
On Discovering and Incrementally
Updating Inclusion Dependencies

Nuhad Shaabani

Faculty of Digital Engineering
University of Potsdam, Germany

This dissertation is submitted for the degree of
"Doktor Rerum Naturalium"

(Dr. rer. nat.)
in Computer Science

January 2019

Supervisor:
Prof. Dr. Christoph Meinel (Hasso Plattner Institute, Potsdam, Germany)

Reviewers:
Prof. Dr. Sven Hartmann (TU Clausthal, Germany)
Prof. Dr.-Ing. Ingo Schmitt (BTU Cottbus-Senftenberg, Germany)

Head of the examination board:
Prof. Dr. Andreas Polze (Hasso Plattner Institute, Potsdam, Germany)

Date of Disputation: 09 June 2020

Published online in the
Institutional Repository of the University of Potsdam:
https://doi.org/10.25932/publishup-47186
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-471862

To my son, Taim . . .

Abstract

In today’s world, many applications produce large amounts of data at an enormous rate. Analyzing
such datasets for metadata is indispensable for effectively understanding, storing, querying, manip-
ulating, and mining them. Metadata summarizes technical properties of a dataset which rang from
basic statistics to complex structures describing data dependencies. One type of dependencies is
inclusion dependency (IND), which expresses subset-relationships between attributes of datasets.
Therefore, inclusion dependencies are important for many data management applications in terms
of data integration, query optimization, schema redesign, or integrity checking. So, the discovery of
inclusion dependencies in unknown or legacy datasets is at the core of any data profiling effort.

For exhaustively detecting all INDs in large datasets, we developed S-INDD++, a new algorithm
that eliminates the shortcomings of existing IND-detection algorithms and significantly outperforms
them. S-INDD++ is based on a novel concept for the attribute clustering for efficiently deriving
INDs. Inferring INDs from our attribute clustering eliminates all redundant operations caused by
other algorithms. S-INDD++ is also based on a novel partitioning strategy that enables discording a
large number of candidates in early phases of the discovering process. Moreover, S-INDD++ does
not require to fit a partition into the main memory–this is a highly appreciable property in the face of
ever-growing datasets. S-INDD++ reduces up to 50 % of the runtime of the state-of-the-art approach.

None of the approach for discovering INDs is appropriate for the application on dynamic datasets;
they can not update the INDs after an update of the dataset without reprocessing it entirely. To this end,
we developed the first approach for incrementally updating INDs in frequently changing datasets. We
achieved that by reducing the problem of incrementally updating INDs to the incrementally updating
the attribute clustering from which all INDs are efficiently derivable. We realized the update of
the clusters by designing new operations to be applied to the clusters after every data update. The
incremental update of INDs reduces the time of the complete rediscovery by up to 99.999 %.

All existing algorithms for discovering n-ary INDs are based on the principle of candidate
generation–they generate candidates and test their validity in the given data instance. The major
disadvantage of this technique is the exponentially growing number of database accesses in terms
of SQL queries required for validation. We devised MIND2, the first approach for discovering n-ary
INDs without candidate generation. MIND2 is based on a new mathematical framework developed
in this thesis for computing the maximum INDs from which all other n-ary INDs are derivable. The
experiments showed that MIND2 is significantly more scalable and effective than hypergraph-based
algorithms.

Zusammenfassung

Viele Anwendungen produzieren mit schnellem Tempo große Datenmengen. Die Profilierung solcher
Datenmengen nach ihren Metadaten ist unabdingbar für ihre effektive Verwaltung und ihre Analyse.
Metadaten fassen technische Eigenschaften einer Datenmenge zusammen, welche von einfachen
Statistiken bis komplexe und Datenabhängigkeiten beschreibende Strukturen umfassen. Eine Form
solcher Abhängigkeiten sind Inklusionsabhängigkeiten (INDs), die Teilmengenbeziehungen zwis-
chen Attributen der Datenmengen ausdrücken. Dies macht INDs wichtig für viele Anwendungen
wie Datenintegration, Anfragenoptimierung, Schemaentwurf und Integritätsprüfung. Somit ist die
Entdeckung von INDs in unbekannten Datenmengen eine zentrale Aufgabe der Datenprofilierung.

Ich entwickelte einen neuen Algorithmus namens S-INDD++ für die IND-Entdeckung in großen
Datenmengen. S-INDD++ beseitigt die Defizite existierender Algorithmen für die IND-Entdeckung
und somit ist er performanter. S-INDD++ berechnet INDs sehr effizient basierend auf einem neuen
Clustering der Attribute. S-INDD++ wendet auch eine neue Partitionierungsmethode an, die das Verw-
erfen einer großen Anzahl von Kandidaten in früheren Phasen des Entdeckungsprozesses ermöglicht.
Außerdem setzt S-INDD++ nicht voraus, dass eine Datenpartition komplett in den Hauptspeicher
passen muss. S-INDD++ reduziert die Laufzeit der IND-Entdeckung um bis 50 %.

Keiner der IND-Entdeckungsalgorithmen ist geeignet für die Anwendung auf dynamischen Daten.
Zu diesem Zweck entwickelte ich das erste Verfahren für das inkrementelle Update von INDs in
häufig geänderten Daten. Ich erreichte dies bei der Reduzierung des Problems des inkrementellen
Updates von INDs auf dem inkrementellen Update des Attribute-Clustering, von dem INDs effizient
ableitbar sind. Ich realisierte das Update der Cluster beim Entwurf von neuen Operationen, die auf
den Clustern nach jedem Update der Daten angewendet werden. Das inkrementelle Update von INDs
reduziert die Zeit der statischen IND-Entdeckung um bis 99,999 %.

Alle vorhandenen Algorithmen für die n-ary-IND-Entdeckung basieren auf dem Prinzip der
Kandidatengenerierung. Der Hauptnachteil dieser Methode ist die exponentiell wachsende Anzahl
der SQL-Anfragen, die für die Validierung der Kandidaten nötig sind. Zu diesem Zweck entwickelte
ich MIND2, den ersten Algorithmus für n-ary-IND-Entdeckung ohne Kandidatengenerierung. MIND2

basiert auf einem neuen mathematischen Framework für die Berechnung der maximalen INDs, von
denen alle anderen n-ary-INDs ableitbar sind. Die Experimente zeigten, dass MIND2 wesentlich
skalierbarer und leistungsfähiger ist als die auf Hypergraphen basierenden Algorithmen.

Contents

1 Introduction and Background 1
1.1 Data profiling . 1
1.2 Data profiling and data mining . 2
1.3 Basic notions of the relational data model . 3
1.4 Data dependencies . 4
1.5 Inclusion dependency . 6
1.6 Time complexity of inclusion dependency discovery 9
1.7 Logical implication of inclusion dependencies . 11
1.8 Research questions and contributions . 11

1.8.1 Discovering n-ary inclusion dependencies 12
1.8.2 Discovering unary inclusion dependencies 14
1.8.3 Incrementally updating inclusion dependencies 15

2 Improving the Efficiency of Inclusion Dependencies Discovery 17
2.1 Problem statement . 17
2.2 Attribute clustering . 19
2.3 Attribute clustering and data partitioning . 24
2.4 S-INDD++ . 29

2.4.1 Overall workflow . 29
2.4.2 Computing the partitions . 31
2.4.3 Postprocessing of a partition . 34
2.4.4 Generating the clusters . 35

2.5 Experimental evaluation . 39
2.5.1 Setup . 39
2.5.2 The effectiveness of the attribute clustering 41
2.5.3 Evaluation of the partitioning strategy . 43
2.5.4 Evaluation of the performance . 46
2.5.5 Evaluation of the scalability in the number of attributes 49

2.6 Related work . 49
2.7 Conclusion and future work . 51

x Contents

3 Incrementally Updating Inclusion Dependencies 53
3.1 Problem statement . 53
3.2 Use cases for incrementally updating INDs . 55

3.2.1 Query optimization . 55
3.2.2 Schema update and data linkage . 56
3.2.3 Data integration . 56

3.3 Workflow overview . 57
3.4 Attribute clustering operations . 59

3.4.1 Merge operator . 59
3.4.2 Extract operator . 60

3.5 Algorithms . 62
3.5.1 Data structures . 62
3.5.2 Handling insertion . 63
3.5.3 Handling deletion . 67
3.5.4 Performance analysis . 69
3.5.5 Initializing the data structures . 70

3.6 Incrementally updating approximate inclusion dependencies 74
3.7 Scaling out the incremental discovery of INDs . 77
3.8 Experimental evaluation . 78

3.8.1 Setup . 79
3.8.2 Evaluation of the performance . 80
3.8.3 Evaluation of cache strategies . 82
3.8.4 Comparing with the static discovery . 82
3.8.5 Scaling the number of attributes . 85
3.8.6 Scaling the number of tuples . 85

3.9 Related work . 87
3.10 Conclusion and future work . 87

4 Discovering Maximum Inclusion Dependencies without Candidate Generation 89
4.1 Problem statement . 89
4.2 Maximum inclusion dependency . 91
4.3 Principles of MIND2 . 92

4.3.1 Principle 1 . 92
4.3.2 Principle 2 . 95
4.3.3 Principle 3 . 95

4.4 Mind2 . 97
4.4.1 Overall workflow . 97
4.4.2 Generating unary IND Coordinates . 98
4.4.3 Computing maximum INDs between R and S 100

Contents xi

4.4.4 Computing maximum INDs between σIDR=i(R) and S 103
4.5 Experimental evaluation . 103

4.5.1 Setup . 103
4.5.2 Evaluation of the performance . 104

4.6 Related work . 106
4.7 Conclusion and future work . 107

5 Conclusion 109

Bibliography 113

Chapter 1

Introduction and Background

1.1 Data profiling

In the Big Data era, many applications produce, collect, store, and process ever-growing amounts of
data at a fast rate. For instance, Reinsel et al. [2017] have reported that by 2025 the global amount
of data will grow to 163 zettabytes (a trillion gigabytes)–it is 10 times the 16.1 zettabytes of data
produced in 2016. Such volumes of data come from a variety of sources and in different formats; it
can be outdated, undocumented, incomplete, and faulty. Consequently, data scientists initially need to
develop a basic understanding of the structure of every received dataset to effectively store, query, and
manipulate it.

The activities that systematically extract knowledge of the structure and properties of a dataset
are called data profiling, while the gained knowledge is referred to as metadata. Metadata can
help to accomplish many data management tasks including data integration, data cleaning, data
normalization, query optimization, schema reverse engineering, and many others. These tasks are not
only mission-critical, but also very complex [Abedjan et al., 2015; Naumann, 2013].

Metadata can be divided into two categories: data synopses and data dependencies. The first
category, data synopses, refers to the traditional profiling tasks like inferring the data types of database
attributes, counting the number of their distinct values, estimating the distribution of values in certain
attributes, calculation the correlation of attributes, or inferring patterns to describe textual attributes.
The second category, data dependencies, concentrates on discovering related attributes as well as
bearing open research problems, such as incremental dependency discovery.

This thesis deals with the discovery of inclusion dependencies in unknown datasets–this task is at
the core of any data profiling effort [Abedjan et al., 2015; Naumann, 2013]. Inclusion dependency
is introduced by Section 1.5, while Section 1.6 shows the time complexity of inclusion dependency
discovery. Section 1.7 formulates the logical implication of inclusion dependencies. These sections
constitute the basis of Section 1.8 that discusses and formulates the research questions addressed in
this thesis.

2 Introduction and Background

The other remaining sections are organized as follows: Section 1.2 reflects the discussion on the
difference between data profiling and data mining as found in the related work. Section 1.3 reviews
the basic notions of the relational data model. An overview of a range of other data dependency types
is given in Section 1.4.

1.2 Data profiling and data mining

Data profiling and data mining are closely related approaches to data analysis. A well-defined and
accepted difference between data mining and data profiling does not exist [Abedjan et al., 2015].

Rahm and Do [2000], however, distinguish data profiling from data mining as follows:

“Data profiling focuses on the instance analysis of individual attributes. It derives infor-
mation, such as the data type, length, value range, discrete values and their frequency
variance, uniqueness, occurrence of null values, typical string patterns (e.g., for phone
numbers), etc., providing an exact view of various quality aspects of the attributes. [...]
Data mining helps discover specific data patterns in large data sets, e.g., relationships
holding between several attributes. This is the focus of so-called descriptive data min-
ing models including clustering, summarization, association discovery and sequence
discovery.”

Thus, Rahm and Do [2000] distinguish data profiling from data mining by the number of attributes
that are investigated. While this distinction is well-defined, there are, according to Abedjan et al.
[2015], several tasks that belong to data profiling, such as inclusion dependencies discovery or
functional dependencies discovery, even if they detect relationships between multiple attributes.

Naumann [2013] also characterizes the differences between the two fields as follows:

“Data Profiling gathers technical metadata to support data management, while data
mining and data analytics discovers non-obvious results to support business management.
In this way, data profiling results are information about columns and columns sets, while
data mining results are information about rows or rows sets (clustering, summarization,
association rules, etc.).”

Thus, Naumann [2013] formulates a different distinction along two criteria: (i) distinction by the
object of analysis (instance versus schema or columns versus rows) and (ii) distinction by the goal of
the analysis (description of the data versus new insights beyond the data).

Abedjan et al. [2015], however, have discussed a subset of statistical methods and data mining
approaches, such as correlation and association rules, clustering and outliers detections and summaries
and sketches, that can be applied to unknown datasets to generate metadata and therefore serves the
purpose of data profiling.

1.3 Basic notions of the relational data model 3

1.3 Basic notions of the relational data model

To formulate our statements and definitions in this thesis, we review the basic notions of the relational
data model introduced by Codd [1970]. Our review is based on Maier [1983]. Note that even after
nearly five decades of its introduction, the relational data model still forms the core of most widely
used database management systems [DB-ENGINES, 2019].

Let A be a non-empty set of attributes. Each attribute A ∈A has a corresponding domain Dom(A),
which defines the set of all its possible values. The domains are non-empty sets, finite or countably
infinite. A relational schema R is a finite non-empty subset of A. Each attribute A ∈ R represents a
property of the entities described by the schema R. To have a consistent presentation of the relational
schema and its data, we assign an order to its attributes. Hence, we refer to the relation schema
R = {A1,A2, . . . ,An} as R[A1,A2, . . . ,An], where [A1,A2, . . . ,An] is a sequence that defines the order
of the attributes of R.

A tuple (or a record) t over R is a mapping from R to ∪A∈RDom(A) with the restriction that t(A)
must be in Dom(A). We refer to t(A) ∈ Dom(A) as t[A]. A relation (or instance) r over a relation
schema R is a finite set of tuples over R. Since we consider the attributes of R to be ordered as
[A1,A2, . . . ,An], a relation r over R can also be defined as a finite subset of Dom(A1)×·· ·×Dom(An).
Notice that ordering the attributes of R adds nothing to the information content of any relation over R.

Let R be a relation schema and let r be a relation over R. For an attribute A in R and for an element
a in Dom(A), we refer to the set {t ∈ r | t[A] = a} as σA=a(r). That is, σA=a(r) is the selection of the
subset of tuples of r with the value a of the specified attribute A. The projection of a tuple t ∈ r onto
X ⊆ R is a tuple t ′ over X defined as t ′[A] = t[A] for each A ∈ X . We denote this projection with t[X].
The projection of r onto X ⊆ R, written πX(r), is the set πX(r) = {t[X] | t ∈ r}.

A relational database schema R over A is a collection of relation schemas {R1,R2, . . . ,Rp}, where
Ri ⊆ A for each i ∈ {1, . . . , p} and A = ∪Ri∈R. A relational database D over the database schema R is
a collection of relations {r1,r2, . . . ,rp} in such a way that for each relation schema R in R there is a
relation r over R in D.

To simplify the formulation in this thesis, we assume without loss of generality that attribute
names are unique across all relational schemas. That is,

∀R,S ∈ R : R∩S = /0 (1.1)

We also define the sets VA (A ∈ A) and V to ease the notation. For an attribute A, the set VA is the
values of A that occurs in the relation of the relational schema in which A occurs. That is,

VA = {v ∈ Dom(A) | ∃R ∈ R : A ∈ R∧ v ∈ π{A}(r)} (1.2)

4 Introduction and Background

The set V is then the set of all values of all attributes that occur in D. That is,

V =
⋃

Ri∈R
(
⋃

A∈Ri

VA) (1.3)

1.4 Data dependencies

A dependency is a logical statement that describes a relationship among attributes of a database. If the
statement is true according to a certain instance of the database, then we say that the dependency is
satisfied by the database. That is, a dependency formulates a property of a specific database instance–it
is considered as a model for the logical statement defining the dependency [Gyssens, 2009].

Dependencies provide a formal mechanism to express properties expected from (or detected in)
the database. If the database is known to satisfy a set of dependencies, this set can be used to (i)
improve schema design; (ii) protect the data by preventing certain erroneous updates; and (iii) improve
query performance [Abiteboul et al., 1995].

Among the most important dependency types are functional dependencies (FDs) and inclusion
dependencies (INDs) [Gyssens, 2009].

Inclusion dependencies (INDs) generalize the notions of referential integrity and foreign keys
presented by Codd [1979]. An inclusion dependency states that all tuples of some attribute sequence
in one relation are contained in the tuples of some other attribute sequence in the same or in a different
relation [Casanova et al., 1984]. Section 1.5 deals with the definition of INDs in detail.

Functional dependencies (FDs) generalize the notions of keys and entity integrity [Codd, 1979].
A relation satisfies a functional dependency X → Y (X and Y are subsets of attributes) if the values
of a tuple on the set X uniquely determine the values of the tuple on the set Y . The presence of a
functional dependency X → Y allows a lossless decomposition of the relation into its projections onto
X ∪Y and X ∪Y to eliminate redundancy–this enables more efficient representation of the relation
and avoids update anomalies [Abiteboul et al., 1995]. Approaches for discovering FDs have been
developed by Huhtala et al. [1999]; Papenbrock and Naumann [2016]; Yao and Hamilton [2008].

The existence of an FD X → Y is a sufficient condition for the lossless decomposition of the
relation onto X ∪Y and X ∪Y , but not a necessary one. That led researchers to introduce the
multivalued dependency (MVD): A relation satisfies a MVD X ↠ Y if and only if this relation
decomposes losslessly into its projections onto X ∪Y and X ∪Y [Maier, 1983]. Discovery algorithms
for MVDs have been published by Flach and Savnik [1999]; Savnik and Flach [2000].

A relation, however, can have a lossless decomposition onto three or more subsets of its attributes,
but can not have such decomposition onto any two subsets of its attributes. That led to introduce the
join dependency: A relation satisfies a join dependency X1 ▷◁ X2 ▷◁ . . . ▷◁ Xn if this relation decomposes
losslessly onto X1,X2, . . . ,Xn [Maier, 1983].

A generalization of MVDs is full hierarchical dependencies (FHDs): A relation satisfies a FHD
precisely if it decomposes losslessly into at least tow of its projections [Hartmann and Link, 2007].
Extensions of MVDs have been found useful for various design problems in advanced data models,

1.4 Data dependencies 5

such as the nested relational data model [Fischer et al., 1985] and data models that support nested
lists [Hartmann and Link, 2004].

From a data cleaning standpoint, dependencies are used to repair and query inconsistent data.
Moreover, they have been revisited and extended to capture more errors in real-world data [Fan, 2008].

In this regard, functional dependencies have been generalized to differential dependencies [Song
and Chen, 2011]. A differential dependency has the form φL[X]→ φR[Y], where φL[X] and φRY define
constraints on distances over values of attributes X and values of attributes Y , respectively. It states
that for any two tuples, if their value differences on X , measured by a certain distance metric, satisfy
the distance constraints φL[X], then their value differences on Y satisfy also the constraints φR[Y].
Specializations of differential dependencies are matching dependencies [Fan et al., 2009] and metric
functional dependencies [Koudas et al., 2009]. Both are also an extension of functional dependencies.

Dependencies can be extended by relaxing them. The popular types of relaxed dependencies
are partial and conditional dependencies. Caruccio et al. [2016] consider also the value distance
constraints defined for differential, matching, and metric functional dependencies as relaxations of
functional dependencies.

A partial dependency is a dependency that is satisfied by only a subset of the tuples, e.g., for 98%
of the tuples. Partial dependencies are useful for data cleaning: Since they are valid for almost all
tuples, they would probably be valid for all tuples if the data was clean. Thus, violating tuples can be
identified and cleaned. An algorithm for discovering partial FDs has been suggested by Huhtala et al.
[1999]. DeMarchi et al. [2009] have presented a method for discovering partial INDs. The previous
two works do not make an explicit difference between the partial dependencies and the approximate
discovery of dependencies. As approximate approaches often use sampling or other summarizing
techniques, the dependencies discovered by them might be incomplete or might contain false positive
dependencies (i.e., dependencies that are not satisfied in the dataset). Examples for approximate
discovery of FDs are Ilyas et al. [2004]; Kivinen and Mannila [1995]. For approximate discovery
of INDs, Kruse et al. [2017] have presented an approach that finds a superset of valid INDs–it may
contain false positives (invalid INDs).

A conditional dependency is a partial dependency extended with conditions that semantically
characterize the tuples for which the partial dependency holds. For instance, let X → Y be an FD
satisfied by a subset r′ of a relation r. Then, the conditions in this context are a relation Tp over X ∪Y
defined as follows: For each tuple tp ∈ Tp and for each A ∈ X ∪Y , tp[A] is either a value in Dom(A)
or a wildcard for some value in Dom(A). The relation Tp is called pattern tableau. The conditional
FD X → Y with the conditions Tp is then referred to as (X → Y,Tp). The relation r satisfies the
conditional FD (X → Y,Tp) if for each two tuples t1, t2 ∈ r′ ⊆ r (r′ satisfies the FD X → Y), and for
each pattern tp ∈ Tp, if t1[X] and t2[X] match the pattern tp[X], then t1[Y] and t2[Y] must match the
pattern tp[Y] [Bohannon et al., 2007]. Conditional FDs (CFDs) are introduced by Maher [1997],
while conditional inclusion dependencies (CINDs) are proposed by Bravo et al. [2007]. Bauckmann
et al. [2012] extended the definition of CINDs to covering and completeness conditions and applied
their approach to Wikipedia and DBpedia data. Based on the approach of Bauckmann et al. [2012],

6 Introduction and Background

Kruse et al. [2016] developed a distributed system to discover CINDs in RDF data. The discovery of
conditional dependencies is harder than the discovery of exact and partial dependencies as identifying
the conditions is hard. In this regard, Golab et al. [2008] have shown that the problem of generating
the optimal pattern tableau for a given FD is NP-complete.

Order dependencies (ODs) introduced by Ginsburg and Hull [1983] are another class of depen-
dencies. For instance, an order dependency between two attributes A,B of a relation r (A ̸= B) exists
if sorting r on A implies sorting it on B. An algorithm for discovering ODs has been published
by Szlichta et al. [2017]. The concept of ODs is extended by Golab et al. [2009] to sequential
dependencies (SDs) and to conditional sequential dependencies (CSDs). For a given interval g, a SD
A→g B states that if the tuples are sorted on A, the distance between any two consecutive values of B
must be within the interval g. For a given SD, Golab et al. [2009] have proposed an algorithm for
discovering conditions that identify subsets of A’s values for which the given SD is satisfied.

1.5 Inclusion dependency

An inclusion dependency (IND) states that all tuples of some attribute sequence in one relation
are contained in the tuples of some other attribute sequence in the same or in a different relation.
This means that inclusion dependencies (INDs) generalize the notions of referential integrity and
foreign keys. This makes INDs important for many applications, such as data integration [Miller
et al., 2001], integrity checking [Casanova et al., 1988], query optimization [Gryz, 1998], or schema
redesign [Levene and Vincent, 2000].

The discovery of INDs in unknown datasets is required to identify foreign-primary key relation-
ships, which are a necessity for suggesting join paths, data linkage, and data normalization [Rostin
et al., 2009; Zhang et al., 2010].

As INDs express subset-relationships between relations, they are important indicators for redun-
dancies between data sources. The problem of data redundancy arises from those databases that have
been independently developed and populated. Consequently, any data integration effort has to deal
with such kind of redundancy [Schmitt and Saake, 2005].

With the help of INDs, we can compare data between the relations of the same or different data
sources, thereby determining which columns contain overlapping or identical value sets and which
are redundant and can be eliminated. Moreover, INDs also help to identify attributes containing
the same data but with different names (synonyms) and those having the same name but different
semantic (homonyms) [Evoke Software, 2000]. Therefore, the discovery of INDs is an important task
for data-integration projects [Bauckmann, 2013; Koeller, 2002; Miller et al., 2001].

The next part of this section introduces the inclusion dependency formally, and then formulates
the notations that help us to formulate our statements, definitions, and algorithms.

Definition 1.1. (Inclusion dependency) Let R and S be two relation schemas, which are not necessarily
distinct. For n ≥ 1, let X be a sequence of n distinct attributes of R and let Y be a sequence of n

1.5 Inclusion dependency 7

distinct attributes of S. An inclusion dependency (IND) over R and S is an assertion of the form
R[X] ⊆ S[Y]. Let r and s be two instances of R and S, respectively. An IND R[X] ⊆ S[Y] is valid
according to r and s if and only if

(∀t ∈ r)(∃t ′ ∈ s) : t[X] = t ′[Y]

The size or arity of an inclusion dependency R[X] ⊆ S[Y] is defined by n = |X | = |Y |. We call
an IND with n = 1 a unary IND (uIND) and an IND with n > 1 a n-ary IND. An IND R[X]⊆ S[Y]
is trivial if R = S and X = Y . When the right-hand side of an IND R[X]⊆ S[Y] (i.e., Y) confirms a
primary key for S, the inclusion dependency is key-based. In this case, the left-hand side (i.e., X) is a
foreign key in R.

An inclusion dependency R[X]⊆ S[X] is merely a statement about two relational schemas that
may be valid (true) or invalid (false). A valid IND R[X]⊆ S[X] describes the fact that there are two
instances r of R and s of S such that the projection of r onto X forms a subset of the projection of s
onto Y . Note that an IND is defined over two sequences of attributes, not sets, since an IND is not
invariant under permutation of the attributes of only one side.

Now, we define some notations that will accompany us throughout the thesis. An inclusion
dependency R[X]⊆ S[Y] is called an IND over a database schema R if both R and S in R. We refer to
the set of all INDs over R as ΣR, or simply as Σ if R is understood. That is,

Σ = {σ | ∃R,S ∈ R : σ = R[X]⊆ S[Y]} (1.4)

For two relational schemas R,S ∈ R, the set

ΣR→S = {σ ∈ Σ | σ = R[X]⊆ S[Y]} (1.5)

denotes all INDs R[X]⊆ S[Y] over R,S. Notice that ΣR→S ⊆ Σ.
An IND R[X]⊆ S[Y] over R is satisfied in a database D over R if and only if it is valid according

to the instances of R and S in D. We refer to the set of all unary INDs over R that are satisfied in D
over R as ID, or simply as I if D is understood. That is,

I = {σ ∈ Σ | σ is unary and valid in D} (1.6)

According to Equations 1.1 and 1.2, we can reformulate I as follows:

I = {A⊆ B | (∃R ∈ R)(∃S ∈ R) : A ∈ R∧B ∈ S∧VA ⊆ VB} (1.7)

For two relations r,s ∈ D over R,S ∈ R, the set of all valid uINDs between R and S according to r,s is
denoted with Ir→s. That is,

Ir→s = {A⊆ B | A ∈ R∧B ∈ S∧VA ⊆ VB} (1.8)

8 Introduction and Background

Note that Ir→s ⊆ I. For R ∈ R and A ∈ R, the set of all attributes each of whose value set contains the
value set of A is denoted with IA. That is,

IA = {B | ∃S ∈ R : B ∈ S∧VA ⊆ VB} (1.9)

We refer to the set of all n-ary INDs satisfied in D over R as ΣD. That is,

ΣD = {σ ∈ Σ | σ is n-ary and valid in D} (1.10)

Notice that ID ∩ΣD = /0. For two relations r,s ∈ D over R,S ∈ R, the set of all n-ary R[X] ⊆ S[Y]
(n > 1) that are valid according to r and s is denoted with Σr→s. That is,

Σr→s = {σ ∈ ΣR→S | σ is n-ary and valid in {r,s}} (1.11)

Notice that Σr→s ⊆ ΣD.

Example 1.1. To illustrate some sets defined in this section, we consider the database presented in
Figure 1.1. We denote the instance of MOVIES with movies and the instance of MY_MOVIES with
my_movies.

The set of all valid uINDs between MY_MOVIES and MOVIES is

Imy_movies→movies = {Name⊆ Title,Gerne⊆ Style}

The set of all valid uINDs between MOVIES and MY_MOVIES is

Imovies→my_movies = {Style⊆ Gerne}

The set of all valid uINDs in the entire database is

I = Imy_movies→movies∪ Imovies→my_movies

The set of all valid n-ary INDs between MY_MOVIES and MOVIES is

Σmy_movies→movies ={MY_MOVIES[Name,Gerne]⊆MOVIES[Title,Style]

MY_MOVIES[Gerne,Name]⊆MOVIES[Style,Title]}

Notice that neither MY_MOVIES[Gerne,Name]⊆MOVIES[Title,Style] nor MY_MOVIES[Name,Gerne]⊆
MOVIES[Style,Title] are in Σmy_movies→movies since they are not valid. But both are in ΣMY_MOVIES→MOVIES.
The set of all valid n-ary INDs between MOVIES and MY_MOVIES is

Σmovies→my_movies = /0

1.6 Time complexity of inclusion dependency discovery 9

MOVIES

Title Style Director Year

Dune Science-Fiction David Lynch 1984
Titanic Drama James Cameron 1997
Titanic Drama Jean Negulesco 1953
Dr. Strangelove Satire Stanly Kubrick 1963
A.I. Science-Fiction Steven Spielberg 2001
Shrek Animation Andrew Adamson 2001
2001-A Space Odyssey Science-Fiction Stanly Kubrick 1968

MY_MOVIES

Name Genre

Dune Science-Fiction
Titanic Drama
Dr. Strangelove Satire
A.I. Science-Fiction
Shrek Animation

Figure 1.1 Movies database (MDB) adopted from Koeller [2002]

The set of all valid n-ary in the dataset is

ΣMDB = Σmy_movies→movies∪Σmovies→my_movies

1.6 Time complexity of inclusion dependency discovery

Kantola et al. [1992] have shown that it is NP-complete to decide whether a n-ary IND R[X]⊆ S[Y] is
valid, where X contains all attributes of R. To proof that, they defined the following decision problem:

FULL IND EXISTENCE: Let D = {r,s} be a database over the relational schemata R = {R,S},
and denote by X the sequence consisting of the attributes of R (|R|> 1) in some order. Decide whether
there exists a sequence Y consisting of disjoint attributes of S in some order such that the dependency
R[X]⊆ S[Y] is satisfied in D.

After showing that FULL IND EXISTENCE is in NP, they proofed that the NP-complete SUB-
GRAPH ISOMORPHISM problem is reducible to FULL IND EXISTENCE. SUBGRAPH ISOMOR-
PHISM is defined as follows:

10 Introduction and Background

SUBGRAPH ISOMORPHISM: Given graphs G = (V,E) and H = (V ′,E ′), decide whether H
contains a subgraph isomorphic to G, that is, whether there is an injective mapping g : V →V ′ such
that for all v,u ∈V with (v,u) ∈ E we have (g(v),g(u)) ∈ E ′.

The reduction of the SUBGRAPH ISOMORPHISM problem to the FULL IND EXISTENCE
problem is formulated as follows: The relation r corresponding to the graph G has as schema R the
set V , and it contains a tuple te for each e = (v,u) ∈ E. The tuple te is defined by

te[v] = te[u] = 1

te[w] = 0 for w ∈ E \{u,v}

The relation s corresponding to the graph H is contracted in the same way: The schema S consists of
the elements of V ′, and s has one tuple for each edge in E ′.

Kantola et al. [1992] mentioned that H contains a subgraph isomorphic to G if and only if
R[X]⊆ S[Y] is valid in D = {r,s} for some sequence Y of disjoint attributes of S.

In addition to the computational complexity classes of the classical complexity theory [Papadim-
itriou, 1994], there exist the parameterized complexity classes W[t] (t ∈N) that classify computational
problems according to their inherent difficulty with respect to multiple parameters of the input or
output. The complexity of a parameterized problem is then measured as a function in those parameters.
The W hierarchy is defined as W[t1] ⊆W[t2] for all t1 < t2 [Cygan et al., 2015].

The class FPT (= W[0]) contains the problems that can be solved by algorithms that are exponential
only in the size of a fixed parameter while polynomial in the size of the input. Such an algorithm
is called a fixed-parameter tractable (FPT), because the problem can be solved efficiently for small
values of the fixed parameter. That is, a problem is in FPT if it can be solved in O(f (k)×nc) time,
where n is the problem size, k is a fixed parameter, f is a computable function, and c is a constant.
For instance, the vertex cover problem can be solved by a FPT-algorithm with the size of the solution
as the fixed parameter [Chen et al., 2006].

