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When bounded chaos
becomes unbounded

Alexander Lykov* and Vadim Malyshev†

Abstract. We consider infinite particle systems with deterministic

Newtonian dynamics. Assuming that initial conditions are uniformly

bounded, we find examples and general conditions when coordinates

and/or velocities remain bounded and when they can grow infinitely in

time.

1 Introduction

Here we present our first results in the field which could be called non-equilibrium deter-
ministic mechanics of infinite systems. We hope that this field can provide a lot of models
describing some qualitative phenomena in physical and biological systems. Obviously,
the main interesting interaction for such models is Coulomb interaction. However, it re-
mains difficult and as of yet unknown. That is why we use quadratic interaction, which
is natural when each particle spends all its time in some potential well. Assuming that
initial conditions are uniformly bounded, we find examples and general conditions when
the coordinates and velocities remain bounded and when they can grow infinitely in time.
Our conclusion is: when the initial deviations from the equilibrium strongly fluctuate,
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98 Lykov, Malyshev: When bounded chaos becomes unbounded

then they grow infinitely in time, and when they are sufficiently smooth, they stay uni-
formly bounded forever. However, we could not get necessary and sufficient conditions
for this.

We consider here a countable system of point particles with unit masses on R with
coordinates {xk}k∈Z and velocities {vk}k∈Z. We define a formal energy (hamiltonian) by
the following formula:

H = ∑
k∈Z

v2
k

2
+

ω2
0

2 ∑
k∈Z

(
xk(t)− ka

)2
+

ω2
1

2 ∑
k∈Z

(
xk(t)− xk−1(t)−a

)2
,

with parameters a> 0, ω1 > 0, ω0> 0. Particle dynamics is defined by the infinite system
of ODE:

ẍk(t) =−
∂H
∂xk

=−ω
2
0
(
xk(t)− ka

)
+ω

2
1
(
xk+1(t)− xk(t)−a

)
−ω

2
1
(
xk(t)− xk−1(t)−a

)
, k ∈ Z (9.1)

with initial conditions xk(0), vk(0). The equilibrium state (minimum of the energy) is

xk = ka, vk = 0, k ∈ Z.

This means that if the initial condition is the equilibrium state, then the system will not
evolve, i.e. xk(t) = ka, vk(t) = 0 for all t > 0. Let us introduce the deviation variables:

qk(t) = xk− ka, pk(t) = q̇k(t) = vk(t).

It is easy to see that qk(t) satisfies the following system of ODE:

q̈k =−ω
2
0 qk +ω

2
1 (qk+1−qk)−ω

2
1 (qk−qk−1), k ∈ Z. (9.2)

The system of coupled harmonic oscillators (9.2) and its generalisations is a classical
object in mathematical physics. The existence of a solution and its ergodic properties
were studied in [12]. There has been an extensive research on convergence to equilibrium
for an infinite harmonic chain coupled with a heat bath ([1, 7, 15, 2]). The property of
uniform boundedness of particle coordinates (by time t and index k) is crucial in some
applications. For instance, uniform boundedness in finite harmonic chains allows to de-
rive Euler equations and Chaplygin gas without any stochastics (see in [13]). Uniform
boundedness of a one-side non-symmetrical harmonic chain plays an important role in
some traffic flow models [14]. We should also cite some physical papers [11, 8, 9]. The
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most closely related works to our results are [5, 6], where the author studied weighted l2
norms of infinite harmonic chains, whereas our main interest is a max-norm.

Remark. Proofs of all forthcoming theorems will appear in the second issue of the new
journal “Structure of Mathematical Physics”, 2020, No. 2.

2 l2 initial conditions

Introduce the following function spaces on Z:

l∞ ..= l∞(Z) = { f : Z→ R : sup
k∈Z
| f (k)|< ∞}, | f |∞ = sup

k∈Z
| f (k)|,

l2 ..= l2(Z) = { f : Z→ R : ∑
k∈Z
| f (k)|2 < ∞}, | f |2 =

√
∑
k∈Z
| f (k)|2.

