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Large emissions. Hawking-Penrose
black hole model

Eugeny Pechersky*, Sergei Pirogov† and Anatoly Yambartsev‡

Abstract. We propose a formalism about the large deviations of emis-

sions. As an example we study the large deviations asymptotics for an

introduced stochastic version of the Hawking-Penrose black hole model

with special attention to the large emission regime. One of our goals is

to find the most probable trajectory corresponding to a certain amount

of the emission during the time interval.

1 Introduction

This paper is devoted to applications of the large deviations theory. The large devia-
tions theory is an area of probability theory studying rare events with vanishing positive
probability. It means that such an event may occur but very rarely. It can happen as a
catastrophic event like an overload of the queueing system or a crisis phenomenon in the
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economy. Rare events also naturally appear in nature. Perhaps there are processes with a
stochastic component in their dynamics such that some rare event drastically changes the
behaviour of the process forever.

In this paper, we briefly review our previous results and continue our research on rare
large emissions [8]–[7]. In general, the emission can be represented as a function of a base
(original) process: the emission counts the occurrence of some set of specific transitions
of an original process. Conditioning on a large emission event changes the behaviour
of the original process. This change is characterised by a rate function. We study here
the rate function for the proposed stochastic version of the Hawking-Penrose black hole
model.

2 General settings

Markov processes. Markov processes ξ are the basic object of our studies in this work.
The processes are pure jumps on the finite time interval [0,T ]. We consider the processes
having a finite state spaceN = {0,1, . . . ,N}. The process paths are right-continuous step
functions

x ∈ X; x : [0,T ]→N .

The jumps of any x ∈ X are equal to −1 or +1 only. We suppose that the corresponding
rate transitions can be represented in the following form: for any state k ∈N

r+(k,N) = λNkγ+u+(k,N)
(
1−δ (N− k)

)
, (7.1)

r−(k,N) = µNkγ−u−(k)
(
1−δ (k−1)

)
, (7.2)

where δ (m) = 1 for m = 0 and δ (m) = 0 otherwise. The power functions kγ+ and kγ−

describe the main functional part of the intensities of the jumps. Real numbers λN > 0
and µN > 0 depend on N only. The functions u+(k,N) and u−(k) present some linear
dependence on N and k of the intensities. We will restrict ourselves here only to two cases
for the functions u±: u+(k,N) = N−k or u+(k,N)≡ 1, and u−(k) = k or u−(k)≡ 1. The
multipliers

(
1−δ (N− k)

)
and

(
1−δ (k−1)

)
do not allow the process to go out of N .

The rate r+(k,N) corresponds to the jump k→ k+1, and the rate r−(k,N) corresponds
to the jump k→ k−1. The infinitesimal operator on the function set F; f ∈ F : N →R is

L f (k) = r+(k,N)
[

f (k+1)− f (k)
]
+ r−(k,N)

[
f (k−1)− f (k)

]
. (7.3)
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Particle systems. Particle systems are the main interpretation of the studied Markov
processes. The particle system is a set P of N = |P| particles. Each particle p ∈P can
be in one of two states from S = {0,1}. Let sp ∈ S be the state of the particle p. The state
sp = 0 is a ground state of the particle p. The state sp = 1 is an excited state of the particle.
The state sp of any particle is random variable changing over time, sp ≡ sp(t). For this
settings, the values of the Markov process ξ are the number of the excited particles

ξ (t) = ∑
p∈P

sp(t).

The physical terminology is commonly used in order to characterise the particle state.
This terminology is related to the energy of the system. However, in our example of the
stochastic version of the black hole, the state of a particle will be interpreted in other
terms: the excited state 1 means that the particle is located inside of the black hole, and
the ground state 0 means that the particle is out of the black hole.

Large deviations. Our aim is to study an emission of the particle system. More exactly,
we would like to understand behaviour of the probability of the large emission on the
interval [0,T ]. The emissions in terms of the process ξ (t) are negative jumps of the
process: the emission occurs at the moment τ ∈ [0,T ] means that ξ (τ)−ξ (τ−0) =−1.

We introduce a process η(t), t ∈ [0,T ], of the emissions in the following way. Let

Θ−(t) = {ti : ti ≤ t and ξ (ti)−ξ (ti−0) =−1}

be the set of the time instances of the emissions during [0, t], t ≤ T . Then

η(t) = |Θ−(t)| (7.4)

is the number of the emissions occurred during [0, t]. The process η(t) takes its values in
Z+ and it is the monotone increasing process. Further, we consider the pair

(
ξ (t),η(t)

)
of dependent processes. The infinitesimal generator of the joint process is

Lr f (k,m)= r+(k,N)
[

f (k+1,m)− f (k,m)
]
+r−(k,N)

[
f (k−1,m+1)− f (k,m)

]
, (7.5)

where k ∈N ,m ∈ Z+.

