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Non-local convolution type
parabolic equations with fractional

and regular time derivative
Andrey Piatnitski* and Elena Zhizhina†

Abstract. This note deals with the fundamental solutions of parabolic

equations for convolution type non-local operators. Our goal is to com-

pare the large time asymptotics of these fundamental solutions with that

of the classical Gaussian heat kernel. A similar problem is considered

for evolution equations with a fractional time derivative.

1 Introduction

Parabolic equations with non-local elliptic operators play an important role in the study
of population dynamics models. The presence of a non-local operator on the right-hand
side of the equation reflects the fact that the interaction in these models has a non-local
character. One of these models is the so-called contact model in Rd , see e. g. [5, 6]. It
is a continuous time birth and death Markov process in a continuum defined on the space
of infinite (but locally finite) configurations γ ∈ Γ lying in the space Rd : γ ⊂ Rd . The
process is characterised by the birth and death rates. Each point x ∈ γ of a configuration
γ might create an offspring y independently of other points of the configuration. The
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offspring location is distributed in the space with the density a(x−y) (so-called dispersal
kernel), and we assume

∫
Rd a(z)dz = 1. In addition, any point of the configuration has an

independent exponentially distributed random life time determined by the mortality rate
m(x)> 0, and in the general case the mortality rate is a spatially inhomogeneous function
m(x)≥ 0. The formal generator of the dynamics of this process takes the form

LF(γ) = ∑
x∈γ

∫
Rd

a(x− y)
(
F(γ ∪ y)−F(γ)

)
dy+ ∑

x∈γ

m(x)
(
F(γ\x)−F(γ)

)
.

The case of homogeneous mortality m(x)≡ κ has been studied in detail in the paper [5].
In the most interesting case κ = 1 (the critical regime) a family of stationary distributions
exist.

One of the remarkable properties of the contact model is the fact that the first correla-
tion function ρ(x) (the so-called density of configurations) satisfies an evolution equation
which is decoupled and can be considered separately. It should be noted that evolutions
of the higher order correlation functions have more complicated hierarchical structure.

The dynamics of the first correlation function is described by the following Cauchy
problem:

∂ρ

∂ t
= Aρ, ρ = ρ(t,x), x ∈ Rd , t ≥ 0, ρ(0,x) = ρ0(x)≥ 0, where (6.1)

Aρ(x) =−m(x)ρ(x)+
∫
Rd

a(x− y)ρ(y)dy. (6.2)

If m(x)≡ 1, then the operator A takes the form

Aρ(x) =−ρ(x)+
∫
Rd

a(x− y)ρ(y)dy =
∫
Rd

a(x− y)
(
ρ(y)−ρ(x)

)
dy. (6.3)

Thus we obtain parabolic equation (6.1) with a convolution operator on the right-hand
side.

Notice that correlation functions in the contact model, as well as in other models of
the population dynamics, need not vanish at infinity. Thus to study the behaviour of
correlation functions we have to consider the Cauchy problem for evolution equations
(6.1)–(6.3) in the classes of functions that satisfy suitable growth conditions at infinity.
Then the information about the point-wise asymptotics or two-sided bounds of the corre-
sponding fundamental solution becomes very important not only in the region where the
central limit theorem applies but also in other space-time regions.

In this note we compare the large time behaviour of the fundamental solutions of prob-
lem (6.1)–(6.3) with that of the classical Gaussian heat kernel.
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We also make a similar comparison of the Gaussian heat kernel and the fundamental
solution of evolution equations with a fractional time derivative.

An essential part of the estimates used in this note is borrowed from our previous works
[4] and [7]. However, the lower bounds for the studied fundamental solutions in the region
of super-large deviations are new. For these bounds we provide a detailed proof.

2 Convolution type operators
We consider a zero order convolution type operator A in L2(Rd), d ≥ 1, defined by

A f (x) =
∫
Rd

a(x− y)
(

f (y)− f (x)
)
dy,

where the convolution kernel a is a non-negative integrable function. If
∫
Rd a(z)dz =

1, then A is the generator of a continuous time Markov jump process with the jump
distribution a(z): A f = a ∗ f − f . We assume that the convolution kernel a( ·) has the
following properties:

� Boundedness
a(x)≥ 0, a(x) ∈ L∞(Rd)∩L1(Rd). (6.4)

� Symmetry
a(x) = a(−x) for all x ∈ Rd . (6.5)

� Normalisation and second moments∫
Rd

a(x)dx = 1,
∫
Rd
|x|2a(x)dx < ∞. (6.6)

� (Super)exponential decay

0≤ a(x)≤Ce−b|x|p , with p≥ 1, b > 0,C > 0, (6.7)

we also consider the case of compactly supported a(x).

