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Introduction

Galaxies are among the most fascinating objects in the sky. Strong emission from
structures built early in the history of the universe, such as quasi-stellar objects
(QSO), give us some hints about the physical processes shaping young galaxies.
Galaxies closer to us and evolved over a longer time scale show a variety of forms,
interactions and active regions, resulting from long internal evolution and galaxy
collisions. To obtain detailed observational information, huge investments went
into powerful telescopes. But the more detailed these observations become, the
more questions appear to be answered by theory. There is also a permanent growth
of computing power for numerical experiments. This allows to include a growing
number of physical processes acting on an extended range of scales.

There are no two identical spiral galaxies in the sky - every one shows us a
different face and has its own individual history. It therefore becomes more and
more difficult for an individual theoreticians to incorporate all the detected effects
and details into one coherent large scale picture. Thus, a personal scientific contri-
bution is just a small stone in the huge puzzle of the Universe.

Observations detect magnetic fields inside and outside the Milky Way, starting
with globules (∼ 1 parsec), filaments, clouds, superbubbles, spiral arms, nearby
galaxies, superclusters, and ending with the Cosmological Universe’s Background
Surface at ∼ 8 Teraparsecs (Valleé 1997). This work is concerned with a common
property of every galaxy – the galactic global magnetic field. It was observed
to be of the same strength for both young and old galaxies. The magnetic fields
are coupled to the interstellar matter (ISM) and may be one of the causes for the
turbulence detected in the ISM.

In the first chapter I shall give a brief overview of the galactic global magnetic
field properties. The dynamo mechanism (a well-known theoretical explanation
of the global magnetic fields) will be briefly described. The success of dynamo-
amplification of the magnetic fields depends on the properties of ISM. ISM phases
and their distribution in a galactic disk, as well as the report about observed prop-
erties of the turbulent density, velocity and magnetic fields are therefore given. As
a summary of the first chapter we shall formulate the motivation for a magneto-
rotational instability (MRI) investigation in the galactic disk.

Chapter 2 is devoted to the description of observed rotation laws for the galax-
ies. The topic deserves our attention as far as the radial variation of galactic rotation
is a cause for existence of MRI. Many years of galactic rotation law studies leave
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2 Introduction

nevertheless many questions open, they will be discussed in this work.
In Chapter 3 we explain the physical mechanism of the magneto-rotational

instability. We give the simplest derivation of an instability criterion for the MRI.
Most of the previous results have been obtained for Keplerian disks. A summary
of both linear study and local simulations is given.

In Chapter 4 we give the numerical code description. The magneto-hydrodynamical
code ZeusMP has been used for 3D global simulations of the gaseous galactic
disks. There are plenty of alternative codes, therefore we have to justify our choice
for ZeusMP. The description of the model, boundary condition choice and numer-
ical difficulties are discussed as well.

Chapters 5 and 6 contain the main results and the summary.



Chapter 1

Magnetic fields of spiral galaxies

1.1 Global magnetic fields

Each spiral galaxy has both unique features and others that are common with most
other galaxies. Therefore, we shall distinguish between the features driven by a
very specific (for a given galaxy) process and features created by a common phys-
ical mechanism. The common features are:

• magnetic field strength is ' 10 µG,

• magnetic spiral arms are parallel to optical ones (if the latter are clearly
present),

• magnetic field lines have pitch angles from 10o to 40o (in plane),

• magnetic fields have mixed spiral structure (MSS) or axisymmetric spiral
structure (ASS) (bisymmetric structure is reported only for M 81),

• evidence for the magnetic quadrupole (or the mixture of it with a dipole),

• magnetic fields are concentrated in the midplane,

• significant magnetic fields exist in the very young galaxies.

We derive most of the listed features from the radio observation data for nearby
spiral galaxies, which are presented in Table 1.1 and Table 1.2 (R. Beck 2000).
The magnetic field structures are given both for face-on and edge-on objects.

A theoretical finding of the physical mechanism for the fast magnetic field
amplification is requested not only for nearby spiral galaxies. Magnetic fields of
about 1µG are observed in extremely young galaxies (Kronberg et al. 1992, Lesch
& Hanasz 2003). The magnetic fields are required to be strongly amplified on
short time-scales because of the observed magnetization of very young (0.5 Gyr)
galaxies.

The amplitude of the magnetic field is a derived and not directly observed
value. We use the fact that the energetic charged particles (cosmic rays) emit a
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4 CHAPTER 1. MAGNETIC FIELDS OF SPIRAL GALAXIES

Table 1.1: Radio polarization observations and magnetic field structures of normal
galaxies with low or moderate inclination (Beck 2000). Instruments: E: Effelsberg
100m; A: Australia Telescope Compact Array; V: Very Large Array; P: Parkes
64m; W: Westerbork Synthesis Radio Telescope. Notations: ASS: axisymmetric
spiral structure (m=0 dynamo mode) dominates; BSS: bisymmetric spiral structure
(m=1 dynamo mode) dominates; MSS: mixed modes

galaxy wavelength [cm] field structure
M33 E 21, 18, 11, 6, 2.8 spiral
M51 W 21, 6

E 6, 2.8 MSS, magneto-ionic halo,
V 20,18,6 inter-arm fields

M81 E 6, 2.8 BSS+weaker ASS,
V 20,6 inter-arm fields

M83 E 6, 2.8 MSS and ‖ bar
V 20,6, A 13 magnetic arms

M101 E 11, 6 spiral
NGC 1097 V 22, 18, 6, 3.5 ‖ gas flow, nuclear spiral
NGC 1365 V 22, 18, 6, 3.5 ‖ gas flow
NGC 1566 A 20, 13, 6 spiral, inter-arm fields
NGC 1672 A 20, 13, 6 spiral, inter-arm fields
NGC 2276 V 20,6 spiral, BSS?
NGC 2442 A 13, 6 spiral, ‖ bar
NGC 2903 E 6, 2.8 , V 18, 20 spiral
NGC 2997 V 20, 6, 3.5, A 13 spiral, ASS in inner region
NGC 3521 E 2.8 spiral
NGC 3627 E 2.8 ‖ dust line

V 6, 3.5 anomalous magnetic arm
NGC 4254 E 6, 2.8 V 20, 6, 3.5 spiral, ‖ compression region
NGC 4258 W+V 21 E 6, 2.8 ‖ anomalous arm

V 20, 6, 3.5 planar spiral jet?
NGC 4414 V 6, 3.5 spiral, MSS?
NGC 4449 E 6, 2.8 ‖ optical filament

V 6, 3.5 spiral
NGC 4535 V 22, 18, 6, 3.5 spiral
NGC 5055 E 2.8 spiral, ‖ dust filaments
NGC 6822 E 6 isolated patches
NGC 6946 E 11, 6, 2.8 spiral,

V 22, 18, 6, 3.5 MSS, magnetic arms
NGC 7479 V 22, 18, 6, 3.5 extra-planar spiral ‘jet’?
NGC 7552 A 6 spiral, ⊥ bar
IC 10 E 6 ‖ local compression region
IC 342 E 11, 6 V 20, 6, 3.5 ASS, magnetic spiral arms
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Table 1.2: Radio polarization observations and magnetic field structures of (almost)
edge-on galaxies (Beck 2000). (E, P, V, ASS, BSS: see Table 1.1)

galaxy wavelength [cm] field structure
M31 E 21, 11, 6 ASS (+ weaker BSS),

V 20, 6 spiral (inner region)
M82 V 6, 3.6 halo, radial field
M104 V 20, 6 ‖ disk
NGC 55 V 20
NGC253 P 6

V 20, 6 ‖ plane, ASS
E 6, 2.8 spurs inclined to plane

NGC 891 V 20, 6 ‖ spurs inclined to plane
E 6, 2.8
W 49

NGC 1808 V 20, 6 spurs ⊥ plane
NGC 3079 V 6 extra-planar jet?
NGC 3628 V 20, 6 ‖ plane

E 6, 2.8 spurs inclined to plane
NGC 4565 V 20, 6 ‖ plane

E 6, 2.8
NGC 4631 E 6, 2.8 ‖ plane (outer region)

V 20, 6 ⊥ plane (inner region)
V 22, 18 halo, dipolar field

NGC 4666 V 20, 6 halo, field inclined to plane
E 6, 2.8

NGC 4945 P 6 extensions ⊥ plane
NGC 5775 V 6 ‖ plane
NGC 5907 V 20

E 6 ‖ plane
NGC 7331 V 20, 6

E 6, 2.8 almost ‖ plane
Circinus A 13, 6 ⊥ northern plume
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lot of energy while spiraling around the magnetic lines within a galaxy. An in-
tensity of the synchrotron emission jsync is measured directly and related to the
strength of the magnetic field, jsync ∼ ECRB

2. If the cosmic rays can be assumed
to be in an equipartition with the magnetic fields, then by definition the cosmic ray
energy density, ECR, is proportional to B2. Therefore, the magnetic field strength
is assumed to be proportional to the intensity as B ∼ j−4

sync.
The energy density of the magnetic fieldEmag (estimated from an equipartition

with CR) is found to be in an equipartition with the turbulent kinetic energy density
ET,kin. Therefore, for spiral galaxies we employ the widely accepted equipartition
condition,

ET,kin ' Emag ' ECR. (1.1)

Usually, it is justified to estimate the equipartition magnetic field

Beq =
√
µ0ρuT, (1.2)

using the observed gas density ρ and the velocity dispersion uT =
√

〈u′2〉, which
can be measured for a galaxy. For example, for uT = 10km/s and density ρ =
10−24g/cm3 the equipartition field is 3.5×10−6G . Obviously, the magnetic fields
are too weak to affect the galactic rotation, whereas the dynamical importance on
the turbulence scales can not be neglected.

Synchrotron emission in a purely regular magnetic field should be totally po-
larized. In reality, the galactic magnetic fields have both mean and turbulent com-
ponents, B = Breg + BT. The degree of the synchrotron emission polariza-
tion is telling us about the contribution of the turbulent magnetic fields. Usually,
BT/Breg ∼ 2. Typically, the turbulent magnetic fields are dominating in the op-
tical spiral arms, whereas the regular component is typically concentrated in the
inter-arm regions (with rare exceptions).

The interpretation of the radio-polarization data of spiral galaxies reveals the
existence of large-scale magnetic fields with very specific properties. Their expla-
nation is of considerable interest. In particular, there is a problem of understanding
the relation between the particle flow and the magnetic fields. We are looking
forward to the next generation of radio telescopes, with 100 times increased sen-
sitivity, which will present to us the full wealth of magnetic structures in galaxies.
Fortunately, the power of supercomputers allow us to start already with the nu-
merical simulations, in an attempt to explain some of the problems mentioned or
even to predict some features to be observed in future with better resolution and
sensitivity.

In spite of many similarities, each galaxy shows individual traits and compli-
cation of magnetic fields patterns (spurs, spiral arms, blobs, cross-arms and axial
flows). Radio maps with higher resolution show now more details of the magnetic
structures, which seemed to be much more coherent and regular on previous maps
with less resolution.
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1.1.1 Magnetic pitch angles and field strength

The pitch angle p = tan−1(BR/Bφ) reflects the ratio of the radial to the toroidal
magnetic field components. Up to now, dynamo mechanism is the most successful
theory to explain large-scale magnetic fields up to now, although the dynamos of
αΩ-type are characterized by very small pitch angles (Section 1.2), e.g. ∼ 0.05o

(for example solar dynamo). Pitch angles of 10 − 40o are reported for nearby

Figure 1.1: Observed radial variation of field pitch angles (Beck 1993)

spiral galaxies (Fig. 1.1). The magnetic pitch angles have a tendency to decrease
outwards (Beck 1993). Typically, the regular magnetic fields repeat the optical spi-
ral pattern of a galaxy. The torus of regular magnetic fields (shown as the polarized
intensity, Fig. 1.2) of M 31 is correlated with the optical structure (Berkhuijsen et
al. 1993). The ‘arms’ of the regular magnetic field in NGC 6946 are following the
shape of the optical arms. Regular fields are reported to be about 10µG, whereas
the turbulent magnetic fields are 15µG (Beck & Hoernes 1996). M51 (Whirlpool
galaxy) is an example of a galaxy with strong density waves, bright spiral arms and
‘grand design’ structure. The magnetic field strength is about 10µG in inter-arm
regions and 30µG along the optical arms in dust lanes (Fig. 1.3). The magnetic
fields in such regions can be compressed and sheared by the gas flow in spiral arms
and bars (Elstner et al. 2000, Otmianowska-Mazur et al. 2002). Here it is not
the pitch angle but the strength of magnetic fields which remains a mystery. What
has generated the magnetic fields of, say, about ∼ 10µG between the optical spiral
arms which can be compressed along the dust lanes up to the observed values?
The question is still not answered. Further, there are the regular magnetic fields
between the optical arms. It is not quite clear how the magnetic fields are gener-
ated there. The plot of polarized intensity would give an impression of dynamo
action (because of the seemingly coherent field), but it is very probable that the
magnetic fields are not coherent. Faraday rotation pictures show the reversals of
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Figure 1.2: M31: Total intensity plus magnetic fields (top) and polarized intensity
(bottom). Credit: MPIfR Bonn (R. Beck et al.)

the radial and azimuthal magnetic field components BR and Bφ (from discussion
with A. Fletcher). Reversals on kpc scales were reported for the Milky Way in the
papers of Simard-Normandin & Kronberg (1979) for R = 8.0 kpc (confirmed by
Lyne & Smith 1989), Rand & Lyne (1994) for R = 5.5 kpc and Han et al. (2002)
for R ∼ 3 kpc. The results of Brown et al. (2003) show no evidence for reversals
in the outer Galaxy. Similarly, there are no further reports about reversals in other
nearby galaxies. In spite of uncertainties in the observations, the question of origin
and importance of magnetic field reversals is still an interesting one.

Another interesting example is NGC 4414, where the magnetic pitch angle
cannot be due to galactic radial flows (Fig. 1.4), Soida et al. 2002. NGC 4414 is a
face-on (inclination 55o) flocculent galaxy. The gas surface densities are high and
similar to those in M 51, M 100 and NGC 5055. There is evidence of dynamical
processes producing spiral structures (Thornley & Mundy 1997), yet the end result
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Figure 1.3: M51: Total intensity plus vectors of magnetic fields. Credit: MPIfR
Bonn (R. Beck et al.)

is not a grand-design spiral. The poorly organized structure in NGC 4414 may be
explained by its isolation (no companion, whereas M 51, M 100 and NGC 5055
all have companions). There is a suggestion of a rough, four-arm structure and a
ring of tightly wound arms near the center at a radius ' 2 kpc (dark-grey regions
on the Fig. 1.4). The magnetic fields have a global structure, with the regular
component 〈Breg〉 = 4 ± 1µG and the turbulent one (〈B2

T〉)−1/2 = 15 ± 4µG.
The average ratio 〈Breg〉/(〈B2

T〉)−1/2 is 0.25. The magnetic pitch angles are quite
large (40o − 45o), in a view of the absent radial flows (Soida et al. 2002). The
interesting detail is that the largest pitch angles are in the very inner part of the disk
(R < 1.4 kpc), which corresponds to the ‘rigid rotation’ part of the rotation curve
(Sakamoto 1996). As far as NGC 4414 is not a star-burst galaxy and having no
radial flows, we have to find an explanation for its large turbulent magnetic fields
and large pitch angles.

The large pitch angles are the most characteristic property of magnetic fields



10 CHAPTER 1. MAGNETIC FIELDS OF SPIRAL GALAXIES

Figure 1.4: Total power map of NGC 4414 at 8.44 GHz with polarization-vectors
superimposed onto the Hα image from Pogge (1989), see Soida et al. (2002)

in galaxies. Therefore, the galactic dynamo (if it is indeed the most powerful mag-
netic field amplification mechanism) has to be quite different from the solar/stellar
αΩ-dynamo which gives a pitch angle of about −1o (Brandenburg, Moss, Tuomi-
nen 1992).

1.1.2 Axisymmetry

Although, as a rule, the spiral structure has a non-axisymmetric geometry, the
global magnetic field is classified as axisymmetrical (ASS) if the magnetic polarity
does not reverse along the azimuth. Table 1.1 and Table 1.2 show that there are
only two examples which might be considered bisymmetric (BSS) (Beck 2000).

M 81 is the only but uncertain (from discussions with R. Beck) example of a
dominant BSS (sin(φ) variation of magnetic field directions, two arms). Another
(doubtful) example of a seemingly BSS galaxy is NGC 4631, edge-on. Dynamo
theory predicts an ASS structure to appear at first (for objects with strong shear),
while BSS is a mode which can be developed only for specific Cα, CΩ values
(where CΩ has to be small compared to Cα and the α-tensor must be anisotropic).
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Figure 1.5: M 81. Total intensity plus magnetic fields (left) and polarized intensity
(right). Credit: MPIfR Bonn (R. Beck et al.)

The dimensionless dynamo numbers Cα and CΩ are given in Section 1.2.1 and
represent the amplification of magnetic fields due to helical turbulence and to disk
rotation, respectively.

As for the edge-on galaxy NGC 4631, the maps in polarized emission give
the impression of a proper dipole, which is not a case. The map of rotation mea-
sure does not show the expected (for a dipole) changes in magnetic field direc-
tions. Therefore, instead of having a nice example of a dynamo producing the
dipole, we must suggest the strong Bz to be due to a galactic wind blown away
from star-forming regions. The comparison between the velocity diagram (Golla
& Wielebinski 1994) and the total intensity map suggests a connection between
rotation of the galaxy and its magnetic field orientation in the halo. The magnetic
fields are perpendicular to the plane only above the central rigidly rotating region.
Meanwhile, the number of known galaxies with a vertical magnetic field structure
is growing (Tüllmann et al. 2000).

M 31 (Andromeda galaxy) is the best studied ASS example. It is showing
beautifully regular magnetic fields organized in an axisymmetrical ‘ring’ structure
(Fig. 1.2). The magnetic torus turns this galaxy in to the best galactic dynamo
candidate (Beck 2000). The small pitch angles (∼ 10o) are consistent with low
SN activity observed in M 31. Nevertheless, we know nothing about its history.
For a successful dynamo operation we may suggest that there were many more of
supernovae to create a strong turbulence during last few Gyr. Actually, M 31 is
an example of an extraordinary situation in a spiral galaxy, with the ratio of the
transverse components of the regular to the turbulent magnetic fields of ≥ 1.4.

M51 (Whirlpool galaxy) as well as NGC 6949 are examples of strongly mixed
modes (MSS) (Beck 2000). The latter is an isolated spiral galaxy, without density
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Figure 1.6: NGC 4631: Total intensity plus magnetic fields. Credit: MPIfR Bonn
(R. Beck et al.)

waves. Therefore, it is another good example for applying the dynamo theory. A
certain success in modeling the dynamo-excited magnetic arms in NGC 6949 has
been obtained by Rohde & Elstner (1998).

However, for most galaxies it is more complicated to interpret the origin of the
magnetic fields then it is for M 51, M 81, M 31, NGC 4631. There is no single
opinion about preference between quadrupole or dipole symmetry with the respect
to a galactic plane. Most of Faraday rotation plots (for both face-on and inclined
galaxies) show that here should be at least a mix of both symmetries. But there are
no observed edge-on examples with a clear dipolar or quadrupolar magnetic fields.

1.1.3 Questions waiting to answer

Many questions have been already answered by dynamo theory, for example the
questions:

i) Why the magnetic fields are following the optical spiral arms?

ii) How to produce necessarily magnetic quadrupolar fields?

iii) Which structure (ASS or BSS) is resulting from theory?

However, it is doubtful, whether the following questions can be answered by dy-
namo theory alone.
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iv) How to get the mean magnetic field amplified to about 10 µG within 1–2
Gyr?

v) How to achieve the pitch angle between −10o till −40o within 1–2 Gyr?

vi) How to get the vertical magnetic fields?

