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Virial inversion for
inhomogeneous systems

Sabine Jansen*, Tobias Kuna† and Dimitrios Tsagkarogiannis‡

Abstract. We prove a novel inversion theorem for functionals given as

power series in infinite-dimensional spaces and apply it to the inver-

sion of the density-activity relation for inhomogeneous systems. This

provides a rigorous framework to prove convergence for density func-

tionals with applications in classical density function theory, liquid

crystals, molecules with various shapes or other internal degrees of

freedom.

1 Introduction

One of the main challenges in statistical mechanics is to derive functional expressions for
thermodynamic quantities from microscopic models which are based on physical prin-
ciples. In particular, for systems in classical density functional theory, liquid crystals,
heterogeneous materials, colloids and in general of molecules with internal degrees of
freedom the key point is to consider non-constant densities and hence non-translation
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136 Jansen, Kuna, Tsagkarogiannis: Virial inversion

invariance. One first mathematically rigorous result for homogeneous systems was the
proof of the convergence of the virial expansion by Lebowitz and Penrose in 1964 [6],
building on the previously established convergence of the activity expansion of the pres-
sure and of the density. The goal of this paper is to establish the validity of the inversion
formulas for inhomogeneous fluids with applications in the above cases. We view the
latter as systems of uncountably many species, by considering the position x ∈ Λ ⊂ Rd

as species. In this way, we can treat at the same time systems with internal degrees of
freedom without increasing the complexity of the arguments involved.

At first sight, one may try to use inverse function theorems in complex Banach spaces,
applied to the functional that maps the activity profile

(
z(x)

)
x∈Λ

to the density profile(
ρ(x)

)
x∈Λ

. This works well for inhomogeneous systems of e. g. objects of bounded size,
e. g., hard spheres of fixed radius. It turns out, however, that Banach inversion fails for
mixtures of objects of finite but unlimited size, for a precise example see [4] as well
as [3]. As a way out, mixtures of countably many species were treated with the help
of Lagrange-Good inversion in [5], leaving the case of uncountably many species wide
open.

Our main result is a novel inversion theorem (Theorem 13.3) that addresses the above-
mentioned difficulties and bypasses both Banach and Lagrange-Good inversion. The
novelty is two-fold. First, we work on the level of formal series and relate the formal
inverse to generating functions of trees or equivalently, solutions of certain formal fixed
point problems (Proposition 13.4). This part is inspired by the combinatorial proof of
the Lagrange-Good formula for finitely many variables given in [2]. Second, we provide
sufficient conditions for the convergence of the formal inverse, i. e., of a generalised tree
generating functions (Theorem 13.2).

2 Main theorem

Let (X,X ) be a measurable space and M(X,X ) the set of σ -finite non-negative mea-
sures on (X,X ). Further let MC(X,X ) be the set of complex linear combinations of
measures in M(X,X ). When there is no risk of confusion, we shall write M and MC

for short. Suppose we are given a family of measurable functions An : X×Xn → C,
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(
q,(x1, . . . ,xn)

)
7→ An(q;x1, . . . ,xn). We assume that each An is symmetric in the x j’s,

i. e.,
An(q;xσ(1), . . . ,xσ(n)) = An(q;x1, . . . ,xn), (13.1)

for all permutations σ ∈Sn. When we say that a power series converges absolutely, we
mean that

∞

∑
n=1

1
n!

∫
Xn

∣∣An(q;x1, . . . ,xn)
∣∣ |z|(dx1) · · · |z|(dxn)< ∞, (13.2)

where |z| is the total variation of z ∈MC. LetD(A)⊂MC be the domain of convergence
of the associated power series, that is z ∈D(A) if and only if the power series converges
absolutely in the above sense. We set

A(q;z) ..=
∞

∑
n=1

1
n!

∫
Xn

An(q;x1, . . . ,xn)z(dx1) · · ·z(dxn) (z ∈D(A)). (13.3)

We are interested in maps of the form

MC ⊃D(A)→MC, z 7→ ρ[z] (13.4)

given by
ρ[z](dq)≡ ρ(dq;z) ..= e−A(q;z)z(dq), (13.5)

where ρ(dq;z) is just a notation for ρ[z](dq). The latter is useful whenever one wants
to stress the q instead of the z dependence. Thus ρ[z] is absolutely continuous with
respect to z with Radon-Nikodým derivative exp

(
−A(q;z)

)
. (Note that for the case of an

inhomogeneous gas this corresponds to the one-particle density as a function of position
and activity.) We want to determine the inverse map ν 7→ ζ [ν ],

ν = ρ[z] ⇔ z = ζ [ν ].

