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Introduction 

Optical technologies have the exclusive potential to increase the rates of data communica-
tion. They are scaling with advances in lasers, optical fibres and optical coding technologies. 
Bringing the benefits of broadband communications to European citizens presents both the 
challenge and the rewards for the next generation of photonic systems. Part of the challenges 
now is to achieve cost, size, integration and performance levels well beyond even today’s 
telecom grade components into datacom footprints and cost range and to make their use sim-
ple for the system integrator. This means to implement more intelligent components, so that 
they can configure themselves, for instance, in wavelength, bit rate and dispersion. 

Optical signal processing has the potential to realize high-speed and high capacity process-
ing at speeds which are 100 to 1000 times faster than that achievable with conventional elec-
tronic signal processing. This is a key enabling technology for ultra high-speed networks, into 
the multi-terabit per second regime. 

There are two complementary areas of optical signal processing - the realization of “optical 
in, optical out” network elements such as regenerators of repeaters and the more futuristic 
optical computing, which could apply to a wide range of applications, including real-time 
digital signal processing for military and security, real-time video compression, as well as 
network functions such as header processing and error correction. 

One of the core challenges for the realization of all optical networks is the cost effective all 
optical generator, capable of regeneration, reshaping and retiming (3R). Breakthrough de-
signs and technologies for achieving this in a multiwavelength configuration will have a ma-
jor impact. 

A recent report of Optoelectronics Industry Development Association for 2015 shows: 
•The network bit rates will be dominated by 40 Gbps in the core and 10 Gbps in metro ar-

eas, while higher rates will go in. 
•Total transmission capacity per carrier will be in the 100 Tbps range. 
•All optical processing can be viewed as the key enabling technology for very high bit rates 

beyond 160 Gbps, where electronic solutions will become impractical. Many functional ele-
ments are required such as Arrayed Wave Guides (AWGs) and integrated elements for pho-
ton control, wavelength/dispersion management and ultimately photon storage, improvements 
in switching technologies both in the spatial and wavelengths domains. Realisation of a 
photonic memory may also play a critical role here. 

From all those fascinating challenges the present work is addressing mainly aspects of im-
portance for photonic switching. 

Photonics as a field of science began in 1960 with the invention of the laser, as well as the 
invention of the laser diode in 1970 with following development of fibre optic communica-
tion systems. Similarly to electronics, photonics can be characterized as a branch of physics 
and technology associated with radiation detection, behaviour, and consequences of the exis-
tence and destruction of photons. 

In the last decades, there has been an increase in speed of computers and data lines together 
with a miniaturization of electronic components. As result, a transition from electronics in 
direction to photonics is required both in the processing and in the data transfer. The future of 
photonics lies in the integration of waveguides into silicon chips and the coupling of glass 
and polymer waveguides to silicon chips for direct transmission of light signals from the laser 
sources through the optical waveguides to the chip, where the signals are processed. This is 
incomparably faster than the neat electrical signal processing and resulting information can 
easily be transmitted through the optical transmission lines into the common data network. 
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Integrated optics is the technology of integrating various optical devices and components 
for generating, focusing, splitting, combining, isolating, polarisation, coupling, switching, 
modulating, and detecting light, all on a single substrate (chip). Optical waveguides provide 
the connection between these components1. 

In recent years, compact integrated circuits have been developed and implemented in opti-
cal information systems where signal transport is realized at optical wavelengths. For in-
stance, automotive industry needs fast, flexible, and lightweight replacements for on-board 
electronics. In this case, the use of polymer optical fibres (POFs) for data communication be-
tween working elements can reduce the weight of cars. For data processing, various inte-
grated photonic components can be combined with optical fibres. Traditionally, such inte-
grated photonic devices are based on nonlinear optical crystals like Lithium Triborate2,3. 
However, many commercial applications require properties that are not realizable by use of 
nonlinear crystals. 

In this work, doped polymer layers were selected as a base for realization of photonic de-
vices. Specially prepared dye-doped polymers can provide much higher second-order nonlin-
earities in comparison to inorganic crystals. That allows fabrication of small and fast switch-
ers, modulators and logical elements. Reviewing commercial applications one can note an 
increasing role of small ultrafast devices utilizing poled dye-doped polymers4-11. In modern 
electro-optic devices, data rates above 165 Gbits/s are realized with the help of nonlinear 
polymer waveguides12-15. 

Cross-phase modulation (XPM) is a nonlinear optical effect where one wavelength of light 
can affect the phase of another wavelength of light through the optical Kerr effect. XPM can 
be used as a technique for adding information to a light stream by modifying the phase of a 
coherent optical beam with another beam through interactions in an appropriate non-linear 
medium. It is well known that the Kerr effect is a third-order nonlinear optical process. This 
means it can be observed in media with high value of third-order susceptibility. As a rule to 
observe third order nonlinear optical effects one needs light intensities higher than in case of 
linear optics and even higher than in case of second order nonlinear optical processes.  

To avoid problems like photochemical degradation connected with high light intensities 
necessary to induce third-order effects, one can use the concept of parametric multi-step 
nonlinear processes developed by Armstrong, Blombergen at. al.16. This concept is called 
“cascading” and includes several second-order nonlinear phenomena, which simultaneously 
appear in media, but which are observed as higher-order effects, e.g. third-order effects. Cas-
cading processes exist in all non-centrosymmetric media like nonlinear crystals, but the most 
efficient effects are observed in specially prepared inhomogeneous structures. Inducing spa-
tial periodic modulation of second-order susceptibility one can produce special structures, 
which fulfil the so-called Quasi Phase Matching (QPM) condition. Although QPM is a well-
known technique in nonlinear optics17-20, the particular case of organic nonlinear materials 
and especially the waveguide geometry have not been investigated extensively. In compari-
son to bulk materials the waveguide geometry has several advantages: e.g. a high concentra-
tion of light energy and a long interaction length allowing the use of light sources with low 
intensity. 

To reach phase matching for ordinary fabricated waveguides one should take care about 
dispersion and geometrical parameters of the core layer. Nevertheless, QPM allows to fulfil 
phase and amplitude conditions for any predefined set of waveguide core parameters21 simul-
taneously. In this work, own mathematical software was developed and implemented with the 
aim to optimize QPM properties of waveguides. Using Finite Element Analysis (FEA) the 
stability of models was analyzed. Numerical simulations were used to understand how per-
turbations influence the development of phase and amplitude of the travelling waves. 
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Waveguides used at optical wavelengths are typically dielectric ones. They are structures 
in which a dielectric material with high refractive index is surrounded by a dielectric material 
with lower refractive index. Waveguiding is based on the phenomenon of total internal reflec-
tion. In the present work, organic waveguides are of special interest. The core material of 
these waveguides consists of an organic material (most commonly a polymer). The advan-
tages of polymer-made waveguides are their low production costs and their easy processabil-
ity. In addition, polymers can be used to fabricate different optical elements (prisms, Bragg-
mirrors) which makes them very promising for integrated optics22,23. Such photonic compo-
nents made of polymers can be easily combined with elements like optical fibres24-26. 

As was mentioned above, the optical nonlinearity of waveguides can be utilized for realiz-
ing ultrafast switching or light modulation. High energy densities necessary for nonlinear ap-
plications can easily be provided in the core of waveguides over the whole waveguide length. 
However, a high energy density includes additional requirements towards material quality. 
From the fabrication point of view, optical losses and their origin must be investigated and 
minimized before devices fabrication. A further direction of optimization is the increase of 
the nonlinearity by use of special materials so that the same effect can be achieved at low 
light intensities. The optimization process includes at least two different components: mo-
lecular engineering of nonlinear active molecules and improvement of the efficiency of wave 
interaction producing the nonlinearity. 

 
Another direction of research was the application of nonlinear optical effects to the charac-

terization of thin films and interfaces. Since nonlinear properties of materials are defined by 
their internal structure, they can be considered as sensitive tools for their analysis. For in-
stance, in the present work several new types of vacuum-deposition organic films were de-
veloped. Further analysis of the second harmonic generation was used to obtain information 
about morphology, multilayer formation, microcrystal orientation, types of aggregation, and 
about charge transport processes27-30. 

 
The scope of the present work is the investigation of second-order nonlinear optical proc-

esses within planar polymer waveguides and interfaces. Both the maximization of efficiency 
of nonlinear phenomena and the understanding of inter- and intra- molecular processes, 
which occur within the layers or at their interfaces, have been central issues. The whole work 
is a combination of theoretical and experimental approaches and can be divided in to three 
major parts:  

Description of linear and second-order-nonlinear properties of the used materials;  
Analysis of regularities and attempts to predict characteristics of new compound; 
Modelling of light propagation in nonlinear inhomogeneous media with specially fabri-

cated structure, resulting in some unusual properties. 
 
Based on this the present work has the following structure: 
 
In the first chapter, methods of deposition of dye-doped polymer films are discussed. Vari-

ous techniques are discussed and compared — spin-coating, dip-coating, drop-casting, and 
vacuum deposition. Although all of these techniques are well known, it remains a challenge 
to develop the reliable fabrication know-how in processing and patterning of polymeric mate-
rials. An important problem, which occurred during preparation of multilayer structures by 
combining a dip-cast buffer layer and a spin-coated core, results in the penetration of solvent 
into the lower layer from the upper layer. To overcome this problem, one can deposit the up-
per layer in vacuum. 
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The second chapter describes experimental methods of inducing second-order nonlineari-
ties in waveguides as well as relevant properties of waveguides, ranging from optimal poling 
conditions, second harmonic conversion efficiency to the possibility of pulse shape distortion 
during high intensity light propagation in the waveguide. Complementary to the experimen-
tally obtained properties of the waveguides, FEA was used to estimate properties of energy 
exchange between fundamental and second harmonic waves within different kinds of 
waveguides. In addition, some aspects of electro optics, such as the distribution of the electri-
cal field within integrated photonic elements were investigated. 

The third chapter deals with the nonlinear properties of single molecules. Using Ab-
initio31,32 and semi-empirical33,34 methods of quantum chemistry the charge transfer in donor-
acceptor molecular system, in our case dye-polymer systems were investigated. Applying the 
so-called two-level model35,36, high-order hyperpolarisabilities responsible for molecular 
nonlinearities were calculated for a series of dyes. Additional to the widely used inorganic 
nonlinear materials, various combinations of dyes and polymers have been analyzed e.g. 
DR1 PMMA (Disperse Red 1; Polymethylmethacrylate) and a series of newly synthesized 
dyes. From more than twenty of these nonlinear dyes, only three have shown sufficient per-
formance after testing. Some of them, being suitable for use in the infrared range, have shown 
too high losses in the visible range. A similar situation can be described for the matrix poly-
mers. 

In the fourth chapter the improvement of linear and nonlinear optical properties of dye-
doped polymer films by means of selection of appropriate matrix polymers is described. It 
shows that the optimal polymer for poled films must not only be transparent but also have 
high glass transition temperature and low conductivity even while being doped with dye 
molecules. The solubility is also important for the formation of smooth layers. 

The fifth chapter introduces one of the new techniques of poling: Fibonacci-type poling. 
This technique is used for a further optimization of light conversion in organic waveguides. 
The nonlinear optical domains along the waveguide are defined according to the Fibonacci 
law. In this case, more than one nonlinear optical process can simultaneously be realized. 

The sixth chapter describes several devices utilizing the concept introduced in Chapter 5, 
for instance photonic devices based on the Mach-Zehnder interferometer. The possibility of 
utilization of new concepts, including Fibonacci-poled waveguide and quasi-phasematching 
structures is discussed in more details. Nonlinear phase-shift based on second order cascading 
processes for use in various photonic applications is also analyzed in detail. 

A short summary at the end highlights the most important contributions of this work and 
possible directions of further research based on them. 
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Preparation, characterization and properties of materials 
for optical waveguides 

Fabrication of transparent polymer films 

Vacuum deposition 

Vacuum deposition provides good thickness control, optical quality and purity of obtained 
films. By that technique, one can cover large area substrates. However, only a limited number 
of polymers is able to form films by means of vacuum deposition. On the other hand, insolu-
ble polymers can be deposited only by this technique. By simultaneous deposition of two ma-
terials (co-deposition) with different refractive indices, gradient-index structures can be ob-
tained. Co-deposition is helpful for creating a polymer by polycondensation reaction from 
precursor units or for forming dye-polymer or dye-metal composite systems, as well. More-
over, it sometimes is the only way to create a buffer between soluble polymer layers in com-
plex multilayer structures. Thermal vacuum deposition is easy to realize: the substrate is 
placed in a vacuum chamber and a small amount of the coating polymer or its precursors are 
vaporised into the chamber. The monomeric units, e.g. formed by radical depolymerisation of 
the polymer, or the co-evaporated precursor units (in case of a polycondensation reaction) 
condense on the substrate forming a uniform polymer coating. Many of such layers can be 
built up, with controlled optical properties to produce cladding, core and upper cladding at a 
single technological process. Combining polymer deposition with deposition of metal elec-
trodes, one can fabricate various electro-optic devices. The vacuum deposition of metals can 
be described by general thermodynamic rules. 

The direction of a physical process (or chemical reaction) at constant pressure and for a 
given temperature is defined by a free energy change GΔ  which must have a negative value 
to reach a new equilibrium state. The change of free energy at constant pressure and tempera-
ture is given by: 

 G H T SΔ = Δ − Δ  [1.1] 

where HΔ  and SΔ  are the corresponding enthalpy and entropy changes and T is the abso-
lute temperature. Although during condensation in vacuum 0SΔ <  because fewer atomic 
configurations exists in the solid, the change of enthalpy HΔ is negative and its absolute 
value higher than the contribution of the second right hand term. Hence, the net change in 

GΔ  is negative37. 
In this work, two widely used methods of vacuum deposition were used, thermal (resistive) 

heating and electron-beam evaporation. The metal layers (mostly electrodes) were deposited 
by thermal deposition. As introduced above, a new technology for vacuum deposition of 
polymer films was used: vacuum deposition polymerisation (VDP). Thin layers of polytetra-
fluoroethylene (PTFE) have been prepared by using polymer pieces as solid source of mate-
rial. Then a combined application of thermal and electron beam evaporation to this solid 
source led first to decomposition of the polymer via the mechanism of radical depolymerisa-
tion, then to electron-beam assisted activation of the formed fragments towards chemically 
active radicals, and finally to their condensation followed by radical polymerisation to the 
polymer on the substrate. As a result, thin, pinhole free polymer films have been obtained. 
Their thickness could be varied between the nm and the μm range. 

The uniformity of the obtained films is essential for most optical applications. However, a 
point source for evaporation can, in case of plane substrates, only produce films having a cer-
tain variation of the thickness as schematically shown in Fig. 1. 
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Fig. 1: Film thickness distribution on a substrate as a function of the substrate-source distance and 
in dependence on source type (point or surface source). 

The normalized thickness of the layer for a point source is given by38 (see Fig. 1): 
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where 0d  is the thickness at the centre of the sample. 
Similarly, for a plane surface source with large lateral extension we have: 
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In this work, the substrate had a square shape with a size of 2.54x2.54 cm2 (1 sq. inch), and 
the distance between source and substrate was ca. 10 cm (~4 inches). That gives 97.6% of 
thickness at the edges of the sample in comparison to the centre of the sample for a point 
source and 96.9% when the source is of surface-type. 

Spin-coating of organic films 

Spin coating was the method of choice for polymer film deposition. The polymer was dis-
solved in a proper solvent, and in case of preparation of polymer chromophore composite 
films, mixed with a certain amount of chromophore. The polymer solution was spread over 
the substrate surface. Subsequent fast rotation (spinning) of the substrate forms a thin un-
doped or doped polymer film which solidifies during spinning by evaporation of the solvent. 
The properties of the obtained film (specific chromophore concentration and thickness) can 
precisely be controlled during film deposition and by tuning the rotation speed: the higher the 
angular speed of spinning, the thinner the film. Commercial spin-coating solutions (usually 
cladding materials) are supplied with spin-coating curve (layer thickness versus rotation 
speed)39. 

Preparation by spin coating requires careful post-processing. To remove residual solvent 
one has to anneal the film at temperatures above the boiling temperature of the solvent (pref-
erably in vacuum). During annealing, one can control the surface quality by means of the 
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setup shown in Fig. 2, where a sensitive photodiode with large aperture collects scattered 
light from the annealed sample. A significant reduction of scattered light (10%-15%) was ob-
served for all of the prepared polymer films, during the annealing process. 

Chopper

Detector

Lock-in
amplifier

Film

Substrate

Temperature controlled
heated plate

 

Fig. 2: Setup for control of the annealing process by measurement of scattered light intensity. The 
detector is thermally isolated (stabilized) to prevent thermal distortions. 

The control of the annealing process should prevent undesired thermal decomposition of 
chromophores or degeneration of the polymer layer by a proper limitation of annealing tem-
perature. 

Other techniques 

The idea of transferring molecular monolayers from the water-surface to solid substrates 
was proposed by Dr. Irving in 1917. Eighteen years later, in 1935 Dr. Katherine Blodgett had 
improved the technique by stacking several monolayers on top of each other so that multi-
layer films can be created. Since then, Langmuir-Blodgett (LB) films have been used for a 
wide variety of scientific experimentation for studying of the properties of monolayer of am-
phiphilic molecules that contain both a hydrophobic and hydrophilic domain (e.g. soaps and 
detergents). The LB trough allows investigators to prepare a monolayer of amphiphilic mole-
cules on the surface of a liquid, and then compress or expand these molecules on the surface, 
thereby modifying the molecular density, or area per molecule. The monolayer’s effect on the 
surface pressure of the liquid is measured through use of a Wilhelmy plate, electronic wire 
probes, or other types of detectors. An LB film can then be transferred to a solid substrate by 
dipping the substrate through the monolayer. 

 

Complex refractive index of optical materials 

Real part of refractive index 

One of the main requirements for core materials used in light waveguides, beside transpar-
ency, optical homogeneity, thermal and UV-resistance is an appropriate refractive index, 
higher than that of the used cladding material. In that regime, where absorption can be ne-
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glected the optical behaviour of a material is characterized by the real part of the index of re-
fraction. Its dispersion in the VIS-NIR range can be described by the so-called Sellmeier 
formula: 

 ∑
= −

+=
n

i i

i

B
An

1
2

2
2 1)(

λ
λ

λ  [1.4] 

This formula was originally derived by Sellmeier in 1871 as an extension of Cauchy’s the-
ory of optical dispersion40. 

As we found from experiment, refractive index of most chromophore-polymer composites 
in the transparent range (visible-near infrared) can be described by a simplified formula: 

 2 2
2 2

0

( ) qn nλ
λ λ∞= +

−
 [1.5]  

Formally, Eq. [1.5] can be derived from Eq. [1.4] by setting Ai = 0 for i > 3, B1 = B3 = 0, A3 
= −A2, 1+A1=n∞

2, B2 = λ0
2, and A2⋅B2 = q. The quantity n∞ represents the limiting value of re-

fractive index at infinite wavelength, and λ0 the resonance wavelength. In the approximation 
of Eq. [1.5] only one resonance is taken into account. In order to perform measurements of 
dispersion in the range from 532 nm to 1550 nm the values of the refractive index in this re-
gion were obtained with a step of 100-150 nm. The Root Mean Square (RMS) deviation 
ΔnRMS between refractive indices nλ measured and nλ calculated, respectively, is calculated 
according to the following formula: 

 ( )2

1

1
i i

N
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i

n n n
N λ λ

=
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The obtained value ΔnRMS=0.0005 is comparable with the precision of the measurements. 
According to this criterion, a one- resonance model is acceptable. Our system showed a 
ΔnRMS better than 10-3, which corresponds to the precision of the used prism-coupling 
method. 

When the resonance wavelength λ0 (related to the band gap gE ) for dielectric materials lies 
in the UV range, the dispersion in the visible range can also be described by the Cauchy for-
mula, which is a particular case of the Sellmeier formula [1.4]: 

 1 2
0 2 4( ) n nn nλ

λ λ
= + +  [1.7] 

where 0 1 2,n n and n are called Cauchy parameters. 
Another traditional way to quantify the refractive index dispersion of transparent materials 

is the Abbe number dν , defined by 

 
CF

d
d nn

n
−
−

=
1ν  [1.8] 

with nd, nF and nC being the refractive indices at three standard wavelengths (yellow he-
lium d-line at 0.58756 μm, blue hydrogen F-line at 0.48613 μm, and red hydrogen C-line at 
0.65627 μm, respectively). 
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Absorption and imaginary part of refractive index 

When absorption cannot be neglected, a more complete description of the optical proper-
ties of the material is provided by the complex index of refraction: 

 n n iκ= −  [1.9] 

Where n is the real part of refractive index, describing wave propagation while κ, the 
imaginary part, describes the attenuation of the wave. 

The Kramers-Kronig relations connect the real part of a complex function to an integral 
containing the imaginary part of this function and vice versa. The relations are named in hon-
our of Ralph Kronig and Hendrik Anthony Kramers. These relations can be used in optics to 
calculate the refractive index of a material by the measurement of the absorbance, which is 
better accessible. The Kramers-Kronig relations can be expressed in case of complex refrac-
tive index ñ as41: 
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where P stands for the principal value integral. 
Forohui and Bloomer42,43, deduced an expression for the energy dependence of the refrac-

tive index n(E) based on a one-electron model extended to amorphous materials. 
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Here E is the energy of the incoming photon, E’ is the integration variable in energy, n(∞) 
represents the limiting value of n at high energy, κ(∞) is the respective value of imaginary 
part of refractive index at high energies, and κ(E’) is the measured energy dependent κ value. 
The integration is carried out over the whole energy (wavelength) range covered by the ex-
periment. Energy values and their signs are defined relatively to vacuum level. 