The vertical magnetic fields can be supported by dynamo-driven mean-field con-
figuration, either dipolar or quadrupolar. Questions iv) and v) would be answered
completely, if it was not for the time-limit (1–2 Gyr). Only very special types of
dynamo are sufficiently fast to amplify the magnetic fields and produce the large
pitch angles (Section 1.2.2).
The following questions are addressed to the theory which should explain how to
create the turbulence:

i) How do reversals appear?

ii) Which fast mechanism is amplifying the magnetic fields in extremely young
galaxies?

iii) Which is the slope of the spectrum of the turbulent magnetic fields?

iv) Is it possible to obtain large pitch angles through the instabilities?

The Parker instability driven dynamo has been investigated by Hanasz et al. (1993,
1997, 1998, 2004). The idea of the galactic dynamo driven by galactic cosmic
rays (CRs) accelerated in supernova remnants has first appeared in Parker (1992).
Complete 3D magnetohydrodynamic simulations by Hanasz et al. (2004) contain
a network of interacting forces: the buoyancy force of CRs, the Coriolis force, the
differential rotation, and the magnetic reconnection. Parker (1992) estimated that
such a dynamo would be able to amplify the magnetic field on ∼ 108 yr; the result
of Hanasz et al. (2004) is the growth of magnetic field with the e-folding time
about 250 Myr. The resulting pitch angle is small compared to observed value, the
obtained radial magnetic field component is only one tenth of azimuthal one. The
initial azimuthal magnetic field has been pre-assumed, what leaves the question of
the galactic magnetic field origin as still open one.

1.2 The galactic dynamo

The theory of magnetohydrodynamics describes the fluid mechanics of plasma and
the behavior of its magnetic fields. Derived from Maxwell’s equations for the
electromagnetic fields and combining with the equations of hydrodynamics, we
have the following system of equations.
Conservation laws of mass,

Dρ

Dt
+ ρ∇ · u = 0, (1.3)
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of momentum,

ρ
Du

Dt
= −∇P − ρ∇Ψ + F, (1.4)

together with the induction equation

∂B

∂t
= ∇×

(

u × B − 1

4πσ
∇× B

)

. (1.5)

Ψ is the gravitational potential, and F is the Lorentz force which normally can
be split into two terms: magnetic pressure and magnetic tension. The Lagrangian
derivative D/Dt, ∇ and ∇ × B operators are given in Appendix 1. The gas
pressure, P , can be a very complicate expression, due to the different atomic and
molecular phases. The simplest case is the isothermal one, P = c2sρ (where cs is
a sound speed), for one gaseous phase. For cases with more physics included, the
equation for inner energy e should be solved

D

Dt

e

ρ
= −P∇ · u −F , (1.6)

where F describes the radiative losses. The diffusion term in the induction equa-
tion can be ignored if the diffusion time-scale is much longer than the flow time-
scale. In this case a useful picture emerges in which the magnetic field lines are
frozen into the plasma. Matter is therefore threaded on the field lines which are
advected and distorted by the flow. In the other extreme, the velocity term is small
and the induction equation becomes purely diffusive, so matter can move freely
across the field lines.

Kinematic theory is appropriate when the magnetic force only has a small effect
on the motions. The velocity solution of non-magnetic momentum equation can be
then used for the induction equation to calculate B.

In Section 1.2.1 a short introduction into the mean-field dynamo mechanism of
magnetic field amplification is given, with an overview of the successes of dynamo
theory and the remaining open questions.

1.2.1 Mean-field dynamo theory

Introduction. Dynamo theory describes how magnetic fields can be amplified
and sustained by fluid motions, in the presence of dissipation. Certain conditions
are necessary for dynamo actions, and various types of dynamos can be defined.

Let us consider the total magnetic and velocity fields as the sum of mean fields
and fluctuations

B = 〈B〉 + B′, u = 〈u〉 + u′. (1.7)

After substitution of the expressions for magnetic and velocity fields and after av-
eraging, the linearized mean-field induction equation is

∂〈B〉
∂t

= curl

(

〈u〉 × 〈B〉 + 〈u′ × B′〉 − 1

4πσ
curl〈B〉

)

. (1.8)
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The turbulent electromotive force, E = 〈u′ × B′〉, can be changed in space only
when 〈B〉 or its first derivative has been changed (see the last equation). Therefore,
the turbulent electromotive force E = 〈u′ × B′〉 is split into its non-diffusive and
diffusive components, where only terms of the first order in 〈B〉 are left:

E = α〈B〉 − ηTcurl〈B〉. (1.9)

Tensors α and ηT are determined by the turbulent field u′.
For non-mirror symmetrical turbulence we have a turbulent electromotive
force α〈B〉, which is parallel (α > 0) or antiparallel (α < 0) to the mean
magnetic field. This effect is called α-effect.

∂〈B〉
∂t

= curl

(

〈u〉 × 〈B〉 + α〈B〉 − curl〈B〉
(

1

4πσ
+ ηT

))

. (1.10)

The α and ηT tensors. Analytical expressions. To derive α and ηT tensors, one
needs to consider the induction equation for the fluctuating part of the magnetic
field (Krause & Rädler 1980). The relation 〈u〉 = 0 was assumed for simplicity.

∂B′

∂t
− 1

4πσ
∆B′ − curl(u′ × B′ − 〈u′ × B′〉) = curl(u′ × 〈B〉). (1.11)

Neglecting all second order terms, one is left with

B′(r, t) = B′(r, t0) +

∫ t

t0

[

curl(u′ × 〈B〉) +
1

4πσ
∆B′

]

dt, (1.12)

where r is the space vector. Then the electromotive force can be calculated as the
B′(r, t) from last formula multiplied with u′(r, t) and averaging afterwards.

E(r, t) =

∫ t

t0
〈u′(r, t) ×

[

curl(u′ × 〈B〉) +
1

4πσ
∆B′

]

〉dt. (1.13)

Solution for the high-conductivity case:

α = −1

3

∫ ∞

0
〈u′(r, t) · curl u′(r, t− τ)〉dt, (1.14)

ηT =
1

3

∫ ∞

0
〈u′(r, t) · u′(r, t− τ)〉dt. (1.15)

The helicity H (pseudo-scalar) is

H = 〈u′ · curl u′〉. (1.16)

The helicity is an important characteristic of the turbulence u′: h = 0 for mirror-
symmetric turbulence. If H = 0 or mirror symmetry holds for any time moment,
then the α−term is equal to zero (Eq. (1.14)).
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The simplification with neglecting of the terms of second and higher order
of fluctuations is valid only if ∂B′/∂t or ∆B′/4πσ are large as compared with
curl(u′ × B′ − 〈u′ × B′〉). It happens, if

min(Rm,S) � 1, (1.17)

where the magnetic Reynolds number and Strouhal number are

Rm = µσ
√

〈u′2〉λcorr, (1.18)

S =
√

〈u′2〉 τcorr
λcorr

, (1.19)

where λcorr and τcorr are characteristic length and time. The numbers are connected
as

Rm =
µσλ2

corr

τcorr
S. (1.20)

The second possible simplification is possible by choosing a conductivity limit.
In the high conductivity limit we have the S � 1 condition, and for the low-
conductivity limit Rm � 1.

The structure of the alpha-tensor. The integration needed for the representa-
tion of the electromotive force E(r, t) is a hard task. It was done by Kitchatinov
& Rüdiger (1992) with the help of Fourier analysis for the case of small Strouhal
numbers.

The resulting α tensor splits into two parts which separately involve the effects
of the inhomogeneities of turbulence intensity and density:

α = αu + αρ. (1.21)

Both tensors have the same structure

αρ
im = −δim(Ω·G)αρ

1−(ΩmGi+ΩiGm)αρ
2−(ΩmGi−ΩiGm)αρ

3−
ΩiΩm

Ω2
(Ω·G)αρ

4,

(1.22)

αu
im = −δim(Ω·U)αu

1−(ΩmUi+ΩiUm)αu
2−(ΩmUi−ΩiUm)αu

3−
ΩiΩm

Ω2
(Ω·U)αu

4 ,

(1.23)
αu

3 = αρ
3, (1.24)

where U = ∇ log

(

√

〈u′2〉
)

, G = ∇ log ρ. The αρ
n and αu

n (for n = 1, 2, 3, 4) are

integrals of turbulent intensities and Coriolis numbers Ω∗ = 2τΩ over ω, k. The
equality αu

3 = αρ
3 means that both inhomogeneities can be combined in a common

gradient, ∇ log(ρuT), in the antisymmetric part of the α-tensor. The turbulent

velocity uT is defined as uT =
√

〈u′2〉. For the axisymmetric geometry of a
star this antisymmetric part corresponds to a transport of the mean magnetic field
in the azimuthal direction similar to the inducing action of differential rotation.
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Differential rotation, however, is more powerful than the antisymmetric part of the
α-tensor, so the latter is most probably of minor importance.

Relative contributions of the two basic inhomogeneities depend on the angular
velocity. For this reason the weight factor S was introduced in Kitchatinov &
Rüdiger (1992), it characterizes the relative contribution of the density inhomo-
geneity in the α-coefficient

α = −αu
1Ω∇ log(ρSuT). (1.25)

The alpha-tensor exists only in inhomogeneous fluids. It forms a pseudo-tensor.
The symmetric part (the ‘alpha-effect’) can only exist in rotating turbulence fields.
That is not the case for the antisymmetric part of the tensor, which occurs already
in non-rotating turbulence. It was generally shown in Krause & Rädler (1980), that
it ‘almost always’ vanishes for homogeneous fields (except higher order correla-
tions are involved). The general expressions are too bulky, so it is therefore more
convenient to continue the discussion for individual astrophysical applications.

Application for α-effect in shear flows. An accretion disk can only exist if
there is an instability which transports the angular momentum outwards, or, in
other words, the turbulent viscosity is positive. Brandenburg & Schmitt (1998)
propose an interesting argument for magnetic shear flows that for positive viscos-
ity the dynamo-α must be negative in the upper disk plane. The sign is impor-
tant because in α-dynamos the sign of the α-effect directs the resulting geometry.
The most easily excited mode has quadrupolar geometry for positive α-effect and
has dipolar geometry for negative α-effect (Torkelsson & Brandenburg 1994a,b).
Rüdiger et al. (1995), working with positive α-effect, found only solutions with
the quadrupolar symmetry dominating. The more desired magnetic geometry is
a dipolar one ( negative α-effect), because it is odd with respect to the equator,
the poloidal field lines are supporting jets and outflows. Maxima of the toroidal
fields are located in the halo (Rekowski et al. 2000). A quasi-linear second-order
correlation-approximation provides the surprising result that the minus between ki-
netic helicity and α-effect (see Eq. (1.14)) disappears but nevertheless the α-effect
proves to be positive again (Rüdiger et al. 2000). As the only possibility to find
negative α-effects, we must consider differential rotation, i.e. the inclusion of a
shear. Indeed, for a sufficiently high shear rate the dynamo- changes its sign and
even takes the desired negative values for the case of Kepler rotation (Rüdiger &
Pipin 2000),

αφφ = −(G · Ω)

(

α1 + α2
∂ lnΩ

∂ lnR

)

. (1.26)

For a Kepler disk with its vertical gravity, gz = −Ω2z, the Eq. (1.26) transforms
to

αφφ = −zΩ
3

5

τ2
corr

c2s

〈B(0)2〉
µρ

, (1.27)
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where cs is a sound speed, B(0) is the original prescribed magnetic field (fluctuat-
ing). For rigid rotation the α-effect proves to be positive in the upper disk plane
and negative in the lower disk plane. The opposite is true for Kepler flows. The
dynamo-α becomes negative in the upper disk plane and positive in the lower disk
plane. Again the results comply with the results of the numerical simulations by
(Brandenburg et al. 1996). Both density stratification and differential rotation are
important for the α-dynamo in astrophysical sheared disks. As one can see from
Eq. (1.26), the dynamo can work without the differential rotation.

Application for galactic dynamos. If the Ω-containing terms can be neglected
in α-tensor (α2-dynamo), then the resulting global magnetic field is stable one and
never oscillating, whereas the solutions of αΩ-dynamo are oscillating. An illu-
minating example of kinematic dynamo theory for the cycle periods is a dynamo
wave solution. Within the local approach, the (galactic) disk of thickness H can
be imitated with the Cartesian box. In plane Cartesian geometry we consider a
mean magnetic field to be subjected to a strong shear flow with α-dynamo effect
taken into account. All quantities vary only in the z-direction with the given wave
number (1D dynamo). The amplitude equations can then be written as

Ȧ+A = CαB, Ḃ +B = iCΩA, (1.28)

withA representing the poloidal magnetic field component andB the toroidal com-
ponent. The CΩ � Cα assumption has been used. Cα and CΩ are called the
dynamo coefficients. Cα is the normalized α, and CΩ is the normalized rotation,

Cα =
αH

ηT
, CΩ =

ΩH2

ηT
. (1.29)

Magnetic energy is scaled with a critical dynamo number D,

D = CαCΩ. (1.30)

Assuming A ∼ exp (−iωt), B ∼ exp (−iωt), the Eq. (1.28) leads to the simple
quadratic equation. The eigenfrequency is the complex number

ωcyc =

√

D

2
+ i



1 −
√

D

2



 . (1.31)

A marginal solution of the magnetic field is thus found for a dynamo number
D = 2. In this case the field is not steady but oscillates with the frequency (di-
mensionless) ωcyc = 1 (Rüdiger & Hollerbach 2004). Detailed investigation of 1D
dynamo one can find in Parker (1971).

The system of equations (1.28) can be solved in a different way by excluding
the frequency. It is easy to show that the following relation results for the pitch
angle,

tan p =
A

B
=

(

Cα

CΩ

)1/2

. (1.32)
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Assuming usual galactic parameters α = 10 km/s,H = 1 kpc and Ω = 100 Gyr−1,
one can estimate the pitch angle to be about 18o. The estimation is valid until sat-
uration of the dynamo. Growing magnetic fields are affecting the turbulence and,
as a result, one has to take into account the feedback of magnetic field expressed
in quenching of α-tensor and magnetic diffusivity ηT. Detailed description for the
quenching functions will be given in the following paragraphs. In terms of the
pitch angles, the quenching of the alpha-tensor leads to the decrease of p to zero
for the vanishing magnetic diffusivity,

tan p =

√
Dcrit

CΩ
∼ ηT. (1.33)

The parameters, such as turbulence and ηT, are badly known for galaxies. The
most popular source for turbulence in ISM is stellar ‘activity’. The analytical work
was done by Ferrière (1992, 1993a, 1993b, 1996, 1998) to derive the analytical
expressions for alpha and ηT coefficients with supernova explosions (SN) and su-
perbubbles (SBs) as the main drivers of turbulence. The magnetic diffusivity is
found to be quite small, which results in a vanishing pitch angle.

The tensorial form of α is usually quite complicate. Strong anisotropic α-
tensor (vanishing αzz component for fast rotating disks) appeared first in analytical
papers by Moffatt (1970) and Rüdiger (1978), then in the analytical estimation
of α due to SN/SB in galactic disks (Ferrière 1992). It was found that SBs are
much more efficient than the isolated supernovae at removing magnetic flux from
the Galactic disk. And, finally, αzz is found to vanish in the case of SBs when
for simplicity they are taken to be cylindrical. The result is that ‘northern’ αφφ

is positive. Remarkable work was also done by Kaisig et al. (1993), the αzz

component was calculated for the known SN explosion rate. The influence of the
density distribution proved to be surprisingly small. The component αzz is always
negative at the north and positive at the south of the disk.

The full anisotropic α-tensor for a differentially rotating disk with density strat-
ification (modeling of galactic disk) has the following form (Elstner et al. 1996):

αij = −
(

αρ
ij

∂ log ρ

∂z
+ αu

ij

∂ log u
′

∂z

)

〈u′2〉τcorr, (1.34)

with

αρ =







2
5Ω∗ψ̃ −Ubuo 0

Ubuo 2
5Ω∗ψ̃ 0

0 0 − 2
15Ω∗ψ̃z






, (1.35)

αu =







4
15Ω∗ψ̃ −Udia 0

Udia 4
15Ω∗ψ̃ 0

0 0 − 8
15Ω∗ψ̃z






, (1.36)

ψ̃ = ψ +
15

8

B̄2
z

B2
ψ1, ψ̃z = ψz −

15

16

B̄2
z

B2
ψ1. (1.37)
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The α-quenching functions ψ are given in Rüdiger & Kitchatinov (1993). U buo is
a magnetic-advection velocity often called the magnetic buoyancy,

Ubuo =
1

8β2

(

3 + 5β2

(1 + β2)2
+

3

β
tan−1β

)

, (1.38)

where
β = 〈B〉/Beq, (1.39)

Beq is the equipartition field. The diamagnetic effect takes place when the magnetic
field is transported with an effective velocity

Udia =
1

2β2

(

− 1

1 + β2
+

1

β
tan−1β

)

. (1.40)

The mean-field induction equation has been solved with a 2D time-stepping code
for a turbulent flow and a given galactic rotation (Elstner at al. 1995). The free
parameters in the model are the quantities representing the vertical structure and
‘mixing-time’ τcorr. The latter strongly influences the characteristics of the re-
sulting magnetic field. Short correlation times provide a steady quadrupole while
longer correlation times provide an oscillating dipole. If the magnetic feedback
also concerns the eddy diffusivity tensor, only the oscillating solutions remain re-
alistic with the periods of 1 Gyr.

Quenching functions. The quenching process is connected with the preservation
of the total magnetic helicity in media with the high magnetic Reynolds numbers
(Berger & Field 1984, Brandenburg et al. 2002). The α-tensor includes a consistent
feedback mechanism of the magnetic field, but usually one neglects the feedback
onto the eddy diffusivity (Elstner et al. 1995). Some authors insisted (Kitchatinov
& Rüdiger 1992) that “... it makes no sense to apply several quenching descriptions
of the α-effect if it is not clear that the corresponding turbulence model leads to a
reasonable ηT quenching”.

The solution for EMF must be found which is excluding the infinite growth of
B → ∞. Therefore, in strong-field limit only those terms of EMF should be re-
tained which do not depend on the magnetic field amplitude at all. The quenching
functions, mentioned in galactic dynamo applications, have the following form
(Rüdiger et al. 1993). The function ψ is of major importance because it de-
scribes the magnetic quenching of the αφφ-coefficient which is essential for the
αΩ-dynamo,

αφφ = α0ψ(β). (1.41)

α0 here stands for the ‘non-magnetic’ value, i.e. β = 0. The quenching functions
for Eq. (1.37) are

ψ(β) =
15

32β4

(

1 − 4β2

3(1 + β2)2
− 1 − β2

β
tan−1 β

)

, (1.42)
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ψ1(β) =
1

4β4

(

β2 − 5 +
2β2

3(1 + β2)
+

4β4(3β2 − 1)

3(1 + β2)
+

5 + β4

β
tan−1 β

)

.

(1.43)
The expression for ψz is extremely bulky and given in Rüdiger & Kitchatinov
(1993). In the weak-field case we have

ψ(β) = 1 − 12

7
β2, ψ1(β) =

40

21
β2, ψz → 1. (1.44)

In the opposite limit of strong fields, β � 1,

ψ(β) =
15π

64β3
, ψ1(β) =

π

8β
, ψz(β) = −1

2
Ψ(β) +

3π

25β
. (1.45)

Therefore, one can see that the quenching is strongly anisotropic.

1.2.2 Success and limitations of the galactic dynamo theory

In galaxies there are four most important ingredients which must be present for the
dynamo to work: vertical density and turbulence stratification, differential rotation,
eddy diffusivity and an initial magnetic field (seed field). Dynamo theory would
be the most successful if it was not for uncomfortable values of these ingredients.