Suppose for a moment that such an inverse map exists. Clearly z is equivalent to ν = ρ[z]

with Radon-Nikodým derivative exp(A(q;z)). Consequently we should have

ζ [ν ](dq)≡ ζ (dq;ν) = eA(q;ζ [ν ])
ν(dq). (13.6)
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This observation is the starting point for our inversion result, namely the family of power
series (T ◦q )q∈X given by

T ◦q (ν)≡ T ◦(q;ν) = eA(q;ζ [ν ]) (13.7)

should solve
ζ [ν ](dq) = T ◦q (ν)ν(dq) = eA(q;νT ◦q (ν))ν(dq) (13.8)

and therefore

T ◦q (ν) = exp

(
∞

∑
n=1

1
n!

∫
Xn

An(q;x1, . . . ,xn)T ◦x1
(ν) · · ·T ◦xn(ν)ν(dx1) · · ·ν(dxn)

)
. (FP)

In Proposition 13.4 below we provide a combinatorial interpretation of T ◦q as the exponen-
tial generating function for coloured rooted, labeled trees whose root is a ghost of colour
q (i. e., the root does not come with powers of ν in the generating function). For our
main inversion theorem, however, it is enough to know that the fixed point equation (FP)
determines the power series (T ◦q )q∈X uniquely.

Lemma 13.1 There exists a uniquely defined family of formal power series

T ◦q (ν) = 1+
∞

∑
n=1

1
n!

∫
Xn

tn(q;x1, . . . ,xn)ν(dx1) · · ·ν(dxn) (q ∈ X) (13.9)

with tn : X×Xn→ C measurable and symmetric in the x j’s, that solves (FP) in the sense
of formal power series.

As the above expressions are interpreted in the sense of formal power series, neither
the series need to converge nor the integrals need to exist.

Proof. Set t0 ..= 1. Let Bn(q;x1, . . . ,xn) be the coefficients of the series in the exponential
in (FP), i. e., each Bn : X×Xn→ C is measurable, and we have

∞

∑
n=1

1
n!

∫
Xn

Bn(q;x1, . . . ,xn)ν(dx1) · · ·ν(dxn)

=
∞

∑
n=1

1
n!

∫
Xn

An(q;x1, . . . ,xn)T ◦x1
(ν) · · ·T ◦xn(ν)ν(dx1) · · ·ν(dxn)
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in the sense of formal power series. It follows that

Bn(q;x1, . . . ,xn) =
n

∑
m=1

∑
J⊂[n]
#J=m

Am
(
q;(x j) j∈J

)
∑

(V j) j∈J :
∪̇ j∈JV j=[n]\J

∏
j∈J

t#V j

(
x j;(xv)v∈V j

)
. (13.10)

Note that the third sum is over ordered partitions (Vj) j∈J of [n]\ J, indexed by J, into #J

disjoint sets Vj, with Vj =∅ explicitly allowed. For example,

B1(q;x1) = A1(q;x1),

B2(q;x1,x2) = A2(q;x1,x2)+A1(q;x1)t1(x1;x2)+A1(q;x2)t1(x2;x1).

More generally, Bn(q; ·) depends on t1(q; ·), . . . , tn−1(q; ·) alone. This is the only aspect
of (13.10) that enters the proof of this lemma.

For n ∈ N, let Pn be the collection of set partitions of {1, . . . ,n}. The family
(T ◦q )q∈X solves (FP) in the sense of formal power series if and only if for all n ∈ N
and q,x1, . . . ,xn ∈ Xn, we have

tn(q;x1, . . . ,xn) =
n

∑
m=1

∑
{J1,...,Jm}∈Pn

m

∏
`=1

B#J`

(
q;(x j) j∈J`

)
. (13.11)

In particular,

t1(q;x1) = B1(q;x1) = A1(q;x1)

t2(q;x1,x2) = B2(q;x1,x2)+B1(q;x1)B1(q;x2)

which determines t1 and t2 uniquely. A straightforward induction over n, exploiting that
the right-hand side of (13.11) depends on t1, . . . , tn−1 alone (via B1,. . . , Bn), shows that
the system of equations (13.11) has a unique solution (tn)n∈N.

Next we provide a sufficient condition for the absolute convergence of the series T ◦q (ν).

Theorem 13.2 Let T ◦q (ν) be the unique solution of (FP) from Lemma 13.1. Assume that
for some measurable function b :X→ [0,∞), the measure ν ∈MC satisfies, for all q ∈X,

∞

∑
n=1

1
n!