The large emission, which we study, is the event{
η(T )≥ B̃T

}
, (7.6)

where B̃ > 0 is large. The event (7.6) is a rare event arising during stochastic dynamics
of the processes

(
ξ (t),η(t)

)
. The study of rare events is the subject of the large devia-
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tions theory. The answer which can be obtained by this theory has an asymptotic form.
Therefore instead of one process, a sequence of scaled processes is considered, where the
sequence is defined by a scaling parameter connected to the original process. In the large
deviation theory, the probabilities of the rare events are being found asymptotically under
the scaling parameter. We will take as the scaling parameter for our case the number N

of the particles in the system.

Therefore we will consider the scaled version of our problem where the scaling is taken
by growing N, N→ ∞. The scaled processes are(

ξN(t),ηN(t)
)
=

(
ξ (t)
N

,
η(t)

N

)
. (7.7)

The jumps of ξN(t) are ± 1
N and the jumps of ηN(t) are equal to 1

N .

The intensities of the processes
(
ξN(t),ηN(t)

)
are as follows

R+

(
k
N
,N
)
= λNNγ++e+u+

(
k
N
,1
)(

k
N

)γ+
(

1−δ

(
1− k

N

))
,

R−

(
k
N
,N
)
= µNNγ−+e−u−

(
k
N

)(
k
N

)γ−(
1−δ

(
k−1

N

))
,

where

e+ =

1, if u+(k,N) = N− k,

0, if u+(k,N)≡ 1,
e− =

1, if u+(k) = k,

0, if u+(k)≡ 1.
(7.8)

It is convenient to put B̃ = NB in the scaled version of the system, where B > 0 is large
enough. The large emission B̃ is large if NB is large which is the same as large N. In
terms of the scaled processes the event (7.6) is{

ηN(T )≥ BT
}
, (7.9)

where B is large enough.

The theory of the large deviations also allows to extract a large deviation path of the
process which produces the given deviation of the large emissions during the interval
[0,T ]. We apply the large deviations theory in a topological space of paths F2 : D→R on
[0,T ], whereD= [0,1]×R+. The paths

(
x( ·),y( ·)

)
∈F2 satisfy the following conditions

1) the paths
(
x( ·),y( ·)

)
are real-valued right-continuous paths defined on [0,T ] with

left-hand limits;

2) the path y( ·) is non-negative and non-decreasing;
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3) a topology in F2 is defined by Lindvall metric ([1]).

The theory of large deviations allows one to solve both mentioned tasks: to find the
asymptotics of the large emission probability as N→∞ as well as the path of the dynamics
that realises the large deviation on the interval [0,T ]. Solving these problems by the
method of large deviations we follow constructions and results in [3].

Further, we assume that

lim
N→∞

λNNγ++e+−1 = λ
R, lim

N→∞
µNNγ−+e−−1 = µ

R,

where λ R > 0 and µR > 0 are parameters of the model.

For any x ∈ (0,1), sequences of integers k such that k
N → x as N→ ∞ then

R+(x) ..= lim
N→∞

R+

(
k
N
,N
)
= λ

Ru+(x)xγ+ ,

R−(x) ..= lim
N→∞

R−

(
k
N
,N
)
= µ

Ru−(x)xγ− .

(7.10)

The principle of the large deviations introduced by Varadhan is a basic construction of
the large deviations theory (see [10]). To have the large deviations principle means to
know a rate function I. In our case it is the function I : D→R+, which has the following
integral functional form

I(x,y) =
∫ T

0
sup
κ1,κ2

(
κ1ẋ+κ2ẏ−R+(x)[eκ1 −1]−R−(x)[e−κ1+κ2 −1]

)
dt. (7.11)

The function x : [0,T ] → [0,1] is a density of excited particles, the non-decreasing
function y : [0,T ] → R+ is the dynamics of the emissions. The functions κ1 and
κ2 : [0,T ]→ R are dual variables to x and y accordingly.

Generally speaking, the functions x and y from F2 can be discontinuous. However, the
rate function I in (7.11) has finite values on the absolutely continuous x and y only.