Nonlinear winding of the seed field due to differential rotation was the simplest
idea for explaining the magnetic pitch angle. Let us consider a galactic gaseous
disk with spiral arms and presence of the vertical magnetic field. α-tensor was
set to zero, but buoyancy forces and eddy diffusivity were allowed to work. The
simulations of Rohde & Elstner (1998) showed that indeed the winding up would
take place. The only problem is that a magnetic pitch angle comparable to the
‘optical’ pitch angle will survive for a very short time only. The seed field would
decay. The life-time is 210 Myr according to Rohde et al. (1999). 200 Myr is the
result of Otmianowska-Mazur & Chiba (1995) which is similar to Parker’s estimate
(1979). In the early epoch the magnetic fields are placed between the optical arms,
which fits to the observations. Rather quickly, however, the magnetic arms are
wound up until the pitch angle is zero. The pitch angles reach zero faster than the
magnetic fields decay. The conclusion here is that the winding up of the seed field
cannot give the observable magnetic fields and the correct pitch angles within 1–2
Gyr.

Seed field problem. The typical growth rate of a dynamo is ≤ 1 Gyr−1. As
an example, after 2.5 Gyr the field will be amplified from 10−8G to 10−6G only.
Therefore, the initial fields for a dynamo should be larger than 10−8G. There is no
contradiction with observations, though one must explain which mechanism was
sufficiently fast to amplify the magnetic fields up to 10−8G. In the early universe
a seed field of 10−18G was suggested by Hanasz & Lesch (1997). In order to form
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a quadrupolar geometry of the dynamo-induced fields the seed field must already
have a small quadrupolar component.

The battery effect, caused by the early collapse of the material to the galactic
midplane, forms electrical currents with equatorial symmetry, so the corresponding
magnetic fields have no chance to be quadrupolar (Krause & Beck 1998). Ruz-
maikin, Shukurov & Sokoloff (1988) discuss the possibility of magnetic field am-
plification by the collapsing proto-galactic cloud. The field might be compressed
from 10−10G to 10−7G, but cannot serve as quadrupole.

The theory of small-scale dynamo (Poezd et al. 1993; Beck et al. 1994) can
work for really small fields. Such dynamo, which also needs a seed field, will
provide a value 10−8G in only 10 Myr. The dipolar part will decay and quadrupolar
part, if it exists, will be amplified.

Parker instability driven dynamo studies give very interesting results too. As
it was mentioned in Sec. 1.1.3, the idea of the galactic dynamo driven by galactic
cosmic rays (CRs) belongs to Parker (1992). Parker (1992) estimated that such a
dynamo would be able to amplify the magnetic field on ∼ 108 yr; the result of
Hanasz et al. (2004) is the growth of magnetic field with the e-folding time about
250 Myr. Calculations of dynamo coefficients in Parker unstable disks have been
done by Hanasz & Lesch (1993, 1997, 1998, 2000). The sign of α-effect is negative
in the disk and the dynamo number D is therefore positive. The sign of α-effect
is changing to the opposite from disk to halo. In Otmianowska-Mazur (2003) the
time-dependent tensors of α and magnetic diffusivity η have been calculated from
the same MHD model as in Hanasz (2000).

The most difficult problem of the working dynamo is the back-reaction of
the growing magnetic field on the turbulent gas motion. Such feedback is called
quenching and has been described in Sect. 1.2.1. Quenching can destroy com-
pletely the action of the turbulent dynamo. Externally forced numerical simula-
tions taking into account back-reaction of the magnetic field to the turbulent mo-
tions (Cattaneo & Vainshtein 1991, Vainshtein & Cattaneo 1992, Brandenburg &
Dobler 2001) showed that the Lorentz force strongly suppressed the turbulent dy-
namo action. This adds the reason to look for the new amplification mechanisms
in the astrophysical disks.

Quadrupolar seed fields should be generated by some physical mechanism. A
magneto-rotational instability is a very good candidate (see Chapter 3). Magneto-
rotational instability (MRI) is a powerful and fast mechanism to generate strong
magnetic fields of a few µG). MRI is free to appear under most galactic physical
conditions with the only requirement: the angular frequency of galactic rotation
decreasing outwards. The condition is fulfilled for any spiral galaxy. The energy
source for MRI is the differential rotation. A very weak external vertical magnetic
flux is enough for the seed field. A quadrupolar magnetic field geometry can be
developed by MRI from the vertical initial or external field due to differential rota-
tion, as it will be shown in Chapter 5. External magnetic fields for a galaxy are not
necessary small. The strength of magnetic fields in clusters of galaxies is reported
to be up to a few µG as in the Coma cluster (Thierbach, Klein & Wielebinski 2003).
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The questions which are left open by dynamo theory are the following.

i) How to obtain the field amplification sufficiently fast in 1–2 Gyr?

ii) How to generate the quadrupolar part of observed galactic magnetic fields?

1.3 Magnetic turbulence

Interstellar magnetic fields are revealed by cosmic-ray electrons, spiraling around
the field lines and emitting synchrotron radiation, the dominant contribution to
radio continuum emission at centimeter and decimeter wavelengths. The relative
contribution of thermal emission is generally small, on average 10–20% at centime-
ter wavelengths, and becomes negligible at decimeter wavelengths. Synchrotron
emission gives the information about the magnetic turbulent and mean fields. The
observation of magnetic fields via synchrotron emission is limited by the cosmic-
ray electrons diffusion length which is about ' 1 kpc from their birthplaces in
star-forming regions. Thus strong, but invisible magnetic fields may still exist far
away from radio-bright regions.

In the case of a completely regular magnetic field, most of the synchrotron
emission is highly linearly polarized (74%). Turbulent magnetic fields are the cause
for geometrical depolarization, independently from wavelength. So the radio maps
are showing total magnetic fields, both regular and turbulent components, and maps
of polarized intensity show resolved regular magnetic fields.

If an ionized gas of density ne is mixed with the magnetic field having a net
component Bparallel to the line of sight (e.g. regular field), the polarization plane
is Faraday rotated by the angle

∆φ[rad] = λ2[m2]RM[rad m−2], (1.46)

where RM is the rotation measure and λ is the wavelength used for magnetic field
detection. Its sign indicates the direction of Bparallel along the line of sight.

A useful tool for analyzing observed fields is the structure function (Beck et al.
1999)

DI(δΘ) = 〈[I(Θ) − I(Θ + δΘ)]2〉, (1.47)

where Θ and δΘ are position angle and angular separation between two points in a
map, while I is the observed distribution of any quantity (total intensity, polarized
intensity, rotation measure, emission measure, thermal emission, ...). The predicted
slope of the magnetic energy spectrum in a logDI − log δΘ plot is s = 5/3 for
projected 3-D Kolmogorov turbulence, s = 2/3 for 2-D turbulence (thin sheets)
and s = 0 for a smooth distribution or in case of white noise. The impact of strong
magnetic fields on the plasma can render its two-dimensional turbulence.

Table 1.3 provides us with interesting information about magnetic field struc-
tures for the example of NGC 6946.
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Table 1.3: Structure function slopes for NGC 6946 (Beck et al. 1999) for the total
intensity (TP), polarized intensity (PI), rotation measure (RM), Stokes Q, Stokes
U, thermal emission (TH)

Map Slope Angular scale (‘) Dimension of structures

TP 6 cm 1.14±0.05 0.5-5.0 2-D + 3-D?
PI 6 cm 0.66±0.02 0.5-5.0 2-D
Q 6 cm 0.60±0.03 0.5-3.5 2-D
U 6 cm 0.67±0.02 0.5-3.5 2-D
RM (3cm/6cm) (0.73) 0.5-1.5 2-D

1.24±0.10 2.5-5.0 (2+3)-D
3.0±0.9 5.0-7.0 true 3-D?

TH 3 cm 0.62±0.07 0.5-2.0 2-D
3.9±0.2 2.0-4.0 true 3-D?

The maps of polarized intensity, Stokes Q, Stokes U and thermal emission
show 2-D turbulence (s ' 2/3) on scales of 0’.5 to 5’.0, the typical size of
arm fragments. In the total intensity map, 2-D and 3-D turbulence seems to be
mixed (2/3 < s < 5/3). The distribution of position angle shows less struc-
ture (s < 2/3). The structure functions of rotation measure and thermal emission
steepen considerably towards largest scales to values s > 5/3, suggesting pure 3-D
turbulence on these scales. At least from the slope of the PI structure function we
can conclude that the regular fields are organized in thin sheets. An explanation of
this fact is still needed.

The turbulent velocity field was widely studied by Green (1993) with PPV
(position-position-velocity) data cubes analysis. The wavenumbers span from ∼
1/3 pc−1 for the closest slices to 1/200 pc−1 for distant ones. The result is the
following: The turbulence energy spectrum is close to the Kolmogorov slope with
s = [1.5 − 2.0].

1.4 Interstellar turbulence

The dynamo amplification of magnetic fields depends on interstellar turbulence.
For solving the equation system (1.3)–(1.5) it is necessary to keep in mind that the
interstellar medium contains a number of phases of very diverse characteristics.
The major phases of the interstellar medium are summarized in the Table 1.4.

ISM phases and turbulent flows. The values in Table 1.4 are highly approxi-
mate. We made a merge between similar tables from Spangler (1999) and from
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Table 1.4: Summarized parameters for different phases of the interstellar medium:
Cold Neutral Medium (CNM), Warm Neutral Medium (WNM), Diffuse Ionized
Gas (DIG), Hot Ionized Medium (HIM), coronal gas, molecular clouds and H II
envelopes

Phase Density Temperature sound speed ionized filling
[cm−3] [K] [km s−1] fraction factor

Molecular
clouds ≥ 104 ≤ 70 0.1
CNM 20 − 250 10 − 75 0.4 − 0.8 2 × 10−4 0.01
HII
envelopes 5 − 10 8000
WNM 0.1 − 0.5 5000 − 8000 9 − 11 ∼ 10−2 0.5
DIG 0.06 8000 11 1 0.1
HIM 0.003 6 × 105 − 107 100 − 400 1 0.5
Coronal 10−3 106 1

Sellwood lectures.
Magnetic fields permeate all of gas phases. They are coupled to the gas, even

in neutral phases, because of the residual degree of ionization, but are generally
too weak to accelerate all but the lowest density gas. The field is therefore dragged
around by bulk motions in the gas. It is known to be stronger in regions of higher
gas density.

Coronal gas is out of present discussion. The phases of interest for magnetic
field tracing consist of warm ionized gas (HII), cool atomic gas (HI), cool molec-
ular gas (H2) and cool dust. Although extensive surveys have shown the general
extent of these phases, their volume filling factors are not well known. These are
of interest as many physical processes in the ISM depend on the fraction of space
occupied by the various phases. Furthermore, volume filling factors as a function
of cloud size and cloud density give information on the size and mass distribution
of the clouds if the mass-size relations are known.

From molecular cloud observations over a wide range of masses it is often
suggested that there exists a power law scaling between size L and mass M of the
form

M ∝ Lκ, (1.48)

where the slope κ ranges from 2 to 2.5 (Elmegreen & Falgarone 1996). Similarly,
the density-size relation is

n̄ ∝ Lκ−3 in cm−3 with L in pc, (1.49)

where n̄ is the average density of the cloud.
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Table 1.5: Evidence for fractal structure. Abbreviations DZ1, DZ2, SS, EF are the
references and the same as in Fig. 1.7. (* observed parameters, others derived)

phase αM αL κ∗ D p

HII L > 30pc 1.61 1.68 1.12 0.68 -0.70*
L < 30pc 1.65 2.30 2.0 1.30 -0.70*

HI 2.14 7.0 5.26 6.0 -1.8
Dust DZ2 1.0 1.0* 2.0 0 -2.0
H2 DZ1 1.6* 2.2* 2.0 1.2 -0.8

SS 1.6* 2.26 2.10 1.26 -0.82
EF 1.6* 2.41 2.41 2.35 -0.91

The mass distribution is the number of clouds per unit volume with mass be-
tween M and M + dM :

n(M)dM ∝M−αMdM, in pc−3 with M in M�, (1.50)

where αM = 1+D/κ (see Table 1.5 for the slope αM ), D is the fractal dimension
(Elmegreen & Falgarone 1996).

The size distribution is the number of clouds per unit volume with size between
L and L+ dL,

n(L)dL ∝ L−αLdL in pc−3, (1.51)

where αL = 1 − κ(1 − αM ) (see Table 1.5).
The volume filling factor is the fraction of the volume occupied by the (spheri-

cal) clouds

fV (L)dL = n(L)dL
4π

3

(

L

2

)3

, (1.52)

or, using previous equation,

fV (L)dL = qn̄pdL, (1.53)

where q is a coefficient and p = (2 −D)/(κ − 3) (Berkhuijsen 1999).
From Fig. 1.7 and Fig. 1.8 one can see, that the slopes in the case of HII and

H2 lines are the same, filling factors are of the same range. This suggests that
the warm and the cool phase of the ISM have similar structure. Indices for the
power laws (1.46)–(1.51) are listed in Tab. 1.5. The values of αM are the same
for both HII and H2 and equal 1.6. These values are in a good agreement with
the fractional Brownian motion structure proposed by Stutzki et al. (1998) for
individual molecular clouds. Thus the large cloud samples of HII and H2 have the
same fractal properties as individual H2 clouds. The atomic hydrogen is known to
have the largest filling factor (∼ 20%) and to be distributed almost homogeneously
within the disk.
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Figure 1.7: Volume filling factor fV as a function of mean cloud density n̄ of
HII, HI, H2 and dust. The full line for HII regions is an eyeball fit through the
data in Pynzar (1993), the dashed lines indicate the range of HII regions collected
by Berkhuijsen (1998). Notation: P gives HII obtained from Pynzar (1993), HI
is from Dickey & Garwood (1989), EF gives H2 from Elmegreen & Falgarone
(1996), SS gives H2 from Scoville & Sanders (1984), DZ1 and DZ2 give H2 and
dust from Drapatz & Zinnecker (1984)
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Figure 1.8: Cloud size distribution of HII, HI, H2 and dust showing the number
of clouds per unit volume with size between L and L + dL as a function of L.
Notation is the same as in Fig. 1.7
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Radio wave scintillation ISM studies. The turbulence primarily responsible
for radio wave scintillation resides in the low density ionized phase (DIG) and
medium-density ionized (HII regions) envelopes.

The refraction of radio waves has been used to give statistical information on
small-scale density inhomogeneities in the ionized gas. The rms scattering angle
Θs results when an electromagnetic wave travels a distance z through a region in
which the index of refraction m varies spatially. Θs ∼ ∆ne, therefore the scatter-
ing angle gives the information about amplitude of density variations. The main
results of radio wave (scintillation) ISM studies are the following ones (Spangler
1999):

• ‘The Big Power Law in the Sky’; Density irregularities exist with scale sizes
from ≥ 1018cm → 107cm (or from ≥ 1pc → 100km). The spectral index
α which characterizes this spectrum is close to, or equals the Kolmogorov
index α = 11/3. This spectrum suggests a turbulent cascade in wavenumber
through an inertial subrange to the dissipation range.

• Extreme variability in C2
N in the interstellar medium. C2

N is the normal-
ization coefficient of the density power spectrum (Rickett 1990, Spangler
1999). It is directly proportional to the density variance, with a constant of
proportionality that depends on the outer scale of the turbulence. Regions
of very high C2

N , termed ‘fluctiferous regions’ or fluctifers seem associated
with HII regions and star formation regions. It is still unclear whether these
variations represent turbulent intermittency or ISM spatial distribution.

• Irregularities are anisotropic, in the sense of being drawn along a symme-
try axis, probably defined by the interstellar magnetic fields. Axial ratios
of the broadened images, which are a lower limit to the axial ratios of the
irregularities, are ' 1.5 − 2.0.

• Turbulent fluctuations in the magnetic field δB are detectable, with δB/B0 ≤
δn/n0 (Minter & Spangler 1996, 1997). This result has been presented as
evidence that the turbulence is highly compressible.

In his work Spangler (1999) had formulated a row of questions which are still
not answered in theoretical works:

• Theoretical understanding of interstellar turbulence is missing. Better infor-
mation about fluctuations in B can be obtained from Faraday rotation, and
variations in V can be inferred from the timescale of scintillations. Promis-
ing preliminary results: Bondi et. al. 1994, Cordes & Rickett 1998, Rickett
et al. 2000.

• It will be of interest to determine if the spectra in all turbulent quantities such
as velocity and magnetic field are the same both perpendicular and parallel
to the ISM magnetic field. MHD theory strongly indicates that the perpen-
dicular and parallel spectra should be different, whereas no observational
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evidence of this has yet clearly emerged, either for the solar wind or for the
interstellar medium.

• There is a need in ‘Purification of the ISM’ from highly dissipative Fast
Mode Magneto-sonic waves. Even a small fraction of interstellar turbulence
in Fast Mode waves would overwhelm the cooling capacity of the DIG.

• What generates the turbulence? Possibilities are shear flows, buoyancy-
driven turbulence, kinetic plasma instabilities, and ‘star murmuring’. What
would be correct explanation for multi-scale phenomena in the interstellar
medium? Gravity and star formation affect large scales (≥ 1 pc), MHD
nonlinearities cause a cascade to smaller scales.

Velocity dispersion in spiral galaxies. In the Milky Way the line widths of indi-
vidual molecular and HI clouds and cloud complexes exceed the expected thermal
width according to estimated kinematic temperatures. The 21 cm dispersion does
not drop below 5–7 km/s, regardless of how low the optical surface brightness be-
comes. Obviously, interstellar turbulence does not decay in regions without star
formation activity. A theoretical investigations of MRI-driven turbulence acting in
a disk was applied to the particular case of NGC 1058, a face-on disk galaxy with
a well-studied extended HI disk (Sellwood & Balbus 1999). This implied a mag-
netic field of about 3 µG which well agrees with observed field strengths of many
galaxies.

1.5 MRI for galaxies?

Magneto-rotational instability (MRI) is a flexible and fast mechanism to gener-
ate the strong (few µG) magnetic fields. MRI is free to appear under most galactic
physical conditions with the only requirement: the angular frequency of galactic
rotation decreasing outwards, this condition is fulfilled for any spiral galaxy. The
energy source for MRI is the differential rotation. A very weak external vertical
magnetic flux is enough for the seed field.

MRI (see Chapter 5) generates 3D regular magnetic fields with many fluctu-
ations, reversals, mixed dipole with quadrupole structure, and a mixture of m=0,
m=1, m=2 modes. Thus, we are answering the most of the open questions posed
by observation (field strength, large pitch angle, reversals, quadrupole and axial
symmetry).

MRI is not expected to act alone in galaxies. Even when it is disturbed by SN,
the seed field driven by MRI has the ideal properties for further dynamo operation.
This should lead to the large-scale regular magnetic fields after 1 Gyr.

The feedback of magnetic fields onto the density field and velocity flows can
be studied through the action of MRI. The instability is producing the disturbances
of all field components. The structure of the turbulence will be analyzed in Chapter
5. MRI will be shown to generate a thin-sheet structures.
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Galaxies for MRI to be applied to are following.

• NGC 4414, a flocculent galaxy with only circular velocity flow but great
pitch angle.

• NGC 1058 with high velocity dispersion in outer part of the disk (∼ 10 kpc).

• M51, the regions between arms. There is a puzzle about the origin of the
∼ 10µG in inter-arm region, which later happens to be compressed along
the dust regions up to ∼ 30µG.

• The inter-arms magnetic fields of NGC 6946 were well explained within the
dynamo theory, but as we know, there is no clue about the origin of the seed
field. MRI may support with turbulent magnetic fields of large values.