∫
Xn
|An(q;x1, . . . ,xn)|e∑

n
j=1 b(x j)|ν |(dx1) · · · |ν |(dxn)≤ b(q). (Sb)
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Then, for all q ∈ X, we have that

1+
∞

∑
n=1

1
n!

∫
Xn
|tn(q;x1, . . . ,xn)| |ν |(dx1) · · · |ν |(dxn)≤ eb(q) (Mb)

and the fixed point equation (FP) holds true as an equality of absolutely convergent series.

Proof. The inductive proof is similar to [8, 7]. Let SN
q (ν), N ∈ N0, be the partial sums

for the left-hand side of (Mb),

SN
q (ν)

..= 1+
N

∑
n=1

1
n!

∫
Xn
|tn(q;x1, . . . ,xn)| |ν |(dx1) · · · |ν |(dxn).

We prove SN
q (ν) ≤ eb(q) by induction on N, building on the proof of Lemma 13.1. The

estimate for the full series then follows by a passage to the limit N→ ∞.

For N = 0, we have S0
q(ν) = 1 and the inequality S0

q(ν) ≤ exp
(
b(q)

)
is trivial. Now

assume SN−1
q (ν)≤ exp

(
b(q)

)
. The triangle inequality applied to Eqs. (13.10) and (13.11)

yields the same iterative formula for |tn(q;x1, . . . ,xn)| as for tn(q;x1, . . . ,xn) just with
An(q;x1, . . . ,xn) replaced by

∣∣An(q;x1, . . . ,xn)
∣∣. We noted before that, if we consider

SN
q (ν) and hence only |tn(q;x1, . . . ,xn)| for n ≤ N, then on the right-hand side only
|tn(q;x1, . . . ,xn)| with n ≤ N − 1 appear. However, there are some terms on the right-
hand side, which as well only contain |tn(q;x1, . . . ,xn)| with n ≤ N− 1 but which come
from some term |tn(q;x1, . . . ,xn)| on the left-hand side for n > N. Adding these missing
terms, we reconstruct an exponential on the right-hand side. As all of these additional
terms are non-negative, we get the following inequality, instead of an equality

SN
q (ν)≤ exp

(
N−1

∑
n=1

1
n!

∫
Xn

∣∣An(q;x1, . . . ,xn)
∣∣SN−1

x1
(ν) · · ·SN−1

xn (ν) |ν |(dx1) · · · |ν |(dxn)

)

≤ exp

(
N−1

∑
n=1

1
n!

∫
Xn

∣∣An(q;x1, . . . ,xn)
∣∣eb(x1)+···+b(xn) |ν |(dx1) · · · |ν |(dxn)

)
≤ eb(q).

The induction is complete. It follows that (Mb) holds true. In particular, the series T ◦q (ν)

is absolutely convergent and satisfies |T ◦q (ν)| ≤ exp
(
b(q)

)
. By condition (Sb), the right-

hand side of the fixed point equation (FP) is absolutely convergent as well. Therefore
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Eq. (FP) holds true not only as an identity of formal power series but in fact as an identity
of well-defined complex-valued functions.

Now that we have addressed the convergence of the series T ◦q , we may come back to
the inversion of the map D(A) 3 z 7→ ρ[z]. For measurable b : X→ [0,∞), let

Vb
..= {ν ∈MC | ν satisfies condition (Sb)}. (13.12)

For ν ∈Vb, define ζ [ν ] ∈MC by

ζ [ν ](dq) = ζ (dq;ν) ..= T ◦q (ν)ν(dq). (13.13)

Theorem 13.3 For every weight function b : X→ R+, there is a set Ub ⊂ D(A) such
that ρ :Ub→Vb, defined in (13.5), is a bijection with inverse ζ .

Proof. LetUb be the image ofVb under ζ . By Theorem 13.2, the setUb is contained in
D(A), in particular if z = ζ [ν ] with ν ∈Vb, then ρ[z] is well-defined with

ρ(dq;z) = e−A(q;z)z(dq) = e−A(q;ζ [ν ])
ζ (dq;ν)

= e−A(q;ζ [ν ])T ◦q (ν)ν(dq) = ν(dq).

For the last identity we have used the fixed point equation (FP). Thus we have checked
that if z = ζ [ν ], with ν ∈Vb, then ρ[z] = ν . Conversely, if ν = ρ[z] with z ∈Ub, then by
definition ofUb there exists µ ∈Vb such that z = ζ [µ], hence ν = ρ[z] = ρ[ζ [µ]] = µ ∈
Vb and z = ζ [µ] = ζ [ν ].