In case of thin films, the imaginary part of the refractive index can be obtained as function 
of angular frequency of light ω according to: 
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where A(ω) is the measured absorbance, d is the sample thickness and c is the speed of 
light. 
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I0(ω) is the light intensity before and I(ω) at angular frequency behind the sample. For 
measurements that are more precise the absorbance has to be corrected with respect to losses 
due to the Fresnel reflection at the interfaces and to scattering losses. 

As proposed by Forohui and Bloomer42,43, n(E) is then found according to a modified for-
mula, which is based on [1.10] and [1.11]: 
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− +

 [1.15] 
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and 

 ( ) 0 0
21 B E Cn E

E BE C
+

− =
− +

 [1.16] 

where 
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 [1.17] 
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0 2

2g g
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Q

⎡ ⎤= + −⎢ ⎥⎣ ⎦
 [1.18] 

and 21 4
2

Q C B= − . [1.19] 

If Eg, A, B, C, B0, C0, are determined from the experimental absorption data and using a 
nonlinear least-square curve fitting program, the real part of the index of refraction n can be 
calculated. 

The spectral dependence of the dispersion of the index of refraction is usually described as 
a polynomial in powers of the wavelength by Sellmeir’s equation [1.4]. 

Optical losses in light waveguides 

When light propagates within a waveguide, loss of energy certainly occurs. Some of those 
losses are determined by properties of the bulk materials from which the waveguide is made. 
This type of losses can be predicted by measurements of bulk material properties (absorption, 
homogeneity). However, some losses are defined only by geometry of the waveguide. 

Attenuation 

The loss of light intensity during wave propagation is called attenuation. This characteris-
tic quantity includes all types of losses. In any waveguide, attenuation is defined as: 

 10
1 ( )10log

(0)
dB P zL
cm z z P

α ⎛ ⎞⎡ ⎤ = = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 [1.20] 

where P(z) is the power transmitted over a distance z.  
In fact the attenuation expresses only a relation between input and output power without any 
relation to mechanisms causing the losses. The range of the practically observed values in 
waveguides is varying from a few dB/cm to several dB/km. As example, the minimum loss in 
the best silica-glass fibres is 0.3 dB/km at 1.5 μm. Devices, due to their short length (few mm 
or cm) are not so demanding. Embedding chromophores in a polymer can increase losses 
from this point of view. We obtained an average loss value of 0.8-0.9 dB/cm at 632 nm for 
spin-coated guest-host polymer films. The main reason for that are significant absorption and 
inhomogeneities of the multi-component system. Nonlinear optics requires materials that are 
even more lossless due to necessity to embed active molecules (chromophores) in polymeric 
transparent matrices. Second-order nonlinear processes as a rule include two wavelengths. In 
this case and in case of cascading, where a third wavelength can be involved, the influence of 
absorption has to be taken carefully into account on each wavelength. 
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Scattering losses 

The origin of scattering losses can be described in a simplified approach by using geomet-
rical optics. Although it is a crude approximation, it allows to explain most of the results and 
to find ways for reduction of losses. The optical beam performs multiple reflections during 
propagation as can be seen in Fig. 3. Some part of the energy penetrates into the cladding ma-
terial through the cladding-core interface. The roughness of this surface decreases the effi-
ciency of total internal reflection and reduces the overall guiding effect. 

 

Fig. 3: Light propagation in a waveguide. Geometrical optics description includes multiple reflec-
tions at the core-cladding interfaces. 

The number of reflections Nr can easily be obtained by simple geometrical considerations 
and achieves easily a number of a few thousands over several centimetres as can be derived 
from equation [1.21]. Moreover, scattering occurs at each reflection. 

 tan ,
tanr d

d

l l dN with l
l d

θ
θ

= = =  [1.21] 

θ is the so-called bouncing angle, d is the thickness of the core. One has to take into ac-
count that scattering occurs at each reflection. The scattering losses on surfaces are described 
by the Rayleigh criterion44: 
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where σ is the root mean square (RMS) surface roughness. When a polymer film is depos-
ited on a glass substrate, the roughness σ includes both film surface roughness 1σ  (glass-air 
border) and glass surface roughness 2σ  (glass-film border) which can be taken into account 
by the following relation: 

 2 2
1 2σ σ σ= +  [1.23] 

The bouncing angle θ  can be found from the expression: 

 arccos eff

core

n
n

θ =  [1.24] 

For instance, a polyphenylquinoxaline film with thickness of 1 μm and bulk refractive in-
dex n=1.76 deposited on BK7 glass has an effective refractive index of 1.74 at 633 nm for the 

ld 
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Cladding
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TE0 mode. That corresponds to 8.65θ = degrees. According to [1.21] the light is reflected 
Nr=1521 times per cm of propagation length. On every reflection, the Rayleigh losses are 
0.02%. The average roughness of spin-coated films was determined to be 5 nm. Scattering 
losses over the distance l accumulate as: 

 1
rNα α=  [1.25] 

Finally, one can write losses per length as: 

 
( )
( )10

0110log
PdBL

cm l P z
⎡ ⎤= =⎢ ⎥⎣ ⎦

 [1.26] 

It has to be pointed out that moving into the IR the total amount of the scattering losses is 
reduced. Our typical value for this type of losses is 1.3 dB/cm at 633 nm. As follows from 
[1.26] this reduces to approximately 1-1.3 dB/cm at the 3-rd telecommunication window 
(1550 nm). Therefore, a thick film has fewer reflections than a thin film, and as a result, 
smaller losses per unit length by Rayleigh scattering at interfaces. 

Absorption losses 

The absorption of cladding and core material can be taken into account by extending the 
refractive indices to complex numbers. The effective wave-vector of each mode will contain 
loss information. The electrical fieldstrength of a travelling wave can be expressed as: 
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⎡ ⎤= <⎣ ⎦
 [1.27] 

where the effective wave-vector effk  includes the refractive index in the real part and losses 
in the imaginary part: 

 Re Imeff eff eff effk k i k n i
c
ω δ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦ , [1.28] 

where δ is the damping per unit length (attenuation), and ω is the angular eigenfrequency 
of the waveguide mode. effn  is the real part of the effective refractive index, A is the wave 
amplitude. The complex index of refraction can be obtained by various methods, for instance 
by means of ellipsometry. 

The intensity attenuation in dB per length is calculated using the formula: 

 1020 logdB e
z

δΔ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 [1.29] 

Often the absorption losses of material are measured directly using a spectrophotometer. 
Typically, the sample is a slice of the investigated material with a thickness d. Then the at-
tenuation δ can be expressed as a value proportional to the absorbance per propagation dis-
tance (absorption): 

 0

10

1 ( )
2log

A
e d

λδ =  [1.30] 

In practice, the values in dB are often in use. Setting d = z one can rewrite [1.29] as: 
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A(λ0) is the absorbance ( ) ( )
( )λ
λ

λ
I
I

A 0
10log=  at wavelength λ0. 

For measurements with high precision, the Fresnel reflections from both surfaces must be 
taken into account. 

Other types of losses 

The cutoff frequency of an electromagnetic waveguide is the lowest frequency for which a 
waveguide mode will propagate. In fibre optics, it is more common to consider the cutoff 
wavelength, the maximum wavelength that will propagate in an optical fibre or waveguide. 

Relatively large dye molecules, sometimes containing several benzene rings, create local 
inhomogeneities within the polymer matrix having a refractive index different from the rest 
of the matrix and can convert light frequency, e.g by frequency doubling. In this case, losses 
occur when some amount of light is converted into other modes either having another bounc-
ing angle or a frequency above the cut-off frequency as shown in (Fig. 4). 

 

Fig. 4: Local inhomogeneities lead to transfer of energy into higher-order modes that have high 
losses due to deeper penetration of light into the cladding material. If a deviation of propaga-
tion direction is high enough, the condition of total internal reflection is no more valid and 
waveguiding does not exist for such a beam. 

Even high-order modes with frequencies below cut-off frequency as a rule decrease at-
tenuation in the waveguide. As seen in (Fig. 5) a significant part of light energy is concen-
trated in the cladding and the area around it. When the cladding is thin (for instance in Plastic 
Optical Fibres – POF) the light intensively scatters on cladding-air interface. 

cladding 

Local inhomogeneities 

cladding 

core 
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Fig. 5: Intensity distribution of high-order modes in a polymer optical fibre with a circular cross-
section. The fibre contains a fused-silica core with n = 1.543 and a diameter of 1 μm. The 
cladding is 0.1 μm thick, with refractive index n = 1.5. As can be seen, the energy tends to 
concentrate within the cladding. Part of the field energy is out of the cladding. Hence, high-
order modes have high radiation losses. (Arrows show the electrical field vector). 

When light propagates in a waveguide (planar, channel) or a fibre the existence of the eva-
nescent field out of the cladding leads to scattering at scratches or dust micro particles that 
are present on surfaces. Since the number of scattering centres can be quiet large the dissipa-
tion of energy cannot be neglected. 

As illustrated in Fig. 6, another loss channel is connected to bending losses which occur 
when a waveguide or a fibre deviates from a strait geometry.  

 

Fig. 6: Electrical field strength of guided modes at a waveguide bend of a planar waveguide with 
2 μm width. The electrical field is partially coupled-out in the bending area. 



 18

As can be seen in Fig. 6 a part of the field energy is coupling into higher-order modes after 
passing the bending element. That leads to additional losses due to energy delocalization out-
side of the waveguide. 

Methods of characterization of thin films and interfaces 

Ellipsometry 

Ellipsometry is a technique developed for surface analysis. The measurement of variation 
of the polarization state of light after reflection on a surface gives information about the sur-
face material down to a depth of several wavelengths. The non-destructive character of ellip-
sometry makes it widely used for real-time applications. For instance, the ellipsometric con-
trol of thickness can be embedded into vacuum-deposition processes. 

Fig. 7 gives an example for such an in-situ control. The two ellipsometric angles Ψ and Δ 
measured during evaporation of a gold layer on a glass substance versus the angle of inci-
dence Φ are plotted for five different layer thicknesses. 

 

0 20 40 60 80 100 
0 

10 

20 

30 

40 

50 

Ψ

, deg. 

Φ, deg.

 1 nm
 2 nm
 3 nm
 4 nm
 5 nm

a)
 

0 20 40 60 80 100 
-20 

0 
20 
40 
60 
80 

100 
120 
140 
160 
180 
200 

Δ,  
deg.

Φ, deg.

 1 nm
 2 nm
 3 nm
 4 nm
 5 nm

b) 

Fig. 7: Ellipsometric angles Ψ (a) and Δ (b) in dependence on the angle of incidence Φ for different 
layer thicknesses. Changes of thickness of gold in the range 1-5 nm leads to significant 
changes in the observed ellipsometric parameters Ψ (Φ) and Δ(Φ), where Φ is the angle of 
incidence. Arrows point into the direction of thickness growth. 
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The complex ratio ρ  of reflection coefficients rp and rs, which stand for the reflection co-
efficients parallel and perpendicular to the plane of incidence, respectively, describes the state 
of polarization: 

 tanp i

s

r
e

r
ρ Δ= = Ψ  [1.32] 

Here tan Ψ is the amplitude ratio upon reflection while Δ is the phase shift. These quanti-
ties are related to the Fresnel reflection coefficients as illustrated in Fig. 8.  

 

Fig. 8: Reflection and transmission of light at the interface between medium 1 and medium 2. E 
represents the electrical field vector of light with polarisation parallel (p) and perpendicular 
(s – “senkrecht”) to the plane of incidence.  

The Fresnel reflection coefficients rp and rs, directly related to optical properties of the sur-
face, can be expressed by: 

 

2 1 1 2
12

2 1 1 2

1 1 2 2
12

1 1 2 2

cos cos
cos cos

cos cos
cos cos

p
p r

p
i

s
s r

s
i

E n nr
E n n

E n nr
E n n

φ φ
φ φ

φ φ
φ φ

−
= =

+

−
= =

+

 [1.33] 

The ratio t p and t s of electric field strengths of transmitted to incoming beam going from 
medium 1 to medium 2 is defined by equation [1.34] for polarization parallel (p) and perpen-
dicular (s), respectively. 
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where the subscript “12”stands for the interface between the first and second medium. Ei is 
the electric field amplitude of the incoming beam in medium 1. Er is the reflected electrical 
field amplitude in medium 1 after reflection at medium 2. The equations [1.33] and [1.34] are 
called Fresnel equations. 
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Ellipsometry found also applications in nonlinear optics45-47. So-called null-ellipsometry is 
mainly used in those cases where the signal polarization from the sample is compensated to 
be linear by using a compensator (Soleil-Babinet compensator). This signal reduced to null 
by a crossed analyzer. Then very small deviations in phase, which occur as a result of disturb-
ing the polarization compensation, modulate the intensity at output with a good signal/noise 
ratio. The scheme of null-ellipsometry is widely used for electro-optics measurements. Ap-
plying an AC-electrical field at frequency Ω (kHz-MHz range) the light modulation at Ω 
gives is a signal due to the Pockels effect while at 2Ω light modulation is caused by the Kerr 
effect. 

A detailed description of the theory of ellipsometry and especially of spectroscopic ellip-
sometry are available in many sources48-51. 

Prism coupling method 

Assuming an optically homogeneous, isotropic transparent layer, the processes going on 
during propagation within a step-index film can be described by superposition of multiply 
reflected beams. Involving Fresnel equations for claddings-core interfaces one can write the 
following dispersion equation52: 
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for s-polarized (Transverse Electrical – TE) modes, and  
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 [1.36] 

for p-polarized (Transverse Magnetic) TM modes, where the coefficients are defined as 
follows: 
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with 0
2k π
λ

=  and n0, n2 and n being the refractive indices of substrate, superstrate and 

core, respectively. d is the thickness of the core. The effective refractive index neff is a propor-
tionality coefficient between speed of light in vacuum and speed of mode propagation. The 
refractive index n of the core material should be higher than n0 and n2 to provide total internal 
reflection condition: 

 sin cladding
tot

core

n
arc

n
θ

⎛ ⎞
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⎝ ⎠
 [1.38] 

The intensity is oscillatory inside of the core and decays monotonically in the cladding ar-
eas (Fig. 9). The relation of energies concentrated inside and outside of the waveguide core is 
defined by refractive index contrast between core and cladding. 
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Fig. 9: Intensity distribution inside the waveguide. The rectangular marked area represents 
the core. An exponential penetration into both claddings can be found outside of the core. 

Here n0=n2 was assumed. 

A typical scheme of a prism-coupling setup is shown in Fig. 10. A sharp tip presses the 
substrate that carries the film (core of the waveguide) directly to the prism base. The air gap 
between film and prism decreases in dependence to the force, which is chosen enough to al-
low the light to penetrate by means of its evanescence field into the film. 

 

Fig. 10: Schematic presentation of the prism-coupling experiment. The thickness of the air gap be-
tween the film surface and the prism base is below 1 μm. In experiments, a prism with re-
fractive index of 1.89 was used. 

Concerning the application for characterization of linear and nonlinear waveguides, the 
prism coupling is a preferable technique because it is based on exciting guiding modes in the 
film. For instance, one can directly get the number of modes of both TE and TM polariza-
tions. The values of effective refractive indices of every mode can be directly obtained from 
the experiment. Other techniques like ellipsometry provide the bulk material refractive index 
only after extensive calculations and the use of optical model parameters. 
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Optical Waveguide Light-mode Spectroscopy (OWLS) 

The basic principle of the optical waveguide light-mode spectroscopy is based on coupling 
linearly polarized light by a diffraction grating into the waveguide layer. 

 

Fig. 11: Structure and scheme of laser beam propagation used in OWLS. The investigated media are 
the upper layer or the covering medium if the upper layer is not present. 

The incoupling of light appears at a certain angle, which is defined by the period of the dif-
fraction grating, the laser wavelength and the refractive indices of core and both of the clad-
dings. The coupled light is guided by total internal reflection to the ends of the waveguide 
layer where it is detected by photodiodes. By changing the angle of incidence, the OWLS 
spectrum can be obtained. This assembly is mounted on a precision goniometer, which ad-
justs the angle of incidence of the external laser. Even small changes of refractive index of 
the upper cladding lead to a shift of the coupling angle. The sensitivity of the method allows 
us to investigate the thermal dependence of the refractive index. 

The optical waveguide grating coupler sensor chips OW2400 provided by MicroVacuum 
Ltd. has sol-gel waveguiding materials with n=1.77. The thickness of the layer is 
170-220 nm. 

The precision of the method allows us to detect ultrathin layers (less than several nm). The 
commercially available device OWLS 120 (MicroVacuum Ltd.) includes a flow cuvette ap-
plying for investigation of gas-surface or liquid-surface interactions. 

Surface quality and thickness measurements by AFM 

A direct way to measure the thickness of a film uses a profilometer or a more precise tech-
nique based on the same contact principle: Atomic Force Microscopy (AFM). To get the 
thickness of the film one can measure the profile of the film edge. An additional advantage of 
direct methods is the possibility to obtain 2D presentations of the surface profile (Fig. 12). 
This information allows to calculate roughness of the film and to analyze morphology of the 
surface. 
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Fig. 12: AFM picture of a polyphenylquinoxaline (PPQ) based guest-host film spin-coated on glass 
substrate. 

The RMS roughness obtained during waveguide preparation was in the order of 2-3 nm for 
the polymer films spin coated at various spin speeds and concentrations. From our experi-
ence, solvents with higher boiling temperature such as dichloroethane or toluene produce 
smother surfaces. 

The linear optical techniques introduced above are used to carry out a basic optical charac-
terisation of the materials under investigation. The obtained results are discussed in the fol-
lowing experimental sections. 
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Nonlinear optical properties, general description 

General definitions 

Optical nonlinearity is a phenomenon, which occurs when the dielectric polarization of a 
medium responds nonlinearly to the electric field of light. Applications of particular impor-
tance are nonlinear frequency conversion, phase modulation and intensity-dependent absorp-
tion. Of special interest for the present work is propagation of intense short pulses in optical 
waveguides or in artificial pseudo-crystals like poled polymer films. 

Nonlinear wave equation 

Dielectric media in an external electric field are affected by polarization effects, i.e. the 
electric field displaces electronic orbitals relatively to its atomic nuclei. As a result, atoms get 
an additional dipole moment. Typical time constants of electron polarization are 10-15-10-16 s. 
There are also other types of polarization: ion polarization and orientational polarization. If 
ions are present in the materials they tend to move under the action of the field with typical 
time constants of the order of 10-11-10-13 s. As a result of a relative shift between positive and 
negative charged ions an induced polarization appears. Rotations of dipole molecules in an 
electrical field occur even with lower time constants (≥10-10 s) because the main mass of the 
molecule is much larger than the mass of an ion or an electron. 

The external field includes the electrical field of the light wave. For the UV-VIS range, one 
must take into account only the fast electron polarization. The period of oscillations in the 
region (wavelength < 10 μm) is small and, therefore, allows to neglect the other polarizations. 

 Quantitatively, the vector of polarization characterizes the polarization P. In the linear 
optics approximation, this vector depends linearly on the applied electrical field E: 

 kikai EP χε=  i,k=1,2,3 [2.1] 

where χ is the susceptibility tensor. This tensor is symmetric and can be written in diagonal 
form: 
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Moreover, 
 For isotropic media as amorphous solids or cubic crystals one has χ11=χ22=χ33=χ. 
 For uniaxial crystals with an optical axis along z (3-direction) (tetragonal, hexagonal and  
 trigonal) the following relation exists: χ11=χ22<>χ33. 
 For biaxial crystals (rhombic, monoclinic and triclinic) one has χ11<>χ22<>χ33. 
Due to the character of intermolecular forces a linear approximation can be used only for a 

small orbital shift (i.e. low external field, usual light sources). When the intensity of the elec-
trical field is high (e.g. using a powerful laser beam) the linear approximation does no longer 
describe the polarization completely. In that case, a field depended susceptibility tensor can 
be used: 

 kikai EEP )(χε=  i,k=1,2,3 [2.3] 

where the susceptibility can be expanded into a power series of the field E: 
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 ...)( )3()2()1( +++= mjikjmjikjikik EEEE χχχχ  [2.4] 

where χ(1)
ik is a linear susceptibility and χ(n) are nonlinear susceptibilities of n-th order. 

Typical values for the susceptibilities of dielectrics are: 
χ(1)≈1, 
χ(2) ≈10-13 – 10-11 m/V, (or 0.1 –10 pm/V) 
χ(3) ≈10-23 – 10-21 [m/V]2 

One can see an extremely rapid decrease of the importance of the nonlinear terms with 
growing exponent n. Usually only second and third orders are taken into account. One can 
separate the linear and nonlinear response in the polarization expression: 

 [ ]...)3()2()1( +++=+= mjkikjmjkikjakika
nonlinear

i
linear

ii EEEEEEPPP χχεχε  [2.5] 

In media with a centre of symmetry (centrosymmetric crystals, liquids, gases) even-order 
nonlinear susceptibilities are equal to zero. The operation of inversion of the tensor leads to a 
transformation of the tensor components: x→-x, y→-y, z→-z. The operation of inversion re-
quires that the vector of polarisation changes sign when the vector of electric field strength 
changes sign by going from x to –x in a medium with point symmetry: P(E) = -P(-E). This 
equation holds for the linear and all odd-order susceptibility contributions. However, for all 
even-order contributions this relation is only fulfilled for vanishing susceptibility, i.e. for a 
quadratic susceptibility χ(2)

ijk≡0. 
This peculiarity allows dividing nonlinear media into quadratic-nonlinear and cubic-

nonlinear media. From 32 crystalline classes, 20 classes have a centre of symmetry and, 
therefore, posses no quadratic susceptibility. It is worth to note that the border between two 
different centrosymmetric media shows a break of symmetry and generates second-order 
nonlinear effects. For instance, SHG from interfaces is a typical phenomenon of such type. 

