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Left–right (L-R) asymmetry in the body plan is determined by
nodal flow in vertebrate embryos. Shinohara et al. (Shinohara
K et al. 2012 Nat. Commun. 3, 622 (doi:10.1038/ncomms1624))
used Dpcd and Rfx3 mutant mouse embryos and showed that
only a few cilia were sufficient to achieve L-R asymmetry.
However, the mechanism underlying the breaking of symmetry
by such weak ciliary flow is unclear. Flow-mediated signals
associated with the L-R asymmetric organogenesis have not
been clarified, and two different hypotheses—vesicle transport
and mechanosensing—are now debated in the research field
of developmental biology. In this study, we developed a
computational model of the node system reported by Shinohara
et al. and examined the feasibilities of the two hypotheses
with a small number of cilia. With the small number of
rotating cilia, flow was induced locally and global strong
flow was not observed in the node. Particles were then
effectively transported only when they were close to the
cilia, and particle transport was strongly dependent on the
ciliary positions. Although the maximum wall shear rate
was also influenced by ciliary position, the mean wall shear
rate at the perinodal wall increased monotonically with
the number of cilia. We also investigated the membrane
tension of immotile cilia, which is relevant to the regulation

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.180601&domain=pdf&date_stamp=2018-08-08
mailto:omori@pfsl.mech.tohoku.ac.jp
https://dx.doi.org/10.6084/m9.figshare.c.4175618
https://dx.doi.org/10.6084/m9.figshare.c.4175618
http://orcid.org/0000-0002-9877-5298
http://orcid.org/0000-0002-3573-8414
http://dx.doi.org/doi:10.1038/ncomms1624


2

rsos.royalsocietypublishing.org
R.Soc.opensci.5:180601

.................................................
of mechanotransduction. The results indicated that tension of about 0.1 µN m−1 was exerted at the
base even when the fluid shear rate was applied at about 0.1 s−1. The area of high tension was
also localized at the upstream side, and negative tension appeared at the downstream side. Such
localization may be useful to sense the flow direction at the periphery, as time-averaged anticlockwise
circulation was induced in the node by rotation of a few cilia. Our numerical results support
the mechanosensing hypothesis, and we expect that our study will stimulate further experimental
investigations of mechanotransduction in the near future.

1. Introduction
The vertebrate body plan has conserved left–right (L-R) asymmetry. For example, in the human body, the
heart and spleen are arranged on the left side, whereas the gallbladder and most of the liver are located
on the right [1]. The L-R asymmetric organogenesis is achieved in early vertebrate embryo development.
At the stage of somitogenesis, several genes are asymmetrically expressed with respect to the L-R axis,
which act as the trigger of L-R asymmetric organogenesis. The process of L-R asymmetric organogenesis
can be divided into four steps [2]: (i) initial breaking of L-R symmetry might be involved in nodal flow
in or near the node, (ii) transfer of L-R biased signals from the node to the lateral plate mesoderm, (iii)
L-R asymmetric expression of signalling molecules, such as Nodal and Lefty2, in the lateral plate, and (iv)
L-R asymmetric morphogenesis of the visceral organs is induced by these signalling molecules. Owing
to recent biological experiments [1–3], it is found that fluid mechanics plays a crucial role in the first stage
of L-R symmetry breaking.

In the early vertebrate embryo, e.g. 7.5 days for mice, there is an embryonic cavity at the ventral
midline surface [3]. This cavity structure, the so-called node, is shaped as a roughly triangular depression
with the apex pointed towards the anterior, and it is 50–100 µm in width and 10–20 µm in depth [1]. The
node is covered by Reichert’s membrane and filled with extraembryonic fluid [4]. The nodal pit surface
is covered by a few hundred monociliated cells [1], and cilia can be observed at the nodal pit as rod-like
protrusions that are 2–5 µm in length and 0.2–0.3 µm in diameter. The nodal cilia are tilted towards the
posterior and produce leftward flow in the node by rotating in the clockwise direction, referred to as
nodal flow. This cilia-driven nodal flow acts as the trigger expression of genes involved in L-R symmetry
breaking, such as Lefty2, Nodal and Pitx2 in the left lateral plate mesoderm [1,2,5]. Thus, nodal flow is
crucial for the determination of L-R asymmetry, and there have been many investigations of the node
system from a mechanical perspective.

To understand their mechanics, there have been a number of studies involving mechanical modelling
of nodal cilia. Brokaw [6] developed a computational model of the nodal cilium using resistive force
theory. In his model, active force, which is responsible for rotation, is regulated by sliding velocity
and successfully simulates clockwise or anticlockwise rotation without the introduction of a symmetry-
breaking mechanism. Hilfinger & Jülicher [7] also developed a nodal cilium model in which bending
and twisting resistance of the cilium were determined as proportional to the curvature and the torsion,
and internal displacement of the cytoskeletal microtubules was expressed in Fourier modes. Chen &
Zhong [8] investigated nodal ciliary rotation with a three-dimensional finite element model. By changing
the distribution function of the driving force, they concluded that, for smooth rotation, sliding velocity
along the microtubule should be faster at the basal region and slower when it is close to the ciliary tip.
Takamatsu et al. [9] performed an analytical investigation of the hydrodynamic interactions between two
rotating cilia. The cilium was modelled as a rigid rod, and fluid viscous resistance was calculated by
the boundary element method. The resulting phase lag between the two cilia was converged to π/2 rad,
which agreed with experimental data. Although the ciliary rotation and synchronization were discussed
intensively in these previous studies, many questions remain regarding flow-mediated signals for L-R
symmetry breaking in the embryo.