Main information on the rare events is contained in the rate function I, (7.11). Accord-
ing to the large deviations theory, we can estimate the probability of the event (7.9) by
the rate function as the following

lim
N→∞

1
N

lnPr(ηN ≥ BT ) =− inf
(x,y)∈B

I(x,y), (7.12)
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where B = {(x,y) : y(0) = 0,y(T ) = BT} is a set of the paths describing the event (7.9).
If we have found a path (xB,yB) such that

I(xB,yB) = inf
(x,y)∈B

I(x,y) (7.13)

then this path is a mean path of a conditioned process under the event (7.9).
Remark that expression (7.12) holds only if

inf
(x,y)∈Bo

I(x,y) = inf
(x,y)∈B

I(x,y), (7.14)

where Bo is interior and B is closure of B. If (7.14) does not hold we only obtain bounds
for limN→∞

1
N lnPr(ηN ≥ BT ).

The rate function (7.11) is Legendre transform of the Hamiltonian

H(x,y,κ1,κ2) = R+(x)[eκ1 −1]+R−(x)[e−κ1+κ2 −1]. (7.15)

If the pair (xB,yB) satisfies (7.13), then it is a solution of the Hamiltonian system

ẋ =
∂H
∂κ1

= R+(x)exp{κ1}−R−(x)exp{−κ1 +κ2},

ẏ =
∂H
∂κ2

= R−(x)exp{−κ1 +κ2},

κ̇1 = −
∂H
∂x

= −R′+(x)[eκ1 −1]−R′−(x)[e−κ1+κ2 −1],

κ̇2 = −
∂H
∂y

= 0,

(7.16)

where R′ω(x),ω ∈ {+,−} is the derivative over x.
To find (xB,yB), (see (7.13)) we have to solve this system under suitable boundary

conditions. For the considered cases, the boundary conditions are y(0) = 0, y(T ) = BT

and arbitrary x(0) = x0.
In many cases when R+(x) and R−(x) depend on x, finding the solution is a rather dif-

ficult problem. Peculiar properties of the system can facilitate the search of the solutions.
These facilitating properties are that the right sides of every equation do not depend on y

and that κ2 is a constant.
A general property of the solutions is in the following equation followed from (7.16)

Lemma 7.1
d
dt

ln ẏ = (ẋ+ ẏ)
d
dx

ln
(
R+(x)R−(x)

)
−R′+(x)−R′−(x). (7.17)

Proposition 7.2 If x is constant, then y is linear on [0,T ].
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For the next proposition denote A(x) = d
dx ln

(
R+(x)R−(x)

)
and C(x) = B·

d
dx ln

(
R+(x)R−(x)

)
−R′+(x)−R′−(x).

Proposition 7.3 If ẏ = B, then the solution of (7.17) in the form x(t) ≡ x0, y(t) = Bt

exists, where x0 is a root of the equation C(x) = 0.

3 Hawking-Penrose black hole

In this section, we apply the general settings described above to the Hawking-Penrose
black hole model. The goal here is to investigate of the large emissions of the black hole.
This model is one of the earliest and simplest descriptions of Schwarzschild black hole
(see [4, 9]). The black hole both emits and absorbs the matter. The absorption is the result
of the gravitation, and the emission is the result of the Hawking radiation.

The model we propose is as follows. There is the Universe composed by a finite piece
of a space and a matter in the space. The matter is a finite set P of particles. Some
part of Universe space is a specific area which is called the black hole. Some portion
P1 ⊆P of the particles of the matter is located in the black hole. The remaining portion
P2 =P\P1 is located in the Universe outside the black hole. The Schwarzschild black
hole has the shape of a ball. The radius of the ball is proportional to the number of the
particles in P1.

There is a dynamic of the particles between the parts P1 and P2.
We construct a stochastic dynamic of the particle jumps between P1 and P2. The

particle jumps are described by a Markov process. The change of the particle number
in the black hole that is of the set P1, changes the radius of the black hole. One of
the features of this stochastic dynamic is that the surface value of the black hole affects
the laws of the jumps thereby determining the properties of the Markov processes. In
physics, this feature is explained by the so-called holographic principle which means that
the black hole surface (horizon) contains all the information about the black hole state.
Our main interest is the big emission of the black hole, that is the large number of jumps
P1→P2.