Electromagnetic fields in media can be described by Maxwell’s equations: 
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trBtrE
∂

∂
−=×∇
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 ( ) ( ) ( )trj
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trDtrH ,,, +
∂

∂
=×∇  [2.7] 

 ( ) ( )trtrD ,, ρ=⋅∇  [2.8] 

 ( ) 0, =⋅∇ trB  [2.9] 

and the constitutive equations which represent the relations between dielectric displace-
ment ( )trD ,  and electric field strength ( )trE , : 

 ( ) ( ) ( )trEtrtrD ra ,,, εε=  [2.10] 

with the absolute value of vacuum permittivity εa, the relative dielectric constant εr. Intro-
ducing the susceptibility χ, and the refractive index n we have: 

 ( ) ( ) ( )trntrtrr ,,1, 2=+= χε  [2.11] 

These quantities are second rank tensors for anisotropic materials and scalars for isotropic 
materials. Inserting these quantities into the equation above one obtains: 

 ( ) ( )[ ] ( )trEtrtrD a ,,1, χε +=  [2.12] 
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Similarly, for the magnetic induction B  and the magnetic field strength H  one has 

 ( ) ( )trHtrB ra ,, μμ=  [2.13] 

with μr, the relative magnetic permeability and the absolute permeability of the vacuum μa. 
Introduction of a magnetic susceptibility χm, provides the following relation: 

 ( ) ( )trtr mr ,1, χμ +=  [2.14] 

From that follows 

 ( ) ( )[ ] ( )trHtrtrB ma ,,1, χμ +=  [2.15] 

These equations allow one to introduce besides the electric polarization ( )trP , , a magnetic 
polarization ( )trPm ,  that represent the relevant material properties: 

 ( ) ( ) ( )trPtrEtrD a ,,, += ε  [2.16] 

 ( ) ( ) ( )trPtrHtrB ma ,,, += μ  [2.17] 

with 

 ( ) ( ) ( )trEtrtrP a ,,, χε=  [2.18] 

 ( ) ( ) ( )trHtrtrP mam ,,, χμ=  [2.19] 

Separating linear and nonlinear parts of the electric polarization and taking into account 
that for dielectric non-magnetic media mP  can be set equal to zero, one can write: 

 ( ) ( ) ( )trPtrPtrP nonlinearlinear ,,, +=  [2.20] 

 ( ) ( ) )(,, SItrHtrB aμ=  [2.21] 

Applying the curl operation to [2.6] and using [2.7] gives: 
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Taking into account [2.9] provides: 
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According to [2.8] and assuming ( ), 0j r t =  one obtains: 
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Using the relation E E E∇ × ∇ × = ∇ ⋅∇ − Δ  and assuming for charge-free media 0E∇ =  
one gets: 
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because for the vacuum speed of light c0, the following relation holds: 
aa

c
με

12
0 = . 

In case of transparent, nonmagnetic, dielectric media one has 1=rμ . Then, from [2.11] and 
[2.18] follows: 
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Separating linear and nonlinear parts leads to: 
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That is a wave equation for nonlinear media. Merging linear expressions on the left side 
leads to: 
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This is a driven wave equation where the nonlinear polarization acts as a source term in the 
wave equation. 

Dispersion of polarization 

The reaction of electrons and nuclei under influence of an external field requires a certain 
time. Hence, the polarisation vector P  depends on field intensity in previous moments. 
Thereby, equation [2.3] should be written as convolution integral: 

 ∑∫
∞

−=
k

kikai dtEtP
0

)0( )()()( τττχε , [2.30] 

where ( )0χ  represents a time-dependent first-order susceptibility tensor. 
Using Fourier transformation one can use frequency domain instead of time domain: 

 ∫ −= dtetPP tiωω )()(  [2.31] 

 ∫ −= dtetEE tiωω )()(  [2.32] 
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 ( ) ( )∫ −= dte ti
ikik

ωτχωχ )()( 00  [2.34] 

In case of a quadratic nonlinear term of polarization, one should take into account two elec-
trical waves: 
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in frequency domain: 
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Here and below χ(n) denotes the nth-order susceptibility tensor in the power series develop-
ment after electrical field: 

 nn EEE )(2)2()1()0( .. χχχχχ ++++=  [2.38] 

Exchange of two interacting waves Ek and Ej gives no changes for the vector of polariza-
tion. Hence, the tensor χ(2) is symmetrical with respect to permutation of the last two 
indices53: 

 )2()2(
ijkikj χχ =  [2.39] 

This reduces the number of independent tensor components to 18 and it allow to use a two 
index system. The reduction from three to two indices is carried out as follows: 

where l =1..6, (χijk⇒χil) 
 

jk 11 22 33 23=32 13=31 12=21 
l 1 2 3 4 5 6 

 
Moreover, for frequency ranges with weak dispersion one can apply the so-called Kleiman 

relations35,53: 

 jikkjiijkjkikijikj χχχχχχ =====  [2.40] 

The change from the time-domain to the frequency-domain for dispersion media demon-
strates that the dielectric constant is a complex quantity44: 

 "'~ εεε i−=  [2.41] 

Where the real part of the dielectric constant ε’ stands for storage of field energy and the 
imaginary part ε” for dissipation of field energy. In case of conductive media the imaginary 
part can be expressed by means of conductivity σ which is responsible for the absorption in 
these media (metals, semiconductors). Then one obtains: 

 
ωε

σεε
a

i−= '~  [2.42] 

Commonly, nonlinear parts of the susceptibility are complex functions too: 

 1,~ImRe~ )()()( >−= ni nnn χχχ  [2.43] 

In comparison to real parts, imaginary parts have usually much smaller values. The real 
part of the nonlinear n-th order susceptibility is responsible for the n-th harmonic generation, 
while the imaginary part for the n-photon absorption. 

The expression for the electrical field strength can be written as: 

 ( ) .}. ),({ 
2
1),( - ccetAtE kti += rrer ω  [2.44] 
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where e  is the polarization unit vector, ( )trA ,  is the complex amplitude of the electrical 
field. The complex conjugated term provides the real character of field strength that is impor-
tant in nonlinear optics, where nonlinear E powers like E2, E3 appear. 

In case of one wave with frequency ω one can insert [2.44] into expression [2.36] and ob-
tains: 
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The first two members are responsible for a polarisation wave with double frequency. That 
can lead to Second Harmonic Generation (SHG). The condition that SHG appears is that the 
system must have no centrosymmetry, e.g. LiNbO3 crystal or poled polymers. As we will see 
below, SHG can be observed also in glassy systems, where noncentrosymmetry is provided 
by alignment of nonlinear optical chromophores. 

Second-order nonlinear processes, SHG and DFG 

The electrical field of a monochromatic wave is described as: 
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where the complex conjugated part provides the real character of E(z,t). 
For the description of wave propagation the so-called slowly varying amplitude approxi-

mation was introduced44. The assumption of the slowly varying amplitude approximation 
means that the amplitudes A1 (fundamental wave) and A2 (second harmonic) are varying 
slowly with respect to the time t. That can be expressed by the following inequality: 
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Consequently, the functions ),(2,1 tzA  can be considered as constant on a distance range of 

the order of the wavelength (or during the time t = 
ω
1 ). 

The electric field in the material can be represented as Fourier series: 
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The imaginary part of complex wave-vector mk  describes absorption: 
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Taking into account only the first two members of each sum in [2.48] one can obtain for 
the intensity an expression, which is proportional to E2: 
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that after expanding and grouping gives: 
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Taking into account the effects related to the double frequency and thereby excluding 
members with { }1,2m ∉  one gets: 
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This expression contains obviously one contribution which oscillates with the frequency of 
the fundamental and another contribution which oscillates with the doubled frequency. 

General view to a system of m-th order nonlinear equations 

In case of a light wave travelling along z-direction its interaction with nonlinear media can 
be described by the following equation: 
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Inserting the explicit expression of the electrical field leads to the following form of the left 
part of eq. [2.53]: 
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The first term can be rewritten as: 
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The second term of [2.56] is: 
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Finally, combining [2.55] and [2.57] we have: 
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Analysing this expression provides: 
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Introduction of this result into [2.59] provides: 

 ( )[ ] ..Im
)(

2 )(
2

2

cceAm
mn
ki

z
Aki zktmi

mr
mm

m
m +⎥

⎦

⎤
⎢
⎣

⎡
+

∂
∂ −ωωε

ω
 [2.60] 

The nonlinear polarisation can be expressed as a sum over all possible mth-order effects: 
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In a simplified notation we have:  
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Using this notation the right part of [2.53] can be, in case of second-order effects, directly 
modified to: 
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where k∑  denotes the sum of wave-vectors depending on the type of the process, for exam-

ple [2.52], ( )1 2k k−  relates to difference frequency generation (DFG) and ( )1 1 12k k k= +  re-
lates to the SHG processes respectively. Combining the final forms of left [2.60] and right-
hand side [2.61] one can derive: 
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Dividing by i2km provides for the right side: 
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and for the left side: 
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Dividing by the exponential function one obtains: 
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This equation can be rewritten as: 
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Here a damping coefficient mδ  and a nonlinear coupling coefficient mσ  are introduced, de-
fined as: 
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In every particular case, the right part of equations [2.62] is defined by the type of nonlin-
ear interaction. For instance, the process of second harmonic generation includes two fre-
quencies: ω and 2ω. This means that the right part of [2.62] contains members with 

{ }1,2m ∈  as shown below. 
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Extended second-order nonlinear equations system for beams 
with finite aperture  

Introducing complex amplitudes depending on the three coordinates (x,y,z), one can obtain 
the following equations which describe the spatial dependences of the amplitudes of the two 
involved waves 
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From the slowly varying amplitude approximation follows the next relation: 
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Eq. [2.66] is reduced to: 
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Nevertheless the terms 
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Actually, these terms describe diffraction. 

Maker fringe technique 

Maker fringe analysis is the main technique of examination of the SHG intensity that oscil-
lates as a function of pump angle54,55. The reason for these oscillations lies in the periodicity 
of energy exchange between pump wave with frequency ω and second harmonic wave with 
frequency 2ω. Varying the optical path by rotation of the sample, information about the 
nonlinear process within the sample can be obtained. This technique is strongly connected to 
different propagation of fundamental and SHG fields in dispersive materials. 

Phase matching 

Nonlinear processes like second harmonic generation or difference frequency generation 
require phase matching to be efficient. This means that a proper phase relationship between 
the interacting waves must be fulfilled along the propagation direction. More precisely, the 
phase mismatch has to be close to zero. For frequency doubling with collinear beams the 
phase mismatch is given by: 

 2 12k k kΔ = −  [2.70] 

where k1 and k2 are the wavenumbers of the fundamental and second-harmonic beam, re-
spectively. Due to chromatic dispersion, one usually has k2 ≠ 2k1, so that a phase mismatch 
occurs. The usual technique for achieving phase matching in nonlinear crystals is birefringent 
phase matching, where one exploits birefringence to cancel the phase mismatch. 
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Fig. 13: Phase mismatch for second-harmonic generation. Due to chromatic dispersion, the 
wavenumber of the second harmonic is more than twice as large as that for the fundamental 
wave. This can be avoided by choosing a different polarization in a birefringent crystal (a) or 
by changing the angle between two fundamental beams in case of the noncollinear scheme of 
SHG (b) 

There are two types of phase matching using birefringent films: Type I, where two incident 
photons of one polarization are converted into a single photon of the other polarization at the 
second harmonic. Type II phase matching occurs when the input beam consists of both po-
larization states and the second harmonic is polarized either ordinary or extraordinary de-
pending on positive or negative birefringence, respectively56. 

In case of aligned thin polymeric films, usually only one linear polarized beam of funda-
mental frequency is used. This corresponds to type I phase matching. Although the two-beam 
SHG has some advantages especially in case of measurement of all nonzero components of 
susceptibility tensor57,58 but it is more difficult to realize. 

Matrix description of experiments 

For a quantitative characterization of second-order nonlinear properties of poled films the 
Maker fringe technique is often used as reference. Usually the sample is a transparent spin-
coated or vacuum-deposited film on a transparent substrate. Measurements of intensity and 
polarization of the second harmonic signal as a function of the angle of incidence of the fun-
damental beam with respect to the normal vector of film surface (Fig. 14) allows the evalua-
tion of the components of the χ(2)-susceptibility tensor. 
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Fig. 14: Scheme of the SHG experiment. By rotating the sample around the x-axis and by change of 
the polarization angle one can involve in SHG different components of the nonlinear suscep-
tibility tensor. 

Sample rotation around the x-axis can be described by a rotation matrix applied to the sus-
ceptibility tensor: 
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Alternatively, ',iiR  is a transformation operator between laboratory coordinates system O 
and coordinate system O’ of the film principal axes. The tensor χ  in O' can be written as: 
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The nonlinear polarization connected to SHG is described as: 

 
)()()2()2( ωωω χε kjijkai EEP = , [2.73] 

where 
)(ω

jE  and 
)(ω

kE  are the electrical vectors of two fundamental waves. For collinear 
SHG the fundamental wave can be presented as a mixture of two equivalent waves. 

The first index in (2)
ijkχ  corresponds to the harmonic component while the second and third 

are indices of the fundamental waves. 
The third-rank tensor (2)

ijkχ  in most of the cases can be replaced by a second-rank tensor 

ijd  that simplifies the description of susceptibility. Introducing the contracted notation as for 
(2)
ijkχ  in case of SHG (when ω1=ω2) one can write: 

 ijkijkd χ
2
1

=  [2.74] 

Since for SHG tensor ijkd  is symmetric in its last two symbols one can write it in the form 
of a 3x6 matrix: 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

363534333231

262524232221

161514131211

dddddd
dddddd
dddddd

dil  [2.75] 

Most of the components vanish or are equal due to symmetry. For materials with C∞ν 
symmetry (poled polymer film) and taking Kleinman’s relations into account, the tensor dij in 
[2.75] reduces to a matrix containing only two non-zero components: d33 and d31

53. Therefore, 
the matrix d is: 

 
31

31

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0

d
d

d d d

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

d  [2.76] 
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Now the polarization components are given by: 

 

( )

1 31 3 1

2 31 2 3

2 2 2
3 31 1 2 33 3

2
2

P d E E
P d E E

P d E E d E

=
=

= + +

 [2.77] 

p- and s-polarization of electric field of the fundamental light can be described by the fol-
lowing electrical vectors: 

p-polarization: 

 
0

0
pE

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

E  [2.78] 

where Ep is the y-component of the field. 
s-polarization: 

 0
0

sE⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

E  [2.79] 

where Es is the x-component of the field. 
effd can be defined as a scalar coefficient as follows: 

 2EdP effaε=  [2.80] 

where P and E are polarization and field amplitudes, respectively, for a certain sample po-
sition. 

Performing measurements at different combinations of polarizations of fundamental and 
SH waves, the tensor elements of d can be obtained. In experiments with fixed polarization of 
the incident fundamental wave (s- or p-polarization) and fixed polarization of the detection 
system for the SH wave (s- or p-) one has p-p, p-s, s-p and s-s combinations. In the particular 
case of a poled polymer film the deff coefficient is: 

 
pp-polarization: 

 2 2
31 31 332 cos( ) cos( )sin( ) cos ( ) sin ( ) *sin( )p p

effd d d dψ ϕ ϕ ϕ ϕ ψ− ⎡ ⎤= + +⎣ ⎦  [2.81] 

ps-polarization: 

 0=−sp
effd  [2.82] 

sp-polraization: 

 31sin( )*s p
effd dψ− =  [2.83] 

ss-polarization: 

 0s s
effd − =  [2.84] 

where the angles ϕ and ψ are related to the fundamental and harmonic waves, respectively. 
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Fresnel reflection plays a significant role in that kind of configuration. Therefore, one 
should carefully take into account reflection rules including dispersion of refractive index at 
ω and 2ω. 

Reflection/transmission in thin films during SHG 

Passing through a thin or ultra thin layer the light of both frequencies ω and 2ω performs 
reflections at the air/film interface. Fig. 15 shows the propagation of both harmonic and fun-
damental waves. Due to dispersion of the material, the refraction angles are different for fun-
damental and SH beams. A special shift, also known as walk-off effect occurs. However, in 
our case the walk-off effect is negligible when the film thickness is much smaller than the 
beam diameter. 

In addition, the nonlinearity of dyes used for guest-host systems is often of resonance or 
near-resonance nature. The polymers with embedded chromophores of such type have strong 
absorption in the UV-visible range. Together with Fresnel reflections at the air-film, film-
substrate and substrate-air interface, the absorption creates significant losses especially at an-
gles far away from normal incidence. 

 

 

Fig. 15: Second harmonic generation by passing through a thin film. Multiple reflection for both fre-
quencies must be included in transmission calculation. 

Light transmission through a thin layer of a nonlinear material is describe by the transmis-
sion factor 2
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are the Fresnel transmission coefficients for the field amplitudes, where s and p denote s- 
and p- polarizations, h and f stand for ‘fundamental’ and ‘harmonic’, respectively. The light 
is coming from medium i to medium j. 

The typical procedure of the Maker-fringes experiment includes the measurement of the 
SHG signal generated by a thin quartz plate with known nonlinearity and refractive indices as 
a reference. The quartz plate must have known orientation so, that all Fresnel and nonlinear 
coefficients can be calculated. The relation between sample thickness and coherence length 
defines the shape of fringes. If the thickness of the sample is smaller than the coherence 
length, then no fringes are observed ( 

Fig. 17). The quartz plate is usually relatively thick, and hence, oscillations are observed as 
shown in Fig. 16. 
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Fig. 16: Nonlinear polarization versus rotation angle calculated for a 0.47 mm thick quartz crystal. 
These data are used as a reference for quantitative calculation of deff 
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Fig. 17: The calculated nonlinear polarization of an oriented thin polymeric film. The curve shape is 
defined by the superposition of two effects: average orientation of dipoles normal to the sur-
face and Fresnel reflection at higher angles. 

The thickness of the quartz sample (0.47 mm) is large enough to produce fringes (Fig. 16) 
while a spin-coated polymeric film is thinner than the coherence length of the film material 
and oscillations do not exist (Fig. 17). Then the shape of the graph is mainly defined by Fres-
nel reflection from all surfaces and the average orientation of active molecules towards the 
normal of the polymer film. Assuming that the molecular dipoles are oriented along their 
long molecular axis, the nonlinear response at normal incidence is minimal. 

 

Spatial pulse shape distortion during propagation in strongly 
nonlinear media. 

The second-order nonlinear application in waveguides requires high concentration of opti-
cal energy in the waveguide core. Oriented doped polymers can have a χ(2) value 1-2 orders 
higher than most of popular inorganic materials and crystals (LBO, KDP). The waveguide 
based device concept includes the assumption of high nonlinearity together with high inten-
sity. A significant part of the fundamental beam can be converted into the second harmonic. 
In this case, the widely used approximation ωω 2AA >>  cannot be applied. 

Analytical solution of a system of second-order nonlinear equations 

The system of equations [2.66] describes the interaction between fundamental wave and 
second harmonic. Due to coupling between these waves, an energy exchange occurs. Since 
the right parts of equations [2.62] contain the amplitudes of the included waves, the propaga-
tion of both waves depends on its intensities (as usual in nonlinear optics). This problem can 
be solved by means of appropriate methods. In frequency conversion processes, such as SHG 
or DFG, two or more waves interact with each other while propagating through the nonlinear 
medium. In the case of type I phase matching, using the slow varying envelop approximation 
and assuming that there is no thermal distortion due to absorption of light, a system of two 
equations can be used to describe the interaction35: 

 

*1
1 2 1

22
2 1

2 i kz

i kz

A i A A e
z
A i A e
z

σ

σ

− Δ

Δ

∂⎧ = −⎪⎪ ∂
⎨∂⎪ = −
⎪ ∂⎩

 [2.87] 

where 12 2kkk −=Δ  is the phase mismatch expressed by the difference between the wave 

vectors of the waves with circular frequency ω and 2ω, respectively, 
( )

2

)2(

11 )(2 ω
ωχ

σ
n

k eff=  and 

( )
2

)2(

22 )2(2
2
ω

ωχ
σ

n
k eff= are nonlinear coupling coefficients containing the effective second-order 

susceptibility )2(
effχ  and refractive index n at frequencies ω and 2ω , respectively. 

The functions 1,2 ( , )A z t  can be considered as constant at a distance range in the order of a 

wavelength or during a time 1ω−  equal to the inverse circular frequency of the light wave. 
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Now, from complex amplitudes view, one can transform [2.87] into a system where ampli-
tudes are real numbers. For that the phase shift between two propagating waves must be in-
troduced. The substitution of 
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==
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2
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exp)(exp)()(

ϕϕ
ϕϕ

ϕϕ

 [2.88] 

in [2.87] gives a system of three equations59: 

 

1
1 1 2

22
2 1

2
1

1 2 2
2

sin 0

sin 0

( )cos 0

da a a
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dz
d ak a
dz a

σ

σ

σ σ

⎧
+ Ψ =⎪

⎪
⎪

− Ψ =⎨
⎪
⎪ Ψ

− Δ + − Ψ =⎪
⎩

 [2.89] 

with the absolute amplitude values a1,2 of the interacting waves, and a phase function Ψ 
which depends on the phase difference of the two waves, the phase mismatch factor Δk and 
the spatial coordinate z along the propagation direction of the travelling waves. 