For the flow-mediated signal, two expected scenarios were discussed in previous studies. One
common hypothesis involves vesicle transport by leftward nodal flow, which is known as the vesicle
transport hypothesis. Tanaka et al. [10] reported that fibroblast growth factor-induced lipid-enclosed
parcels, so-called nodal vesicular parcels (NVPs), were released from nodal cells. NVPs contain
morphogen proteins, such as sonic hedgehog and retinoic acid, and are expected to release them at the
left periphery of the node. Smith et al. [11] numerically investigated particle transport using a slender
body theory with a semi-infinite Stokeslet. They reported that, by rotating three cilia, particles were
swept to the left and there was no continuous recovery rightward flow. If Reichert’s membrane seals the
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nodal cavity, the counter-recovery rightward flow could be observed [4]. Smith et al. [12] also investigated
geometric effects with regularized Stokeslets. In their paper, the node geometry was idealized to a
triangular shape, but Reichert’s membrane was taken into account. Particle trajectories within the
enclosed domain showed leftward transport with unpredictable rotation near the cilia, whereas they
drifted rightward distant from the cilia. Then, particles traced global circulation within the node and the
left-specific transportation was not shown in the model. Counter-rightward flow in the enclosed domain
was also reported by [13,14]. To the best of our knowledge, none of the theoretical and computational
models can explain the vesicle transport hypothesis.

Mechanosensing with peripheral immotile cilia is an alternative asymmetry model, referred to as the
mechanosensing hypothesis. McGrath et al. [15] reported that peripherally located cilia are immotile, but
have the cation channel polycystin-2. Asymmetric calcium signalling appears at the left side of the node.
They then proposed that L-R asymmetry is established by mechanosensing; centrally located motile cilia
generate nodal flow, whereas cation channel-containing peripheral immotile cilia sense the nodal flow.
Membrane tension is suggested to regulate the mechanosensing channel of the biological membrane [16–
18]. Despite its biological importance, the membrane tension of immotile cilia has not been clarified, as
there have been few fluid mechanical studies regarding mechanotransduction [19]. Thus, flow-induced
membrane tension should be clarified to gain a better understanding of the mechanotransduction of
immotile cilia.

Shinohara et al. [3] investigated the relationship between the number of rotating cilia and L-R marker
gene expression using Dpcd and Rfx3 mutant embryos at the four-to-six somite stage. Embryos with no or
only one motile cilium did not show L-R asymmetric gene expression. However, embryos with between
two and six rotating cilia exhibited normal L-R patterning, although only weak local flow was induced
in the node. These observations suggest the presence of a highly sensitive system to sense very weak
nodal flow. Sampaio et al. [20] also investigated nodal flow in zebrafish embryos with a small number
of motile cilia. They reported that fluid flow with 30 cilia achieved 90% situs solitus, suggesting that
strong fluid flow is not necessary to break L-R symmetry. In the case of wild-type embryos, it is difficult
to evaluate the reliabilities of the two competing hypotheses [21]. In this study, we computationally
reproduced the experiments of Shinohara et al. [3] to determine the quantitative threshold of nodal
flow strength with a small number of cilia. Specifically, we computed the stress field in the node and
associated membrane tension of immotile cilia and also calculated cilia-driven particle transportation
within the node, which simulates the transport of NVPs. We then compared the mechanosensing and
vesicle transport hypotheses and examined their feasibilities.

2. Governing equations and numerical method
In this study, we developed two computational models to investigate the embryonic node system:
(i) modelling of nodal flow by prescribed ciliary motions with actual geometry of the node and (ii)
the fluid–structure interaction model of peripheral immotile cilia to investigate flow-induced membrane
tension. In the following subsections, we briefly explain the governing equations and numerical method
for fluid mechanics and membrane mechanics.

2.1. Fluid mechanics

2.1.1. Cilia-driven flow within the node

It is assumed that the embryonic node is covered by Reichert’s membrane and that the enclosed cavity is
filled with an incompressible Newtonian fluid. When we calculate the cilia-driven flow within the node,
only motile cilia are placed in the node and immotile cilia are omitted. Owing to the small size of the
cilia, the inertia effect of fluid motion can be neglected. Thus, we assume that the fluid flow is governed
by the Stokes equation. We also assume that the motile cilia rotate as a rigid body and that velocity field
v within the node can be determined by the following boundary integral equation:

v(x) = − 1
8πμ

∫
wall

J(x, y) · q(y) dS(y) − 1
8πμ

∫
cilia

J(x, y) · q(y) dS(y), (2.1)