Formal descriptions: Markov process. The dynamics of the particles between the sets
P1 and P2 is defined by a Markov process ξ (t), where the value of ξ (t) is number of the
particles in the set P1, ξ (t) = |P1|. We consider the jump dynamics on the finite interval
[0,T ] driven by the Markov process ξ (t) taking its values in N \ {0} = {1, . . . ,N}. It
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means that the number of the particle in Universe is N. Here we exclude the point 0 from
the state spaceN . It means that the black hole contains at least one particle, and does not
disappear.

As in the general setting described above, the jumps of the process are +1 or −1. The
jump +1 means the increment of the set P1 (the matter in the black hole) by one particle,
and −1 is the decrement of the same set by one particle.

The intensities of the jumps of ξ depend on the size of the horizon, which in turn
depends on the amount of matter in the black hole. Let ξ (t) = k, t ∈ [0,T ], that is k

particles are located in the black hole at the moment t. Then the jump intensities are

r+(k,N) = λNk2(N− k)
(
1−δ (N− k)

)
,

r−(k,N) = µNk−2(1−δ (k−1)
)
,

(cf. (7.1) and (7.2)).

For studying the large emission from the black hole, we introduce the process η(t)

(see (7.4)) as described in the section Large deviations. Next, we have to study the scaled
version of the processes (

ξN(t),ηN(t)
)
=

(
ξ (t)
N

,
η(t)

N

)
(see (7.7)). The intensities of the scaled version of the processes are

R+(x) = lim
N→∞

R+

(
k
N
,N
)
= λ

Rx2(1− x),

R−(x) = lim
N→∞

R−

(
k
N
,N
)
= µ

Rx−2,

assuming that k/N→ x ∈ (0,1).

According the general settings of Section 2, we obtain the rate function

I(x,y) =
∫ T

0
sup

κ1(t),κ2(t)

{
κ1(t)ẋ(t)+κ2(t)ẏ(t)

−λ
Rx2(t)(1−x(t))[eκ1(t)−1]−µ

R 1
x2(t) [e

−κ1(t)+κ2(t)−1]
}

dt,

(7.18)

where x(t) is a density of the particles in the black hole at the moment t ∈ [0,T ], and y(t)
is a path of the particle emission on the interval [0,T ] which means the number of the
particles emitted on the interval [0, t].
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As in the general case, the rate function is Legendre transform of the Hamiltonian

H(x,y,κ1,κ2) = λ
Rx2(1−x)[eκ1 −1]+µ

Rx−2[e−κ1+κ2 −1].

In order to find the probability Pr
(
ηN(T )≥BT

)
, and an optimal path

(
xB( ·),yB( ·)

)
on

[0,T ], we have to find a solution of the equation system with suitable boundary conditions.

ẋ =
∂H
∂κ1

= λ (1−x)x2 exp{κ1}−µ
1
x2 exp{−κ1 +κ2},

ẏ =
∂H
∂κ2

= µ
1
x2 exp{−κ1 +κ2},

κ̇1 = −
∂H
∂x

= −λ
(
2(1−x)x−x2

)
[eκ1 −1]+µ

2
x3 [e−κ1+κ2 −1],

κ̇2 = −
∂H
∂y

= 0,

(7.19)

These solutions are extremals of the integral functional (7.18). We need the solution
which finds the extremal hitting the infimum of (7.12). The event B defines the corre-
sponding boundary conditions. That is y(0) = 0, y(T ) = BT and x(0) = x0 is chosen such
that it gives the minimum of (7.18).

The solution of (7.19) under prescribed boundary conditions is a rather difficult prob-
lem because of the high non-linearity of the system.

We find the extremal determining a solution
(
xB,yB

)
, where xB is a constant and yB is

a linear function, (see Propositions 7.2 and 7.3). It means that the corresponding condi-
tional processes (ξN ,ηN) considered at large N has its average values xB and yB.

Definition 7.4 For a constant B> 0, the path (xB(t),yB(t)) is called a stationary emission

regime if

1) there is a constant xB such that xB(t)≡ xB, for all t ∈ [0,T ],

2) yB(t) = Bt, for all t ∈ [0,T ],

3) the path
(
xB(t),yB(t)

)
are extremal of I with the boundary conditions xB(0) =

xB(T ) = xB and yB(0) = 0, yB(T ) = BT .

According the above definition of stationary emission regime, using Propositions 7.2
and 7.3 we obtain the following theorem [8].
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Theorem 7.5 For any B > 0, there exists a constant xB such that the paths x(t) ≡ xB,
y(t) = Bt realise the stationary emission regime. We have xB → 0 as B→ ∞ with the
asymptotics

xB ∼
(

2µ

B

) 1
3
.
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