Bläsius et al. [2016] have proven that the n-ary IND discovery problem is W[3]-complete, which
means that under the assumption W[0] ̸= W[3] there is no FPT-algorithm for the n-ary IND discovery.
Being W[3]-complete makes the n-ary IND discovery one of the hardest natural problems known
today. Another W[t]-complete natural problem with t ≥ 3 is related to supply chain problem [Chen
and Zhang, 2006].

Furthermore, Kantola et al. [1992] also stated that the set of all valid uINDs in a given dataset D
over a database relational schema R, i.e., the set I defined in Equation 1.7, can be computed in time
O(n2m logm), where n = ∑R∈R |R| and m = max{|r| | r ∈ D}.

Kantola et al. [1992], however, have not presented any algorithm for the discovery of inclusion
dependencies.

1.7 Logical implication of inclusion dependencies 11

1.7 Logical implication of inclusion dependencies

Casanova et al. [1984] have defined the problem of inclusion dependency implication as follows:

Definition 1.2. (Inclusion dependency implication) Let Σ′ ⊆ Σ be a set of INDs over a database
schema R, and let σ ∈ Σ be a single IND over R. We say that Σ′ logically implies σ or that σ

is a logical consequence of Σ′ if and only if every database D over R that satisfies each inclusion
dependency in Σ′, satisfies σ .

We then write Σ′ |=R σ , or if R is understood, simply Σ′ |= σ . That is, Σ′ |= σ if and only if there
is no database D over R such that D satisfies every IND in Σ′, and such that D does not satisfies σ .

To decide Σ′ |= σ , Casanova et al. [1984] have introduced the following inference rules:

1. Reflexivity: If X is a sequence of distinct attributes of a relation schema R, then

/0 |= R[X]⊆ R[X]

2. Projection and permutation: If [A1, . . . ,Am] is an attribute sequence of relation schema R1 and if
[B1, . . . ,Bm] is an attribute sequence of a relation schema R2, then

{R1[A1, . . . ,Am]⊆ R2[B1, . . . ,Bm]} |= R1[Ai1 , . . . ,Aik]⊆ R2[Bi1 , . . . ,Bik]

for each sequence i1, . . . , ik of distinct integers from {1, . . . ,m} with 1≤ k ≤ m.

3. Transitivity: For the relation schemata R1, R2, R3, we have

{R1[X]⊆ R2[Y],R2[Y]⊆ R3[Z]} |= R1[X]⊆ R3[Z]

We say that σ is derivable from Σ′ if there is a finite sequence of INDs (over R), where (1) each
IND in the sequence is either a member of Σ′, or else follows from previous INDs in the sequence by
an application of the above inference rules, and (2) σ is the last IND in the sequence. We write Σ′ ⊢ σ

to mean that σ is derivable from Σ′.
Casanova et al. [1984] have shown that Σ′ |= σ and Σ′ ⊢ σ are equivalent, which means that if

Σ′ ⊢ σ , then Σ′ |= σ , and that if Σ′ |= σ , then Σ′ ⊢ σ . In other words, the previous inference rules
are sound and complete. They have also shown that the decision whether Σ′ ⊢ σ is decidable and
PSPACE-complete.

1.8 Research questions and contributions

For a given dataset D over a database schema R, the enumeration of all valid INDs in D is called
the inclusion dependency discovery in D, which is divided into two tasks: the unary INDs discovery
(i.e., the computation of the set I defined in Equation 1.7) and the n-ary INDs discovery (i.e., the
computation of the set ΣD defined in Equation 1.10).

12 Introduction and Background

1.8.1 Discovering n-ary inclusion dependencies

In principle, computing the set ΣD involves the computation of the set Σr→s for each two relations
r,s ∈ D (see Equation 1.11), meaning that

ΣD =
⋃

r,s∈D
Σr→s (1.12)

The computation of the set Σr→s, as we have seen in Section 1.6, is NP-complete. Therefore, the core
task of discovering n-ary INDs in a given dataset D is to design algorithms for the discovery of the
n-ary INDs between two relations r,s ∈ D.

To characterize the computation of the set Σr→s, we introduce the partial order ⪯ over the set
ΣR→S adopted from Mannila and Toivonen [1997] as follows:

Definition 1.3. (The specialization/generalization relation ⪯) For α,β ∈ ΣR→S, we say that α is
more general than β , denoted by α ⪯ β , if and only if β logically implies α . That is,

∀α,β ∈ ΣR→S : α ⪯ β ⇔{β} |= α

We also say that β is more specific than α .

Based on the projection and permutation inference rule presented in Section 1.7, the relation ⪯
has the following properties:

1. For each two subsequences W ⊆ X and Z ⊆ Y with |W |= |Z|> 0, we have

R[W]⊆ S[Z]⪯ R[X]⊆ S[Y] (1.13)

2. If X = [A1, . . . ,An] and Y = [B1, . . . ,Bn], then for each sequence (permutation) i1, . . . , in of n
distinct integers from {1, . . . ,n} we have

R[Ai1 , . . . ,Ain]⊆ S[Bi1 , . . . ,Bin]⪯ R[X]⊆ S[Y] (1.14)

Since the inference rules of inclusion dependencies are sound and complete, we conclude from
the first property (i.e., Relation 1.13) that if an IND σ is valid in a given dataset D over R, then all
more general INDs than σ are valid in D. It means that if an IND is invalid in a dataset D, then
there is no specialization of it in D. This rule, referred to as the principle of candidate generation,
is the basis of all existing algorithms for discovering n-ary INDs: MIND [DeMarchi et al., 2002,
2009], ZIGZAG [DeMarchi and Petit, 2003], and FIND2 [Koeller and Rundensteiner, 2002, 2003].
The central idea is to start from the most general INDs in the corresponding dataset (i.e., the set Ir→s)
and then to generate and evaluate more and more special INDs, but not to evaluate those INDs that
can not be valid given all valid INDs obtained in earlier iterations.

1.8 Research questions and contributions 13

Algorithm 1: The generate-and-test approach for discovering n-ary INDs. This approach is
the basis of MIND, ZIGZAG, and FIND2

Input :r, s, Ir→s
Output :Σr→s

1 Σr→s← Ir→s

2 i← 0
3 Σi

cdd ← /0
4 repeat
5 i← i+1
6 Σi

cdd ←{β ∈ ΣR→S | for all α ⪯ β : α ∈ Σr→s}\
⋃

j<i Σ
j
cdd

7 Σr→s←{σ ∈ Σi
cdd | σ is valid in D}∪Σr→s

8 until Σi
cdd = /0

9 Σr→s← Σr→s \ Ir→s

Algorithm 1 formulates the principle of candidate generation for detecting all valid n-ary INDs
between two relation r and s in a given dataset D over R (i.e., computing the set Σr→s defined in
Equation 1.11). It works iteratively, alternating between candidate generation (Line 6) and evaluation
(Line 7) phases. In the generation phase of an iteration i, a set Σi

cdd of new candidate INDs is generated
from more general INDs. Then, each candidate is validated against the input relations {r,s}. The
set Σr→s will be updated with the those INDs in Σi

cdd that are valid in {r,s}. In the next iteration
i + 1, candidate INDs in Σ

i+1
cdd are generated using the validated INDs in the previous iterations. The

algorithm terminates when no more candidates can be generated. The candidate generation is based
on applying only the first property of the relation ⪯. The application of the second property is not
needed because permutations of both sides do not lead to new INDs. Notice that the computation of
the candidate set (Line 6) does not involve the input relations r and s.

The number of the generated candidates determines the number of database queries required to
test them. For MIND, this number is always exponential in size of the largest valid IND in the input
dataset, while it is exponential for ZIGZAG and FIND2 in the worst case. The reason is that both
ZIGZAG and FIND2 differ from MIND in the concrete way of computing the candidate collection Σi

cdd

in each iteration (see Sections 4.1 and 4.6 for details).
One of the research questions addressed in this thesis is how to eliminate the exponential number

of database accesses required by each of MIND, ZIGZAG, and FIND2 for the candidate validation. We
answered this question by developing MIND2 [Shaabani and Meinel, 2016] that computes the set

Bd+(Σr→s) = {α ∈ Σr→s | ∀β ∈ ΣR→S : α ⪯ β ⇒ β ̸∈ Σr→s} (1.15)

without the generation of more general n-ary INDs than any IND in Bd+(Σr→s). This means that
MIND2 computes the set Bd+(Σr→s) without the generation of any n-ary IND σ ∈ Σr→s \Bd+(Σr→s).
Notice that based on the projection and permutations inference rule, knowing the set Bd+(Σr→s) is

14 Introduction and Background

sufficient to derive the complete set Σr→s. The set Bd+(Σr→s) has been introduced by Mannila and
Toivonen [1997], who called it the positive border of the search space.

MIND2 presented in Chapter 4 is the first algorithm for discovering n-ary INDs without candidate
generation. Thus, MIND2 eliminates the exponential number of the database accesses required by
MIND, ZIGZAG, and FIND2. MIND2 developed new characterizations of the set Bd+(Σr→s). These
characterizations are based on set operations defined on certain metadata that MIND2 generates by
accessing the database only 2 × the number of valid uINDs between r and s (i.e., 2×|Ir→s|).

1.8.2 Discovering unary inclusion dependencies

In contrast to the discovery of the set ΣD by computing the sets Σr→s with r,s ∈ D separately from
each other (see the previous subsection), the discovery of the set I (i.e., the set of all valid uINDs in D
over R) consists of computing all sets Ir→s with r,s ∈ D at once. This approach is possible because
the structure of the set I (see Equation 1.7) does not involve the relation tuples at all.

Thus, the discovery of all valid uINDs in D comprises all attribute pairs in D as uIND candidates
at once. This generality enables profiling entirely unknown data sources, even with weak schema
definitions. But this generality demands to cope with large numbers of attributes and therefore
demands to perform the validation of uIND candidates as efficiently as possible.

In this thesis, we developed S-INDD++ [Shaabani and Meinel, 2018b], an efficient and scalable
algorithm for exhaustively discovering all uINDs in large datasets. S-INDD++ presented in Chapter 2
outperforms all existing algorithms for computing the set I [Bauckmann et al., 2006; DeMarchi et al.,
2002, 2009; Papenbrock et al., 2015] by eliminating the shortcomings of them.

The development of S-INDD++ was conducted in two stages. In the first stage, we proposed
S-INDD [Shaabani and Meinel, 2015] to improve the scalability of SPIDER proposed by Bauckmann
et al. [2006], and to improve the efficiency of the algorithm proposed by DeMarchi et al. [2002, 2009]
for detecting uINDs. In this regard, we introduced the concept of the attribute clustering from which
the set I efficiently derivable; we also showed that SPIDER is a special case of S-INDD. The efficiency
of inferring the set I from the attribute clustering is achieved by the elimination of all redundant
intersection operations resulting from their inference from the inverted index applied by Bauckmann
et al. [2006]; DeMarchi et al. [2002, 2009]; Papenbrock et al. [2015].

In the second stage of S-INDD++’s development [Shaabani and Meinel, 2018b], we designed a new
partitioning strategy that helps to discard a large number of attribute candidates in early phases of the
discovery process. We also extended the concept of the attribute clustering to decide which attributes
has to be discarded based on the attribute clustering of a partition. The effectiveness of S-INDD++’s
partitioning strategy manifested itself through the reduction of the runtime of BINDER [Papenbrock
et al., 2015] by up to 50 %. Furthermore, in contrast to BINDER, S-INDD++ does not require for
processing a partition so that it fits into the main memory–an important property in the face of the
ever-growing size of today’s datasets.

1.8 Research questions and contributions 15

1.8.3 Incrementally updating inclusion dependencies

A dataset is hardly ever fixed: Analytics-oriented datasets experience periodic updates (typically
daily) by frequently appending transactional data to them, and large datasets available on the web
are updated in regular time intervals. These data changes cause the metadata to quickly become
out-of-date. Accordingly, data profiling methods should be able to efficiently handle such changes,
especially without reprocessing the entire dataset [Abedjan et al., 2015; Naumann, 2013; Saha and
Srivastava, 2014].

To this end, we developed the first approach for incrementally updating the unary inclusion
dependencies in frequently changing datasets [Shaabani and Meinel, 2017, 2018a].

This novel approach, which is presented in Chapter 3, leverages the concept of the attribute
clustering by reducing the problem of incrementally updating uINDs to incrementally update of the
clusters. The justification of this reduction is the efficiency of inferring uINDs from the attribute
clustering introduced by Shaabani and Meinel [2015]. Updating the clusters is achieved by the
development of new attribute clustering operations applied after each update of the corresponding
dataset. Updating the clusters does not need to access the dataset because of special data structures
and caches designed to efficiently support the updating process. We also identified use cases in query
optimization, schema update and recode linkage, and data integration that benefit from incremental
update of unary inclusion dependencies.

Chapter 2

Improving the Efficiency of Inclusion
Dependencies Discovery

2.1 Problem statement

The algorithm proposed by DeMarchi et al. [2002, 2009] for discovering uINDs transforms the dataset
into an inverted index, in which every value in the dataset points to the set of all attributes containing
that value. Next, the set of all uINDs is computed by intersecting all of those sets. This approach has
built the basis for later algorithms for discovering uINDs. However, it is inefficient as an attribute set
in the index can be pointed by many different values–this means that the algorithm executes a lot of
redundant intersection operations. These operations are costly if the dataset has a large number of
attributes sharing a lot of values. Additionally, building the inverted index for the entire dataset at
once does not enable the pruning the attributes that are not part of any uIND. Moreover, the inverted
index does not fit into the main memory for most real-world datasets.

SPIDER proposed by Bauckmann et al. [2006] has solved the problem of not fitting the inverted
index into the main memory. SPIDER writes the values of each attribute to a file after sorting them.
Then, it opens all files at once and starts comparing the values in the same way as the merge-sort
algorithm. The result of each comparison is a value pointing to the set of all attributes containing that
value. SPIDER then uses that set to prune the set of uIND candidates, just like DeMarchi’s algorithm.
SPIDER, however, has three drawbacks: (i) its scalability in the number of attributes is limited by the
underlying operating system because an operating system limits the number of simultaneously open
file handles; (ii) it also causes the same number of redundant intersections caused by DeMarchi’s
algorithm [DeMarchi et al., 2002, 2009]; and (iii) sorting the value sets of attributes of large relations
is rather time-consuming and useless for those attributes that are not part of any uIND.

Unlike SPIDER, BINDER presented by Papenbrock et al. [2015] does not require that the value
sets of the attributes must be sorted. BINDER divides the dataset into disjoint partitions of equal
sizes using a hash-function. Then, by processing the partitions one after the other, BINDER builds
the inverted index for each partition and derives the corresponding uINDs. If some attributes are not

18 Improving the Efficiency of Inclusion Dependencies Discovery

part of any uIND detected in a partition, then BINDER discards them from all subsequents partitions.
BINDER requires that each partition must fit into the main memory. If a partition does not fit into
the main memory, BINDER re-divides it into sub-partitions, thereby causing costly additional I/O-
operations. Another shortcoming of BINDER is the generation of uINDs from the inverted index
of each partition because of the redundant intersections. Furthermore, analyzing the experimental
evaluation of BINDER’s partitioning strategy, as reported by Figure 8 in Papenbrock et al. [2015]
leads to the following observations: (i) for about 15 % of the datasets, the partitioning strategy can
not discard any attribute; (ii) for about 40 % of the datasets, the partitioning strategy can prune some
attributes only after processing the first five partitions; and (iii) for most datasets, after discarding
some attributes from a partition of a dataset, the partitioning strategy does not discard any further
attribute from subsequent partitions of that dataset.

Contributions To eliminate the shortcomings of the uINDs discovery algorithms discussed pre-
viously, we developed S-INDD++, a novel algorithm for discovering uINDs in large datasets. In
particular, we made the following contributions:

• To eliminate the redundant intersections resulted from generating uINDs from the inverted
index, we introduced the attribute clustering concept and showed how to efficiently infer the
uINDs from the clusters.

• To compute the attribute clustering, we developed the algorithm S-INDD (short for Scalable
INclusion Dpendency Discovery). S-INDD solves the scalability problem of SPIDER, which
reveals itself as a special case of S-INDD.

• To eliminate the drawbacks of BINDER’s partitioning strategy, we developed a configurable
partitioning strategy that divides the dataset into disjoint subsets of different sizes to prune a
large number of attribute candidates in the early phases of the discovery process.

• Based on our partition strategy, we suggested S-INDD++ that, in contrast to BINDER, does not
require fitting any partition into the main memory. Moreover, S-INDD++ reduces the sorting
time needed by S-INDD and SPIDER for useless attributes–this means those attributes that can
not be part of any non-trivial IND.

• S-INDD++ applies S-INDD to generate the attribute clustering in each partition of the dataset.
Therefore, we showed how to compute the attribute clustering of the entire dataset from the
clusters of its partitions and how to prune useless attributes based on the clusters of a partition.

• We performed exhaustive experimental evaluations of our approaches by applying them to large
datasets with thousands attributes and more than 266 million tuples.

– We evaluated the attribute clustering concept in terms of the reduction in the intersections
needed for computing the uINDs from the inverted index. The reduction gained by
inferring the uINDs from the attribute clustering is up to 99.999 %.

2.2 Attribute clustering 19

– We compared S-INDD’s scalability in the number of attributes with that of SPIDER

by varying the number of attributes and fixing the number of tuples. For example, by
increasing the number of attributes from 6000 to 7000 attributes, SPIDER’s runtime
increases by38 %, while S-INDD’s runtime increases by only 1 %.

– To evaluate S-INDD++ partitioning strategy, we compared it with that of BINDER’s
strategy in terms of the number of attributes that each of both algorithms prunes after
processing each partition of its strategy. The conducted comparisons showed that S-
INDD++’s strategy eliminates all shortcomings of BINDER’s strategy. For example,
S-INDD++’s strategy discardes candidates from each dataset after processing only 1 % of
each of them, while BINDER’s strategy can not discard any candidate from 80 % of the
datasets after processing 30 % of each of them.

– We compared S-INDD++’s runtime with that of BINDER by applying each of both to
10 real-world datasets. In all of these experiments, S-INDD++ significantly outperforms
BINDER: S-INDD++ reduces up to 50 % of BINDER’s runtime.

– To show how reducing the time needed for completely sorting the value sets of useless
attributes improves the discovery runtime, we compared S-INDD++’s runtime with the
runtime of S-INDD. In all experiments, S-INDD++ significantly reduces the runtime of
S-INDD: S-INDD++ reduces up to 98 % of S-INDD’s runtime.

The rest of this chapter is organized as follows: Section 2.2 introduces the attribute clustering
concept and shows the computational advantage of inferring the unary INDs from the attribute
clustering over generating them from the inverted index. Section 2.3 presents our partitioning strategy
and studies the the relationships between the attribute clustering of the entire dataset and the clusters
of each of its partitions. Based on the results achieved in Section 2.2 and Section 2.3, Section 2.4 deals
with the formulation of both S-INDD++ and S-INDD and the their interaction. Moreover, Section 2.4
shows how S-INDD++ processes each partition and how to divide the dataset based on our partitioning
strategy. The results of the conducted experiments are reported by Section 2.5. A detailed overview
of the related work is given in Section 2.6. Section 2.7 concludes and discusses future works.

This chapter is based on Shaabani and Meinel [2015, 2018b]. We developed S-INDD in Shaabani
and Meinel [2015] and S-INDD++ in Shaabani and Meinel [2018b]. We defined the attribute clustering
originally in Shaabani and Meinel [2015] and extended it in Shaabani and Meinel [2017, 2018a].

2.2 Attribute clustering

Definition 2.1. (Attribute clustering)1 Let f : V→ 2A be a function with the property:

(∀v ∈ V)(¬∃A ∈ A) : (v ∈ VA∧A ̸∈ f (v)) or (v ̸∈ VA∧A ∈ f (v)) (2.1)

1See Sections 1.3 and 1.5 in Chapter 1 to recall some basic notations

20 Improving the Efficiency of Inclusion Dependencies Discovery

Table 2.1 Running example

A B C D

a a f a
b b e a
b c f c
d d f c

Figure 2.1 Attribute clustering based on the data of Table 2.1

That is, f (v) is the maximum set of attributes A ∈ A with v ∈ VA. We call the image of f :

AC = f (V) = {C⊆ A | ∃v ∈ V : f (v) = C} (2.2)

the attribute clustering over the set V. We call the function f the generator of AC.

The previous definition implies that each attribute A ∈ A must be contained in at least one cluster
and that a very value v ∈ V must belong to only one cluster.

Example 2.1. The attribute clustering of the dataset presented in Table 2.1 is

AC = {{A,B},{A,B,D},{B,D},{C}}

Figure 2.1 illustrates its generator. For example, we have

f (b) = f (d) = {A,B}= C1

Thus, attributes A and B shape the cluster C1 since both share the values {b,d} that can not be shared
by any superset of C1.

The following lemma shows the existence of the attribute clustering for any dataset, while
Lemma 2.2 states that there can be only one attribute clustering for a dataset.

Lemma 2.1. For a database instance D over a database schema R, there is always an attribute
clustering in terms of Definition 2.1.

2.2 Attribute clustering 21

Proof. We have to find a function f : V→ 2A that satisfies Property 2.1. We define f as follows:

f (v) =
⋃

A∈A∧v∈VA

{A} (2.3)

Since for every value v ∈ V there is some attribute A ∈ A whose value set VA contains v (see
Equations 1.2 and 1.3), f (v) exists for every v ∈ V.

Furthermore, the set f (v) in Equation 2.3 is the union of all attributes A with v ∈ VA, which
implies that for any attribute A ∈ A, A ∈ f (v) if v ∈ VA and A ̸∈ f (v) if v ̸∈ VA. Thus, f satisfies
Property 2.1.

Lemma 2.2. A database instance D over a database schema R can have only one attribute clustering
over the value set V.

Proof. Based on Lemma 2.1, there is an attribute clustering AC over V. We assume that there a
different attribute clustering AC′ over V. Let f be the generator of AC and let f ′ be the generator of
AC′. Based on this assumption, there is v ∈ V for which f (v) ̸= f ′(v).

That means that there is A ∈ A with v ∈ VA and for which either (A ∈ f (v)∧A ̸∈ f ′(v)) is valid
or (A ̸∈ f (v)∧A ∈ f ′(v)) is valid.

The first case means that f ′ can not be the generator of AC′. The second case means that f can
not be the generator of AC. Thus, our assumption is wrong.

The next lemma, which is a generalization of Property 1 formulated in DeMarchi et al. [2002],
states that for each two different attributes A,B, the set of A’s values is included in the set of B’s values
if and only if the intersection of all clusters containing A contains B. In other words, we have the
following inference rule: for any attribute A, the set of all attributes including A is the intersection of
all clusters containing A.

Lemma 2.3. Let AC be the attribute clustering over V. The following rule holds.

∀A,B ∈ A : VA ⊆ VB⇔ B ∈
⋂

C∈AC,A∈C
C

Proof. 1) “⇒”: Let C ∈ AC be a cluster with A ∈ C. Based on Definition 2.1, there is some v ∈ VA

with f (v) = C. According to Property 2.1, B must be in f (v) since VA ⊆ VB (i.e., v ∈ VB). Thus,
each cluster that contains A must contain B if the value set of A is included in the value set of B.

2) “⇐”: We assume VA ̸⊆ VB. That means that there is some v ∈ V with v ∈ VA and v ̸∈ VB,
meaning that f (v) contains A and can not contain B according to the definition of f . Therefore, B can
not be in ∩C∈AC∧A∈CC. Thus, our assumption is wrong.

Example 2.2. Consider Figure 2.1. We have VD ⊆ VB since

B ∈
⋂

D∈C
C = C2∩C3 = {A,B,D}∩{B,D}= {B,D}

22 Improving the Efficiency of Inclusion Dependencies Discovery

While VB ̸⊆ VD since

D ̸∈
⋂

B∈C
C = C1∩C2∩C3 = {A,B}∩{A,B,D}∩{B,D}= {B}

The next two lemmas show the computational advantage of deriving the unary INDs from the
clusters over deriving them from the inverted index applied by Bauckmann et al. [2006]; DeMarchi
et al. [2002, 2009]; Papenbrock et al. [2015].

Lemma 2.4. In the worst case, the number of intersections required to compute the set of all valid
uINDs (i.e., the set I defined by Equation 1.7 in Chapter 1) from the clusters is

(|AC|−1)×|A|

Proof. For an attribute A ∈ A, let IA be the set of all attributes whose value sets contain the value set
of A. Then, based on Lemma 2.3 we have

IA = {B ∈ A | VA ⊆ VB}=
⋂

C∈AC∧A∈C
C

The worst case occurs when each cluster C ∈ AC contains A. In this case, the number of intersections
required to calculate IA is

|AC|−1

The set I can be expressed as

I = {A⊆ B | A,B ∈ A∧B ∈ IA}

Thus, in the worst case, the number of intersections needed to derive I from the clusters is

(|AC|−1)×|A|

Notice that in the case in which AC contains only one cluster C, computing the set I does not
require any intersection operation because, in this special case, I equals the set {A⊆ B | A,B ∈ C}.

Lemma 2.5. Computing I (i.e., the set of all valid uINDs) from the inverted index results in up to

(|V|− |AC|)×|A|

redundant intersections.

Proof. For each cluster Ci (1≤ i≤ |AC|), we define the set

Qi = {v ∈ V | f (v) = Ci}

2.2 Attribute clustering 23

Since each value v ∈ V must belong to a cluster and can not have two different clusters, the sets Qi

(1≤ i≤ |AC|) have the following two properties:

V =
⋃

1≤i≤|AC|
Qi (2.4)

Qi∩Q j = /0 for i ̸= j(1≤ i, j ≤ |AC|) (2.5)

From 2.4 and 2.5, we conclude that Q1,Q2, . . . ,Q|AC| divide the set V into |AC| disjoint partitions.
Therefore, we can formulate the inverted index B defined by DeMarchi et al. [2009] as

B=
⋃

1≤i≤|AC|
(Qi×{Ci})

Let IA be the set of all attributes whose value sets contain the value set of A. Computing IA based
on Proposition 1 formulated in DeMarchi et al. [2009] is equal to computing IA from the formula

IA =
⋂

1≤i≤|AC|
(

⋂
A∈Ci∧(v,Ci)∈Bi

Ci) (2.6)

where
Bi = Qi×Ci ⊆ B

However, the intersections in each term

⋂
A∈Ci∧(v,Ci)∈Bi

Ci

of Formula 2.6 are redundant because the result of them is known –namely, the set Ci itself. The
number of these intersections is |Qi|−1. Since A might be contained in each cluster Ci (1≤ i≤ |AC|),
the total number of redundant intersections might reach

∑
1≤i≤|AC|

(|Qi|−1) = ∑
1≤i≤|AC|

|Qi|− |AC|= |V|− |AC|

Therefore, there are up to
(|V|− |AC|)×|A|

redundant intersections if we compute I from the inverted index, because computing I requires the
calculation of all IA (A ∈ A).

Notice that the computation of I from the attribute clustering depends on the number of clusters,
while computing it from the inverted index depends on the number of distinct values in the dataset.
Moreover, since the cost of an intersection operation in both approaches is O(|A|), the cost of deriving

24 Improving the Efficiency of Inclusion Dependencies Discovery

0 s1 Σi
j=1s j ≤ h(v)<

δ (v) = i+1

si+1

Σ
i+1
j=1s j S

Figure 2.2 Illustration of the partitioning function δ

the set I from the clusters is O(|AC|× |A|2), while the cost of deriving it from the inverted index is
O(|V|× |A|2).

2.3 Attribute clustering and data partitioning

In this section, our goal is to develop a technique that makes it possible to identify a large number of
useless attributes by only processing a few small subsets of the dataset. In this regard, the useless
attributes are those attributes that are not part of any valid IND in the dataset.

Dividing the dataset by a straightforward application of a hash-function results in subsets in equal
sizes, which means two issues: (i) having all subsets in equal and small sizes increases the number of
subsets, which degrades the performance because of the increase in I/O operations and (ii) having all
subsets in equal and large sizes is the opposite of our goal of discarding useless attributes as early
as possible by firstly processing a few and small parts of the data. These two design issues lead us
to introduce the partitioning function δ in Definition 2.3. Furthermore, having the dataset divided
into disjoint partitions also leads us to study (i) how to compute the attribute clustering of the entire
dataset from the clusters of its partitions (Lemma 2.6) and (ii) how to identify some useless attributes
in the entire dataset based on the attribute clustering of a partition (Lemma 2.7).

Definition 2.2. (Data partitioning) For a given n≥ 1, a partitioning of the dataset D is a collection
P = {Pi | 1≤ i≤ n} with the following properties:

1. Pi = {Vi,A | A ∈ A∧Vi,A ⊆ VA}, for each i ∈ {1, . . . ,n}.

2. ∀A,B ∈ A : Vi,A∩V j,B = /0, for each Vi,A ∈ Pi and V j,B ∈ P j with i ̸= j ∈ {1, . . . ,n}.

3. ∀A ∈ A : VA = ∪1≤i≤nVi,A

Thus, each set Pi in the collection P consists of value sets each of which is a subset of values of an
attribute. For each attribute A ∈A and according to the second and the third property in Definition 2.2,
the sets V1,A ∈ P1, . . . ,Vn,A ∈ Pn define disjoint partitions of VA. The value set of the partition Pi is
defined as

Vi =
⋃

A∈A
Vi,A (2.7)

Since the sets Vi,A (1 ≤ i ≤ n) are disjoint partitions of VA for each A ∈ A, the sets Vi (1 ≤ i ≤ n)
define also disjoint partitions of the set V (see Equations 1.2 and 1.3 in Chapter 1).

2.3 Attribute clustering and data partitioning 25

Definition 2.3. (Partitioning function) Let s1, . . . ,sn,S be n+1 (n≥ 1) positive integer numbers with
the properties:

s1 + s2 + · · ·+ sn = S (2.8)

s1 < s2 < · · ·< sn (2.9)

And let h be a hash-function that can evenly distribute the values of the set V across S buckets. We
define δ : V→{1,2, . . . ,n} as

δ (v) =

1 if h(v) ∈ [0,s1)

i+1 if h(v) ∈ [Σi
j=1s j,Σ

i+1
j=1s j)

for i = 1, . . . ,n−1 and n > 1.

(2.10)

and call it a partitioning function. We call s1, . . . ,sn the steps of δ .

Thus, our partitioning strategy is a composite of two functions. The first function is the hash-
function h, which distributes the values across S buckets. The second function is the aggregation
function δ , which aggregates the buckets according the steps si (1 ≤ i ≤ n) to create n partitions.
Notice that each interval in Equation 2.10 is open on the right. Figure 2.2 illustrates the function δ .

Now, based on the partitioning function δ , we define each set Vi,A in a partition Pi ∈ P =

{P1, . . . ,Pn} as follows:
Vi,A = {v | v ∈ VA and δ (v) = i} (2.11)

Thus, each set Vi (see Equation 2.7) contains about (100× si)/S percent of the values of V.
Figure 2.3 illustrates the properties of the data partitioning based on the partitioning function δ .
Notice that if n = 1 (s1 = S), there is no partitioning and δ maps V to V.

Example 2.3. For s1 = 1,s2 = 10,s3 = 20,s4 = 69 and S = 100, we have δ : V→{1,2,3,4} as

δ (v) =

1 if h(v) ∈ [0,1)

2 if h(v) ∈ [1,11)

3 if h(v) ∈ [11,31)

4 if h(v) ∈ [31,100)

The function δ divides V into four disjoint partitions Vi (1≤ i≤ 4), where V1 contains 1 % of V, V2

contains 10 % of V, V3 contains 20 % of V, and V4 contains 69 % of V.

The next lemma shows how to compute the clusters of the entire dataset D from the clusters of
each of its partitions.

26 Improving the Efficiency of Inclusion Dependencies Discovery

Vn,CVn,BVn,APn

|Vn| ≈ (sn/S)×|V|

Vn = Vn,A∪Vn,B∪Vn,C

VB =
⋃

1≤i≤n

Vi,BVA =
⋃

1≤i≤n

Vi,A VC =
⋃

1≤i≤n

Vi,C

∀i ̸= j : Vi∩V j = /0

V =
⋃

1≤i≤n

Vi

Vi,A Vi,B Vi,CPi

|Vi| ≈ (si/S)×|V|

Vi = Vi,A∪Vi,B∪Vi,C

V1,A V1,B V1,CP1

|V1| ≈ (s1/S)×|V|

V1 = V1,A∪V1,B∪V1,C

A B C

Figure 2.3 Properties of the data partitioning based on the partitioning function δ

2.3 Attribute clustering and data partitioning 27

Lemma 2.6. Let P = {Pi | 1≤ i≤ n} be a partitioning of D, and let ACi be the attribute clustering
over Vi (1≤ i≤ n). Then, the attribute clustering AC over V is

AC =
⋃

1≤i≤n

ACi (2.12)

Proof. Let fi : Vi→ 2A be the generator of ACi (1≤ i≤ n). Since the sets Vi are disjoint subsets of
V, we can define the function f : V→ 2A as follows:

f (v) = fi(v) if v ∈ Vi

We have to show that f satisfies Property 2.1 stated in Definition 2.1.
We assume that there is a value v and attribute A ∈ A with v ∈ VA and A ̸∈ f (v). Based on the

construction of f and on Definition 2.2, it exists i ∈ {1, . . . ,n} for which we have v ∈ Vi,A ⊆ Vi and
f (v) = fi(v). According to our assumption, we have A ̸∈ fi(v) which contradicts the fact that fi is
a generator of ACi. Thus, our assumption is wrong. In the same way, we can show that there is no
attribute A ∈ A with A ∈ f (v) and v ̸∈ VA. Thus, f satisfies Property 2.1.

