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Construction of limiting Gibbs
processes and the uniqueness of

Gibbs processes
Suren Poghosyan* and Hans Zessin†

Abstract. For a pair potential Φ in a general phase space X satisfying

some natural and sufficiently general stability and regularity conditions

in the sense of Poghosyan and Ueltschi we define by means of the so-

called Ursell kernel a function r which is shown to be the correlation

function of a unique infinitely extended process P. Finally, under more

restrictive assumptions, we show that the Gibbs process for Φ, if it

exists, coincides with P. Here we use the classical method of Kirkwood-

Salsburg equations.

1 Preliminaries

Let (X ,B(X),B0(X)) be the underlying phase space where X is a locally compact,
second countable Hausdorff topological space, B(X) its Borel σ -field and B0(X) its
bounded Borel sets. Let ρ be a Radon measure on X .

Let M ··(X) be the space of Radon point measures on X and X be the collection of
all finite point measures (finite configurations) ξ in X . X+ denotes the collection of all
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56 Poghosyan, Zessin: Construction of Gibbs processes

non-empty ξ in X. For A ∈B0(X) let X(A) be the set of finite point measures supported
by A. Let M ·

R(X), R > 0, be the space of simple point measures µ on X having the
property that the minimal distance of every pair of points in any configuration µ is R, i. e.
(x,y ∈ µ,x 6= y⇒ d(x,y)> R) where d is a metric on X . Here all Dirac measures εx at
the point x ∈ X and the zero measure o are elements of X and M ·

R(X).

We call a subset X′ of X an environment in X if (η ∈ X′,ξ � η ⇒ ξ ∈ X′). Here ξ � η

if ξ (x)≤ η(x) for all x ∈ X . Examples are X and XR = M ·
R(X)∩X.

We denote by F+ the space of [0,+∞]-valued measurable functions on the correspond-
ing space and by K we denote the collection of continuous functions with compact
support. Define a locally finite measure Λρ on X by

Λρ ϕ = ϕ(o)+
∞

∑
n=1

1
n!

∫
X
· · ·
∫

X
ϕ(εx1 + . . .+ εxn)ρ(dx1) · · ·ρ(dxn), ϕ ∈ F+.

For a given configuration µ ∈M ·· we define the following measure on X:

Λ
′
µ(h) =

∞

∑
n=0

1
n!

∫
Xn

h(εx1 + . . .+ εxn) µ̃
n(dx1, . . . ,dxn), h ∈ F+, where

µ̃
n(dx1, . . . ,dxn) =

(
µ− εx1 − . . .− εxn−1

)
(dxn) · · ·

(
µ− εx1

)
(dx2)µ(dx1).

µ̃n is called the factorial measure of µ of order n, and Λ′µ the compound factorial measure

built on µ . The term n = 0 of the sum is h(o). Also, Λ′o(h) = h(o).

Below we often use the following important equation, the Minlos’ formula [3]:∫
X

∫
X

h(ξ ,ν−ξ )Λ
′
ν(dξ )Λρ(dν) =

∫
X

∫
X

h(ξ ,ν)Λρ(dξ )Λρ(dν), h ∈ F+, (5.1)

which is valid for all h integrable with respect to the measure on the left-hand or the
right-hand side of the equation.

Let P be a point process in X that is a probability on M ··(X). The moment measure of

P of order k is the measure on Xk defined by

ν
k
P f =

∫
M ··(X)

µ
⊗k( f )P(dµ), f ∈K (Xk),
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whereas the correlation measure (also called factorial moment measure) of P of order k

is the measure given by

ν̃
k
P( f ) =

∫
M ··(X)

µ̃
k( f )P(dµ), f ∈K (Xk).

If ν̃k
P has a density rk

P with respect to some product measure ρ⊗k, where ρ is a Radon
measure on X , then we say that rk

P is a correlation function of P of k-th order. The
process P is called of order k if νk

P is a Radon measure. P is called of infinite order if it is
of order k for every k.

2 Ruelle’s algebraic approach

We here follow Ruelle [10]. Let A be the set of all measurable complex functions on X.
We define a ?-multiplication of two functions h1,h2 ∈A by

h1 ?h2(ξ ) =
∫
X

h1(ν)h2(ξ −ν)Λ
′
ξ
(dν), ξ ∈ X. (5.2)

With the ?-product A becomes a commutative algebra with the unit 1(ξ ) = δo(ξ ). Let
A0 = { f ∈A | f (o) = 0}. We define the mapping Γ : A0→ 1+A0 (algebraic exponent)
by

Γh = 1+h+
1
2!

h?2 + . . .+
1
n!

h?n + . . . , h ∈A0. (5.3)

Let Φ be a measurable symmetric function Φ : X×X→]−∞,+∞], a pair potential in X .
E(ξ ) ..= ∑1≤i< j≤n Φ(xi,x j) is the energy of the configuration ξ = εx1 + . . .+εxn ; B ..= e−E

is called the Boltzmann factor. The conditional energy at x given the configuration ξ is
given by WΦ(x,ξ ) ..=

∫
X Φ(x,y)ξx(dy), where ξx = ξ if x /∈ ξ and ξ = ξ − εx otherwise.

