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On an approximation of 2-D
stochastic Navier-Stokes equations

Sara Mazzonetto*

Abstract. We describe a full-discrete explicit approximation scheme

for the process solution of the two-dimensional incompressible stochas-

tic Navier-Stokes equations driven by additive noise with periodic

boundary conditions. We focus on the properties which play a role

in the proof of the strong convergence towards the mild solution of the

equation.

1 Introduction

Often (stochastic) evolution equations, such as stochastic Navier-Stokes equations, are
mathematical models for dynamics and phenomena in physics. Therefore, the simulation
of the solutions with implementable approximation schemes has become of great interest.
The approximations should converge in some sense and possibly reflect the behaviour of
the solutions. A strongly convergent scheme (i. e., in mean square) “respects”, for in-
stance, the mean of the process.

In general terms, the explicit and the linear-implicit Euler schemes do not converge
strongly to the solutions of many stochastic evolution equations (see e. g. [7, Theo-
rem 2.1]) and convergent implicit schemes have higher computational costs (for more
details see, e. g. [8]). Therefore recently, different versions of the Euler method have
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88 Mazzonetto: Apprimation of 2-D stochastic Navier-Stokes equations

been proven to converge strongly for (specific cases of) evolution equations. The tech-
niques are different according to the specificity of the coefficients and the dimension:
truncation of the drift, taming, etc.

In the case of two-dimensional stochastic Navier-Stokes equations driven by additive
or multiplicative noise, several existence and uniqueness results and (strongly) convergent
approximation schemes are available. We refer to [4] and references therein for existence
and uniqueness results and an overview on numerical approximations such as the strong
convergent ones in [5] (in the additive noise case). Other relevant strongly convergent
schemes are the fully implicit and also the semi-implicit Euler schemes introduced in [3]
and the splitting scheme of [1]. This list is far from extensive. We refer for instance to
the introduction of the recent article [6] for a state-of-the-art summary.

In this article we describe an explicit full-discrete non-linearity-truncated accelerated

exponential Euler-type scheme (DTAEE scheme, see Equation (8.5) below) which has
been proven in [11] to converge strongly to the mild solutions1 of the two-dimensional
incompressible stochastic Navier-Stokes equations on the torus driven by some trace class
noise in Equation (8.3). We focus on the description of the approximation scheme stress-
ing the properties leading to the already mentioned strong convergence result. The con-
tribution of this document is therefore a deeper insight on the properties of the DTAEE
scheme.

This paper is organised as follows: We first introduce the stochastic Navier-Stokes
equations under consideration (see Section 2). In Section 3 we focus on the numerical
approximation scheme DTAEE. Finally in Section 3.2 we comment on the strong conver-
gence of the approximation towards the solution.

2 The framework: 2-D stochastic Navier-Stokes equations

2.1 The 2-D stochastic Navier-Stokes equations with periodic boundary
conditions on the torus and trace class noise

Let T ∈ (0,∞), let λ(0,1)2 denote the Lebesgue measure on (0,1)2, and let H0 ⊂H1 ⊂H ⊂
L2(λ(0,1)2 ;R2) be appropriate Hilbert subvector spaces of the Hilbert space L2(λ(0,1)2 ;R2)

1Weaker notion of solution with respect to the classical strong and weak one: any strong/weak solution is
also a mild solution.
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to be precised in Section 2.2. In particular, H is the separable Hilbert space having an
orthonormal basis consisting of divergence-free functions with periodic boundary. Let
P be the projection on H of elements of L2(λ(0,1)2 ;R2), and let W be an IdH -cylindrical
Wiener process.

Let ε0,ε ∈ (0,∞) and ξ ∈H0. It is known that the process X : [0,T ]×Ω→H1 satisfying
for all t ∈ [0,T ] that P-a.s.

Xt = etA
ξ +

∫ t

0
e(t−s)A(F(Xs)+ ε0Xs

)
ds+

∫ t

0
e(t−s)A(−A)−1/2−ε dWs (8.1)

is a mild solution to the following stochastic partial differential equation{
dXt(x) =

(
∆Xt(x)+F

(
Xt
)
(x)
)
dt +(−A)−1/2−ε dWt(x), x ∈ (0,1)2, t ∈ [0,T ],

X0 = ξ ∈ H0,
(8.2)

with incompressibility (i. e. divergence-free) condition divXt = 0 and where A = ∆− ε0,
∆ is the Laplacian with periodic boundary conditions, and F(Xs) = c1Xs+c2P(−∇Xs ·Xs)

with c1,c2 ∈ R.