The invariant of the system of Eq. [2.89] is: 

 2 2 2 2 22 2
1 2 1 2

1 1

( ) ( ) (0) (0)a z a z a a Uσ σ
σ σ

+ = + =  [2.90] 

or, when there is no second harmonic signal at the input of the nonlinear medium we have: 

 2
1

1

(0)U aσ
σ

=  [2.91] 

The quantity U is the normalized amplitude of the fundamental wave at input. Taking into 
account equation [2.91], the set of equations [2.89] transforms into: 

 

2 22
1 2

2 21
2

2

( )sin ,

( 3 )cos

da U a
dz
d k U a
dz a

σ

σ

⎧ = − Ψ⎪⎪
⎨ Ψ⎪ = Δ + − Ψ
⎪⎩

 [2.92] 

From the system of equations [2.92] the following differential equation can be obtained: 

 
2 2

2 2 1
2 2

2 2 2

(cos ) ( 3 )cos /
( )

d U a a k
da a U a

ψ ψ σ− + Δ
− =

−
 [2.93] 

that leads to an expression for the phase Ψ: 

 
2
2 1
2 2

2 2

( / )cos
( )

C a k
a U a

σ− Δ
Ψ =

−
 [2.94] 

The integration constant C is defined by border conditions a2(0)=a20 and ψ(0)=ψ0. 

Introducing the reduced mismatch:  
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1

k
Uσ

Δ
Ξ =  [2.95] 

and the dimensionless amplitudes:  

 1,2
1,2

a
v

U
=  [2.96] 

 the system [2.92] can be rewritten after transformation as59: 

 

22
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2
2

2

(1 )sin ,

1 32 cos

dv v
dz
d v
dz v

⎧ = − Ψ⎪⎪
⎨ Ψ −⎪ = Ξ + Ψ
⎪⎩

 [2.97] 

where the dimensionless amplitude ν1 of the fundamental wave has been eliminated. 

Using the following substitution: 3'
U
CC = , one obtains 

 
2
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2 2

' ( )cos
( ) 1 ( )
C v z

v z v z
− Ξ

Ψ =
⎡ ⎤−⎣ ⎦

 [2.98] 

and 2 2
2 2 2' (0) 1 (0) cos (0) (0)C v v v⎡ ⎤= − Ψ + Ξ⎣ ⎦  [2.99] 

Now one can directly write down two integrals of the system [2.92]:  
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When there is no second harmonic at the input, i.e. 0)0(2 =v , we have 2
2

2

1
cos

v
v

−
Ξ

−=Ψ . 

Substituting this result into the first equation of [2.97] we get for the evolution of the dimen-
sionless amplitude ν2 of the harmonic wave along propagation direction z the following ordi-
nary differential equations: 
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2

2
2

2
1

2 )2(1 vvU
dz
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After squaring one obtains 
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Introducing the harmonic amplitude related to the reduced mismatch, we have 

 
ϑ

ρ
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)( 2
2

zv
V =  [2.102] 

where ϑ  is a normalization function which depends only on the reduced mismatch: 
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and the square root of ϑ : 
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Introducing a reduced distance 1
Uzρ σ
ϑ

=  [2.105] 

we have: 
2

2 2 2
2 2 2( ) 1 ( ) 1 ( )d V V V

d
ρ ρ ϑ ρ

ρ
⎛ ⎞ ⎡ ⎤ ⎡ ⎤= − ⋅ −⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 . [2.106] 

This is the equation for the Jacobi elliptic sinus ( )[ ]ϑρ ;zsn : 

 ( )2 ( ) ;V z sn zϑ ρ ϑ⎡ ⎤= ⎣ ⎦  [2.107] 

The Jacobi elliptic sinus ( )[ ]ϑρ ;zsn  is a periodic function of the reduced distance ρ(z) and 
a parameter dependent period T(ϑ) which is connected to the parameter ϑ via the following 
equation (see Appendix for more details): 
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2 2 2
0

( ) 4
(1 )(1 )

dyT
y y

ϑ
ϑ

=
− −∫  [2.108] 

The coherence length (quarter distance of a period of function) is: 

 ( )
1 4k

T
l

U
ϑϑ

σ
=  [2.109] 

It is a matter of initial conditions whether we have a purely second-harmonic generation 
case 2 (0) 0a =  or a purely down-conversion case 1(0) 0a = . According to [2.87] in the pure 
down-conversion the classical description does not allow the generation of a signal at funda-
mental frequency from zero initial value. Quantum fluctuations are necessary to obtain such a 
signal60. 
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Fig. 18: The solution of the equation [2.106] for SHG is a periodic function with a parame-
ter-dependent period. The parameter θ is defined by the phase-matching condition. 
For most of cases one has θ ≈ 0 and a corresponding period T(θ) ≈ 2π. Here the in-

fluence of the parameter ϑ on the period 
( )( )

1

2 2 2
0

1( ) 4
1 1

T dx
x x

θ
θ

=
− −

∫  is shown. 

According to Eq. [2.107] the harmonic field distribution within nonlinear media is de-
scribed by a trigonometric periodic function in case of 0>>Δk  and actually achieves a con-
stant value at 4>ρ  in the case when 0→Δk  is valid (Fig. 19). 
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Fig. 19: Plot of the Jacobi elliptical sinus );( ϑρsn  for fixed values of the parameter ϑ . (dashed) 
,0=ϑ  sn(x;0)=sin(x); (solid) ,1=ϑ  sn(x,1) = tanh(x) and (short dashed) ,9.0=ϑ  

sn(x;0.9) 

When )2(1 1Uk σ>>Δ>>Ξ the parameter ϑ  can be approximated according to 

Ξ
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Ξ
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Ξ
≈

1
2

21
2 2ϑ  as can be seen in Fig. 20. Hence, equation [2.107] can be replaced 

by: 

 2 1 1
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2
kzv z z U Uzσ σ Δ

= Ξ =
Ξ
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where 
x

xx sinsinc = . 

The coherence length lk becomes constant: 
k

lk Δ
=

π . 
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Fig. 20: Square root of the parameter 
22
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⎜
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⎛ Ξ

+=ϑ (solid line) as functions of the reduced 

mismatch Ξ in comparison to the reciprocal 
Ξ
1

 of the reduced mismatch (dashed line). 

As can be seen in Fig. 20 in the limit 0→Ξ  small deviations in Ξ  can lead to significant 
changes of the parameterϑ . This means that the period of the second harmonic amplitude 
distribution depends on the intensity of the fundamental wave. 

The reduced mismatch 
211 )0( σσa

kΔ
=Ξ  determines the character of interaction between 

fundamental and harmonic beams in the medium. The interaction length can be described by 
the dimensionless reduced distance: 
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 [2.111] 

A reduced distance in the range for 1>>Ξ can be simplified as: 

 1 1 2
1

(0)
1/

aUz z z k
σ σ

ρ σ
ϑ

= = = Δ
Ξ

 [2.112] 

Values of 10..0∈Ξ  occur either for 0→Δk  or for large 211 )0( σσa  values (i.e. high 
fundamental field amplitude and high nonlinearity of the medium). The case 0→Δk  is 
known as phase matching (PM). Other case, the process of SHG becomes sensitive to the 
fundamental wave amplitude distribution. 

The NLO strength κ (in cm-1) is defined as61: 

ϑ
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where η is the usual NLO figure of merit (in cm2 W-1), P is the power of the fundamental 
beam (in W). In the present case κ can be rewritten as: 
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Δ
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π
ε
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ε

κ  [2.114] 

This means the nonlinear strength is proportional to the intensity of the fundamental and 
proportional to the ratio of the reduced phase mismatch to the standard value of phase mis-
match. 

SHG in absorptive media 

Fulfilment of linear properties to necessary requirements is a first step of selection of mate-
rials for photonic applications. This chapter describes these requirements and clarifies essen-
tial fabrication conditions. 

Since nonlinear phenomena often contain waves with several wavelengths, the film trans-
parency at the working wavelengths is required. For instance, when a light wave is converted 
into another light wave during SHG then two wavelengths are involved, the fundamental (F) 
and second harmonic (SH). The wavelength of the SH wave is two times shorter than the 
wavelength of the fundamental. During propagation within nonlinear media the energy of the 
fundamental is converted into the SH (Fig. 21a, where the fundamental has a wavelength 
λ = 1064 nm and the SH has λ = 532 nm). Even a small value of imaginary part κ = 10-4 of 
refractive index ñ=n-iκ at fundamental frequency is enough for a significant reduction of 
conversion efficiency of SHG (Fig. 21b). 
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Fig. 21: SHG process in presence of a small absorption. The efficiency is reduced 5 times when the 
imaginary part (κ) of refractive index at fundamental frequency is equal to 10-4. 

In absence of optical losses (κ = 0) a strong decrease of fundamental intensity with in-
creasing propagation length can be seen. Simultaneously, the intensity of the SH wave is in-
creasing due to complete energy transfer from the fundamental to the SH wave. In contradic-
tion to that, we find even for small optical losses at fundamental wavelength a complete dif-
ferent situation. The fundamental intensity decreases strongly with increasing propagation 
length but the SH intensity increases only slightly although no absorption of SH intensity was 
assumed. The reason for the observed behaviour is that already at small losses a significant 
portion of fundamental intensity is dissipated so that only a certain fraction can be converted 
into the SH wave. However, a more common situation includes that the second harmonic is 
absorbed while the fundamental is not (Fig. 22a). This is connected to the fact that the SH 
wave has a shorter wavelength than the fundamental, and is influenced by electronic transi-
tions laying in the UV and visible range which cause optical losses. The fundamental wave 
typically lies in the infrared range where those mechanisms do not play a significant role. The 
conversion into the SH wave is less efficient than in the lossless case and shows a maximum 
versus propagation length. 
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a) κ1024=0, κ532=10-4 
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b) κ1024=10-4, κ532=10-4 

Fig. 22: Electric field amplitude for fundamental and SH wave versus propagation length at presence 
of optical losses for the SH wave which reduce efficiency of conversion over a long dis-
tance. The SH wave reaches a maximum value which defines a most favourable length for 
the process. 

However, in case of vibrational (infrared) losses the fundamental can show attenuation too 
which leads to a further reduction of conversion efficiency (Fig. 22b). Also in that case a 
maximum of SH intensity versus propagation length is found so that an optimum conversion 
length can be defined (cf. Figs. 22a and 22b). 
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Propagation of the beam with Gaussian profile 

In the following the behaviour of a Gaussian pulse shape in nonlinear media is analyzed. In 
most cases, the intensity distribution of a laser beam along a direction r, which is normal to 
the propagation direction, can be described by a Gaussian distribution by the following equa-
tion:  

 
2

1 max 2( ) exp
2
ra r a
w

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 [2.115] 

where w is the characteristic width, and r is the distance from the beam centre taken to be 
perpendicular to the propagation direction. 

A Gaussian beam has a maximum intensity value in the centre and decays towards zero at 
the periphery. Therefore, different parts of the pulse have different values of the parameter 

ϑ  in eq. [2.107]. This leads to differences in the corresponding periods defined in eq. 
[2.108] and the coherence lengths defined in eq. [2.109]. Consequently, long nonlinear inter-
action distances as in waveguides lead to a perturbation in the planes of equal phase. 

Both the parameters of the travelling waves and the properties of the material have influ-
ence on the behaviour of the pulse shape in space and time. One can highlight the different 
possible situations as follows: 

1.) The situation for the reduced mismatch characterized by 1>>Ξ  (see Fig. 23) is de-
scribed by a sinusoidal law [2.110] for the dimensionless amplitude ν2, a weak field of the 
fundamental wave together with low nonlinearity of the medium, and leads to a vanishing 
pulse shape distortion. The SH signal achieves a maximum at a quarter of the coherence 

length 
k

lk Δ
=

π . This corresponds to the situation used in the quasi phase-matching (QPM) 

technique. 
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(b) 

Fig. 23: Normalised SH intensity generated by a Gaussian beam along the normalized propagation 
direction p: (a) projection to the y-p-plane, (b) 3-d contour plot. 

2.) In the case, where the reduced mismatch is in the range 10..1∈Ξ  (Fig. 24), a situation 
is described by the medium with a high optical nonlinearity together with a strong field of the 
fundamental wave or interaction distance is long. This causes a clear pulse deformation. 
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(b) 

Fig. 24: Projection and contour plots of SH intensity versus reduced distance generated by a Gaus-
sian beam propagating in a medium where Ξ = 1.5, first 3 periods (a,b). 

The original pulse is deformed in the course of the first few periods (Fig. 24 a,b), divides 
subsequently into two pulses and into more pulses with further propagation. The efficiency of 
pulse splitting becomes higher as Ξ approaches 1. It is necessary to take into account that a 
considerable deformation can be achieved only in the case of a long sample, i.e. if the dis-
tance travelled is sufficiently long (Fig. 25). However, a long distance can be coupled to fur-
ther distortion effects such as diffraction. 
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Fig. 25: Cross-section through a SH pulse at long distance perpendicular to the propagation direc-
tion. The reduced distance is 52π. 
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3.) The situation where the reduced mismatch is in the range 1<Ξ  includes a high nonlin-

earity (
V
m1110)2( 1010~ −− ÷χ ), a strong fundamental field (

m
V810≥ ) and small values of 

phase mismatch ( 1610 −<Δ mk ), all of which leads to a situation where the centre of the pulse 
propagates practically according to a hyperbolic tangent dependence, while the pulse wings 
still follow an almost sinusoidal dependence. This reduces the pulse half-width and divides it 
into 2-3 pulses during the first few periods (Fig. 25). 
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Fig. 26: SH Gaussian beam propagation in media when 1.0=Ξ , for the first 3 periods (a) 2-d con-
tour plot, (b) 3-d plot. 

The situation when the central part of the SH pulse overlaps with the wings of the peak of 
the next period can be interpreted as splitting of the SH beam (Fig. 27). 

Intensity, a.u. 



 52

- 1 - 0.5 0 .5 1

0 .05

0.1

0 .15

0.2

0 .25

Intensity

 
(a) 

- 1 - 0.5 0 .5 1

0 .05

0.1

0 .15

0.2

0 .25

0.3

Intensity

 

(b) 

Fig. 27: Spatial cross-sections through a pulse propagating with a parameter value 2.0=Ξ  at (a) 
z=1.25π and (b) z=1.5π. Two satellites appear and later the pulse divides into two pulses as 
described by Flueraru et al.61 

As an example a laser system is considered which generates pulses of ps30=τ  duration 
with an energy per pulse of mJp 1=Ε  which is focused onto an area 21mmw = . This system 
induces an electrical field having field strength around 107-108 V/m (the exact value depends 
on the pulse temporal profile). The power per unit area P is in that case 

22 33.3
cm
GW

w
P p =

⋅

Ε
=

τ
. The damage threshold for a lithium triborate LiB3O5 (LBO) crystal is 

245
cm
GW  at 1.064 μm62. Since the nonlinear properties of the LBO crystal have low values in 
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comparison with most organic nonlinear materials, pulse distortion can barely be observed. 

So the type I SHG in LBO at 1064 nm has a non-linear coefficient of 
V
pmdeff 96.0= . The 

reduced mismatch under such conditions, reaches a value of 4.53=Ξ , which does not allow 
a clear observation of the pulse distortion effect. 

Coupling equations for QPM 

A.Armstrong and N.Blombergen with co-workers have offered at once three ways of reali-
sation of phase synchronism16, three experimental arrangements to provide phase correction, 
if the phase velocities of the fundamental and second harmonic are not matched: 

(a) After a distance 
k

π
Δ

 the crystal is replaced by its inversion image. The nonlinear sus-

ceptibility χ(2) changes sign. The linear optical properties remain the same. 
(b) Both fundamental and second harmonic undergo multiple total reflections in a crystal 

of thickness cos totalk
π θ
Δ

. On each reflection E1 and E2 undergo a π phase shift, the product 

E2E1 changes sign. 
(c) The travelling wave at ω1 pumps the interferometer cavity, which contains a nonlinear 

dielectric and is resonant at ω2. The backward harmonic wave does not interact with the 
pump. On each forward pass it has the correct phase for amplification. 

In the first way synchronism was carried out by using a set of thin plates from a NLO ma-
terial, the direction of each optical axis periodically (from a plate to a plate) changes the di-
rection of optical axis. In the second way it was suggested to use an optical waveguide from 
the nonlinear material, designed in such a manner that the generalised phase at full internal 
reflection at the waveguide walls changes by π. The third way consisted in using an interfer-
ometer, filled with a nonlinear material and adjusted to the second harmonic wave. The 
common approach in all these ways was that the thickness of each plate in the set of plates, or 
the size of a way of one pass of light between waveguide walls, or an interferometer thick-
ness should be equal to the coherence length of SHG, on which the amplitude of the second 
harmonic does not decrease. The jump of the generalised phase in all these cases allows a 
wave of the second harmonic to continue with amplitude increase in the following plate, or in 
the following pass between waveguide walls, or the following pass of the resonator. Phase 
synchronism of such discrete type has received the name Quasi Phase Matching (QPM)63. 
Furthermore, the idea of Blombergen using the set of plates was essentially added and devel-
oped, that finally has led to modern solutions of creation of highly effective crystals from 
regular domain structures59. 

As an example of QPM, periodically poled media can be described by a similar set of 
equations, given below as Eq. [2.97]. The solution can also be expressed by a Jacobi elliptical 
sinus given by Eq. [2.107]. Hence, the same common principles can be applied to the field 
distribution within the media under consideration. However, due to the inhomogeneity some 
additional effects should be taken into account. The procedure must include an exact solution 
on every domain including the boundary conditions (phase and amplitudes of both signals, 
i.e. fundamental and SH). This requires the application of numerical methods. 

The process of SHG and the pulse propagation in periodically poled media are described 
by the following system of equations: 
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where β and Km are defined via 
Λ

=
Δ
−Δ

Ξ=
mK

k
Kk

m
m πβ 2, , Λ  is the QPM grating period, 

and m is the QPM order. β is a measure for the phase mismatch in the QPM structure and Km 
represents the m-th order quasi wave vector of the periodic structure. 

Replacement of the variables in Eq. [2.89] by πξπθ mz /2,2/ =Ψ−=  leads to equations 
similar to Eqs. [2.97]: 
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If there is no SH signal at the input one can solve system [2.117] and obtain the solution ν 
given by the following equation: 

 ),(2 γγ usnv =  [2.118] 

Where 
2 21 ,

4 4
mm u

m
π βπβ ξγ

π γ
⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

, 

It should be mentioned that [2.118] is similar to [2.107] but the term 
k
Kk m

Δ
−Δ , which is 

part of the coefficient β is independent on intensity. However in the case of a material de-
pendent phase mismatch Δk ≠ 0, tuning of Km can be used to compensate for the natural mate-
rial dispersion and to make the parameter β to zero. This implies that the pulse shape distor-
tion is almost negligible due to the weak intensity dependence of the conversion efficiency 
typical for the situation far from phase matching. This means that different parts of a propa-
gating pulse are converted to the harmonic wave and back with the same conversion factor, 
i.e. the spatial pulse shape is invariant under these conditions. 
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Second-order nonlinear effects 

Molecular nonlinear optical properties of organic materials 

Molecular materials are of interest because they can show extraordinary high off-resonant 
optical nonlinearities. In order to estimate nonlinear optical properties one has to get informa-
tion about the electronic structure of the materials of interest. Quantum chemical (QC) calcu-
lations allow one to get basic information about the electronic structure on a certain molecu-
lar level. Various QC methods of different degrees of sophistication are used to get more in-
side into the origin of optical nonlinearities.  

Schrödinger equation 

The starting point for description of the electronic structure of the nonlinear chromophores 
is the non-relativistic time-independent Schrödinger equation: 

 Ĥ EΨ = Ψ  [3.1] 

where the Hamiltonian, Ĥ , in atomic units is64 : 

 2 2

,

1 1 1 1 1ˆ
2 2 2 2

A A B
i A

i A i A i j i AA i A A Bi j

Z Z ZH
M

= − ∇ − ∇ − + +
− −−∑ ∑ ∑ ∑∑ ∑∑r R R Rr r

 [3.2] 

where jir ,  and BAR ,  are the position vectors for the electrons and nuclei. The first two 
terms are related to the kinetic energy of the electrons and the nuclei, respectively, the third 
term is the operator for the Coulomb attraction between the electrons and the nuclei, and the 
last two terms express the Coulomb repulsion between pairs of electrons and pairs of nuclei65. 

According to molecular orbital theory, each molecule has a set of molecular orbitals. Each 
molecular orbital wave function ψi may be written as a simple weighted sum of the n con-
stituent atomic orbitals φj: 

 i ij j
j

Cψ φ= ∑  [3.3] 

where ijC  is a matrix of coefficients. 
In the ground state, electrons populate the molecular orbitals with the lowest energy first as 

can be seen in Fig. 28a. Linear optical excitation transfers one electron from the highest oc-
cupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) as 
shown in Fig. 28b. 



 56

 

ψ1

ψ6

ψ7

ψ   (ΗΟΜΟ)4

ψ   ( ΜΟ)5 LU

ψ2

ψ3

ψ8

 a) ψ1

ψ6

ψ7

ψ   (ΗΟΜΟ)4

ψ   ( ΜΟ)5 LU

ψ2

ψ3

ψ8

 b) 

Fig. 28: Ground state and excited state of a molecular system. The arrows represent the spins of elec-
trons. The distance between highest occupied molecular orbital (HOMO) and lowest unoc-
cupied molecular orbital (LUMO) is the single particle optical gap geE . 