If q(0), p(0)∈ l2(Z), then there exists unique solution q(t), p(t) of (9.2) which belongs
to l2(Z), i.e. q(t), p(t) ∈ l2(Z) for all t > 0. This assertion is well known (see [12, 3, 4]),
and easily follows from the boundedness of the operator W on l2(Z):

(Wq)k =−ω
2
0 qk +ω

2
1 (qk+1−qk)−ω

2
1 (qk−qk−1).

The first question of our interest is uniform boundedness (in k and time t > 0) of |qk(t)|.
Define the max-norm of qk(t), M(t) ..= supk |qk(t)|. We shall say that the system has the
property of uniform boundedness, if supt>0 M(t)< ∞.

Theorem 9.1 The following assertions hold:

1) If ω0 > 0, then supt>0 M(t)< ∞.

2) If ω0 = 0,

then we have several results:

a) For all t > 0 the following inequality holds:

M(t)6
2
√

ω1
‖p(0)‖2

√
t +‖q(0)‖2 (9.3)

b) Suppose that ∑k 6=0 |pk(0)| ln |k|< ∞. Then there is constant c > 0 such that for all
t > 0:

M(t)6

√
2

ω1π
|P| ln(t)+‖q(0)‖2 + c, P = ∑

k
pk(0)
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c) For all δ > 1/2, there exists at least one initial condition q(0) = 0, p(0) ∈ l2(Z)
such that

lim
t→∞

q0(t)√
t

lnδ t = Γ(δ )> 0,

where Γ is the gamma function.

From case 9.1 a) we see that if ω0 = 0 and the initial velocities of the particles are all
zero, then |qk(t)| are uniformly bounded. The assertions 9.1 c) is an attempt to answer
the question on the accuracy in the basic inequality (9.3) from 9.1 a) with respect to the
rate of growth in t.

Next we will formulate theorems concerning asymptotic behavior of qk(t) in several
cases. Define Fourier transform of the sequence u = {uk} ∈ l2(Z), û(λ ) = ∑k ukeikλ ,
λ ∈ R. Note that û( ·) ∈ L2([0,2π]), i.e.

∫ 2π

0 |û(λ )|2 dλ = 2π ∑k |uk|2 < ∞.

Further on we will use the Fourier transform of the initial conditions Q(λ ) = q̂(0)(λ ),
P(λ ) = p̂(0)(λ ).

For complex valued functions f and g on R and a constant c ∈ C we will write f (x)�
c+ g(x)√

x , if f (x) = c+ g(x)√
x + ¯̄o

(
1√
x

)
as x→ ∞.

Theorem 9.2 (ω0 > 0) Suppose that ω0 > 0 and Q,P are of the class Cn(R) for some
n> 2. Then

1) For any fixed t > 0 we have qk(t) = O(k−n).

2) For any fixed k ∈ Z and t→ ∞ we have the following asymptotic formula:

qk(t)�
1√
t

(
C1 cos

(
ω1(t)

)
+S1 sin

(
ω1(t)

)
+(−1)kC2 cos

(
ω2(t)

)
+(−1)kS2 sin

(
ω2(t)

))
,

where

C1 =
1

ω1

√
ω0

2π
Q(0), S1 =

1
ω1ω0

√
ω0

2π
P(0)

C2 =
1

ω1

√
ω ′0
2π

Q(π), S2 =
1

ω1ω ′0

√
ω ′0
2π

P(π),

ω1(t) = tω0 +
π

4
, ω2(t) = tω ′0−

π

4
, ω

′
0 =

√
ω2

0 +4ω2
1 .

3) Let t = β |k|, β > 0 and k→ ∞. Put γ(β ) = β 2ω2
1 −1−βω0.
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a) If γ(β )> 0, then

qk(t)�
1√
|k|

(
F+

k [Q]− iF−
k

[
P(λ )
ω(λ )

])
,

where for a complex valued function g(λ ) defined on the real line we intro-
duce the following functionals:

F±
k [g] = c+

(
g(µ+)eiω+(k)±g(−µ+)e−iω+(k)

)
+ c−

(
g(µ−)eiω−(k)±g(−µ−)e−iω−(k)

)
ω±(k) = k

(
µ±+βω(µ±)

)
± π

4
sign(k), c± =

1
2

√
βω(µ±)

2π∆
,

µ± =−arccos
1

β 2ω2
1
(1±∆),

∆ =
√

(β 2ω2
1 −1)2−β 2ω2

0 , ω(λ ) =
√

ω2
0 +2ω2

1 (1− cosλ ).

b) If γ(β ) = 0 and n> 3, then qk(t) = O(k−3).

c) If γ(β )< 0 then qk(t) = O(k−n) for n defined above.