This is a two-dimensional stochastic Navier-Stokes equations on the torus (0,1)2 with
periodic boundary conditions driven by some trace class noise. Indeed (−A)−1/2−ε , ε ∈
(0,∞) is a Hilbert-Schmidt operator, so we are actually considering as noise a Wiener
process on the Hilbert space H with covariance matrix (−A)−1−2ε . Note that we could
change the noise and/or the operator A up to a multiplicative constant, or consider a more
regular noise. For simplicity, from now on, we take c1 = −ε0, c2 = 1. Hence the mild
solution (8.1) rewrites

Xt = etA
ξ +

∫ t

0
e(t−s)AP(−∇Xs ·Xs)ds+

∫ t

0
e(t−s)A(−A)−1/2−ε dWs. (8.3)

To conclude, note that the mild solution expresses the process as a stochastic evolution
equation. The right-hand side of equation is the sum of a Bochner integral, resulting from
the convolution of the semigroup and the non-linearity, with a stochastic integral which
is the noise part, also called the stochastic convolution process.
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2.2 The state space

Let us now construct the Hilbert space of square-integrable divergence-free functions
with periodic boundary conditions H ⊂ L2(λ(0,1)2 ;R2). (Recall that λ(0,1)2 denotes the
Lebesgue measure on (0,1)2).

For all k ∈ Z let ϕk ∈C
(
(0,1),R

)
be the function

ϕk(x) ..= 1{0}(k)+1N(k)
√

2cos(2kπx)+1N(−k)
√

2sin(−2kπx), x ∈ (0,1).

Let the following elements of L2(λ(0,1)2 ;R2):

e0,0,0 ≡ (1,0), e0,0,1 ≡ (0,1), and ek,l,0 : (x,y) 7→
(

lϕk(x)ϕl(y)√
k2+l2

,
kϕ−k(x)ϕ−l(y)√

k2+l2

)
for all k, l ∈ Z2 \{(0,0)}.

Let H ⊆ U be the closed subvector space of L2(λ(0,1)2 ;R2) with orthonormal basis
H= {e0,0,1}∪{ei, j,0 : i, j ∈ Z}.

In addition consider the eigenvalues of the perturbed Laplace operator ε0−∆:

λe0,0,1 = λe0,0,0 = ε0, λek,l,0 = ε0 +4π
2(k2 + l2), k, l ∈ Z.

Note that the operator ε0−∆ is a diagonal operator on the basis H with point spectrum
{λh : h ∈H}: for all v in the domain of (ε0−∆)

(ε0−∆)v = ∑
h∈H

λh〈v,h〉H .

Let ρ0,ρ be positive real numbers satisfying 1/2 < ρ0 < ρ < 1/2 + ε , γ ∈ (ρ,∞),
κ ≥ 0 and let H0, H1, Hρ be respectively the domains of the following fractional
powers of the operator (κ − ∆): (κ − ∆)γ , (κ − ∆)ρ and (κ − ∆)ρ0 . Therefore
‖h‖2

H1
= ∑v∈H(κ− ε0 +λv)

2ρ〈h,v〉2 for every h∈H1. For simplicity we take here κ = ε0,
hence

‖h‖2
H1

= ∑
v∈H

λ
2ρ
v 〈h,v〉2

for every h ∈ H1.
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3 The explicit full-discrete non-linearity-truncated accelerated
exponential Euler-type scheme

In this section we will need the following notation: For every n ∈ N, let Hn be the finite
dimensional subspace of H spanned by

Hn
..= {e0,0,1}∪{ek,l,0 : k, l ∈ Z and k2 + l2 < n2} ⊆H

and Pn : H→ H the projection on Hn

Pn(u) ..= ∑
h∈Hn

〈h,u〉H h, u ∈ H.

3.1 Step-by-step construction

The DTAEE scheme approximating in the strong sense the mild solution (8.3) can be con-
structed as follows in several steps. First, one considers a spectral Galerkin approxima-

tion (see [2]) combined with truncation of the non-linearity, obtaining the approximation
scheme (8.4) below. Then one discretises the time, obtaining (8.5) below, and finally one
notices that the quantities can be computed explicitly with the known square integrable
functions belonging to the orthonormal basis H.