Calculation of molecular orbital energies gives information about many properties that can 
be observed in experiment. For instance, according to Koopmans' theorem the first ionization 
energy of a molecule is equal to the energy of the highest occupied molecular orbital (the 
HOMO), and the electron affinity is the negative of the energy of the lowest unoccupied or-
bital (the LUMO). 

Ab-initio calculations 

In ab-initio calculations, the basis sets (linear combination of atomic orbitals) describe the 
molecular orbitals. Widely used orbital types are Slater Type Orbitals (STO) that are based 
on an exp(-αr) spatial dependence, and Gaussian Type Orbitals (GTO) based on an exp(-αr2) 
law. These molecular orbitals are usually associated with shells, such as an s-shell, sp-shell, 
etc. The basis sets determine the only parameters in ab-initio calculations. Usually, ab-initio 
methods use only fundamental physical constants (Planck’s constant, speed of light in vac-
uum etc.) without introducing empirical parameters. 

Semi-empirical calculations 

Two approaches are usually involved in semi-empirical calculations. The first approach in-
cludes the formation of the Hamiltonian matrix using empirical data or data obtained by ab-
initio methods. The second approach neglects some differential overlap terms in two-electron 
integrals. Since the number of two-electron integrals is sufficiently high ( 4N ) such approach 
significantly decreases calculation time. 

The simplest approximation is the complete neglect of differential overlap (CNDO) ex-
pressed by: 

 i j ij i iφ φ δ φ φ=  . [3.4] 

Another approximation is the neglect of diatomic differential overlap (NDDO): 

 A B A B
i j AB i jφ φ δ φ φ=  [3.5] 

where A and B correspond to the numbers of atoms in the molecule. The NDDO approxi-
mation is the basis for the MNDO (Modified Neglect of Differential Overlap), MNDO/d 
(MNDO with d-functions), AM1 (Austin Model 1), and PM3 (Parameterized Model num-
ber 3) methods. In addition to the integrals used in the INDO (Intermediate Neglect of Differ-
ential Overlap) methods, they have an additional class of electron repulsion integrals. This 
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class includes the overlap density between two orbitals centred on the same atom interacting 
with the overlap density between two orbitals also centred on a single (but possibly different) 
atom. That allows the calculation of the effects of electron-electron interactions on different 
atoms66. 

Semi-empirical calculations are much faster than ab-initio methods. Therefore, using semi-
empirical methods on can obtain the molecular parameters used for calculation of micro-
scopic nonlinear properties of relatively big molecules containing tens or hundreds of atoms. 

Two level model 

The molecular second-order hyperpolarisability term β is described in a simple manner by 
the two-state quantum mechanical model, which was introduced by Oudar and Chemla67. 
This model is based on the sum over states approach. From the optimized geometry of the 
ground state the dipole moments for ground and first excited states together with HOMO-
LUMO gap can be calculated. Then the low-frequency hyperpolarisability can be obtained 
according to the following formula35,52: 

 
( ) 2

0 2
ee gg ge

geE
μ μ μ

β
−

=  [3.6] 

where ee ggμ μ−  is the difference between excited and ground state dipole moments, geμ is 
the transition dipole moment and geE  is the (HOMO–LUMO) gap. 

Low-frequency hyperpolarisabilities at optical frequencies are connected by68,69: 

 ( )( )2222

4

0 4 ωωωω
ω

ββω −−
=

egeg

eg  [3.7] 

The commonly used figure of merit for second-order nonlinear properties is the product of 
the dipole moment μ and the hyperpolarsability β because they appear in equations express-
ing χ(2). In Fig. 29 to Fig. 32 several so-called “π-conjugated” chromophores with high μβ are 
shown, which have been investigated in more detail in the present work. 
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Fig. 29: The dye CH0. IUPAC name: (E)-2-(2-(4-(dimethylamino)styryl)-4H-chromen-4-
ylidene)malononitrile 

 



 58

O

O
N

N

N

 

Fig. 30: The dye CH1. IUPAC name: (E)-2-(2-(2-(5-(dimethylamino)furan-2-yl)vinyl)-4H-chromen-
4-ylidene)malononitrile 
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Fig. 31: The dye CH2. IUPAC name: (E)-2-(2-(2-(5-(dimethylamino)thiophen-2-yl)vinyl)-4H-
chromen-4-ylidene)malononitrile 
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Fig. 32: Nonlinear dye Disperse Red 1 (DR1). IUPAC name: 2-(Ethyl-[4-(4-nitro-phenylazo)-
phenyl]-amino)-ethanol 

The name “π-conjugated” means that their structure can be shortly described as D-π-A, 
where D is the electron donor and A is the electron acceptor part, respectively and “-π-“ 
stands for a bridge of delocalized π-electrons. It should be noted that the convention in NLO 
chromophores is to draw the donor on the left of the molecule, differently from the common 
presentation of absorbing dyes and pigments. 
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Fig. 33: Electron acceptor part of used chromophores. 2-(4H-chromen-4-ylidene)malononitrile 
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Fig. 34: Electron donor parts of used chromophores. a) N,N-dimethylaniline b) N,N-dimethylfuran-
2-amine c) N,N-dimethylthiophen-2-amine 

Several chromophore features can be obtained by quantum chemical calculations. Tab. 1 
shows dipole moments, energies of HOMO and LUMO levels and the optical single particle 
gap calculated by means of ab-initio methods using the HF/6-31G basics set. The HOMO 
represents the ground state of the molecule while the LUMO stands in a first approximation 
for the excited state. 

 
Dye code Dipole, D HOMO, eV LUMO, eV Ege, eV 

CH0 11.6 -7.37 0.70 8.07 
CH1 12.1 -7.28 0.65 7.93 
CH2 12.2 -7.17 0.66 7.83 
DR1 10.6 -7.62 0.57 8.19 

Tab. 1: Dipole moments, HOMO, LUMO and optical gaps, calculated in HF/6-31G basis for the set 
of dyes. 

The shape of HOMO and LUMO illustrates delocalization of valence electrons (Fig. 35, 
Fig. 36). In case of the π-conjugated chromophore CH0 charge of the HOMO state is mainly 
localised at the donor part of the molecule while in the LUMO state charge is mainly local-
ised at the acceptor part of the molecule. The double bond bridge between both parts allows 
charge transfer between the donor and acceptor part while going from the ground to the ex-
cited state. This charge transfer is rather typical for chromophores which show large second-
order hyperpolarisability, and can be described in a first approximation by the simple two 
state-model introduced by Oudar and Chemla67. 

 

Fig. 35: Highest Occupied Molecular Orbital (HOMO) of CH0. Calculation performed by ab-initio 
HF/6-31G basic set 
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Fig. 36: Lowest Unoccupied Molecular Orbital (LUMO) of CH0. Calculation performed by ab-initio 
HF/6-31G basic set 

However, nonlinear properties of the assembly of molecules (crystals and microcrystals) 
may be different from those of isolated molecules because the interaction between the chro-
mophores may modify the overall response of the system towards higher optical 
nonlinearity70. 

Matrix and host materials for nonlinear interfaces 

Guest-host systems 

Polymers used in preparation of optical waveguides must have certain properties such as 
high transparency at working wavelength, homogeneity and proper refractive index (high for 
core material and low for the cladding). Moreover, nonlinear applications require the ability 
to embed different types of active molecules into a polymeric matrix. This means that suit-
able matrix polymers should be miscible with nonlinear optical chromophores forming opti-
cally homogeneous layers. In the special case of electro-optical applications, the materials 
must have insulating properties to allow to built-up of an electrical modulating field within 
the active layer. The following number of selected polymers used in the present work fulfils 
these requirements. 

In order to estimate the requirements with respect to nonlinear optical properties of the 
guest-host materials to be used in integrated photonic devices one should remember that a 
typical diode laser can provide about 10 mW of optical power at 800 nm. In order to achieve 
25% conversion in a 1 μm square guide of 3 mm length the nonlinear core material with a 
refractive index n=1.8 should have according to basic calculations a nonlinear coefficient of 
deff>30 pm/V71. Doped polymers can have even higher nonlinearities while the widely used 
inorganic nonlinear crystal lithium niobate has a nonlinear optical coefficient of  
deff=4.52 pm/V. 

Polyphenylquinoxalines (PPQ) 

Polyphenylquinoxalines are interesting matrix materials because they show glass transition 
temperatures above 200°C and can, hence, guarantee long-term orientational stability of 
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chromophores in these materials. They are synthesized from aromatic tetraketones and aro-
matic tetraamines in cresol by polycondensation reaction towards high molecular mass poly-
mers (180,000 to 270,000 g/mol)72-77. 

All byproducts and low-molecular reaction products of synthesis are eliminated by re-
peated precipitation. The molecular structure and purity are verified by NMR spectroscopy, 
chromatography, UV/VIS spectroscopy and IR spectroscopy. Synthesis is carried out in sol-
vents of spectroscopic purity grade. 

Two different polymer structures as shown in Figs. 37 and 38 , namely PPQ2b and PPQ3, 
with inherent viscosities η=1.23 dl/g and η=2.3 dl/g, respectively, were used to form films 
from polymer solutions in 1,1,2,2-tetrachloroethane (5% by weight). The solubility of the 
polymers in different solvents was tested but 1,1,2,2-Tetrachloroethane was found to be the 
best one. The dissolved polymer was stored in solution at room temperature for about 18 
hours, avoiding any kind of stirring or shaking of the solution to prevent the formation of mi-
cro bubbles in the solution. Before film preparation, the polymer solution is filtered through a 
0.2-µm-pore filter. The filtered solution is deposited onto a substrate of BK7 glass (Melles 
Griot) precleaned in 1:3 solution mixture of hydrogenperoxide and sulphuric acid. After rins-
ing and drying the substrates the polymer is deposited on them by spin coating with rotation 
speeds in the range of (700–1200 rpm), producing a uniform thin film of thicknesses in the 
range of (0.8–1.85 µm) depending on the viscosity and spin speed. The thin films formed are 
thermally annealed at 160°C for one hour to remove any residual solvent. Thin films at low 
concentrations are also prepared on quartz substrates for absorption measurements to obtain 
the imaginary part of the refractive index. 
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Fig. 39: Chemical structure of PPQ2b. IUPAC name of single unit: 7,7'-oxybis(2,3-diphenylquin-
oxaline) 
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Fig. 40: Chemical structure of PPQ3. IUPAC name of single unit: dichlorobis(2,3-diphenylquin-
oxalin-6-yl)methane 

Hydrodynamic forces appearing during spin coating induce birefringence in the obtained 
films. Tab. 2 reports the values obtained by prism-coupling measurements It is well known 
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that this effect is observed in polymers with relatively long, stiff polymer units while in case 
of more flexible chains formed from short monomeric units (polycarbonate, PMMA) no sig-
nificant difference in refractive index for TE and TM modes at 1-2 μm thick films is ob-
served. Birefringence due to the orienting influence of the substrate is particularly evident in 
ultra thin films (where the average monomer length is larger than the film thickness). 

 
Laser wavelength 

 Material 
532 nm 

(Green) 
632.8 nm 

(Red) 
980 nm 

(IR) 
1064 nm 

(IR) 
PPQ2b TE 1.778 1.741 1.700 1.697 

PPQ2b TM 1.719 1.688 1.655 1.652 

PPQ3 TE 1.773 1.737 1.697 1.693 

PPQ3 TM 1.731 1.700 1.666 1.662 

Tab. 2: Refractive indices of two types of PPQ measured at different wavelengths by the prism-
coupling method. 

PPQ was identified by O’Brien et.al.78 as being a potential electron transport material for 
use in electroluminescence devices due to the presence of electron deficient nitrogen contain-
ing quinoxaline moieties in the polymer chains. This characteristic rules out the possibility to 
use this material for electro-optical applications. 

Because the refractive index of PPQ is higher than the refractive index of most types of 
glasses this polymer can easily be used as core material for preparation as planar and channel 
waveguides on glass substrates. 

Polycarbonate (PC) 

Polycarbonate, or specifically polycarbonate of bisphenol A, is a clear plastic widely used 
in electric and optics applications. The chemical formula of polycarbonate is shown on Fig. 
41. The refractive index of pure polycarbonate lies in the range between 1.584 - 1.586. Poly-
carbonate is transparent in the range from 400 nm to 1560 nm. 

 

Fig. 41: Structural formula of polycarbonate. 

Polycarbonate is excellent for poling applications, because of its high dielectric strength 
and high volume resistivity. The electrical breakdown strength has values of 15-67 kV/mm 
depending on molar mass and purity. The surface resistivity is 1015 Ω/m2, volume resistivity 
1012-1014 Ω·m. The glass transition temperature is 150°C partially limiting the use of this 
polymer for practical devices. 
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Polymethylmethacrylate (PMMA) 

PMMA is a polymer with optical transparency similar to polycarbonate. However, the 
glass transition temperature Tg=105 °C limits the area of application. Nevertheless, PMMA is 
transparent in the IR up to 2800 nm and in UV >300 nm. The material is very stable against 
UV that makes it promising as a matrix for UV-pumping devices. PMMA is highly transpar-
ent in the visible range and can be used as material for polymeric fibres (POF). 
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Fig. 42: Structural formula of Poly(methyl methacrylate). 

The decomposition of PMMA starts at temperatures above 200°C so that processing above 
these temperatures, e.g. during fibre drawing, is only possible for a short time. 

Polytetrafluoroethylene (PTFE) 

Poly(tetrafluoroethylene) [(CF2)n; PTFE] is one of the polymers, which has been widely 
used for chemical, medical, and electronic applications due to its excellent chemical stability, 
low surface energy, electrical insulation, thermal stability, physiological compatibility and 
further advantageous properties. Due to the steric hindrance among the fluorine atoms, the 
PTFE chain adopts helical conformation under usual conditions (Fig. 43b). 
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Fig. 43: Structural formula (a) and helical conformation (b) of Poly(tetrafluoroethylene). The bond 
between carbon and fluorine is very strong, and the fluorine atoms shield the vulnerable car-
bon chain. This unusual structure gives Teflon its unique properties. In addition to its ex-
treme slipperiness, it is inert to almost every known chemical. 

The chemical and physical properties of PTFE are related to its valence electronic struc-
tures, and its elucidation is important from the viewpoints of both basic science and practical 
applications79. PTFE has excellent dielectric properties. This is especially true at high radio 
frequencies, making it suitable for use as an insulator in cables and connector assemblies and 
as a material for printed circuit boards used at microwave frequencies. Combined with its 
high melting temperature, this makes it the material of choice as a high-performance substi-
tute for the weaker and lower melting point polyethylene that is commonly used in low-cost 
applications. Its extremely high bulk resistivity makes it an ideal material for fabricating long 
life electrets, useful devices that are the electrostatic analogues of magnets. 
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Electrical field poling of thin films 

In order to obtain second-order materials from an amorphous matrix, which contains polar 
nonlinear chromophores, an alignment procedure is necessary. An electrical field can align 
the chromophore molecules in one direction, but intermolecular forces and entropic effects in 
the polymer matrix act against the alignment. 

One of the methods of the alignment consists in heating up the polymer matrix above glass 
transition temperature Tg and holding the sample under the influence of electrical field while 
cooling down. That procedure allows freezing in the dipoles in the oriented position. Such 
thermoelectric treatment generates a so-called “electret”, the electrostatic analogue of a mag-
net. The electrical field applied at temperatures around the glass transition temperature ori-
ents the dipole groups preferably along the direction of the applied field causing a noncentro-
symmetric orientation with C∞V symmetry. Cooling below Tg decreases molecular mobility 
and noncentrosymmetry can be “frozen-in”. The final orientation will never be perfect be-
cause of thermal randomization. 

One possibility to apply an electrical field to polymer films is the use of an electrode, di-
rectly deposited on top of the film. If the lateral dimension of the electrode is large compared 
to the film thickness, then the edge effects are negligible and the electric field can be re-
garded as homogeneous (Fig. 44). 

 

Fig. 44: Electrical field distribution in a film of 1 μm thickness and lateral dimension of 20 μm on 
top of the sample. Gradient fill is proportional to the field strength. Arrows show the field 
direction. 

Problems occur when more fine electrode structures are required, for instance if the poling 
direction must be modulated in space. As can be seen in Fig. 45, in this case there is a transi-
tion zone on the border of poled domains. A periodically poled film with 1 μm thickness and 
a distance between electrodes of 2 μm has a modulation depth of about 50%. As will be 
shown later, that effect reduces the efficiency of periodically poled structures. 
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Fig. 45: Strength of electrical film calculated by means of FEA for the cross-section on the middle of 
the film thickness (the plane between electrodes). The inset picture shows the corresponding 
two-dimensional field distribution map. The bottom electrode is negatively charged. The top 
electrode (2 μm thick stripes on top of the film) is charged positively. The distance between 
electrodes (film thickness) is 0.5 μm. 

More complicated in realization, but more effective for efficiency in SHG is bidirectional 
poling. In that case, the electrical field between next pairs of electrodes must have alternate 
direction as shown in Fig. 46. 
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b) 

Fig. 46: a) Electrical field distribution in a periodically-poled film of 1 μm thickness with electrodes 
of 2 μm width on top. Gradient fill is proportional to field strength. Arrows show field direc-
tion. 
b) y-component of electrical field vector within the film. 

The obtained average orientation depends on the strength of the poling field. Corona poling 
is a further important poling technique. Here the upper electrode is formed by a corona gen-
erated charged layer which covers the surface of the dielectric film. In order to obtain such a 
layer, a high voltage is applied on a sharp needle that ionizes the surrounding gas (air or N2). 
The ions generated in the surrounding gas travel towards the polymer surface and form there 
the charge surface layer, which acts as a virtual electrode. 

In many cases corona poling is more effective than other poling techniques because it al-
lows reaching values of electrical field up to several MV/cm (close to the breakdown field 
strength) high enough to reach an ultimate degree of orientation. Another advantage of the 
method is that local short circuits (as result of impurity) do not influence the field at other 
places of the sample surface since the surface charge shorted only next to the defect site but 
does not discharge the whole surface layer. On the contrary, the electrode poling method is 
indeed sensitive to local defects so that one short circuit leads to the damage of whole struc-
ture. 

Corona poling can be used for in-situ measurements (Fig. 47). The SHG signal depends on 
average dipole orientation and hence on temperature and applied field. Due to this, the poling 
condition can be optimized for maximum efficiency of second-order nonlinearity. 
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Fig. 47: Scheme of an in-situ poling setup. High voltage (5-10 kV) is applied to a sharp needle that 
creates an ionic flow into the direction of the grounded sample. Heating the film to the glass 
transition temperature causes chromophore orientation, which induces SHG. The value of 
the SH signal correlates with the average orientation of dipoles. 

Orientational order 

In Fig. 48 the orientation of a dipolar molecule is shown. Being placed in an oscillating 
electrical field the dipole moment does not remain constant but oscillates together with the 
field. If the field strength is high enough, the dipoles do not follow the harmonic law and can 
be presented as series: 

 ( ) ...32
0 ++++= EEEE γβαμμ  [4.1] 

where 0μ  is the permanent dipole moment, α, β and γ are first(linear), second and third or-
der hyperpolarisabilities. Since the dipole moment is a vector, the coefficients are first (vec-
tor), second, third and fourth-rank tensors, respectively. 

For rod-like molecules with uniaxial symmetry, the principal hyperpolarisability tensor 
component lies along the dipole moment. In that case, the relation between microscopic 
nonlinearity and macroscopic nonlinearity, i.e. between second-order hyperpolarisability β 
and second-order susceptibility χ(2), respectively, depends on the orientational angle θ  be-
tween molecular principle axis and poling direction: 

 )()2( θβχ gfN ⋅⋅⋅∝  [4.2] 

where N is the number density (molecules per unit volume), f is a local field factor, g(θ) is 
a distribution function of average orientation and β is the averaged hyperpolarisability along 
the molecular principal axis. Here one assumes that the hyperpolarisability has one dominat-
ing contribution along the molecular principle axis. 
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Fig. 48: A single dipolar donor(D)-acceptor(A) substituted π-conjugated molecule (D-π-A) in an 
external electric poling field. The poling field is applied along the Z or 3-direction 

Second-order nonlinear properties of poled polymers (symmetry C∞,v) are mainly described 
by two elements of the macroscopic tensor (2)χ : (2) (2)

333 zzzχ χ≡  and (2) (2)
311 zxxχ χ≡ . These two ele-

ments of the macroscopic susceptibility tensor can be expressed through the dominating 
component βzzz of the hyperpolarisability tensor as: 

 θβχχ 3)2()2(
333 cos•••== zzzzzz fN  [4.3] 

and 

 θθβχχ 2)2()2(
311 sincos

2
1

•••== zzzzxx fN  [4.4] 

Here is assumed that the other components of the hyperpolarisability tensor can be ne-
glected. 

