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Pinned Gibbs processes
Mathias Rafler*

Abstract. Finite Gibbs processes are conditioned on the barycentre of

the point configurations being at a certain location. An integration-by-

parts formula is derived from a classical one for such a pinned Gibbs

process along with a characterisation. This entails a stochastic dom-

ination result for the total number of points as well as a simulation

scheme for conditioned point processes.

1 Pinning Gibbs processes

Classical integration-by-parts formulas for point processes give a dynamic view on point
processes identifying certain ones as reversible laws of spatial birth-and-death processes
with given birth and death rates. Usually existing points are chosen to disappear indepen-
dently of each other at rate 1, see e. g. [2] for further possible choices. If, in addition, new
points appear independent of the current point configuration, this characterises a Poisson
process with intensity given by the birth rate. This property is summarised in Mecke’s
formula. If this intensity is modified with a term depending on the configuration of points,
this yields more general Gibbs processes.

Conforti et al. studied (finite) Poisson processes subject to a pinning of the first mo-
ment of the point configurations, i. e. the Poisson process conditioned on an event of
probability zero [1]. Clearly, such a conditioned Poisson process cannot satisfy Mecke’s
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46 Rafler: Pinned Gibbs processes

formula, since typically removing or adding a point changes the first moment of a point
configuration. However, they introduced a new kind of dynamic keeping the given con-
dition invariant: They merge three steps of a birth-and-death process, which, suitably
chosen, conserve the given condition. Either one point is removed in favour of two new
ones, or two points are removed in favour of one new point. Hence, the total number of
points increases or decreases by one only.

The idea presented in [1] may be generalised in several ways. Firstly, points may be
allowed to interact with each other, i. e. the finite Poisson process is replaced by a finite
Gibbs process. Secondly, point configurations are conditioned on a fixed barycentre.
Such a condition fails to be linear and transformations need to chosen more carefully.

2 Transformations and invariance

For some d ∈ N, denote by M ·· the set of locally finite point measures on Rd as well as
M ··

f its subset of finite point measures, both are Polish spaces. For any atom x ∈ Rd of a
point measure µ ∈M ··

f , i. e. µ({x})> 0, write x ∈ µ .

Denote by b : M ··
f → Rd the functional assigning the barycentre to a finite point con-

figuration, i. e.

bµ ..=
1

µ(X)

∫
x µ(dx).

The barycentre of the empty configuration will be understood as some special element o

not contained in Rd .

Of particular interest are transformations replacing a single point by two new ones
while leaving the barycentre invariant. A short computation shows that for z ∈ µ ,

b(µ +δx +δy−δz) = bµ ⇐⇒ z = x+ y−bµ. (4.1)

Whenever a functional is invariant under such a transformation, this pair of functional
and transformation is called compatible.
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3 Integration by parts

3.1 Unpinned Gibbs processes

Let φ1 : Rd → (−∞,∞] and φ2 : Rd ×Rd → (−∞,∞] be potentials of single points and
pairs of points, both being bounded from below. Then the energy U of a finite point
configuration µ is given by

U(µ) =
∫

φ1(x)µ(dx)+
1
2

∫
φ2(x,y)µ(2)(dx,dy),

where µ(2)(dx,dy) ..=
(
µ−δx

)
(dy)µ(dx) is the second factorial measure of µ . Integration

with respect to µ(2) means to sum with respect to all pairs of distinct points respecting
possible multiplicities. Observe that if µ(Rd) < 2, then µ(2) = 0, and there is no con-
tribution of a pair interaction. The energy of a point x ∈ Rd given a point configuration
µ ∈M ··

f is

U(x |µ) = φ1(x)+
∫

φ2(x,y)µ(dy).

A finite point process N is a random element in M ··
f , and for a measurable set B⊆Rd ,

NB is the number of points of N in B. Here both, N and its law P, are called point process.
A finite point process N with law P is called Gibbs process with potentials φ1 and φ2, if
its Campbell measure CP satisfies the (classical) integration-by-parts formula∫

hdCP ..=
∫∫

h(x,µ)µ(dx)P(dµ) =
∫∫

h(x,µ +δx)exp
(
−U(x |µ)

)
dxP(dµ) (4.2)

for all non-negative, measurable functions h. Equivalently, Equation (4.2) may be written
as

E
[∫

h(x,N)N(dx)
]
= E

[∫
h(x,N +δx)exp

(
−U(x |N)

)
dx
]
.

Equation (4.2) has a solution if e. g. exp(−φ1) is integrable and φ2 is stable [3]. Subse-
quently, the potentials shall be chosen such that a finite point process exists as a solution.
Note that there is a natural choice of a spatial birth-and-death process on Rd such that
P is a reversible distribution: Points die independently of each other at rate one, while
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new points appear at a rate given by the exponential, see [2] for a discussion. An explicit
representation of P in terms of the kernel is available and given in [4].

Of particular interest is the second order reduced Campbell measure given by

∫
hdC(2)

P
..= E

[∫
h(x,y,N−δx−δy)N(2)(dx,dy)

]
.