where x is an observation point, μ is the fluid viscosity, J is the Stokeslet and q = σ · n is the stress
vector acting on the surface of the cilia or the nodal wall y (figure 1a). Here σ and n represent the
fluid viscous stress and the outward unit normal vector, respectively. We note that the double-layer term
of the boundary integral equation is deleted due to the boundary condition (no slip on the wall and
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Figure 1. Schematics of the modelling of motile cilia and immotile cilia. (a) A motile cilium is modelled by a rigid rod and the surface
tractionq expresses the fluid traction. vc is the prescribed velocity,σ fluid is the fluid viscous stress tensor, andn is the outward unit vector.
(b) An immotile cilium has a two-dimensional hyperelastic membrane. Stress jump across the membrane is expressed by�q.σ out and
μout are the exterior fluid viscous stress and viscosity, andσ in andμin are those of interior fluid, respectively.

rigid motion of motile cilia), and the equation is simplified to equation (2.1). Details about the boundary
integral equation were presented previously [22].

To solve cilia-driven flow within the node, we model the motile cilium as a rigid rod of length L and
radius ac. To mimic actual nodal cilia, the radius is set as ac/L = 0.05 throughout this study. Prescribed
rotational velocity vc(y, t) is applied to the model cilium, and the material point of the cilium y is updated
by dy/dt = vc(y, t). We set a constant angular velocity for all cilia and the cilia can rotate clockwise around
the rotational axis. As the length of nodal cilia is determined by the somite stage of the embryo, we
assume all cilia have the same length, L, and rotational frequency, f . We also assume a no-slip condition
on the wall; v(y; y ∈ wall) = 0, and equation (2.1) is solved with respect to unknown q using a boundary
element method. The surfaces of the cilia and wall are discretized as triangular elements, and we have
the following linear algebraic equation:

[
0
vc

]
=
[

Jww Jcw

Jwc Jcc

][
qw
qc

]
. (2.2)

The subscripts ‘w’ and ‘c’ indicate the surface of the wall and cilia, respectively. The matrix components
Jww, Jcw, Jwc and Jcc are computed from equation (2.1) using a Gaussian numerical integration scheme.
The linear system of equation (2.2) is solved by lower upper (LU), and graphics processing unit (GPU)
computing. These procedures continue over one period, as we assume periodic motions of the motile
cilia. Once q is given, we can calculate the fluid velocity at any observation point, x, from equation (2.1).

2.1.2. Immotile cilia on an infinite plane wall

In the mechanosensing hypothesis [15], immotile cilia located at the periphery of the node sense the flow
by mechanical load, resulting in a left-sided signal. We also developed another computational model
to simulate fluid–structure interaction of immotile cilia. To calculate flow-induced deformation of an
immotile cilium, it is located on an infinite plane wall and simple shear flow is applied, instead of the
nodal flow of equation (2.1).
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We again assume that the fluid flow is governed by the Stokes equation, and the model of an immotile

cilium is located on an infinite plane wall at x3 = 0. Flow due to the membrane deformation can be
derived as follows:

v(x) = v∞(x) − 1
8πμout

∫
cilia

J′(x, y) · �q(y) dS(y) + 1 − λ

8π

∫
cilia

v(y) · T ′(x, y) · n(y) dS(y), (2.3)

where v∞ is the background flow, λ(= μin/μout) is the viscosity ratio of the inner and outer liquids, T′ is
the half-space Green’s function of the double-layer potential, and �q = [σ out − σ in] · n is the stress jump
across the thin membrane (figure 1b). As we will discuss quasi-steady deformation of immotile cilia, the
viscosity ratio λ is set to unity, and the double-layer term can be neglected. J′ is the semi-infinite Stokeslet
[23], which is given by

J′(x, y) = J(x, y) − J(y, yIM) + 2y2
3JD(x, yIM) − 2y3JSD(x, yIM), (2.4)

where yIM = (y1, y2, −y3) is a mirror image point of y. JD is Green’s function of a source doublet,

JD
ij = (1 − 2δj3)

(
δij

R3 − 3RiRj

R5

)
, (2.5)

JSD is Green’s function of a Stokes doublet,

JSD
ij = (1 − 2δj3)

(
δijR3 − δi3Rj + δj3Ri

R3 − 3RiRjR3

R5

)
, (2.6)

and R = x − yIM. Once the velocity v is given, the membrane material point is updated by the second-
order Runge–Kutta method.

2.2. Membrane mechanics
As ciliary membrane thickness is small compared with its length, the membrane of the immotile cilia
is modelled as a two-dimensional hyperelastic material. As the membrane is supposed to be infinitely
thin, the jump of viscous traction �q is equal to the elastic load on the membrane. It is then related to
the elastic tension tensor τ and the bending resistance qb in the interface by the membrane equilibrium
equation

∇s · τ + qb + �q = 0, (2.7)

where ∇s is the surface gradient operator. The problem is closed with constitutive laws describing the
elastic behaviour of the membrane.