3 Non-local parabolic problem
We study the large time behaviour of the fundamental solution of the following parabolic
problem

∂tu(x, t) = Au(x, t) = a∗u−u, (x, t) ∈ Rd× (0,+∞),

u(x,0) = δ (x).
(6.8)
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Remark 6.1 Let ξ 0(t) be a continuous time jump Markov process with jump intensity
equal to 1 and with jump distribution a( ·), and assume that ξ 0(0) = 0. Then u( · , t) is the
law of ξ 0(t).

Since A is a bounded operator in L2(Rd) we have

etA = e−t eta? = e−t
∞

∑
k=0

tk a?k

k!
= e−t1+ e−t

∞

∑
k=1

tk a?k

k!

and

u(x, t) = etA
δ (x) = e−t

δ (x)+ e−t
∞

∑
k=1

tk

k!
a?k(x). (6.9)

Observe that u(x, t) consists of a singular part at zero e−tδ (x) and a regular part v(x, t) ∈
L∞(Rd)∩L1(Rd):

v(x, t) = e−t
∞

∑
k=1

tk

k!
a?k(x). (6.10)

We focus on obtaining point-wise upper and lower bounds for the regular part v(x, t) as
t→ ∞.

Let us briefly recall some of the existing results on heat kernels. The heat kernel of the
classical heat equation in Rd

∂tg−∆g = 0, g|t=0 = δx,

is given by the Gauss-Weierstrass function

gt(x,y) =
1

(4πt)d/2
exp

(
−|x− y|2

4t

)
. (6.11)

For the heat kernel of a more general parabolic equation ∂tg−Lg = 0 with a uniformly
elliptic second-order divergence form operator L the well-known Aronson estimates hold,
see [1],

gt(x,y)�
C

td/2
exp

(
−|x− y|2

ct

)
.

One of the simplest non-local heat equation is

∂tg+(−∆)
α/2 g = 0, where 0 < α < 2.

Its heat kernel satisfies the following estimates, see e. g. [2],

gt(x,y)�
C

td/α

(
1+
|x− y|

t1/α

)−(d+α)

(6.12)
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Remark 6.2 Note that (−∆)
α/2 is an integro-differential operator of the form

(−∆)
α/2 f (x) = cd,α p.v.

∫
Rd

f (x)− f (y)

|x− y|d+α
dy. (6.13)

The heavy tail of the heat kernel in estimate (6.12) is a consequence of slow decay of the
integral kernel in (6.13).

4 Asymptotics of v(x, t) as t→ ∞

In this section we present results from the paper [4], where the large time behaviour of the
fundamental solution to the problem (6.8) has been obtained. This asymptotic behaviour
depends crucially on the relation between |x| and t. We consider separately four different
regions in the (x, t) space. Namely,

I. |x| ≤ r t1/2
(
1+o(1)

)
(standard deviations region)

II. |x|= r t1+δ/2
(
1+o(1)

)
, δ ∈ (0,1) (moderate deviations region)

III. |x|= r t
(
1+o(1)

)
(δ = 1) (large deviations region)

IV. |x|= r t1+δ/2
(
1+o(1)

)
, δ > 1 (“extra-large” deviations region)

4.1 Normal and moderate deviations region

We begin with the case when x belongs to regions I. or II.

Theorem 6.3 (see [4]) Assume that a( ·) satisfies conditions (6.4)–(6.7). Then for the
function v(x, t) defined by (6.10) the following asymptotic relation holds as t→ ∞:

1) if |x| ≤ r t1/2 for some r > 0, then

v(x, t) = (2πt)−d/2
(
det(σ)

)−1/2 e−
(σ−1x,x)

2t
(
1+o(1)

)
(6.14)

with σ
i j =

∫
Rd

xix j a(x)dx.

2) if x = r t1+δ/2
(
1+o(1)

)
with 0 < δ < 1 and r ∈ Rd\{0}, then the following asymp-

totic relation holds as t→ ∞:

v(x, t) = e−
(σ−1x,x)

2t (1+o(1)) = e−
1
2 (σ

−1r,r) tδ (1+o(1)). (6.15)
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It should be noted that the Gaussian form of the asymptotics (6.14) in the region of
standard deviations is the immediate consequence of the local limit theorem for processes
with independent increments. Formula (6.14) can also be derived from the asymptotic
representation of the corresponding Fourier transform. In the moderate deviations region
the asymptotics (6.15) of the fundamental solution still coincide with that in the standard
deviations region, but only in the logarithmic order. For the pre-exponential factor we can
only state the sub-exponential rate of decay.