Since Vi (1≤ i≤ n) are disjoint subsets of the set V, we have

AC = f (V) = {C⊆ A | ∃v ∈ V : f (v) = C}

= {C⊆ A | ∃v ∈
⋃

1≤i≤n

Vi : f (v) = C}

=
⋃

1≤i≤n

{C⊆ A | ∃v ∈ Vi : f (v) = C}

=
⋃

1≤i≤n

{C⊆ A | ∃v ∈ Vi : fi(v) = C}

=
⋃

1≤i≤n

fi(Vi)

=
⋃

1≤i≤n

ACi

Based on the clusters of a partition, the next lemma shows that if an attribute can not be part of
any IND in a partition, then this attribute can also not be part of any IND in the entire dataset D.

Lemma 2.7. If for a partition Pi ∈ P, there is an attribute A ∈ A satisfying

Ii,A = {B ∈ A | Vi,A ⊆ Vi,B}= {A} (2.13)

∀B ∈ A\{A} : A ̸∈ Ii,B = {B′ ∈ A | Vi,B ⊆ Vi,B′} (2.14)

then, there is no B ∈ A\{A} such that A⊆ B ∈ I or B⊆ A ∈ I, meaning there is no non-trivial valid
uIND in D in which A occurs.

28 Improving the Efficiency of Inclusion Dependencies Discovery

Proof. i) An attribute A does not occur on the left-hand-side of any non-trivial uIND if and only if

IA = {A}

We have

IA = {B | B ∈ A∧VA ⊆ VB} (Equation 1.9)

=
⋂

C∈AC∧A∈C
C (Lemma 2.3)

=
⋂

1≤i≤|P|
(

⋂
C∈ACi∧A∈C

C) (Lemma 2.6)

=
⋂

1≤i≤|P|
Ii,A (Lemma 2.3)

= I1,A∩·· ·∩{A}∩ · · ·∩ I|P|,A (Condition 2.13)

= {A} (A ∈ I j,A,∀ j = 1, . . . , |P|)

ii) An attribute A does not occur on the right-hand-side of any non-trivial uIND if and only if

A ̸∈
⋃

B∈A\{A}
IB

We have

⋃
B∈A\{A}

IB =
⋃

B ̸∈A\{A}
(

⋂
C∈AC∧B∈C

C) (Lemma 2.3)

=
⋃

B ̸∈A\{A}
(

⋂
1≤i≤|P|

(
⋂

C∈ACi∧B∈C
C)) (Lemma 2.6)

=
⋃

B ̸∈A\{A}
(I1,B∩·· ·∩ Ii,B∩·· ·∩ I|P|,B) (Lemma 2.3)

⊉ {A} (Condition 2.14)

For any B ∈ A\{A}, A ̸∈ Ii,B (Condition 2.14). Thus, A ̸∈ I1,B∩·· ·∩ Ii,B∩·· ·∩ I|P|,B.

knowing the clusters over a partition Vi, allow us to detect attributes that can not be part of any
INDs in D so that we can discard them from the process of generating the clusters from all subsequent
partitions.

Lemma 2.8. Let Ii,A be the set of all attributes B for which A ⊆ B is valid in the partition Pi ∈ P.
Then, the set IA of all attributes B for which A⊆ B is valid in D is

IA =
⋂

1≤i≤|P|
Ii,A (2.15)

2.4 S-INDD++ 29

Proof. Let Ai be the attribute clustering of Pi. According to Lemma 2.3, we have

Ii,A = {B | B ∈ A∧Vi,A ⊆ Vi,B}=
⋂

C∈ACi∧A∈C
C (2.16)

We also have

IA = {B | B ∈ A∧VA ⊆ VB}

=
⋂

C∈AC∧A∈C
C (Lemma 2.3)

=
⋂

1≤i≤|P|
(

⋂
C∈ACi∧A∈C

C) (Lemma 2.6)

=
⋂

1≤i≤|P|
Ii,A (Equation 2.16)

2.4 S-INDD++

S-INDD++ consists of the following main components: Partitioning the dataset, preparing the
partitions, generating the clusters from the partitions, and then deriving uINDs from the generated
clusters. The goal of the preparation of the partitions is to bring the content of each partition into the
format required by S-INDD for generating the attribute clustering from each partition. The subsection
below describes the workflow between these components, while the partitioning, the preparation of a
partition, and the generation of the clusters from a partition are described in Subsections 2.4.2, 2.4.3,
and 2.4.4, respectively.

2.4.1 Overall workflow

In the first step, S-INDD++ (see Algorithm 2) divides the dataset D according to the partitioning
function δ (see Definition 2.3) by calling Algorithm 3 (Line 2), which returns an ordered list of
the computed partitions. The partitions in the returned list is ordered according to partition number
i ∈ {1, . . . ,n}. Notice that a partition with the index i contains all values v ∈ V for which δ (v) = i
(see Equations 2.7 and 2.11). S-INDD++ processes the partitions according to the ascending order of
their numbers (Lines 3-20), which is essential to save computation time by firstly discarding attributes
from smaller partitions. Discarding attributes from the discovering process after handing a partition is
based on the application of Lemma 2.7 (Lines 11-19).

30 Improving the Efficiency of Inclusion Dependencies Discovery

Pi

Li,A

L1,A, L2,A, L3,A, L4,A

Li,B

L1,B

Li,C
L1,C = [(e,{C}),(g,{C})]
L2,C = [(b,{C}),(g,{C})]

Vi,C = {b,e,g}, L1,C ⊆ Vi,C×{{C}}, L2,C ⊆ Vi,C×{{C}}
Vi = Vi,A∪Vi,B∪Vi,C

Figure 2.4 Partition layout

Algorithm 2: S-INDD++
Input :R, D, A, n, k, δ

Output :I

1 AC← /0; A−← /0; I← /0
2 [P1,P2, . . . ,Pn]← computePartitions(R, D, A, n, δ)

3 for i = 1 to n do
4 foreach A ∈ A− do
5 Pi← Pi \Li,A

6 foreach Li,A ∈ Pi do
7 if |Li,A|> 1 then
8 mergeLists({Li,A | Li,A ∈ Li,A})

9 ACi← S-INDD (Pi, A, k)
10 AC← AC∪ACi

11 RH← /0
12 foreach A ∈ A do
13 Ii,A←∩C∈ACi∧A∈CC
14 Ii,A← Ii,A \{A}
15 RH← RH∪ Ii,A

16 foreach A ∈ A do
17 if Ii,A = /0∧A ̸∈ RH then
18 A−← A−∪{A}
19 A← A\{A}

20 if A = /0 then break

21 if A ̸= /0 then
22 foreach A ∈ A do
23 IA←∩C∈AC∧A∈CC
24 I← I∪{A⊆ B | B ∈ IA}

2.4 S-INDD++ 31

Figure 2.4 illustrates the partition layout as designed by Algorithm 3. Each partition Pi contains a
set of lists denoted as Li,A for each attribute A ∈ A. Each list Li,A ∈ Li,A is a subset of Vi,A×{{A}}
sorted according to the values in Vi,A and stored as a file in a repository representing Pi.

Handling a partition Pi finishes with finding each attribute that can not be a part of any valid IND
in D by applying Lemma 2.7 on the attribute clustering ACi over Vi (Lines 11-19). We call such
an attribute a discarded (or pruned) attribute and denote the set of those attributes by A−. We also
call an attribute that has not been discarded a survived (or an active) attribute. The set A contains
only the active attributes. After generating the attribute clustering ACi over Vi, S-INDD++ computes
the set Ii,A for every survived attribute based on Lemma 2.3 (Line 13). The set Ii,A contains every
survived attribute B, for which A ⊆ B is valid in Pi. S-INDD++ removes A from Ii,A to make sure
that the trivial IND A ⊆ A will not be considered (Line 14). Then, S-INDD++ adds A to the set of
discarded attributes A− if (i) the set Ii,A is empty implying that A can not occur on the left-hand-side
of any valid IND in D, and (ii) the set RH does not contain A implying that A can not occur on the
right-hand.side of any valid IND in D (Lines 16-19). The set RH contains every attribute that occurs
on the right-hand-side of a valid IND in the partition Pi (Line 15).

Handling a partition Pi starts with removing the sets Li,A of the discarded attributes A ∈ A−

from the partition (Lines 4-5). After that, for each survived A ∈ A, the lists contained in Li,A have
to be merged by calling Algorithm 4 to become one list LA that consists of all tuples (v,{A}) ∈
Vi×{{A}} sorted according to v’s (Lines 6-8). Algorithm 4 replaces the set Li,A by the new list
LA, meaning that after finishing the work of Algorithm 4, Pi contains only one list LA for each
attribute A being still active. For instance, the set Li,C in Figure 2.4 will be replaced by the list
LC = [(b,{C}),(e,{C}),(g,{C})] resulting from merging L1,C and L2,C by Algorithm 4. Notice if the
set Li,A contains only one list L1,A, then there will be no merge and L1,A will implicitly be renamed to
LA. For instance, there is no merge for Li,B in Figure 2.4 and the list L1,B will be renamed to LB.

After processing Pi by Algorithm 4, Pi is in the format required by S-INDD for generating the
clusters. Thus, S-INDD++ computes the attribute clustering ACi over Vi by applying S-INDD on
Pi (Line 9). The desired attribute clustering AC over V is computed from ACi (1≤ i≤ n) based on
Lemma 2.6 (Line 10). Having the attribute clustering AC generated from the partitions, S-INDD++
computes the set I from the clusters by applying Lemma 2.3 (Lines 21-24).

2.4.2 Computing the partitions

Algorithm 3 describes the partitioning process, which requires the relations R and their instances
(tables) in D, th attribute set A, the number of partitions n, and the partitioning function δ (see
Definition 2.3) as input parameters. At the beginning, Algorithm 3 creates n repositories on the hard
disk, where each repository represents one partition Pi ∈ P (1≤ i≤ n) of the dataset D (Line 1).

Algorithm 3 divides the values of the input dataset by iterating the dataset relation-wise in order to
keep possibly all partitions for one relation instance at a time in main memory (Lines 2-28). For each
relation instance r, Algorithm 2.4.2 reads the values in a tuple-wise manner (Lines 8-21). From each

32 Improving the Efficiency of Inclusion Dependencies Discovery

Algorithm 3: Computation of the partitions
Input :R, D, A, n, δ

Output :P

1 P← createRepositories (n)

2 foreach R ∈ R do
3 array ValSets size n×|R| as Set
4 array SetCounts size n×|R| as Integer
5 foreach (i,A) ∈ {1, . . . ,n}×R do
6 ValSets[i][A]← /0
7 SetCounts[i][A]← 0

8 foreach t ∈ r do
9 foreach A ∈ R do

10 v← t[A]
11 i← δ (v)
12 ValSets[i][A]←ValSets[i][A]∪{v}
13 if memoryExhausted() then
14 foreach (i,A) ∈ {1, . . . ,n}×R do
15 if ValSets[i][A] ̸= /0 then
16 SetCounts[i][A]← SetCounts[i][A]+1
17 j← SetCounts[i][A]
18 L j,A←ValSets[i][A]×{{A}}
19 sortList (L j,A)
20 write (L j,A, P[i])
21 ValSets[i][A]← /0

22 foreach (i,A) ∈ {1, . . . ,n}×R do
23 if ValSets[i][A] ̸= /0 then
24 SetCounts[i][A]← SetCounts[i][A]+1
25 j← SetCounts[i][A]
26 L j,A←ValSets[i][A]×{{A}}
27 sortList (L j,A)
28 write (L j,A, P[i])

2.4 S-INDD++ 33

tuple t, it fetches all those values that belong to the attributes of the corresponding relation (Line 10).
The partition number i (1≤ i≤ n) of each value is calculated by applying the partitioning function δ

(Line 11). Notice that if δ places a value v into a partition Pi, then it places all values u with u = v
into the same partition Pi (see Definition 2.3), which guarantees the pairwise disjunction of the value
sets Vi (1≤ i≤ n), each of which is the value set of one partition Pi (see Equation 2.7).

Every time Algorithm 3 partitions a tuple, it checks the consumption of the main memory
(Lines 13-21). If the main memory is exhausted (e.g., if less than 15% of the memory is free),
Algorithm 3 writes the current value set Vi, which is equal ∪A∈RValSets[i][A], into the repository of Pi.
Writing the value set Vi corresponds to writing a sorted list of tuples (v,{A}) of the set Vi,A×{{A}}
into the repository of Pi for each attribute A, for which ValSets[i][A] is not empty (Lines 15-21).

Because of memory exhaustion, Algorithm 3 writes the sets Vi,A (1≤ i≤ n and A ∈ A) in more
than one stage, causing that each partition Pi may contain more than one list for each attribute. We
denote these lists with Li,A. To distinguish between the lists in Li,A, Algorithm 3 manages a counter
SetCounts[i][A] for each pair Pi×A. This counter has to be increased each time Algorithm 3 has to
write a list of a subset of the set Vi,A×{{A}} into the repository of the partition with the index i
(Line 16). After dividing all tuples, Algorithm 3 writes (flushes) the remaining contain of the main
memory into the repositories (Lines 22-28).

Example 2.4. Let R = [A,B] be a relational schema and let

r = {t1 = (c,z), t2 = (a,x), t3 = (c,x), t4 = (b,x)}

be an instance of R. We assume n = 1, meaning that there is only one partition P1. If the main memory
is exhausted after processing the first three tuples t1, t2, and t3, we have SetCounters[1][A] = 1 and
SetCounters[1][B] = 1 and P1 will contain

L1,A = [(a,{A}),(c,{A})] L1,B = [(x,{B}),(z,{B})]

After processing the last tuple t4, we have SetCounters[1][A] = 2 and SetCounters[1][B] = 2, and P1

will be updated to contain

L1,A = [(a,{A}),(c,{A})] L1,B = [(x,{B}),(z,{B})]

L2,A = [(b,{A})] L2,B = [(x,{B})]

Thus, P1 consists of two groups of lists:

L1,A = {L1,A,L2,A} L1,B = {L1,B,L2,B}

After processing each of both by Algorithm 4 in Subsection 2.4.3 below, Pi contains only

LA = [(a,{A}),(b,{A}),(c,{A})] LB = [(x,{B}),(z,{B})]

34 Improving the Efficiency of Inclusion Dependencies Discovery

Algorithm 4: Mergeing the lists of Li,A

Input :L1,A, . . . ,L j,A, . . . ,Lm,A

Output :LA

1 Queue← createPriorityQueue(L1,A, . . . ,Lm,A)

2 LA← []
3 writer←createWriter(LA)

4 while Queue ̸= /0 do
5 reader←Queue·pull()
6 (v,{A})← reader·readCurrent()
7 LA← LA +[(v,{A})]
8 if memoryExhausted() then
9 writer·write (LA)

10 LA← []

11 if reader·hasNext() then
12 reader·readNext()
13 Queue·add(reader)

14 while Queue ̸= /0 do
15 reader←Queue·peek()
16 (v′,{A})← reader·readCurrent()
17 if v ̸= v′ then
18 break
19 else
20 reader←Queue·pull()
21 if reader·hasNext() then
22 reader·readNext()
23 Queue·add(reader)

24 writer·write(LA)

25 writer·close()

2.4.3 Postprocessing of a partition

After finishing the partitioning process, each partition Pi (1≤ i≤ n) contains sets Li,A (A ∈ A). Each
set Li,A consists of m (1≤m is ValSets[i][A] after finishing Algorithm 3) lists L j,A (1≤ j ≤m), where
each list L j,A contains a subset of tuples (v,{A}) of the set Vi,A×{{A}} sorted according to the values
v ∈ Vi,A. The purpose of Algorithm 4 is to merge the lists in Li,A to produce one list LA containing
all elements of Vi,A×{{A}}. Notice that each L j,A (1≤ j ≤ m) is represented as a file saved in the
repository of Pi.

Algorithm 4 is an adoption of the external merge-sort algorithm. For every value v, it collects v’s
tuple (v,{A}) simultaneously from all lists L j,A, in each of which (v,{A}) occurs, to write it again into
the new list LA. To achieve this idea, Algorithm 4 associates every list (file) L j,A ∈ Li,A (1≤ j ≤ m)
with a sequential file reader. It opens all of these readers at once and manages them using a priority

2.4 S-INDD++ 35

queue (Line 1). For any two readers reader 1 and reader 2, reader 1 has a higher priority in the queue
than reader 2 if the value v in the tuple (v,{A}) is smaller than the value v′ in (v′,{A}), where (v,{A})
is the entry that reader 1 can currently read and (v′,{A}) is the entry that reader 2 can currently read.
Every time Algorithm 4 has to read a tuple, it pulls a reader from the queue, reads the tuple to which
the pulled reader currently points, and then checks whether the corresponding list still has tuples that
have not been read yet. In the positive case, the reader will be added again to the queue after moving
it to point at the next tuple in the associated list (Lines 11-13 and Lines 20-23).

After reading a tuple (v,{A}) for the first time, Algorithm 4 adds it to the output list LA (Lines 6-7).
Then, it checks the consumption of the main memory (Lines 8-10). If the main memory is exhausted,
the current content of LA will be written (flushed) into the output file, to which LA has been associated
in Line 3. Since the generation of the clusters by S-INDD requires that LA must be duplicate free,
meaning that (v,{A}) (∀v ∈ Vi) must not occur than once in LA, Algorithm 4 skips adding (v,{A})
again to LA by moving the reader of each list containing (v,{A}) to point at the next different tuple
(Lines 14-23).

2.4.4 Generating the clusters

S-INDD presented in Algorithm 5 computes the attribute clustering ACi for the partition Pi of the
dataset D. S-INDD basically computes the function f defined in the proof of Lemma 2.1 for every
value v by gradually aggregating all attributes whose value sets contain that value v. Notice that Pi is
the partition that is currently processed by S-INDD++.

The gradual computation of the generator f is achieved in two stages. The first stage consists
of a sequence of aggregate operations (Lines 1-2) resulting in the computation of a large part of f ,
meaning that after finishing the aggregation stage and for at least one value v, f (v) may still not be
the maximum set of attributes whose value sets contain the value v. The second stage, therefore,
completes the computation of f and then generates the clusters (Lines 3-8).

Initially, Pi contains |A| lists. Every initial list LA ∈ Pi relates to an attribute A ∈ A and its
elements are all elements of the set Vi,A×{{A}} sorted according to the values in Vi,A. The partition
Pi is presented to S-INDD as an external repository on the hard disk in which every list LA (A ∈ A) is
saved as a file. Example 2.5 demonstrates the initial content of Pi.

Example 2.5. For Vi,A = {a,b,d}, Vi,B = {a,b,c,d}, Vi,C = {e, f}, and Vi,D = {a,c}, Pi initially
contains the following lists:

LA = [(a,{A}),(b,{A}),(d,{A})] LB =[(a,{B}),(b,{B}),(c,{B}),(d,{B})]

LC = [(e,{C}),(f ,{C})] LD =[(a,{D}),(c,{D})]

36 Improving the Efficiency of Inclusion Dependencies Discovery

Algorithm 5: S-INDD

Input :Pi, A, k
Output :ACi

11 while (Pi contains k or more than k lists) do
2 aggregateLists(Pi, k)

33 Queue← createPriorityQueue(Pi)

4 ACi← /0
5 while Queue ̸= /0 do
6 (v,AS)← collectNextAttSets(Queue)
7 C←

⋃
Av∈AS

Av

8 ACi← ACi∪{C}

Algorithm 6: Aggregation of k lists
Input :Pi, k

11 L1,L2, . . . ,Lk← selectLists(Pi,k)
22 Queue← createPriorityQueue(L1,L2, . . . ,Lk)

3 L← []

44 while Queue ̸= /0 do
5 (v,AS)← collectNextAttSets(Queue)
6 C←

⋃
Av∈AS

Av

7 L← L+[(v,C)]

88 Pi← Pi \{L1, . . . ,Lk}
99 write(L,Pi)

Algorithm 7: Collection of the next attribute set
Input :Queue
Output :(v,AS)

1 AS← /0
2 repeat
3 fr←Queue ·pull()
4 (v,Av)← fr·readCurrent()
5 (v,AS)← (v,AS∪{Av})
6 if fr·hasNext() then
7 fr·readNext()
8 Queue·add(fr)

9 if Queue ̸= /0 then
10 fr←Queue ·peek()
11 (v′,Av′)← fr·readCurrent()

12 until (Queue= /0) or (v′ ̸= v)

2.4 S-INDD++ 37

Aggregation of lists The result of the aggregate operation (see Algorithm 6) is always a sorted list
whose elements are a subset of the set

{(v,Av) | Av ̸= /0∧Av ⊆ ∪A∈A∧v∈Vi,A{A}}

In details, the aggregate operation reads k (2≤ k ≤ |A|) lists

L1 = [(v11,Bv11) . . . ,(v1l1 ,B
v1l1)]

...

Lp = [(vp1,Bvp1) . . . ,(vplp ,B
vplp)]

...

Lk = [(vk1,Bvk1), . . . ,(vklk ,B
vklk)]

from Pi and then replaces them with the new list

L = [(v1,Av1),(v2,Av2), . . . ,(vl,Avl)]

that satisfies the following conditions:

v1 = min
1≤p≤k
1≤q≤lp

{vpq}, Av1 =
⋃

1≤p≤k
1≤q≤lp

Bv1

...

vs = min
1≤p≤k
1≤q≤lp

{vpq | vpq ̸∈ {v1, . . . ,vs−1}}, Avs =
⋃

1≤p≤k
1≤q≤lp

Bvs

with s = 2, . . . , l

The new list L is duplicate free and sorted according to the values vs ∈ {vpq | 1≤ p≤ k,1≤ q≤ lp}
(1≤ s≤ l). Every set Avs in L is the union of all sets Bvs in the tuples (vs,Bvs) that occur in the k lists.

S-INDD repeats the aggregate operation (Lines 1-2) until the repository Pi has fewer than k lists
where every new list generated by the aggregate operation has to be stored in the repository Pi as a
temporary result (Line 9 in Algorithm 6). Example 2.6 illustrates the aggregate operation.

Example 2.6. Based on Example 2.5 and for k = 2, S-INDD executes three aggregate operations.
Selecting LA and LB by the first aggregate operation, generates the following list

LA,B = [(a,{A,B}),(b,{A,B}),(c,{B}),(d,{A,B})]

38 Improving the Efficiency of Inclusion Dependencies Discovery

and changes the content of Pi to LA,B,LC, and LD.
Selecting LA,B and LD by the second aggregate operation, produces the list

LA,B,D = [(a,{A,B,D}),(b,{A,B}),(c,{B,D}),(d,{A,B})]

and changes the content of Pi to LA,B,D and LC.
The last aggregate operation takes the two remaining lists LA,B,D and LC and replaces them with

LA,B,D,C = [(a,{A,B,D}),(b,{A,B}),(c,{B,D}),(d,{A,B}),(e,{C}),(f ,{C})]

Thus, after finishing the three aggregate operations, the content of Pi consists of only the list LA,B,D,C.
In the case of k = 3, S-INDD has to execute only one aggregation operation. If the first three lists

LA,LB, and LC are selected for aggregation by Algorithm 6, the list

LA,B,C = [(a,{A,B}),(b,{A,B}),(c,{B}),(d,{A,B}),(e,{C}),(f ,{C})]

will be generated and the repository Pi will be changed to contain only the lists LA,B,C and LD.

For an efficient implementation of the aggregate operation and for managing a simultaneous
reading of k lists (files) from the repository Pi, a priority queue is used by Algorithm 6 (and also by
Algorithm 7 - see below). The queue manages k readers (sequential file readers). As explained in
Subsection 2.4.3, every reader is associated with a list and points to the entry that can currently be
read from the list. For every two file readers f r, f r′, reader f r has a higher priority than f r′ if and
only if the value v in (v,Av) is smaller than or equal to the value v′ in (v′,Av′) where (v,Av) is the
entry that f r can currently read and (v′,Av′) is the entry that f r′ can currently read.

The purpose of using a priority queue is to enable an efficient collecting of all sets Av
1, . . . ,A

v
lv

(1≤ lv ≤ k) by a simultaneous and sequential reading of k lists where v is the smallest value among
all values that have not been read from the k lists in the queue yet. That is possible in a simultaneous
sequential reading because the lists are sorted according to the values v ∈ V and the priority in the
queue is defined according to the ascending order of the values.

Calculating the clusters After finishing the aggregations, S-INDD generates the attribute clustering
ACi from all remaining k′ (1≤ k′ < k) lists (Lines 4-8).

For every value v, there are still kv (1≤ kv ≤ k′) lists L1, . . . ,L j, . . . ,Lkv containing entries of the
form (v,Av). S-INDD collects all these remaining entries by calling Algorithm 7 in Line 6. Then,
S-INDD computes the set

C =
⋃

1≤ j≤kv
(v,Av)∈L j

Av

and adds it as a cluster to the set ACi. Example 2.7 illustrates these steps.

2.5 Experimental evaluation 39

Example 2.7. According to Example 2.6 and for k = 3, Pi contains the lists

LA,B,C = [(a,{A,B}),(b,{A,B}),(c,{B}),(d,{A,B}),(e,{C}),(f ,{C})]

LD = [(a,{D}),(c,{D})]

after finishing the aggregations.
For the value v = a, there are two entries: (a,{A,B}) in LA,B,C and (a,{D}) in LD. Therefore,

Algorithm 5 collects the two sets {A,B} and {D} by calling algorithm 7 in the first run of the while-loop
which delivers the tuple: (a,{{A,B},{D}}). The first cluster is then C1 = {A,B}∪{D}= {A,B,D}
and consequently ACi = {{A,B,D}}.

After the second run of the while-loop, we have ACi = {{A,B,D},{A,B}}. Calling Algorithm 7
in the third run of the while-loop delivers the tuple: (c,{{B},{D}}). Consequently, ACi will be
extended to ACi = {{A,B,D},{A,B},{B,D}}. Computing ACi finishes after the sixth run of the
while-loop resulting in ACi = {{A,B,D},{A,B},{B,D},{C}}.

2.5 Experimental evaluation

We now present the results of exhaustive experiments carried out to answer the following questions:

1. How effective is inferring the uINDs from the attribute clustering in terms of the reduction of
the intersections needed for generating them from the inverted index?

2. How effective is S-INDD++’s partitioning strategy in comparison to that of BINDER? The
comparison has to be conducted in terms of the number of candidates that each of both algorithm
prunes after processing each partition of its strategy.

3. How significantly does S-INDD++ outperform BINDER when applying each of both algorithm
to different real-word datasets?

4. How significantly does S-INDD++ outperform S-INDD? The purpose of this question to know
how reducing the time of completely sorting the set values of those attributes that are not a part
of any uIND improve the performance?

5. How significantly does S-INDD improve the scalability of SPIDER?

2.5.1 Setup

Datasets Table 2.2 and Table 2.3 present the datasets used in the experiments. Table 2.2 shows some
characteristics of datasets in size less than one GB, while Table 2.3 also shows the same characteristics
but of datasets in size greater than 11 GB. The first column gives the names of datasets, while their
sizes are given in the second column. The third column states the number of non-empty relations
(tables) in the corresponding dataset. The total number of attributes (columns) in each dataset is given

40 Improving the Efficiency of Inclusion Dependencies Discovery

Table 2.2 Characteristics of datasets used in the experiments
(Size in MB)

D Size |D| |A| Σ|ri| min |ri| max |ri| Σ|ri|/|D| |I|

SCOP 16 4 22 342,195 11,597 165,299 85,548 43

WIKIPEDIA 540 2 14 14,802,104 777,676 14,024,428 7,401,052 2

BIOSQL 560 15 77 8,306,268 1 1,854,789 553,751 112

LOD 830 13 164 4,792,549 771 1,745,873 368,657 298

ENSEMBL 835 20 130 12,599,658 5 4,339,917 629,982 340

CATH 907 4 25 152,652 1793 67,054 38,163 62

Table 2.3 Characteristics of larger datasets used in the experiments
(Size in GB)

D Size |D| |A| Σ|ri| min |ri| max |ri| Σ|ri|/|D| |I|

H-GENOME 11,2 62 387 116,227,014 4 26,552,339 1,874,629 4995

MB 26,8 178 1053 222,019,536 1 37,212,456 1,247,300 44,803

PDB 44 117 1791 266,352,038 1 218,948,441 2,276,513 35,642

PLISTA 61 4 140 109,669,418 263,767 101,305,267 27,417,354 381

2.5 Experimental evaluation 41

in the fourth column, while the total number of tuples (rows) is sated in the fifth column. The columns
labeled with min |ri|, max |ri|, and Σ|ri|/|D| are the minimum, the maximum, and the average number
of tuples per relation. The last column states the number of uINDs in the corresponding dataset. For
each dataset, we did not count the empty relations, the empty attributes, and the trivial uINDs.

SCOP, BIOSQL, CATH, ENSEMBL, and PDB are all excerpts from biological databases on proteins,
dna, and genomes. WIKIPEDIA is a dataset crawled from the Wikipedia knowledge base, and contains
page statistics. LOD is an excerpt of linked open data on famous persons and stores many RDF-triples
in relational formats. PLISTA Kille et al. [2013] contains anonymized web-log data provided by
the advertisement company Plista. H-GENOME is a genome dataset of homo sapiens available at
http://www.ensembl.org. MUSICBRAINZ (MB) is an open music encyclopedia that collects music
metadata and makes them available to the public at https://musicbrainz.org.

Experimental conditions We performed the experiments on a Windows 7 Enterprise system with
an Intel Core i5-3470 (Quad Core, 3.20 GHz CPU) and 8 GB RAM. We installed Oracle 11g on the
same machine as the database server and used an external disk for the storage of all used datasets. We
implemented S-INDD++ and S-INDD in Java 8. We used the open source implementation of BINDER

available at github.

2.5.2 The effectiveness of the attribute clustering

To show the effectiveness of the attribute clustering, we compared the number of intersection opera-
tions needed to derive the uINDs from the clusters with the number of intersection operations needed
to derive them from the inverted index. Table 2.4 presents the results of these comparisons. The last
column in this table shows the percentage of the reduction in the number of intersections gained by
deriving the uINDs from the attribute clustering. As we can see, the gained reduction is more than
99.6 % for 70 % of the datasets, while the reduction is more than 95.5 % for PDB, more than 92.3 %
H-GENOME, and more than 69 % for MB.

In addition, we calculated some statistics about the cluster sizes of the datasets. Table 2.5 presents
these statistics. The second column of this table presents the number of the clusters. The columns
labeled with min |Ci|, max |Ci|, and median|Ci| are the minimum cluster size, the maximum cluster
size, the median cluster size of the corresponding attribute clustering. The average cluster size is
given in the sixth column, while the standard deviation of the average size is given in the last column.
As we can see, for instance for the dataset MB, there is at least one value shared by 362 attributes (i.e.,
about 34.4 % of the attributes). Furthermore, in average each group of 40 attributes (i.e., about 3.8 %
of the attributes in this dataset) has at least one value in common. As another example is the dataset
H-GENOME in which in average each group of 21 attributes (i.e., about 5.5 % of the attributes) shares
at least one value.

http://www.ensembl.org
https://musicbrainz.org

42 Improving the Efficiency of Inclusion Dependencies Discovery

Table 2.4 Comparing the number of intersections needed when inferring uINDs from the
inverted index (#i-idx-∩) with number of intersections needed when inferring uINDs from
the attribute clustering (#AC-∩)

D #i-idx-∩ #AC-∩ Reduction in %

SCOP 298,643 63 99.979

WIKIPEDIA 8,520,420 144 99.998

BIOSQL 5,548,587 276 99.995

LOD 2,396,618 2380 99.901

ENSEMBL 20,911,021 11,473 99.645

CATH 179,532 379 99.789

H-GENOME 78,995,844 6,063,207 92.325

MB 181,535,297 56,241,512 69.019

PDB 223,101,296 9,892,803 95.566

PLISTA 173,045,034 593 99.999

Table 2.5 Characteristics of clusters

D |AC| min |Ci| max |Ci| median|Ci| Σ|Ci|/|AC| SD

SCOP 23 1 6 5.0 3.7 2.12

WIKIPEDIA 55 1 6 3.0 2.87 1.35

BIOSQL 144 1 14 2.0 3.1 2.6

LOD 492 1 19 5.0 5.17 3.14

ENSEMBL 2173 1 40 5.0 5.34 2.37

CATH 72 1 11 6.0 5.61 3.32

H-GENOME 287,847 1 135 23.0 21.07 10.07

MB 1,404,892 1 362 39.0 40.03 15.23

PDB 212,305 1 413 33.0 46.61 46.99

PLISTA 194 1 38 3.0 3.78 3.99

2.5 Experimental evaluation 43

2.5.3 Evaluation of the partitioning strategy

To evaluate S-INDD++’s partitioning strategy introduced in Definition 2.3, we compared it with the
strategy of BINDER. We conducted the comparison in terms of the number of attributes that each
of both algorithms discarded after processing each partition of its Strategy. As in Papenbrock et al.
[2015], we set the number of partitions for BINDER to 10 for all experiments, meaning that the
size of each BINDER’s partition is about 10 % of the corresponding dataset. Again, this number
was chosen by Papenbrock et al. [2015] to be the default number for BINDER in all experiments
conducted in Papenbrock et al. [2015]. For S-INDD++, we used the partitioning function presented in
Example 2.3, which means that S-INDD++’s partitioning consists of four disjoin subsets, where the
size of the first one is bout one percent of corresponding dataset size, while the size of the second,
the size of the third, and the size of the fourth subset are 10 %, 20 %, and 69 % of the dataset size,
respectively.