Let Y and y(Y, t) be a material point on the membrane in the reference and deformed states,
respectively. The surface deformation gradient tensor Fs is then given by

dy = Fs · dY. (2.8)

Local deformation of the membrane can be measured by the right Cauchy–Green tensor

C = FT
s · Fs, (2.9)

or by the Green–Lagrange strain tensor
e = 1

2 (C − Is), (2.10)

where Is is the tangential projection operator.
Two invariants of in-plane strain tensor e can be given by

I1 = λ2
1 + λ2

2 − 2 and I2 = λ2
1λ

2
2 − 1 = J2

s − 1, (2.11)

where λ1 and λ2 are the principal stretch ratios. The Jacobian Js = λ1λ2 expresses the ratio of the deformed
surface area to the reference surface area.

Assuming that the membrane is a two-dimensional isotropic hyperelastic material, the elastic stresses
in an infinitely thin membrane are replaced by elastic tensions. The Cauchy tension τ can be related to
an elastic strain energy per unit area ws(I1, I2)

τ = 1
Js

Fs · ∂ws(I1, I2)
∂e

· FT
s . (2.12)

For the constitutive law, we employed the law of Skalak et al. [24]. The Skalak law can express
strain-hardening behaviour and area incompressibility, and is often used for modelling of biological
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Figure 2. Computational model of the node. (a) Overview and (b) cross-section of the node, from the location indicated by the blue line
in (a). Geometry of the node and positions of the cilia are taken from [3]. L and R indicate left and right directions of the embryo, while
A and P are the anterior and posterior sides, respectively.

membranes. The surface strain energy function, ws = wSK, and principal tensions in the membrane, τ1
and τ2 (τ1 ≥ τ2), of the Skalak law are given by

wSK = Gs

4
(I2

1 + 2I1 − 2I2 + CI2
2) (2.13)

and

τ1 = Gsλ1

λ2
(λ2

1 − 1 + Cλ2
2(λ2

1λ
2
2 − 1)) (likewise for τ2), (2.14)

where Gs is the surface shear elastic modulus and C is a dimensionless material coefficient that measures
the resistance to area dilation. The area dilation modulus of the Skalak Law is given by Ks = Gs(1 + 2C).
By setting a large value of C, the area incompressibility of the membrane can be expressed. Usually,
C = 10 is sufficiently high to express the area incompressibility [25]; therefore, we set C = 10 throughout
this study.

The bending resistance of the membrane is also taken into account. The bending energy function of the
lipid bilayer was derived by Zhong-can & Helfrich [26]. Using the first variation of the bending energy,
the bending force density is given by

qb = [Eb(2H + c0)(2H2 − 2K − c0H) + 2Eb�sH]n, (2.15)

where Eb is the bending modulus, H is the local mean curvature, K is the local Gaussian curvature, �s is
the Laplace–Beltrami operator and c0 is the spontaneous curvature of the membrane. The reference state
is assumed to be a flat shape and c0 is set to zero in this study.

To couple fluid motions and membrane deformations, we use a finite element procedure for in-plane
deformations of the membrane. By introducing an elastic membrane load balancing to the in-plane
tension qp = ∇s · τ , a weak form of the equilibrium equation without the bending resistance is given
by [27] ∫

û · qp dS = −
∫

ε̂ : τ dS, (2.16)

where û and ε̂ are the virtual displacement and strain, respectively. The surface S in equation (2.16)
indicates the median surface of the immotile cilia, and equation (2.16) is solved with respect to qp using
a finite element method.

Stress jump across the membrane is determined by �q + qp + qb = 0, and it is coupled to
equation (2.3). For details regarding the boundary element–finite element coupling method, refer to our
previous study [25] or the electronic supplementary material of this paper.

2.3. Geometric model
Shinohara et al. [3] found that two rotating cilia are sufficient to break L-R symmetry, suggesting the
existence of a highly sensitive system in the node to sense very weak nodal flow. To investigate such weak
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boundary wall
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x3

x2x1
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Figure 3. (a) Schematics of tilt angleα and open angleβ . Tilt angle is defined as the angle between the rotational axis and the x3-axis,
whileβ is equivalent to the cone angle. (b–g) Ciliary positions in the nodewith number of cilia= 1–6, which are taken from [3]. All cilia
tilted towards the posterior direction (i.e. minus x2-direction).

Table 1. Typical values of the variables used in this study.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viscosityμ 1 mPa s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

length of cilia L 4µm [1,11]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rotational frequency f 10 Hz [2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shear elastic modulus Gs 4µN m−1 [28]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bending modulus Eb 2 × 10−19 J [29]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tilt angleα π/5 to 7π/30 rad
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