Note that a finite point process P can be reconstructed from C(2)
P only on {NRd ≥ 2}.

Subsequently, simplify notation and denote by b the barycentre of the point configura-
tion µ . Assume that

U(z− y+b |µ−δz +δy)+U(y |µ−δz)< ∞ =⇒ U(z |µ−δz)< ∞, z ∈ µ,

which means that allowing to add points at y and z− y+b with a finite energy needs to
allow adding a point at z with a finite energy as well.

Proposition 4.1 Let N be a finite Gibbs process with potentials φ1 and φ2. Then

E
[∫

F(x,y,N)N(2)(dx,dy)
]

=
∫

E
[∫

F
(
z− y+b,y,N +δz−y+b+δy−δz

)
σ(N,y,z)N(dz)

]
dy (4.3)

for all non-negative, measurable functions F , where

σ(µ,y,z) ..= exp
(
−U(z− y+b |µ−δz +δy)−U(y |µ−δz)+U(z |µ−δz)

)
, z ∈ µ.

Proof. The statement is proven straight forward by an application of integration by parts
followed by the substitution x = z− y+b and an integration by parts backwards.

3.2 Pinned Gibbs processes

For a finite point process N with law P denote by τ ..= P◦b−1 the distribution of b under
P. τ is a distribution on Rd ∪ {o} and concentrated on Rd if and only if N does not
charge the empty configuration. Let Pa ..= P( · |b= a) be law of the pinned point process
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Na. Note that in any case, if a ∈ Rd , then necessarily Na 6= 0 almost surely. By the
Equivalence (4.1), x, y and z are chosen such that the mapping

M ··
f →M ··

f , µ 7→ µ +δy +δz−y+bµ −δz, z ∈ µ,

keeps the barycentre invariant.

Proposition 4.2 Let P be a finite Gibbs process with potentials φ1 and φ2. Then for τ-a.e.
a ∈ Rd , Pa solves (4.3).

Proof of Proposition 4.2. Let f : Rd ∪ {o} → R be τ-integrable. Then the statement
follows from∫

f (a)
∫

h(x,y,µ)C(2)
Pa (dx,dy,dµ)τ(da) =

∫
f (bµ)h(x,y,µ)C(2)

P (dx,dy,dµ)

by applying Equation (4.3) respecting the invariance of b, and the disintegration with
respect to τ .

The pinned point processes inherit the property of solving the second order integration-
by-parts formula (4.3). Hence, Equation (4.3) has besides the unpinned Gibbs process at
least the parametric family of pinned Gibbs processes as solutions. However, the main
statement is that Equation (4.3) together with this pinning characterises the pinned Gibbs
processes.

Theorem 4.3 Let Q be a finite point point process such that

1) Q solves (4.3),

2) Q(b= a) = 1 for some a ∈ Rd .

Then Q is a pinned Gibbs process subject to the pinning b= a.

The main steps to prove Theorem 4.3 may be of interest and shall be given and com-
mented on here without too many details.

For a finite point process N, let N− be the diminished point process, that is N with
a uniformly chosen point removed. Since the empty configuration cannot be reduced,
it is mapped to a tomb ∆ as an extra state added to M ··

f . Note that since Na 6= 0 a.s,
(Na)− 6= ∆ a.s. and its distribution (Pa)− is a probability measure concentrated on M ··

f .
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The surprising result is that the law of the diminished pinned Gibbs process has a density
with respect to the law of the unpinned Gibbs process.

Proposition 4.4 Let N be a finite Gibbs process with distribution P. Then for τ-a.e.
a ∈ Rd , (Pa)−� P, and the density is given by

exp
[
−U
((

µ(Rd)+1
)
·a−µ(Rd) ·b(µ)

∣∣∣µ)]
τ(a)

, (4.4)

where 0 ·b(0) = 0.

Observe that the density is essentially an energy, and the argument in the potential shall
be interpreted as follows: µ is a diminished point configuration, hence

(
µ(Rd)+ 1

)
· a

is the first moment of a point configuration of the Gibbs process pinned at a. Since
µ(Rd) · b(µ) is the first moment of the diminished point configuration, their difference
is the location of the removed point. Consequently, each point configuration is weighted
with a factor containing the energy to add the point to get the correct barycentre.

In [1], an approximation argument is used to derive this statement for a certain class of
Poisson processes with an absolutely continuous intensity measure. The following sketch
of proof uses conditional expectations allowing to replace the absolute continuity with
respect to the Lebesgue measure with some reference measure.

Sketch of proof. Let f : Rd ∪ {o} → R be τ-integrable with f (o) = 0 and F be P-
integrable, then mixing with respect to τ , integration by parts followed by a disintegration
yields

∫
f (a)E

[
F
(
(Na)−

)]
τ(da)=

∫
f
(
b(µ+δx)

) F(µ)

µ(X)+1
exp
(
−U(x |µ)

)
Pa(dµ)τ(da)dx

+
∫

f
(
b(µ +δx)

) F(µ)

µ(X)+1
exp
(
−U(x |µ)

)
Po(dµ)τ(o)dx.