The results of the evaluation are presented in Tables 2.6 and 2.7, and in Figures 2.5 and 2.6.
Table 2.6 presents the percentage of the discarded attributes by S-INDD++ after processing each of the
first three partitions, while Table 2.7 presents the percentage of the discarded attributes by BINDER

after processing each of the first ninth partitions. Figure 2.5 shows the percentages of survived (active)
attributes per S-INDD++’s partition except of the last one, while the percentages of survived attributes
per BINDER’s partition are shown in Figure 2.6.

S-INDD++ reduces the number of attributes after processing the first partition of each dataset. For
instance, the reduction in the number of attributes is 15.8 % (about 61 attributes) for H-GENOME,
about 12.2 % (128 attributes) for MB, about 7.4 % (132 attributes) for PDB, and about 12.2 % (17
attributes) for PLISTA after processing the first partition, meaning that S-INDD++ is able to reduce
the number of attributes for each dataset after processing only one percent of it. In contrast, BINDER

is not able to reduce the number of attributes after processing the first partition of each dataset, except
of the first two smallest datasets (SCOP and WIKIPEDIA), although the size of the first BINDER’s
partition is about 10 % of the total size of the corresponding dataset.

With S-INDD++’s partitioning strategy, the number of discarded attributes continues to increase
after processing each partition of each dataset, while with BINDER’s strategy, there is no discarded
attribute for any dataset after processing the second, the third, and the fourth partition, respectively.
Thus, after handling about 40 % of each dataset, except for WIKIPEDIA and SCOP, BINDER is not
able to prune any attribute. Furthermore, BINDER’s partitioning strategy is useless for MB and PDB

because all their attributes were active (involved) in the last partition (the tenth partition). In contrast,
S-INDD++ decreases MB’s attributes by 17.4% (about 183 attributes) and PDB’s attributes by 15.1 %
(about 239 attributes) before handling the last partition of each of both datasets. For the other two
large datasets H-GENOME and PLISTA, BINDER is able to discard attributes from PLISTA only after
the seventh partition, and from H-GENOME only after the ninth partition, while S-INDD++ is able to
discard attributes from each of both datasets already after the first partition.

44 Improving the Efficiency of Inclusion Dependencies Discovery

Table 2.6 The percentage of the pruned attributes after processing each of the partitions Pi

(1≤ i < 4) of S-INDD++’s strategy

D P1 P2 P3

SCOP 18.2 22.7 22.7

WIKIPEDIA 78.6 78.6 78.6

BIOSQL 20.8 23.4 26.0

LOD 14.0 17.7 24.4

ENSEMBL 22.3 27.0 33.8

CATH 24.0 32.0 36.0

H-GENOME 15.8 20.7 26.1

MB 12.2 16.1 17.4

PDB 7.4 11.2 13.4

PLISTA 12.2 15.7 17.9

Table 2.7 The percentage of the pruned attributes after processing each of the partitions Pi

(1≤ i < 10) of BINDER’s strategy

D P1 P2 P3 P4 P5 P6 P7 P8 P9

SCOP 22.7 22.7 22.7 22.7 22.7 22.7 22.7 22.7 22.7

WIKIPEDIA 71.4 78.6 78.6 78.6 78.6 78.6 78.6 78.6 78.6

BIOSQL 0 0 0 0 0 0 26 26 26

LOD 0 0 0 0 1.2 1.2 1.2 1.2 1.2

ENSEMBL 0 0 0 0 0 0 0 33.9 34.6

CATH 0 0 0 36 36 36 36 36 36

H-GENOME 0 0 0 0 0 0 0 24.8 25.1

MB 0 0 0 0 0 0 0 0 0

PDB 0 0 0 0 0 0 0 0 0

PLISTA 0 0 0 0 0 0 10 10 10

2.5 Experimental evaluation 45

Figure 2.5 The number of active attributes per S-INDD++’s partition for the
datasets described in Table 2.2 and Table 2.3

Figure 2.6 The number of active attributes per BINDER’s partition for the datasets
described in Table 2.2 and Table 2.3

46 Improving the Efficiency of Inclusion Dependencies Discovery

(a) Using datasets of Table 2.2 (b) Using datasets of Table 2.3

Figure 2.7 Comparing S-INDD++’s runtime with BINDER’s runtime

2.5.4 Evaluation of the performance

To evaluate the performance of S-INDD++, we compared its runtime with that of BINDER and with
that of S-INDD, respectively.

Comparing with BINDER [Papenbrock et al., 2015] Figure 2.7 compares the runtime of S-
INDD++ with that of BINDER for all datasets presented in Table 2.2 and in Table 2.2. It is worth
mentioning that all these datasets, except of H-GENOME and MB, were used in Papenbrock et al.
[2015] to compare the performance of BINDER with that of SPIDER Bauckmann et al. [2006]. In
Figure 2.7, there is a group of two bars for each dataset. In each group, the left bar presents the
runtime of BINDER, while the second bar expresses S-INDD++’s runtime as a percentage in the
corresponding BINDER’s runtime.

For all datasets, S-INDD++ significantly outperforms BINDER. In the group of datasets of the
size greater than 11 GB (see Figure 2.7b), S-INDD++ reduces BINDER’s runtime by at least 18 %
for PDB dataset and to up to 49 % for H-GENOME dataset. In the other group (see Figure 2.7a),
the reduction of BINDER’s runtime by S-INDD++ ranges from 10 % for BIOSQL to 51 % for CATH

dataset. S-INDD++ is falser than BINDER because of the following reasons:
In contrast to S-INDD++, binder needs to redivide each partition that can not fit into main memory,

which causes many costly additional I/O-operations. For instance, we observed that BINDER redivided
each partition of each dataset in Figure 2.7b into at least three additional partitions, which resulted in
a total of at least 30 partitions for each dataset. The way in which S-INDD++ overcomes the need
for redividing a partition consists of three stages: i) during the partitioning, S-INDD++ sorts each
subset V j,A of the set Vi,A in the main memory before writing it to the repository of the partition
Pi (see Lines 19-20 in Algorithm 3), ii) if an attribute is not discarded in a partition Pk, S-INDD++
continues sorting the set Vi,A during the processing of the subsequent partition Pi with k < i ≤ n

2.5 Experimental evaluation 47

(a) Using datasets of Table 2.2 (b) Using datasets of Table 2.3

Figure 2.8 Comparing S-INDD++’s runtime with S-INDD’s runtime

by calling Algorithm 4, which does not need to load all sets V j,A ⊆ Vi,A (1 ≤ j ≤ m), which are
contained in the repository of Pi, into the main memory at once, as explained in Subsection 2.4.3,
and iii) after the termination of Algorithm 4 during the processing of Pi, S-INDD++ generates the
attribute clustering ACi from all lists LA of attributes A ∈A, which have not been discarded, by calling
S-INDD, which does also not need to load the lists LA into the main memory at once, regardless how
many they are and how large they are. The second reason for the better performance of S-INDD++ is
that S-INDD++ computes the uINDs of each partition from the clusters, eliminating all redundant
intersections caused by computing uINDs from the inverted index, which BINDER has to build for
each partition to compute the uINDs of the corresponding partition. The third reason for S-INDD++
to be faster than BINDER is the effectiveness of its partitioning strategy in comparison with BINDER’s
partitioning strategy, as discussed in details in Subsection 2.5.3.

BINDER’s average time is around 38 seconds for the datasets in size less than one GB and around
2438 seconds for the datasets in size greater than 11 GB, while S-INDD++’s average time is around
27 seconds for the datasets in the first group and around 1734 seconds for the datasets in the second
group. That means that both algorithms are in average around 64 times slower for the above-11 GB
datasets. The reason for these order-of-magnitude changes is that neither BINDER needs to apply
repartitioning nor S-INDD++ needs to merge the lists for any dataset in size less than one GB since
each relation in these datasets fits into the main memory.

Comparing with S-INDD [Shaabani and Meinel, 2015] Figure 2.8 shows S-INDD++’s runtime
compared with that of S-INDD. In this figure, there is a group of two bars for each dataset. In each
group, the left bar presents the runtime of S-INDD, while the runtime of S-INDD++ is expressed by
the second bar as the percentage in S-INDD’s runtime.

As the case for BINDER, S-INDD++ significantly outperforms S-INDD for all datasets. For the
datasets in Figure 2.8b, S-INDD++ decreased the runtime of S-INDD by at least 77 % for the case of

48 Improving the Efficiency of Inclusion Dependencies Discovery

Figure 2.9 Comparing scalability of S-INDD with that of SPIDER by scaling the number of attributes
and fixing the number of rows

H-GENOME dataset and by up to 98 % for the case PLISTA. We can even ignore S-INDD++’s runtime
needed for PLISTA and PDB in comparison to the runtime needed by S-INDD for both datasets. For
the datasets in the other group (see Figure 2.8a), the reduction of the runtime is in the range from
27 % for CATH to 80 % for LOD.

The reason for S-INDD++ being considerably faster than S-INDD is the elimination of sorting the
most part of useless attributes. For instance, the total number of discarded attributes before processing
the last partition are 101 (26.1 %) attributes for H-GENOME, 183 attributes (17.4 %) for MB, 239
attributes (13.4 %) for PDB, and 25 attributes (17.9 %) for PLISTA, meaning that for the remaining
69% of each of these datasets, S-INDD++ does not need to continue sorting them. These value sets
belong to the largest columns with text content whose sorting takes a lot of time. This fact explains
why the above-11 GB datasets are harder for S-INDD than for BINDER and for S-INDD++.

It is worth mentioning that the performance of S-INDD depends on the tool used for sorting the
attribute values. In these experiments, we sorted the attributes values using our implementation of the
external merge-sort algorithms. Another tool is the DBMS, where the performance of sorting is also
influenced by its configuration.

2.6 Related work 49

2.5.5 Evaluation of the scalability in the number of attributes

The significant difference between S-INDD and SPIDER [Bauckmann et al., 2006] is that SPIDER can
only process the whole set of attribute files at once, which makes SPIDER’s scalability in the number
of attributes decreases when the number of attributes significantly increases. In contrast, S-INDD is
a composite of configurable iterations. In each iteration, S-INDD controls the number of attribute
files to be processed, which means that we can let S-INDD process all attributes at once by setting
k = |A|+1 in Algorithm 5. Thus, SPIDER is a special case of S-INDD.

To show how significantly S-INDD improves the SPIDER’s scalability in the number of attributes,
we generated thirteen synthetic datasets with the same number of rows, namely 200,000 rows, and
increasing number of attributes. Starting with 1000 different attributes and ten unary INDs in the
first dataset, the attributes set in the next dataset consists of the attributes set in the previous dataset
plus 500 new different attributes and ten new different INDs so that the thirteenth dataset has 7000
different attributes and 130 unary INDs. For all these datasets , S-INND is configured to aggregate
200 lists (k = 200) simultaneously.

Figure 2.9 shows the results of these experiments. (i) For every dataset S-INDD is faster than
SPIDER. For example, for the dataset with 7000 attributes and 36.2 GB size, S-INDD needs one
hour and ten minutes while SPIDER needs 12 hours and 30 minutes. This means, S-INDD is about
11x faster than SPIDER. (ii) By increasing the number of attributes, SPIDER’s runtime grows much
faster than S-INDD’s runtime. For example, by increasing the number of attributes from 6000 to 7000,
SPIDER’runtime increases by 38 % while S-INDD’s runtime increases by one percent (for the dataset
with 6000 attributes and 31 GB SPIDER needs six hours and 10 minutes while S-INDD needs only
about one hour).

2.6 Related work

Bell and Brockhausen [1995] introduced a SQL-based algorithm for detecting uINDs. They generate
all uIND candidates from previously collected statistics, such as min-max values and data types. Then,
they validate those by using SQL-statements. The transitivity of uINDs is exploited to reduce the
number of untested candidates. SQL-based validation, however, is very costly, as shown in Bauckmann
[2013].

DeMarchi et al. [2002, 2009] proposed an algorithm that has built the basis for later algorithms
for detecting uINDs. It transforms the dataset into an inverted index, in which each value points to the
set of all attributes containing that value. Next, the set of all uINDs is computed by intersecting all of
those sets, thus causing a lot of redundant intersections as an attribute set in the inverted index can be
pointed by a lot of values. Additionally, building the inverted index for the entire dataset at once does
not enable the discarding of those attributes that can not be part of any uIND. Moreover, the inverted
index does not fit into the main memory for most real-word datasets.

50 Improving the Efficiency of Inclusion Dependencies Discovery

SPIDER proposed by [Bauckmann, 2013; Bauckmann et al., 2006] writes the value set of every
attribute to a file after sorting them. Then, SPIDER opens all files at once and starts comparing the
values in the same way in which merge-sort algorithm does. The result of each comparison is a value
pointing to the set of all attributes containing that value. Then, SPIDER uses that set for pruning the
set of uIND candidates, similar to DeMarchi’s algorithm [DeMarchi et al., 2002, 2009]. SPIDER has
solved the problem of not fitting the inverted index into the main memory. SPIDER, however, has two
drawbacks: (i) its scalability depends on the number of attributes; and (ii) it causes the same number
of redundant intersection operations caused by DeMarchi’s algorithm.

S-INDD developed by Shaabani and Meinel [2015] scales well with datasets having a large
number of attributes. S-INDD introduces the concept of attribute clustering to eliminates the number
of redundant intersections resulting from direct computation of uINDs from the inverted index applied
in Bauckmann et al. [2006]; DeMarchi et al. [2002, 2009]; Papenbrock et al. [2015]. Moreover, S-
INDD has solved the scalability problem of SPIDER, thus revealing itself as a special case of S-INDD.
The drawback of S-INDD, however, is the requirement of sorting the value sets of all attributes before
being able to compute the clusters. S-INDD++ [Shaabani and Meinel, 2018b] has solved this issue.

Papenbrock et al. [2015] presented BINDER. In contrast to S-INDD++, BINDER requires the
partition to fit into the main memory. It re-divides each partition that does not fit into the main memory,
causing costly additional I/O-operations. For each partition, BINDER builds the inverted index used
by Bauckmann et al. [2006]; DeMarchi et al. [2002, 2009] to generate the uINDs in the corresponding
partition, thereby causing a lot of redundant intersections, which are avoided by S-INDD++, since
S-INDD++ relies on S-INDD to compute the uINDs for each partition. The main goal of dividing the
dataset is to prune the attributes that can not be part of any uIND. BINDER, however, does not achieve
that goal successfully because, for example, BINDER was not able to discard any attribute from some
datasets, while S-INDD++ was able to discard attributes from each dataset by processing only 1 % of
the dataset (see Tables 2.6, and 2.7; and Figures 2.5, and 2.6 in Subsection 2.5.3).

By applying string concatenations and the Apriori strategy applied by MIND [DeMarchi et al.,
2002, 2009], each of S-INDD++; BINDER; S-INDD; and SPIDER can be used for discovering n-ary
INDs. But the use of these algorithms for detecting n-ary INDs results in an exponential number of
I/O-operations and exponentially increases the original data size. In fact, this idea has been applied by
BINDER in Papenbrock et al. [2015] and by SPIDER in Bauckmann [2013], but the success, however,
was significantly limited mainly because of the exponential growth of data resulting from value
concatenations needed for the application of the principle of candidate generations.

All the approaches previously presented handle the exhaustive search of all valid uINDs. For
the approximate discovery of INDs, Dasu et al. [2002] computed a summary of the database using
minhash sketches to find potential associations between columns. Thus, INDs can be found efficiently,
but with an error: Some discovered INDs are not really satisfied, but also some satisfied INDs can be
missed. Recently, Kruse et al. [2017] have presented an approximate discovery of INDs which finds a
superset of valid INDs containing false positives (invalid INDs).

2.7 Conclusion and future work 51

DeMarchi et al. [2009] proposed an error measure for the partial satisfaction of an IND. Next,
they formulated an algorithm for discovering partial uINDs; this algorithm is similar to DeMarchi’s
algorithm for exact detection of uINDs. They also discussed the possibility of discovering partial
n-ary INDs based on the principle of candidate generation. To provide the user with a condensed
set of valid INDs, DeMarchi and Petit [2005] proposed an approach for approximating the set of
partial INDs. The basic idea is to relax the user-specified threshold of the error if it can lead to a more
condensed set of INDs.

Lopes et al. [2002] used the query-workload-based approach to discover foreign key relationships.
From that workload, they derived the set of foreign keys by assuming that join operations are usually
performed by equating a key with a foreign key.

Rostin et al. [2009] introduced a machine-learning approach to classify uINDs as primary/foreign
keys. They first discovered all uINDs of a given dataset and let each judged by a binary classifier that
has been trained on the basis of the features of foreign keys.

Zhang et al. [2010] proposed an approximation algorithm for discovering single-column and
multi-column foreign keys. The main idea of their approach is that the value set of the foreign key is
a random sample of the value set of the primary key. Therefore, they developed a method to estimate
whether the values of foreign key and those of primary key have the same underlying distribution.
Before applying that method, they (i) assumed the existence of the primary keys in the dataset and
(ii) relaxed the inclusion dependencies that the foreign keys must satisfy. The approximation of
the inclusion property is achieved on the basis of the inclusion coefficients, which are estimated by
computing a bottom-k sketch for each column in the dataset.

Memari et al. [2015] proposed an approach for profiling single-column and multi-column foreign
keys under the different semantics for null markers of the SQL standard. Their approach is based on
the techniques proposed by Zhang et al. [2010].

The approaches for the approximate discovery of foreign keys may produce unsatisfied references
and may miss satisfied references. For that reason, they focus on the evaluation of precision and recall
rather than on the evaluation of the runtime. The specialization on foreign key discovery may also
make these approaches inapplicable to other IND use cases, such as data integration [Miller et al., 2001;
Schmitt and Saake, 2005], schema redesign [Levene and Vincent, 2000], query optimization [Gryz,
1998], or integrity checking [Casanova et al., 1988].

2.7 Conclusion and future work

We introduced the attribute clustering, a new concept, to derive all valid unary inclusion dependencies
more efficiently than to derive them from the inverted index applied by Bauckmann et al. [2006];
DeMarchi et al. [2002, 2009]; Papenbrock et al. [2015].

We then devised S-INDD for the generation of the clusters from large datasets. S-INDD is a
composite of configurable computing iterations, in each of which S-INDD controls the number of
attributes that have to be processed. This flexibility makes S-INDD scale well in the number of

52 Improving the Efficiency of Inclusion Dependencies Discovery

attributes. In fact, S-INDD has solved the scalability problem of SPIDER [Bauckmann et al., 2006],
thereby revealing itself as a special case of S-INDD.

We developed S-INDD++ to achieve two goals: (i) to reduce the time needed by S-INDD for
sorting the values of useless attributes–this those attributes that are not part of any valid IND and
(ii) to improve the effectiveness of the partition strategy that BINDER [Papenbrock et al., 2015]
applies to avoid sorting the attribute value sets. For these proposes, we introduced a new configurable
partitioning strategy that enables the pruning of large number of attributes in early phases of the
discovery process. Moreover, we extended the attribute clustering to allow S-INDD++ to discard
attributes based on the clusters of partitions. Another key feature of S-INDD++ is that S-INDD++
does not require fitting any partition into the main memory, while BINDER needs to re-divide each
partition that does not fit into the main memory. The success of S-INDD++ manifested in reducing
the sorting time needed by S-INDD by up to 98 % and in reducing BINDER’s runtime by up 50 %.

One research question for the future work is how to make S-INDD adaptively select the attributes
in each of its iterations. further works should implement a distributed version of S-INDD++ to find
whether there can be a significant improvement in the discovery time.

Chapter 3

Incrementally Updating Inclusion
Dependencies

3.1 Problem statement

Most datasets are non-static and therefore subject to update. Updates, which are inserts, changes, and
deletes, cause metadata to quickly become out-of-date [Agrawal et al., 2012; Fan, 2008; Naumann,
2013; Saha and Srivastava, 2014; Smith et al., 2014].

Example 3.1. Consider the dataset presented in Table 2.1. The set of valid uINDs in that dataset is
I = {A⊆ B,D⊆ B}. Now assume the following two cases:

(1) Delete: The tuple (b,b,e,a) (i.e., the second tuple) is deleted from the dataset. This makes
A ⊆ B invalid because deleting (b,b,e,a) makes b ∈ A and b ̸∈ B. Thus, this deletion changes the
current set of valid uINDs I to the set I1 = {D⊆ B}.

(2) Insert: The new tuple (c,c,e,e) is inserted into the dataset. This creates a new valid IND,
namely B⊆ A. Furthermore, it makes D⊆ B invalid. Thus, inserting the tuple (c,c,e,e) changes the
set I to the set I2 = {A⊆ B,B⊆ A}.

The previous example demonstrates that a data change causes new INDs to appear or existing
INDs to disappear. It means that the set of uINDs may change and therefore need to be updated after
a change in the corresponding dataset.

The current solution to keep the set of uINDs up-to-date after the arrival or deletion of data is to
completely rediscover it. This rediscovering process requires the application of one of the existing
algorithms to the entire dataset because none of them is suitable for working on dynamic datasets. This
solution, however, hurts performance significantly because (i) an initial dataset size is typically bigger
than the size of a change in the dataset by several orders of magnitude; and (ii) the performance of the
uIND discovering algorithms depends not only on the number of attributes but also on the number of
tuples for the most part. Furthermore, rediscovering the set of uINDs in the entire dataset does not
take advantage of previously discovered uINDs, which might become only partly invalid after a data

54 Incrementally Updating Inclusion Dependencies

update. Therefore, an incremental approach is the most efficient way to keep the uINDs up-to-date
after the arrival or deletion of data [Abedjan et al., 2015; Naumann, 2013; Saha and Srivastava, 2014].
Moreover, the incremental update of uINDs has useful applications, as suggested in Section 3.2.

Consequently, the question that an incremental approach should answer is how to efficiently
update the set I (i.e., the set of valid uINDs in the dataset) within a short time without processing the
entire dataset D? Hence, the time needed by an incremental approach for updating the set I should
be negligible in comparison with the time needed by a static approach. We refer to any algorithm
by Bauckmann et al. [2006]; DeMarchi et al. [2009]; Papenbrock et al. [2015]; Shaabani and Meinel
[2015, 2018b] for discovering the set I as a static discovery of I. To define the requirement for the
incremental discovery precisely, we denote the insertion of a tuple t into any instance r ∈D by D+{t},
and the deletion of t from r by D−{t}. We refer to the insertion or deletion of a tuple as D±{t}.

Definition 3.1. (Requirement for the incremental discovery) Let Tinc({t}) be the time needed by an
incremental approach for updating I after the insertion or the deletion of t. Let Tst(D±{t}) be the
time needed by a static approach for the discovery of I in D±{t}. Then,

Tinc({t})+Tst(D±{t})≈ Tst(D±{t})

must be fulfilled.

This definition was inspired by Gruenheid et al. [2014].

Contributions In this chapter, we present the first approach for incrementally updating the set of
uINDs when new tuples are inserted and when existing tuples are either deleted or changed (i.e.,
values are modified). This approach is developed in Shaabani and Meinel [2017, 2018a]. In particular,
we made the following contributions:

• We realized the incremental update of uINDs through the incremental update of the attribute
clustering. For that purpose, we defined new attribute clustering operations to be applied after
each data update.

• We developed algorithms and data structures that efficiently implement the incremental update
of the clusters. We also designed cache strategies to reduce the accesses to the external data
structures of the algorithms.

• Moreover, we showed how to initialize the data structures for starting the incremental discovery
from a non-empty dataset.

• Based on the designed data structures, we demonstrated how to incrementally update approxi-
mate uINDs.

• Furthermore, we suggested a sharing-nothing architecture for scaling out the incremental
discovery of uINDs.

3.2 Use cases for incrementally updating INDs 55

• We presented the results of exhaustive experiments conducted on five large datasets with
hundreds of attributes and more than 116 million tuples.

– The experiments showed that the incremental approach reduces the runtime of the static
discovery by up to 99.9996 %.

– We evaluated the average time needed for updating the clusters after an insertion or a
deletion. In dependence of the dataset, this time varies from 40 to 100 millisecond for an
insertion and from 60 to 180 millisecond for a deletion.

– The evaluation of the cache strategies in terms of the reduction in the accesses of the
external data structures showed that in dependence of the dataset, the gained reduction
varies from 73 % to 99.99 % for the insertions and from 81 % to 99.99 % for the deletions.

– Moreover, we evaluated the change of the incremental runtime Tinc in correlation with the
growth in the number of tuples and the number of attributes, respectively.

The reminder of this chapter is structured as follows: Section 3.2 discusses use cases for incremen-
tally updating uINDs. An overview of the workflow of the system is given in Section 3.3. To achieve
the incremental update of the attribute clustering, two operators–the merge operator and the extract
operator–are designed in Section 3.4. Section 3.5 presents the developed data structures and the
algorithms that efficiently implement the updating process. The incremental discovery of approximate
uINDs is discussed in Section 3.6. A distributed architecture for deploying the algorithms and their
data structures in a large computation cluster is presented in Section 3.7. Section 3.8 presents the
results of a comprehensive evaluation of the algorithms. Section 3.9 presents the related work, while
the last section concludes and discusses future works.

3.2 Use cases for incrementally updating INDs

3.2.1 Query optimization

One strategy for query optimization is query rewriting, which tries to reformulate parts of queries
with semantically equivalent and more efficient query terms [Gryz, 1998]. Let R[A1, . . . ,A|R|] and
S[B1, . . . ,B|S|] be two relations for which the unary IND Ai ⊆ B j (for an i ∈ {1, . . . , |R|} and a j ∈
{1, . . . , |S|}) has been defined as a foreign key relationship at the time of the modeling (designing) of
R and S. Then, consider the SQL query presented in Figure 3.1.

The query joins the relation R with the relation S. If we know that B j ⊆ Ai holds; which leads to
Ai = B j because we already have Ai ⊆ B j, then the join is superfluous and can be removed from the
query [Gryz, 1998]. This means that every time the previous query has to be executed, we infer from
the attribute clustering whether B j ⊆ Ai is valid. If it is valid, then we remove the join from the query.

56 Incrementally Updating Inclusion Dependencies

SELECT R.A1, . . . , R.A|R|
FROM R, S
WHERE R.Ai = S.B j

AND R.A1 = ’a’;

Figure 3.1 Example for SQL-query that can be optimized every time when B j ⊆ Ai becomes valid
after incrementally updating uINDs

3.2.2 Schema update and data linkage

Let D be a large legacy dataset over a set of relations R. We assume that there are business requirements
for extending R to include a new set of relations S where initially the dataset G over S is empty.
In this real scenario, it is necessary to connect D and G by finding joining paths and foreign-key
relationships between them. Since inclusion dependencies can indicate such relationships, they are
indispensable for this task. Expert users, however, often fail to specify the INDs between the attributes
of R and the attributes of S for various reasons–for instance, they have a difficult time identifying
INDs when D contains hundreds of tables, thousands of attributes, and insufficient (or missing)
documentation [Zhang et al., 2010].

Applying the incremental discovery helps to reveal the uINDs between the relation instances in
D∪G over the time. Instead of completely rediscovering the uINDs in D∪G by applying the static
discovery every time the user might think that D∪G contains enough data to identify the uINDs, uINDs
can be dynamically updated and periodically presented to the user in a way that can help to identify
the join paths and the foreign-keys. For instance, If i) we associate a counter changeCount(A⊆ B)
with every uIND A⊆ B and initialize it with zero, and ii) we increase changeCount(A⊆ B) by one
every time A ⊆ B changes from invalid to valid or from valid to invalid, then for each valid IND
A ⊆ B, the lower its counter, the higher the likelihood of A ⊆ B being a foreign-key. That can be
attributed to the fact that the counter of a valid IND indicates the number of violences of its validity.
The basis of this approach is that if uINDs are known at the designing time of the database, then
database designers define them as foreign-key relationships and expect them not to be violated during
the update of the database. Of course, this approach is only put forward as a suggestion as it requires
further investigation and evaluation.

3.2.3 Data integration

Many organizations have adopted the Microservices Architecture to solve the problems of monolithic
applications. Instead of building a single monstrous application, the idea of Microservices is to split
the application into a set of smaller interconnected services. A service typically implements a set of
distinct features or functionality, such as order management, customer management [Newman, 2015].

The Microservices Architecture significantly impacts the relationship between the application
and the database. Rather than sharing a single database schema with other services, each service has
its own database schema–this often results in duplication of some data. Thus, in this architecture,

3.3 Workflow overview 57

matching the database schemata of the services and transforming their data into a joined representation
are crucial tasks for having a data model across the enterprise; in fact, such a model is inevitable for
maximizing the value of the data for analysis. [Renz et al., 2016]. Since schema-matching methods rely
heavily on structural metadata, such as INDs [Miller et al., 2001], updating the databases of services
can be accompanied by incrementally updating the uINDs between them to incrementally compare
their respective data. This comparison can help to determine which attributes contain overlapping
or identical value sets and which are redundant and can be eliminated. Moreover, with the help of
uINDs, we can identify attributes containing the same data but with different names (synonyms) and
those which have the same name but different semantic (homonyms) [Evoke Software, 2000; Schmitt
and Saake, 2005]. We can also apply the approach presented in Subsection 3.2.2 for the incrementally
identifying the join paths between the datasets.

Furthermore, if some uINDs between datasets of the application have been semantically specified
at the modeling time, then the validity of these uINDs can be monitored by the incremental update.
Every time after updating all uINDs, we check whether the specified uINDs are still valid. If some of
them are invalid, then the user will be notified. This kind of monitoring can help to insure the quality
of data.

3.3 Workflow overview

Figure 3.2 gives an overview of the workflow of our system for incrementally detecting uINDs. The
system enqueues every tuple immediately after its insertion into the dataset or its deletion from it, and
also checks the queue periodically. If the queue is not empty, a tuple will be dequeued to be processed.
In the first step, the processing of a tuple consists of mapping each value v in the tuple to the set of
all tuple attributes to which this value belongs. We denote such a set of tuple attributes as ∆C. This
mapping is a special case of attribute clustering introduced in Section 2.2 of Chapter 2. For instance,
after dequeuing the tuple t = (c,c,e,e), it is mapped to the set {(c,{A,B}),(e,{C,D})}.

Then, for each (v,∆C), the system calls Algorithm 8 to handle the insertion if the dequeued
tuple has been inserted. Otherwise, it calls Algorithm 13 to handle the deletion. Both algorithms
are presented in Section 3.5. Algorithms 8 and 13 work on a set of data structures presented in
Subsection 3.5.1 to keep the attribute clustering of the entire dataset up-to-date after the insertion or
deletion of a tuple.

Keeping the attribute clustering up-to-date is one of the key points in our design because all valid
uINDs are efficiently derivable from the attribute clustering, as explained in Section 2.2 of Chapter 2.

Updating the attribute clustering AC of a dataset D is based on two operators applied on AC and
the attribute clustering ∆AC of the dequeued tuple referred to as t. If t is inserted, then we apply the
merge operator (see Definition 3.2). Otherwise, we apply the extract operator (see Definition 3.4).
The result of the merge operator is the attribute clustering of D+{t}, while the result of the extract
operator is the attribute clustering of D−{t}.

58 Incrementally Updating Inclusion Dependencies

A B C D

c c e einserted enqueue

b b e adeleted enqueue

queue

... [...], [...] ...

dequeue

cluster

[inserted, (A, B, C, D), (c, c, e, e)]

[inserted, {(c, {A, B}), (e, {C, D})}]

handleInsert(c, {A, B}) handleInsert(e, {C, D})

call call

handleInsert(v, ∆C)

handleDelete(v, ∆C)

data structures

generator

clusters

caches

update

update
derive

uINDs

Figure 3.2 Workflow overview

3.4 Attribute clustering operations 59

After a modification of an existing tuple, the attribute clustering can be updated by a composite
operation consisting of the merge operation and the extract operation, as illustrated in Section 3.4.