open angleβ π/30 toπ/12 rad
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cilia-driven flow quantitatively, we developed a computational model of nodal flow based on the actual
geometry of the embryonic node of Shinohara et al. [3]. Figure 2 shows one example of the computational
model. In the figure, one cilium rotates in the node, which is shown in green. We traced two-dimensional
nodal shapes of the experimental results of [3], then computationally reconstructed three-dimensional
node geometries. The centreline, s, along with the anterior–posterior axis is defined as a bisector of the
width, W, along the L-R axis. The height, H, is then determined by H(s)/W(s) = k. The constant, k, is
determined as the maximum height corresponding to 20 µm, as the node depth is about 10–20 µm [1].
To mimic the cliff structure of the perinode, we used a hyperbolic tangent function for the side and
base geometry. For Reichert’s membrane, we used an ellipsoidal curve, as shown in figure 2b. The wall
surface is discretized on a mesh of 3468 triangles, while the cilium model is discretized by 144 triangles.
We developed one to six motile cilia models with different node geometries according to Shinohara et al.
[3]. When we simulated the experiments of Shinohara et al., the ciliary positions and phase difference
among the cilia were determined from the experimental movies in [3]. When we compute with random
ciliary positions, the initial phase difference is set randomly. For all simulations, the rotational angular
velocity is fixed to 2π f . The rotational axis of the cilia is tilted towards the posterior side (figure 3a), and
tilt and open angles of each cilium are also determined from the experimental movies with ellipsoidal
fitting of rotational trajectories. To express the direction explicitly, hereafter, the Cartesian base vectors e1,
e2 and e3 correspond to the left, anterior and ventral directions, respectively. In table 1, typical numerical
values are listed.

3. Results and discussion
3.1. Velocity field in the node
We first investigated the flow field within the node. In this section and §§3.2 and 3.4, only motile cilia
were placed in the node. Non-motile cilia at the periphery, discussed in §3.3, were omitted in these
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Figure4. Velocity field of the node in the (x1, x2)-planewith a different number of cilia; (a) number of cilia= 2 and (b) number of cilia=
6. Theheight of the cross-sectionwhere theflow is visualized is set to x3 = L. The contour colour represents the velocitymagnitude,which
is normalized by the frequency f and the length of the cilia L. See the electronic supplementary material for movies [30].

sections. In the Stokes regime, the fluid viscosity simply functions as a multiplier of traction. The fluid
viscosity is then taken to be at unity, without loss of generality. Temporal fluid velocities with number
of cilia = 2 and 6 are shown in figure 4; see also the electronic supplementary material, Movies. Fluid
velocity is normalized by the cilium length L, and the frequency f , which are typically estimated as
L = 4 µm and f = 10 Hz [1]. With fewer motile cilia, global flow was not observed in the cavity, but
relatively large local vortical flow was seen around the rotating cilia. This local flow weakened sharply
with distance and the recirculation area appeared only close to the motile cilia. Shinohara et al. [3]
also mentioned that, when two motile cilia existed, local vortical flow appeared in the area close to
the cilia, but the local flow decreased steeply with distance. In the experiment, they used a particle
image velocimetry analysis to measure the velocity field in the node. By using confocal microscopy,
the observation height was controlled to 5, 10, 15 and 20 µm from the apical cell surface in the node.
They reported that the flow velocity close to the cilia was 1–1.7 µm s−1 with two or three rotating cilia.
If we assume that the length of the cilia L = 4 µm and the rotational frequency f = 10 Hz, flow velocity at
the x3 = 5 µm plane was about 2 µm s−1 at the maximum. Although it is hard to say that the observation
height is exactly the same between the simulation and the experiment, our numerical result showed
quantitative agreement with the experiment.

We also calculated cilia-driven circulation in the node. For simplicity, we focus on the x2-component
of the circulation, as the rotational axis is parallel to the x2-axis. Global average circulation in the x2-axis
is calculated as

Γ̄2 = 1
TLwall

∫T

0

∫
wall

ω2 dS dt, (3.1)

where T is the period of ciliary rotation (=1/f ), Lwall (= max x2 − min x2) is the length of the node, S is the
surface of the wall and ω2 is the x2-component of the vorticity. Then, the plus Γ̄2 indicates anticlockwise
circulation viewing from the rear, while the minus indicates clockwise circulation. The results are shown
in figure 5. To estimate the global average of circulation, we re-set the ciliary position and initial phase
randomly, and each plot was averaged by n = 36 (6 different geometries × 6 different positions). The
value increased monotonically with the number of rotating cilia, and it never had the negative sign,
suggesting that weak anticlockwise circulation occurred in the node. Posterior-tilted rotating cilia cause
leftward flow near the cilia, while counter-recovery flow should be generated distant from the cilia in
the enclosed domain. Thus, time-averaged anticlockwise circulation occurred even when only local flow
was induced by a few rotating cilia.

Shinohara et al. [3] also investigated the relationship between the positions of rotating cilia and L-R
gene expression in Dpcd mutant embryos. Although local flow is strongly dependent on the ciliary
position, normal L-R asymmetric expression of Cerl2 and Pitx2 was maintained regardless of position
when two or more rotating cilia were present (Cerl2 and Pitx2 are expressed by the nodal flow, and can
be seen as the genetic marker linked with L-R asymmetry). This suggested that flow-mediated signals
for L-R asymmetry should be little influenced by the local flow. Flow-mediated signals may be sensed
by perinodal cells [1]; as such, we investigated the mechanical fluid stress acting on perinodal cells.
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indicates the wall shear rate γ̇w/f . (b) Spatial time-averaged wall shear rate γ̇w with various θ . Error bars represent the time change of
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3.2. Wall shear rate induced by nodal flow
The nodal flow generated by a small number of rotating cilia is localized and is strongly dependent on
the ciliary position, although L-R asymmetry occurred regardless of the ciliary position. One possible
candidate for the flow-mediated signal is mechanical stress on the perinodal cells. In this section, we
discuss the cilia-induced stress field in the node.