4.2 Large deviations region

In order to formulate the result in the region |x| ∼ t we should first introduce a number of
auxiliary quantities. Let X be a random vector in Rd with distribution a( ·). If condition
(6.7) is fulfilled with some p ≥ 1 then X has finite exponential moment Λ(γ) = Eeγ·X at
least for small enough γ ∈ Rd .

We define the cumulant generating function L(γ) = lnΛ(γ), and introduce I(r), r ∈Rd ,
as its Legendre transform: I(r) = sup

γ

(
γ · r− L(γ)

)
, r,γ ∈ Rd . Denote by ξr a positive

solution of the equation

lnξ = I(ξ r)−ξ r ·∇I(ξ r), ξ ∈ R.

Lemma 6.4 Let a(x) satisfy conditions (6.4)–(6.7). Then for any r ∈ Rd\{0} the above
equation has a unique solution ξr, and 0 < ξr < 1.

Let us define the rate function

Φ(r) = 1− 1
ξr

(
1+ lnξr− I(ξrr)

)
. (6.16)

We introduce now some additional technical conditions on the kernel.

(A1) p = 1 and for any b1 > b and any θ ∈ Sd−1 we have Eeb1(X ,θ) = ∞, where b is the
same constant as in (6.7).

(As
1) p = 1 and E|X |eb(X ,θ) = ∞ for any θ ∈ Sd−1.

(Ap) p > 1 and for any θ ∈ Sd−1

L(γ) = lnEeγ(X ,θ) =C(b, p)|γ|p/(p−1)(1+o(1)
)
, as |γ| → ∞,

where C(b, p) = p−1
p (bp)−1/(p−1) is a constant appearing in the logarithmic

asymptotics of the Laplace transform of e−b|x|p .
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Remark 6.5 Condition (Ap), p≥ 1, can be treated as a sort of soft lower bound for a(x).
In particular, it holds if a(x) satisfies the following two-sided estimate

C0e−b|x|p ≤ a(x)≤C1e−b|x|p , p≥ 1. (6.17)

Also, Condition (Ap) implies that a(x) could not have a bounded support.

Theorem 6.6 (see [4]) Let conditions (6.4)–(6.7) be fulfilled, and assume additionally
that in the case p = 1 condition (As

1) holds. Then for x = rt
(
1+o(1)

)
with r ∈ Rd\{0}

we have
v(x, t) = e−Φ(r)t(1+o(1)) as t→ ∞, (6.18)

where Φ(r) is defined by (6.16).

The rate function Φ(r) possesses the following important properties: Φ is a convex
function, Φ(0) = 0, Φ(r)> 0 for r 6= 0, and

Φ(r) =
1
2

σ
−1r · r

(
1+o(1)

)
, as r→ 0; (6.19)

Φ(r)→ ∞, as r→ ∞. (6.20)

If a(x) has a finite support, then

Φ(r)≥ c|r| ln |r|, as |r| → ∞.

Furthermore, if p = 1 and condition (A1) holds, then

Φ(r) = b|r|
(
1+o(1)

)
, as |r| → ∞; (6.21)

if p > 1 and condition (Ap) holds, then

Φ(r) =
p

p−1
(
b(p−1)

)1/p|r|(ln |r|)
p−1

p
(
1+o(1)

)
, as |r| → ∞. (6.22)

Remark 6.7 It should be also emphasised that in the case p = 1 conditions (A1), (As
1) are

required for proving the main result on the asymptotics of the heat kernel, while in the
case p > 1 condition (Ap) is only used for determining the asymptotic behaviour of the
function Φ(r) for large r.

4.3 Extra-large deviations region

In the region |x| � t only an upper bound for v(x, t) was obtained in [4].
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Theorem 6.8 (see [4]) Assume that a(x) satisfies conditions (6.4)–(6.7). Then for |x| =
rt1+δ/2

(
1+o(1)

)
with δ > 1 and r 6= 0 the following asymptotic upper bound holds:

v(x, t)≤ e−cptδ+1/2(ln t)p−1/p(1+o(1)) as t→ ∞, (6.23)

where the constant cp = cp(b,r) depends on b, r and p. If a( ·) has a finite support, then
for |x|= rtδ+1/2

(
1+o(1)

)
with δ > 1 we have

v(x, t)≤ e−c̃ tδ+1/2 ln t(1+o(1)) as t→ ∞,

where c̃ depends on r, δ and the support of a( ·).