Recall that a sufficient condition on z ∈ l2(Z) for ẑ ∈Cn(R) is ∑k |k|n|zk|< ∞. Thus if
the following series converge for some n> 2:

∑
k
|k|n|qk(0)|< ∞ and ∑

k
|k|n|pk(0)|< ∞,

then Theorem 9.2 holds.

Theorem 9.3 (ω0 = 0) Suppose that ω0 = 0 and Q, P ∈Cn(R), n> 6 then

1) For any fixed t > 0 we have qk(t) = O(k−n).

2) For any fixed k ∈ Z and t→ ∞ one has:

qk(t)�
P(0)
2ω1

+
(−1)k
√

t

(
C cos

(
2ω1t− π

4

)
+S sin

(
2ω1t− π

4

))
,

where
C =

1
√

πω1
Q(π), S =

1
2ω1
√

πω1
P(π).
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3 l∞ initial conditions

Our next concern will be the uniform boundedness in k and t of the solution. Denote
p(t) = q̇(t). Further on we always assume that q(0) ∈ l∞, p(0) = 0, that is supk |qk(0)|<
∞, pk(0) = 0. The following result follows from Theorem 9.1.

Proposition 9.4 Let q(0) ∈ l2(Z), p(0) = 0, then |q(t)|∞ 6 |q(0)|2.

Thus the solution will be uniformly bounded. The situation drastically changes if we
consider l∞ initial conditions. Namely, the following theorem holds.

Theorem 9.5
1) Let q(0) ∈ l∞(Z), p(0) = 0, then for any t > 0:

|q(t)|∞ 6
(√

2γω1t +2
)
|q(0)|∞,

where γ > 0 is the root of the equation 1
γ
e

1
γ = 1

e .

2) For any k∈Z there exists a constant c> 0, initial conditions q(0)∈ l∞(Z), p(0)= 0
and increasing sequence of time moments t1 < t2 < .. ., tn→∞ as n→∞ such that

qk(t2n)> c
√

t2n, qk(t2n+1)6−c
√

t2n+1, n = 1,2, . . . .

Corollary 9.6 For any k ∈ Z there is initial condition q(0) ∈ l∞(Z), p(0) = 0 such that

limsup
t→∞

qk(t)√
t

= c1 > 0, liminf
t→∞

qk(t)√
t

= c2 < 0.

for some constants c1, c2 depending on k.

Define the following operator on l∞,

(V q)k =−ω
2
1 (∆q)k =−ω

2
1 (qk+1−2qk +qk−1).

It is clear that |V |∞ 6 4ω2
1 . Thus the following operator C(t) is also bounded in l∞:

C(t)+ cos
(
t
√

V
)
=

∞

∑
k=0

(−1)k t2kV k

(2k)!
. (9.4)

Theorem 9.7 There exist constants a,b > 0 such that for all t > 0 the following inequal-
ities hold:

a
√

t +16
∣∣∣cos

(
t
√

V
)∣∣∣

∞

6 b
√

t +1
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We will need some definitions. For sequence q ∈ l∞ define new sequence:

q∆ =−∆q, q∆
k = 2qk−qk+1−qk−1, k ∈ Z.

Let l∆⊂ l∞(Z) be the set of sequences q∈ l∞(Z), for which the following conditions hold:

1) q∆ ∈ l2(Z). Then the Fourier transform of q∆, Q∆(λ ) = ∑k eikλ q∆
k belongs to

L2([0,2π]).

2) For some real number A ∈ R the function

φ(λ ) =
1

sin λ

2

(
Q∆(λ )

sin λ

2

− iA

)
(9.5)

belongs to L1[0,π], where i2 =−1, that is
∫

π

0 |φ(λ )|dλ < ∞.