Let (hm)m∈N be a sequence of positive real numbers converging to 0 and let Pn be
projections on increasing finite dimensional spaces Hn ⊆H1 specified in Section 2.2. Let
On,X n : [0,T ]×Ω→Hn be the stochastic processes satisfying for all n ∈ N, t ∈ [0,T ]:

On
t =

∫ t

0
Pne(t−s)A(−A)−1/2−ε dWs +PnetA

ξ

X n
t = On

t +
∫ t

0
Pne(t−s)A

1{
‖X n
bschn

‖H1+‖O
n
bschn

‖H1≤h−χ
n

}(−∇X n
bschn
·X n
bschn

)ds
(8.4)

P-a.s., where χ ∈
(
0,min

{ 1−ρ0
5 , ρ−ρ0

3

})
, btchn

..=max
(
(−∞, t]∩{0,hn,−hn,2hn,−2hn, . . .}

)
denotes the so-called round-ground function.

The latter scheme is not full-discrete, but the fact that we know precisely how the
operator acts on elements of (the orthonormal basisH of) H yields its fully explicit space-
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time discrete version. We call it DTAEE scheme and it is derived by taking for all n ∈ N
the sequence

(
X n

(k+1)hn

)
k∈(−1,T/hn−1)∩N

and making explicit the projections Pn.

Let us first consider the time discretisation: For all n = 1,2, . . ., k ∈ (−1,T/hn−1)∩N
let Xn

0
..= On

0
..= Pnξ = ∑v∈Hn〈v,ξ 〉v and

On
(k+1)hn

= ehnAOn
khn

+
∫ (k+1)hn

khn

Pne((k+1)hn−s)A(−A)−1/2−ε dWs,

Xn
(k+1)hn

= ehnAXn
khn

+On
(k+1)hn

− ehnAOn
khn

+
∫ (k+1)hn

khn

Pne((k+1)hn−s)A
1{
‖Xn

khn
‖H1+‖O

n
khn
‖H1≤h−χ

n

}(−∇Xn
khn
·Xn

khn
)ds.

(8.5)

We can explicate further the approximation scheme in (8.5) for two-dimensional
stochastic Navier-Stokes equations. Indeed, one of the main features of the scheme (8.4)
is that it does not discretise the semigroup and yet a discretisation of the noise part is al-
lowed in the following sense. Let us consider (β v)v∈H a sequence of independent standard
Brownian motions such that the cylindrical Wiener process can be seen as W = ∑v∈Hβ vv.
Let us rewrite the approximation of the noise in (8.5) as

On
(k+1)hn

= ∑
v∈Hn

(
e−hnλv〈On

khn
,v〉+

∫ (k+1)hn

khn

e−((k+1)hn−s)λv(λv)
−1/2−ε dβ

v
s

)
v. (8.6)

For every v∈H it holds that
∫ (k+1)hn

khn

e−((k+1)hn−s)λv(λv)
−1/2−ε dβ

v
s is independent of On

khn

and is distributed as a Gaussian random variable with mean 0 and variance 1−e−2hnλv

2λ
2(1+ε)
v

.

The other term can be explicated as follows: Xn
(k+1)hn

= ∑v∈Hn〈X
n
(k+1)hn

,v〉v with

〈Xn
(k+1)hn

,v〉= e−hnλv〈Xn
khn

,v〉+ 〈On
(k+1)hn

,v〉− e−hnλv〈On
khn

,v〉+ 1− e−hnλv

λv
×

×1{√
∑w∈Hn λ

2ρ
w 〈Xn

khn
,w〉2+

√
∑w∈Hn λ

2ρ
w 〈On

khn
,w〉2≤h−χ

n

}〈−∇Xn
khn
·Xn

khn
,v〉. (8.7)

Note that this is a recursive formulation of the approximation scheme.

Finally note that the scheme in (8.4) and the derived discretised one are adaptations to
the specific stochastic Navier-Stokes equation (8.2) of a type of approximation method
which have been proven to converge strongly to a large class of infinite-dimensional
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stochastic evolution equations with non-globally monotone non-linearity (see e. g. Theo-
rem 3.5 in [10] and references therein). The specific result in the case of (8.2) is discussed
in Section 3.2.

3.2 Properties of the approximation scheme

In this section we analyse the properties of the 2-D stochastic Navier-Stokes equations
we consider and the DTAEE approximation scheme which yield the following strong
convergence result:

Theorem 8.1 (cf. [11]) Let X the mild solution in (8.3), and X n, n ∈N as in (8.4). Then
for all p≥ 1

limsup
n→∞

sup
s∈[0,T ]

E
[
‖Xs−X n

s ‖
p
H

]
= 0.