Chapter 2

About the rotation laws

As it will be shown in the following chapter, the shape of the galactic differential
rotation Ω(R) and especially the shear value q = −d lnΩ(R)/d lnR are the main
parameters on which the growth rate of magneto-rotational instability depends.
The dependence of pitch angle, velocity dispersion and other turbulent parameters
on the rotation will be shown in the Chapter 5.

The rotation law can be described in two ways. One is a Brandt-type law,

uφ =
RR0Ω0

(Rn +Rn
0 )1/n

, (2.1)

where R0 is the radius of transition from rigid to differential rotation, parameter n
is describing the steepness of the transition, Ω0 is the angular frequency of rigid
galactic ‘core’ rotation. It is describing well the observed flatness of the rotation
law. There is no evidence that the rigid ‘core’ is a correct way of central region
behavior. On the contrary, most galaxies show the high velocity peak in the CO (1-
0) emission near the galactic center. Although, there are certain doubts about the
origin of these peaks. The decline of the rotational velocity outwards is claimed for
some galaxies and cannot be described by Brandt-type law either. The combination
of the Plummer model (spheroid)

ΨP = − GM√
R2 + b2

, (2.2)

with the Kuzmin model (flat disk)

ΨK = − GM
√

R2 + (a+ |Z|)2
, (2.3)

gives the potential called Plummer-Kuzmin

ΨPK = − GM
√

R2 + (a+
√
Z2 + b2)2

. (2.4)

32
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The Miyamoto-Nagai (1975) gravitational potential can be used for the reproduc-
tion of the velocity decline outwards and the inner peaks by a superposition of halo,
disk, bulge and the spheroid potentials

ΨMN = −
N
∑

i=1

GMi
√

R2 + (ai +
√

Z2 + b2i )
2

, (2.5)

where Mi, ai and bi are the mass, scale radius and scale thickness of the ith mass
component of the galaxy.

Figure 2.1: Sofue (1996) rotation curves: Solid line for Our Galaxy, dotted is for
IC 342, dashed line is for NGC 235 and dash-dot is for NGC 6946

The most complete compilation of the galactic rotation curves were done by
Sofue (1996), the examples are shown in Fig. 2.1. The parameters are listed in
Tab. 2.1. When the inner peak (nucleus) is taken into account as gravitational ef-
fect, the (not normalized) shear strength is about of order 103 in the inner part,
while without nucleus it is between 20 and 80. The local MRI linear theory es-
timation gives the growth rates (γ = 0.5qΩ) of the high order, up to 103Gyr−1.
Here one should remember the argumentation from Korpi et. al. (2003). From
energy considerations it is clear that the MRI will not be important in regions with
high stellar activity, or with large stellar populations as it happens in the very inner
part of a galaxy. Therefore, one may use a Brandt-type law for the description of
rotation without loosing the information about MRI action near the galactic center.

Another important discussion is about the outer rotation of gaseous and stellar
disks. From Table 2.1 the most important case for the present work is the example
of NGC 4414. It is one of the best studied dynamo candidates. There are no
magnetic spiral waves, but a large pitch angle for magnetic fields. Vallejo et al.
(2002) and Braine et al. (1993) claimed an unusually small halo and decline of
the rotation curve outwards, while the work of Thornley & Mundy (1997) shows
no strong evidence for a small halo and their rotation curve is much flatter. The
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Table 2.1: Parameters for Miyamoto-Nagai modeling for some spiral galaxies

sample component M [1011M�] a [kpc] b [kpc] reference

Galaxy bulge 0.2 1.0 1.0 Binney &
disk 0.6 0.5 ∼ 0 Tremaine (1990)
halo 1.0 ∼ 0 ∼ 30

Galaxy nucleus 0.05 0.00 0.12 Sofue (1996)
bulge 0.10 0.00 0.75
disk 1.60 6.00 0.50
halo 3.00 15.00 15.00

NGC 6946 nucleus 0.05 0.00 0.15 Sofue (1996)
bulge 0.14 0.00 1.25
disk 1.30 6.00 0.50
halo 2.00 10.00 10.00

NGC 253 nucleus 0.03 0.00 0.16 Sofue (1996)
bulge 0.15 0.00 1.00
disk 0.80 5.00 0.50
halo 2.00 10.00 10.00

IC 342 nucleus 0.03 0.00 0.24 Sofue (1996)
bulge 0.20 0.00 1.60
disk 1.20 7.00 0.50
halo 2.00 12.00 12.00

NGC 4414 nucleus 0.03 0.07 0.09 Vallejo et al. (2002)
bulge 0.04 0.38 0.03
disk 0.86 2.50 0.15
halo 0.16 11.00 0.50
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paper of Sakamoto (1996) can cause confusion. The clear rigid-core rotation is
demonstrated out to R = 1.39 kpc, with the surface density (H2 & HII) peak at
0.93 kpc. The last rotation curve can be described by a Brandt-type law

uφ = 140[km/s] + 1.39[kpc]58[Gyr−1]R/
√

R2 + (1.39[kpc])2, (2.6)

where the angular frequency of 58[Gyr−1] is small for fast MRI growth. NGC

Figure 2.2: NGC 4414 rotation curve. Points with error bars show the results of
H II observations by Braine (1993), which eye-fitting (solid line) is obtained using
Miyamoto-Nagai gravitational potential (Eq. (2.5)) with only disk (adisk = 2.0,
bdisk = 0.1, Mdisk = 7 · 1010 M�) and small halo (ahalo = 12.0, bhalo = 12.0,
Mhalo = 1010 M�) components. Dotted line is for Brandt-type law with n = 2,
Ω0 = 180 Gyr−1 and r0 = 1.5 kpc. Dashed line is a Brandt-type law with n = 4,
Ω0 = 160 Gyr−1 and r0 = 1.5 kpc

4414 rotation curve in Fig. 2.2 is taken from Braine et al. (1993), HII data. The
decline of rotation velocity down to 150 km/s is not confirmed by Thornley &
Mundy (1997), their rotation curve reaches the value of 180 km/s only at 21 kpc.

In addition to the confusion about both inner and outer shape of uφ, there
are strange results of magnetic pitch angle observation (Soida et al. 2002). Al-
though the galaxy shows no evidence for radial velocity flows or rich SN activity,
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there are large pitch angles from 0o to −80o for radii from 0.69 kpc to 3.41 kpc.
The strongest values belongs to the region of so-called ‘rigid’ rotation, if to use
Sakamoto rotation curve. It means zero shear and no magneto-rotational instability
(see Chapter 3), while the surface density is sub-critical for gravitational instability
of the gas (Sakamoto 1996). It is an open question then by which mechanism the
high turbulence in the inner region is generated. The high pitch-angles can be ex-
plained well by a dynamo operating with unusually strong turbulence,

√
u

′2 ∼ 25
km/s.

The velocity dispersion is behaving mysteriously: it is decaying from 25 km/s
to 7 km/s from the central hole up to the radius of 5 kpc. The decay is linear,
crossing both ‘rigid’ transition radius and gravitational instability radius without
being affected. This phenomenon should be checked with better resolution for
other spiral galaxies. Theoretical explanation is still lacking.

NGC 4414 has unusually high surface density both for molecular and atomic
hydrogen. The density is expected to be 10 times higher than for the Milky Way
Galaxy. But the higher density of the gas is not changing the viscosity sufficiently,
as one can see from later estimations (see Chapter 3).

NGC 4414 is an ideal object for this kind of study, as it is an unperturbed
object at high galactic latitude with very extended atomic gas (HI). NGC 4414 is
quite axisymmetric, with no bar and poorly defined spiral structure, and the center
is seen un-obscured (no CO, HI or thermal dust emission near the nucleus), as in
many isolated spiral galaxies. Braine et al. (1993) have developed an axisymmetric
analytical gravitational potential model to account for the central light profile, the
dynamics of the molecular gas in the highly obscured molecular ring, and the stellar
light profile outside the highly obscured region. A single dominant disk component
reproduces the disk dynamics and outer stellar light profile such that even if other
disk components were present they would not affect our results. The contribution
of dark matter is constrained by the extremely extended HI rotation curve. It is
small and possibly negligible at distances less than 5–7 kpc from the center.

NGC 4414 is an Sc(sr) late-type spiral that has been classified as flocculent by
Elmegreen & Elmegreen (1982, 1987) and put in the same class as the prototype
NGC 2841, due to “fragmented arms uniformly distributed around the galactic
center”. A blue photograph of the galaxy can be found in the NASA atlas from
Sandage & Bedke (1988). Very strong CO emission was detected, which did not
appear strongly peaked towards the nucleus. The Hα image published by Pogge
(1989) indicates a complete lack of massive stars – and hence presumably recent
star formation – in the nucleus. Reproducing the central spectrum in both lines
is easily possible with a central hole and a quickly rising rotation curve without
substantial overshooting of the terminal rotation velocity (Braine et. al 1993).

The neutral gas surface density in the disk is one of the highest known, about
50 M�pc−2, comparable to that of the grand design galaxy M51. Chini et. al.
(1986) found that this galaxy had the largest cool to warm dust ratio and predicted
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a neutral gas mass of over 1010 M� .
The HI disk extends far beyond the optical outlines of the galaxy, and it is quite

asymmetric at low column densities. A combined CO(2-1) and HI rotation curve
shows that the rotation velocities start declining outside the optical disk, a phe-
nomenon found only in compact galaxies with high rotational velocities. There-
fore, no direct evidence for a massive dark halo in NGC4414 is found from the
rotation curve, a rare case for a Sc spiral.



Chapter 3

Magneto-Rotational Instability

Magnetic fields are often assumed to be weak and not important for galaxies. The
stellar disk exists uninfluenced by the magnetic field. But magnetic fields are in
equipartition with the turbulence (Section 1.1). The velocity field of the gas was
treated very often as a given flow in simulations and the magnetic field generation
by gas flows was studied. This situation is characterized by the inequality

〈B〉2
8π

� ρ〈u〉2
2

, (3.1)

where 〈B〉, 〈u〉 are the mean magnetic and velocity fields. The observed strength of
magnetic fields is not sufficient to change the rotation law (uφ ∼ 100− 200km/s),
but it will be important on the turbulent scales.

The classical picture for interstellar matter turbulence is that supernovae (SN)
and other stellar processes maintain turbulent cloud velocities great enough to sur-
vive the dissipative losses. Other source of turbulent velocities can be a Magneto-
Rotational Instability (MRI). The instability requires only the presence of weak
poloidal component and also requires that the angular velocity be decreasing out-
ward (Balbus & Hawley 1991). Sellwood & Balbus (1999) proposed that MHD
instabilities in the differentially rotating gas layers are responsible for a minimum
level of turbulence in the differentially rotating gas disks.

3.1 Introduction to MRI

Galactic and Keplerian disks are hydrodynamically stable configurations according
to the Rayleigh stability criterion

dj2

dR
> 0, (3.2)

where R is the radius and j = R2Ω is the angular momentum per unit mass. But
rotation has not only radial but also vertical dependence. Urpin & Brandenburg
(1998) and Arlt & Urpin (2004) consider the destabilizing action of a dependence

38
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of Ω on z, which may more than compensate the stabilization due to Eq. (3.2).
There is a suggestion by Klahr & Bodenheimer (2003) that the negative radial
entropy S stratification in thin Kepler disks may act as destabilization. One finds,
however, positive value ∂S/∂R in the standard α description. The vertical density
stratification may have a destabilizing effect, as was reported for Taylor-Couette
flows (Molemaker et al 2001). The Schwarzschild criterion

∂S/∂z > 0 (3.3)

is a sufficient condition for stability of disks even when combined with vertical
density stratification and differential (Keplerian) rotation. Solberg-Høiland crite-
rion is a local necessary condition for stability,

∂gR

∂z
=
∂gz

∂R
, (3.4)

where gR and gz are the combined forces terms from momentum conservation
equations. Any conservative force is a solution of Eq. (3.4). Without external
forces this relation is thus always locally fulfilled. Eq. (3.4) have been derived by
means of the short-wave approximation. For the Kepler flows with density stratifi-
cation, the strato-rotational instability arises in the case of the global analysis.

Nevertheless, gaseous disks with sufficiently high conductivity are unstable
under the influence of a weak magnetic field. The magneto-rotational instability
has been known for more than four decades (Velikhov 1959; Chandrasekhar 1960,
1961), but the importance for accretion disks was first pointed out by Hawley &
Balbus (1991). Steven A. Balbus and John F. Hawley obtained a remarkable suc-
cess in the investigations of a powerful local shear instability in weakly magnetized
disks. Balbus & Hawley (1991, 1992 and subsequent works) showed that a broad
class of astrophysical accretion disks is dynamically unstable to axisymmetrical
disturbances in the presence of a weak magnetic field. Because of the ubiquity of
magnetic fields, the result bears upon gaseous differentially rotating systems quite
generally.

The instability is extremely powerful. The growth rate is of order of the angular
rotation velocity and is independent of the strength of the magnetic field. The insta-
bility requires only the presence of weak magnetic fields (poloidal component for
unstable axisymmetrical mode and the toroidal component for non-axisymmetrical
modes), and also requires the angular velocity to be decreasing outward.

In brief, the mechanism of the instability is the following. Consider an out-
wardly displaced fluid element in a differentially rotating disk threaded by a verti-
cal magnetic field. The fundamental point is that the element is elastically threaded
by a magnetic field which is trying simultaneously to enforce rigid rotation by re-
sisting shearing, and to return the element back to its starting point by resisting
stretching. The latter is clearly stabilizing, but the first is at the heart of the insta-
bility: the field is trying to force the element to rotate too fast for its new radial
location. The excess centrifugal force drives the element still further outward. At
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long wavelengths, the return force is weak, and destabilization wins. The presence
of a finite vertical wavenumbers in the disturbance is essential; there can be no
axisymmetrical instability otherwise. This allows fingers of high and low angular
momentum fluid to interpenetrate. The instability is basically simple.

The linear analysis of MRI can be split in two parts: instability of axisymmetric
(m=0) and of non-axisymmetric (kφ 6= 0) disturbances. The axisymmetric case is
more simple to perform. The basic dynamic equations are

D ln ρ

Dt
+ ∇ · u = 0, (3.5)

Du

Dt
+

1

ρ
∇P + ∇Ψ − 1

4πρ
B × [∇× B] = 0, (3.6)

∂B

∂t
−∇× (u × B) = 0. (3.7)

The notation D/Dt indicates the Lagrangian derivative, Ψ is an external gravi-
tational potential, P is pressure. Other symbols have their usual meanings (u for
velocity fields, B for magnetic fields and ρ for density).

Simplest derivation of MRI. We consider the u and B fields having mean and
fluctuating parts

u = 〈u〉 + u
′

, B = 〈B〉 + B
′

. (3.8)

After substitution of Eq. (3.8) in the induction equation ( 3.7), the averaging over
the space and subtracting the equation of the mean fields, we obtain the equation
for the fluctuations

∂B
′

∂t
= ∇× [〈u〉 × B

′

+ u
′ × 〈B〉]. (3.9)

Due to the relations ∇ · B = 0 and ∇ · u = 0 some terms have been canceled.
Fluctuations of the fields are u

′

,B
′ ∼ exp(ikx + γt).

γB
′

= R(B
′ · ∇Ω)êφ + i(〈B〉 · k)u

′

. (3.10)

From the substitute of Eq. (3.8) in the momentum equation (3.6), after standard
routine of averaging and subtracting the mean-field equation from the Eq. (3.6),
one gets the momentum equation for fluctuations

∂u
′

∂t
+(〈u〉∇)u

′

+(u
′∇)〈u〉 = −1

ρ
∇P ′

+
1

4πρ
(B

′×[∇×〈B〉]+〈B〉×[∇×B
′

]).

(3.11)
If we consider again the constant mean magnetic field, then this relation can be
transformed to

γu
′

+ i(êφkφ)Ωu
′

+ 2Ω× u
′

+R(u
′∇)Ωêφ =
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= − ik

ρ
P

′ − i

4πρ
(k(〈B〉 · B′

) − (〈B〉 · k)B
′

), (3.12)

and assuming the axisymmetrical perturbations we can simplify it to

γu
′

+ 2Ω× u
′

+R(u
′∇)Ωêφ =

= − ik

ρ
P

′ − i

4πρ
(k(〈B〉 · B′

) − (〈B〉 · k)B
′

). (3.13)

From Eq. (3.10) we see that

u
′

= (γB
′ −R(B

′∇Ω)êφ)/(i〈B〉 · k). (3.14)

Now we assume for simplicity u
′

= ũ/i(〈B〉 · k), which makes the equation
( 3.12) look simpler. We find

γũ+2Ω×ũ+R(ũ∇)Ωêφ = (〈B〉·k)

(

k

ρ
P

′

+
1

4πρ
(k(〈B〉 · B′

) − (〈B〉 · k)B
′

)

)

.

(3.15)
Introducing the Alfvén frequency ω2

A = (〈B〉·k)2/4πρ and Alfvén velocity V A =
〈B〉/√4πρ , we change it to

γũ + 2Ω × ũ +R(ũ∇)Ωêφ = −ω2
AB

′

+ k(V A · k)P̃ , (3.16)

where

P̃ =
√

4πρ

(

P
′

ρ
+

1

4πρ
(〈B〉 · B′

)

)

. (3.17)

For further equations we use the notation for ω̃2 = γ2 + ω2
A, the shear frequency

ωsh = dΩ/d lnR (3.18)

and the epicyclic frequency

κ2 =
2Ω

R

d(R2Ω)

dR
. (3.19)

The relation 4Ω2 = κ2 − 2Ωωsh has been used. Substituting of Eq. (3.14) in Eq.
(3.16) leads to

ω̃2B
′

z = kz(V A · k)P̃ , (3.20)

(ω̃2 + 2Ωωsh)B
′

R − 2γΩB
′

φ = kR(V A · k)P̃ , (3.21)

γ

(

κ2

2Ω
− ωsh

)

B
′

R + ω̃2B
′

φ = 0. (3.22)

Substituting Eq. (3.22) and Eq. (3.20) into Eq. (3.21) we arrive at

B
′

R

(

ω̃4 + ω̃2κ2 − ω2
A(κ2 − 2Ωωsh)

)

=
kR

kz
ω̃4B′

z. (3.23)
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Next, we may use the zero-divergence condition for magnetic fieldsB ′
z ' −B′

RkR/kz ,
assuming that kφ ∼ 1/R � kR.

ω̃4 + ω̃2κ2 − ω2
A(κ2 − 2Ωωsh) = −k

2
R

k2
z

ω̃4, (3.24)

which is the same as

ω̃4

(

k2

k2
z

)

+ ω̃2κ2 − 4Ω2ω2
A = 0. (3.25)

For simplicity, we use the following notations

ω̃4A0 + ω̃2A1 +A2 = 0. (3.26)

The instability condition is the γ2 > 0.
i) Case with A1 + 2A0ω

2
A < 0 leads to the condition

1

2A0

1

R

∂(R2Ω)

∂R
+ ω2

A < 0. (3.27)

Comparing Eq. (3.27) with the Rayleigh criterion of Eq. (3.2) we can see that mag-
netic fields are playing a stabilization role for hydrodynamically unstable disks.
ii) In case whereA1+2A0ω

2
A > 0, one has to solveA2

1−4A0A2 > (A1+2A0ω
2
A)2.

It is easy to show that the resulting instability condition is

A0ω
2
A < − ∂Ω2

∂ lnR
. (3.28)

For the flow with Ω ∼ Ω0R
−q (q = −∂lnΩ/∂lnR is the normalized shear), one

can estimate

k <
√

2q
Ω0

VA
, (3.29)

γ '
√

2qωA ≤ 2qΩ0. (3.30)

Compared to dynamo growth rates (Section 1.2.2), the MRI is a very fast amplifi-
cation mechanism.