Then l∆ becomes a linear vector space over R.

Theorem 9.8 Assume that q(0) ∈ l∆, p(0) = 0, then the solution {qk(t)} is uniformly
bounded that is supt>0 supk∈Z |qk(t)|< ∞.

Theorem 9.9 Assume that q(0) ∈ l∆, p(0) = 0, then there exists ν ∈ R such that for any
k ∈ Z the following equality holds: limt→∞ qk(t) = ν .

Relation of the number ν with the limit qk(0) at infinity is given in Theorem 9.11
below.

We now give examples of sequences q ∈ l∆.

1) Sign sequence. Put

qk = sign(k) =


1, k > 0,

0, k = 0,

−1, k < 0

.

It is clear that q∆
k = 0 for |k| > 1. Then q∆

1 = 1, q∆
−1 = −1, q∆

0 = 0. That is why
Q∆(λ ) =

(
eiλ − e−iλ

)
= 2isin(λ ). Put A = 4 in (9.5). Then

φ(λ ) =
1

sin λ

2

(
2sin(λ )

sin λ

2

−4

)
=

4

sin λ

2

(
cos

λ

2
−1
)
.

It is clear that φ(λ ) ∈ L1[0,π]. Thus, sign(k) ∈ l∆. See Figure 9.1 for the solution
with intial condition qk(0) = sign(k), p(0) = 0. and ω = 1/2: Both particles, (with
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Figure 9.1: Solution with initial condition qk(0) = sign(k), p(0) = 0

numbers 10 and 20), until t� 2n, oscillate around point 1 with exponentially small
amplitude. However, such fluctuations are not visible on the picture

Then they quickly fall into a regime of relaxation oscillations around the equilib-
rium point. In such a case the solution is given by the formula:

qn(t) = J0(t)+2
n−1

∑
k=1

J2k(t)+ J2n(t) = 1+ J2n(t)−2
∞

∑
k=2n

J2k(t), n> 1, (9.6)

where
Jn(t) =

1
π

∫
π

0
cos(nx− t sinx)dx, t > 0

is the Bessel function of first kind. In Equality (9.6) we used the known formula
([10]):

2
∞

∑
k=1

J2k(t)+ J0(t) = 1.

2) Now consider as example the in some sense opposite to the Sign sequence:

qk =

1, k 6= 0

b, k = 0
,
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for some b ∈ R. Then

Q∆(λ ) = eiλ (2−b−1)+2b−2+ e−iλ (2−b−1)

= 2(b−1)(1− cosλ ) = 4(b−1)sin2 λ

2
.

Put A = 0 in (9.5). Then φ(λ ) = 4(b−1). Again we see that φ(λ ) ∈ L1[0,π] and
then qk ∈ l∆.

3) Consider the sequence qk = (−1)k. Then (∆q)k = (−1)k(−1− 1− 2) = −4qk.
And thus, q /∈ l∆. Nevertheless one can prove the uniform boundedness of solution
with such initial conditions. It is known that q(t) = cos

(
t
√

V
)
q(0) and V =−ω2

1 ∆.
Thus

q(t) =
∞

∑
k=0

(−1)k t2kV k

(2k)!
q =

∞

∑
k=0

(−1)k (4ω2
1 )

kt2k

(2k)!
q = cos(2ω1t)q.

Uniform boundedness of q(t) follows.

Theorem 9.10 Assume that

∑
k 6=0
|q∆

k | · |k| ln |k|< ∞, (9.7)

then q ∈ l∆.

As an example, consider the sequence

qk =
sin
(
ln ln |k|

)
ln2(|k|) if |k|> 1

and qk = 0 for |k|6 1. It is not difficult to see that

q∆
k = O

(
1

k2 ln3 |k|

)
.

Thus the conditions of (9.7) hold, and then q ∈ l∆.

Theorem 9.11 Assume that q ∈ l∆, then there exist finite limits

lim
k→+∞

qk = L+, lim
k→−∞

qk = L−

and the following equalities hold as well:

L+−L− =
A
2
,

L++L−
2

= ν ,

where number A is defined in (9.5), and ν was introduced in Theorem 9.9.
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