This is strong convergence uniform in time. From the statement of the result it is
clear that the same convergence holds with the (DTAEE) more explicit version of the
scheme (8.5): take Xn

t to be the process with continuous sample paths obtained, e. g., by
interpolation from Xn

hnk (given in recursive formulation in Equations (8.6)–(8.7)). Indeed,
the approximation processes have continuous sample paths which coincide a.s. on a dense
countable subset of [0,T ].

One of the difficulties in proving the strong convergence follows from the fact that
the non-linearity F , although F ∈C(Hρ ,H), is not globally Lipschitz. Indeed, it is only
Lipschitz on bounded sets: there exists a non-negative real number θ ∈ [0,∞) such that
for all v,w ∈ Hρ it holds that

‖F(v)−F(w)‖H ≤ θ
(
1+‖v‖Hρ

+‖w‖Hρ

)
‖v−w‖Hρ

< ∞

(see [11] for the proof). However note that, roughly speaking, the approximation scheme
controls the Lipschitz constant by truncating the non-linearity. In other words, the trun-
cation prevents strong divergence (see (8.8) below).

The lack of global Lipschitzianity for the non-linear functional F has been compen-
sated by the fact that the non-linearity satisfies the following coercivity-type condition.
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For all δ > 0, v,w ∈ Hρ it holds that

|〈v,F(v+w)〉H | ≤
(

3
2

ε0 +
1

2δ

[
supx∈(0,1)2 |w(x)|22

])
‖v‖2

H +2δ‖(ε0−∆)
1/2v‖2

H

+

(
ε0

2
[
supx∈(0,1)2 |w(x)|22

]
+

1
2δ

[
supx∈(0,1)2 |w(x)|42

])
,

where v,w are the continuous functions belonging to the equivalence class v,w ∈ Hρ

which exist by Sobolev’s embedding. (See [11] for the proof).

The coercivity-type condition, combined with the Lipschitzianity on bounded sets
above and some Gronwall-type argument, yields a-priori estimates for the approximation
scheme involving a transformation of the noise part On, say On (see e. g. [10, Corol-
lary 2.6]).

To prove the strong convergence based on the mentioned a-priori bounds for ‖X n
t ‖H ,

one needs to prove suitable exponential integrability properties of the process On, related
to the uniform norms involved in the coercivity-type condition. More precisely, given p>

4, there exists η ∈ [0,∞) such thatOn
t =

∫ t
0 Pn e(t−s)(A−η) (−A)−1/2−ε dWs+Pnet(A−η)ξ and

sup
m∈N

E

[∫ T

0
exp

(∫ T

s
p
(

sup
x∈(0,1)2

|Om
buchm

(x)|2
)

du

)
· max

{
1, sup

x∈(0,1)2

∣∣Om
bschm

(x)
∣∣2p

,

∥∥Om
s
∥∥p

H ,
∫ T

0

∥∥Om
u +Pm

(
eu(A−η)− euA)ξ

∥∥6p
Hρ

du
}

ds
]
< ∞.

The proof of this statement (we refer to [11]) is quite technical but kind of natural since
the noise is a Gaussian process. Indeed one of the main tools is Fernique’s theorem.

The a-priori bounds are then used to prove that the approximation scheme does not
explode:

limsup
n→∞

sup
t∈[0,T ]

E
[
‖X n

t ‖
p
H

]
< ∞, p≥ 1. (8.8)

Once obtained these uniform moments bounds for the approximation, it suffices to prove
the convergence in probability uniformly in time of X n towards the mild solution X

in (8.3) to obtain the desired strong convergence uniform in time (see [9, Proposition
4.5]).

The coercivity-type condition satisfied by the drift is not required in the proof of the
convergence in probability uniformly in time (based e. g. on [9, Proposition 3.3]). Instead,
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local Lipschitzianity and the following convergence for the noise are relevant. It can be
easily shown that supt∈[0,T ]E

[
‖Ot −On

t ‖
p
Hρ

]
converges to 0 for all p≥ 1 with an explicit

polynomial rate, where the process O denotes the sum of the initial condition and the
stochastic convolution in (8.3). This is not surprising either because the approximation of
the noise term is essentially Galerkin approximation.

We examined here the properties of the approximation scheme (8.4) relevant for the
strong convergence uniform in time towards the mild solution (8.3) of two-dimensional
Navier-Stokes equations (8.2). To conclude, we would like to mention that the rate of
convergence for this approximation scheme has not been proven yet. Recent results based
on some stochastic non-linear integration-by-parts formulas seem promising, but have not
yet been exploited in the case of 2-D Navier-Stokes equations.
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