On the other hand, we can express the values of (2)χ -tensor elements, which can be 
reached under action of the external electric field using first- and third-order Langevin func-
tions: 1( )L p  and 3( )L p  where the variable p is the ratio between potential energy of the di-
pole in the poling field and kT53,55: 

 Ep
kT
μ

=  [4.5] 

with μ the dipole moment, E the field strength, k is Boltzmann’s constant, and T is the ab-
solute temperature: 

 (2)
3( )zzz zzzNf L pχ β=  [4.6] 

 [ ](2)
1 3

1 ( ) ( )
2zxx zzzNf L p L pχ β= −  [4.7] 

In the general case, the n-th order Langevin function is defined as: 
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The first three Langevin functions and their relationship to the thermally averaged values 
of the Legendre polynomials ( )cosnP θ  are80,81: 

 ( )1 1
1( ) coth cosL p p P
p

θ= − =  [4.9] 

 ( )( )2 22
2 2 1( ) 1 coth 2 cos 1

3
L p p P

p p
θ= + − = +  [4.10] 

 ( ) ( )( )3 3 12 2
6 3 3 1( ) 1 coth 1 2 cos 3 cos

5
L p p P P

p p p
θ θ

⎛ ⎞ ⎛ ⎞
= + − + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 [4.11] 

with, 

 ( )1 cos cosP θ θ=  [4.12] 

 ( ) 2
2

1cos 3cos 1
2

P θ θ= −  [4.13] 

 ( ) ( )2
3

1cos 5cos 3cos
2

P θ θ θ= −  [4.14] 

For small values of the parameter p, the equations [4.12] and [4.14] may be simplified by 
using of the replacement of Langevin functions by ratios: 

 1( )
3
pL p ≈  [4.15] 

 3( )
5
pL p ≈  [4.16] 

Substitution into [4.6] and [4.7] provides the following simplified expressions for macro-
scopic nonlinearities: 

 (2) (2)
333 5zzz zzz

ENF
kT

μχ χ β= =  [4.17] 

 (2) (2)
311 15zxx zzz

ENF
kT

μχ χ β= =  [4.18] 

The averaged value of the second-order Legendre polynomial ( )2 cosP θΦ =  is the order 
parameter of the system53. 

The order parameter can be obtained from the anisotropy of refractive index induced by 
poling: 

 
032 nnn

nn
−+

−
=Φ

⊥||

⊥||  [4.19] 
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where perpendicular (⊥) and parallel (||) directions are defined with respect to the poling 
direction. n0 represents the isotropic refractive index prior to poling. One way to obtain ex-
perimentally this value is using multi-angle ellipsometry, based on an anisotropic model. 

For rod-like conjugated molecules, the transition moment lies parallel to the permanent di-
pole. The random orientation of the transition dipole moments leads to a homogeneous ab-
sorption of the material. However, the orientation of a fraction of dipoles perpendicular to the 
film surface leads to a decrease of absorption for light incident at a direction parallel to the 
surface normal. The order parameter hence, can be calculated by measurement of chromo-
phore absorption before and after poling53: 

 
23 cos

2
A

A
θ

⊥

⊥

Δ
Φ = =  [4.20] 

where A⊥Δ  is the decrease of the normalized absorption A⊥  at normal incidence. Com-
pared with the bulk polymer, the large polarisability of the chromophores induces a general 
increase of refractive index. After poling, a birefringence connected with chromophore orien-
tation occurs. 

However, the determination of the order parameter from dichroism can be problematic be-
cause of effects like sublimation of chromophores (especially in case of guest-host systems) 
or thermal destruction. These effects can lead to incorrect results in determination of the or-
der parameter. 

The local field factor corrects the external optical electric fields for contributions from the 
surrounding molecules. The chromophore is assumed to be embedded within a cavity inside a 
uniformly polarized medium. For a spherical cavity, one obtains for the local field factor53: 

 
2 2
3

nf ∞
∞

+
=  [4.21] 

where n∞  is the nonresonant optical refractive index of the material and equals the square 
root of the dielectric constant at electric field oscillation frequencies higher than rotational 
relaxation resonance frequencies. This is the Lorentz-Lorenz local field correction, which is 
valid at optical frequencies. 

If correlations between chromophore molecule and its immediate neighbourhood are as-
sumed to exist, one needs to include the fields associated with both external fields and 
neighbouring dipoles. In this case, the Onsager local field is appropriate. For a spherical cav-
ity, the Onsager local field correction is53: 
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where εr is the static dielectric constant. Equation [4.21] can be derived from [4.22] assum-
ing 2

∞= nrε . 
According to equation [4.17], the tensor component zzzχ , which can be achieved during the 

poling process, is proportional to the field strength of the poling field. After freezing in the 
orientation, zzzχ keeps its value, during the SHG measurements. 

Thermal relaxation of poled structures 

After the structure is oriented by poling, the natural molecular motion driven by tempera-
ture leads to a randomization of dipole orientation and, hence, to a reduction of the order pa-
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rameter. This decay of nonlinearity of the material is caused by rotational motion of chromo-
phores, and structural relaxation of the polymer matrix. For the polyphenylquinoxaline (PPQ) 
polymer with high glass transition temperature (Tg≈250÷260°C) the time need for appearance 
of a significant loss of order at room temperature is long enough for practical use. Neverthe-
less, due to local mobility and intermolecular relaxation a reduction of orientational order was 
observed already at temperatures ~120°C below Tg (Fig. 49). Here the results for a spin-
coated film of the guest-host system PPQ2b-DR1 (95 wt%-5 wt%) prepared by spin-coating 
on ITO covered glass substrates and oriented by subsequent corona poling. Constant heating 
with a rate of 2°C/min shows some internal changes of the film material at T=120°C, al-
though the glass transition temperature of the matrix material, as determined by Differential 
Scanning Calorimetry (DSC) is 260°C. 
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Fig. 49: In-situ SHG signal of a poled PPQ-DR1 film in dependence on temperature. Heating at con-
stant rate of 2 C°/min. 

The relaxation phenomenon was formulated by Kohlrausch and later by Williams and 
Watts82,83. They found that relaxation could be described by an exponential or a stretched ex-
ponential decay, respectively: 

 ( )[ ]βα tTtx )(exp)( −∼  [4.23] 

where x(t) is the quantity, which characterizes the orientation. The function α(T) is the 
temperature dependent mean relaxation rate or inverse relaxation time α=1/τ. The exponent β 
is a quantity describing the dispersive nature of relaxation. Originally, β was an empirical pa-
rameter, but later some theoretical models for explanation of the stretched exponential relaxa-
tion function have been developed84,85. 

Above the glass transition temperature, the polymer is in a liquid-like equilibrium state. 
The relaxation time has the following form (known as Williams-Landel-Ferry law or Vogel-
Fulcher-Tammann law)86-88 
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∼ ,expτ  [4.24] 

where Tc is a characteristic temperature. Below Tc the system is frozen in. 
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Poling below Tg 

A more complex analysis of results obtained for PPQ2b-DR1 (Tg=260°C) shows such 
complicated behaviour. To monitor the decay of the poled order at a given temperature, the 
film was heated to the temperature above Tg and then cooled down with applied corona field 
to the desired temperature. The measurement of the decay carried out when the film had 
reached the desired temperature and subsequently the electrical field was switched off. The 
decay times reported here refer to the decay of the effective second-order nonlinear optical 
coefficient d, proportional to the square root of the measured SHG intensity using p-polarized 
light at an angle of incidence of 45° to the polymer film surface. 

For a poling temperature below Tg the molecular order decays. In a simplified approach, 
the relaxation process at 20°C can be described by a three-exponential decay with the time 
constants τ1=11 s, τ2=93 s, τ3=2185 s that correspond to different mechanisms of relaxation. 
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Fig. 50: In-situ SHG measurements during orientational relaxation. (a) Molecular orientational re-
laxations take place at low temperature. (b) For example, the SHG graph of relaxation at 
20°C has at least a three-exponential decay. 
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Low temperature depolarization is one of the factors that reduce the nonlinear efficiency of 
a guest-host system. The relaxation theory of guest-host polymer systems is still not com-
pletely developed. However, by proper selection of chromophore-polymer combinations one 
can increase the lifetime of dye orientation at room temperature. 

Self-assembled crystallized systems 

As was mentioned above, nonlinear media must be noncentrosymmetric to support second 
harmonic generation. In most cases, vacuum-deposited films are completely centrosymmetric 
except on surfaces. Moreover, molecules with a centre of symmetry (and therefore with zero 
dipole moment) cannot be ordered by poling methods. 

Squarylium dyes are known as strong absorbing colorants (molar extinction ε>105 dm3 
mol-1 cm-1) possessing an intra-ionic structure. During the deposition process, both types of 
molecules show the ability to form various polymorphs as reported in the literature89-91. Ac-
cording to Ashwell et al.92, there are in the limiting case two different structures formed by 
H-aggregation of the molecules in the form of a “cardpack” arrangement, and J-aggregation 
in the form of a “slipped stack” arrangement with an overlap of the neighbouring donor and 
acceptor groups. The first structure shows a sharp absorption maximum at ca. 520-530 nm, 
whereas the second one results in absorption near 780 nm. 

Recently it was found that vacuum deposited and rubbed PTFE films also support growth 
of oriented dye layers93-98. Aligned PTFE surfaces served as excellent substrates for the 
growth of oriented layers for a number of materials, including inorganic crystals, small mole-
cules, and polymers. In Fig. 51 the chemical structures of four Squarylium dyes are given, 
which have been studied after vacuum deposition on PTFE orientational layers. 
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Fig. 51: Molecular structures of squarylium derivates a) Me-Sq (2,4-bis(4-(dimethylamino)phenyl) 
cyclobutane-1,3-dione), b) Me-SqOH (2,4-bis(4-(dimethylamino)-2-hydroxyphenyl)cyclo-
butane-1,3-dione), c) Eth-Sq (2,4-bis(4-(diethylamino)phenyl)cyclobutane-1,3-dione), d) 
Eth-SqOH (2,4-bis(4-(diethylamino)-2-hydroxyphenyl)cyclobutane-1,3-dione). The corre-
sponding IUPAC names are presented. The SHG was observed only in PTFE films covered 
by Me-SqOH (b). 

The samples have been prepared as ca. 50 nm thin layers on PTFE made from either of 
those substances. Although all four samples were prepared by the same method, only one of 
the four squarylium derivates, namely a Me-SqOH has shown a SHG signal. Since chromo-
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phores are formally point-symmetric, one would expect no SHG signal, except the surface 
signal. However, Me-SqOH shows such a signal that a non-centrosymmetric structure of the 
electronic system must be assumed, which is formed due to the special intermolecular inter-
action after aggregation. 

The four types of squarylium were selected based on results obtained for oriented Lang-
muir-Blodgett (LB) films92,99. 

Sample preparation 

Chromophore films were deposited by thermal evaporation (TE) in vacuum using a tanta-
lum boat. The pressure in the chamber was maintained at 10-3 Pa. The film deposition rate 
was controlled by a quartz crystal microbalance. The growth rate was in the range between 
0.1-1 nm/s. 

With the aim to align aggregates, specially prepared substrates were used. Thin films of 
hydroxyphenyl and aminophenyl squaraine dyes with different end groups were deposited by 
thermal evaporation in vacuum on uniaxially aligned poly-(tetrafluoroethylene) (PTFE) sur-
faces. The PTFE were prepared by vacuum deposition polymerization with subsequent rub-
bing of the surface using a special cloth (see Fig. 52). 

  

Fig. 52: Surface morphology of a PTFE film deposited at a pressure of about 2x10-1 Pa, followed by 
rubbing the freshly prepared layer with a special cloth. 

Vacuum deposition of the squarylium dyes onto the PTFE aligned layer led to the oriented 
growth of nanocrystals on these layers. As can be seen on AFM pictures (Fig. 53), aggregated 
molecules form chains of grains aligned along the direction of rubbing. 
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a) b) 

Fig. 53: Atomic force microscopy (AFM) images of a vacuum deposited Eth-Sq film on a PTFE 
alignment layer. A distinct orientation of microcrystals of Eth-Sq is observed. Scale 4x4 μm 
(a) 1x1 μm (b), scan speed 1 nm/s. 

The microcrystals formed on an oriented PTFE layer have small size in comparison to op-
tical wavelengths in the visible range and exhibit, therefore, good transparency and homoge-
neity. In view of the fact that microcrystals are oriented, anisotropic optical properties of that 
layer are expected. 

Optical measurements 

In-situ measurements of transmission spectra during film growth show different mecha-
nisms of aggregation. A set of transmission spectra each of them measured after fixed deposi-
tion time of 50 seconds (deposition rate was 0.2 nm/sec) is shown in Fig. 54. 

 

Fig. 54: Transmission spectra of Eth-Sq film growth on PTFE recorded in situ during vacuum depo-
sition. Where curves with numbers 1,2,3,4, and 5 measured in the moment when film thick-
ness was 10, 20, 30, 40 and 50 nm, respectively. 
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These spectra demonstrate a change in the aggregation mechanism during deposition. The 
long-wavelength peak grows faster (dash-dot arrow in Fig. 54) than the short-wavelength 
peak (dash arrow in Fig. 54). Assuming that each peak reflects the response of a different 
type of aggregate, thickness-dependent aggregate formation during film growth can be fol-
lowed by this type of absorption spectroscopy. 

a) b)  

Fig. 55: Polarization dependent absorption spectra of two Sq films: (a) Me-SqOH and (b) Eth-SqOH. 
Parallel or perpendicular polarization means orientation of rubbing relatively to the light po-
larization direction (electrical field component). 

Measurements in linearly polarized light show polarization-dependent absorption (Fig. 55). 
The dichroism reaches values in the range 1.3-2 dependend on thickness. That indicates a 
high order of orientation of Sq microcrystals aligned by the underlying rubbed PTFE layer. 

SHG of aligned Sq films 

As was shown above, oriented films of squarylium show anisotropic absorption under po-
larized light. With the aim to investigate nonlinear optical properties of these films, the sec-
ond harmonic generation was measured. As a rule, only noncentrosymmetric structures can 
generate SHG signals. In case of films or crystals with centro-symmetry, the SHG signal can 
be produced by the border to adjacent media where symmetry is broken. 
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Fig. 56: Second harmonic signal from a thin Me-SqOH film (thickness is 27 nm). Horizontal sample 
orientation means that the p-direction is parallel to the rubbing direction. Vertical means that 
the p-direction is orthogonal to the rubbing direction. 

As seen in Fig. 56, the oriented squarylium film shows SHG. Furthermore, this signal de-
pends on polarization of the fundamental beam relatively to the rubbing direction. Maximum 
efficiency of SHG was observed in case when the direction of polarization (electrical field) is 
collinear to the rubbing direction. 

Analysis of SHG signals obtained from a set of films with growing thickness shows that 
the SHG intensity is growing with the thickness (Fig. 57). That is a proof for the bulk origin 
of SHG in the squarylium film. 
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Fig. 57: Thickness-dependent intensity of SHG signal from a Me-SqOH film. 
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Relatively thick Me-SqOH film with 100 nm thickness also demonstrates SH at orthogonal 
orientation. This means that for thick films the orienting influence of the rubbed substrate is 
reduced. 

 

Fig. 58: Scheme of the experiment for registration of SHG from oriented squarylium layers. The po-
larization of the fundamental wave can be smoothly rotated with the help of a half-
wavelength plate (not shown on scheme). The analyzer can be fixed in two positions: along 
and across the rubbing direction. 

Smooth rotation of the polarization of the fundamental wave with fixed position of the ana-
lyzer (along and across the direction of rubbing) as shown in Fig. 58 shows that the value of 
the SHG signal achieves a maximum when both the polarizer and the analyzer are oriented 
along the direction of rubbing (Fig. 59). 

 

Fig. 59: SHG intensity (arbitrary units) of a 100 nm squarylium dye (Me-Sq) layer versus polariza-
tion angle of fundamental wave (zero and 90 degrees correspond p- and s- polarization, re-
spectively). The angle between the analyzer polarization and orienting rubbing direction is 
denoted as across (orthogonal) and along (parallel). The sample is tilted at fixed angle of 45° 
against the fundamental beam. 
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The observed anisotropy confirms the orientational influence of the rubbed PTFE sub-
layer. In addition, the obtained results demonstrate the bulk origin of SHG in the investigated 
squarylium films which can be explained with the help of a detailed analysis of the specific 
type of molecular aggregation. 

Single molecule properties 

The molecular structure and electronic density distribution of single molecules of the 
squarylium-derivates MeSq (Fig. 51a,c) and Me-SqOH (Fig. 51b,d) were investigated theo-
retically. Both semi-empirical (PM3) and ab-initio (HF/6-31G) methods were applied. The 
calculations show that both molecules are centrosymmetric. This means the molecule itself 
cannot generate a second harmonic (excluding interface layers). 

Moreover, molecular orbital energies are practically equivalent (Tab. 3). The occupied lev-
els of Methyl-Sq are all shifted only slightly towards lower energies with respect to those of 
MeSqOH so that the energy gap is almost the same for both molecules. This means, accord-
ing to [3.6], the nonlinearities of Sq derivates are practically equal. 

 
 HOMO-2 

eV 
HOMO-1 

eV 
HOMO 

eV 
LUMO 

eV 
LUMO+1 

eV 
LUMO+1 

eV 
LUMO-HOMO 

eV 
Me Sq -8.91 -8.81 -6.51 0.14 3.77 3.81 6.65
Me SqOH -8.89 -8.78 -6.47 0.16 3.78 3.82 6.63
ΔE 0.02 0.03 0.04 0.02 0.01 0.01 0.02

Tab. 3: Molecular orbital energies calculated by using a Hartree-Fock method with 6-31 basis set. 
Occupied levels of Methyl Sq are slightly shifted to lower energies with respect to MeSqOH 
so that the energy gap is slightly increased. 

Furthermore, calculated dipole moments of both of the molecules have values less than 
0.001 Debye. This means the probable source of nonlinear properties lies in intermolecular 
interactions. As known from the work of Ashwell et al.100,101 the squarylium molecules are 
able to form aggregates with high second-order nonlinear activity. 

Analysis of aggregation 

X-ray structural analysis made by Aschwell et. al.102 for the chromophore 2,4-bis(4-(N,N-
dibutylamino)phenyl)squaraine which is characterized by a similar SHG activity as MeSqOH 
has shown that the chromophore is linear and planar and has an inversion centre. Intermo-
lecular charge transfer between the terminal donor and central acceptor of adjacent molecules 
can, however, give rise to acentric “T-shaped” dimers and higher aggregates100. These are 
supposed to be the “molecular” building blocks for SHG. Since the formation of second-order 
active aggregates involves the central acceptor part of the molecules (-H and –OH groups) 
together with donor end-groups (methyl, ethyl amine) the orienting influence of the substrate 
plays a role by forming the initial microcrystalline layer. 

At basic level mechanisms of formation can be analyzed using a model that includes inter-
action between two molecules. Optimization of geometry of aggregates of two molecules 
shows interaction between the central group (squaraine) of one molecule and the end-group 
(ethyl, methyl amine) of the second molecule (Fig. 60). 
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a) b) 

Fig. 60: Optimized structure of a Me-SqOH (a) and Eth-SqOH (b) aggregate of two molecules. Op-
timization was performed by the AM1 semi-empirical method. 

Although the optimized structures of two-molecule aggregates are not very distinguished, 
the detailed analysis of their molecular properties shows significant differences. As can be 
seen in Tab. 4, the aggregate of two molecules of Me-SqOH has a maximal value of charge 
transferred between molecules. This means the centrosymmetry of the aggregate is broken by 
charge redistribution between molecules. 

 

 Dipole, D Charge transfer, e 

2 Me-Sq 0.1039 0.0017 

2 Me-SqOH 0.2303 0.0472 

2 Eth-Sq 0.2392 0.0104 

2 Eth-SqOH 0.1818 0.000 

Tab. 4: Calculated dipole momentums and intra-molecular charge transfer of two-molecule aggre-
gates calculated by the B3LYP/6-311 ab-initio method. The value of intra-molecular charge 
transfer between two molecules correlates with the efficiency of SHG of oriented films. 

Vacuum deposited Ethyl-SqOH films exhibit strong SHG, comparable with the intensities 
from films of poled guest-host systems of nonlinear dyes with donor-(π-bridge)-acceptor 
structure. Intermolecular charge transfer is responsible for the high second-order nonlineari-
ties of the oriented films. The growth of SHG with film thickness provides evidence that the 
anomalous second-order properties are a characteristic of the film and not of the interface. 
The noncentrosymmetric dimers are probably responsible for fulfilling of the structural re-
quirements for SHG. 

Having the possibility to create homogeneous, nonlinear-active, and mechanically stable 
layers one can utilize several advanced techniques to improve weak nonlinear optical proper-
ties. Since optical nonlinearity is more effective in case of high intensity of light, the localiza-
tion of electromagnetic energy of light in limited space and keeping it as long as possible, 
extends the area of practical exploitation of nonlinear optical effects. These requirements are 
fulfilled by highly transparent optical waveguides. 
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Frequency conversion and phase modulation in poled 
waveguides 

Channel waveguides 

Planar waveguides can be modified by various methods with the aim to optimize light 
propagation. Channel waveguides which confine the light to a desired volume (Fig. 61) are 
basic elements of integral optics. Side elements of cladding can be created by several meth-
ods. We applied excimer laser etching, photolithography and photo bleaching. Photolithogra-
phy was found to be the most precise but in the same time the most expensive method for 
structure preparation under laboratory conditions, since most of photoresists are working only 
with UV radiation. The same situation was found for photobleaching. Only UV light can 
break chemical bonds and bleach chromophores. That requires application of quartz masks. 

Computer controlled excimer UV laser is able to form structures with a resolution in the 
order of 1-10 μm. Depending on the value of laser energy, either etching by photoablation 
(with high power) or bleaching (low power) can be achieved. Etched structures can be cov-
ered by another layer for instance by spin-coating or vacuum deposition techniques. 

n=1.515

n=1.68 n=1.68n=1.7

n=1.0

 

Fig. 61: Three-dimensional scheme of a channel waveguide. The substrate is BK7 glass; the channel 
can be obtained by combination of two different polymers or by bleaching through a mask. 

The mathematical analysis even for more complicated geometries such as that given in 
Fig. 61 provides information about the formation of optical waveguide modes and about their 
propagation behaviour under the given geometrical constraints. 