We assume that Φ is b-stable, i. e. there exists a measurable function b : X → [0,+∞)

such that E(ξ )≥−∑x∈ξ b(x), ξ ∈ X.
We consider also P-stable1 Φ with stability function b in the environment X′. This

means that there exists a measurable function b : X → [0,+∞) such that WΦ(x,ξx) ≥
−b(x), x ∈ ξ ∈ X′, ξx = ξ − εx. If Φ is P-stable with function b, then it is b-stable.

Any non-negative Φ is P-stable in the environment X. Another important example
is the Penrose potential [7] (see also [5]). Let (X ,ρ) be the d-dimensional Euclidean

1This notion goes back to Oliver Penrose [7].
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space with Lebesgue measure. Let c,ε,R > 0 be constants. Φ is the following hard-
core potential: If |x− y| < R then Φ(x,y) = +∞; and if |x− y| ≥ R then |Φ|(x,y) ≤
c|x− y|−(d+ε). As Penrose has shown this potential is P-stable in the environment XR

with a constant stability which can be calculated explicitly.

The Boltzmann factor B = e−E is an element of the algebra (A ,?) having an inverse
with respect to the ? multiplication, which is denoted by B−1

? . Another important element
U of the algebra A is the Ursell function given by

U(o) = 0, U(εx) = 1, U(εx1 + . . .+ εxn) = ∑
γ∈Cn

∏
(i, j)∈γ

ω(xi,x j), n≥ 2, (5.4)

where Cn denotes the set of all simple, unoriented, connected graphs γ with n vertices, the
product is taken over all edges (i, j) in γ and ω(x,y) = e−Φ(x,y)−1 is the Mayer function.

Note that U ∈A0 and the following important relation is valid B = ΓU .

3 Ursell kernel
Representation of the correlation function

Here we follow the work of Minlos, Poghosyan [4]. Let z : X → [0,+∞) be measurable.
We consider Radon measures of the form z.ρ = ρz, where ρ is Radon measure and z is a
density function.

Given A ∈B0(X) we define the finite volume Gibbs process in A as the probability
Qz,A on X(A) which is given by

Qz,A(dξ ) =
1

Ξ(z,A)
e−E(ξ ) ·Λz.ρA(dξ )

where ρA = 1A ·ρ and the normalising constant (the partition function) is given by

Ξ(z,A) =
∫
X(A)

∏
x∈η

z(x)e−E(η)
ΛρA(dη).

By stability Ξ(z,A)≤ exp
(∫

A eb(x)z(x)ρ(dx)
)
< ∞.
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It is well known that the correlation function of the Gibbs process Qz,A is given by

rz,A(ξ ) =
∏x∈ξ z(x)

Ξ(z,A)

∫
X(A)

e−E(ξ+η)
Λz.ρA(dη), ξ ∈ X(A).

Proposition 5.1 The correlation function has the following remarkable representation:

rz,A(ξ ) = ∏
x∈ξ

z(x)
∫
X(A)

G(ξ ,η)Λz.ρA(dη), ξ ∈ X(A) (5.5)

where the Ursell kernel G : X2→R is given by G(ξ ,η) = (B−1
? ?Dξ B)(η), ξ ,η ∈X and

Dξ B(ν) = B(ξ + ν), ν ∈ X. In particular G(εx,η) = U(εx +η) where U is the Ursell
function.

For the proof we note that by the Minlos’ formula

1
Ξ(z,A)

Λz.ρA(Dξ B) =
1

Ξ(z,A)
Λz.ρA(B?B−1

? ?Dξ B) = Λz.ρA(B
−1
? ?Dξ B).

For a given pair potential Φ let Φ = Φ if Φ is finite and Φ = 1 if Φ =+∞. Let a, b, c
be non-negative functions on X . We will say that Φ satisfies

� c-regularity, if there exists a function a such that∫
X

∣∣ω∣∣(x,y)e(c+a)(y)
ρz(dy)≤ a(x), x ∈ X . (5.6)

� Modified b-regularity, if there exists a function a such that∫
X

∣∣Φ∣∣(x,y)eb(y)+a(y)
ρz(dy)≤ a(x), x ∈ X . (5.7)

Both assumptions (5.6) and (5.7) are introduced in [8].