The queue will be almost empty if the time between two consecutive dataset operations is less
than the time Tinc needed by the system to update the attribute clustering after the data change (i.e.,
in this case, updating the attribute clustering will be in real time). The specific implementation of
the queue can vary from a simple queue in the main memory to a dedicated queuing server. In our
implementation, the queue is based on the file system. In section 3.7, we extend this architecture for
deploying the system in a large computation cluster.

3.4 Attribute clustering operations

Our purpose is to update the attribute clustering AC of D after inserting or deleting a tuple t, meaning
that our goal is two-fold: (i) to compute the attribute clustering of D+ {t} from AC and {t} after
inserting t into D, and (ii) to compute the attribute clustering of D−{t}, also from AC and {t}, but
after deleting t from D. To achieve these goals, we compute the attribute clustering of {t}, referred to
as ∆AC, then (i) we define the merge operator on AC and ∆AC to obtain the attribute clustering of
D+{t}, and (ii) we define the extract operator on AC and ∆AC to obtain the attribute clustering of
the dataset D−{t}.

Attribute clustering of a tuple Let t be a one-tuple instance of a relation R ∈ R. We denote the
set of all values occurring in t by ∆V. Accordingly, the attribute clustering over ∆V is ∆AC and the
generator of ∆AC is ∆ f .

Example 3.2. We consider Figure 3.2. For {t}= {(c,c,e,e)}, we have ∆V = {c,e}, ∆ f (c) = {A,B},
and ∆ f (e) = {C,D}. Thus, ∆AC = {{A,B},{C,D}}.

3.4.1 Merge operator

The merge operator merges the attribute clustering AC of D and the attribute clustering ∆AC of an
inserted tuple t to produce the attribute clustering AC+∆AC of D+{t}.

Definition 3.2. (Merge operator) Let f : V→ 2A be the generator of AC, and ∆ f : ∆V→ 2A be the
generator of ∆AC. We define f +∆ f : V∪∆V→ 2A as

(f +∆ f)(v) =

f (v)∪∆ f (v) if v ∈ V∩∆V

f (v) if v ∈ V\∆V

∆ f (v) if v ∈ ∆V\V

The merging of AC and ∆AC is AC+∆AC = (f +∆ f)(V∪∆V).

Lemma 3.1. AC+∆AC is the attribute clustering over V∪∆V and f +∆ f is its generator.

60 Incrementally Updating Inclusion Dependencies

Proof. For any v ∈V∪∆V, we have to show that (f +∆ f)(v) is the maximum set of attributes whose
value sets contain v.

i) For v∈V∩∆V, we assume that (f +∆ f)(v) = f (v)∪∆ f (v) is not the maximum set of attributes
whose value sets contain v. This means there is some attribute A with v ∈ V∩∆V, A ̸∈ f (v) and
A ̸∈ ∆ f (v). v∈VA and A ̸∈ f (v) contradict the fact that f (v)∈AC. v∈ ∆VA and A ̸∈ ∆ f (v) contradict
the fact that ∆ f (v) is a cluster in ∆AC. Thus, our assumption is wrong.

ii) The case v ∈V\∆V means that inserting t does not add v to the column of any attribute A ∈A,
meaning that v has the same cluster in D and in D+{t}. Thus, we have (f +∆ f)(v) = f (v).

iii) The case v ∈ ∆V\V means that v does not occur in D and, after inserting t, occurs in D+{t}
in the columns of all attributes in ∆ f (v). Thus, ∆ f (v) is the cluster of v in D+{t}.

Example 3.3. What is the attribute clustering of the dataset in Table 2.1 after inserting (c,c,e,e)?
According to Figure 2.1 and Example 3.2 and since c,e ∈ V∩∆V, we have

(f +∆ f)(c) = {B,D}∪{A,B}= {A,B,D}

(f +∆ f)(e) = {C}∪{C,D}= {D,C}

For x ∈ {a,b,d, f} ⊂ V\∆V, we have

(f +∆ f)(x) = f (x)

Thus, AC+∆AC = {{A,B,D},{A,B},{C,D},{C}}. Based on Lemma 2.3 in Chapter 2, the set of
unary INDs is now I = {A⊆ B,B⊆ A}.

3.4.2 Extract operator

The extract operator extracts the attribute clustering ∆AC of a deleted tuple t from the attribute
clustering AC of D to produce the attribute clustering AC−∆AC of D−{t}. But before defining
the extract operator, we have to identify the set of distinct values in D−{t}. For this purpose, and
for every v ∈ V and every attribute A ∈ A, we define the variable Fv

A indicating the frequency of
occurrence of the value v in the column of A before deleting t. Then, we introduce the following
operator.

Definition 3.3. (Bag difference) We call the set

V\b ∆V = V\{v ∈ ∆V | (∀A ̸∈ ∆ f (v) : Fv
A = 0)∧ (∀A ∈ ∆ f (v) : Fv

A = 1)}

the bag difference between V and ∆V.

Now, it is obvious that the set of values in D−{t} is V\b ∆V.

3.4 Attribute clustering operations 61

Definition 3.4. (Extract operator) Let f : V→ 2A be the generator of AC, and ∆ f : ∆V→ 2A be the
generator of ∆AC. We define f −∆ f : V\b ∆V→ 2A as

(f −∆ f)(v) =

 f (v) if v ̸∈ ∆V

f (v)\{A ∈ ∆ f (v) | Fv
A = 1} if v ∈ ∆V

The extract of ∆AC from AC is AC−∆AC = (f −∆ f)(V\b ∆V).

Lemma 3.2. AC−∆AC is the attribute clustering over V\b ∆V and f −∆ f is its generator.

Proof. For any v ∈V\b ∆V, we have to show that (f −∆ f)(v) is the maximum set of attributes whose
value sets contains v.

i) For the case v ̸∈ ∆V, there is no change in the cluster of v in D.
Thus, (f −∆ f)(v) = f (v) is the cluster of v in D−{t}.

ii) For v ∈ ∆V, (f −∆ f)(v) is the cluster f (v) after removing each attribute A ∈ ∆ f (v) whose
column does not contain v anymore after deleting t. Thus, after deleting t from D, (f −∆ f)(v)
becomes the cluster of v in D−{t}.

Example 3.4. What is the attribute clustering of the dataset in Table 2.1 after deleting (b,b,e,a)?
For this tuple, we have

∆V = {b,e,a}

∆ f (b) = {A,B},∆ f (e) = {C}, and ∆ f (a) = {D}

For v = c,d or f ̸∈ ∆V, we have
(f −∆ f)(v) = f (v)

For v = b, we have
(f −∆ f)(b) = {A,B}\{B}= {A}

because Fb
A = 2 and Fb

B = 1 (i.e., we do not remove A ∈ ∆ f (b) from f (b) = {A,B} because Fb
A > 1,

but we remove B ∈ ∆ f (b) from f (b) because Fb
B = 1).

For v = e, we have Fe
C = 1. Therefore,

(f −∆ f)(e) = {C}\{C}= /0

For v = a, we have Fa
D = 2 > 1. Therefore,

(f −∆ f)(a) = f (a) = {A,B,D}

Thus, AC−∆AC = {{A,B,D},{A,B},{B,D},{A},{C}}. Based on Lemma 2.3 in Chapter 2, the set
of unary INDs is now I = {D⊆ B}.

62 Incrementally Updating Inclusion Dependencies

Updating AC after a change of an existing tuple The following example shows how to update
the attribute clustering after a change of an existing tuple.

Example 3.5. Assume that the tuple (b,c, f ,c) (i.e., the third tuple in Table 2.1) has to be modified to
be (b,g, f ,g), meaning that (i) the value c has to be deleted once from the column of attribute B and
once from the column of attribute D, and (ii) the value g has to be added once to the column of B and
once to the column of D. We consider deleting c from B and D as deleting the tuple t1 = (B = c,D = c)
from D, while we consider adding g to B and D as inserting the tuple t2 = (B = g,D = g) into D. The
attribute clustering of t1 is ∆AC1 = {B,D} over ∆V1 = {c} with the generator ∆ f1(c) = {B,D}, while
the attribute clustering of t2 is ∆AC2 = {B,D} over ∆V2 = {g} with the generator ∆ f2(g) = {B,D}.
Thus, updating AC after changing the tuple (b,c, f ,c) consists of the following two operations: (i)
extracting ∆AC1 from AC, and (ii) merging AC with ∆AC2.

3.5 Algorithms

In this section, we design the data structures to organize and access the clusters and the corresponding
generator. Then, we develop the algorithms for the manipulation of these data structures according to
the attribute clustering operations. After analyzing the performance of the algorithms, we present an
approach to initialize the data structures for the case in which the incremental discovery starts with a
non-empty dataset.

3.5.1 Data structures

Data structure of the clusters For every cluster C∈AC, we define a record rC = (cid,C) in which
cid ∈ N identifies the cluster C uniquely in AC. We denote the set of all these records rC by ACRecs.
To efficiently support the retrieval and deletion of a cluster by giving its identifier, we define an index
on ACRecs. The keys of this index are the identifiers and the entries are the clusters. Furthermore, we
define a second hash index to efficiently retrieve an identifier by giving the corresponding cluster. The
keys in the second index are the clusters and the entries are the identifiers.

Data structure of the generator For every value v∈V , we define a record rv =(v,Fv
1 , . . . ,F

v
|A|),cid),

in which cid is the identifier of the cluster to which v belongs and Fv
i (1≤ i≤ |A|) is the frequency

of v occurrence in the column of Ai. We denote the set of all these records rv by GenRecs. Every
record rv ∈ GenRecs is uniquely identified by the corresponding value v because a value can belong
to only one cluster (see Definition 2.1). We implement GenRecs as a relational table, which means
that all operations defined on GenRecs are SQL queries. To efficiently retrieve, update, and delete a
value record by giving the value, we define an index on the values. We also define an index on the
identifiers of the clusters to efficiently retrieve and count the values belonging to a certain cluster.

We implement the generator in terms of an external data structure because of the number of values
in V. This number can be so large that GenRecs does not fit into the main memory, which is also

3.5 Algorithms 63

Table 3.1 Data structures for the generator and the clusters of the dataset in Table 2.1

v Fv
A Fv

B Fv
C Fv

D cid

a 1 1 0 2 2
b 2 1 0 0 1
c 0 1 0 2 3
d 1 1 0 0 1
e 0 0 1 0 4
f 0 0 3 0 4

cid cluster

2 {A,B,D}
1 {A,B}
3 {B,D}
4 {C}

why we separate clusters from the data structure of the generator, meaning that we keep and manage
the data structure of the clusters in the main memory. Table 3.1 presents the data structures of the
generator for the dataset in Table 2.1 and the corresponding clusters in Figure 2.1.

Data structures for accessing the generator While updating GenRecs and ACRecs, a cluster C
will be removed from ACRecs if the number of values belonging to it is zero. This requires that each
time we have to know whether a cluster C has to be removed, we have to access GenRecs to compute
the number of values belonging to the cluster. To reduce the number of required SQL queries for this
case, we define a record (cid,vcount) for every cluster. The variable vcount is a counter of the values
that have been added to, retrieved from, and/or deleted from GenRecs for the cluster identified by
cid. We denote the set of all such records by CountCache. Thus, if vcount ≥ 1 for a cluster C, we
can immediately decide that C is to not be removed from ACRecs. Otherwise, if there is no record
in CountCache for C or if there is record with vcount = 0, we have to retrieve the number of values
belonging to C from GenRecs. To efficiently update and delete a counter in CountCache, we define
an index with the cluster identifiers as keys and the counters as entries.

For every value v ∈ ∆V, we have to determine whether it is new (i.e., v ̸∈ V). If v is not new (i.e.,
v ∈ V∩∆V), we have to know its cluster, which requires querying GenRecs. To reduce the database
accesses in this case, we cache the record (v,cid) for every value that has been added to or retrieved
from GenRecs. We refer to the set of all such records as ValCache. Thus, if there is a record in
ValCache for an input value v, we immediately know that v is not new. Otherwise, we have to query
GenRecs. If the result of the query is empty, we conclude that there is no cluster to which v belongs
and, therefore, v is new. To efficiently retrieve a record from ValCache, we define an index with the
values as keys and the cluster identifiers as entries. We refer to ValCache and CountCache in the rest
of the paper as cache strategies.

3.5.2 Handling insertion

Algorithm 8 implements the merge operator introduced in Definition 3.2. It receives a value v and the
set ∆C that contains all attributes into whose columns v has been inserted. If the value is new (i.e.,

64 Incrementally Updating Inclusion Dependencies

Algorithm 8: handleInsert
Input :v, ∆C

1 cid← getClusterID(v)
2 if cid = null then
3 handleInsertingNewValue(v, ∆C)
4 else
5 handleInsertingExistingValue(v, ∆C, cid)

Algorithm 9: getClusterID
Input :v
Output :cid

1 cid←ValCache·getCID(v)
2 if cid = null then
3 cid← GenRecs·getCID(v)
4 if cid ̸= null then
5 ValCache·add(v,cid)
6 CountCache·init(cid, 1)

Algorithm 10: handleInsertingNewValue
Input :v, ∆C

1 cid← ACRecs·getCID(∆C)

2 if cid = null then
3 cid← ACRecs·add(∆C))

4 if cid ∈CountCache then
5 CountCache·increase(cid))
6 else
7 CountCache·init(cid, 1)

8 ValCache·add(v,cid)
9 GenRecs·add(v,cid,∆C)

3.5 Algorithms 65

Algorithm 11: handleInsertingExistingValue
Input :v, ∆C, cid

1 C← ACRecs·getCluster(cid)
2 C′← C∪∆C
3 if C′ = C then
4 GenRecs·iUpdate(v, ∆C)

5 else
6 cid′← ACRecs·getCID(C′)
7 if cid′ = null then
8 cid′← ACRecs·add(C′)
9 if cid′ ∈CountCache then

10 CountCache·increase(cid′)
11 else
12 CountCache·init(cid′, 1)

13 GenRecs·iUpdate(v, cid′, ∆C)

14 ValCache·update (v, cid′)
15 CountCache·decrease(cid)
16 handleDeletingCluster(cid)

v ̸∈V), it does not belong to any cluster in ACRecs. Consequently, there is no record for v in GenRecs.
Otherwise, v already exists in the dataset and belongs to a cluster. Algorithm 8 calls Algorithm 9 to
identify whether the value v is new.

Algorithm 9 returns the NULL-marker if the value v does not exist either in the cache ValCache
or in the set GenRecs. Otherwise, it returns the identifier of the cluster to which v belongs. In the
beginning, Algorithm 9 tries to find the identifier of the cluster of v in the cache ValCache (Line 1). If
the cache ValCache does not contain a record (v,cid) for the value v (Line 2), Algorithm 9 queries
GenRecs (Line 3). If it has found a record for the value v in GenRecs (Line 4), it adds v and the
identifier of its cluster to the cache ValCache (Line 5) and creates a value counter for the cluster and
initializes it with one, i.e., it adds the record (cid,1) to CountCache (Line 6).

Handling the insert of a new value Algorithm 10 implements the merge operation for the case
v ∈ ∆V \V. In this case, we have (f + ∆ f)(v) = ∆ f (v) = ∆C according to Definition 3.2 and
Lemma 3.1, meaning that the attribute set ∆C is the cluster of the new value v. But ∆C is not
necessarily a new cluster because ∆C can already exist in the set ACRecs if there is some value v′ in
GenRecs that is different from v and has ∆C as a cluster. To identify whether ∆C already exists in
ACRecs, Algorithm 10 retrieves ACRecs for the existing of ∆C (Line 1). The operation getCID(∆C)
on ACRecs returns the identifier of ∆C if ∆C exists in ACRecs; otherwise, it returns the NULL-marker.
If ∆C does not exist in ACRecs, Algorithm 10 adds ∆C to ACRecs (Lines 2-3). Now and after knowing
the identifier of ∆C, Algorithm 10 has to update GenRecs, ValCache, and CountCache, increasing
the number of values belonging to ∆C by one if the identifier of ∆C exists in CountCache. Otherwise,

66 Incrementally Updating Inclusion Dependencies

it creates a value counter for ∆C and initializes it with one (Line 7). Notice that the value counter for
a cluster exits in CountCache only if a value belonging to the cluster has been handled. For ValCache,
Algorithm 10 adds the new value v with the identifier of its cluster to ValCache (Line 8), and adds a
new record (v,Fv

1 , . . . ,F
v
|A|,cid) to GenRecs (Line 9) in which Fv

i (1≤ i≤ |A|) is initialized as follows:

Fv
i =

1 if Ai ∈ ∆C

0 if Ai ̸∈ ∆C
(3.1)

We initialize Fv
i with one for each Ai ∈ ∆C because v is new and has been added only once to each

column of Ai ∈ ∆C.

Handling the insert of an existing value Algorithm 11 implements the merge operator for the
case v ∈ V∩∆V. Based on Definition 3.2 and Lemma 3.1, the new cluster of the value v is C′ =
(f +∆ f)(v) = f (v)∪∆ f (v) = C∪∆C, in which C is the current v’s cluster identified by cid. If
∆C⊆ C, we have C′ = C. For this case, there is no change in ACRecs. But what Algorithm 11 needs
to do here is only to update the v’s record (v,Fv

1 , . . . ,F
v
|A|,cid) in GenRecs as follows:

Fv
i =

Fv
i +1 if Ai ∈ ∆C

Fv
i if Ai ̸∈ ∆C

(3.2)

We increase Fv
i for each Ai ∈ ∆C by one because v has been added to the column of each Ai ∈ ∆C.

If C′ ̸= C, Algorithm 11 has to find out i) whether or not C′ already exists in ACRecs, and ii)
whether or not C has to be deleted from ACRecs. If C′ does not exist in ACRecs, then Algorithm 11
adds C′ to ACRecs (Lines 7-8). After that, Algorithm 11 has to take care of CountCache. If there is
no value count for C′, Algorithm 11 creates a new value count for C′ and initializes it with one. In
the other case, it increases the value count by one. Notice that a value count for a cluster exists in
CountCache only if a value belonging to this cluster has been inserted before.

Since the cluster of v has become C′, the records of v in GenRecs and in ValCache have to be
updated. The updating of v’s record rv = (v,Fv

1 , . . . ,F
v
|A|,cid) consists of replacing the identifier cid

by the identifier cid′ of the new cluster of v and of applying the Formula 3.2. The updating of the
record (v,cid) in ValCache consists of only replacing cid by cid′ (Lines 13-14).

Now, the value v does not belong to C anymore. Therefore, Algorithm 11 decreases the number
of values belonging to the cluster C by one (Line 15) and calls Algorithm 12, which has to decide
whether C has to be deleted.

Deleting a cluster When a value has been deleted or assigned to a different cluster, we have to
check whether its previous cluster has to be deleted from ACRecs. A cluster has to be deleted if the
number of values belonging to it is zero. Algorithm 12 performs this check. If the cluster (i.e., its
identifier) does not exist in CountCache or the associated number of values in CountCache is zero,

3.5 Algorithms 67

Algorithm 12: handleDeletingCluster
Input :cid

1 vc← 0
2 if cid ∈CountCache then
3 vc←CountCache·getCount(cid)
4 if vc = 0 then
5 vc← GenRecs·getCount(cid)

6 else
7 vc← GenRecs·getCount(cid)

8 if vc = 0 then
9 ACRecs·remove(cid)

10 if cid ∈CountCache then
11 CountCache·remove(cid)

12 else
13 if cid ̸∈CountCache then
14 CountCache·init(cid, vc)

Algorithm 12 retrieves the number of values from GenRecs (Lines 2-7). If this number is zero, the
cluster will be removed from ACRecs, and also from CountCache if it exists in CountCache (Lines
8-11).

If the number of values retrieved from GenRecs is greater than zero and the cluster does not exist
in CountCache, Algorithm 12 creates a value count for the cluster in CountCache and initializes it
with the retrieved number (Lines 12-14). By doing so, Algorithm 12 will reduce the querying GenRecs
in the future. Accessing and querying GenRecs is more expensive than querying CountCache because
GenRecs is an external data structure in the form of a relational table.

3.5.3 Handling deletion

Algorithm 13 implements the extract operator defined in Definition 3.4, handling the deletion of a
value v from the columns of the attributes in ∆C. Notice that ∆C can only be a subset of the current
cluster C of v because C is the maximum set of attributes whose columns contain v (see Definition 2.1).
Based on Definition 3.4 and Lemma 3.2, we obtain the new cluster C′ of v from the current cluster C
after removing some attributes in ∆C from C (Lines 1-7). Each attribute Ai ∈ ∆C has to be removed
from C if the value v occurs only once in the column of Ai (i.e., Fv

i = 1).
If the deleted value v occurs more than once in the column of each Ai ∈∆C (i.e., ∀Ai ∈∆C : Fv

i > 1),
the new cluster C′ is identical to the current cluster C. In this case, Algorithm 13 needs only to update
the value record in GenRecs as follows:

Fv
i =

Fv
i −1 if Ai ∈ ∆C

Fv
i if Ai ̸∈ ∆C

(3.3)

68 Incrementally Updating Inclusion Dependencies

Algorithm 13: handleDelete
Input :v, ∆C

1 cid← getClusterID(v)
2 C← ACRecs·getCluster(cid)
3 C′← C
4 {Fv

i | Ai ∈ ∆C}← GenRecs·getFreqs(v, ∆C)

5 for Fv
i ∈ {Fv

i | Ai ∈ ∆C} do
6 if Fv

i ≤ 1 then
7 C′← C′ \{Ai}

8 if C = C′ then
9 GenRecs·dUpdate(v, ∆C)

10 else
11 if C′ = /0 then
12 GenRecs·remove(v)
13 ValCache·remove(v)
14 else
15 cid′← ACRecs·getCID(C′)
16 if cid′ = null then
17 cid′← ACRecs·add(C′)
18 CountCache·init(cid′, 1)
19 else
20 CountCache·increase(cid′)

21 ValCache·update(v, cid′)
22 GenRecs·dUpdate(v, cid′, ∆C)

23 CountCache·decrease(cid)
24 handleDeletingCluster(cid)

3.5 Algorithms 69

Algorithm 13 decreases Fv
i for each Ai ∈ ∆C by one because v has been deleted only once from the

column of each Ai ∈ ∆C.
If the new cluster C′ is different from C, the value v does not belong to C anymore. Therefore,

Algorithm 13 reduces the number of values belonging to C (Line 23), and then calls Algorithm 12
(see Subsection 3.5.2) to decide whether C has to be deleted from ACRecs (Line 24).

The case in which the new cluster C′ is empty occurs if C = ∆C and Fv
i = 1 for each Ai ∈ ∆C.

This means that the value v has been completely deleted from the dataset D. Therefore, Algorithm 13
deletes the value v from GenRecs and from ValCache (Lines 12-13).

If the new cluster C′ is not empty and different from C, Algorithm 13 has to know whether C′

already exists in ACRecs. For the case that C′ does not exist in ACRecs, Algorithm 13 adds it to
ACRecs, creates a new value count for C′ in CountCache, and initializes this counter with one (Lines
16-18). For the other case in which C′ already exists, Algorithm 13 only increases the number of
values belonging to C′ (Line 20).

The last step Algorithm 13 has to execute for the case C′ ̸= /0 and C′ ̸= C is to update the records
of v in GenRecs and in ValCache respectively (Lines 21-22). Updating the v’s record in ValCache
consists of only replacing the previous cluster identifier cid by cid′. While Updating the record
rv = (v,Fv

1 , . . . ,F
v
|A|,cid) of v consists of decreasing Fv

i for each Ai ∈ ∆C by one (see Formula 3.3),
and replacing the previous cluster identifier cid by cid′.

3.5.4 Performance analysis

As the data structure of the generator is external, the performance of our algorithms depends mainly
on querying and updating it. Therefore, we analyze the performance of the algorithms in terms of the
number of accesses needed for querying and updating GenRecs (i.e., the generator).

Identifying the cluster of an input value To find the identifier of the cluster to which an input
value v belongs, Algorithm 9 needs one query to retrieve the identifier from GenRecs (Line 3) if
ValCache does not contain a record for v. Otherwise, Algorithm 9 does not need any access to
GenRecs. Thus, in the worst case, we need one generator access to identify the cluster of a value.

Deleting a cluster Algorithm 12 queries GenRecs to identify the number of values belonging to a
cluster, whose deletion comes into consideration (Line 5 or 7). This query is required if the value
count in CountCache is zero or if CountCache does not contain an entry for the cluster. Thus, in the
worst case, we need one access to GenRecs to know whether a cluster has to be deleted.

Handling an insert If the input value v is new, Algorithm 10 needs one generator access for inserting
a new value record rv for v into GenRecs (Line 9). If the input value v is not new, Algorithm 11 also
needs one generator access to update the value record rv in GenRecs (Line 4 or 13). Thus, in the best

70 Incrementally Updating Inclusion Dependencies

case, Algorithm 8 needs one generator access to update the attribute clustering, while it needs three
accesses in the worst case.

Handling a delete Algorithm 13 needs one access to GenRecs to compute the frequency of oc-
currence of the input value in each attribute from whose column the value has been deleted (Line
4). Furthermore, Algorithm 13 needs to access GenRecs either to remove the value record rv from
GenRecs or to update it (Line 12 or 22). Therefore, for handling the delete of a value, we need two
generator accesses to GenRecs. Thus, in the best case Algorithm 13 needs two accesses to the external
data structure for updating the attribute clustering after deleting a value from the dataset, while it
needs four accesses to GenRecs in the worst case.

We now formulate the results of the previous analysis as follows:

Lemma 3.3. Let ∆V be the set of distinct values occurring in a tuple t inserted into D. Updating
the attribute clustering after inserting t needs |∆V| generator accesses in the best case, and 3×|∆V|
generator accesses in the worst case.

Lemma 3.4. Let ∆V be the set of distinct values occurring in a tuple t deleted from D. Updating the
attribute clustering after deleting t needs 2×|∆V| generator accesses in the best case, and 4×|∆V|
generator accesses in the worst case.

This means that in both cases–the best case and the worst–updating the generator after deleting a
tuple t needs |∆V| more database accesses than updating it after inserting t, where ∆V is the set of
distinct values occurring in t. Notice that updating the generator without the cache strategies always
requires 3×|∆V| accesses after an insertion, and 4×|∆V| after a deletion.

For every input value v∈∆V, an access to the generator is either (i) a modification of v’s record, (ii)
removing v’s record from the generator, or (iii) inserting the v’s record into the generator. Removing a
record from the generator or inserting a record may require more runtime than a modification of a
record because the former operation does not cause any reorganization of the index defined on the
values, while the latter two operations may cause such reorganization of that index.

Furthermore, the cost of updating the generator depends on two variables: the number of its
records and the number of attributes. This means that the performance of updating the generator
increases if the number of distinct values grows or the number of attributes grows.

3.5.5 Initializing the data structures

If the incremental discovery starts working on a non-empty dataset, we have to initialize the data
structures with the clusters and frequency of occurrences of each value v ∈ V in each attribute A ∈ A
(i.e., Fv

A) computed from such a dataset. To handle this case, we present a new algorithm that compute
the clusters and the quantities Fv

A at the same time. The presented algorithm is an extension of
S-INDD [Shaabani and Meinel, 2015].

3.5 Algorithms 71

Overall Idea For each value v ∈ V, we compute the set Fv that is defined as

Fv = {(A,Fv
A) | A ∈ A∧ v ∈ VA}

Each tuple (A,Fv
A) ∈ Fv consists of an attribute A with v ∈ VA and of the frequency of v’s occurrence

in the column of A. Notice that for each (A,Fv
A) ∈ Fv, we have Fv

A > 0 because of v ∈ VA. Then, the
cluster of v is the set

C = {A | ∃(A,Fv
A) ∈ Fv}

because this set is the maximum set of all attributes whose value sets contain v. Thus, for each value
v ∈ V, we can derive from the set Fv (i) the cluster of v and (ii) the frequency of occurrence of v in
each attribute A ∈ A.

Computing the sets Fv To compute the sets Fv (v∈V), we export the value set VA for each attribute
A ∈ A from the dataset D and create a list LA that consists of all elements of the set

{(v,{(A,Fv
A)})|v ∈ VA}

and that is sorted according to the values of VA. We store each of these lists in a file in an external
repository L (hard disk).

Example 3.6. For the dataset presented in Table 2.1, the repository L initially has the following four
lists.

L1 = [(a,{(A,1)}),(b,{(A,2)}),(d,{(A,1)})]

L2 = [(a,{(B,1)}),(b,{(B,1)}),(c,{(B,1)}),(d,{(B,1)})]

L3 = [(e,{(C,1)}),(f ,{(C,3)})]

L4 = [(a,{(D,2)}),(c,{(D,2)})]

Based on these lists, Algorithm 14 generates the sets Fv iteratively, meaning that in each iteration,
a part of some sets of the sets Fv will be computed. This iterative generation consists of a sequence
of merging operations. Each merging operation reads k (2 ≤ k ≤ |A|) lists L1,L2, . . . ,Lk from the
repository L and replaces them with a new list L whose elements are generated as follows (see
Algorithms 15 and 16): Each group of tuples (v,Fv

l1),(v,F
v
l2), . . . ,(v,F

v
ln) ({l1, . . . , ln} ⊆ {1, . . . ,k})

that share a value v and that have the property:

∀li ∈ {l1, . . . , ln} : (v,Fv
li) ∈ Lli ∧Fv

li ⊆ Fv

will be selected to generate the tuple (v,Fv
x) with

Fv
x = ∪li∈{l1,...,ln}F

v
li ⊆ Fv

72 Incrementally Updating Inclusion Dependencies

Algorithm 14 repeats the merging of lists (Lines 1-2) until the repository L has fewer than k lists.
Notice that every new list generated by a merging operation has to be stored as a temporary result in
L (Line 9 in Algorithm 15). The following example illustrates the emerging operation.

Example 3.7. Based on Example 3.6 and for k = 3, Algorithm 14 has to execute only one merging
operation. If the lists L1,L2, and L3 are selected for merging, then the list

L1,2,3 = [(a,{(A,1),(B,1)}),(b,{(A,2),(B,1)}),(c,{(B,1)}),

(d,{(A,1),(B,1)}),(e,{(C,1)}),(f ,{(C,3)})]

will be generated and the repository L will be changed to contain only L1,2,3 and L4.

For an efficient implementation of the merging operation and for managing a simultaneous
reading of k lists (files) from the repository L, a priority queue is used by Algorithm 15 (and also by
Algorithm 16). The queue manages k readers (sequential file readers). Every reader is associated with
a list and points to the entry that can currently be read from the list. For every two readers, Reader1
and Reader2, Reader1 has a higher priority than Reader2 if and only if the value v in (v,Fv) is smaller
than or equal to the value v′ in (v′,Fv′), with (v,Fv) being the tuple Reader1 can currently read and
(v′,Fv′) being the tuple Reader2 can currently read.

The purpose of using a priority queue is to enable an efficient collection of all sets Fv
l1 , . . . ,F

v
ln

({l1, . . . , ln} ⊆ {1, . . . ,k}) by a simultaneous and sequential reading of k lists where v is the smallest
value among all values that have not been read from the k lists in the queue yet. That is possible in a
simultaneous sequential reading because the lists are sorted according to the values v ∈ V and the
priority in the queue is defined according to the ascending order of the values. This kind of application
of the priority queue is well known by external merge-sort algorithms.

The purpose of the parameter k is to circumvent the limitation of the maximum number of files
that the underlying operation system can open at the same time.

Computing the clusters and initializing the generator After finishing the merging, Algorithm 14
generates the clusters and initializes the generator by processing all remaining k′ (1≤ k′ < k) lists
simultaneously (Lines 3-10).

For every value v, there are still lv (1≤ lv < k′) lists containing tuples of the form (v,Fv
i) (1≤ i≤ lv).

Collecting all these remaining tuples and computing the union ∪1≤i≤lvFv
i by Algorithm 16 results in

finishing the generation of the set Fv for the value v. After that, Algorithm 14 computes the cluster of
v (Line 6). Then, Algorithm 14 adds it to the cluster records ACRecs if ACRecs does not contain it.
After obtaining the identifier of the computed cluster, the value record of v will be created in Line 10
of Algorithm 14 based on the following formula:

Fv
i =

Fv
Ai

if (Ai,Fv
Ai
) ∈ Fv

0 if (Ai,Fv
Ai
) ̸∈ Fv

(3.4)

3.5 Algorithms 73

Algorithm 14: initDS
Input :L, A, k

11 while (L contains k or more than k lists) do
2 mergeLists(L, k)

33 Queue← createPriorityQueue(L)
4 while Queue·size()̸= 0 do
5 (v,Fv)← collectNextAttSets(Queue)
6 C←{A | ∃(A,Fv

A) ∈ Fv}
7 cid← ACRecs·getCID(C)

8 if cid = null then
9 cid← ACRecs·add(C)

10 GenRecs·add(v,cid,Fv)

Algorithm 15: mergeLists
Input :L, k

11 L1,L2, . . . ,Lk← selectLists(L,k)
22 Queue← createPriorityQueue(L1,L2, . . . ,Lk,L)
3 L← []
44 while Queue·size()̸= 0 do
5 (v,Fv)← collectNextAttSets(Queue)

6 L← L+[(v,Fv)]

77 remove(L1,L2, . . . ,Lk,L)
88 write(L,L)

Algorithm 16: collectNextSets
Input :Queue
Output :(v,Fv)

1 Fv← /0
2 repeat
3 Reader←Queue·pull()
4 (v,Gv)← Reader·readCurrent()
5 (v,Fv)← (v,Fv∪Gv)
6 if Reader·hasNext() then
7 Reader·readNext()
8 Queue·add(Reader)

9 Reader′←Queue·peek()
10 (v′,Gv′)← Reader′·readCurrent()
11 until (Queue·size()= 0)∨ (v′ ̸= v)

74 Incrementally Updating Inclusion Dependencies

Example 3.8. For k = 3 and based on Example 3.7, the repository L contains the following two lists
after merging.