The ratio of the critical wavelength over disk thickness is

λcrit

2H
=

πVAz√
2qHΩ0

or β =
π2

2q

(

λcrit

2H

)−2

. (3.31)

Instability cannot evolve if the critical wavelength is exceeding the disk thickness.
Eq. (3.31) can be used as the restricting condition of the initial field strength, as

VAz|max =

√
2q

π
HΩ0. (3.32)

For the Keplerian disks the relation cs = HΩ0 can be easily derived from the
point-mass gravitational potential, therefore the Eq. (3.32) can be transformed to
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VAz|max ' cs. The galactic disk is self-gravitating and its thickness is defined by
the stellar motions. One can derive a similar relation c∗s ∝ HΩ0 for isothermal
stellar disk, using the stellar sound speed c∗s (Rüdiger 1990). The sound speed of
the gas is not necessarily the same, although it is found to be close to the stellar
one. For β < 3 we do not expect the instability to be excited.

Axisymmetric dispersion relation for adiabatic disks. The adiabatic case dif-
fers from the isothermal one by adding more hydrodynamical frequencies. The ax-
isymmetrical large-wavenumber Eulerian perturbations ei(kRR+kzz−ωt) were con-
sidered within the Boussinesq approximation (Balbus & Hawley 1991). The equa-
tions may be rewritten in a component form, with the largest Fourier amplitudes of
perturbed flow δρ, δP , δuz , etc. being only retained. The simplified form of the
dispersion relation is

k2
z

k2

[

3

5ρ

(

kR

kz

∂P

∂z
− ∂P

∂R

)

(

kR

kz

∂ lnPρ−5/3

∂z
− ∂ lnPρ−5/3

∂R

)

− κ2

]

ω̃2+

+ω̃4 − 4Ω2k
4
zV

2
Az

k2
= 0, (3.33)

where VAz = Bz/
√

4πρ is the vertical component of the Alfvén speed, frequency
ω̃2 = ω2 − k2

zV
2
Az, wavelength k2 = k2

z + k2
R and κ is the epicyclic frequency

(Eq. (3.19)). A similar dispersion equation was obtained by Fricke (1969), but he
was considering the purely toroidal field case which is considerably more restric-
tive. For further simplification the assumption of constant rotation on cylindrical
surfaces was taken

∂P

∂R

∂ lnPρ−5/3

∂z
=
∂P

∂z

∂ lnPρ−5/3

∂R
, (3.34)

what is the same as to assume that isobaric and isochoric surfaces coincide. The
final form of the dispersion relation then has a simple form:

k2

k2
z

ω̃4 −
[

κ2 +

(

kR

kz
Nz −NR

)2
]

ω̃2 − 4Ω2k2
zV

2
Az = 0, (3.35)

where N 2
z and N2

R are the parts of Brunt-Väisälä frequency

N2 =
3

5ρ
(∇P ) · (∇ lnPρ−5/3) = N2

z +N2
R. (3.36)

Note, that only the vertical component of the magnetic field enters the dispersion
relation, multiplied by the wavenumber kz . Later nonlinear studies proved that the
axisymmetrical disturbances due to MRI are indeed not sensitive to the toroidal
component of the initial magnetic field (Hawley & Balbus 1991). The importance
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of small magnetic fields are easily understood from Eq. (3.35): significant mag-
netic tension forces can be generated at sufficiently small wavelengths. The value
of the wavenumber is proportional to Ω/VAz. Thus, it does not depends on the
magnetic field alone. In the absence of magnetic fields, internal waves propagate
with a frequency that depends only on wavenumber direction. Tightly wound in-
ternal waves have been suggested as a means of angular momentum transport and
dynamo activity in accretion disks (Vishniac & Diamond 1989; Vishniac et al.
1990). But these studies assumed that the magnetic field has a negligible effect
on the wave propagation properties, at least if the magnetic pressure is small com-
pared with the thermal pressure. For any weakly magnetized disk the equation
(3.35) shows that the assumption was not correct.

For further analysis one has to assume the disk to be hydrodynamically stable,
i.e. the epicyclic and Brunt-Väisälä frequencies are real. In case of vanishing
Brunt-Väisälä frequency the Eq. (3.35) is identical to Eq. (3.25). Now the stability
of the weakly magnetized disk can be analyzed by considering the conditions in
the neighborhood of ω2 = 0, or ω̃2 = −k2

zV
2
Az. In this limit, equation (3.33) can

be written:

k2
R(k2

zV
2
Az +N2

z ) − 2kRkzNRNz + k2
z

(

dΩ2

d lnR
+N2

R + k2
zV

2
Az

)

= 0. (3.37)

The last equation is quadratic in kR. Its discriminant is negative, there will be no
real solutions for kR and thereby ω2 is not allowed to pass through zero. This
requirement is in fact the stability criterion and expressed as:

k4
zV

4
Az + k2

zV
2
Az

(

N2 +
dΩ2

d lnR

)

+N2
z

dΩ2

d lnR
> 0 (stability). (3.38)

The critical wavenumber can be derived from the same equation

(kz)
2
crit =

1

2V 2
Az











(

N2 +
dΩ2

d lnR

)2

− 4N2
z

dΩ2

d lnR





1/2

−
[

N2 +
dΩ2

d lnR

]






.

(3.39)
For the disks rotating supersonically (N 2

R � N2
z ) or if N 2 is negligible we have

the condition identical to (3.29),

|(kz)crit| = V −1
Az |dΩ2/d lnR|1/2, (3.40)

whereas the stability criterion differs for the case of supersonic rotation velocities

N2
R +

dΩ2

d lnR
≥ 0 (stability). (3.41)

The turbulence in the gaseous disk is subsonic.
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The best known density profile is for the Milky Way Galaxy described by Dickey
& Lockmann (1990). It is a superposition of Gaussians and exponentials for dif-
ferent gas components. In a simple form one can write

ρ = ρ0 exp (−z2/H2). (3.42)

The galactic gaseous disk is not becoming thicker with radius, therefore the ex-
ternal gravitational potential is usually split in two parts Ψ = Ψ(z) + Ψ(R). For
hydrodynamical stability, the vertical component of the momentum equation is
solved

1

ρ

∂P

∂z
= −∂Ψ(z)

∂z
. (3.43)

The potential Ψ(z) is derived in order to fit the observed density distribution. From
the known galactic density profile and the rotation, we obtain the NR = 0 and
κ2 = 2Ω2. The epicyclic frequency is κ2 = Ω2 for Kepler disk and κ2 = 5Ω2

for outwardly increasing shear. The largest growth rates are expected to match the
prediction for Kepler disks γ < 0.5qΩ.

Inviscid approximation for galaxies From numerous studies (Kitchatinov &
Rüdiger 2004; links in Rüdiger & Hollerbach 2004) we know that the plasma can
be assumed to be a ‘frozen in’ gas for warm neutral medium. The magnetic diffu-
sivity is

η = 1013T−3/2
(

lnΛ

20

)

cm2/s, (3.44)

where lnΛ ∼ 20 is the Coulomb logarithm (Spitzer 1962). Adopting T ∼ 104 K
for the characteristic temperature, we find

η ' 107cm2/s. (3.45)

Assuming the typical galactic rotation Ω ' 3 × 10−15s−1 (Sofue 1996) and half-
thickness of H = 300pc, the magnetic Reynolds number will be

Rm ' 3 × 1020. (3.46)

The viscosity can be estimated using the expression for a fully-ionized plasma
from Spitzer (1962)

ν = 6.5 × 107 T
5/2

np

(

20

lnΛ

)

cm2/s, (3.47)

where np is the number density of protons. The expression was derived for hy-
drogen ionized matter and can be applied for HII regions. For the warm neutral
medium the interaction between neutrals leads to the larger viscosity, νn ∼ utlnn,
where ut is the thermal velocity and lnn is a mean free path for neutral-neutral
collisions. For proton density np = 1cm−3, one finds

ν ' 7 × 1021cm2/s, (3.48)
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and the Prandtl number
Pm ' 1014. (3.49)

Using these values, the linear global theory predicts the minimum magnetic
field strength to be an extremely small value (Kitchatinov & Rüdiger 2004)

Bmin ' 10−25G, (3.50)

whereas the predicted maximum magnetic field is surprisingly close to the ob-
served strength of galactic fields

Bmax ' 6 µG. (3.51)

The magneto-rotational instability therefore can be assumed to be a very important
mechanism of amplification of the magnetic fields up to the observed values in case
of galaxies.

Turbulent magnetic diffusivity. As it was already mentioned for galactic dy-
namos (Section 1.2.1), supernova explosions and superbubbles are the drivers for
interstellar turbulence. The magnetic diffusivity due to such turbulence is estimated
to be much higher than the molecular one (Ferrière 1992). It might be critical for
MRI operating in the galactic disks, especially for very small initial magnetic fields
(Kitchatinov & Rüdiger 2004). A limiting condition for the turbulent magnetic dif-
fusivity ηT can be easily derived. Let us consider τ as a typical timescale and l as
a typical length-scale of turbulence.

uT = l/τ, ηT = l2/τ = u2
Tτ. (3.52)

Under the assumption that the time of decay should be at least longer than one
rotation one obtains

τ =
l2

ηT
>

1

Ω
, (3.53)

ηT < l2Ω. (3.54)

The last equation can be reformulated as Rm = l2Ω/ηT > 1. As length must be
taken the typical wavelength λz of instability (cell size), which is directly propor-
tional to the Alfvén speed and the rotation frequency. From the measurements of
magnetic fields in clusters of galaxies we know that ‘on average’ the upper limit
of the external magnetic field is 10−8 µG, which corresponds to an Alfvén speed
VA = 0.1 kpc/Gyr and λz = 30 pc (assuming Ω = 100 Gyr−1). Then the limit
for diffusivity will be ηT = 0.1 kpc2/Gyr ' 3 × 1025 cm2/s. For larger mag-
netic diffusivities the MRI-driven disturbances shall be suppressed. Comparing the
number with ( 3.45) one can see that the molecular diffusivity is too small to stop
the magneto-rotational instability.
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3.2 MRI for accretion disks: turbulence characteristics

The angular momentum problem is the main question to answer in star and plane-
tary formation research. During the star formation the specific angular momentum
is reduced by more than 4 orders of magnitude, although in any non-dissipative
system it is precisely conserved. The dissipation due to molecular viscosity has
proved to be negligibly small. Therefore, the investigation of the turbulence de-
velopment in the accretion disks became a subject of very active research. Un-
fortunately, the turbulence in pure hydrodynamics has to decay very fast. An
exception might be the strato-rotational instability, which is proved to exist in
Taylor-Couette flow (Shalybkov & Rüdiger 2004). A study of Kepler flow with the
uniform gravitational acceleration has been done by Dubrulle et al. (2004). The
magneto-rotational instability is linear and probably the most efficient mechanism
that is known to produce the required turbulence and viscosity. Strato-rotational
and baroclinic instabilities are known to be quite slow, requiring about 102 rota-
tions to saturate. The instability with the Hall effect is known to be not faster then
magneto-rotational instability. Most MRI studies were done for the case of Kep-
lerian disks. We shall adopt the terminology of data analysis in order to compare
comfortably the results of galactic MRI with MRI in Keplerian disks.

An important outcome of all simulations is the magnitude of the horizontal
components of the Reynolds and Maxwell stresses. They are the terms that lead to
angular momentum transport in the radial direction, as it can be seen from inspect-
ing the equation for angular momentum conservation in cylindrical coordinates
(z,R, φ),

∂

∂t
(ρR2Ω) + ∇ · [R(ρuuφ − BBφ/4π − νρR∇Ω)] = 0. (3.55)

Various fields can be divided into mean and fluctuating parts denoted as u = 〈u〉+
u

′

. After averaging of the equation we have

∂

∂t
〈ρR2Ω〉 + ∇ · [R〈ρuuφ − BBφ/4π − νρR∇Ω〉] = 0. (3.56)

The term with molecular viscosity ν is very small. Much larger in comparison
is the turbulent viscosity νT, which comes into play by assuming that averaged
Reynolds and Maxwell stresses take a form similar to the viscous stress. So, using
the Reynolds rules one can replace ν by νT, i.e.

∂

∂t
〈ρR2Ω〉 + ∇ · [R(〈ρu〉〈uφ〉 − 〈B〉〈Bφ〉/4π − νT〈ρ〉R∇Ω)] = 0, (3.57)

where

−νT〈ρ〉R∇Ω = 〈(ρu)
′

u
′

φ − B
′

B
′

φ/4π〉 = (τφR, τφφ, τφz). (3.58)

In many applications it is assumed that νT = 1
3uTl, where uT is the turbulent rms

velocity and l is some suitable correlation length. Neither of these two quantities
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are known, but if it is possible to assume them to be some fraction of the sound
speed and vertical scale height, respectively, then

νT = αSScsH, (3.59)

which is exactly the Shakura & Sunyaev (1973) prescription for eddy viscosity.
The important result for all applications is that αSS is not a constant. It depends

on the strength of magnetic fields:

αSS = α̃0
SS + α̃B

SS

〈B〉4
B4

0

, (3.60)

where one finds α̃0
SS ' 0.003 and α̃B

SS ' 0.33 (Brandenburg et al. 1995). Then,
αSS fluctuates in time, which may cause not fourth but only quadratic dependence
on B. αSS depends on density stratification and height, shear and vorticity.

αSS ∝ q

ω
=

q

2 − q
, (3.61)

where q and ω are the shear and vorticity. In this work we find that the galactic
rotation introduces a strong radial dependence on the αSS tensor and other turbulent
parameters. Correlation tensors (full normalized Reynolds and Maxwell tensors)
allow to see the main directions of the turbulence transport

〈uiuj〉
〈u2〉 ,

〈BiBj〉
〈B2〉 . (3.62)

An illustration of the behavior of the stress tensors can be found in Brandenburg et
al. (1995).

The accretion rate M can be calculated as

Ṁ = −(2πR)(2Lz)〈ρuR〉. (3.63)

The influence of the rotation on turbulence is reflected by the inverse Rossby num-
ber

1/Ro = l0Ω/V0 = 2ΩH/〈u2〉1/2
. (3.64)

It is always above 10 for Keplerian disks.
Fourier spectra for kinetic and magnetic total energies allow to observe the

length of energy injection λcrit and the transport of energies to larger and smaller
scales, as well as the anisotropy of the turbulence.

Calculation of the turbulent diffusivity and α dynamo effects is a more com-
plicated task. Helicity and the alpha-effect can be calculated, using Eq. (1.10), Eq.
(1.14) and Eq. (1.15), if the high-conductivity limit or the condition of Eq. (1.17)
is fulfilled.



Chapter 4

ZeusMP 3D code and model
description

ZeusMP 3D is a numerical code for the simulation of three-dimensional fluid
dynamical flows in astrophysics including a self-consistent treatment of the effects
of magnetic fields and radiation transfer. The code was developed by Stone & Nor-
man (1992) and was extended from 2D to 3D and further to the parallelized version
ZeusMP 3D which has been used in the present work. The algorithms in Zeus 3D
divide naturally into three areas: (1) hydrodynamics (HD), (2) magnetohydrody-
namics (MHD), and (3) radiation hydrodynamics (RHD). We have used the HD
and MHD parts.

The time-explicit, three-dimensional Eulerian hydro-code is based on the method
of finite-differences, characterized by a high degree of robustness and speed. The
algorithm for evolving the magnetic field are self-contained and independent of the
HD algorithms in the early versions, but this is not the case when using HSMoC
CT scheme. Using of HSMoC CT scheme (see Stone & Norman 1992 for further
details) ensures the exact fulfilling of ∇ · B = 0. The scheme uses the Method of
Characteristics (MoC, invented by Stone & Norman (1992)) to evaluate the veloc-
ity and magnetic field needed to estimate electro-motive forces that are properly
up-winded in the characteristic velocities for the set of equations describing trans-
verse Alfvén waves. This is not the full MHD characteristic problem, but a subset
which has been found (reference above) to yield good results for the propagation
of Alfvén waves. This routine differs from the previous versions in that the Lorentz
forces are computed before the electro-motive forces are estimated. Thus, for the
electro-motive forces one now uses the velocities which have been updated with
all the source terms, including the transverse Lorenz forces.

Neumann-Richtmeyer artificial viscosities are used to capture shocks. The
shock capturing viscosity has two parts: the first (quadratic artificial viscosity)
is non-vanishing and proportional to −∇ · u only in regions with −∇ · u > 0,
the second part (linear artificial viscosity) is a damping of turbulence with the term

49
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Table 4.1: ZeusMP 3d code performance

Problem size CPU Wall Time

256 × 256 × 256 8 93.7
512 × 512 × 512 64 94.2
1024 × 512 × 512 128 103.8
1024 × 1024 × 512 256 125.1

∝ cs qlin (where qlin < 1 is a constant). The last term was introduced after realiz-
ing that the ZeusMP 3D code has trouble to preserve the stability of low-resolved
hydrodynamic disks with only conservative forces acting (see Chapter 3). From
the work of Falle (2002) we can learn about shock errors for earlier versions of
Zeus, the description may still be valid for present version. It is reported that the
Zeus code is showing good accuracy in case of isothermal hydrodynamics. For
MHD one has to combine the isothermal equation of state with linear artificial vis-
cosity in order to reach the accurate treating of shocks. Employing linear artificial
resistivity will give even better results for removing the rarefaction shocks in MHD
waves. For our isothermal models we have used the combination of quadratic and
linear artificial viscosities. We do not expect to obtain the shocks for the formulated
problem of global MRI. The code is known to be highly diffusive.

It is known that for the case of turbulence under dominant toroidal velocities,
the flow is much smoother in the toroidal direction than in the vertical and in the
radial direction. Therefore, we can use a nonuniform grid aspect ratio with δz <
δR < Rδφ. The viscous term is proportional to the νi∂iui and therefore depends
on the mesh width. It is hard to avoid this dependence for cylindrical geometry,
where the mesh size (in azimuth) is permanently growing with a distance from the
axis.

Speed and efficiency. The large computational PC cluster ‘Sanssouci’ was es-
tablished at the Astrophysical Institute Potsdam in the fall of 2003. 256 avail-
able CPUs have made possible the testing of parallelization efficiency of large-size
problems with ZeusMP 3D. 256 available CPUs are divided in four cabinets with
fastest connections within the cabinets. The connection between the cabinets is less
efficient because of spatial separation. In the Table 4.1 it is shown that the optimal
parallelization is achieved with using up to 64 CPUs, which is the full load for one
cabinet. With this optimal number of CPUs, a performance summary from the test
run with minimum of output is 3.72325 · 106 zone-cycles per CPU second. The
code will consume 38 CPU hour for the simulation with 256 × 512 × 256 zones
within 15000 cycles (until saturation, which is roughly 1 Gyr).
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To make a conclusion from the paragraphs above, we can claim that the ZeusMP
code was the best choice for simulating global MRI action in the galactic disks.
The speed of calculation allows us to have the simulations with resolution up to
10 pc to be completed within reasonable time with the use of parallelization. It is
the only code which includes the parallelization for cylindrical geometry. Known
mistakes and inaccuracies of the shock treatment do not disturb the calculations of
global MRI, because the driven turbulence is in the subsonic regime.

4.1 Model description

The system of magneto-hydrodynamical equations

Dρ

Dt
+ ρ∇ · u = 0, (4.1)

ρ
Du

Dt
= −∇P − ρ∇Ψ +

1

4π
(∇×B) ×B, (4.2)

∂B

∂t
= ∇× (u×B− η∇×B) (4.3)

are solved with the help of 3D ZeusMP using the uniform grids. The feedback
of magnetic fields B onto velocity fields u is included as a Lorentz force in the
momentum equation. The isothermal relation P = c2sρ with the sound speed cs =
10 km/s is used for the interstellar medium. Magnetic diffusivity η has a rather
small value for the warm gas component of the ISM (see Chapter 1 and 3). For most
of the models it is chosen to be equal zero with only numerical diffusivity acting.
The models with non-vanishing magnetic diffusivity will be specially notated.