Finally we provide a combinatorial formula for the function T ◦q (ν) appearing in the in-
verse ζ [ν ]. Consider a genealogical tree that keeps track not only of mother-child rela-
tions, but also of groups of siblings born at the same time. This results in a tree for which
children of a vertex are partitioned into cliques (singletons, twins, triplets, etc.). Accord-
ingly for n ∈ N we define the set of enriched trees, denoted by T P◦

n, as the set of pairs(
T,(Pi)0≤i≤n

)
consisting of:

� A tree T with vertex set [n] ..= {0,1, . . . ,n}. The tree is considered rooted in 0 (the
ancestor).
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� For each vertex i ∈ {0,1, . . . ,n}, a set partition Pi of the set of children1 of i. If i is
a leaf (has no children), then we set Pi =∅.

For x0, . . . ,xn ∈ X, we define the weight of an enriched tree
(
T,(Pi)0≤i≤n

)
∈T P◦

n as

w
(
T,(Pi)0≤i≤n;x0,x1, . . . ,xn

)
..=

n

∏
i=0

∏
J∈Pi

A#J+1
(
xi;(x j) j∈J

)
(13.14)

with ∏J∈∅ = 1. So the weight of an enriched tree is a product over all cliques of twins,
triplets, etc., contributing each a weight that depends on the variables x j of the clique
members and the variable xi of the parent.

Proposition 13.4 The family of power series (T ◦q )q∈X from Lemma 13.1 is given by

T ◦q (z) = 1+
∞

∑
n=1

1
n!

∫
Xn

∑
(T,(Pi)i=0,...,n)∈T P◦n

w
(
T,(Pi)i=0,...,n;q,x1, . . . ,xn

)
zn(dxxx).

Proof. We check that the generating function of the weighted enriched trees satis-
fies (FP). Functional equations for generating functions of labeled trees are standard
knowledge [1], we provide a self-contained proof for the reader’s convenience. Define

t̃n(q;x1, . . . ,xn) ..= ∑
(T,(Pi)i=0,...,n)∈T P◦n

w
(
T,(Pi)0≤i≤n;q,x1, . . . ,xn

)
.

Further define B̃n(q;x1, . . . ,xn) but restricting the sum to enriched trees for which #P0 =

1 (all children of the root belong to the same clique). Further set t0 = 1 and B̃0 = 0.
For V ⊂ N a finite non-empty set, define T P◦(V ) in the same way as T P◦

n but with
{0,1, . . . ,n} replaced by {0}∪V . For V = ∅ we define T P◦(V ) = ∅ and assign the
empty tree the weight 1. For non-empty trees, weights w

(
R;(x j) j∈V∪{0}

)
are defined in

complete analogy with (13.14).
Clearly there is a bijection between enriched trees R ∈ T P◦

n and set partitions
{J1, . . . ,Jm} of [n] ..= {1, . . . ,n} together with enriched trees Ri ∈ T P◦(Ji), i = 1, . . . ,m
for which all children of the root are in the same clique. Indeed, the number m corre-
sponds to the number of cliques in which the children of the root are divided and the
blocks J1, . . . ,Jm group descendants of the root, where Jk contains the children of the root

1The members of the partition are assumed to be non-empty, except we consider the partition of the empty
set.
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which are in the k-th clique and all their descendants. The weight of an enriched tree R is
equal to the product of the weights of the subtrees Ri. Therefore

t̃n(q;x1, . . . ,xn) =
n

∑
m=1

∑
{J1,...,Jm}∈Pn

m

∏
`=1

B̃#J`

(
q;(x j) j∈J`

)
. (13.15)

Furthermore there is a one-to-one correspondence between, on the one hand, enriched
trees where all the children of the root are in the same clique and, on the other hand, tuples(
J,(Vj) j∈J ,(R j) j∈J

)
consisting of non-empty set J ⊂ [n], an ordered partition (Vj) j∈J of

[n]\J (with Vj =∅ allowed), and a collection of enriched trees R j ∈T P◦(Vj). Overall,
J and (Vj) j∈J give a partition of [n]. The set J consists of the labels of the children of the
root, that is the one clique which all these children form and for each j ∈ J, the set Vj

consists of the labels of the descendants of j. (Vj =∅ means that j is a leaf of the tree) It
follows that

B̃n(q;x1, . . . ,xn) =
n

∑
m=1

∑
J⊂[n]
#J=m

Am
(
q;(x j) j∈J

)
∑

(V j) j∈J :
∪̇ j∈JV j=[n]\J

∏
j∈J

t̃#V j

(
x j;(xv)v∈V j

)
. (13.16)

It follows from Eqs. (13.15) and (13.16) that the formal power series with coefficients t̃n
solves (FP), therefore Lemma 13.1 yields t̃n = tn.
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