Theorem 5.2 Let Φ be a b-stable pair interaction. Assume also that Φ is 2b-regular for
a. Then the function

rz(ξ ) = ∏
x∈ξ

z(x)
∫
X

G(ξ ,η)Λρz(dη), ξ ∈ X (5.8)
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is well defined and satisfies the following Ruelle bound

rz(ξ )≤∏
x∈ξ

z(x)
∫
X

∣∣G∣∣(ξ ,η)Λρz(dη)≤∏
x∈ξ

z(x)e(2b+a)(x), ξ ∈ X. (5.9)

If Φ is P-stable and b-regular for a then (5.9) holds with e(b+a)(x) instead of e(2b+a)(x).
Moreover rz(ξ ) = limA↑X rz,A(ξ ).

The proof of this theorem is based on the so-called forest graph estimate. For ξ ,η ∈X
let F (ξ ,η) be the collection of forests with the set of vertices ξ +η and roots ξ . An
unoriented simple graph is called rooted forest if its connected components are rooted

trees, i. e. trees where one vertex is specified as a root.
We consider the case of b-stable Φ. The P-stable case is entirely the same, one only

needs to replace e2b by eb. If Φ is modified regular, then one has to pass from ω to Φ

using the formula
∣∣ω∣∣(x,y)≤ ∣∣Φ∣∣(x,y)eΦ−(x,y).

Lemma 5.3 ([4]) For ξ 6= o,

∣∣G∣∣(ξ ,η)≤ ∏
x∈ξ+η

e2b(x)
∑

γ∈F (ξ ,η)
∏

(x,y)∈γ

∣∣ω∣∣(x,y). (5.10)

Denoting the right-hand side of (5.10) by H(ξ ,η) one can show that

H(εx1 + . . .+ εxn ,η) = H
(
x1, ·

)
? · · ·?H

(
xn, ·

)
(η).

Then an application of the Minlos’ formula and Theorem 2.1 from [8] completes the
proof of Theorem 5.2.

In particular Lemma 5.3 gives the famous tree graph estimate of the Ursell function:

∣∣U∣∣(η) =
∣∣G∣∣(εx,η− εx)≤∏

x∈η

e2b(x)
∑

γ∈T (η)
∏

(x,y)∈γ

∣∣ω∣∣(x,y), x ∈ η . (5.11)

Here T (η) is the set of trees with the set of vertices η .

4 Construction of limiting Gibbs processes

Theorem 5.4 Let Φ be a P-stable pair potential in X which is b-regular for a. If eb+aρ

is a Radon measure, then there exists a unique process Pz in X of infinite order having
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correlation function rz, which is the limiting Gibbs process of the sequence (Qz,An)n in
the weak sense.

The proof of this theorem is based on the following lemma.

Lemma 5.5 ([11]) Let (Pn)n be a sequence of point processes in X of infinite order
satisfying the conditions: for each k the limits ν̃k( f ) = limn→∞ ν̃k

Pn
( f ), f ∈K (Xk), exist

and ∑
∞
`=1 ν`(A`)−

1
2` = +∞ for each bounded A. Here ν`(A`) = ∑J ν̃ |J |(A|J |), where

the summation is over all partitions of {1, . . . , `} into non-empty subsets. Then there
exists one and only one point process P in X of infinite order such that Pn ⇒ P and
ν̃k
P = ν̃k for each k.

Lemma 5.5 combined with the Ruelle bound completes the proof of Theorem 5.4. We
consider below the case where z(x)≡ z > 0, x ∈ X .

Proposition 5.6 Under the conditions of Theorem 5.4, rz(ξ ) = z|ξ |
∫
X G(ξ ,η)Λρz(dη)

satisfies the Kirkwood-Salsburg (K-S) equation:

(KΣzρ) rz(ξ ) = ze−WΦ(x,ξ ) ·
∫
X

K(x,η)rz(ξx +η)Λρ(dη), x ∈ ξ 6= o,

where K(x,η) ..= ∏y∈η ω(x,y).

The proof follows from Theorem 5.2, Minlos’ formula and the fact that the Ursell
kernel satisfies the equations ([PU09], [Ru69]): G(o,η) = δo,η and

G(ξ ,η) = e−WΦ(x,ξx)
∫
X

K(x,ν)G(ξx +ν ,η−ν)Λ
′
η(dν), x ∈ ξ 6= o.

Theorem 5.7 Let Φ be a P-stable b-regular potential for a. If eb+aρ is a Radon measure
and supx a(x) =C <∞ and if the activity satisfies 0< z< (eC)−1, the (KΣzρ) equation has
a unique solution and the correlation function rz of the process Pz is this unique solution.