The resolution is chosen to keep from 8 to 11 grid points for resolving the min-
imal wavelength, its expected initial value was calculated according to Balbus &
Hawley (1991). Artificial viscosity is introduced in every model. It dissipates high-
frequency numerical noise and smears out shock fronts if the turbulence becomes
supersonic.

3D global simulations in the cylindrical coordinates have been done for a disk
of thickness Z = [−1, 1] kpc and R = [1, 5] kpc. The gravitation potential Ψ
is assumed to be generated by the stellar population, self-gravity of the gas is not
included. We have prescribed the potential Ψ for radial and vertical directions
separately so that similar shapes in stratification and rotation curve profiles result,
following Fröhlich & Schultz (1996). No azimuthal variations like density waves
and spirals are introduced. All non-axisymmetric structures in density or flow and
fields in the simulations are thus due to MRI. The rotation curves are described via
the Brandt-type rotation law

uφ =
R Ω0

(1 + (R/R0)n)1/n
, (4.4)
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where R0 is the radius of transition from rigid to differential rotation, Ω0 is the
angular frequency of rigid galactic ‘core’ rotation, parameter n = 2 or n = 4.
In case of rotation velocity decreasing with radius one should use the Miyamoto-
Nagai (1975) gravitational potential (Chapter 2, Eq. (2.5)) and the corresponding
rotation curve which is calculated as in case of pressureless disk,

uφ =

√

R
∂Ψ

∂R
. (4.5)

For models with the density stratification we adopted

ρ =
∑

m

ρ0,m exp

(

− z2

H2
m

)

+
∑

k

ρ0,k exp

(

− |z|
Hk

)

. (4.6)

Lacking knowledge about the vertical stratification of the gas density in the galax-
ies considered, we adopt the empirical HI distribution of Dickey & Lockmann
(1990) for our Galaxy: a combination of two Gaussians with central densities 0.395
and 0.107 cm−3 and scale heights of 212 and 530 pc, respectively, and an expo-
nential with central density 0.064 cm−3 and a scale height of 403 pc. The runs
with constant density are notated respectively.

Resolution. 3D global calculations in the cylindrical coordinates have been done
for a disk of thickness Z = [−1, 1] kpc, R = [1, 5] kpc, φ = [0, 2π]. The equa-
tions are solved with the 3D ZeusMP code using uniform grids with dimension up
to a maximum of 256× 1024× 256 for the largest radial extensions. Most runs are
done with 256 × 512 × 256. For testing and demonstrations we have used lower
resolution, which saved computing time and space. Pseudo-vacuum and periodi-
cal conditions were used for the vertical boundaries. Radial boundaries are set to
perfect conductor.

Initial conditions. There are different ways to describe a vertical initial magnetic
field. A first case is when the initial magnetic fields are chosen to be homogeneous
everywhere in the disk, with a non-zero flux through the disk. The vacuum bound-
ary conditions in vertical direction will preserve the flux during the simulation.
Next cases are Bz = b0 sinφ or Bz = b0 sin (2πR/(Rmax −Rmin)) with vanish-
ing flux through the disk, where b0 is a constant. The initial density profile has to
include a function ρ̂ to compensate the magnetic pressure

−c2s∇ρ̂+
1

4π
∇B2 = 0. (4.7)

No supernova or superbubbles produced turbulence is taken into account, only
some small random density fluctuations of order 10−4ρ0 are assumed in the ini-
tial condition.
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Normalization in Zeus. Zeus works with the following normalization. Time
unit is Gyr, scale unit is kpc. Therefore, for velocity we have to use units [u] =
kpc/Gyr ' km/s. Magnetic fields are normalized as

Bzeus =
B√
4πρ0

≡ ṼA, (4.8)

where Alfvén velocity and density units are

[ṼA] = 105[cm s−1], [ρ0] = 10−24[g cm−3]. (4.9)

In order to derive from the simulation data the real value of magnetic fields, one
has to use the relation

B =
√

4πρ0ṼA =
√

4π · 10−1µG. (4.10)

The Alfvén speed can be restored as Bzeus/
√
ρzeus, where ρzeus = ρ/ρ0. All these

relations have been used during data analysis. All the plots and tables in the next
chapters contain physical values, free from Zeus normalization.

4.2 Boundary conditions

In the global disk simulations we have more freedom with choosing the boundary
conditions. As we have learned during this project, there is a possibility to choose
the size of computational domains so large that most of MRI-driven turbulence
is placed well inside without much interaction with radial boundaries. The most
suitable for our model are two kinds of reflecting boundaries – pseudo-vacuum and
perfect conductor conditions. Perfect conductor condition was permanently used
for radial boundaries, while for vertical direction we have the choice to use any of
the reflective conditions or even a periodical one. Periodical boundary conditions
were applied in azimuthal direction, and in some cases for vertical direction.

The following discussion refers to a cylindrical geometry, but it is easy to re-
move all geometrical R-factors and infer corresponding conditions for Cartesian
geometry.

Cylindrical coordinates. We solve the MHD Eqs. (4.1)-(4.3) for isothermal
case. In cylindrical coordinates (z,R, φ) the equation of motion for velocity com-
ponents is

ρ
Duz

Dt
= −ρ∂Ψ

∂z
− ∂p

∂z
+ jRBφ − jφBR, (4.11)

ρ

(

DuR

Dt
−
u2

φ

R

)

= −ρ∂Ψ

∂R
− ∂p

∂R
+ jφBz − jzBφ, (4.12)

ρ

(

Duφ

Dt
+
uφvR

R

)

= − ρ

R

∂Ψ

∂φ
− 1

R

∂p

∂φ
+ jzBR − jRBz (4.13)
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where j = (1/4π)∇ × B is a current. The Maxwell equation (Appendix 2) with
the dissipative term takes the form

∂Bz

∂t
= − 1

R

(

∂

∂R
(REφ) − ∂ER

∂φ

)

, (4.14)

∂BR

∂t
= −

(

1

R

∂Ez

∂φ
− ∂Eφ

∂z

)

, (4.15)

∂Bφ

∂t
= −

(

∂ER

∂z
− ∂Ez

∂R

)

, (4.16)

where

−Ez = uRBφ − uφBR + αBz − η
1

R

(

∂

∂R
(RBφ) − ∂BR

∂φ

)

, (4.17)

−ER = uφBz − uzBφ + αBR − η

(

1

R

∂Bz

∂φ
− ∂Bφ

∂z

)

, (4.18)

−Eφ = uzBR − uRBz + αBφ − η

(

∂BR

∂z
− ∂Bz

∂R

)

. (4.19)

Terms with α-effect and magnetic diffusion η were included in Zeus during the
project.

In the Zeus code the boundary conditions are applied to electric fields instead
of magnetic fields. Conditions for velocities are the same both for perfect con-
ductor and for pseudo-vacuum; they can be simply reduced to the reflection. Our
cylindrical domain is restricted with R = Rin, R = Rout in radial direction and
with |z| = Zout in vertical direction. For radial boundaries (both perfect conductor
or pseudo-vacuum) one has

∂ρ

∂R
= 0,

∂uz

∂R
=
∂uφ

∂R
= uR = 0. (4.20)

The same rules are valid for vertical boundaries,

∂ρ

∂z
= 0,

∂uR

∂z
=
∂uφ

∂z
= uz = 0. (4.21)

The idea of conserving the magnetic flux is applied to the boundary conditions of
magnetic fields. The Pointing vector E × B has to vanish on the chosen surface.
For example, on the surface z = Zout it leads to E ×B|z = BREφ −BφER = 0.
The last condition can be fulfilled in two ways, they are called the perfect conductor
and the pseudo-vacuum boundary conditions.
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4.2.1 Perfect conductor

The perfect conductor boundary can be imagined as a conducting metal plate. That
means that the tangential component of the electric field and the normal component
of the magnetic field are required to vanish at the borders. We have used the perfect
conductor boundary condition mostly for radial boundary conditions, for R = R in,
R = Rout.

Ez = 0, Eφ = 0,
∂ER

∂R
= 0 at R = Rin, Rout. (4.22)

From Eqs. (4.11)–(4.19) one can see that the boundary conditions for velocities
and for electric field lead us to the boundary conditions for magnetic fields. In the
simplest case, without magnetic diffusivity and alpha-effect, we have the following
radial condition for B:

BR = 0,
∂Bz

∂R
= 0,

∂Bφ

∂R
= 0 at R = Rin, Rout. (4.23)

4.2.2 Pseudo-vacuum

Pseudo-vacuum boundary condition imply the reflection rules for the velocity fields.
As there are no currents in vacuum, we may write the condition

∇× B = 0. (4.24)

The electric fields are reflected mirror-like,

Ez = 0,
∂ER

∂z
= 0,

∂Eφ

∂z
= 0 at |z| = Zout. (4.25)

For the magnetic field we have from Eqs. (4.11)–(4.11)

BR = 0, Bφ = 0,
∂Bz

∂z
= 0 at |z| = Zout. (4.26)

The difference to the previous condition is that a normal component of the magnetic
fields is allowed outside of the domain.

The boundary conditions for the non-vanishing alpha-effect are well described
in Elstner et. al (1990).

4.3 HD and MHD tests

Before starting the calculations with MRI acting in galactic gaseous disks (Chapter 5),
we have done some tests.

In Table 4.2, the notation ‘stable’ means that no magnetic field amplification
or flow deviations were obtained. The very first run n1 is one of the hydrodynam-
ical stability tests for the Brandt-type rotation law (Eq. (4.4)). We found that the
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Table 4.2: Test models for vertical initial magnetic field

run VA,0[km/s] R0 [kpc] Ω0[Gyr−1] orbits

n1 0.0 2.0 100 27 stable
n2 0.9 – 40 80 stable
n3 0.3 100 30 30 stable

b1 11 2.0 100 33 NOT st.
b2 15 2.0 100 30 NOT st.
b3 20 2.0 100 26 stable
b4 36 2.0 100 17 stable
b5 75 2.0 100 35 stable

Figure 4.1: The energies of the radial magnetic field component (left) and the az-
imuthal magnetic field component (right) for different strengths of initial magnetic
fields (Table 4.2)
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necessary setup for the disk stability both with and without density stratification is
reached if the radial resolution is not less than 60 mesh points for radial extension
from 1 kpc to 5 kpc.

Models n2 and n3 are the rigid rotation tests for homogeneous initial magnetic
fields. Model n2 has the strict rigid rotation law uφ = Ω0R, whereas model n3 has
the Brandt-type rotation law with the rigid part extended to 100 kpc. The initial
velocity and density perturbations (Section 5.1.2) have to be set to values not larger
than 10−4. MRI is known to exist only with non-zero shear (Section 3.1), so with
these runs we made sure there will be no other effects except MRI in our models.

The simulations b1 – b5 in Table 4.2 were done using the Brandt-type rotation
law (Eq. (4.4)) with rather large initial homogeneous magnetic fields. No density
stratification is assumed. The box size in kpc is [z : R : φ] = [(−0.5, 0.5) :
(1, 5) : (0, 2π)] with the resolution of [128 : 256 : 128] mesh points. Numbers
of orbits are calculated for the outer radius of the disk. Instability stops to work
when the magnetic tension is dominating the centrifugal force for the loops. This
happens for an initial field of 7 µG (VA = 20 km/s, with density 10−24 g/cm3).
Four models with large Alfvén velocities are plotted on Fig. 4.1. They show no
differences with the theoretical restriction in Eq. (3.31),

λcrit

2H
|b2 ' 0.6,

λcrit

2H
|b3 ' 1. (4.27)

from where model b2 is expected to be unstable while the wavelength is still fitting
in the computational domain. From Eq. (4.27) follows, the initial vertical magnetic
field must not be stronger than 7µG for given density.

Meinel model test. In order to test the accuracy of MHD calculations with
magnetic diffusivity implemented in Zeus (Eqs. (4.11)–(4.11)) we have used the
Meinel-model. The α-tensor was implemented in s simplified way and used only
for testing.

An exactly solvable global α2-dynamo model for the disk (Meinel 1990) is an
excellent accuracy test. We assume a cylinder (axis inclusive) with R ≤ Rout,
−H ≤ z ≤ H . The magnetic diffusivity η is fixed to be constant, whereas the
α-tensor looks like

αzz = αrr = αφφ = α, (4.28)

α =

{

α0, 0 < z ≤ H, r ≤ R
−α0, −H ≤ z < 0, r ≤ R

.

Scalars T and S define toroidal and poloidal parts of the magnetic field as

B = ez ×∇T + ∇× (ez ×∇S). (4.29)

The solution of the induction equation for the perfect conductor boundaries is

T =
α0

η
S, Sn,l = sin

(

nπ
z

H

)

J0

(

y0
l

r

R

)

, n = 1, 2, 3, ...; l = 1, 2, 3, ...,

(4.30)
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where y0
l is a first node for the Bessel function J0 . Critical number is

(

α0

η

)

n,l

≥




[

nπ

H

]2

+

[

y0
l

R

]2




1/2

. (4.31)

Thus, for n = 1and l = 1, the first critical number can be easily calculated to be
(

α0

η

)

1,1

= 4.95495, (4.32)

where for H = 1 and R = 1 the largest mode is with y0
1 = 3.8317.

The accuracy of ZeusMP with implemented terms of α-effect and magnetic
diffusivity can be checked with the help of last equations. We have used a quench-
ing function for the α-tensor, α ∼ (1 + Emag/Eeq)

−1. Calculations were started
with the parameter (α0/η) being over-critical. The magnetic energy is growing
due to the α-effect and leads to a reduction of the alpha tensor via quenching until
the critical number is reached. At this moment the dynamo is saturated. The new
value of alpha can be measured. Our numerical result for resolution (21 : 17 : 5) is
(α0/η)1,1 = 5.01179, for resolution (21 : 17 : 16) we have (α0/η)1,1 = 5.01178.

As a conclusion of this chapter we may claim that the ZeusMP simulations of
HD gaseous disk are stable and reliable. The MHD disk is stable in the case of a
homogeneous magnetic field and rigid rotation.



Chapter 5

3D global simulations of MRI for
galaxies

5.1 MRI with purely vertical initial magnetic fields

Our MRI simulations have various initial and boundary conditions. The set of these
conditions was chosen to assure a stable development for the instability. We split
the whole lot of runs in groups. Each group of runs will be analyzed for its positive
and negative aspects.

The first group contains the models with homogeneous density. The models
have the fixed disk thickness, they allow us to check a correspondence of the typi-
cal wavelength to the strength of initial vertical magnetic field. Unfortunately, with
reflecting vertical boundary conditions the saturation cannot be reached within a
reasonable calculation time. The subgroup of runs with periodical vertical bound-
aries is saturating. The influence of boundary conditions on the average turbulent
parameters will be demonstrated.

The models in the second group have a vertical density stratification included.
Here we can see the effect of the density stratification when comparing with the re-
sults of the first group. Again, there are some slight differences between subgroups
with reflecting and those with periodical vertical boundaries. Fixing the strength
of the initial magnetic field and the density stratification, we have varied the rota-
tion curves. Saturated turbulence could not be reached for disk half-thickness of 1
kpc because of too strong a density decrease. For thin disks (0.5 kpc and less) the
saturated state can be reached with the periodic vertical boundaries.

The third group contains the models with a sinusoidal initial field, which was
widely used for box simulations as a saturating field configuration. Still, the same
problem as with the thick disks – no saturation there.

All the models lead to the a common turbulent picture. We may claim that the
MRI process is not strongly affected by numerics.

59
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Table 5.1: Models with homogeneous density (ρ0 = 0.47 · 10−24 g/cm3)

run Bz VA,0 λz uT BT VA,T Bsat

[µG] [km/s] [pc] [km/s] [µG] [km/s] [µG]

hd1 0.11 0.45 130 2.3 1.0 4.1 4

hd2 0.22 0.9 220 4.5 2.8 12 10
hd2r 0.22 0.9 220 8.3 2.3 9.4 -

hd3 0.44 1.8 400 5.8 4.1 20 15
hd3r 0.44 1.8 400 17 4.3 17.6 -

hd4 0.66 2.7 616 22 4.7 19.3 -

5.1.1 Uniform density

In Table 5.1 the runs with identical rotation curves (Ω0 = 100Gyr−1, R0 = 2 kpc,
n = 2 in Eq. (4.4)), but for different magnetic field amplitudes are presented. The
initial magnetic field is purely vertical and homogeneous everywhere in the disk.
For the initial magnetic field component Bz the corresponding Alfvén velocity
is VA,0 = Bz/

√
4πρ. The following columns in the Table 5.1 are the critical

wavelength λz obtained from simulations, the velocity dispersion uT = 〈u′2〉1/2
,

the amplitude of the turbulent magnetic fields BT = 〈B′2〉1/2
, the Alfvén velocity

dispersion VA,T = 〈V ′2
A〉

1/2
and the amplitude of saturated magnetic fields Bsat.

The resolution is [120 : 105 : 72] for the disk with half-thickness H = 0.8 kpc
and radii from 1 kpc to 4.5 kpc. The perfect conductor boundary condition in
radial direction was used for all models. Uniform density allows to use periodical
boundary conditions in vertical direction. Models hd2r and hd3r are identical to
hd2 and hd3 but with reflective (pseudo-vacuum) vertical boundaries.

The common characteristics of the models with both pseudo-vacuum and pe-
riodic vertical boundary conditions are the following. One finds that the typical
wavelength λz grows linearly with the initial magnetic field. This is a well known
result of the linear theory (Velikhov 1959; Fricke 1969; Balbus & Hawley 1991).
Another two runs with initial Alfvén velocities VA = 1.8 km/s and VA = 2.7 km/s
were done in addition, to confirm the linear theory prediction. From Table 5.1
one can estimate that the wavelength λz is <

∼ 10−3pc for seed fields of 10−12G.
We find that the wavelength should increase with the increasing of magnetic fields
during the simulation, transporting the energy from critical to larger scales.

The critical scales for instability are clearly visible in all dimensions in the
magnetic energy E spectra, but in particular in the vertical Ez(λz) component. In
Fig. 5.1 the Fourier spectra show the critical wavelengths for the turbulent mag-
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netic energy E for the hd1 model from Table 5.1. The wavelength is normalized
to the computational domain size (Lz, LR, Lφ). The slope of the magnetic energy
spectrum is much steeper than a Kolmogorov spectrum, especially in the early non-
saturated stages due to the peak of fastest unstable mode growth (Fig. 5.1 (a)). In
the linear regime the peaks would be delta-functions. The magnetic spectra are
broadening with time while the MRI is developing large scale fields (Fig. 5.1 (b)).
The energy is transported from small to large scales, which may also be an indi-
cation for the alpha-effect. The magnetic Fourier spectra on Fig. 5.1 (b) show the

Figure 5.1: Time dependent turbulent 1D magnetic energy spectra E(λ) for the
model hd1 (no density stratification, B0 = 0.11 µG). Time is 0.8Gyr for case a),
and 1.3Gyr for case b)

slope k−5/2 both along and perpendicular to the magnetic field direction. Drecker
et al. (2000) find a 5/3-law for the kinetic spectrum for the azimuthal wave num-
bers, but a steeper 5/2-law for the magnetic spectrum with a global MRI-simulation
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Figure 5.2: The time evolution of the ‘thin sheets’ turbulent structures driven by
MRI, model hd2. (BR, Bz) are plotted with arrows. The change of Bφ sign is
shown with red-green color contours. Case a) corresponds to the time 1.1Gyr,
case b) to 1.6Gyr, case c) to 2.0Gyr, case d) to 3.0Gyr

in a sphere. Haugen et al. (2003) find magnetic spectra between k−5/3 and k−3/2

for forced-turbulence without helicity. It is not clear whether the steepness of the
spectra in Fig. 5.1 is an intrinsic feature or only an indication for the restricted
nonlinearity of our simulation. From magnetic field observation (Beck 1999) it is
known that the synchrotron emission energy has a slope of k−5/2 (see Section 1.1).
Cosmic rays are tracers of magnetic fields but they do not tell us whether these
magnetic fields have an energy spectrum slope k−5/2 too.