Here, for a(x) satisfying two-sided estimate (6.17), we prove that a similar lower bound
holds.

Theorem 6.9 Let Conditions (6.4)–(6.6) be fulfilled, and assume that bound (6.17) holds.
Then in the region of “extra-large” deviations with |x| � t the following two-sided bound
holds for all sufficiently large t:

exp

{
−C̃1|x|

(
ln
∣∣∣x
t

∣∣∣) p−1
p

}
≤ v(x, t)≤ exp

{
−C̃2|x|

(
ln
∣∣∣x
t

∣∣∣) p−1
p

}
. (6.24)

Proof. The upper bound in (6.24) is a direct consequence of estimate (6.23). To obtain
the lower bound in (6.24) we consider an auxiliary operator(

Ãu
)
(x) =

∫
Rd

C0ãp(x− y)u(y)dy−C1

∫
Rd

ãp(y)dy ·u(x),

where ãp(x) = e−b|x|p and C0, C1 are the same constants as in (6.17). Let us represent
ũ(x, t) = etÃδ (x) in the same way as (6.9):

ũ(x, t) = e−C1αpt
δ (x)+ e−C1αpt

∞

∑
k=1

(C0t)k

k!
ã?k

p (x),

where αp =
∫
Rd ãp(y)dy. Thus the regular part of ũ(x, t) equals to

ṽ(x, t) = e−C1αpt
∞

∑
k=1

(C0t)k

k!
ã?k

p (x), (6.25)

and we conclude using (6.17) that v(x, t) ≥ ṽ(x, t) for all x ∈ Rd . Therefore, it suffices
to obtain the lower bound in (6.24) for the function ṽ(x, t). To this end we first estimate

ã?k
p (x) for k =

(
ln |x|t

)−1/p
|x|. Divide the one-dimensional segment [0,x] into k equal
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parts and denote by z j, j = 1, . . . ,k, the centers of corresponding subsegments [r j−1,r j],
r j =

x
k j. Notice that

|r j− r j−1|=
|x|
k

=
(

ln
|x|
t

)1/p
→ ∞ as t→ ∞.

Let B1(z) ⊂ Rd be a ball of the unit volume with the center at z. If x j ∈ B1(z j), x j−1 ∈
B1(z j−1), then

|x j− x j−1| ≤ |r j− r j−1|+2 =
|x|
k

(
1+o(1)

)
.

Consequently

ã?k
p (x)≥

∫
B1(z1)

· · ·
∫

Bk(zk)

e−|x1−x2|p−...−|xk−x|pdx1 · · ·dxk ≥ e−c1

(
|x|
k

)p
k (6.26)

with some constant c1 > 0. Finally keeping in representation (6.25) for ṽ(x, t) only one
term with k =

(
ln |x|t

)−1/p|x| and considering estimate (6.26) we obtain the desired low
bound in (6.24).

5 Time fractional equations

In this section we present results of our work [7] where the asymptotic behaviour of
solution wα(x, t) of the following fractional time parabolic problem has been studied

∂
α
t wα = a∗wα −wα , wα

∣∣
t=0 = δ0.

Here ∂ α
t is the fractional derivative (the Caputo derivative) of the order α , 0 < α < 1, and

a(x) is the same convolution kernel as that in Section 2.
As follows from [3] the solution wα(x, t) admits the following representation in terms

of the fundamental solution u(x, t) of a non-local heat equation:

wα(x, t) =
∫

∞

0
u(x,r)drP(Sr ≥ t) =

∫
∞

0
u(x,r)Gα

t (r)dr,

here S = {Sr,r ≥ 0} is the α-stable subordinator with the Laplace transform Ee−λSr =

e−rλ α

, and Gα
t (r) = dr Pr{V α

t ≤ r} is the density of the inverse α-stable subordinator V α
t .