L1,2,3 = [(a,{(A,1),(B,1)}),(b,{(A,2),(B,1)}),(c,{(B,1)}),(d,{(A,1),(B,1),

(5,{C}),(e,{(C,1)}),(f ,{(C,3)})]

L4 = [(a,{(D,2)}),(c,{(D,2)})]

For the value v = a, Algorithm 16 creates the set

Fa = {a,{(A,1),(B,1),(D,2)}}

from the tuple
(a,{(A,1),(B,1}) ∈ L1,2,3

and the tuple
(a,{(D,2)}) ∈ L4.

From Fa Algorithm 14 computes C = {A,B,D}, i.e., the cluster of a, and then adds it to ACRecs.
After that, Algorithm 14 inserts the record (a,1,1,0,2,2) into GenRecs, where the identifier of C in
ACRecs is 2 (cf. Table 3.1).

It is worth mentioning that during the whole merging process, the repository size remains almost
constant. That is because (i) the selected k lists in every merging operation will not be needed after
they are merged, which allows Algorithm 15 to remove them from the repository after merging them
(see Line 8), and (ii) the size of the new list resulting from the merging of the selected k lists can not
exceed the total size of these k lists.

3.6 Incrementally updating approximate inclusion dependencies

Approximate INDs are introduced and justified in DeMarchi et al. [2009]. An approach for the
detection of approximate unary INDs in static datasets is presented in that work. In this section, we
develop a novel algorithm for incrementally discovering approximate unary INDs by utilizing the
data structures developed in Subsection 3.5.1.

The definition below is adopted from DeMarchi et al. [2009].

Definition 3.5. (Approximate uIND) Given an user-specified threshold ε ∈]0,1], an approximate
unary IND between two attributes A,B ∈ A is satisfied with respect to ε , denoted by A⊆ε B, if and
only if 1−|VA∩VB|/|VA| ≤ ε .

We denote the set of all approximate unary IND by Ĩ:

Ĩ = {A⊆ε B | A,B ∈ A∧ (1−|VA∩VB|/|VA|)≤ ε}

3.6 Incrementally updating approximate inclusion dependencies 75

Notice that for an uIND A⊆ B ∈ I we have 1−|VA∩VB|/|VA|= 0 < ε , because VA ⊆VB. Thus, we
have

I⊆ Ĩ (3.5)

Now, our goal is to efficiently compute |VA| and |VA ∩VB| from GenRecs and ACRecs for all
A,B ∈ A with A⊆ B ̸∈ I to decide the satisfaction of A⊆ε B according to Definition 3.5.

Based on the value frequencies Fv
A , we observe

∀v ∈ V : Fv
A > 0⇔ v ∈ VA (3.6)

Therefore, we have
|VA|= |{v ∈ V | Fv

A > 0}| (3.7)

Thus, we can compute |VA| from the generator by counting each value record with Fv
A > 0. But that

counting is not efficient because the data structure of the generator is sparse regarding the variables
Fv

A , meaning that the percentage of records with Fv
A = 0 is higher than that with Fv

A > 0. Therefore,
we have to reduce the number of records that have to be checked if Fv

A > 0.
For that purpose, we define the set CIDA as

CIDA = {cid ∈ N | ∃(cid,C) ∈ ACRecs : A ∈ C}

That is, CIDA is the set of all identifiers of clusters containing A. With the help of CIDA, we have the
following inclusion:

VA ⊆ {v | ∃(v, . . . ,Fv
A , . . . ,cid) ∈ GenRecs : cid ∈CIDA} (3.8)

Inclusion 3.8 is correct because: (i) for any cluster with cid ∈CIDA, there is a value v ∈ VA, and
possibly, some values v′ ∈ V\VA belonging to that cluster, and (ii) a value in VA can not belong to a
cluster with an identifier that is not contained in CIDA. From 3.6 and 3.8 we conclude

VA = {v | ∃(v, . . . ,Fv
A , . . . ,cid) ∈ GenRecs : cid ∈CIDA∧Fv

A > 0} (3.9)

From Formula 3.9, we conclude that the number of value records that have to be checked if Fv
A > 0

is |CIDA|, which is smaller than |V|. Moreover, identifying the value records with cluster identifiers
in CIAA is an efficient operation because the value records in GenRecs are indexed by the cluster
identifiers (see Subsection 3.5.1). Therefore, counting the values of VA based on 3.9 is more efficient
than counting them based on 3.7.

Analog to the computation of |VA|, we compute |VA∩VB| based on

VAB = {v | ∃(v, . . . ,cid) ∈ GenRecs : cid ∈CIDAB∧Fv
A > 0∧Fv

B > 0} (3.10)

76 Incrementally Updating Inclusion Dependencies

Algorithm 17: Computation of approximate unary INDs
Input :I, ε

Output :Ĩ

1 Set2Size←createMap(Set, Int)
2 Ĩ← /0

3 for A ∈ A do
4 IA←{B | A⊆ B ̸∈ I}

5 if IA ̸= /0 then
6 CIDA← ACRecs·getClusterIDs(A)
7 |VA| ← GenRecs·countValues(A,CIDA)

8 for B ∈ IA do
9 if {A,B} ̸∈ Set2Size then

10 CIDAB← ACRecs·getClusterIDs(A,B)
11 |VA∩VB| ← GenRecs·countValues (A,B,CIDAB)
12 Set2Size·put({A,B}, |VA∩VB|)
13 |VA∩VB| ← Set2Size·get ({A,B})

14 if 1−|VA∩VB|/|VA| ≤ ε then
15 Ĩ← Ĩ∪{A⊆ε B}

where
CIDAB = {cid ∈ N | ∃(cid,C) ∈ ACRecs : A,B ∈ C}

Algorithm 17 is the formulation of the ideas developed in this section for incrementally discovering
approximate unary INDs. According to Formula 3.5, Algorithm 17 takes into account only pairs A,
B ∈ A such that A⊆ B ̸∈ I because such pairs are the candidates to be in Ĩ\ I. Therefore, it computes
the set IA (Line 3). Then, for each A ∈ A and B ∈ IA, Algorithm 17 computes |VA| (Lines 6-7) and
|VA∩VB| (Lines 10-11) according to Formula 3.9 and Formula 3.10 respectively. Algorithm 17 uses
hash map to cache |VA ∩VB| to avoid computing it twice, in the case of which neither A ⊆ B nor
B ⊆ A are in I because, in that case, we have to check the satisfaction of both A ⊆ε B and B ⊆ε A.
Algorithm 17 computes the set Ĩ incrementally because both data structures ACRecs and GenRecs are
incrementally updated.

Notice that taking Algorithm 14 for initializing the data structures, Lemma 2.3 for deriving I, and
Algorithm 17 together define an approach for discovering approximate unary INDs in a static dataset.
That is valuable because the data structures of the algorithm for approximate unary INDs presented
by DeMarchi et al. [2009] do not fit into main memory for most real-word datasets.

3.7 Scaling out the incremental discovery of INDs 77

Q1

N1

AC1

clusters
caches

DB1

V1

generator

Qi

Ni

ACi

clusters
caches

DBi

Vi

generator

Qn

Nn

ACn

clusters
caches

DBn

Vn

generator

up
d
a
te

D [s,(v,∆C)]

h(v) = i

Figure 3.3 Computation cluster for incrementally updating of uINDs based on partitioning the dataset
into n disjoint partitions. The partition number of a value v ∈ V is calculated via hash-partitioning h.

3.7 Scaling out the incremental discovery of INDs

Now, we suggest a distributed shared-nothing architecture for deploying the proposed incremental
discovery of uINDs in a large computation cluster. Figure 3.3 shows the design of this architecture,
which is based on partitioning the dataset into n≥ 1 disjoint subsets.

Describing the design The architecture shown in Figure 3.3 is based on the partitioning P = {Pi |
1≤ i≤ n}. Each partition Pi is assigned to the massaging queue Qi, the computation node Ni, and
the database DBi. The node Ni (1 ≤ i ≤ n) is responsible for incrementally updating the attribute
clustering ACi over the value set Vi. It manages the data structure ACRecs and the caches for the
clusters in ACi and the values in Vi. The database DBi is responsible for storing, updating, and
querying the generator of ACi. Hence, each partition has its own data structures: its own cluster
records ACRecs, its own generator records GenRecs and its own caches–this means that for each
two nodes Ni and N j with i ̸= j, updating the attribute clustering ACi is independent of updating the
attribute clustering AC j.

The Queue Qi (1≤ i≤ n) is assigned to a node Ni and delivers it with the events [s,(v,∆C)], where
i) h(v) = i, ii) ∆C is the cluster of v in ∆AC (∆AC is the attribute clustering over the value set ∆V of
the corresponding inserted or deleted tuple t), and iii) s ∈ {inserted, deleted} indicates whether the
corresponding tuple has been inserted or deleted. Notice that for each A ∈ ∆C, we have v ∈ Vi,A ⊆ Vi.

Capturing all data changes in D (insertions, deletions, modifications of tuples) and extracting
them in the form required by the messaging queues can be implemented by database triggers or by the
parsing of the transaction log [Kleppmann, 2016]. For instance, LinkedIn’s Databus [Das et al., 2012]

78 Incrementally Updating Inclusion Dependencies

and Facebook’s Wormhole [Sharma et al., 2015] use the technique based on reading the transaction
log at a large scale.

The proposed architecture is highly configurable. For each three components (Qi,Ni,DBi) (1≤
i ≤ n), we have more than one option regarding the number of machines on which they can be
installed: i) Each of them can have its own machine, ii) each two components can be installed on one
machine, or iii) the three components can share a machine. Moreover, it might not be necessarily for
a messaging queue to be assigned to only one node–this means that a massaging queue can deliver
more than one computation node. On the other hand, a computation node can also receive events from
more than one massaging queue. We also have more than one possibility for the relationship between
a computation node and the database of the corresponding generator: More than one generator can
be managed by a database and more than one attribute clustering can be managed by a computation
node. The appropriate configuration depends on the choice the frameworks and on the workload of
the database.

To decide if A ⊆ B is valid for two attributes A,B ∈ A, we apply Lemma 2.8 in Chapter 3 or
Lemmas 2.6 and 2.3 together.

Comparing with data-intensive applications When a user posts content to Facebook, the content
is written into a database. There are many Facebook’s applications interested in such newly-added
content in time, since they need to make updates immediately. For instance, News Feed is interested
in the update to be able to serve new stories to the friends of the user who just posted. Similarly,
users receiving a notification might wish to immediately view the new content. A number of internal
services, such as index server pipeline, cache invalidation pipeline, are also interested in every update
to the databases [Sharma et al., 2015]. Wormhole is a publish-subscribe system built and deployed
by Facebook to identify new posts and to deliver updates to all associated applications. Wormhole
directly reads the transaction log maintained by the database to identify the new committed posts.
Wormhole is also based on dividing the user generated data into a number of disjoint subsets for better
scaling. The idea of mining the database log to capture the changes in the data is also implemented by
LinkedIn [Das et al., 2012] to update a wide range of downstream applications as soon as possible.

3.8 Experimental evaluation

We now evaluate our system in terms of Definition 3.1, which means that we experimentally investigate
the runtime Tinc needed to update the data structures after inserting a tuple into the corresponding
dataset and after deleting a tuple from it. As updating the attribute clustering after a modification of
an existing tuple can be reduced to a composite operation consisting of an update after an insertion
and an update after a deletion (see Example 3.5), there is no need for conducting experiments for
estimating the average time needed after a modification of a tuple. In this section, we often refer to
the expression ”updating the data structures of the system” as ”updating the attribute clustering”.

In particular, we carry out this evaluation to answer the following questions:

3.8 Experimental evaluation 79

Table 3.2 Characteristics of datasets used in the experiments

D |D| |A| ∑ri∈D |ri| |V| |AC| |I|

TPC-H 8 61 8,661,245 11,807,306 126 80

MB1 45 273 10,000,000 10,382,340 663,584 1844

MB2 18 100 24,000,000 20,552,799 294,059 178

PLISTA1 4 140 33,364,151 46,882,120 185 408

H-GENOME 43 387 116,227,014 72,559,365 287,738 4976

1. What is the average runtime Tinc for updating the attribute clustering of different large datasets?

2. Can we ignore the incremental runtime toward the runtime required by the static discovery of
uINDs?

3. How effective are the cache strategies of the system?

4. How does the incremental runtime Tinc change in relation to an increase in the number of
attributes?

5. How does the incremental runtime Tinc change in correlation with the growth in the number of
tuples?

The function of the quantities Fv
A (A ∈ A and v ∈ V) in the data structure of the generator is to

handle the deletion. Thus, we do not need these quantities if we limit our system to support only the
insert. Therefore, the following question arises: how does the updating time for the insertion change
if we limit our system to support only the insertion? To answer this question, we implemented an
extra version of Algorithm 8, in which the generator does not contain the frequency of occurrences
Fv

A . We refer to this version of the implementation as only-insert.

3.8.1 Setup

Experimental conditions We performed the experiments on a Windows 7 Enterprise system with
an Intel Core i5-3470 (Quad Core, 3.20 GHz CPU) and 8 GB RAM. We installed Oracle 11g on the
same machine as the database server and used an external disk for the storage of all used datasets
and for the storage of the generators. We implemented all algorithms required for the experiments in
64-bit Java 7.

Datasets Table 3.2 shows some characteristics of the datasets used in our experiments. The first
column states the name of the dataset. The second column gives the number of relations in the
corresponding dataset. The total number of attributes in each dataset is given in the third column. The

80 Incrementally Updating Inclusion Dependencies

Figure 3.4 Comparing the runtime for an insert with the runtime for a delete

fourth column states the total number of rows in each dataset. The number of distinct values in each
dataset is given in the fifth column. The number of clusters in the attribute clustering of each dataset
is stated in the sixth column. The last column gives the number of valid uINDs in each dataset.

TPC-H is a benchmark dataset available at http://tpc.org/tpch. All the other datasets are
real-world datasets. Both MB1 and MB2 are subsets of MUSICBRAINZ dataset available at
https://musicbrainz.org. MUSICBRAINZ is an open music encyclopedia that collects music metadata
and makes them available to the public. PLISTA1 is a subset of the dataset PLISTA [Kille et al., 2013],
which contains anonymized web-log data provided by the advertisement company Plista. H-GENOME

is a genome dataset of homo sapiens available at http://ensembl.org.

3.8.2 Evaluation of the performance

To estimate the time Tinc needed for updating the attribute clustering of different datasets, we designed
the experiments as follows:

Design of experiments From each dataset D in Table 3.2, we randomly selected two different sets
of tuples Dins and Ddel . Random selection of tuples for the experiments helps to avoid selecting tuples
having a lot of values in common. If the selected tuples share a lot of values, then the capability of the
caches increases, which reduces the average time needed for updating the clusters. Each selected set
consists of around 100,000 tuples. The set Dins is for conducting experiments for insertions, while
Ddel is for conducting experiments for deletions. Then, we removed all tuples of Dins from the original
dataset D to reinsert them again in a later step. After that, we initialized the data structures ACRecs
and GenRecs for D \Dins by applying Algorithm 14. For each dataset, the statistics presented in
Table 3.2 are calculated for D\Dins.

3.8 Experimental evaluation 81

Table 3.3 The reduction of generator accesses gained by cache strategies

reduction by reduction by
D insert(%) delete(%)

TPC-H 99.987 99.984

MB1 73.440 81.213

MB2 93.177 83.896

PLISTA1 99.997 99.995

H-GENOME 90.076 91.811

To estimate the time for updating the attribute clustering of D after inserting a tuple, we insert all
the tuples of Dins again into D. After each insertion, we updated the data structures. For each update,
we recorded the needed time and took the average of all runtimes. We repeated this procedure for the
tuples Ddel , but instead of insertions, we removed all tuples of Ddel from D.

For the only-insert version we recreated and reinitialized the GenRecs without the quantities Fv
A

for each dataset D and used the same set Dins selected for the regular version.
Figure 3.4 shows the results of these experiments. In this figure, there is a group of three bars

for each dataset. In each group, the left bar presents the average time required to update the attribute
clustering after inserting a tuple, while the middle bar presents the average time needed to update the
attribute clustering after a deletion. The right bar in each group shows the average time needed to
update the attribute clustering after an insertion in the only-insert version.

Evaluation of the runtime For each dataset, the average runtime for updating the attribute clus-
tering after an insertion is shorter than the average runtime for updating the attribute clustering after
a deletion. The main reason is that the update after a deletion always needs one more access to the
external data structure GenRecs than the update after an insertion, as discussed in Subsection 3.5.4.
Furthermore, it is clear that the runtime for updating after an insertion in the only-insert version is
always less than the runtime for updating after an insertion in the regular version because GenRecs in
the only-insert version does not contain the quantities Fv

A .
The cost of updating the data structure of the generator depends on two variables: the umber of

distinct values |V| and the number of attributes |A|, which means that the runtime for updating the
generator increases if the number of distinct values or the number of attribute increase. This fact
explains why the three bars of the dataset H-GENOME are longer than the corresponding bars of the
other datasets (see also Table 3.2).

82 Incrementally Updating Inclusion Dependencies

Figure 3.5 Comparing the number of generator accesses in two cases: using the cache strategies and
not using the cache strategies.

3.8.3 Evaluation of cache strategies

To evaluate the effectiveness of our cache strategies, we compared the number of generator accesses
in the case of using both data structures CountCache and ValCache with the required number of
generator accesses without using them. In both cases, we counted the number of accesses needed to
insert the set Dins and the number of accesses needed to delete the Ddel of each dataset in Table 3.2.
The results are presented in Figure 3.5. In this figure, there is a group of four bars for each dataset.
Form left to right in each group, the first bar presents the number of accesses for inserting the Dins

without caches, while the second bar is for the same insertions but with caches. The third bar presents
the number of accesses for deleting Ddel without caches, while the far right bar is for the same
deletions but with caches. Table 3.3 shows the percentage of reducing the number of accessing the
generator if the caches are used.

Overall, we reduced the number of generator accesses by more than 73 % for the insertion, and by
more than 81 % for the deletion. For TPC-H and PLISTA1, the reduction is more than 99 % both in
the insertion and in the deletion. This high reduction explains why the bars presenting the number of
accesses in the case of using the caches do not appear in Figure 3.5 for both TPC-H and PLISTA1.

3.8.4 Comparing with the static discovery

We now compare the incremental discovery with the static discovery of uINDs in terms of Defi-
nition 3.1. For that purpose, we compared each runtime calculated in the previous subsection for
each dataset in Table 3.2 with the corresponding runtime required by S-INDD [Shaabani and Meinel,
2015]. These comparisons are presented in Table 3.4. As we can observe, the runtime needed by the
incremental update of the attribute clustering is much smaller than the runtime needed by S-INDD.
This observation is valid for all datasets. For instance, after inserting a tuple t into H-GENOME,

3.8 Experimental evaluation 83

Figure 3.6 Runtime in percentage of S-INDD runtime

Table 3.4 Comparing the runtime (in seconds) with the runtime of S-INDD [Shaabani and Meinel,
2015] applied to the entire dataset

D S-INDD only-insert insert delete

TPC-H 424 0.021 0.034 0.054

MB1 176 0.050 0.055 0.061

MB2 484 0.025 0.039 0.080

PLISTA1 13,580 0.009 0.047 0.054

H-GENOME 3135 0.056 0.097 0.175

84 Incrementally Updating Inclusion Dependencies

Figure 3.7 Scaling the number of attributes and fixing the number of rows to 10,000,000

S-INDD needs TS-INDD(H-GENOME + {t}) = 3135 seconds, while the incremental approach needed
only Tinc(t) = 0.097 seconds (i.e., the incremental approach needed ca. 0.003 % of the time needed by
S-INDD). Thus, we can neglect Tinc(t) = 0.097 seconds toward TS-INDD(H-GENOME + {t}) = 3135
seconds. For updating the attribute clustering of PLISTA1 after a deletion, the incremental approach
requires only 0.0004 % of the runtime required by S-INDD (i.e., the reduction in the static runtime
is more than 99.9996 %) here. In fact, we can neglect each incremental runtime listed in Table 3.4
toward the corresponding statical runtime, which means that our system satisfies the requirement
formulated in Definition 3.1 for incremental discovery of uINDs.

Figure 3.6 presents the incremental runtime in percentage of the corresponding static runtime.
This presentation allows us to make an important observation, namely, that there is a tendency for the
percentages of bigger datasets (PLISTA1 and H-GENOME) to be smaller than those of the smaller
datasets. That means that by incrementally updating the uINDs, we avoid the performance suffering
from static rediscovery after a simple change in the corresponding dataset.

We have to mention that in these experiments S-INDD used the sorting function of the underlying
DBMS for sorting the value sets of the attributes, which explains why S-INDD is here faster in
processing the dataset H-GENOME than processing it in the experiments of Chapter 2.

If we used the incremental updates for the static discovery, then there would be a significant
overhead. For instance, if we applied the only-insert version of the incremental discovery to the
entire dataset PLISTA1 or to the entire dataset TPC-H, then the S-INDD would be faster by the factor
of 20 for PLISTA1 and by the factor of 430 for TPC-H.

The purpose of incrementally updating uINDs, however, is not to replace the static discovery
of uINDs, but to update them in the case of any change in the data. Therefore, we developed the
approach in Subsection 3.5.5 for initializing the data structures of the incremental discovery to avoid
initializing them incrementally.

3.8 Experimental evaluation 85

3.8.5 Scaling the number of attributes

We now evaluate the change in the runtime in relation to the increase in the number of attributes. For
this purpose, we designed the experiments in this case as follows.

Design of experiments For these experiments, we created six datasets Di (1 ≤ i ≤ 6) from the
dataset MUSICBRAINZ, with the following properties: (i) D6 = MB1, (ii) D1 has 15 attributes, (iii)
the dataset Di+1 contains all relations of Di and additional relations from MUSICBRAINZ so that Di+1

has around 50 attributes more than Di (1≤ i≤ 5), and (iv) each Di (1≤ i≤ 6) has around 10,000,000
tuples. For each dataset Di, we estimated the runtime for updating the attribute clustering by applying
the same process applied in Subsection 3.8.2. Figure 3.7 shows the results of these experiments.

Evaluation In this figure, we can observe a tendency for the incremental runtime to increase when
the number of attributes increases, because (i) the size of the generator grows when the number of the
attributes grows, and (ii) the runtime for the modification of the generator correlates with its size. The
reason for the correlation is that the time of creating and executing the SQL-Statements needed to
update the generator generally increases when the number of the attribute increases. However, the
incremental runtime declines slightly when the number of attributes increases from 211 to 273. This
deviation from the general tendency may be because (i) the number of generator accesses for the
dataset D5 (i.e. the dataset with 211 attributes) is higher than the number of generator accesses for D6

(i.e. the dataset with 273 attributes), and (ii) up to certain degree, the number of generator accesses
has a stronger influence on the runtime than the number of attributes does. In fact, the number of
accesses for D5 is 199,808 for the insertions and 174,786 accesses for the deletions, while for D6, it
is 195,340 for the insertions and 161,144 accesses for the deletions.

As we can see, the maximum incremental runtime for the insertion is 0.059 seconds, while the
maximum incremental runtime for the deletion is 0.074 seconds, and the static runtime for discovering
uINDs in D6 = MB1 is 176 seconds (see Table 3.4). Thus, we can ignore both incremental runtimes
towards the static runtime.

3.8.6 Scaling the number of tuples

We now evaluate the change in the runtime in correlation with the growth in the number of tuples.
Notice that an increase in the number of tuples normally causes an increase in the number of distinct
values of the dataset. To achieve this evaluation, we designed the experiments here as follows:

Design of experiments We divided the dataset MB2 (see Table 3.2) into 11 subsets Di (1≤ i≤ 11)
with the following properties: (i) D11 = MB2, (ii) Di ⊂ Di+1 (1 ≤ i ≤ 10), (iii) the dataset Di+1

contains around 2,000,000 tuples more than the dataset Di (1≤ i≤ 10), and (iv) the number of tuples
in D1 is 4,000,000 tuples. Then, for each dataset Di, we estimated the runtime for updating the

86 Incrementally Updating Inclusion Dependencies

Figure 3.8 Scaling the number of rows and fixing the number of attributes to 100

attribute clustering by following the same process described in Subsection 3.8.2. Figure 3.8 shows the
results of these experiments.

Evaluation We observe that there is no unique tendency for the runtime to rise when the number of
tuples rises. When the number of tuples increases from 4,000,000 to 10,000,000, the runtime increases
slightly. That is in contrast to increasing the number of tuples from 10,000,000 to 12,000,000, where
the runtime noticeably increases. It decreases when the number of tuples decreases from 12,000,000
to 14,000,000. Thus, the runtime reaches a peak for the dataset D5 with 12,000,000 tuples. The
reason for this peak is the fact that for x ∈ {ins,del}, the number of distinct values in the set D5

x \D5

is much higher than the number of distinct values in Di
x \Di where i ̸= 5 and 1≤ i≤ 10 respectively.

That causes the system to insert, in the case of handling the insertions, more value records into the
generator for D5 than for the other datasets. In the case of handling the deletions, it causes the system
to delete more value recodes from the generator for D5 than for the other datasets. As we discussed in
Subsection 3.5.4, deleting records from the generator and inserting records into it are costlier than the
modification of its records respectively. Coming back to the trend of the runtime in Figure 3.8, the
runtime for the deletions continues to decline slightly until the number of tuples becomes 22,000,000.
The runtime for the insertions remains almost constant when the number of tuples increases from
14,000,000 to 24,000,000. Thus, we conclude that the runtime of incrementally detecting uINDs does
not necessary increase when the number of tuples increases.

As we can see in Figure 3.8, the maximum runtime for the insertion is 0.057 seconds, while the
runtime for the deletion is 0.087 seconds. Thus, we can ignore both incremental runtimes toward the
static runtime, which is, according to Table 3.4, 484 seconds for D10 = MB2 (S-INDD has almost the
same performance for both datasets D5 and D10).

3.9 Related work 87

3.9 Related work

The need for incremental data profiling methods has been explicitly addressed by Naumann [2013]
and Abedjan et al. [2015] to maintain the metadata under data updates without frequently re-profiling
the entire dataset. The works of Abedjan et al. [2014] and Wang et al. [2003] are the first ventures
into this research area. The former work suggested an approach for unique column combinations
discovery in dynamic datasets, while the later work presented an approach for maintaining discovered
functional dependencies after data deletions.

From the point of view of data cleaning, Fan et al. [2012] developed methods for incremental
detection of any violation of functional dependencies and conditional functional dependencies, while
Cong et al. [2007] presented solutions for incremental data repairing with respect to functional
dependencies and conditional functional dependencies. Another example of incrementally updating
derived data after updating the basic relations is the maintenance of materialized views [Gupta and
Mumick, 1995; Gupta et al., 1993]. An example for data mining is the techniques presented by Tsai
et al. [1999] for incrementally updating discovered association rules.

It is worth mentioning that most commercial relational DBMSs allow users to specify a set of
inclusion dependencies in terms of foreign key constraints between relations. The DBMS validates all
user-defined foreign key constraints after an insertion, a deletion, or a change of a tuple and aborts the
operation if the result of the update does not satisfy one of these constraints. The DBMS, however,
can not find new inclusion dependencies after inserting new tuples or deleting existing ones.

In summary, our work in this chapter is the first one to address the incremental discovery of
inclusion dependencies in dynamic datasets.

3.10 Conclusion and future work

In this work, we developed the first approach for incrementally discovering unary inclusion depen-
dencies in frequently changing data. We reduced the problem of the incremental update of uINDs
to the incremental update of the attribute clustering, from which unary inclusion dependencies are
efficiently derivable. We solved the problem of incrementally updating the attribute clustering by
developing new cluster operations to be applied after every data change. Next, we designed algorithms
and data structures for an efficient implementation of the cluster operations. The main goal of the
incremental discovery is to avoid reprocessing the entire dataset by applying the static discovery after
every change–this requires a long time for computation. In this regard, we performed a comprehensive
experimental evaluation, which showed that the computation time of the incremental discovery is
negligible compared to that of the static discovery. In fact, the reduction in time is up to 99.9996 %.

We also showed how to initialize the data structures to start the incremental discovery with a
legacy dataset. Moreover, we suggested a novel algorithm for both the incremental detection and
the static detection of approximate uINDs by utilizing the properties of designed data structures.

88 Incrementally Updating Inclusion Dependencies

A shared-nothing architecture for scaling out the incremental discovery of unary INDs was also
suggested.

The data structure of the generator is sparse because it maintains all variables Fv
A (A ∈ A∧ v ∈ V)

regardless whether their values are zero or not. Moreover, the implementation of the generator as a
relational table is technically limited by the underlying DBMS because a DBMS does not allow the
creation of a table whose number of columns exceeds a maximum number defined by the DBMS.
A workaround solution to this issue is to create ⌈|A|/maxcol⌉ tables where maxcol is the maximum
number of table columns allowed by the corresponding DBMS. This solution significantly increases
the space complexity. Moreover, it may increase the number of generator accesses and therefore may
decrease the performance of the system. So, a more efficient data structure contains only the variables
Fv

A with Fv
A > 0 and does not impose restrictions on the number of attributes. An example of such a

data structure might be a distributed hash table.
In contrast to the data structure of the generator, that of the clusters is not persistent–it resides

constantly in the main memory. Therefore, a system failure causes the loss of the cluster records (i.e.
ACRecs). Nevertheless, to recover the clusters, we do not need to reinitialize the data structures of the
system by applying Algorithm 14 presented in Subsection 3.5.5 because we can efficiently regenerate
the cluster records from the data structure of the generator by applying SQL queries. That idea might
be the core idea of the implementation of an appropriate recovering strategy.

An inclusion dependency is a necessary but not a sufficient characteristic for a foreign key. This
is because the inclusion between value sets may occur by pure chance. To distinguish INDs that are
likely to be foreign keys from those that are unlikely to be so, different heuristic approaches have
been suggested in [Koeller and Rundensteiner, 2004; Rostin et al., 2009; Zhang et al., 2010]. It is
useful to study how we can utilize the data structures of our system to implement these approaches to
enable a dynamic ranking of the discovered uINDs according to their likelihood of being foreign keys.
Then, the user can periodically explore the incrementally discovered and ranked INDs to progressively
understand their dynamic data.

Chapter 4

Discovering Maximum Inclusion
Dependencies without Candidate
Generation

4.1 Problem statement

As we have discussed in Subsection 1.8.1 of Chapter 1, the existing algorithms for exhaustively
discovering all n-ary INDs (n > 1)–i.e., MID [DeMarchi et al., 2002, 2009], ZIGZAG [DeMarchi and
Petit, 2003], and FIND2 [Koeller and Rundensteiner, 2002, 2003] apply the projection invariance of
INDs [Casanova et al., 1984; Liu et al., 2012]: A valid n-ary IND implies sets of k-ary valid INDs
(1≤ k ≤ n). Thus, the number of all valid INDs implied by a valid n-ary IND is 2n.

MIND implements the generate-and-test (or the levelwise) approach, which is illustrated by
Algorithm 1 in Subsection 1.8.1 of Chapter 1, by straightforward adaptation of the Apriori-Algorithm
for mining frequent itemsets [Agrawal and Srikant, 1994]. For discovering a single valid IND σ of
size n, the Apriori-based approach has to discover 2n−1 implied INDs before even considering σ .
Thus, MIND has to execute 2n SQL queries for the validation. Experiments conducted by DeMarchi
and Petit [2003]; Koeller and Rundensteiner [2002]; Papenbrock et al. [2015] have shown that
Apriori-based algorithms do not scale beyond the maximum IND size of 8.

Attempting to reduce the exponential number of database accesses needed by the Apriori-based
approach, FIND2 and ZIGZAG transform the IND discovery problem into a discovery problem in a
hypergraph whose nodes are all valid unary INDs. FIND2 maps the IND-discovery problem to the
hyperclique-discovery problem, while ZIGZAG maps it to the minimal-traversal-discovery problem.
Both problems are polynomial in the number of edges and therefore exponential in terms of the
number of nodes in the hypergraph because the number of edges in a hypergraph of n nodes is
bounded by 2n. In principle, both algorithms first discover unary and binary INDs by enumeration and
validation. Then, they optimistically assume that all high-arity INDs constructed from validated unary

90 Discovering Maximum Inclusion Dependencies without Candidate Generation

and binary INDs (or in general, from validated INDs in the previous iteration) are likely to be valid.
The assumption makes both algorithms extremely sensitive to an overestimation of valid unary and
binary INDs–a high number of such small INDs can cause many invalid larger IND candidates being
generated and validated against the database. Furthermore, hypergraph-based algorithms have high
complexity and are scalable only for sparse hypergraphs [Koeller and Rundensteiner, 2002, 2004].