 
For carrying out this analysis, we assume a wave, which propagates into the z direction and 

which has for the electrical field the form: 

 ( ) ..),(),,,( cceyxtzyx zti += −− βωEE  [5.1] 

Alternatively, in case of the magnetic field we have: 

 ( ) ..),(),,,( cceyxtzyx zti += −− βωHH  [5.2] 

where ω is the angular frequency and β the propagation constant. An eigenvalue equation 
for the electrical field E is derived from the Helmholtz equation: 

 ( ) 0EE =−×∇×∇ 2
0

2βn  [5.3] 

or, for the magnetic field H 
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 ( ) 0HH =−×∇×∇ − 2
0

2 βn  [5.4] 

which is solved for the eigenvalue 2λ β= − . 
The numerical calculations of the propagation of light in channel waveguides can be per-

formed by the finite element method (FEM) or by finite difference method (FDM)103. The 
precision of the solution in FEM depends on the generation of a proper mesh. Mostly used is 
the triangular type of mesh (Fig. 62). 

  

Fig. 62: (a) Triangular mesh used for numerical simulation; (b) Electrical field energy distribution 
(contour lines) of a TE0 mode of a channel waveguide calculated by use of a triangular 
mesh. Due to the waveguide asymmetry (the substrate has a higher refractive index than the 
superstrate), the electrical field penetrates deeper into the substrate. 

The FEA calculations in this work were performed using commercial software COMSOL 
Multiphysics. This program also provides automatic mesh generation and post-processing of 
results of calculations.  

 

Fig. 63: Light propagation within an optical waveguide; k –propagation wector, θ - bouncing angle, 
n1,n2,n3 – refractive indices of substrate, core, and superstrate, respectively. β - effective 
propagation vector. 
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For the situation shown in Fig. 63 the following relations are fulfilled in case of waveguid-
ing: 

 
n1,n3<n2 

neff=n2·cos θ 

k=k0·n2 

β=neff·k0=k·cos θ 

 
Hence, one can obtain the effective modal refractive index from the formula: 

 
0

effn
k
β

=  [5.5] 

In the general case, when effn is a complex number it includes losses as imaginary part. 
As boundary condition along the outside of the cladding, the magnetic field is set to zero. 

Because the amplitude of the evanescence field decays rapidly with cladding thickness, this is 
a valid boundary condition. 

   

Fig. 64: (a) First, (b) second, and (c) ninth-order mode of a waveguide with a square profile (1x1 
μm). The wavelength is 633 nm. The refractive index of the core is ncore=1.54. The cladding 
is air with ncladd=1. The values of neff are 1.49 for (a), 1.42 for (b) and 1.29 for (c). At lower-
order modes the energy (surface plot) is concentrated in the center of the waveguide. 
Higher-order modes have a complicated distribution of the electrical field vector (arrows). 

Fig. 64 shows the electromagnetic field energy distribution (surface plot) and the distribu-
tion of the electrical field vector (arrows) for a fused silica waveguide. The dimension of the 
waveguide (1 μm2) supports multi-mode propagation at a wavelength of 633 nm. As can be 
seen from Fig. 64 (b,c), the higher-order modes (with lower refractive indices) tend to be dis-
tributed over the whole waveguide cross-section. The TE0 mode is concentrated in the centre 
of the waveguide (Fig. 64a). This is an example of light confinement along a channel. 

Modal dispersion 

According to equations [5.5], the effective refractive index (at fixed wavelength) depends 
on waveguide thickness. For a selected mode neff is in between the refractive index of the 
substrate and the refractive index of the core polymer. For instance, a film made of PPQ2b, 
i.e. from a high refractive index polymer on a BK7 glass substrate reveals an effective refrac-
tive index in the range from 1.515 (nBK7) at low thickness up to 1.76 (nPPQ2b) in case of 
thicker films (Fig. 65). 

a) b) c)
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Fig. 65: Modal dispersion of different modes in PPQ2b films for a wavelength of λ = 632 nm. The 
effective refractive index of any mode stays in between the substrate refractive index 
n=1.515 (BK7 glass) and the bulk refractive index of the polymer n=1.76. Varying the film 
thickness allows to obtain any required effective refractive index. 

This dependence defines the modal dispersion and plays an important role for phase 
matching between different modes in waveguides. 

Phase matching conditions in waveguides 

Waveguides can be used for fabrication of efficient nonlinear optical devices since they al-
low establishing high optical field strengths due to confinement. In waveguides prepared 
from poled polymer films the following types of second-order nonlinear interactions (nonlin-
ear modulation of polarisation by electrical field of propagating light) are present: 
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where the y-axis corresponds to TM and the x-axis corresponds to TE polarizations. The z-
axis is the propagation direction (Fig. 66). 



 85

 

Guide
Cladding

Cladding

Y(TE)

Z(TM)

X

Substrate

 

Fig. 66: Schematic presentation of a planar waveguide. Air can be the upper cladding. If the sub-
strate is optically transparent and has a low enough refractive index, it can serve directly as 
lower cladding. 

Although a special preparation (poling) of guiding films makes the material nonlinear ac-
tive, the efficiency of SHG in waveguide configuration is mainly defined by matching be-
tween different propagating waves, e.g. the fundamental (F) and the second harmonic (SH) 
wave. Mismatch (and as a result destructive interference) is a reason for low-intensity of the 
SH (Fig. 68). Phase matching between waves involved in nonlinear interaction is one of the 
requirements for achieving high efficiency of the process. Naturally, dispersion of the optical 
materials leads to phase mismatch. 

Several methods can be used for phase mismatch compensation. The main methods are 
listed together with their typical phase matching condition in Tab. 5: 

 
Phase-matching method Condition for the wave vec-

tor difference 
Birefringent phasematching 0kΔ =  
Periodic quasiphasematching 2 mk π

Δ =
Λ

 

Fibonacci-based quasiperiodic struc-
ture ( )2 1 5;

2
m n

k
D

π τ
τ

+ +
Δ = =  

Tab. 5: The phase matching condition, required for different phase-matching techniques 

1. Birefringent phase matching is realized as special direction of propagation within ani-
sotropic nonlinear media where dispersion is compensated. 

2. Periodic quasi phase matching (QPM) is based on periodically modulated nonlinearity. 
3. Aperiodic QPM is an extended variant of periodic QPM that allows to support more 

than one nonlinear process. 
 

For instance, true phase-matching when both interacting waves are travelling with the same 
speed (Fig. 67) is the optimum but difficult to realise. 
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Fig. 67: Electrical field amplitudes of the fundamental (λ=1064 nm) and of the second harmonic 
(λ=532 nm) versus propagation distance in case of phase matching (Δk=0) for the process of 
SHG. 

As can be seen in comparison to not matched propagation (Fig.68) almost the whole en-
ergy of the fundamental wave can be transformed into the second harmonic. 
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Fig. 68: Electrical field amplitudes of both F- and SH-wave versus propagation distance for 
a uniformly poled film. Oscillations of the SH are due to phase mismatch 
(n1064=1.6, n532=1.601). The assumed initial field strength of the F-wave is 10 
MV/m (2 ns / 1 mJ / 1 mm2), χ(2)=10 pm/V. 

Fig. 69 presents the effective refractive index neff of waveguide modes of different order, 
polarisation and wavelength in dependence on the waveguide thickness.  
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Fig. 69: Modal phase-matching in a PPQ2b plane waveguide. At thickness 989 nm the TM0 mode of 
the fundamental wavelength (λ=1064 nm) matches to the mode TE1 of the second harmonic 
(λ=532 nm). A second phase-matching appears at a the thickness of 2210 nm between TM0 
(1064 nm) and TE2 (532). 

As can be seen, there are certain values of waveguide thickness where different neff -traces 
cross each other. Therefore, different modes attain the same effective refractive index at these 
thickness values. At these values phase matching between different modes is reached based 
on modal dispersion. In order to use this type of phase matching for efficient SHG a precise 
control of thickness of the waveguide is necessary to keep the effective refractive index con-
stant over the whole propagation distance. Fig. 69 presents the thickness dependence of TE 
modes for a wavelength of 1064 nm and for TM modes for the wavelength of 532 nm, and 
their phase matching points. However, phase matching points can also be found for TE or 
TM modes only but of different wavelength. 

Indeed the dependence of effective refractive indices on film thickness (see Fig. 70) deter-
mines the thickness sensitivity of SHG efficiency.  

 

Fig. 70: Effective refractive index of the TE0 mode (λ=1064 nm) for a waveguide prepared from 
PPQ@10wt%DR1 on BK7 glass versus thickness of the waveguide core layer. Changes of 
the thickness of the core lead to changes in the effective refractive index neff. The change of 
Δneff = 10-3 can easily be achieved by a relative thickness change of the order of 1%- 3%. 
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Small deviations in thickness during the deposition of the waveguide lead to a reduction or 
even to a complete vanishing of SHG (Fig. 71). 

 

Fig. 71: Efficiency of SHG in % after a waveguide length of 5 mm versus the difference Δn between 
refractive indices of the fundamental n(λ=1064 nm) and of the SH wave n(λ=532 nm). 

Since the effective refractive index is a function of thickness, the realization of modal 
phase matching in polymer films is a complicated task. Spin-coated films have the tendency 
to change thickness during the post deposition processing, which is necessary to stabilize the 
polymer layer (drying, baking or annealing). 

The phase between the second harmonic wave and the wave at the fundamental frequency 
is intensity-dependent. The phase-matching condition is broken when intensity of fundamen-
tal or second harmonic beam is high even if it is satisfied at low intensity. The process of en-
ergy conversion from the SH wave back to the fundamental has a cyclic behaviour. Model-
ling of this phenomenon using two different nonlinear coefficients (coupling coefficients in 
the equation [2.65]) is given in following Fig. 72: 
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Fig. 72: Field amplitudes of fundamental and SH wave versus propagation distance. Please note the 
cyclic energy exchange between the fundamental and second harmonic wave. The character-
istic of energy depends both on the nonlinear properties of media and on the field strength: 

(a) (2) 10 pm
V

χ =  (b) (2) 50 pm
V

χ =  . The field strength at the waveguide input is assumed 

to be A1(0)=10 MV/m (fundamental) and A2(0)=0 MV/m (SH) in both cases. 

In Fig. 72a, and Fig. 72b can be seen that the energy exchange between fundamental and 
SH wave reverses sign after a certain characteristic distance. This distance depends on the 
second order susceptibility χ(2) and the field strength. Comparison of Fig. 72a with Fig. 72b 
shows that an increase of the χ(2) value from 10 to 50 pm/V leads to a reduction of the charac-
teristic distance for energy exchange from 14 mm to 2 mm at constant fundamental field 
strength at input. 

When the intensity of the fundamental wave achieves a value near to zero the phase 
changes by +90° and the energy conversion changes direction (Fig. 73). 

a) 

b) 

Propagation distance, μm

Propagation distance, μm
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Fig. 73: Phase of the fundamental wave versus propagation distance. It can be seen that energy con-
version changes direction (ω↔2ω). The phase graph corresponds to Fig. 72 (a) 

The effect described above, is important for highly nonlinear systems or for systems where 
the interaction length is large. Modal PM is not a suitable choice in that case and other tech-
niques of phase matching are more efficient. 

Overlap integral 

The waveguide geometry introduces additional requirements for an effective nonlinear in-
teraction. The local interference (destructive or constructive) between ω and 2ω waves does 
not occur only along the propagation distance. The cross-section of the waveguide must also 
be taken into account. As mentioned above, the field distribution over the cross-section of the 
waveguide varies dependent on the mode order as can be seen in Fig. 74. 

 

Fig. 74: Electrical field distribution of the TE0 mode (black line) and TE1 mode (white line) within a 
waveguide. The dark-gray region represents the core of the waveguide. 

Propagation distance, μm 
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Efficient modal dispersion phase matching requires a sophisticated multilayer fabrication 
technique which takes the real field distribution of different waveguide modes into account in 
order to maximise overlap and conversion. This means that at regions of field overlap there 
the second-order susceptibility should have a maximum value and the right sign of nonlinear-
ity to enable maximum conversion efficiency. 

Periodic poling. Quasi phase matching. 

There is a way to overcome the phase matching problems and prevent back-conversion to 
the fundamental frequency after some propagation distance. The waveguide media can be 
prepared in such a way, that the interaction processes within the guiding layer predefine their 
properties. 

During propagation in nonlinear noncentrosymmetric media, the energy of fundamental 
wave is converted into the second harmonic wave in the first quarter of the coherence length. 
Within the second quarter the process flows into the opposite direction. The efficiency of 
conversion is defined by the nonlinear coupling coefficients 1σ  and 2σ . One can change the 
sign of the corresponding coupling coefficient at every quarter of the coherence length so that 
back-conversion is prevented. The sign reversal can be realized by a change of the poling di-
rection. Finally, we will get a periodic structure where adjustable domains are poled into op-
posite directions. Such poling that produces the formation of domains with alternate orienta-
tion is called periodic poling. This structure provides quasi phase matching (QPM) in the ma-
terial. Quasi phase matching ensures that there is positive energy flow from the fundamental 
frequency to the second harmonic frequency even though both frequencies are not phase 
locked to each other. Energy will always flow from the pump to the SH as long as the phase 
between the two optical waves is less than 180 degrees. Beyond 180 degrees, energy flows 
back from the SH to the pump frequency (Fig. 73). 

Fig. 75 shows a computational result of the growth of the SH amplitude during propagation 
in a QPM lattice. It is very similar to true PM shown in Fig. 67. 
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Fig. 75: Electric field amplitude of fundamental and SH wave versus propagation distance along a 
periodically poled waveguide. The poling period is one coherence length. A constant coher-
ence length was assumed. 
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In addition, energy oscillations between interacting waves are present for long propagation 
distance. The domain length can be adjusted to prevent back conversion into the fundamental. 
To design an efficient SHG device one should take into account the intensity-dependence of 
the coherence length [2.109]. This can lead to efficient energy transfer from the fundamental 
to the SH wave as illustrated in Fig. 76. 
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Fig. 76: Electric field amplitude of fundamental and SH wave versus propagation distance along a 
periodically poled structure with fixed domain size or domain size adapted to the field de-
pendence of the coherence length. 

The importance of the quasi phase matching technique can be illustrated by using the dis-
persion curve Fig. 70 of a polymer waveguide. As can be seen, small deviations of film 
thickness (less than 3%) lead to changes in effective refractive index of approximately 
Δn=0.001. That is enough to reduce the efficiency of second harmonic generation (SHG) by 
5% (Fig. 71). Additional losses make this value even smaller. A typical tolerance in the spin-
coating process is in the order of 1% over an area of approximately 1 cm2. That means in a 
best-case scenario one can achieve only several percents of energy conversion. 

In case of QPM, the variation of the domain lengths compensates the influence of material 
dispersion on conversion efficiency. Maximum efficiency of SHG in a QPM structure re-
quires a domain size to be an odd number of coherence lengths. Fig. 78 shows that the best 

efficiency is achieved when the domain size is equal to the coherence length kl k
π

=
Δ

. 

Propagation distance, μm 
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Fig. 77: Electric field amplitude of the SH wave versus propagation distance in different phase-
matching systems: true PM and QPM with different domain size. The numbers (1-7) corre-
spond to domain size expressed in coherence lengths. Most effective QPM is realized by the 
shortest domain size (one coherence length). 

In case of high-dispersive media (as chromophore-doped polymers), this value can be a 
few microns. As stated before the size of electrodes (which is equal to the size of domain 1) 
is only two or three times the film thickness and border effects can strongly interfere. To pre-
vent these non-desired effects a longer domain size (3,7,9.. coherence lengths) can be used. 

Being optimized for a certain nonlinear process (for instance SHG from 1064 nm to 
532 nm) the QPM structure demonstrates that the phase shift is equal to zero and maximum 
conversion efficiency is reached. By varying the pumping wavelength with the help of a 
tuneable laser and registering the phase difference between propagating waves, one can see 
that the phase difference achieves maximum and minimum values near the phase matching 
point (Fig. 78). That means the nonlinear phase delay, which is typically observed in third-
order nonlinear effects, is induced by second-order effect. Since second-order nonlinearities 
have higher efficiency in comparison to third-order nonlinearities, the required intensity can 
have much lower values. That is important when organic materials are used as nonlinear me-
dium. 

Propagation distance, μm 
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Fig. 78: Electrical field amplitudes of fundamental and SH wave, and phase of SH versus fundamen-
tal wavelength for a QPM-structure. Periodical poling was optimized for maximum effi-
ciency of SHG at excitation with 1.064 μm. 

Fig. 78 shows the calculated intensity of the fields at ω and 2ω for a given QPM 
waveguide (fixed domain size and waveguide dimensions) and for the Nd:YAG fundamental 
beam. For a wavelength different from 1.064 μm the SH intensity shows a zero phase shift of 
the fundamental wave at optimized wavelength and achieves minimum and maximum in the 
nearest area. 

Consecutive poling 

The most important advantage of QPM is that more than one nonlinear process can be in-
volved simultaneously. Two second-order nonlinear processes, generation of second har-
monic ( 2ω ω ω= + ) and sum frequency generation (3 2ω ω ω= + ), act like a third-order 
process like third harmonic generation (3ω ω ω ω= + + ). However, the two involved second-
order effects have a higher efficiency and appear at lower laser intensity. The requirement of 
low pumping intensity is important in the particular case of polymer waveguides, where dam-
age threshold is lower than for most of the inorganic optical materials. The simultaneous ac-
tion of two second-order effects, which mimic a third-order process, is called “cascading”. 

Comparing PM in case of SHG realized in nondispesive media, with cascading, the latter 
does not show the highest efficiency of conversion into the third harmonic (Fig. 79). The rea-
son is the concurrence between two simultaneous second-order processes: (ω+ω)↔2ω and 
(ω+2ω)↔3ω. 
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Fig. 79: Electric field amplitudes of fundamental, second and third harmonic vs. propagation dis-
tance for an ideal non-dispersive medium. The achieved conversion value is 81.8% at 
maximum (after ~1.4 mm of propagation). Subsequently, the back conversion into the fun-
damental occurs. The refractive indices of these wavelengths are assumed to be the same: 
n1=n2=n3=1.75 

A first (and rather direct) step to realize multi-process interaction is a sequential combina-
tion of two QPM periodic lattices into one super-lattice. Instead to create one complicated 
structure one can consequently combine two lattices. The combination of two QPM structures 
provides an efficient way to increase the outcome of two nonlinear processes. Their size is 
correlated to the coherence length of processes like second harmonic generation (ω+ω→2ω), 
difference frequency generation (2ω-ω→ω) or sum frequency generation (2ω+ω→3ω) to be 
supported by the respective lattice, and it stays constant over the whole length of the lattice. 
The support of two conversion processes requires two consecutive structures as shown in Fig. 
80. The domain length in each part of the structure must consist of an odd number of the co-
herence length related the corresponding nonlinear process. If we assume a second structure 
which supports sum frequency generation, then the first structure must convert the fundamen-
tal frequency into a mixture of ω and 2ω waves with equivalent amplitudes as shown in Fig. 
81. 

Propagation distance, μm 
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Fig. 80: Schematic presentation of a superlattice consisting of a consecutive arrangement of two dif-
ferent periodically poled structures. The first part is responsible for SHG. In the second part 
the process of SFG takes place. 

A two-step conversion mechanism from the fundamental to the second harmonic followed 
by mixing both waves to the third harmonic (sum frequency generation) is more efficient than 
a pure third-order third harmonic generation (THG) because only second-order nonlinearities 
are involved. According to our calculations, the maximum efficiency of SFG in the second 
step is achieved in case of equal amplitudes of both the second harmonic and fundamental 
after the first conversion. 
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Fig. 81: Optimized QPM structure for an effective conversion via two subsequent second-order 
processes 2 3ω ω ω→ → . The structure contains two parts. The first part (0-1250 µm) 
provides 2ω ω→  conversion (SHG). The second one mixes both signals, i.e. 

2 3ω ω ω+ → . The length of the first part is optimized to have equal amplitudes at input of 
the second part. The effective field amplitudes of the three interacting waves are plotted ver-
sus the propagation distance. 
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Aperiodically poled films. Fibonacci poling. 

Quasiperiodic lattices (one-dimensional quasi-crystals) can be realized by a certain aperi-
odic poling, which supports two NLO processes simultaneously (cascading). The Fibonacci 
superlattice provides one interesting possibility. Such a structure is based on the Fibonacci 
sequence of domains ABAABABAABAAB and it is assumed that the wave vector ratio is 
not a rational number. Each domain A and B contains a pair of antiparallel oriented subdo-
mains (LA = LA1 + LA2, LB = LB1 + LB2). Usually the following relations are valid for the sub-
domains: LA1 = LB1 = L and LA2 = L(1+η); LB2 = L(1-ητ), where ( ) 251+=τ  is the golden 
ratio, and η is a small number (adjusting parameter). Fig. 82 shows an example of a Fibonacci 
lattice optimized for the simultaneous support of two second-order NLO processes (SHG and 
SFG towards THG). 
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Fig. 82: Fibonacci lattice, an example of aperiodic poling. The Fibonacci lattice supports two sec-
ond-order processes simultaneously. 

The structure shown on Fig. 82 can be used as a mask for producing alternative poling. 
White and black stripes correspond to opposite poling directions. As a result, a space modula-
tion of second-order nonlinear susceptibility can be achieved. Aperiodic (Fibonacci-type) 
poling supports the two addressed nonlinear processes along the whole interaction length (as 
shown on Fig. 83). 