Using the representation for the Laplace transform of V α
t : Ee−λV α

t = Eα(−λ tα), Eα is
the Mittag-Leffler function, and representation (6.9) for the non-local heat kernel

u(x, t) = e−t
δ0(x)+ v(x, t) with v(x, t) =

∞

∑
k=1

a∗k(x)
k!

tk e−t
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we obtain wα(x, t) = Eα(−tα)δ0(x)+ pα(x, t), where the regular part of wα(x, t) equals

pα(x, t) =
∞

∑
k=1

a∗k(x)
k!

tαk E(k)
α (−tα)

It turned out that in contrast with the equations studied in Section 4.1 in the case of
equations with fractional time derivatives we should divide (x, t) space in 6 regions in
order to describe the large time behaviour of the corresponding fundamental solutions.
These regions are

� |x| is bounded;

� (Subnormal deviations) 1� |x| � t
α
2 or equivalently, |x(t)| → ∞ and there exists

an increasing function r(t), r(0) = 0, lim
t→∞

r(t) = +∞ such that r(t)≤ |x| ≤
(
r(t)+

1
)−1tα/2 for all sufficiently large t;

� (Normal deviations) x = vtα/2
(
1+o(1)

)
with an arbitrary v ∈ Rd \{0};

� (Moderate deviations) x = vtβ
(
1+o(1)

)
with α

2 < β < 1 and v ∈ Rd \{0};

� (Large deviations) x = vt
(
1+o(1)

)
with v ∈ Rd \{0};

� (Extra large deviations) |x| � t, i. e. lim
t→∞

|x(t)|
t = ∞.

The main result from [7] is the following point-wise asymptotic formula for pα(x, t) as
t→ ∞.

� If |x| is bounded, then

c−t−α/2 ≤pα(x, t)≤ c+t−α/2 if d = 1,

c−t−α log t ≤pα(x, t)≤ c+t−α log t if d = 2,

c−t−α ≤pα(x, t)≤ c+t−α if d ≥ 3.

� If 1� |x| � tα/2, then

c−t−α/2 ≤pα(x, t)≤ c+t−α/2 if d = 1,

c−t−α log
tα

|x|2
≤pα(x, t)≤ c+t−α log

tα

|x|2
if d = 2,

c−t−α |x|2−d ≤pα(x, t)≤ c+t−α |x|2−d if d ≥ 3.
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� If x = vtα/2
(
1+o(1)

)
with v ∈ Rd \{0}, then

pα(x, t) = t−
dα
2

∫
∞

0
Wα(s)Ψ(v,s)ds

(
1+o(1)

)
, where

Ψ(v,s) =
1

|detσ |1/2(2πs)d/2
exp
(
− (σ−1v,v)

s

)
and Wα(s) is the Wright function that is expressed via the density Gα

t (r) of the
inverse subordinator.

� If x = vtβ
(
1+o(1)

)
with α/2 < β < 1 and v ∈ Rd \{0}, then

pα(x, t) = exp
{
−Kv t2β−α/2−α

(
1+o(1)

)}
with a constant Kv depending on α and v.

� If x = vt
(
1+o(1)

)
with v ∈ Rd \{0}, then

pα(x, t) = exp
{
−F(v)t

(
1+o(1)

)}
.

� If |x| � t, then, combining the approach developed in [7] with the statement of
Theorem 6.9, we obtain

exp
{
−c− |x|

(
log
∣∣∣x
t

∣∣∣)p−1/p
}
≤ pα(x, t)≤ exp

{
−c+ |x|

(
log
∣∣∣x
t

∣∣∣)p−1/p
}
.

6 Conclusions

1. Comparing classical heat kernel (6.11) and the regular part of the fundamental
solution of the non-local parabolic problem (6.8) we observe that crucial modi-
fications of the Gaussian form of the asymptotics occurs in the region of large
deviations, when x = rt. It is there, at the distances of order t, that the non-local
character of the operator A starts to play an important role. As seen from (6.19),
the fundamental solution is still close to the Gaussian function for small r, but it
differs essentially from the corresponding Gaussian function for sufficiently large
r, see (6.21), (6.22). In the “extra-large” deviations region this difference is further
enhanced. It follows from estimate (6.24) that the non-local fundamental solution
v(x, t) has more heavy tail at infinity than the classical heat kernel (6.11).

2. Comparing pα(x, t) and v(x, t) we notice that
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� in the regions of normal and moderate deviations the asymptotics of pα(x, t)

strongly depends on α , and in the region of subnormal deviations it addi-
tionally depends on the dimension;

� in the region of large deviations |x| ∼ t the form of the asymptotics of pα(x, t)

is similar to that of v(x, t), however the rate functions are different;

� in the region of extra large deviations the asymptotic upper bounds for
pα(x, t) and for v(x, t) are the same.
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