Consequently, the research question addressed in this chapter is how we can discover all valid
n-ary INDs (n > 1) without generating candidates and testing them against the dataset.

Contributions. We answered this research question by devising a novel discovery algorithm called
MIND2 [Shaabani and Meinel, 2016]. MIND2 (short for Maximum INclusion Dependency Discovery)
discovers all maximum INDs without any candidate generation, where a maximum IND is a valid
n-ary IND that can not be implied by any other valid IND.

MIND2 introduces novel characterizations of the maximum INDs. These characterizations are
based on operations defined on new metadata called unary IND coordinates, which MIND2 generates
by accessing the datasets only 2 × the number of valid unary INDs. So, MIND2 eliminates the
exponential number of data accesses needed by the other approaches. In particular, we made the
following contributions:

• We introduced the concept of the unary IND coordinates and showed how to infer the set of
maximum INDs from them. This inference presents the novel characterizations of the maximum
inclusion dependencies.

• We proposed data structures and algorithms to organize and generate the unary IND coordinates
and to implement the inference of the maximum INDs from the coordinates. The number of
database accesses needed for the generation of the coordinates is linear in the number of valid
unary INDs (2 × the number of valid unary INDs).

• We compared the performance of MIND2 with that of FIND2 using real and synthetic datasets.
The experiments showed that MIND2 is faster than FIND2. Furthermore, they showed that
MIND2’s scalability, in contrast to that of FIND2, is not influenced by a high number of small
valid unary INDs.

The rest of this chapter is organized as follows: Section 4.2 defines the maximum INDs based on
the set presentation of the INDs. Section 4.3 formulates our novel rules for inferring the maximum
INDs without candidate generation and proves their correctness. Section 4.4 presents MIND2, a
possible implementation of the mathematical rules developed in the previous section. The results
of an experimental evaluation of MIND2’s performance, compared with that of FIND2, are reported
in Section 4.5. The related work is discussed in Section 4.6 in more details. Section 4.7 concludes
and discusses future works in connection with another implementation of the principles developed in
Section 4.3.

4.2 Maximum inclusion dependency 91

4.2 Maximum inclusion dependency

Let R[A1, . . . ,A|R|],S[B1, . . . ,B|S|] ∈ R be two relational schemas with the corresponding relations
r,s ∈ D over R. We present every n-ary IND σ = R[X] ⊆ S[Y] ∈ ΣR→S

1 with X = [Ai1 , . . . ,Ain] and
Y = [Bi1 , . . . ,Bin] as a set of all unary INDs Aik ⊆ Bik (1≤ ik ≤ in). That is,

σ = {Ai1 ⊆ Bi1 , . . . ,Ain ⊆ Bin} (4.1)

Furthermore, we identify the set of all attributes occurring on the left hand side of σ with LHS(σ)

and the set of all attributes occurring on the right hand side of σ with RHS(σ). Thus, we have

LHS(σ) = {Ai1 , . . . ,Ain} (4.2)

RHS(σ) = {Bi1 , . . . ,Bin} (4.3)

Now, we introduce the concept of a maximum IND based on the set presentation of INDs.

Definition 4.1. (Maximum IND) Let I ∈ Σr→s be a valid IND over R and S. I is a maximum IND
if and only if there is no I′ ∈ Σr→s such that I ⊂ I′ holds. We denote the set of all maximum INDs
between R and S according to r and s with IM(Σr→s), or with IM if Σr→s is understood. That is,

IM(Σr→s) = {I ∈ Σr→s | ¬∃I′ ∈ Σr→s : I ⊆ I′} (4.4)

Notice that the set IM(Σr→s) is equal to the set Bd+(Σr→s) defined by Equation 1.15 in Section 1.8.
Having IM(Σr→s) computed, we can derive the set Σr→s based on the projection inference-rule

presented in Section 1.7 as follows:

Σr→s = {σ | ∃M ∈ IM(Σr→s) : σ ⊆M} (4.5)

Thus, The set IM(Σr→s) can be considered as a concise representation of the set Σr→s. Therefore, our
goal in this chapter is to directly compute IM(Σr→s) without any intermediate IND sets (candidates).
In the rest of the chapter, we refer to the set IM(Σr→s) simply as IM.

Example 4.1. According to the two relations presented in Table 4.1, the set of all valid unary INDs
over R and S is

Ir→s = {ui = Ai ⊆ Bi | 1≤ i≤ 5}

The set of all n-ary valid INDs over R and S is

Σr→s = {{u1,u2},{u1,u3},{u2,u3},{u1,u2,u3},{u1,u4},{u2,u4},{u1,u2,u4},{u4,u5}}
1See Section 1.5 of Chapter 1 to recall some basic notions

92 Discovering Maximum Inclusion Dependencies without Candidate Generation

Table 4.1 Running example

R

IDR A1 A2 A3 A4 A5

1 a b c d e
2 f g i j k

S

IDS B1 B2 B3 B4 B5

1 a b c d ⊥
2 ⊥ ⊥ c d ⊥
3 ⊥ ⊥ c d e
4 f g i ⊥ ⊥
5 f g ⊥ j k

The set of all maximum INDs over R and S is

IM = {{u1,u2,u3},{u1,u2,u4},{u4,u5}}

For example, from the maximum IND M = {u1,u2,u3} ∈ IM we can conclude that the n-ary INDs
{u1,u2}, {u2,u3}, {u1,u2}, and M itself are included in Σr→s.

4.3 Principles of MIND2

The mathematical framework for inferring the maximum INDs without candidate generation is based
on three principles formulated in this section.

4.3.1 Principle 1

For every tuple pair ri ∈ r and s j ∈ s, we compute Mi j, the maximum IND between σIDR=i(R) and
σIDS= j(S) according to ri and s j (1≤ i≤ |r| and 1≤ j≤ |s|). To characterize the set Mi j, we introduce
two new concepts: Attribute value-positions and valid unary IND coordinates.

Definition 4.2. (Attribute value-positions) The value positions of an attribute A ∈U with U ∈ {R,S}
is the set

PA = π{IDU ,A}(U) (4.6)

Definition 4.3. (Unary IND coordinates) The coordinates of a valid unary IND u ∈ Ir→s is the set

Cu = {(i, j) | ∃(i,v) ∈ PLHS(u)∧∃(j,v′) ∈ PRHS(u) : v = v′} (4.7)

The coordinates of a valid unary IND u ∈ Ir→s is the set of all tuple-ID pairs (i, j) where the value
of the attribute LHS(u) in the tuple ri ∈ r is identical with the value of the attribute RHS(u) in the
tuple s j ∈ s. Hence,

(i, j) ∈Cu if and only if ri[LHS(u)] = s j[RHS(u)]

4.3 Principles of MIND2 93

Table 4.2 The coordinates of all valid uINDs between R and S in presented Table 4.1

i PAi PBi CAi⊆Bi

1 {(1,a),(2, f)} {(1,a),(2,⊥),(3,⊥),(4, f),(5, f)} {(1,1),(2,4),(2,5)}

2 {(1,b),(2,g)} {(1,b),(2,⊥),(3,⊥),(4,g),(5,g)} {(1,1),(2,4),(2,5)}

3 {(1,c),(2, i)} {(1,c),(2,c),(3,c),(4, i),(5,⊥)} {(1,1),(1,2),(1,3),(2,4)}

4 {(1,d),(2, j)} {(1,d),(2,d),(3,d),(4,⊥),(5, j)} {(1,1),(1,2),(1,3),(2,5)}

5 {(1,e),(2,k)} {(1,⊥),(2,⊥),(3,e),(4,⊥),(5,k)} {(1,3),(2,5)}

Having the coordinates of all unary INDs generated, we can compute the maximum IND Mi j between
any tuple pair (ri,s j) without a database access based on the following lemma.

Lemma 4.1. Mi j consists of all unary INDs u ∈ Ir→s with (i, j) ∈Cu. That is,

Mi j = {u ∈ Ir→s | (i, j) ∈Cu} (4.8)

Proof. Let Mi j = {u1, . . . ,un} be the set of all valid uINDs with (i, j) ∈Cuk and 1≤ k≤ n. According
to Definition 4.3,

(∀k ∈ {1, . . . ,n})(∃(i,vk) ∈ PLHS(uk)∧∃(j,v′k) ∈ PRHS(uk)) : vk = v′k

Thus,
(v1, . . . ,vk, . . . ,vn) = (v′1, . . . ,vk, . . . ,v′n)

That means that
ri[LHS(Mi j)] = s j[RHS(Mi j)]

Hence, Mi j is a valid IND over σIDR=i(R) and σIDS= j(S) according to {ri,s j} (see Definition 1.1).
We now have to show that Mi j is maximum. We assume that Mi j is not maximum. That means

that, based on Definition 4.1,
∃Mi j

1 ∈ IM : Mi j ⊂Mi j
1

Hence,
∃u′ ∈ Ir→s : u′ ∈Mi j

1 ∧ (i, j) ̸∈Cu′

That means that the value of the attribute LHS(u′) in ri is different from the value of the attribute
RHS(u′) in s j. Therefore, ri[LHS(Mi j

1)] ̸= s j[RHS(Mi j
1)], which means that Mi j

1 is not valid. Thus,
our assumption is wrong.

94 Discovering Maximum Inclusion Dependencies without Candidate Generation

Example 4.2. Based on our running example, the second column in Table 4.2 lists the value positions
PAi of R’s attributes while the value positions PBi of S’s attributes are listed in the third column.
The last column in this table shows the coordinates of all valid unary INDs between R and S (see
Example 4.1). For example, for A5 ⊆ B5, we have

(1,e) ∈ PA5 and (3,e) ∈ PB5

Therefore,
(1,3) ∈CA5⊆B5

Also,
(2,5) ∈CA5⊆B5

because
(2,k) ∈ PA5 and (5,k) ∈ PB5

The maximum INDs Mi j between ri and s j (1≤ i≤ 2 and 1≤ j ≤ 5) are

M1,1 = {u1,u2,u3,u4}, M1,2 = {u3,u4}, M1,3 = {u3,u4,u5}, M1,4 = M1,5 = /0

M2,1 = M2,2 = M2,3 = /0, M2,4 = {u1,u2,u3}, M2,5 = {u1,u2,u4,u5}

Let us explain, for example, the content of the maximum IND M1,2 between r1 and s2. We have

(1,2) ∈Cu3

Therefore,
u3 ∈M1,2

Also,
u4 ∈M1,2

because
(1,2) ∈Cu4

But
u1,u2,u5 ̸∈M1,2

because
(1,2) ̸∈Cu1 ,(1,2) ̸∈Cu2 , and (1,2) ̸∈Cu5

In the next step, we compute the set of all maximum INDs between every tuple ri ∈ r and the
relation s based on the following principle, respectively.

4.3 Principles of MIND2 95

4.3.2 Principle 2

For every tuple ri ∈ r, we compute Ii
M, the set of all maximum INDs between σIDR=i(R) and S

according to ri and s. To characterize the set Ii
M, we introduce the following operator.

Definition 4.4. (φ -operator) The operator φ : 2ΣR→S → 2ΣR→S is defined as

φ(S) = {σ ∈ S | ∄σ
′ ∈ S : σ ⊂ σ

′} (4.9)

That is, the operator φ takes a set S of INDs and returns each IND in S that is not included in any
other IND from S. Thus, we conclude that φ(S)⊆ S for any S ∈ 2ΣR→S .

Lemma 4.2. Let Ii be the set of all non-empty Mi j (1≤ j ≤ |s|). Then, the set of all maximum INDs
over σIDR=i(R) and S is obtained by

Ii
M = φ(Ii) (4.10)

Proof. Every Mi j ∈ Ii is a valid but not necessary a maximum IND between σIDR=i(R) and S. But
what we want to have is all maximum INDs from Ii. Based on Definition 4.4, φ -operator solves this
task. Thus, Ii

M = φ(Ii) is the set of all maximum INDs between σIDR=i(R) and S.

Example 4.3. Based on Example 4.2, we have

I1 = {M1,1,M1,2,M1,3}, I1
M = φ(I1) = {M1,1,M1,3}

I2 = {M2,4,M2,5}, I2
M = φ(I2) = {M2,4,M2,5}

We can now compute IM, the set of all maximum INDs between R and S, from the sets Ii
M

(1≤ i≤ |r|) based on Principle 3.

4.3.3 Principle 3

To explain the main idea behind Principle 3, let us consider the two relations in Table 4.1. What
are the maximum INDs between them if we know I1

M and I2
M computed in Example 4.3? Firstly,

the intersection between any two INDs M1 ∈ I1
M and M2 ∈ I2

M is a valid IND between R and S. For
example, M1,1∩M2,4 = {u1,u2,u3} is a valid IND between R and S. Secondly, after computing the
intersection between each pair (M1,M2) ∈ I1

M× I2
M , taking all maximum sets from the result gives us

the set of all maximum INDs. We generalize these two ideas as follows.

Definition 4.5. (ψ-operator) The operator ψ : 2ΣR→S ×2ΣR→S → 2ΣR→S is defined as

ψ(S1,S2) = {σ | ∃(σ1,σ2) ∈ S1×S2 : σ = σ1∩σ2 ̸= /0} (4.11)

That is, for two sets S1 and S2 of INDs the ψ-operator takes every tuple (σ1,σ2) from S1×S2

and computes the intersection between σ1 and σ2.
To characterize the computation of the set IM, we define the ρ-operator.

96 Discovering Maximum Inclusion Dependencies without Candidate Generation

Definition 4.6. (ρ-operator) Let IM be the set of all Ii
M (1≤ i≤ |r|). The ρ-operator is defined as

ρ(IM) =

S if |IM|= 1 and S ∈ IM

φ(ψ(S,ρ(IM \{S}))) if |IM|> 1 and S ∈ IM

(4.12)

Now, we can compute IM as follows.

Lemma 4.3. The set of all maximum IND over R and S is obtained by

IM = ρ(IM) (4.13)

Proof. We prove the lemma by induction on the number of tuples i in r.
Basis Step: For i = 1, we have

IM = {I1
M}

Thus,
ρ({I1

M}) = I1
M = IM

based on the construction of the set I1
M

Induction Assumption: For 1≤ i < |r|, let I′M be the set of all Ii
M and I′M be the set of all maximum

INDs between σIDR<|r|(R) and S. We assume

I′M = ρ(I′M) (4.14)

Inductive Step: Let I|r|M be the set of all maximum INDs between σIDR=|r|(R) and S. Thus,

IM = I′M∪ I|r|M (4.15)

We have to show

IM = ρ(IM)

= ρ(I′M∪ I|r|M) (based on 4.15)

= φ(ψ(I|r|M ,ρ(I′M))) (based on 4.12)

= φ(ψ(I|r|M ,I′M)) (based on 4.14)

For any valid IND I ∈ I over R and S, the following condition holds:

(∃I1 ∈ I|r|M : I ⊆ I1) and (∃I2 ∈ I′M : I ⊆ I2)

Thus,
I ⊆ I1∩ I2

4.4 Mind2 97

According to the definition of ψ-operator,

J = I1∩ I2 ∈ ψ(I|r|M ,I′M)

Thus,
(∀I ∈ I)(∃J ∈ ψ(I|r|M ,I′M)) : I ⊆ J

Therefore,
IM ⊆ ψ(I|r|M ,I′M)

That means that applying the φ -operator to the set ψ(I|r|M ,I′M) gives us the set IM. That is,

IM = φ(ψ(I|r|M ,I′M))

Example 4.4. Based on Example 4.3, we have

IM = {I1
M,I2

M}

Accordingly,

ψ(I1
M,I2

M) = {M1,1∩M2,4,M1,1∩M2,5,M1,3∩M2,4,M1,3∩M2,5}

= {{u1,u2,u3},{u1,u2,u4},{u3},{u4,u5}}

IM = ρ(IM)

= φ(ψ(I1
M,ρ({I2

M})))

= {{u1,u2,u3},{u1,u2,u4},{u4,u5}} (cf. Example 4.1)

In the following section, we formulate MIND2 algorithmically. We also present its data structures.
This formulation is the basis of our implementation of MIND2.

4.4 Mind2

4.4.1 Overall workflow

MIND2 consists of three major components. Algorithm 18 as the first component, is responsible for
computing the unary IND coordinates Cu of each valid unary IND u ∈ Ir→s based on Definition 4.3. It
also stores each generated set Cu in a separate file in an external repository Repo on a hard drive.

Then, Algorithm 19 reads the generated coordinates at once and computes the set of all maximum
INDs IM incrementally according to the ascending order of the tuple-IDs i ∈ IDR in the left relation r.

98 Discovering Maximum Inclusion Dependencies without Candidate Generation

In other words, it computes the ρ-operator (Definition 4.6) iteratively. Before the iteration in which
the set Ii

M (the set of all maximum INDs between σIDR=i(R) and S) can be generated, Algorithm 19
computes all maximum INDs between σIDR<i(R) and S and stores them in IM. In other words,
before the computation of Ii

M starts, the set IM contains the maximum INDs between the tuples
{rk ∈ r | 1 ≤ k < i} and s. Having Ii

M generated, Algorithm 19 replaces the current content of the
set IM with the result of the composite operation φ(ψ(IM,Ii

M)). This procedure continues until all
tuple-IDs i ∈ IDR have been processed. At the end and based on Lemma 4.3, the set IM contains all
maximum INDs between R and S. At the beginning, we initialize IM with {Ir→s} because {{Ir→s}}
is an upper bound of IM.

The third component of MIND2 is Algorithm 20 called by Algorithm 19 to compute the sets Ii
M

(1≤ i≤ |r|). It computes them based on Lemma 4.1 and on Lemma 4.2.
Below, we explain these components in details.

4.4.2 Generating unary IND Coordinates

To compute the unary IND coordinates of a u ∈ Ir→s, Algorithm 18 opens two cursors at once (Lines
3-6): One for reading the sorted value positions of the attribute A = LHS(u) and the other for reading
the sorted value positions of the attribute B = RHS(u) (see Definition 4.2 for the value positions of an
attribute). The value positions of every attribute are sorted according to its values in the corresponding
relation. In other words, for any (i1,v1),(i2,v2) ∈ PA (∈ PB): The tuple (i1,v1) will be read by the
corresponding cursor before the tuple (i2,v2) if the value v1 occurs before the value v2 in the sort
sequence. Otherwise, (i2,v2) will be read before (i1,v1).

In the main while-loop (Lines 9-27), Algorithm 18 moves the two cursors in such a way so that it
can associate every tuple-ID i ∈ IDR with the set of all tuple-IDs j ∈ IDS for which both attributes A
and B have the same value. In other words, the tuple-ID i is associated with the set

{ j | ∃(j,v) ∈ PB : (i,v) ∈ PA}

It saves that association temporary in the hash map i2jsMap (Lines 21-23).
After finishing the reading of value positions of PA and of PB, Algorithm 18 creates a file for the

current unary IND u in the for-loop (Lines 1-34) and saves every pair

(i,{ j | ∃(j,v) ∈ PB : (i,v) ∈ PA})

in a line in this file. The lines (records) are sorted in ascending order by the left tuple-IDs i ∈ IDR and
in every line the IDs:

j ∈ { j | ∃(j,v) ∈ PB : (i,v) ∈ PA}

are also sorted in ascending order (Lines 28-34). This policy of organizing the value positions is
required by Algorithm 19.

4.4 Mind2 99

Algorithm 18: Generation of unary IND Coordinates
Input :Ir→s,Repo
Output :Cu for each u ∈ Ir→s

1 foreach u ∈ Ir→s do
2 i2 jsMap← createMap(Int, Set)
3 A← LHS(u)
4 B← RHS(u)
5 CurA← createCursor(A)
6 CurB← createCursor(B)
7 (i,v)←CurA.next()
8 (j,v′)←CurB.next()

9 while CurA.hasNext() and CurB.hasNext() do
10 if v = v′ then
11 IDA←{}
12 IDB←{}
13 (k,w)←CurA.current()
14 while v = w do
15 IDA = IDA∪{k}
16 (k,w)←CurA.next()

17 (k,w)←CurB.current()
18 while v = w do
19 IDB = IDB∪{k}
20 (k,w)←CurB.next()

21 if IDA ̸= /0 and IDB ̸= /0 then
22 foreach i ∈ IDA do
23 i2 jsMap.put(i, IDB)

24 else if v > v′ then
25 (j,v′)←CurB.next()
26 else
27 (i,v)←CurA.next()

28 writer← createWriter(u,Repo)
29 IDA← i2 jsMap.keys()
30 sort(IDA)

31 foreach i ∈ IDA do
32 PB← i2 jsMap.get(i)
33 sort(IDB)

34 writer.write(u, i, IDB)

100 Discovering Maximum Inclusion Dependencies without Candidate Generation

Table 4.3 The output of Algorithm 18 for the set of all valid unary INDs between R and S presented in
Table 4.1

A1 ⊆ B1 A2 ⊆ B2 A3 ⊆ B3 A4 ⊆ B4 A5 ⊆ B5

1, [1] 1, [1] 1, [1, 2, 3] 1, [1, 2, 3] 1, [3]

2, [4, 5] 2, [4, 5] 2, [4] 2, [5] 2, [5]

MIND2 needs only 2×|Ir→s| database accesses because every cursor needs a simple SQL select
statement with an order by clause for reading the value positions of an attribute.

Example 4.5. Based on the attribute value positions listed in Table 4.2, Figure 4.3 illustrates the
output of Algorithm 18. Each row in that figure represents a file containing the coordinates of an
unary IND.

4.4.3 Computing maximum INDs between R and S

Algorithm 19, as implementation of Principle 3 (see Section 4.3.3), generates the set of all maximum
INDs IM by computing the ρ-operator (Definition 4.6) incrementally. It opens all files of the unary
INDs coordinates generated by Algorithm 18 and reads them at once (Lines 2-4). Each u ∈ Ir→s is
associated with a sequential file reader for reading its coordinates Cu. The file readers are managed by
a priority queue. For any two readers f r, f r′, reader f r has a higher priority than f r′ in the queue if
and only if the tuple-ID i in the file entry (u, i,L) is smaller than the tuple-ID i′ in (u′, i′,L′) where
(u, i,L) is the entry that f r can currently read and (u′, i′,L′) is the entry that f r′ can currently read.
Managing the readers in this way allows Algorithm 19 to collect all unary INDs u ∈ Ir→s that have
the same tuple-ID i (i ∈ IDR) in their coordinates (Lines 7-20).

In every pass through the main while-loop (Lines 6-32) the algorithm collects the elements (u,L)
in the set L where all unary INDs u in these elements have the same tuple-ID i ∈ IDR. Each list L in
(u,L) is (based on its construction by Algorithm 18) the list of all tuple-IDs j ∈ IDS, where the values
of attribute RHS(u) in these tuples and the value of LHS(u) in tuple i are identical.

After creating the set L in the current pass of the main while-loop for a certain i, Algorithm 19
calls Algorithm 20 to compute the maximum INDs between σIDR=i(R) and S (Line 21). We denote
this set with I∗M where the symbol ∗ is a placeholder for any i ∈ IDR.

After computing the maximum INDs I∗M between σIDR=i(R) and S, the set of all maximum INDs
IM will be updated by applying the composite operation φ(ψ(IM,I∗M)) in Line 22 (see Definition 4.4
for φ -operator and Definition 4.5 for ψ-operator). The set IM is initialized with the set {Ir→s} (Line
5). If the updated set IM contains only the unary INDs, the algorithm breaks the main while-loop and
returns the set of all unary INDs as the maximum INDs (Line 23-27). Otherwise, Algorithm 19 will

4.4 Mind2 101

Algorithm 19: Generation of maximum INDs
Input :Ir→s,Repo
Output :IM

1 Queue←createPriorityQueue()

2 foreach u ∈ Ir→s do
3 f r← createFileReader(u,Repo)
4 Queue.add(fr)

5 IM ←{Ir→s}
6 while Queue ̸= /0 do

7 L← /0
8 Readers← /0
9 f r← Queue.pull()

10 Readers← Readers∪{ f r}
11 (u, i,L)← f r.current()
12 L← L∪{(u,L)}
13 while Queue ̸= /0 do
14 f r′← Queue.peek()
15 (u′, i′,L′)← f r′.current()
16 if i ̸= i′ then break
17 f r← Queue.pull()
18 Readers← Readers∪{ f r}
19 (u, i,L)← f r.current()
20 L← L∪{(u,L)}

21 I∗M ← genSubMaxINDs(L,IM)

22 IM ← φ(ψ(IM,I∗M))

23 foreach u ∈ Ir→s : {u} ∈ IM do
24 IM ← IM \{{u}}
25 if IM = /0 then
26 IM ← Ir→s

27 break

28 activeU ←∪M∈IM M
29 foreach f r ∈ Readers do
30 if f r.hasNext() and f r.u ∈ activeU then
31 f r.next()
32 Queue.add(f r)

102 Discovering Maximum Inclusion Dependencies without Candidate Generation

Algorithm 20: Generation of maximum INDs over σIDR=i(R) and S

Input :L, I∗−1
M

Output :I∗M
1 Queue←createPriorityQueue()

2 foreach (u,L) ∈ L do
3 lr← createListReader(u, L)
4 Queue.add(lr)

5 UB← /0
6 while Queue ̸= /0 do

7 Readers← /0
8 lr← Queue.pull()
9 Readers← Readers∪{lr}

10 (u, j)← lr.current()
11 M∗ j←{u}
12 while Queue ̸= /0 do
13 lr′← Queue.peek()
14 (u′, j′)← lr′.current()
15 if j ̸= j′ then break
16 lr← Queue.pull()
17 Readers← Readers∪{lr}
18 (u, j)← lr.current()
19 M∗ j←M∗ j ∪{u}

20 if ∃M ∈ I∗−1
M : M ⊆M∗ j then

21 UB←UB∪{M}

22 if UB = I∗−1
M then

23 I∗M ← I∗−1
M

24 break
25 I∗M ← I∗M ∪{M∗ j}
26 foreach lr ∈ Readers do
27 if lr.hasNext() then
28 lr.next(); Queue.add(lr)

29 I∗M ← φ(I∗M)

4.5 Experimental evaluation 103

update the queue only with readers of those unary INDs u which are contained in at least one set of
IM (Lines 28-32).

4.4.4 Computing maximum INDs between σIDR=i(R) and S

Based on Principle 1 and Principle 2, Algorithm 20 computes the set of all maximum INDs between
σIDR=i(R) and S from the set L while it exploits the set I∗−1

M to improve the performance. The set L
generated by Algorithm 19 (Lines 7-20) contains the elements (u,L): all unary INDs in these elements
have the same left tuple-ID i in their coordinates while every list L in (u,L) is the sorted list of all
tuple-IDs j ∈ IDS in the coordinates (i, j) ∈Cu. The algorithm reads all the lists in the set L at once
and uses a priority queue to manage the list readers in the same way in which Algorithm 19 manages
the file readers of the unary INDs coordinates.

In the main while-loop, we collect all unary INDs u in the set M∗ j that have the same tuple-ID j
in their coordinates (Lines 7-19). The symbol ∗ in M∗ j is a placeholder for the corresponding i. Thus,
based on the properties of the elements (u,L) of the set L, the set M∗ j contains all unary INDs u that
have (i, j) in their coordinates Cu. That means that, according to Lemma 4.1, M∗ j is the maximum
IND between σIDR=i(R) and σIDS= j(S).

Every computed set M∗ j is added to the set I∗M (Line 25). Updating I∗M by applying the φ -operator
on it gives us, according to Lemma 4.2, the maximum INDs between σIDR=i(R) and S (Line 26).

The objective of the input set I∗−1
M is to improve the performance of computing I∗M. The set I∗−1

M

is the set of all maximum INDs between σIDR<i(R) and S. For every generated set M∗ j, Algorithm 20
checks if there is a set M in I∗−1

M such that M is a subset of M∗ j (Lines 20-21). If such a set exists, it is
added to the set UB. If the set UB contains all sets from I∗−1

M , then the algorithm breaks the execution,
and returns I∗−1

M as the maximum INDs between σIDR=i(R) and S (Lines 22-24). This rule does not
have any effect on the correctness of Algorithm 19 because the result of the composite operation
φ(ψ(IM,I∗M)) in Algorithm 19 is the set IM itself if every set in I∗M is a superset of a set in IM.

4.5 Experimental evaluation

The main aim of our experiments in this chapter is to compare the scalability of MIND2 with that
of FIND2. That is our focus because FIND2 is developed to reduce the number of IND candidates
required by the approach of MIND. Although ZIGZAG is also designed to handle long INDs, we
limited our experiments to FIND2 because, as discussed in Sections 4.1 and 4.6, FIND2 and ZIGZAG

approach the n-ary IND discovery problem from similar directions and have many properties in
common.

4.5.1 Setup

Datasets The conducted experiments are divided into three groups, where each group has its own
dataset described in the corresponding paragraph of the following subsection. In general, the number

104 Discovering Maximum Inclusion Dependencies without Candidate Generation

of rows varies between 500,000 and 16,000,000 rows. The other important variable that has a big
impact on the scalability of discovering the n-ray INDs between two relations is the number of valid
unary INDs. The number of valid unary INDs in these experiments varies between 8 and 19 unary
INDs over the corresponding table pairs.

Experimental conditions We performed the experiments on Windows 7 Enterprise system with
an Intel Core i5-3470 (Quad Core, 3.20 GHz CPU) and 8 GB RAM. We used Oracle 11g as the
database server installed on the same machine. We implemented both algorithms in 64-bit Java 7. We
implemented FIND2 based on Koeller and Rundensteiner [2002]. For MIND2, we set the minimum
Java heap size to 4 GB and the maximum to 6 GB. While for FIND2, we set the Java stack size to 4 GB.
FIND2 validates IND candidates by applying the SQL query proposed in DeMarchi et al. [2009].

4.5.2 Evaluation of the performance

Experiments of Group 1 The purpose of these experiments is to compare the scalability of MIND2

with that of FIND2 using the real-word dataset MUSICBRAINZ available at https://musicbrainz.org.
MUSICBRAINZ is an open music encyclopedia that collects music metadata and makes them available
to the public. MUSICBRAINZ contains 27 GB of data. It contains 178 non-empty tables (relations)
with 1053 non-empty columns (attributes). The dataset has a total of 44,803 valid unary INDs. We
detected pairs of tables where there is at least one valid n-ary IND with size greater than 2 between
the tables of each pair. The number of tuples varies between 500,000 and 1,000,500 tuples. The
results of these experiments are presented in Table 4.4. The acronym „TP.” stands for table pair. The
left part of Table 4.4 shows some statistics about detected INDs: the number of valid unary INDs
(|Ir→s|), the number of detected maximum INDs (|IM|), the size of the longest maximum INDs (nmax)
accompanied by their number ((x Nr.)), and the size of shortest maximum INDs (nmin) accompanied
by their number ((x Nr.)).

The right part of Table 4.4 shows the needed time (in minutes) by MIND2 and FIND2 for detecting
the valid INDs, respectively. The acronym „o.o.M.” refers to out of memory exception. In most of
these experiments, MIND2 outperforms FIND2 significantly. Furthermore, they show that MIND2’s
scalability, on the contrary to that of FIND2, is robust and not sensitive to the high number of small
valid INDs. The reason why FIND2 terminates with an out of memory exception is the complexity
of hypergraphs created by FIND2. If one of these hypergraphs is not sparse (irreducible), then the
hyperclique-finding subroutine presented in Koeller and Rundensteiner [2002] attempts to simplify the
corresponding hypergraph by removing hyperedges from it. The removing of hyperedges performed
by this subroutine of FIND2 is not defined deterministically. This behavior causes a lot of recursive
calls and consumes a huge amount of memory. FIND2 needed less time than MIND2 only for the table
pair 5 and 7, respectively. This is because the created hypergraphs for these table pairs are sparse,
respectively.

https://musicbrainz.org

4.5 Experimental evaluation 105

Table 4.4 Comparing MIND2’s runtime with FIND2’s runtime using MUSICBRAINZ database (o.o.M.
= out of memory, m = minutes)

TP. |Ir→s| |IM| nmax (x Nr.) nmin (x Nr.)

1 19 75 5 (x 2) 2 (x 4)

2 17 25 3 (x 13) 2 (x 12)

3 15 28 3 (x 17) 2 (x 11)

4 15 56 3 (x 56) -

5 14 28 3 (x 20) 2 (x 8)

6 13 23 3 (x 6) 2 (x 17)

7 12 26 3 (x 19) 2 (x 7)

8 12 11 3 (x 11) -

TP. MIND2 FIND2

1 184 m o.o.M. after 250 m

2 4 m o.o.M. after 40 m

3 2 m o.o.M. after 33 m

4 1.5 m o.o.M. after 322 m

5 15 m 4 m

6 15 m o.o.M. after 33 m

7 22 m 6 m

8 11 m 30 m

Experiments of Group 2 The purpose of these experiments is to compare MIND2’s performance
with the performance of the best case for FIND2. The best case for FIND2 is when FIND2 needs to
build only the 2-hypergraph and then finds only one clique representing a valid IND. This happens
for example when the database contains only one valid IND σ of size n > 2. In this case, FIND2

needs n× (n−1)/2 database access to enumerate the valid binary INDs and one access to validate
the clique.