To estimate the fluid viscous stress in the node, we first calculate the rate of strain,

Eij(x) = 1
2

(
∂vi

∂xj
+ ∂vj

∂xi

)
= − 1

8πμ

∫ (
− δijrk

r3 + 3
rirjrk

r5

)
qk(y) dS(y), (3.2)

where r = ‖r‖, r = y − x and surface S includes both the wall and the cilia. The strength of the mechanical
stress acting on the perinodal wall is then estimated by wall shear rate, which is given by

γ̇w(x; x ∈ perinodal wall) ≡ 2
√

EijEji. (3.3)
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The region of the perinodal wall is determined by the normal vector, |n · e3| ≤
√

3/2. The temporal wall
shear rate acting on the perinodal wall is shown in figure 6a. Similar to the flow field, the region of
high wall shear rate is local and the global wall shear rate is still weak when the number of cilia = 1. To
investigate the distributions of the wall shear rate in detail, we introduced the orientation angle, θ , in the
(x1, x2)-plane, as shown in figure 6a. The angle θ was discretized to 24 subdomains, and the wall shear
rate was averaged in time and space in each subdomain; the resulting distribution is shown in figure 6b.
The wall shear rate reached the maximum near the cilium, and the value decreased rapidly in θ -space.

We next investigated the spatio-temporal maximum wall shear rate with different numbers of motile
cilia. The maximum wall shear rate was dependent on the distance between the cilia and the peripheral
wall regardless of how many cilia are present. In figure 7, the maximum wall shear rate as a function
of the minimum distance is shown. The distance rmin is defined as the instantaneous minimum distance
between the peripheral wall, which was defined in equation (3.3), and the ciliary surface. As shown
in figure 7, the value tended to decrease with distance, because the cilia-driven flow is local and the
associated wall shear rate is also locally enhanced. These results suggest that the maximum value of wall
shear stress is not adequate as the criterion of L-R symmetry breaking as it is influenced by the ciliary
position.

Although the maximum wall shear rate depends on the positions of the rotating cilia, the mean value
showed a different tendency. Distributions of time-averaged wall shear rate with the number of cilia = 1
and 5 are shown in figure 8a. In this case, the maximum value for the number of cilia = 1 was larger
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Figure 9. Membrane principal tension of non-motile cilia in shear flow. The shear stress is normalized by capillary number Ca=
μγ̇ L/Gs, whereμ is the fluid viscosity, γ̇ is the shear rate, L is the length of the cilium and Gs is the shear modulus. These are assumed
asμ = 1 mPa s, L= 4µm, and Gs = 4µN m−1.

than that for the number of cilia = 5. However, the average became larger with an increasing number
of rotating cilia. We analysed the time–space-averaged wall shear rate with different numbers of cilia;
the results are shown in figure 8b, indicated as green dots. The ciliary positions are determined from
the experimental results of Shinohara et al. [3], which are equivalent to figure 3. The value tended to
increase with the number of cilia, suggesting that the mean wall shear rate could be a candidate for the
flow-mediated signal. We also see that the value became slightly larger when the numbers of cilia = 3
and 4. This is because the nodal domains were comparably small in these cases, as shown in figure 3. To
increase generality, we re-set the ciliary position and initial phase randomly with various nodal domains,
and estimated statistical averaged wall shear rate. The results are shown in figure 8b, depicted by blue
squares, and each plot is averaged by n = 36 similar to figure 5. The average wall shear rate increased
monotonically with the increasing number of cilia. This result suggests that the average wall shear
stress is robust for the number of cilia and is little influenced by the ciliary position. Thus, mechanical
stress fulfils the necessary conditions for the flow-mediated signal, and may be an adequate criterion.
However, the estimated average wall shear rate is very small, with a value of about γ̇w/f = O(10−2), and
questions remain regarding how perinodal cells can sense such weak fluid shear stress. To clarify the
mechanotransduction of perinodal immotile cells, we next investigated flow-induced membrane tension.

3.3. Membrane tension of immotile cilia
In the mechanosensing hypothesis [15], the perinodal immotile cilia sense the flow, resulting in a left-
sided signal. The membrane tension plays an important role in mechanotransduction of biological cells.
For example, the mechanosensitive calcium ion channels of Escherichia coli are activated by isotropic
membrane tension [18]. In this section, we investigate the flow-induced membrane tension acting on the
immotile cilia. We note that the immotile cilium is located on an infinite plane wall instead of the node
with motile cilia. This is because the deformation of the immotile cilium is mainly induced by the local
flow around the cilium, and the far-field fluid mechanics do not affect the results considerably.