Proof. We follow [10] and [3]. Let Eδ , δ > 0, be the Banach space of all complex valued
measurable functions ϕ : X+→ C such that

‖ϕ‖δ = sup
ξ∈X+

|ϕ|(ξ )
δ |ξ |∏x∈ξ e(a+b)(x)

<+∞, (5.12)

where |ξ | = ξ (X) denotes the number of particles in ξ . Since rz satisfies the Ruelle

bound (5.9), the correlation function rz belongs to Eδ with the norm ≤ 1 if z≤ δ .
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We define on Eδ the linear operator K by

Kϕ(εx) = z
∫
X+

K(x,η)ϕ(η)Λρ(dη), x ∈ X , (5.13)

Kϕ(ξ ) = ze−WΦ(x,ξ ) ·
∫
X

K(x,η)ϕ(η +ξx)Λρ(dη), x ∈ ξ 6= o. (5.14)

Using the operator K, we can write the K-S equation as an integral equation in the
Banach space Eδ : rz = Krz +αz, where αz(ξ ) = 0 if ξ (X) > 1 and αz(εx) = z. For
sufficiently small z > 0 the operator K is bounded. Indeed let ϕ ∈ Eδ with ‖ϕ‖ ≤ 1. Then
by P-stability and b-regularity of Φ for every x ∈ ξ ∈ X,

∣∣(Kϕ)
∣∣(ξ )≤ zeb(x)

∫
X

∣∣ωx
∣∣(η)δ |η |+|ξ |−1e(η+ξx)(b+a)

Λρ(dη)

≤ zδ
|ξ |−1eξ (b+a) · exp

(
δρ
(
|ωx|eb+a

))
≤ zeδC

δ
δ
|ξ |eξ (b+a).

Thus, if the parameters z and δ satisfy the condition zeδCδ−1 < 1, then ‖K‖δ < 1 and
the K-S equation has a unique solution. In particular, if we take δ = 1

C , this condition on
z becomes 0 < z < (eC)−1. A more detailed discussion of the choice of δ can be found
in [3].

5 Uniqueness of Gibbs processes

In a final step we show that Gibbs processes G for Φ with activity z have correlation
functions which solve the K-S equation in the same range of the parameter z. This implies
that the Gibbs process G, if it exists, coincides with Pz.

We use the notion of Gibbs process introduced in [6] as a solution of an integration-
by-parts formula. A point processes G is called a Gibbs process for (Φ,ρ), if for all
h ∈ F+

(Σρ)
∫

M ··

∫
X

h(x,µ)µ(dx)G(dµ) =
∫

M ··

∫
X

h(x,µ + εx)exp
(
−WΦ(x,µ)

)
ρ(dx)G(dµ).

We then write G ∈ G (Φ,ρ). This is equivalent to saying that G is a Gibbs process for
(Φ,ρ) in the sense of Dobrushin, Lanford and Ruelle, cf. [6].
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From now on we assume that Φ is P-stable, modified b-regular for a and eb+aρ is a
Radon measure. Then

Lemma 5.8 ([6]) Every G ∈ G (Φ,ρz) is of infinite order and its correlation function is
given by

gz(ξ ) = z|ξ |
∫

M ··
exp
(
−WΦ(ξ ,µ)

)
G(dµ), ξ ∈ X. (5.15)

Furthermore, G is uniquely determined by its correlation functions.

Note that by modified regularity of Φ the conditional energy WΦ(x,µ) can be extended
to the whole M ··(X) and remains P-stable with the same function b. Due to the P-
stability, the Ruelle bound takes the form gz(ξ ) ≤ z|ξ |∏x∈ξ eb(x). Using ideas of Sabine
Jansen [1], we then obtain

Proposition 5.9 Let Gz be a Gibbs process in X for (Φ,ρz). Then its correlation function
gz solves the (KΣzρ) equation.

In the view of the Ruelle bound we are in the situation as we had been above for the
correlation function rz.

Lemma 5.10 Let Φ be a P-stable pair potential satisfying above mentioned conditions.
Assume also 0 < z < (eC)−1. Then gz coincides with rz which implies that Gz coincides
with the limiting Gibbs process Pz.

Thus we arrive at the main result of this paper

Theorem 5.11 For all 0< z< (eC)−1 the collection G (Φ,ρz) of Gibbs processes is either
empty or the singleton {Pz}.

For a large class of hard-core potentials we show in [9] that indeed for all 0 < z <

(eC)−1 the set G (Φ,ρz) is not empty and therefore reduced to a unique element con-
structed as the limiting Gibbs process.
Acknowledgement. The authors are grateful to the referee for several proposals which
improved the presentation of our contribution.
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