Propagation distance, μm 



 98

 

0 .0 5 .0 x 1 0 3 1 .0 x 1 0 4 1 .5 x 1 0 4 2 .0 x 1 0 4 2 .5 x 1 0 4 3 .0 x 1 0 4

0

2

4

6

8

1 0
A

m
pl

itu
de

, M
V

/m

P ro p a g a tio n  d is ta n c e , m k m

 p o lin g
 1 0 6 4  n m
   5 3 2  n m
   3 5 5  n m

 

Fig. 83: Two selected second-order nonlinear processes (SHG, SFG) are simultaneously realized in a 
Fibonacci-type aperiodically poled structure. The electric field amplitudes of fundamental, 
SH and TH waves are plotted vs. propagation distance. The structure has a high efficiency 
of conversion (88.3%). 

Nonlinear properties of PPQ-based planar waveguides 

The high refractive index of polyphenylquinoxaline (PPQ) is a promising property for ap-
plication in nonlinear waveguides and devices based on them. The refractive index contrast 
between core and cladding defines the amount of energy concentrated within the core. Hence 
for nonlinear applications a high refractive index core is preferable (Fig. 84(a,b); Fig. 85). 

 

a) 

Propagation distance, μm 



 99

 

b) 

Fig. 84: Electrical field energy distribution within a plane waveguide (cross-section). a) High con-
trast waveguide, ncore=1.76 (PPQ) ncladding=1,515 (BK7 glass); b) Low contrast waveguide 
ncore=1.61 (Polycarbonate) ncladding=1,515 (BK7 glass); 

A difference of 0.1 in the index contrast leads to a notable increase of energy confinement 
in the core. Since only the core has a high nonlinear optical susceptibility, the efficiency is 
higher in case of a waveguide with high index contrast than in case of low index contrast 
(Fig. 85). 
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Fig. 85: Cross-section in the middle point of the waveguides shown in Fig. 84. The high contrast 
waveguide has its main part of energy concentrated in the core (dashed line), in contradic-
tion to the low index contrast waveguide (solid line). 
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Precise measured dispersion curves allow the calculation of the coherence length of the 
SHG process (Fig. 86). The planar waveguide with a thickness that provides modal phase 
matching effectively converts the light with wavelength 1064 nm to its second harmonic with 
wavelength of 532 nm. 
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Fig. 86: Coherence length vs. film thickness for a PPQ-DR1 spin coated film for the case of modal 
phase matching TM1 (1550)->TM0 (775 nm). A thickness of 1946±25 nm provides a co-
herence length >1 mm. An infinite coherence length (at 1946 nm of film thickness exactly) 
means phase-matching (equivalent propagation speed) between two modes. 

The procedure of poling induces a relatively strong (0.02..0.03) birefringence in the poly-
mer guest-host film. This means that the dispersion curves should be measured with respect 
to the right polarization. The prism-coupling method allows measuring both TE and TM po-
larizations separately. 

NLO devices based on periodic and aperiodic poling 
Different kinds of rectangular waveguides 

All mechanisms of light transformation in specially prepared nonlinear-optical structures 
can be exploited in a wide range of electro-optical and opto-optical devices. The waveguides 
can be prepared from polymer films by different methods (Fig. 87). A ridge waveguide is a 
strip of high refractive index material on top of a low refractive index cladding. The smooth-
ness of air-core and core-cladding is playing a central role in scattering losses. In case of a rib 
waveguide the guiding strip is formed on top of the same material (for instance by plasma 
etching) and the core-cladding interface is not present. One requirement on the smoothness 
vanishes. 

In case of a strip-loaded waveguide the guiding channel is formed by a strip of low refrac-
tive index transparent material deposited on top of a high refractive index film. An advantage 
of this waveguide is that the requirement of a smooth surface at air-film interface is omitted. 

By modification of the refractive index of the polymer film one can create an embedded 
guide. Refractive index can be modified for instance chemically (etching) or optically 
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(bleaching). Since core and cladding have the same surface produced in one-step (for instance 
by spin-coating) the smoother air-film interface can be obtained. 

 

(a) Ridge guide (b) Rib guide 

 

(c) Strip-loaded guide (d) Embedded guide 

Fig. 87: Cross-section through rectangular waveguides formed by different techniques in/on polymer 
layers. The light energy density confined in the waveguide was calculated by finite element 
analysis. The bright areas correspond to high energy density 

The device fabrication starts with a gold-coated fused silica substrate. Gold coating is per-
formed by vacuum thermal deposition with subsequent annealing at 200 °C for 2 hours in 
vacuum. Spin-coating and curing of a 2–3 μm thick lower layer (lower cladding) by exposure 
to UV light for 10 min. As cladding material, EPO-CLAD negative photoresist (MRt GmbH, 
Berlin, Germany) which becomes insoluble after UV illumination was used. As second layer 
of the same material was deposited and illuminated through a contact mask. After exposition 
and following washing the negative image of the fabricated structure is forming the second 
layer. A 2 μm thick layer of PPQ2b-DR1 guest-host polymer was spun on and vacuum dried 
over 2 hours. The viscosity of the solution used for spin coating has to be low enough to fill 
the channels, obtained in the previous step. Then the next cladding layer of the EPO-CLAD 
was deposited. Aluminium poling electrodes were then fabricated by vacuum-deposition di-
rectly on top of the dried cladding by using a mask. 

As can be seen on Fig. 88 the electrical field energy is localized in the space above the 
filled-channel waveguide. This reduces the influence of possible losses by the cladding. In 
addition, the penetration of the electrical field into the lower electrode is minimized. 
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Fig. 88: Cross-section through a filled-channel waveguide. The electrical field energy (bright area)) 
is localized above the channel. Each layer is 2 μm thick. The channel width is also 2 μm. Ar-
rows show the direction of the electrical field. 

In integrated optical devices coupling between different waveguides can be realized by 
placing two channels close to each other so that the evanescent fields overlap. Varying the 
distance between both channels allows adjustment of the required coupling. 

All-optical switching 

An optical switching device allows direct light entering the input into two or more output 
channels. Switching of an optical signal can be realized via the intensity dependence at the 
coupling, which determines the output. More complicated devices (multiplexer, demulti-
plexer) include more than two inputs/outputs. 

An easy way to realize all-optical switching is nonlinear self-action. In a medium with 
third-order nonlinearity, the refractive index and absorption coefficient of a light field present 
in the medium are modified by the strength of the light intensity. Because the field effectively 
acts on itself, this interaction is termed a self-action effect. However, the self-action can also 
be realized via second-order nonlinearities104. As mentioned above, the waveguide configura-
tion can provide high power density over a long propagation distance. That makes it possible 
to accumulate a nonlinear phase shift. 

In a second-order nonlinear waveguide, the phase shift can achieve a high value. However, 
this effect occurs only by using QPM technique. In a QPM waveguide, one can use dispersive 
media. During propagation the energy transfer between ω and 2ω waves occurs. Due to dis-
persion the 2ω wave propagates slower (normal dispersion) and after back-conversion into 
the fundamental a large phase shift occurs. Fig. 89 shows the calculated phase shift in a 5 mm 
long waveguide (χ(2)=10 pm/V). The QPM structures were optimized for a fundamental 
wavelength of 1064 nm. At this wavelength, the phase shift is zero because the QPM struc-
ture is optimized so that no back-conversion happens. Small detuning by wavelength (or by 
domain size of QPM grating) leads to a fast increase of the phase shift. 
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Fig. 89: Calculated nonlinear phase shift of the fundamental at the output of a 5 mm long QPM 
structure as a function of fundamental wavelength. The structure was optimized for maxi-
mum phase shift at a fundamental wavelength of 1064 nm. 

In the present case, the maximum phase shift occurs when the domain size is equal to 1.025 
of the coherence lengths. As shown in Fig. 90 (a), during propagation the fundamental wave 
is partially converted into the SH signal and back. 
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Fig. 90: (a) Field amplitudes of fundamental and SH wave and (b) phase of the fundamental wave 
versus propagation distance in a QPM structure optimized to achieve maximum phase-shift 
of the fundamental. The domain size is 1.025 of the coherence lengths. 

Devices that exploit intensity-modulated phase shift (Mach-Zehnder interferometer) re-
quire a phase shift of π induced in a length of about 1 cm or below. Often a smaller phase 
shift is sufficient as a base for light-modulation devices. 

Optical limiting 

One approach toward optical limiting makes use of materials whose optical transmittance 
decreases at high light levels. Such non-linear transmission function can be created using the 
SHG process. In this case the transmitted pump beam is depleted in a non-linear way due to 
energy conversion to the second harmonic. This device allows a linear transmission of light 
only if the intensity is less than a certain value (Fig. 91). 
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Fig. 91: Electrical field amplitude of fundamental (1064 nm) and SH (532 nm) wave at the output of 
a QPM structure optimized for optical limiting. The effect of SHG in the QPM structure lim-
its the output intensity of the fundamental frequency at high intensities. With the growth of 
the input fundamental signal (abscissa), the output fundamental signal (solid line) deviates 
from a linear law (dotted line) because of energy conversion into the second harmonic 
(dashed line). 

Light modulation 

Light signal controlling by light is a fast way to manage information flows in telecommu-
nication. Change of refractive index of nonlinear material can be used for modulation of the 
outcoming beam. The easiest way is to use an external electrical field for modulation. As 
shown above, the process of SHG in planar waveguides is sensitive to both thickness and re-
fractive index of the core material. The applied electrical field is able to modulate the refrac-
tive index with high frequency so that the SHG signal will also be modulated (Fig. 92). 
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Fig. 92: Electric field amplitude of fundamental (1064 nm) and SH (532 nm) in an inverted 
waveguide as a function of refractive index (at 1064 nm). Small deviations (modulation) of 
refractive index of the waveguide core lead to proportional modulation of the SHG signal at 
the output. 
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For light modulation in integration optics the Mach-Zehnder interferometer (MZI) is 
widely used. We have chosen laser etching as a fast method of patterning. 

a) 

  b) 

Fig. 93: (a) Mach-Zehnder (MZ) interferometer prepared by means of laser etching, (b) photograph 
of light propagation within the MZ interferometer (visible by scattered light). 

The phase delay induced in one of the arms of a MZI leads to interference at the output. 
This interference is observed as light modulation. If an applied AC electrical field is the 
source of phase modulation, then the MZI works as electro-optical modulator. 

The intensity dependence of phase in cascaded QPM can be used to convert the MZI into 
an optical limiter. In this case, when the intensity achieves a certain level the destructive in-
terference switches off the signal on the output. 

5 μm
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Summary 
Organic materials were investigated with respect to their linear and second-order nonlinear 

properties. 
The present work followed three main directions: development of new organic materials 

with high nonlinear optical susceptibility, optimization of the preparation process with the 
aim to obtain films with high second-order nonlinearity and quality required for nonlinear 
applications, and theoretical analysis of wave propagation and wave coupling in optical 
waveguides. 
Polymer films doped with different nonlinear chromophores were selected as a basis for 
building integrated optical elements. Preparation of multi-layer structures by means of vari-
ous methods of film deposition was analyzed in detail. Diverse techniques were discussed 
and compared with respect to their advantages and disadvantages: spin-coating, dip-casting, 
and vacuum deposition. It was found that layers prepared by spin-coating have good homo-
geneity and their thickness can be easily controlled by regulation of the rotation speed of 
spin-coater. That is important for preparation of waveguides. However, the typical thickness 
of spin-coated films ranges between tens of nm and several μm. Films fabricated by dip-
casting are thick in comparison to films prepared by use of spin-coating and can form a good 
buffer layer. The core layer can also be deposited in vacuum. In this work there was shown 
that thin layers created by using vacuum deposition can have second-order nonlinear proper-
ties due to the influence of a specially prepared substrate having the ability to orient depos-
ited squarylium chromophores. 
Since vacuum-deposition can easily be combined with other methods (like spin- or dip- coat-
ing), such layers are promising for use in integrated photonics and for multi-component 
nonlinear waveguides. In this work unexpected second-order nonlinear properties of films 
made of centrosymmetric squarylium dye molecules were found. The reason for the appear-
ance of SHG in these films can be explained in terms of inter-molecular charge exchange be-
tween neighboring molecules, which leads to an asymmetric charge distribution in the π-
electron  system of these chromophore. Due to this break of symmetry SHG can be observed. 
This was, in addition, quantitatively described with the help of quantum chemical calcula-
tions. 
Guiding and buffer layers were analyzed with the help of various contact and non-contact 
techniques. For instance the multi-wavelengths prism coupling is precise, self-made instru-
ment that was build. The multi-wavelength device was necessary for full characterization of 
properties of guiding films. Such a device was constructed using several compact laser 
sources. The whole range (0.5-1.5 μm) was covered with a step of ca. 100 nanometers. This 
set of developed characterization set-ups, together with standard measurement techniques al-
lows a full spectroscopic and morphological characterization of materials and films. In case 
of ultra-thin films, the complex refractive index can be measured by ellipsometry or plasmon 
resonance spectroscopy. Guiding polymer layers are better characterized by the prism-
coupling method. The precision of determination of optical constants by means of the prism 
coupling technique is one to two orders of magnitude higher than obtained by ellipsometry. 
Modal dispersion measured with high precision provides essential information for calculation 
of modal- or quasi-phasematching conditions for various kinds of samples and devices. 
In the present work, several methods of inducing nonlinearity in the prepared waveguides 
were applied. By placing the dye-doped polymer layer within the electrical field with simul-
taneous heating above their glass transition temperature, the dye molecules (dipoles) rotate 
along the field direction. Due to such orientation, the material obtains second-order nonlinear 
optical properties. During this procedure, the optimization of poling is possible. For that rea-
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son, the poling dynamics were investigated in-situ. This means that the SHG signal was 
measured at the same moment when the electrical field was applied and the sample was 
heated above the glass transition temperature. Varying the field strength and temperature, the 
optimal poling conditions were found. Moreover, it was demonstrated that poling is possible 
below the glass transition temperature. That phenomenon can be used for “refreshing” the 
nonlinear properties of poled films but must also taken into account for estimation of the 
long-term orientational stability of the poled polymer layers. During exploitation due to natu-
ral dipole relaxation even at room temperature the orientational order and, hence, nonlinearity 
of doped films decreases. One can apply the electrical field and slightly heat up the film. As 
was shown even heating below glass transition temperature leads to reordering of dipoles 
and, connected to this, to an increase of the SHG signal. 
Some aspects of high-intensity light propagation within strong nonlinear media were ana-
lyzed. After poling, dye-doped films demonstrate high second-order nonlinearity, in some 
cases even higher than inorganic crystals. When a light beam with high intensity propagates 
within a material with high second-order nonlinearity, second harmonic generation occurs. It 
is a well-known fact that the efficiency of conversion into second harmonic depends on light 
intensity. Considering the intensity distribution within the spatial profile of the propagating 
beam, the analysis of conversion into the second harmonic was performed in this work. The 
possibility of pulse shape distortion was found in some cases. 
For development of nonlinear photonic devices, the light propagation within multilayer struc-
tures must be analyzed in detail. Having measured nonlinear properties of deposited multi-
layer structure and taking into account the measured linear properties of each layer, one can 
calculate propagation constants and describe the energy exchange between fundamental and 
second harmonic waves. Finite Elements Analysis was used for numerical computation of 
properties and for characterization of light propagation within different kinds of self-made 
waveguides. In addition, some aspects the electro optics such as distribution of DC or RF 
electrical field in integrated photonic elements were investigated. Often, conductive elec-
trodes, placed near to the core of a waveguide, become a reason for additional losses. In this 
work, several configurations were found that provide a homogeneous electrical field but do 
not contribute to significant losses of propagating waves. 
Together with the optimization of the waveguide geometry, the nonlinear optical properties 
of a single molecule can be optimized with the aim to improve efficiency of a photonic de-
vice. Using ab-initio and semi-empirical methods of quantum chemistry the charge transfer in 
donor-acceptor molecular system was described. Applying the so-called “two-level model”, 
high-order hyperpolarisabilities responsible for molecular nonlinearity were calculated for a 
series of dyes. Additional to widely used organic NLO combinations of dye-polymer systems 
such as DR1-PMMA (Disperse Red 1; Poly-MethylMethAcrylate), the analysis of a series of 
newly synthesized π-conjugated dyes was performed. For practical testing, the dyes were in-
corporated with a certain concentration in a polymer matrix and oriented by corona poling. 
The obtained SHG signal contains information about the nonlinear susceptibility of material. 
A clear correlation between the measured nonlinear susceptibility and calculated molecular 
hyperpolarsability was found. In this way, several new dyes created in the project were inves-
tigated together with several types of polymers some of which (polyphenylquinoxaline deri-
vates) were not used in NLO before. From more than twenty investigated nonlinear dyes, 
only three, which show sufficient nonlinearity and stability, have been tested. The same holds 
for the investigated polymers. Some of them, being suitable for use in the infrared range, 
show too high losses in the visible range. 
Improvement of linear and nonlinear optical properties of dye-doped polymer films can be 
performed by proper selection of appropriate matrix polymers. As was shown in this work, 
the optimal polymer for poled films must be not only transparent but also have high glass 
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transition temperature and low conductivity even being doped with dye molecules. The solu-
bility is also important for formation of smooth layer. Level of losses of material for nonlin-
ear applications must be much lower than for convenient linear optics. In a low-loss medium, 
the light with higher intensity is able to propagate over a longer distance without significant 
reduction of intensity. Of course, organic materials in most cases cannot support propagation 
of very intense light. Even pure PMMA has a damage threshold of about 3 GW/cm2. Intro-
ducing any kind of dopants notably reduces this value. As a rule, dye molecules introduce 
local micro- and nano- inhomogeneities into the polymer matrix. That leads to light energy 
scattering. A detailed analysis of dye-polymer miscibility can help to reduce this effect. 
Quasi-phase matching (QPM) as a well-known method to reach high conversion ratios from 
the fundamental (F) to the SH wave was applied to create periodic poling patterns. So, peri-
odically poled domains of a desired size have been prepared. This size fits exactly to the 
length of periodic energy exchange between the propagating waves. In this work also a new 
technique of poling, Fibonacci-type poling, was investigated in details. This technique was 
used for further optimization of light conversion in organic waveguides. As was described in 
this work, such technique can provide cascaded (i.e. involving two or more nonlinear proc-
esses) interaction over any propagation length. Several devices that utilize the concept are 
proposed. A Fibonacci super lattice can be developed so that energy conversion from the 
fundamental wave into the second harmonic occurs over the whole propagation distance. This 
means, in case of waveguide configuration, the efficiency of conversion continuously grows 
with waveguide length. A small effect induced by external influence (for instance Pockels 
effect) accumulates along propagation distances. Phase modulation with low driving voltage 
(several volts) can be achieved. Such electro-optic phase modulators can be used as a part of 
integrated interferometers for light switching. As an example, a device based on Mach-
Zehnder interferometer, utilizing cascaded nonlinearity is described. 
Finally, new applications of the well-known theory of second-order nonlinear optics were 
demonstrated in the frame of integrated photonics. Together with electro-optical devices, 
some opto-optical devices utilizing a cascading-based nonlinearity were also analyzed using 
finite elements analysis. For instance, frequency conversion into the third harmonic was real-
ized with the help of two second-order nonlinear processes: SHG (ω+ω→2ω) followed by 
SFG (2ω+ω→3ω). A particular case is the generation of the second harmonic followed by 
back-conversion into the fundamental wave. As was shown in this work, due to spectral dis-
persion an intensity-dependent phase shift can be produced. In this case, a scenario similar to 
the third order nonlinear optical Kerr-effect is realized. Since second-order nonlinearities in 
poled dye-doped films can be very high, the efficiency of a cascaded process is higher than 
the direct generation of third harmonics using third-order nonlinearity. 

This work demonstrates how cascaded second-order nonlinear processes can be utilized as 
a base for active elements for integrated photonics. Advantages and disadvantages of applica-
tion of poled polymer films were discussed. Several new device concepts for all-optical 
switching and optical limiting were proposed. In addition, several aspects of electro-optical 
light modulation were discussed. Some problems connected to the presence of electrodes 
were analyzed in detail with the help of finite element analysis. Possible future developments 
using nonlinear phase shifts as a base for new ultrafast opto-optical and electro-optical 
switching devices were discussed. 
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Appendix 

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions that have 
historical importance with also many features that show up important structure, and have di-
rect relevance to some applications (e.g. the equation of the pendulum). They also have use-
ful analogies to the functions of trigonometry, as indicated by the matching notation sn for 
sin. The Jacobi elliptic functions occur more in practical problems than the Weierstrass ellip-
tic functions. They were introduced by Carl Gustav Jakob Jacobi, around 1830. 

The two basic functions are denoted , sn(u,k) and cn(u,k), where k is known as the elliptic 
modulus. They arise from the inversion of the elliptic integral of the first kind, 

 

( ) ∫ −
==

φ
φ

0 22 sin1
,

tk
dtkFu  

 
where 0<k2<1, k is the elliptic modulus, and ( ) ( )uamkuam == ,φ  is the Jacobi amplitude, 

giving 
( ) ( )kuamkuF ,,1 == −φ  

 
From this, it follows that 
 

( )( ) ( )kusnkuam ,,sinsin ==φ  
( )( ) ( )kucnkuam ,,coscos ==φ  
 

These functions are doubly periodic generalizations of the trigonometric functions satisfy-
ing: 

( ) uusn sin0, =  
( ) uucn cos0, =  
( ) uusn tanh1, =  
( ) uucn sech1, =  

 
 
 
 
 

(Weisstein, Eric W. "Jacobi Elliptic Functions." From MathWorld--A Wolfram Web Re-
source. http://mathworld.wolfram.com/JacobiEllipticFunctions.html) 

http://mathworld.wolfram.com/JacobiEllipticFunctions.html
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