During MRI operating in the disk the generated azimuthal component of the
field might become unstable as well. The resulting toroidal magnetic field is any-
way not purely axisymmetrical, although the m=0 is clearly dominant in the energy
spectra. Comparing the energies of different field components in Fig. 5.1 we derive
the following relation for amplitudes: δBz � δBR < δBφ.

Fig. 5.2 shows the time slices of MRI action in the disk in edge-on view. Ar-
rows are used for the directions of (BR, Bz) vectors. Time after 1 Gyr corresponds
to the saturation process of MRI in the model hd2. Magnetic energy growth and
saturation is plotted in Fig. 5.3 for all models. One can see from Fig. 5.2, that
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Figure 5.3: Magnetic energy densities of vertical (left), radial (middle) and az-
imuthal (right) field components

during the MRI action the turbulence has a thin-sheet structure with the k−5/2 en-
ergy spectrum slope. During the saturation process the magnetic fields become
large-scale and seemingly quadrupolar.

The horizontal velocity uT = (〈u′2
R〉 + 〈u′2

φ 〉)1/2 grows with the initial mag-
netic field (Table 5.1). For the given examples it reaches the values of a few km/s
while the small-scale magnetic fluctuation BT = (〈B′2

R 〉 + 〈B′2
φ 〉)1/2 is of the or-

der of a few µG. Its Alfvén velocity exceeds the Alfvén velocity of the external
field by a factor of 10 but its value is comparable to uT. Approximate equiparti-
tion VA,T ' uT results for models with relatively small initial magnetic flux (hd1).
Models with larger fluxes develop the turbulent Alfvén velocities which are 3 − 4
times larger compared to uT. The velocity dispersion uT does not depend on ver-
tical direction z. In the next subsection we see that the density stratification is
important for the vertical distribution of velocity dispersion.

The magnetic energy curves are identical for different boundary conditions.
In Fig. 5.3 the curves of magnetic energy are plotted. Energies were calculated
as normalized integral of the squared magnetic field (in µG) over the volume,
Emag = V −1

∫

dV B2 ∼ 10−12G2. The radial and azimuthal fields components
are amplified within the first Gyr. The amplification of the vertical magnetic field
component becomes visible when the generated turbulence has developed an am-
plitude δBz larger than initial vertical field.

The upper limit for initial magnetic fields for MRI will be the value where the
corresponding wavelength of instability will exceed the disk thickness (Eq. (3.31)
and tests in Chapter 4). For given model parameters, the upper limit should be
15 µG. The simulations lead to an upper limit of the magnetic field amplitude
of 4 µG, 10µG and 15 µG the disk thickness of H = 0.8 kpc. As one can see
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from Table 5.1, the magnetic field amplitude in the saturation regime does depend
not only on the disk thickness but also on the value of the initial ‘seed’ field. A
similar effect was observed for the α-dynamo operation, where the resulting mag-
netic fields depend on the closeness of a system to the marginal stability. If one
starts the turbulence close to the marginally stable state, the nonlinear effects are
weak. Turbulence far from stability have stronger nonlinearity. Large and weak
nonlinearities can cause some differences in saturated regime of turbulence.

Four models (hd1, hd2, hd3, hd4) were done for periodical boundary conditions
with the vertical direction. In these runs saturation has been reached, except for the
model with the largest magnetic flux (hd4). This is probably due to the fact that
the critical wavelength in the model hd4 is comparable to the disk half-thickness,
which leads to numerical difficulties in time stepping. The time step shortens by
a factor 102 or even 103 because the turbulence with high or supersonic Alfvén
velocities is fully developed. The models hd2r and hd3r with pseudo-vacuum
vertical boundary conditions have a similar time-development. These simulations
did not reach saturation because of the shortening of the time-step. The code did
not crash, but we had to terminate the calculations when they became too time
consuming. A way out consist in changing the type of vertical boundary conditions
to periodic, which results in slight differences in the turbulence and allows the
models to saturate.

Critical wavelength and resolution. What will happen if the resolution is not
good enough to resolve the fastest-growing MRI waves? We have observed, that
the lack of resolution slows down the growth rate. The reason is that the larger
wavelengths are growing slower, while the small and fast scales were cut away by
poor resolution. In order to obtain the correct results of the turbulent parameters
and the growth rates, we have pre-estimated the critical wavelengths to ensure the
requested resolution.

5.1.2 Nonuniform density

The model can be improved by adopting the density stratification. We have used
the density profile described in the previous chapter with Eq. (4.6) (Dickey &
Lockmann 1990). The maximum density is ρ0 = 10−24 g/cm3 in the galactic
midplane. The improved models are collected in Table 5.2. The variations of the
Brandt-type rotation curve parameters R0, Ω0 and n (see Eq. (4.4)) are given in
the first columns. The initial magnetic field is purely vertical and homogeneous
everywhere in the disk. For the initial magnetic field Bz the corresponding Alfvén
velocity is VA,0 = B/

√

4πρ(z) at the galactic midplane. The following columns
are the same as in the Table 5.1, the velocity dispersion uT, the amplitude of the
turbulent magnetic fields BT, the Alfvén velocity dispersion VA,T. The resolution
is [256 : 512 : 256] for the disk with half-thickness H = 1 kpc and radii from
1 kpc to 5 kpc. An exception is the model U4, for it has extended radii from
1 kpc to 11 kpc with [256 : 1024 : 256] mesh points of resolution. The perfect
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Table 5.2: Density-stratified models with different rotation laws

model R0 Ω0 n Bz uT BT VA,T

[kpc] [Gyr−1] [µG] [km/s] [µG] [km/s]

m1 2.3 75 2 0.11 2.7 0.4 9
m2 2.3 75 2 0.32 5.8 1.4 24
m3 2.0 100 2 0.32 7.8 2.0 43

U1 2.00 76 2 0.32 5.8 1.4 24
U2 1.00 152 2 0.32 4.2 0.9 19
U3 1.52 100 4 0.32 6.7 1.2 34
U4 2.80 53 4 0.32 4.3 1.5 15

F1 1.50 160 4 0.11 2.6 0.4 8

Table 5.3: Rotation time 2π/Ω0 is given for most models of Table 5.2. The simu-
lations gave a global e-folding time of magnetic field, τg, the ratio of magnetic to
kinetic energy, and the ratio of Maxwell to Reynolds stresses

model 2π/Ω0 [Myr] τg [Myr] Emag/Ekin MS/RS

m1 83 86 4.7 15
m2 83 86 3.8 120
m3 63 60 3.5 452
U1 82 81 3.6 240
U2 41 44 4.6 305
U3 63 46 3.0 256
U4 119 96 2.9 -
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conductor boundary condition in radial direction was used for all models, with
reflective (pseudo-vacuum) vertical boundaries.

Parameters R0, Ω0 and nwere varied. Results of the models with n = 2 can be
compared with the linear global model of Kitchatinov & Rüdiger (2004). Model
m1 works with a weak magnetic field which is increased in the models m2 and
m3. Models m2 and m3 differ by the rotation laws. Models U[1-4] are made to fit
the rotation curve of NGC 1058, the galaxy with an extended HII disk and a badly
defined rotation law (Chapter 1). Models U4 and U1 are the best fits (Fig. 5.4).
Still, keeping in mind a possible warping of the disk, we calculated the rotation
curves with the different behavior of the shear inside the radius R = 7 kpc. For
for the galaxies shear is a function of radius. Model F1 is made to fit the rotation
curve of the flocculent NGC 4414 (Table 2.1), an example of a fast rotating galaxy
with large shear. In Fig. 5.4 we plot the observation data of the rotation of the NGC
4414 (Braine 1993) and its fitting with Eq. (2.5) with only disk (adisk = 2.0 kpc,
bdisk = 0.1 kpc, Mdisk = 7 · 1010 M�) and the small halo (ahalo = 12.0 kpc,
bhalo = 12.0 kpc, Mhalo = 1010 M�).

Topology and global symmetries. The MRI-driven turbulence appears to have a
sheets-like structure in edge-on disks (Fig. 5.5). The vertical length of the turbulent
cells is smaller by an order of magnitude compared to the radial one. Both length-
scales vary during the simulations. The cells evolve from small to large structures.
The influence of the density stratification is visible both in initial and final stages:
the smallest scales belong to the region of maximal density at the equatorial plane
z = 0 kpc and they are most visible at earlier times, whereas at the last stage of
MRI development the turbulence is present at all heights with slight differences
in cell thickness. The sheets are lying parallel to the disk plane almost without
mixing vertically. Comparing the edge-on plots for models U2 and U3, one can
point out the transition radius R0 for every model because the instability starts to
operate at R ' R0. The steepness of rotation curves, or the change from n =
2 (model U2) to n = 4 (model U3) affects the radial extend of the turbulence.
Fig. 5.6 shows the magnetic vectors and the color contour of density fluctuations.
The face-on slide is taken as an equatorial cut of the simulated gaseous galactic
disk. Fluctuations of density in radial direction are not great, its maximum is up to
50% from the initial value. No radial or azimuthal dependence of the density was
prescribed. As one can see, the instability works only in the region of R > R0,
i.e. in the region of non-zero shear. Inside the ring with the radius R < 2 kpc no
radial or azimuthal magnetic fields components are generated. Dark-green regions
are the minima of density. Maxima of magnetic fields are mostly correlated with
dark-green regions. The plot was made after a local averaging procedure. One
can see close-spiral or almost ring structures created by MRI, because the cells of
instability were stretched along the azimuth due to rotations.

We have shown in Chapter 1 that the quadrupolar symmetry of the global mag-
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Figure 5.4: The rotation curves (a) and derived shears Ω−1
0 ∂Ω/∂ lnR (b) are given

for models from Table 5.2. Models U1, U2, U3 and U4 are fits for NGC 1058
case. Solid lines are for velocity and shear in model U1, dotted lines are for model
U2 and dash-dotted lines are for model U3, thick dashed lines are for U4. Rhombs
shows the NGC 1058 rotation curve for inclination sin i = 0.1 (Dickey et al. 1990).
The NGC 4414 (model F1) rotation curve (blue dots) and derived shear (blue stars)
are plotted using Eq. (4.4). Stars with error bars show HII data for NGC 4414
(Braine 1993), it is fitted with Eq. (2.5) (solid line)

netic fields needs to be explained by dynamo or MRI. The parity P is defined with

P =
EQ −ED

ED +EQ
(5.1)

where ED and EQ are the energies of the modes with dipole and quadrupole sym-
metry. The value of parity (5.1) is −1 for a strict dipolar field structure and it
is +1 for quadrupole. The linear global model of Kitchatinov & Rüdiger (2004)
predicts the quadrupolar magnetic fields to result due to MRI. Comparison of sta-
bility diagrams for the dipole and quadrupole modes shows that the quadrupolar
solution has somehow wider branches. It means that this symmetry can be easier
excited for smaller minimum magnetic fields, and it needs larger maximum fields
for instability termination. Still, the stability diagrams show the large parameter
space of co-existing dipole and quadrupole modes, so one could not exclude the
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Figure 5.5: Plots 1a) and 1b) represent the model U2 for time slices t = 0.5Gyr and
t = 0.7Gyr. Plots 2a) and 2b) represent the model U3 for time slices t = 0.6Gyr
and t = 0.9Gyr. The minima and maxima of the Bφ components are shown in
green and red colors, yellow is a mark of vanishing Bφ component. Over-plotted
arrows show radial and vertical components of the magnetic field for same time
slices

mixed parity to appear in nonlinear regime. Fig. 5.7 gives the results of our global
non-linear simulations for the symmetry of the MRI-amplified magnetic field. As
the initial field B0 is antisymmetric with respect to the midplane the magnetic field
parity starts in all cases with a strong dipolar part but it approaches zero after a few
rotations. Indeed, we demonstrate that the final solution is a mixed mode, i.e. the
magneto-rotational instability can produce the quadrupolar magnetic fields from
the purely vertical seed field.

Growth rates. MRI is present if a disk is differentially rotating with a rate de-
creasing with distance from the center and has a weak poloidal magnetic field com-
ponent (magnetic Mach number< 1). The linear global analysis of MRI-generated
magnetic field disturbances shows an exponential growth B ∼ exp(γt) with the
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Figure 5.6: The density minima are shown in dark-green with over-plotted arrows
of the magnetic field, for time slices t = 1.2 Gyr for U1, t = 0.8 Gyr for U2 and
t = 0.9 Gyr for U3

growth rate γ ' τ−1
rot , where τrot = 2π/Ω0 is a rotation time at the transition radius

to differential rotation (Kitchatinov & Rüdiger 2004). The result was derived for
a Brandt-type rotation law (Eq. (4.4)) with n = 2. As an example, for a rotation
time of 70 Myr (NGC 6946, Sofue 1996) MRI can amplify a seed field of 10−12

G to the observed value of 10−6 G during 1 Gyr. Notice that the local analysis
predicts γ = 0.5qΩ0 with normalized shear q = −(R/Ω0)∂Ω/∂R. Since Ω0 is
75Gyr−1 and 100Gyr−1 for models m2 and m3 (Table 5.3) with the maximal shear
qmax = 0.4, it is clear that the local growth rates are 15Gyr−1 and 20Gyr−1 re-
spectively. The corresponding local e-folding times are 67 and 50Myr for models
m2 and m3. As will be shown below, the e-folding times are larger in the global
case (compare with Table 5.3).

The instability is very fast: its e-folding time is only 44–86 Myr depending on
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Figure 5.7: The magnetic parity P of the axisymmetric components of the mag-
netic fields of models m1 and m2 of Table 5.2 (solid). Dipole and quadrupole seem
to balance. The parity of the axisymmetric components of the flow (dashed). The
existence of mixed modes is evident for both magnetic field and flow

the strength of the rotation (Table 5.3). The global e-folding time τg of the magnetic
fields agrees with the global linear analysis prediction τg ' τrot (τrot is 84Myr for
model m2 and 63Myr for model m3 in Table 5.2). These times are longer than
the local theory predictions above. The reason is a decrease of the shear absolute
value from 0.4 to 0.3 with the radius. Notice, that the magnetic field in model 3
will be amplified by a factor of 106 per Gyr in the global model, whereas the local
prediction gives an amplification by a factor of 108 per Gyr.

The fastest growing instability we get for model U2, which has the highest qΩ0.
Global e-folding time is about 44 Myr (Table 5.3). As we can see from Table 5.2
and Table 5.3, the equation γglobal = 1/τrot = Ω0/2π is valid only if the model
has the n = 2 for rotation law. Models U1 and U2 do fit in it, while models U3
and U4 show some other behavior for growth rates.

We have calculated the radial dependence of the MRI growth rates from our
global simulations. The growth rates for models U1 – U4 are shown in Fig. 5.8.
The maximal growth rate of 25Gyr−1 (model U2) appears at the radius 1.2 kpc,
which is very close to the transition radius R0 = 1 kpc.We find that the growth rate
radial dependence is reflecting the behavior of shear for all models. The Fig. 5.8
shows that the radial and azimuthal components of magnetic field are developing
at any point in the disk although at a slower rate towards the outside.

Velocity dispersion. It is not surprising then that the velocity dispersion also ap-
pears to be strongly dependent on radius. Nevertheless, from observations of NGC
1058 we know that it drops from 12km/s to 6km/s at the inner part (1 ≤ R ≤
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Figure 5.8: The growth rates of magnetic field components Bφ (lines) and BR

(rhombs) for the models in Table 5.2

5 kpc), then out to R ' 11 kpc uT remains almost fixed at about 5.7km/s. MRI
appears to be the mechanism to explain the magnitude of velocity dispersion. From
the radial behavior of growth rates we are now able to estimate the ‘working’ times
for instability. For example, in our best-fit model U4 the disk part with radii be-
tween 3 and 6 kpc has a developed turbulence after 1.3 Gyr, whereas the outer part
> 10 kpc will need 2.7 Gyr to reach the same amplitudes. Therefore, the constancy
of velocity dispersion might be explained by MRI. It may well be that the outer part
of the rotation curve uφ(R) of the NGC 1058 is in a reality not flat but a falling
one as in the case of NGC 4144 (Braine 1993), Fig. 5.4. Then the turbulent dis-
persion ought to be closer to constant. Although the turbulent magnetic fields and
the velocity dispersion are no constant values in the system with decreasing shear
during the MRI evolution, the shape of the turbulent velocity radial distributions in
Fig. 5.9 will change with time towards widening and flattening of the profile.

The average turbulence intensity slightly exceeds the value of 5 km/s. The
characteristic amplitude of the magnetic field fluctuations is about 1 µG or, if ex-
pressed as Alfvén velocity, this corresponds to more than 20 km/s.

Fig. 5.10 presents the vertical profiles of the turbulent flow and magnetic field
intensities. Both the flow and the magnetic field fluctuations show a minimum at
the equator. This result agrees with the observation of strong turbulence in the
galactic halos (Pietz et al. 1998; Kalberla et al. 1998; see Fletcher & Shukurov
2001) and with the computations by Fröhlich & Schultz (1996). Opinions are
divided about the vertical distribution to be expected, if the interstellar turbulence
would be driven by SN-explosions (Ferrière 1992; Kaisig et al. 1993; Ziegler
1996; Korpi et al. 1999). In a simple thinking, the SN-driven turbulence ought to
have same distribution as the SNs themself, i.e. with the maximum at the galactic
midplane. The profiles of the vertical turbulence in our 3D simulations provide a
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Figure 5.9: The radial dependence of the turbulent intensity uT (solid line for
horizontal and dashed line for the vertical dispersion) for model U4. The peaks
correspond to the waves of the strong magnetic fields

good support to the α-dynamo theory. As it was discussed in Section 1.2.1, the
sign of the turbulent velocity gradient is contributing to the sign of the α-tensor
components (Eq. (1.34)). Outwardly increasing turbulent velocities are necessary
for α-generation of the quadrupolar regular magnetic fields in a spiral galaxy.

Pitch angles: temporal and spatial behavior. The observed regular magnetic
fields have the pitch angles p = tan−1(BR/Bφ) from −10o to −40o (Section
1.1.1, Fig. 1.1). In our global simulations, the magnetic fields have the pitch angle
of about −30o (Fig. 5.11). Comparing U1 and F1 models which have almost same
pitch angles but large differences in shear, we see that there is no evidence for a
pitch angle dependence on the shear strength. The averaged pitch angle 〈α〉Z,φ is
shown in Fig. 5.12 with green for averaged values over northern hemidisk, pink for
averages over southern hemidisk and blue for total average (dashed lines). There
is no difference in pitch angle behavior above or below the equator. The magnetic
field strength (red point) has strong dependence on radius, having its maximum
near the transition radius R0 while the pitch angles decrease in absolute value at
R ' R0. It is interesting, that high pitch angles are existing only for non-saturated
MRI regime. 1–2 Gyr is a typical time for MRI to saturate in a galaxy. This is also
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Figure 5.10: The turbulent intensity uT (left) and the magnetic dispersion BT

(right) for model m1 have a minimum at the disk midplane after 1.33 Gyr. The
same holds for uz and Bz (dashed)

an average time between galactic encounters. Thus, the observed high pitch angles
might well be due to MRI, as there is not sufficient time between two encounters
to reach the saturation. After MRI saturates the pitch angles drop to values of −1o.