To compute flow-induced membrane deformation, we introduce the capillary number, which
represents the ratio of fluid viscous force and elasticity of the membrane, as determined by

Ca = μγ̇ L
Gs

, (3.4)

where Gs is the shear elastic modulus, L is the length of the cilia, μ is the fluid viscosity and γ̇ is the shear
rate. In the previous section, the average wall shear rate was given by γ̇w/f = O(10−2). In particular, it
reached a value of about γ̇w/f = 0.01 with two cilia rotating in the node, which should be sufficient to
break L-R symmetry if mechanical stress acted as a flow-mediated signal. Assuming a frequency of 10 Hz,
the wall shear rate was estimated as γ̇w = 0.1 s−1. As the membrane shear elastic modulus of the cilia is
unclear, we assumed that it was the same as that of a red blood cell membrane, Gs = 4 × 10−6 N m−1 [28].
Using the fluid viscosity, μ = 1.0 × 10−3 Pa s and L = 4 × 10−6 m, the capillary number can be estimated
as Ca = 10−4.

Deformation of the immotile cilia in shear flow with Ca = 10−4 is shown in figure 9a. Although the
bending modulus of the ciliary membrane has not been clarified, we assumed that the bending modulus
of the membrane equals that of a red blood cell membrane, which was estimated as Eb = 2 × 10−19 J [29].
Assuming that the length L = 4 × 10−6 m and the shear modulus Gs = 4 × 10−6 N m−1, the normalized
bending modulus is given by Eb/L2Gs = 3 × 10−3. The surface was discretized by 2160 triangle meshes.
In order to calculate the membrane tension of immotile cilia, we used a semi-infinite Stokeslet. At the
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cellular scale, the flow around the boundary wall can be seen as linearized flow, and shear flow is useful
to discuss the membrane tension. In addition, in our simulations, the typical time required for steady
deformation was 10 times smaller than that for the rotational frequency. Therefore, the deformation could
be assumed to be quasi-steady at any instant, though the deformation oscillates periodically. Because of
this, we decided to use steady shear flow for the discussion. The cilia were slightly deformed in the flow
direction, but did not show large deformation due to the weak flow. Although the bending deformation
was relatively small, the membrane tension became larger at the base. As the boundary condition at
the base was the fixed end, the load acting on the ciliary surface was integrated at the base to ensure
the force and moment balanced. Accordingly, the tension could be enhanced at the base even with the
small deformation limit, suggesting that membrane tension can be efficiently sensed by immotile cilia.
The area of high tension was localized at the upstream side, whereas negative tension was observed at
the downstream side of the bending deformation. The elongational tension would be important to open
mechanosensitive channels in the ciliary membrane, and such localization may be helpful to sense the
flow direction. As the problem setting of figure 9 is a single cilium placed on a flat wall under shear
flow, a similar system can be found in some biological systems. For example, a primary cilium on an
endothelial cell senses a fluid flow, and the mechanism may be explained by the mechanosensing as
discussed in this study. Thus, the findings on membrane tension can be applied to other similar systems.

In the mechanosensing hypothesis, it is difficult to explain how immotile cilia sense the left or right.
Anticlockwise circulation was generated in the node, and immotile cilia located at the left-peripheral wall
tended to bend towards the plus x3-direction, while the right-peripheral cilia bent towards the minus
x3-direction. As membrane tension was enhanced only at the upstream side, this difference may induce
L-R asymmetry even when the magnitude of the wall shear stress is nearly isotropic in the node. If
cytoskeletal proteins in the basal foot, such as microtubules and actin, composed anisotropic networks,
similar to branchial cilia, bending rigidity of immotile cilia would be anisotropic and unidirectional
circulation may also help to form L-R asymmetry.

We also investigated large deformation of the immotile cilia by increasing the capillary number. The
cilium showed large deformation and the membrane tension also increased with the capillary number.
Similar to the small deformation limit, areas of high tension were localized at the upstream side, and
negative tension occurred at the opposite side (figure 9b,c). The maximum tensions with various capillary
numbers are shown in figure 10. The maximum tension was proportional to the capillary number for
Ca ≤ 10−3. In the previous experiment [3], two rotating cilia were sufficient to generate L-R asymmetry.
When Ca = 10−4, which should be equivalent to the flow strength generated by two rotating cilia, the
maximum tension became τ1/Gs = 0.02, as shown in the figure. Substituting Gs = 4 × 10−6 N m−1, it can
be estimated as τ1 = 0.08 µN m−1. If mechanosensitive channels do play a role in flow-mediated L-R
asymmetry, they may sense the tension at 0.1 µN m−1. This estimate would be influenced by the fluid
viscosity, but not by Gs. Further experimental studies of mechanosensitive channels are needed to gain a
better understanding of mechanotransduction of immotile cilia.

Our numerical results support the mechanosensing hypothesis; however, the vesicle transport model
should also be discussed. In the following section, we discuss cilia-driven particle transport.



13

rsos.royalsocietypublishing.org
R.Soc.opensci.5:180601

.................................................

102

(b)(a)

R L

x2

x1

10 a = 1 µm

a = 100 nm

a = 10 nm

1Pe

10–1

10–2
1 2 3

no. cilia
4 5 6

Figure 11. Cilia-driven particle transport in the node. (a) Initially, 100 particles are randomly distributed within the node. (b) Péclet
number with different radii of the particle.