Since Po charges the empty configuration only, f
(
b(µ+δx)

)
= f (x) Po-a.s, and replacing

x by b yields that the second integral may be turned into

∫∫
f (b)F(µ)

exp
(
−U(b |µ)

)
τ(b)

Po(dµ)τ(o)τ(b)db.



3 Integration by parts 51

The first integral is evaluated with the aid of two transformations, where the first one pins
b(µ + δx) at some b ∈ Rd and thus expresses a in terms of b and x, and the second one
shifts this expression to a new variable y replacing x.

An essential observation is that the density (4.4) is positive under the diminished law.

Lemma 4.5 Under the reduced pinned law (Pa)−,

U
((

µ(Rd)+1
)
·a−µ(Rd) ·b(µ)

∣∣∣µ)< ∞

for (Pa)−⊗ τ(da)-a.e. (µ,a), hence the energy is positive almost surely.

Proof. This is shown by proving that the event

A ..=
{
(y,µ) ∈ Rd×M ··

f |U(y |µ) = +∞
}

has measure 0. Since Na is pinned at a, Na
X · a− (Na

X − 1) · b(Na− δy) = y. Mixed with
respect to τ

∫ (
Pa)−(A)τ(da) = E

[
1

NX

∫
1A

(
y,N−δy

)
N(dy) ·1N>0

]
= E

[
1

NX +1

∫
1π(N,y)=0π(N,y)dy

]
.

Since the inner integral vanishes, the claim follows.

Let Q be a solution of Equation (4.3) such that Q(b = a) = 1 for some a ∈ Rd . Then
one shows that Q−� P with the density given in (4.4).

Proposition 4.6 Let Q be a finite point process which solves (4.3) and satisfies Q(b =

a) = 1 for some a ∈ Rd . Then Q̃ given by

Q̃(dµ) ..=
τ(a)

exp
{(

(µ
(
Rd)+1

)
·a−µ(Rd) ·b(µ)

∣∣∣µ)}Q−(dµ)

is a Gibbs process with potentials φ1 and φ2.

The proof is straightforward by showing that the reduced Campbell measure of Q̃ sat-
isfies a classical integration-by-parts formula (4.2). Note that the Campbell measure of Q̃

turns into a second order Campbell measure for Q allowing the application of (4.3).
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What remains is to reconstruct the finite point process Q, or equivalently its reduced
Campbell measure from Q−. Its proof is already given in [1].

Proposition 4.7 Let Q be a finite point process such that Q(b= a) = 1 for some ∈Rd . If
Q− = P−, where P is a Gibbs process with potentials φ1 and φ2 conditioned on {b= a},
then Q = P.

4 Applications

4.1 Stochastic domination

A distribution p dominates a distribution q, if the tails of p are heavier than those of q.
As shown in [1], a sufficient condition for positive law p on N dominating q is

q(k+1)p(k)≤ q(k)p(k+1) for all k ≥ 1.

Such an inequality can be shown for the law of the total number of points of a pinned
Gibbs process Na and a Poisson distribution conditioned to be positive once

E
[
F(Na

Rd ) ·Na
Rd

]
≤ K ·E

[
F(Na

Rd +1)
]

(4.5)

is shown for some K > 0. The domination then follows in choosing the indicators F(n) ..=

1{n+1} for any n ∈ N and completing the conditioned Poisson weights with parameter K.
Equation (4.5) follows from the integration-by-parts formula by choosing functions

depending on its parameters via Na
Rd only, i. e.

E
[
g(Na

Rd )(Na
Rd −1)Na

Rd

]
= E

[
g(Na

Rd +1)
∫∫

σ(Na,y,z)dyNa(dz)
]
,

and the innermost integral can shown to be bounded from above uniformly by K. For a
hard-core interaction of particles inside some bounded box, this is satisfied automatically
since

U(z− y+b |µ−δz +δy)+U(y |µ−δz)−U(z |µ−δz)≥ 0.

A domination result with the roles exchanged can be shown as soon as the innermost
integral is bounded from below by a positive constant.
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4.2 Monte Carlo subject to conditions

The integration-by-parts formula allows a dynamic approach to sample approximately
from the law of the conditioned point process Na by running a continuous time Markov
chain starting from a single point at a ∈ Rd . If µ is the current point configuration, then
the following jumps occur at the following rates:

1) With rate one each, a pair of distinct points x,y ∈ µ is chosen and removed in
favour of a single point at x+ y−a.

2) A rejection method is applied to remove one point in favour of two new points, so
assume that σ(µ,y,z)≤ K for some constant K. At rate K ·µ(Rd), choose a point
y uniformly. Choose z ∈ µ uniformly, and toss a coin with success probability

σ(µ,y,z)
K

.

In case of success, remove z from µ and add points at y and z− y+a. Otherwise,
reject any jump.

The barycentre at a is a conserved quantity and does not need to be computed at each
step.
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