Figure 5.11: Pitch angles time evolution plotted for all models

Density radial profile. The MRI-driven density fluctuations in the Fig. 5.13 are
not large enough to be of importance for the stellar formation in galaxies. The
interesting point about density perturbations is the fact that they do not travel in
radial direction. This might be very important for MRI in proto-planetary disks and
planet formation. The dust grains until 1 meter size have a tendency to follow the
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Figure 5.12: Left: model U2 at the time 0.7 Gyr. Right: model U3 at the time
0.9 Gyr. The averaged pitch angles 〈p〉Z,φ are shown with green (average over
northern hemidisk), pink (average over southern hemidisk) and blue (full average)
dashed lines. The red dotted line represents the absolute value of the magnetic field
(

10 × 〈B2
R +B2

φ〉
1/2

Z,φ
µG
)

dense regions in accretion disks (Johansen et al. 2004; Hodgson & Brandenburg
1998). The stable high density regions due to MRI might be important for the
formation of rocky planetesimals.

Maxwell and Reynolds stresses. An important outcome of all simulations is the
magnitude of the horizontal components of the Reynolds and Maxwell stresses.
They are the terms that lead to angular momentum transport in the radial direction,
as it can be seen from Eq. (3.58).

Our result is that the MRI-driven turbulence is magnetic-dominated: its mag-
netic energy exceeds the kinetic energy by a factor of 4 (Table 5.3). More dramatic
is the situation concerning the angular momentum transport. The Reynolds stress
is small and less than 1% of the Maxwell stress. The angular momentum transport
is thus completely dominated by the magnetic field fluctuations.

The ratio of Maxwell to Reynolds stresses gives also the information about the
pitch angles. Using the radial component of the Eq. (3.58), we have the relation

MS

RS
= −

〈B′

RB
′

φ〉
4π〈ρu′

Ru
′

φ〉
, (5.2)
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Figure 5.13: Radial dependence of the φ-averaged density field (left), φ depen-
dence of the R-averaged density field (right), model U1. Density is plotted in
10−24 g/cm3 units. The line at 0.320 corresponds to the initial state density at
the galactic midplane z = 0. Black solid line corresponds to the density radial
profile after 1.5 Gyr. Orange lines are show the density changes for the time slices
between initial and final state

which can easily be rewritten as

MS

RS
= −E

mag
R

Ekin
R

tan pkin

tan pmag
, (5.3)

where within the current paragraph we adopt the notations of pkin and pmag for
kinetic and magnetic pitch angles, Ekin

R andEmag
R for kinetic and magnetic energies

of the radial components.
We know that the tan pmag → 1 andEmag

R /Ekin
R → 4 while the ratio of stresses

gives 400. We estimate then the kinetic pitch angle pkin ' π/2 for the tan pkin →
100. The ratio of Maxwell to Reynolds stresses provides us the information about
the outward directed radial flows.
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Table 5.4: Simulation results for models with magnetic diffusivity ηT. Parameters
of the rotation curve are common to all runs and correspond to those of model U3
in Table 5.2

model ηT [kpc2/Gyr] T [Myr] λZ [kpc] λR [kpc]

U3 0.0 46 0.27 1
U3v1 0.01 45 0.3 1
U3v2 0.05 55 0.4 2
U3v3 0.1 66 0.5 4
U3v4 0.2 93 0.8 4

5.2 Influence of turbulent diffusivity

The molecular Ohmic dissipation is negligibly small in the galactic gaseous disks.
Still, the turbulent dissipation driven by SN explosions can play some role for
MRI. The models with magnetic diffusivity from η = 0.01 kpc2/Gyr till η =
0.2 kpc2/Gyr are presented in the Table 5.4 and at the Figs. 5.14- 5.18. The
input parameters for the models, such as the rotation law, density stratification and
resolution, are chosen to be identical to the model U3 in Table 5.2.

The e-folding time is found to grow with increasing magnetic diffusivity, as
we have shown in Table 5.4. We found that increasing ηT leads the magnetic field
saturation times longer than 2 Gyr (Fig. 5.14). That might be critical for the MRI
application to galaxies. Still, we have started our calculations with an extremely
small initial magnetic energies of horizontal field components (see Fig. 5.14). In
reality, taking into account frequent collisions and interactions between galaxies,
the initial magnetic field for MRI might be a few orders higher and have the a form
of very distorted and partly dissipated former regular fields. Equally, the growth
of MRI to the saturation will take less time with higher initial rms velocities. In
addition, external magnetic fields for a galaxy are not necessary small, they may be
up to a few µG (Section 1.2.2). In case when the magnetic fields need to be restored
only a few orders, even MRI with higher (ηT > 0.2 kpc2/Gyr) is of interest.

With increasing of turbulent diffusivity the critical wavenumbers are larger than
the predicted in Eq. (3.29) numbers. The impact of magnetic diffusivity is that the
small scales are dissipated away. The larger is ηT the larger is be the ‘shortest
possible’ unstable wavelength λz, which are given in Table 5.4. The turbulence on
larger scales requests more time to be excited.

Model U3v1 with ηT = 0.01 kpc2/Gyr is hardly different from the non-
diffusive U3 both in e-folding time and the critical wavelength. To see the im-
pact of turbulent diffusivity in this case one needs to increase the resolution. The
broadening of the turbulent energy spectra is demonstrated in Figs. 5.15 – 5.16.
Magnetic turbulent energies are much less peaked not at critical MRI wavelength



5.2. INFLUENCE OF TURBULENT DIFFUSIVITY 77

Figure 5.14: The magnetic energy of radial (left) and azimuthal (right) field com-
ponents for models with non-vanishing magnetic diffusivity

during the simulation comparing to non-diffusive models. With approaching the
saturation regime the magnetic spectra become of the k−5/2 slope. For velocities a
different behavior is observed. The kinetic spectra of horizontal flows are close to
the k−5/3 Kolmogorov spectrum and do not evolve much during the calculation.

For larger diffusivities, the diffusive cut-off is clearly visible both on magnetic
and kinetic energy spectra (Fig. 5.17, Fig. 5.18). From the comparison of the mag-
netic energy for different scales, MRI leads to the appearance of large-scale fields
with dominating Bφ component. Both velocity and magnetic spectra are showing
an anisotropic behavior of the turbulence.

Our results are consistent with the description of the shear instability behavior
with non-vanishing Ohmic dissipation, considered in both the linear (Jin 1996)
and nonlinear (Sano et al. 1998) regimes. The models correspond to the top-right
corner of stability diagram (Fig.1, Kitchatinov & Rüdiger 2004). For the initial
magnetic fields which are close to the cut-off value (Eq. (3.54)) or, in terms of
magnetic Reynolds numbers Rm = 1 , the presence of turbulence diffusion leads
to the stability of the system. It happens due to the growth of the critical wavelength
over the disk height. On the example of U3v4 model, we would need to employ
ηT > 7 kpc2/Gyr for the magneto-hydrodynamical stability of the disk.
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Figure 5.15: Magnetic spectra, model U3v1 (ηT = 0.01 kpc2/Gyr) for time 0.8
Gyr (left) and 1.0 Gyr (right). Vertical, radial and azimuthal energy components
are plotted as solid, dotted and dashed lines

Figure 5.16: Kinetic spectra, model U3v1 (ηT = 0.01 kpc2/Gyr) for time 0.8 Gyr
(left) and 1.0 Gyr (right). Vertical, radial and azimuthal energy components are
plotted as solid, dotted and dashed lines
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Figure 5.17: Magnetic spectra of the model U3v4 (ηT = 0.2 kpc2/Gyr, time is 1.7
Gyr). Vertical, radial and azimuthal energy components are plotted as solid, dotted
and dashed lines

Figure 5.18: Kinetic spectra of the model U3v4 (ηT = 0.2 kpc2/Gyr, time is 1.7
Gyr). Vertical, radial and azimuthal energy components are plotted as solid, dotted
and dashed lines



80 CHAPTER 5. 3D GLOBAL SIMULATIONS OF MRI FOR GALAXIES

Table 5.5: Density-stratified models with zero-flux initial magnetic field. Last
model (zflux2d) has non-zero magnetic diffusivity ηT = 0.05kpc2/Gyr. Param-
eters of the rotation curve are common to all runs and correspond to those of the
model m3 (see Table 5.2)

Models VA,in uT orbits λz Bsat

[km/s] [km/s] (outside) [kpc] µG

zflux1 0.9 2.2 189 0.22 2.2
zflux2 0.3 1.25 74 0.07 1.1
zflux2d 0.3 1.4 85 0.2 1.3

5.3 MRI with flux-free initial magnetic field

It is known that non-zero magnetic flux models for MRI are problematic in a sense
of not reaching the saturation regime. With the scheme remaining stable over the
calculation, the turbulent Alfvén velocities are strongly increasing in the outer parts
of disk with the decrease of density. This leads to a drastic reduction in the length
of the time step. In this situation, reaching the saturation in MRI in the outer disk
is practically impossible because it becomes too time consuming. An easy way out
is the non-zero flux model with no density stratification and periodical boundary
conditions in vertical direction, which we have used in Section 5.1.1.

Another way to avoid the numerical difficulties is to use zero-net magnetic flux
as initial condition, although the assumption of magnetic fields being proportional
to sin(φ) (Section 4.1) is not a very realistic one. The runs with the initial zero-
net magnetic flux can be easily saturated, but, compared to results of the net-flux
models, the resulting magnetic fields have smaller amplitudes. A reason of smaller
turbulent amplitudes may lay in the mechanism of saturation. At first, the initial
sinφ magnetic field is acting as a bar. After some time the ‘arms’ of the field are
wound up. At a certain moment the two magnetic ‘arms’, which have the opposite
sign in Bz , will merge. The merging is giving us the situation when the initial
Bz is removed. The observed saturation in turbulence does not occur because
of arriving at the critical physical parameters or instability termination conditions.
The saturation occurs because of vanishing vertical fields from which the instability
loops are formed. The resolution of our models is not sufficient to get the MRI
working from turbulent BT or from the toroidal component of the magnetic field.

Saturated magnetic fields have smaller magnitudes compared to the cases with
a homogeneous initial vertical field. But they do not depend on the strength of the
initial magnetic field so clearly as in case with non-zero initial flux. This is shown
in the last column in Table 5.5 when comparing the models zflux1 and zflux2. It is
interesting, that only radial and azimuthal components are growing exponentially,
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Figure 5.19: Left: Magnetic pitch angle time behavior is shown for zero-flux mod-
els (Table 5.5). Filled circles are for model zflux1, empty circles are for zflux2 and
triangles are used for model zflux2d. Right: Time development of vertical (solid
line), radial (dotted line) and azimuthal (dashed line) components of the magnetic
field (absolute values after averaging), model zflux1

while the vertical magnetic field decreases, Fig. 5.19 (right). Comparing the be-
havior of the saturated magnetic fields given in Section 5.1.1 (Fig. 5.3) with the
zero-net flux solution (Fig. 5.19, right) suggests that there are two different global
MRI solutions leading to different states of saturation.

Unfortunately, we can not answer the question of α-dynamo operating together
with MRI with the simulations in Section 5.1.3. First, all three components of the
magnetic field should show an exponential growth when α-dynamo was operating.
Second, a stable dynamo solution should survive in the disk at least for a few
longer diffusion times. In the presented models the diffusivity is mostly zero, which
means the infinite diffusion time. In the case of ηT = 0.05 kpc2/Gyr in the zfluxd

model, the diffusion time is still huge, ∼ 200 Gyr. Applying the larger magnetic
diffusivities decreases the MRI growth rate drastically (Sect. 5.2.), which therefore
will cost a lot of computational time.

For the models in Table 5.5, the magnetic pitch angles reach the observed value
−30o within 1 Gyr, its maxima correspond to the system reaching saturation. Soon
afterwards there is a decrease of the pitch angles, which become quite small (−1o)
in 1.5 – 2 Gyr. Fig. 5.19 (left) is demonstrating how the difference in the initial
magnetic field affects the saturation time (models zflux1 and zflux2). The presence
of magnetic diffusivity (model zflux2d, empty triangles on Fig. 5.19, left) is not
only prolonging the time requested for MRI saturation, as we have demonstrated
in previous section, but it is also decreasing the absolute value of the pitch angle
from 30o to 18o.

The velocity dispersion does not seem to be affected by the magnitude of the
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initial magnetic field or the presence of magnetic diffusivity. It remains compara-
ble to the observed velocity dispersion within an order of magnitude (see Section
1.5), although the numbers are smaller compared to the average 5 km/s in net-flux
models (Table 5.2).



Chapter 6

Conclusions

The origin and symmetry of the observed global magnetic fields in galaxies are not
fully understood. In this thesis we intend to clarify the question of the magnetic
field origin. For that purpose we investigate the global action of the magneto-
rotational instability (MRI) in galactic disks with the help of 3D global magneto-
hydrodynamical (MHD) simulations. The calculations were done with the time-
stepping ZEUS 3D code, using massive parallelization. Our nonlinear simulations
provide both, expected as well as unexpected aspects of the global action of MRI.

The αΩ-dynamo is known to be one of the most efficient mechanisms to re-
produce the observed global galactic fields. The presence of strong turbulence is
a pre-requisite for the αΩ-dynamo generation of the regular magnetic fields. The
observed magnitude and spatial distribution of turbulence in galaxies still presents
unsolved problems to theoreticians. Magneto-rotational instability is known to be
a fast and powerful mechanism to generate MHD turbulence and to amplify mag-
netic fields.

We confirm the linear theory prediction that the critical wavelength of the in-
stability is proportional to the initial magnetic field strength. We find that the wave-
length should increase with the increasing magnetic fields during the simulation,
transporting the energy from critical to larger scales. The final structure, if not
disrupted by supernovae explosions, is the structure of ‘thin layers’ of thickness
of about 100 pcs. The amplitudes of the turbulent magnetic fields are related as
δBz � δBR < δBφ. It might be possible to observe these structures with high
resolution radio polarization data.

The resulting turbulence pattern exhibits either spiral or more ring-like struc-
tures, but the Maxwell stress 〈B ′

R ·B′

φ〉 is always negative, so that the angular
momentum is always transported outwards. An important outcome of all simula-
tions is the magnitude of the horizontal components of the Reynolds and Maxwell
stresses. The result is that the MRI-driven turbulence is magnetic-dominated: its
magnetic energy exceeds the kinetic energy by a factor of 4 (Table 5.3). More dra-
matic is the situation concerning the angular momentum transport: The Reynolds
stress is small and less than 1% of the Maxwell stress. The angular momentum
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transport is thus completely dominated by the magnetic field fluctuations. We have
demonstrated that there is evidence for radial flows within the growth time of the
MRI.

Although the magnetic fields have reversals between the ‘rings’, the volume-
averaged pitch angle is always negative with a magnitude of about −30◦. The
non-saturated MRI regime lasts sufficiently long to fill the time between galactic
encounters, independently of strength and geometry of the initial field. Therefore,
we may claim the observed pitch angles can be due to MRI action in the gaseous
galactic disks.

MRI is also shown to be a very fast instability with e-folding time of τrot =
2π/Ω0, for the Brandt type rotation law with n = 2, and with nearly doubled
growth rate in case of the rotation law n = 4. The local estimation of the growth
rates 0.5Ω holds at any fixed radius in the global models of the magnetic field evo-
lution. Steep rotation curves imply a stronger growth for the magnetic energy due
to MRI. The global e-folding time of MRI is from 44 Myr to 100 Myr depending on
the rotation profile. Therefore, MRI explains the existence of rather large magnetic
fields in very young galaxies.

We also successfully reproduced the observed rms values of velocities in the
interstellar turbulence, as it was observed in NGC 1058. We have also confirmed
the prediction of Sellwood & Balbus (1999), that the turbulent velocity dispersion
is linked to the Alfvén speed. In addition, we have shown with the simulations
that the averaged velocity dispersion of about 5 km/s is a typical number for the
magneto-rotational instability in galaxies, which again agrees with observations.

Another important property of the MRI-driven turbulence is that the dispersion
increases outside of the disk plane, whereas supernovae-driven turbulence is found
to be concentrated within the disk. The velocity turbulence increasing outwards is
quite important for deciding the question how the galactic dynamo is driven. In our
simulations the velocity dispersion increases a few times with height. This effect
does not appear, however, in the models with homogeneous density profile.

An additional support to the dynamo α-effect in the galaxies is the ability of
the MRI to produce a mix of quadrupole and dipole symmetries from the purely
vertical seed fields.

We have shown that in order to stop the MRI, there should be unrealistically
high magnetic diffusivity. High magnetic diffusivity makes the instability evolve
very slowly and on large scales. This situation may appear in freshly distorted or
disrupted galactic disks.

A surprising outcome is the dependence of the strength of saturated fields on
the initial magnetic field strength. This dependence occurs in the net-flux models
with large initial magnetic fields in the vicinity of marginally stable states, and it is
much weaker in the zero-net flux models . We suggest that this dependence is due
to the restricted nonlinearity of the simulations with large initial fluxes.

The interaction of magneto-rotational instability and random supernovae ex-
plosions remains an open question. It would be desirable to run the simulation
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with the supernovae explosions included. They would disrupt the calm ring struc-
ture produced by global MRI, may be even to the level when we can no longer
blame MRI to be responsible for the turbulence.

A further massive improvement could be obtained by including the spiral waves
in the gravitational potential. They would influence the spatial behavior of the pitch
angles, flows and also, of course, the angular momentum transport. We might then
obtain the global magnetic field picture which is much closer to the observed one.
We hope, that growing computing power will allow us to avoid the diffusivity time
scale problem in the near future. We could then obtain the global αΩ-dynamo
operating together with both MRI and supernovae driven turbulence.



Appendix

A.1 Derivative operators in cylindrical coordinates

In cylindrical coordinates (z,R, φ) the derivative operators have the form
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A.2 Basic electrodynamic equations

Ohm’s law is

j = σ(E + u × B + αB), (1)

where σ is a conductivity. Maxwell equation is

∂B

∂t
= −∇× E, (2)

where E can be taken from Ohm’s law

E =
j

σ
− u × B − αB. (3)

The combination leads to the induction equation.
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Table 1: Test models for MRI with homogeneous vertical magnetic field. uT stands
for initial rms velocity strength. qlin and qsquare are the linear and square artificial
viscosities. B0 = 0.11 µG. uT|min [km/s] is the value at which the code will
smooth down the initially given velocity dispersion uT

run uT [km/s] qsquare qlin uT|min [km/s] stabilization

t1 0.06 2.0 0.2 0.034 no
t2 0.12 2.0 0.2 0.07 no
t3 0.26 2.0 0.2 0.16 no
t4 10 2.0 0.2 0.42 no
t5 28 2.0 0.2 0.53 no
t6 28 0.0 0.0 0.66 no

A.3 MRI with initial free-decaying turbulence

In Table 1 we give those models, in which the calculation starts with high free-
decaying random velocities . The box size and resolution are the same as in Section
4.3. In the fifth column of the Table 1 we have placed uT|min which is a minimum
value of velocity dispersion during the simulation. Numerical dissipation is re-
sponsible for the decrease of rms velocities till the uT|min value within a time of
about 0.05 – 0.10 Gyr. On these examples one can see how diffusive Zeus code is.

The energy plots are shown in Fig. A.1. The MRI-generated horizontal mag-
netic fields starts to grow from the sufficiently higher energy levels, comparing
Fig. A.1 with Fig. 5.3.

Figure A.1: The magnetic energies of the radial component (left) and the azimuthal
component (right)
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[38] Elstner, D., Golla, G., Rüdiger, G., Wielebinski, R., 1995, A&A, 297, 77
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[105] Rüdiger, G., Pipin, V.V., 2000, A&A, 375, 149
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