To demonstrate this case, we generated two synthetic databases DB 1 and DB 2. Both databases
contain 16,000,000 tuples. DB 1 contains one valid maximum IND in size 9, while DB 2 contains
one valid maximum IND in size 10. The results of these experiments are presented in Table 4.5 (rows
1 and 2 in each part of Table 4.5). FIND2’s runtime is dominated by the runtime of the required SQL
queries for enumerating the valid binary INDs. Therefore, MIND2 is up to 8x faster than FIND2.

Experiments of Group 3 The purpose of these experiments is to show that in some cases FIND2

needs the same exponential number of database accesses as needed by MIND’s approach. Let
σ = {u1, . . . ,un} be an invalid n-ary IND with the property that every (n− 1)-ary IND contained
in σ is a valid IND. In this case, FIND2 builds n− 2 k-hypergraphs (2 ≤ k ≤ n− 1) where every
k-hypergraph has

(n
k

)
edges and contains only the same clique, namely {u1, . . . ,un}. Thus, FIND2

needs
(n

2

)
+ · · ·+

(n
n−1

)
+(n− 1) = 2n− 3 SQL queries to discover the n valid (n− 1)-ary INDs

contained in σ .
To illustrate this case, we also generated two synthetic databases DB 3 and DB 4, where every

database has 10,000,000 tuples in average. DB 3 contains 8 valid INDs in size 8, while DB 4 contains
9 valid INDs in size 9. Table 4.5 (rows 3 and 4 in each part of this table) presents the results of these
experiments. The FIND2’s runtime is dominated by the exponential number of the database accesses

106 Discovering Maximum Inclusion Dependencies without Candidate Generation

Table 4.5 Results of the experiments in groups 2 and 3 (# = number of, m = minutes)

DB |IM| nmax (x Nr.)

1 1 9 (x 1)

2 1 10 (x 1)

3 8 8 (x 8)

4 9 9 (x 9)

#DB-Accesses Runtime

DB FIND2 MIND2 FIND2 MIND2

1 37 18 57 m 11 m

2 46 20 100 m 12 m

3 509 18 263 m 9.5 m

4 1021 20 906 m 11.5 m

needed for the validation of the IND candidates. Therefore, MIND2 is much more (up to 82x) faster
than FIND2.

4.6 Related work

DeMarchi et al. [2002, 2009] presented MIND that applies the levelwise approach to generate IND
candidates (see Subsection 1.8.1). MIND generates all (k+1)-IND candidates from the valid k-INDs
and the valid unary INDs. It is based on the view that the validity of σ1 = R[A1, . . . ,Ak]⊆ S[B1, . . . ,Bk]

and σ2 = R[Ak+1]⊆ S[Bk+1] is a necessary but not sufficient condition for σ = R[A1, . . . ,Ak,Ak+1]⊆
S[B1, . . . , Bk,Bk+1] to be valid. So, if σ1 or σ2 is invalid, then it is impossible for σ to be valid. In this
case, σ is pruned and no testing for its validity is necessary. In the other case, if both σ1 and σ2 are
valid, then σ has a chance to be valid and therefore becomes a candidate of size k+1. This candidate
is then validated against the database. After Generating and testing all (k+1)-ary IND candidates,
MIND generates and tests the (k+2)-ary IND candidates.

DeMarchi and Petit [2003] developed the ZIGZAG algorithm based on borders of theories deve-
loped by Mannila and Toivonen [1997]. Initially and for a k specified by the user, ZIGZAG initializes
the positive border and the negative border by applying an adaptation of the levelwise algorithm MIND

until the level k is reached. Furthermore, ZIGZAG introduces the optimistic positive border computed
by finding the minimal hypergraph traversals in the hypergraph generated from the negative border.
The algorithm iteratively updates the three borders as long as the optimistic positive border contains
INDs that are not contained in the positive border. Every updating process combines a pessimistic
bottom-up search with an optimistic top-down search. In the bottom-up search, ZIGZAG validates the
IND candidates against the database. In the top-down search, ZIGZAG estimates the distance between
the invalid INDs and the positive border by counting the number of tuples that do not satisfy these
invalid INDs.

4.7 Conclusion and future work 107

Koeller and Rundensteiner [2002, 2003] proposed FIND2 that begins by exhaustively validating
the unary and binary INDs, thereby forming a 2-uniform hypergraph using the valid unary INDs
as nodes and the valid binary INDs as edges. Then, FIND2 proceeds in stages enumerated by
k = 2,3, In each stage k, all hypercliques in the k-hypergraph are identified by HYPERCLIQUE
algorithm [Koeller and Rundensteiner, 2002], where every hyperclique represents an IND candidate.
Next, IND candidates are checked for validity in the database. Each invalid IND corresponding to
a hyperclique in the k-hypergraph is broken into all (k+ 1)-ary INDs contained in it. Afterward,
the (k+1)-ary INDs form the edges of the (k+1)-hypergraph. Edges corresponding to the invalid
(k+1)-ary INDs are removed from the (k+1)-hypergraph. The process is repeated for increasing k
until no new cliques are found.

A common problem with the principle of candidate generation, applied by MIND, ZIGZAG, and
FIND2, is the poor scalability in the length of the longest valid IND in the dataset as the validation of
an n-ary IND (n > 1) may first require checking all (exponentially many in n) INDs implied by it.

To this end, we devised MIND2 [Shaabani and Meinel, 2016], the first algorithm to discover n-ary
INDs without candidate generation.

4.7 Conclusion and future work

In this chapter, we developed novel characterizations of the maximum inclusion dependencies. We
achieved these characterizations by defining operations on the unary IND coordinates–it is also a new
concept introduced in this chapter. Applying these operations on the unary IND coordinates enables
the inference of the maximum inclusion dependencies without any candidate generation–this has a
big impact on the scalability of discovering long n-ary INDs..

One possible implementation of the developed principles for detecting the maximum INDs is
MIND2, which has been presented in this chapter. MIND2 generates the unary IND coordinates by
accessing the database only 2 × the number of valid uINDs. This means that MIND2 has eliminated
the exponential number of database accesses needed by the other algorithms. The experimental
evaluations showed that MIND2 outperforms FIND2 significantly and that MIND2’s scalability is not
influenced by a high number of small valid INDs in contrast to FIND2’s scalability.

The work is the main milestone for further research on how to develop a distributed version of
MIND2 to parallelize both the generation of the unary IND coordinates and the computation of the
maximum INDs. A distributed implementation has to reduce the dependence of MIND2’s performance
on the number of tuples.

Chapter 5

Conclusion

Inclusion dependencies express redundancies between datasets. Such redundancies are increasingly
common, as more data is produced, gathered, and stored by many applications. Any effort to combine
or link such data must rely on knowledge of inclusion dependencies (INDs).

In this thesis, we developed three novel algorithms for discovering INDs: S-INDD++ for discove-
ring unary INDs (uINDs), a system for updating uINDs in dynamic data, and MIND2 for discovering
the maximum INDs without candidate generation.

S-INDD++ [Shaabani and Meinel, 2018b] significantly outperforms existing algorithms for
discovering uINDs by eliminating their shortcomings. In fact, experiments conducted on large
datasets with thousands of attributes and more than 200 million tuples showed that S-INDD++ reduces
the runtime of the state-of-the-art algorithm [Papenbrock et al., 2015] by up 50 %.

S-INDD++ is based on a new attribute clustering concept from which all uINDs are efficiently
derivable [Shaabani and Meinel, 2015]. The efficiency of this inference is articulated in the elimination
of all redundant intersection operations caused by the generation of uINDs from an inverted index
applied by other algorithms in the related work. The experimental evaluation of the attribute clustering
showed that the reduction in the intersection operations is up to 99.999 %.

S-INDD++ applies a new partitioning strategy that divides the dataset into disjoint subsets in
different sizes to enable pruning a large number of useless attributes in early phases of the detection
process by processing the first partitions of smaller sizes. In this regard, useless attributes are those
attributes that are not a part of any IND in the given dataset. Based on the attribute clustering of
a partition, S-INDD++ determines which attributes to be excluded from processing the subsequent
partitions. S-INDD++ computes the attribute clustering of the entire dataset as the union of all clusters
of all partitions. When a partition contains values of an attribute, they are divided into sorted subsets
stored in a certain format in the repository representing the partition. If an attribute is not discarded
by the processing of a previous partition, S-INDD++ completes sorting its values in the partition
currently processed using an adaption of the external merge-sort algorithm; otherwise, S-INDD++
ignores the values. In this way, S-INDD++ reduces the time needed for sorting the values of the
useless attributes. Having the value subset of each active attribute sorted in the current partition is

110 Conclusion

required for generating the attribute clustering of that partition. S-INDD++ generates the attribute
clustering of each partition by calling S-INDD.

S-INDD [Shaabani and Meinel, 2015] has solved the scalability problem of SPIDER [Bauckmann
et al., 2006]. S-INDD can be configured to present SPIDER as a special case of it. S-INDD is a
composite of configurable computing iterations, in each of which S-INDD controls the number of
attributes that have to be aggregated to generate the clusters gradually. This flexibility makes S-
INDD scale well when the number of attributes increases considerably. Experiments showed that by
increasing the number of attributes from 6000 to 7000, the runtime of SPIDER increases by 38 %,
while the runtime of S-INDD increases by only one percent.

Based on the attribute clustering, the first approach for incrementally updating uINDs in frequently
changing datasets has been developed in the thesis [Shaabani and Meinel, 2017, 2018a]. In this regard,
the attribute clustering is augmented with new operators applied to the clusters after each update of the
dataset. This means that the incremental update of uINDs is reduced to the problem of incrementally
updating the attribute clustering. The justification for this reduction is the efficiency of inferring the
uINDs from the clusters after an update of the data. Indexed data structures, caching strategies, and
algorithms are designed for an efficient implementation of the cluster operators. A comprehensive
evaluation conducted on large datasets with hundreds of attributes and more than one hundred million
tuples has shown that the incremental update reduces the runtime of a complete rediscovery by up
to 99.9996 %.

To initialize the data structures when the incremental discovery (i.e., the incremental update) has
to start with a large legacy dataset, an extended version of S-INDD is developed. A sharing-nothing
architecture is designed to scale out the incremental discovery of unary inclusion dependencies.
Moreover, an approach to incrementally discovering approximate uINDs is suggested.

All existing algorithms for discovering n-ary INDs are based on the principle of candidate
generation–a common problem with this principle is the poor scalability in the size of the largest
valid inclusion dependency since validation of an IND of a size n greater than one might require
checking all INDs (exponentially many in n) implied by it. To solve this problem, the thesis developed
MIND2 [Shaabani and Meinel, 2016], the first algorithm for discovering n-ary INDs without candidate
generation. MIND2 is an implementation of a novel mathematical framework developed in the thesis
for inferring the maximum inclusion dependencies from which all other n-ary INDs are derivable. The
framework characterizes the maximum inclusion dependencies as the result of operations defined on
the uIND coordinates–a new concept introduced in the thesis. For generating the uINDs coordinates,
MIND2 needs only 2 × the number of valid uINDs database accesses. The experimental evaluation
conducted on real and synthetic dataset has showed that MIND2 is more scalable and effective than
graph-based algorithms like FIND2.

The performance of exhaustively discovering n-ary INDs suffers from dimensionality curse–it
depends not only on the number of valid unary INDs, but, for the most part, also on the number
of tuples. MIND2 eliminates the exponential number of database accesses, but its performance is
bounded by the quadratic number of tuples. Therefore, there is still a need for further research on

111

how to extend and implement our framework for the inference of the maximum INDs in such a way
that scales in the two dimensions of the problem–the number of tuples and the size of the largest
maximum IND. Since MIND2 is decoupled from accessing the database after the generation of unary
IND coordinates, one promising direction is to develop a distributed execution of MIND2 to scale the
computation in the number of tuples.

Bibliography

Ziawasch Abedjan, Jorge-Arnulfo Quiané-Ruiz, and Felix Naumann. Detecting unique column
combinations on dynamic data. In IEEE 30th International Conference on Data Engineering,
Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 1036–1047, 2014.

Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational data: A survey. The VLDB
Journal, 24(4):557–581, August 2015. ISSN 1066-8888.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwar Dayal, Michael
Franklin, Johannes Gehrke, Laura Haas, Alon Halevy, Jiawei Han, H. V. Jagadish, Alexandros
Labrinidis, Sam Madden, Yannis Papakonstantinou, Jignesh M. Patel, Raghu Ramakrishnan,
Kenneth Ross, Cyrus Shahabi, Dan Suciu, Shiv Vaithyanathan, and Jennifer Widom. Challenges
and opportunities with big data: A white paper prepared for the computing community consortium
committee of the computing research association. Technical report, 2012. URL http://cra.org/ccc/
resources/ccc-led-whitepapers/. Accessed on 19.10.2017.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large
databases. In VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, pages 487–499, 1994.

Jana Bauckmann. Dependency Discovery for Data Integration. PhD thesis, Hasso Plattner Institute at
the University of Potsdam, 2013. URL http://opus.kobv.de/ubp/volltexte/2013/6664/. Accessed on
9.01.2019.

Jana Bauckmann, Ulf Leser, and Felix Naumann. Efficiently computing inclusion dependencies
for schema discovery. In 22nd International Conference on Data Engineering Workshoops
(ICDEW’06), pages 2–2, 2006.

Jana Bauckmann, Ziawasch Abedjan, Ulf Leser, Heiko Müller, and Felix Naumann. Discovering
conditional inclusion dependencies. In CIKM, pages 2094–2098. ACM, 2012.

Siegfried Bell and Peter Brockhausen. Discovery of data dependencies in relational databases.
Technical report, Universität Dortmund, 1995.

Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. The parameterized complexity of depen-
dency detection in relational databases. In 11th International Symposium on Parameterized and
Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, pages 6:1–6:13, 2016.

Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional
functional dependencies for data cleaning. In Proceedings of the 23rd International Conference on
Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages
746–755, 2007.

http://cra.org/ccc/resources/ccc-led-whitepapers/
http://cra.org/ccc/resources/ccc-led-whitepapers/
http://opus.kobv.de/ubp/volltexte/2013/6664/

114 Bibliography

Loreto Bravo, Wenfei Fan, and Shuai Ma. Extending dependencies with conditions. In Proceedings
of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007, pages 243–254, 2007.

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. Relaxed functional dependencies - A
survey of approaches. IEEE Trans. Knowl. Data Eng., 28(1):147–165, 2016.

Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies and their
interaction with functional dependencies. Journal of Computer and System Sciences, 28(1):29–59,
1984.

Marco A. Casanova, Luiz Tucherman, and Antonio L. Furtado. Enforcing inclusion dependencies
and referencial integrity. In Proceedings of the 14th International Conference on Very Large Data
Bases, VLDB ’88, pages 38–49, San Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.
ISBN 0-934613-75-3.

Jianer Chen and Fenghui Zhang. On product covering in 3-tier supply chain models: Natural complete
problems for W[3] and W[4]. Theortical Computer Science, 363(3):278–288, 2006.

Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved parameterized upper bounds for vertex cover. In
Mathematical Foundations of Computer Science 2006, 31st International Symposium, MFCS 2006,
Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings, volume 4162 of Lecture Notes
in Computer Science, pages 238–249. Springer, 2006.

Edgar Frank Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):
377–387, 1970.

Edgar Frank Codd. Extending the database relational model to capture more meaning. ACM Trans.
Database Syst., 4(4):397–434, 1979.

Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. Improving data quality: Consistency
and accuracy. In Proceedings of the 33rd International Conference on Very Large Data Bases,
University of Vienna, Austria, September 23-27, 2007, pages 315–326, 2007.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

Shirshanka Das, Chavdar Botev, Kapil Surlaker, Bhaskar Ghosh, Balaji Varadarajan, Sunil Nagaraj,
David Zhang, Lei Gao, Jemiah Westerman, Phanindra Ganti, Boris Shkolnik, Sajid Topiwala,
Alexander Pachev, Naveen Somasundaram, and Subbu Subramaniam. All aboard the databus!:
Linkedin’s scalable consistent change data capture platform. In ACM Symposium on Cloud
Computing, SOCC ’12, San Jose, CA, USA, October 14-17, 2012, page 18, 2012.

Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav Shkapenyuk. Mining database
structure; or, how to build a data quality browser. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin, June 3-6, 2002, pages
240–251, 2002.

DB-ENGINES. DBMS popularity broken down by database model. Technical report, 2019. URL
https://db-engines.com/en/ranking_categories. Accessed on 8.01.2019.

Fabien DeMarchi and Jean-Marc Petit. Zigzag: a new algorithm for mining large inclusion dependen-
cies in database. In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM
2003), 19-22 December 2003, Melbourne, Florida, USA, pages 27–34, 2003.

https://db-engines.com/en/ranking_categories

Bibliography 115

Fabien DeMarchi and Jean-Marc Petit. Approximating a set of approximate inclusion dependencies.
In Intelligent Information Processing and Web Mining, Proceedings of the International IIS:
IIPWM’05 Conference held in Gdansk, Poland, June 13-16, 2005, pages 633–640, 2005.

Fabien DeMarchi, Stéphane Lopes, and Jean-Marc Petit. Efficient algorithms for mining inclusion
dependencies. In Advances in Database Technology - EDBT 2002, 8th International Conference
on Extending Database Technology, Prague, Czech Republic, March 25-27, Proceedings, pages
464–476, 2002.

Fabien DeMarchi, Stéphane Lopes, and Jean-Marc Petit. Unary and n-ary inclusion dependency
discovery in relational databases. J. Intell. Inf. Syst., 32(1):53–73, 2009.

Evoke Software. Data profiling and mapping. The essential first step in data migration and in-
tegration projects. Technical report, 2000. URL http://ciains.info/elearning/Solutions/ANew/
DataMigrationFirstSteps.pdf. Accessed on 20.08.2018.

Wenfei Fan. Dependencies revisited for improving data quality. In Proceedings of the Twenty-Seventh
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2008,
June 9-11, 2008, Vancouver, BC, Canada, pages 159–170, 2008.

Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record matching rules. PVLDB,
2(1):407–418, 2009.

Wenfei Fan, Jianzhong Li, Nan Tang, and Wenyuan Yu. Incremental detection of inconsistencies
in distributed data. In IEEE 28th International Conference on Data Engineering (ICDE 2012),
Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, pages 318–329, 2012.

Patrick C. Fischer, Lawrence V. Saxton, Stan J. Thomas, and Dirk Van Gucht. Interactions between
dependencies and nested relational structures. Journal of Computer and System Sciences, 31(3):
343–354, 1985.

Peter A. Flach and Iztok Savnik. Database dependency discovery: A machine learning approach. AI
Commun., 12(3):139–160, 1999.

Seymour Ginsburg and Richard Hull. Order dependency in the relational model. Theor. Comput. Sci.,
26:149–195, 1983.

Lukasz Golab, Howard J. Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. On generating near-
optimal tableaux for conditional functional dependencies. PVLDB, 1(1):376–390, 2008.

Lukasz Golab, Howard J. Karloff, Flip Korn, Avishek Saha, and Divesh Srivastava. Sequential
dependencies. PVLDB, 2(1):574–585, 2009.

Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. Incremental record linkage. PVLDB, 7(9):
697–708, 2014.

Jarek Gryz. Query folding with inclusion dependencies. In Proceedings of the Fourteenth International
Conference on Data Engineering, Orlando, Florida, USA, February 23-27, 1998, pages 126–133,
1998.

Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: Problems, techniques,
and applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incrementally.
In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
Washington, DC, USA, May 26-28, 1993., pages 157–166, 1993.

http://ciains.info/elearning/Solutions/ANew/DataMigrationFirstSteps.pdf
http://ciains.info/elearning/Solutions/ANew/DataMigrationFirstSteps.pdf

116 Bibliography

Marc Gyssens. Database dependencies. In Encyclopedia of Database Systems, pages 704–708. 2009.

Sven Hartmann and Sebastian Link. Multi-valued dependencies in the presence of lists. In PODS,
pages 330–341. ACM, 2004.

Sven Hartmann and Sebastian Link. On inferences of full hierarchical dependencies. In ACSC,
volume 62 of CRPIT, pages 69–78. Australian Computer Society, 2007.

Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: an efficient algorithm for
discovering functional and approximate dependencies. Comput. J., 42(2):100–111, 1999.

Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga. CORDS: automatic
discovery of correlations and soft functional dependencies. In SIGMOD Conference, pages 647–658.
ACM, 2004.

Martti Kantola, Heikki Mannila, Kari-Jouko Räihä, and Harri Siirtola. Discovering functional and
inclusion dependencies in relational databases. Int. J. Intell. Syst., 7(7):591–607, 1992.

Benjamin Kille, Frank Hopfgartner, Torben Brodt, and Tobias Heintz. The plista dataset. In
Proceedings of the 2013 International News Recommender Systems Workshop and Challenge,
NRS ’13, pages 16–23, 2013. ISBN 978-1-4503-2302-4.

Jyrki Kivinen and Heikki Mannila. Approximate inference of functional dependencies from relations.
Theor. Comput. Sci., 149(1):129–149, 1995.

Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable,
and Maintainable Systems. O’Reilly, 2016.

Andreas Koeller. Integration of Heterogeneous Databases: Discovery of Meta-Information and
Maintenance of Schema-Restructuring Views. PhD thesis, Worcester Polytechnic Institute, MA,
USA, 2002. URL https://digitalcommons.wpi.edu/etd-dissertations/116. Accessed on 9.01.2019.

Andreas Koeller and Elke A. Rundensteiner. Discovery of high-dimensional inclusion dependen-
cies. Technical Report WPI-CS-TR-02-15, Worcester Polytechnic Institute, 2002. Accessed on
9.01.2019.

Andreas Koeller and Elke A. Rundensteiner. Discovery of high-dimensional inclusion dependencies.
In Proceedings of the 19th International Conference on Data Engineering, March 5-8, 2003,
Bangalore, India, pages 683–685, 2003.

Andreas Koeller and Elke A. Rundensteiner. Heuristic strategies for inclusion dependency discovery.
In On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, OTM Confed-
erated International Conferences, Agia Napa, Cyprus, October 25-29, 2004, Proceedings, Part II,
pages 891–908, 2004.

Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian. Metric functional
dependencies. In Proceedings of the 25th International Conference on Data Engineering, ICDE
2009, March 29 2009 - April 2 2009, Shanghai, China, pages 1275–1278, 2009.

Sebastian Kruse, Anja Jentzsch, Thorsten Papenbrock, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and
Felix Naumann. Rdfind: Scalable conditional inclusion dependency discovery in RDF datasets. In
SIGMOD Conference, pages 953–967. ACM, 2016.

https://digitalcommons.wpi.edu/etd-dissertations/116

Bibliography 117

Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, Moritz Finke, Manuel Hegner, Martin
Zabel, Christian Zöllner, and Felix Naumann. Fast approximate discovery of inclusion dependen-
cies. In Datenbanksysteme für Business, Technologie und Web (BTW 2017), 17. Fachtagung des
GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 6.-10. März 2017, Stuttgart,
Germany, Proceedings, pages 207–226, 2017.

Mark Levene and Millist W. Vincent. Justification for inclusion dependency normal form. IEEE
Trans. Knowl. Data Eng., 12(2):281–291, 2000.

Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies from data- a review.
IEEE Transactions on Knowledge and Data Engineering, 24(2):251–264, 2012. ISSN 1041-4347.

Stéphane Lopes, Jean-Marc Petit, and Farouk Toumani. Discovering interesting inclusion dependen-
cies: application to logical database tuning. Information Systtems, 27(1):1–19, 2002.

Michael J. Maher. Constrained dependencies. Theoretical Computer Science, 173(1):113–149, 1997.

David Maier. The Theory of Relational Databases. Computer Science Press, 1983.

Heikki Mannila and Hannu Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov., 1(3):241–258, January 1997. ISSN 1384-5810.

Mozhgan Memari, Sebastian Link, and Gillian Dobbie. SQL data profiling of foreign keys. In
Conceptual Modeling - 34th International Conference, ER 2015, Stockholm, Sweden, October
19-22, 2015, Proceedings, pages 229–243, 2015.

Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Ling-Ling Yan, C. T. Howard Ho, Ronald
Fagin, and Lucian Popa. The clio project: Managing heterogeneity. SIGMOD Record, 30(1):78–83,
2001.

Felix Naumann. Data profiling revisited. SIGMOD Record, 42(4):40–49, 2013.

Sam Newman. Building microservices - designing fine-grained systems, 1st Edition. O’Reilly, 2015.

Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994. ISBN 978-0-201-
53082-7.

Thorsten Papenbrock and Felix Naumann. A hybrid approach to functional dependency discovery. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 821–833, 2016.

Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix Naumann. Divide &
conquer-based inclusion dependency discovery. PVLDB, 8(7):774–785, 2015.

Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches. IEEE Data
Engineering Bulletin, 23(4):3–13, 2000.

David Reinsel, John Gantz, and John Rydning. Data age 2025: The evolution of data to life-
critical. Technical report, 2017. URL http://www.seagate.com/www-content/our-story/trends/files/
Seagate-WP-DataAge2025-March-2017.pdf. Online; accessed on 10.09.2018.

Jan Renz, Gerado Navarro-Suarez, Rowshan Sathi, Thomas Staubitz, and Christoph Meinel. Enabling
schema agnostic learning analytics in a service-oriented MOOC platform. In Proceedings of the
Third ACM Conference on Learning @ Scale, L@S 2016, Edinburgh, Scotland, UK, April 25 - 26,
2016, pages 137–140, 2016.

http://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
http://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf

118 Bibliography

Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, and Ulf Leser. A machine
learning approach to foreign key discovery. In 12th International Workshop on the Web and
Databases, WebDB 2009, Providence, Rhode Island, USA, June 28, 2009, 2009.

Barna Saha and Divesh Srivastava. Data quality: The other face of big data. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages
1294–1297, 2014.

Iztok Savnik and Peter A. Flach. Discovery of multivalued dependencies from relations. Intell. Data
Anal., 4(3-4):195–211, 2000.

Ingo Schmitt and Gunter Saake. A comprehensive database schema integration method based on the
theory of formal concepts. Acta Informatica, 41(7-8):475–524, 2005.

Nuhad Shaabani and Christoph Meinel. Scalable inclusion dependency discovery. In Database Systems
for Advanced Applications - 20th International Conference, DASFAA 2015, Hanoi, Vietnam, April
20-23, 2015, Proceedings, Part I, pages 425–440, 2015.

Nuhad Shaabani and Christoph Meinel. Detecting maximum inclusion dependencies without candidate
generation. In Database and Expert Systems Applications - 27th International Conference, DEXA
2016, Porto, Portugal, September 5-8, 2016, Proceedings, Part II, pages 118–133, 2016.

Nuhad Shaabani and Christoph Meinel. Incremental discovery of inclusion dependencies. In
Proceedings of the 29th ACM International Conference on Scientific and Statistical Database
Management, SSDBM 2017, Chicago, IL, USA, June 27-29, 2017, pages 2:1–2:12, 2017.

Nuhad Shaabani and Christoph Meinel. Incrementally updating unary inclusion dependencies in
dynamic data. Journal of Distributed and Parallel Databases, pages 1–44, August 2018a. ISSN
0926-8782. URL https://doi.org/10.1007/s10619-018-7233-5.

Nuhad Shaabani and Christoph Meinel. Improving the efficiency of inclusion dependency detec-
tion. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-26, 2018, pages 207–216, 2018b.

Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, David Callies, Abhishek Choudhary, Laurent
Demailly, Thomas Fersch, Liat Atsmon Guz, Andrzej Kotulski, Sachin Kulkarni, Sanjeev Kumar,
Harry C. Li, Jun Li, Evgeniy Makeev, Kowshik Prakasam, Robbert van Renesse, Sabyasachi Roy,
Pratyush Seth, Yee Jiun Song, Benjamin Wester, Kaushik Veeraraghavan, and Peter Xie. Wormhole:
Reliable pub-sub to support geo-replicated internet services. In 12th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015,
pages 351–366, 2015.

Kenneth P. Smith, Leonard J. Seligman, Arnon Rosenthal, Chris Kurcz, Mary Greer, Catherine
Macheret, Michael Sexton, and Adric Eckstein. "big metadata": The need for principled metadata
management in big data ecosystems. In Proceedings of the Third Workshop on Data analytics
in the Cloud, DanaC 2014, June 22, 2014, Snowbird, Utah, USA, In conjunction with ACM
SIGMOD/PODS Conference, pages 13:1–13:4, 2014.

Shaoxu Song and Lei Chen. Differential dependencies: Reasoning and discovery. ACM Trans.
Database Syst., 36(3):16:1–16:41, 2011.

Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Srivastava. Effective and
complete discovery of order dependencies via set-based axiomatization. PVLDB, 10(7):721–732,
2017.

https://doi.org/10.1007/s10619-018-7233-5

Bibliography 119

Pauray S. M. Tsai, Chih-Chong Lee, and Arbee L. P. Chen. An efficient approach for incremental
association rule mining. In Ning Zhong and Lizhu Zhou, editors, Methodologies for Knowledge
Discovery and Data Mining, pages 74–83, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
ISBN 978-3-540-48912-2.

Shyue-Liang Wang, Wen-Chieh Tsou, Jiann-Horng Lin, and Tzung-Pei Hong. Maintenance of
Discovered Functional Dependencies: Incremental Deletion, pages 579–588. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-44999-7.

Hong Yao and Howard J. Hamilton. Mining functional dependencies from data. Data Mining and
Knowledge Discovery, 16(2):197–219, Apr 2008. ISSN 1573-756X.

Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc, and Divesh Srivastava.
On multi-column foreign key discovery. PVLDB, 3(1):805–814, 2010.

Selbstständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Doktorarbeit mit dem Titel:

On Discovering and Incrementally Updating Inclusion Dependencies

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.
Ferner wurde die vorliegende Arbeit an keiner anderen Hochschule eingereicht.

Potsdam, den 30. Januar 2019

Nuhad Shaabani

	Title
	Imprint

	Contents
	1 Introduction and Background
	1.1 Data profiling
	1.2 Data profiling and data mining
	1.3 Basic notions of the relational data model
	1.4 Data dependencies
	1.5 Inclusion dependency
	1.6 Time complexity of inclusion dependency discovery
	1.7 Logical implication of inclusion dependencies
	1.8 Research questions and contributions
	1.8.1 Discovering n-ary inclusion dependencies
	1.8.2 Discovering unary inclusion dependencies
	1.8.3 Incrementally updating inclusion dependencies

	2 Improving the Efficiency of Inclusion Dependencies Discovery
	2.1 Problem statement
	2.2 Attribute clustering
	2.3 Attribute clustering and data partitioning
	2.4 S-indd++
	2.4.1 Overall workflow
	2.4.2 Computing the partitions
	2.4.3 Postprocessing of a partition
	2.4.4 Generating the clusters

	2.5 Experimental evaluation
	2.5.1 Setup
	2.5.2 The effectiveness of the attribute clustering
	2.5.3 Evaluation of the partitioning strategy
	2.5.4 Evaluation of the performance
	2.5.5 Evaluation of the scalability in the number of attributes

	2.6 Related work
	2.7 Conclusion and future work

	3 Incrementally Updating Inclusion Dependencies
	3.1 Problem statement
	3.2 Use cases for incrementally updating INDs
	3.2.1 Query optimization
	3.2.2 Schema update and data linkage
	3.2.3 Data integration

	3.3 Workflow overview
	3.4 Attribute clustering operations
	3.4.1 Merge operator
	3.4.2 Extract operator

	3.5 Algorithms
	3.5.1 Data structures
	3.5.2 Handling insertion
	3.5.3 Handling deletion
	3.5.4 Performance analysis
	3.5.5 Initializing the data structures

	3.6 Incrementally updating approximate inclusion dependencies
	3.7 Scaling out the incremental discovery of INDs
	3.8 Experimental evaluation
	3.8.1 Setup
	3.8.2 Evaluation of the performance
	3.8.3 Evaluation of cache strategies
	3.8.4 Comparing with the static discovery
	3.8.5 Scaling the number of attributes
	3.8.6 Scaling the number of tuples

	3.9 Related work
	3.10 Conclusion and future work

	4 Discovering Maximum Inclusion Dependencies without Candidate Generation
	4.1 Problem statement
	4.2 Maximum inclusion dependency
	4.3 Principles of Mind2
	4.3.1 Principle 1
	4.3.2 Principle 2
	4.3.3 Principle 3

	4.4 Mind2
	4.4.1 Overall workflow
	4.4.2 Generating unary IND Coordinates
	4.4.3 Computing maximum INDs between R and S
	4.4.4 Computing maximum INDs between IDR = i(R) and S

	4.5 Experimental evaluation
	4.5.1 Setup
	4.5.2 Evaluation of the performance

	4.6 Related work
	4.7 Conclusion and future work

	5 Conclusion
	Bibliography

