structure in the mineral soil) as mean values of the squared residuals and explained
variances of 6% (presence of organic layers above the mineral soil) and 8% (biogenic soil structure in
the mineral soil). Figure S4 shows the variograms used for kriging of the residuals.

4. Discussion

Despite the increasing research focus on the transfer of soil information between different spatial
scales using upscaling and downscaling methods (e.g., [53,54]), the effects of the spatial scale on soil
ecological patterns have been examined by only a few previous studies [7,8]. Levin [55] elucidated that
spatial ecological patterns are autocorrelated up to a specific correlation length, which is caused by
variations of different influencing factors and mechanisms depending on the spatial scale. The results
of this study show that also spatial patterns of humus forms are influenced by different environmental
factors from the local scale to the landscape scale.

Local-scale patterns of organic matter decomposition (from sites N1–N3 and S6–S8) are
characterized both by a tendency to a higher dominance of Moder from south-exposed to north-exposed
sites and by a high variability that is related to the local variation of ground cover and to
micro-topography (Table 3). At spots of branches (accumulation/deposition of material along the
slope), there is generally more accumulation of organic matter (Moder, Amphi) compared to litter
spots (rather erosive to stable conditions along the slope facilitating formation of Mullmoder, Mull
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or Eroded Moder). Those spots where deadwood accumulates can be studied in more detail by
differentiating lignoforms, which have recently been introduced as humus forms characterized by
deadwood decay [56]. The observed local effects of ground vegetation and micro-topography on
patterns of organic matter decomposition and humus forms are in line with previous studies from
mountainous areas [9,10,57]. The findings by Anschlag et al. [11] showed that patterns of humus forms
in the coniferous forests of the study area are generally more related to small-scale mosaics in the
vegetation structure of the herb layer than to forest tree species.

Predicted patterns of humus forms at the slope scale are characterized by an increasing presence
of Moder instead of Mull and Amphi from south exposure to north exposure and from low to
high elevation (Figure 5). Thus, these patterns reflect a tendency of increasing organic matter
accumulation and concurrently decreasing bioturbation in the topsoil from potentially warmer to
colder spots across the valley. These findings correspond with the results from previous studies
that addressed topoclimatic effects on organic matter decomposition including humus forms, soil
mesofauna, microbiological and biochemical soil properties [5,6,12,27,58]. However, Egli et al. [59]
found that the decomposition rate below 1700 m a.s.l. was higher on north-facing slopes than on
south-facing slopes, as decomposition on the lower parts of the slopes was limited by soil moisture.
Furthermore, humus form patterns at the slope scale were shown to be related to curvature, slope
angle, and forest type [60].

At the landscape scale, the humus form classes Mullmoder and Moder with trend to Amphi
are dominant throughout the study area (Figure 6). In fact, the relationship between humus form
patterns and topography is also visible in the predictions at the landscape scale, but less marked than
at the slope scale. This may be partly due to additional factors that are related to landscape-scale
patterns, e.g. different former land-use practices [61]. However, the dominance of intermediate classes
between Moder, Mull and Amphi (Mullmoder and Moder with trend to Amphi) may also indicate
a high small-scale variability of humus forms in large parts of the study area corresponding to our
findings at the local scale. Models at the slope and landscape scale do not explicitly account for spatial
variations of humus forms at the local scale due to the aggregation of humus form samples per study
site [3]. Therefore, a high local-scale variation of Moder, Mull and Amphi leads to the prediction of
an intermediate dominant humus form class in the landscape-scale model. Thus, the results of this
study highlight that local-scale studies are also necessary in order to enhance the understanding of
landscape-scale patterns of humus forms.
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Slope-scale and landscape-scale predictions of humus forms in this study were based on random
forest models with ordinary kriging of the model residuals. The random forest models integrate the
correlation of humus forms with environmental influences. However, these models explain only a
low share of humus forms sampled at the slope and landscape scale. Therefore, kriging of the model
residuals was applied to include the spatial variability that is not explained by the random forest
models [3]. Another approach to model spatial patterns of humus forms at the landscape scale on
the basis of fuzzy logic was introduced by Hellwig et al. [28]. The patterns predicted by fuzzy logic
models were generally coarser, as they only included samples from six investigation sites chosen with
expert knowledge. As compared to those fuzzy logic models, we applied random forest plus kriging
of the model residuals as a data-mining approach relying on a larger sampling set.

The validity of the model results is limited, especially at the landscape scale. Relying on 90
investigation sites across the study area, random forest models still had low explained variances and
ordinary kriging of the model residuals did not account for local to slope-scale variations. Moreover,
it remains unclear which additional factors and processes (e.g., land use history) might be related to
the patterns modeled by kriging of the model residuals. At the slope scale, the explanatory power of
random forest models was higher than at the landscape scale and kriging of the residuals enhanced
the model significantly due to a dense net of investigation sites [3].

It remains a future challenge to understand and model the relationship between spatial patterns
at different scales in order to provide flexible methods for upscaling and downscaling of soil ecological
patterns [62]. This also includes advances in the understanding of underlying ecological processes [63].
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Presuming an enhanced understanding of cross-scale relationships, process-based simulation model
approaches provide a valuable tool to integrate ecological processes and spatial patterns [64,65].

5. Conclusions

Due to their indicator function, the analyses of humus forms are important to early detect changes
of soil ecological processes and associated vegetation shifts (e.g., in the context of climate change
or changing forest management practices). This study highlights the need for local and slope-scale
studies in order to enhance the understanding of environmental influences on soil ecological patterns
and processes in montane and subalpine forests and to allow for reliable large-scale predictions of
humus forms.

Spatial patterns of forest humus forms investigated in this study are related to different
environmental factors depending on the spatial scale. At the slope and landscape scales, all humus
form classes (Mull, Mullmoder, Moder, Amphi and Eroded Moder) are found. At the local scale, on
the contrary, the presence of forest humus forms depends on the micro-topographical position. For
example, at high elevation on north-facing slopes, the only forest humus form is Moder, independently
of local site factors, whereas humus forms at low elevations and on south-facing slopes show a high
local variability.

Local-scale patterns of humus forms generally coincide with variations of micro-topography and
ground cover, for instance driven by erosion and accumulation along the slope and the distribution of
light and shadow within the forest. By contrast, patterns at the slope scale show a distinct correlation
with slope exposure and elevation (see Figure 5). This correlation appears to be mainly controlled by
topoclimatic effects. At the landscape scale, the relationship between the distribution of forest humus
forms and environmental factors is weak. These patterns are likely to be a result of both a wide range
of environmental influences and cross-scale effects arising from patterns at the local and slope scales.

Overall, the performance of spatial models at the slope scale is better than at the landscape scale.
Random forest models at the slope scale have higher explanatory power as compared to the landscape
scale, since the net of investigation sites is much denser. Deviations of actual humus forms from model
predictions may be high especially at the landscape scale, as these models do not account for local to
slope-scale variations of humus forms.
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