1.0
right
left

a = 1 µm

0.5

pr
ob

ab
ili

ty

0
1 2 3

no. cilia
4 5 6

Figure 12. Ratio of left- and right-transported particles.

3.4. Cilia-driven particle transport
The other important model is morphogen protein transport in the node. In this section, we investigate
the probability density of left-transported particles with different numbers of cilia.

Before the particle trace calculation, we first estimated the Péclet number of particles of different
radius, a. We assumed a temperature of 310 K and a fluid viscosity of 10−3 Pa s. When the radius of
NVPs varied from 10 nm to 1 µm, the diffusion constant of the particles was estimated as 2.27 × 10−14 ≤
D [m2 s−1] ≤ 2.27 × 10−12 using the Stokes–Einstein equation. The Péclet number is defined as Pe =
Γ̄2�/D, where � = 3

√
V and V is the volume of the fluid domain. The estimated Péclet number is shown in

figure 11b. In the case of a = 10 nm, the Péclet number is below 1 and the transport is diffusion dominant,
whereas it is dominated by advection effects when a = 1 µm.

One hundred neutrally buoyant particles were initially distributed randomly within the node, as
shown in figure 11a. Particle motion was then determined by the advection velocity calculated using
equation (2.1) and diffusion due to Brownian motion. In the same manner as described previously [31],
the positions of particles, xp, were updated by

xp(t + �t) = xp(t) +
∫ t+�t

t
vp(t′) dt′ + rB(�t), (3.5)

where rB is the displacement due to Brownian motion, the variance of which is determined by the Péclet
number. To discuss flow-dominant particle transportation, we used a Pe of a = 1 µm, throughout this
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study. When the distance, d, between the perinodal wall and the particle became smaller than d/L = 0.25,
we assumed that the particle had reached the wall and tracking was stopped. If the particles reached the
non-perinodal wall, they bounced back and the calculation was continued. The procedure was continued
until all particles arrived at the perinodal wall or 9000 periods of the rotation.

The probability densities of peripherally transported particles are shown in figure 12. The results are
summarized for three initial conditions. The probability was calculated as Pleft = (particles reaching the
left perinode)/(total number of particles reaching the perinode), and similarly for the right perinode. Left
and right were determined by the sign of the x1-component of the final position. Particles were effectively
advected when close to the motile cilia; however, the advection effect became significantly smaller when
particles were far from the cilia (see the electronic supplementary material, Movies). Transportation was
therefore dependent on the ciliary position, and the left transport probability was not enhanced by the
number of cilia. To determine the effect of ciliary position, we compared the cilia aligned on the left and
right (figure 13a). The probability was significantly altered by changing the ciliary position, as shown in
figure 13b, despite the same number of rotating cilia in the node. According to the experimental results
of Shinohara et al. [3], L-R asymmetric gene expression occurred regardless of ciliary position when
there were more than two motile cilia, while the asymmetric gene expression was lost with one motile
cilium regardless of the position of the cilium. Then, flow-mediated signals for the L-R asymmetry should
be independent of the ciliary position. Ciliary position dependency was not adequate as a source of
flow-mediated signals, and the vesicle transport hypothesis conflicted with the experimental results of
Shinohara et al. [3]. In addition, anticlockwise circulation was generated in the enclosed domain even
with a larger number of rotating cilia; thus, it may be difficult to achieve left-specific transportation of
neutrally buoyant particles due to recovery rightward flow in the domain. When particles are heavier or
lighter than the fluid, the transportation should be significantly influenced by the posture (prone/spine)
of the embryo. Therefore, the vesicle transport hypothesis is again falsified.

4. Conclusion
In this study, we computationally reproduced the experiments of Shinohara et al. [3], and computed
the cilia-driven particle transportation and stress field within the node, as well as associated membrane
tension. Then, we compared the vesicle transport and mechanosensing hypotheses and discussed their
feasibilities.

With a small number of cilia rotating in the node, the flow field was localized and strong global flow
was not observed. Owing to this local flow, the particle transport was dependent on the ciliary position;
therefore, the vesicle transport hypothesis conflicted with the experimental results of Shinohara et al. [3].
The maximum wall shear rate also showed strong ciliary position dependency, but the mean wall shear
rate was little influenced by ciliary position and it was robust for the number of cilia. We also investigated
the flow-induced membrane tension to determine the mechanotransduction of immotile cilia. To ensure
the force and moment balance between the membrane tension and fluid stress, the membrane tension
was increased at the base. The immotile cilia probably acted as a sensor of fluid stress even when
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the shear flow was weak. The high membrane tension area was localized at the upstream side of the
base and the negative tension appeared at the opposite side. This localization of membrane tension is
likely to be helpful in sensing the flow direction and producing L-R asymmetry, because time-averaged
anticlockwise circulation was induced in the node.

Our numerical results support the mechanosensing hypothesis, but we still have questions about
the mechanotransduction of immotile cilia, for example it is still unclear how immotile cilia sense
the flow direction. We expect that our study will stimulate further experimental investigations of
mechanotransduction in the near future.
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