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Abstract

A central insight from psychological studies on human eye movements is that eye movement

patterns are highly individually characteristic. They can, therefore, be used as a biometric

feature, that is, subjects can be identified based on their eye movements. This thesis in-

troduces new machine learning methods to identify subjects based on their eye movements

while viewing arbitrary content. The thesis focuses on probabilistic modeling of the prob-

lem, which has yielded the best results in the most recent literature. The thesis studies the

problem in three phases by proposing a purely probabilistic, probabilistic deep learning,

and probabilistic deep metric learning approach.

In the first phase, the thesis studies models that rely on psychological concepts about

eye movements. Recent literature illustrates that individual-specific distributions of gaze

patterns can be used to accurately identify individuals. In these studies, models were

based on a simple parametric family of distributions. Such simple parametric models can

be robustly estimated from sparse data, but have limited flexibility to capture the dif-

ferences between individuals. Therefore, this thesis proposes a semiparametric model of

gaze patterns that is flexible yet robust for individual identification. These patterns can

be understood as domain knowledge derived from psychological literature. Fixations and

saccades are examples of simple gaze patterns. The proposed semiparametric densities are

drawn under a Gaussian process prior centered at a simple parametric distribution. Thus,

the model will stay close to the parametric class of densities if little data is available, but

it can also deviate from this class if enough data is available, increasing the flexibility of

the model. The proposed method is evaluated on a large-scale dataset, showing significant

improvements over the state-of-the-art.

Later, the thesis replaces the model based on gaze patterns derived from psychological

concepts with a deep neural network that can learn more informative and complex patterns

from raw eye movement data. As previous work has shown that the distribution of these

patterns across a sequence is informative, a novel statistical aggregation layer called the

quantile layer is introduced. It explicitly fits the distribution of deep patterns learned

directly from the raw eye movement data. The proposed deep learning approach is end-to-

end learnable, such that the deep model learns to extract informative, short local patterns

while the quantile layer learns to approximate the distributions of these patterns. Quantile

layers are a generic approach that can converge to standard pooling layers or have a more

detailed description of the features being pooled, depending on the problem. The proposed

model is evaluated in a large-scale study using the eye movements of subjects viewing

arbitrary visual input. The model improves upon the standard pooling layers and other

statistical aggregation layers proposed in the literature. It also improves upon the state-of-

the-art eye movement biometrics by a wide margin.

Finally, for the model to identify any subject — not just the set of subjects it is trained

on — a metric learning approach is developed. Metric learning learns a distance function

over instances. The metric learning model maps the instances into a metric space, where

sequences of the same individual are close, and sequences of different individuals are further

apart. This thesis introduces a deep metric learning approach with distributional embed-

dings. The approach represents sequences as a set of continuous distributions in a metric

space; to achieve this, a new loss function based on Wasserstein distances is introduced.

The proposed method is evaluated on multiple domains besides eye movement biometrics.

This approach outperforms the state of the art in deep metric learning in several domains

while also outperforming the state of the art in eye movement biometrics.
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Chapter 1

Introduction

In the information age, human identification is central to accessing information. Due
to the increased availability of cheap hardware and sensors, new methods of identifi-
cation arise. Biometric studies have gained attraction as a result, enabling authen-
tication without the need to possess an identification card or memorize a password;
thus, it cannot be misplaced, lost, or forgotten. Biometrics are measures related to
human characteristics, either physical or behavioral. This thesis is concerned with
behavioral biometrics embodied in eye movements. In our daily life, we are actively
scanning the world around us through our eye movements at conscious and uncon-
scious levels. Eye movements are studied widely in psychology, cognitive science, and
applied research fields, which reveal that eye movements are strongly correlated with
cognitive and perceptive processes [Rayner 98, Duchowski 02]. Several psychological
studies have demonstrated that human eye movements are individually characteris-
tic during various tasks [Afflerbach 15, Dixon 51, Huey 08, Poynter 13, Rayner 07].
These individual differences in eye movements qualify eye movements to act as
a biometric measure. Eye movements can be used for unobtrusive identification
[Landwehr 14, Kinnunen 10]. The advantage of unobtrusive identification is in elim-
inating the need for challenge protocols or extra effort by users for authentication,
enabling systems to continuously identify or verify users. This thesis uses machine
learning for identifying humans from their eye movements while viewing arbitrary
content.

The psychological literature has studied typical short, local patterns that arise
in human eye movements. From the point of view of this thesis, such patterns can
be seen as domain knowledge derived from eye movement research. Recent work has
shown that the distribution of these patterns within eye movements is informative
for subject identification [Landwehr 14]. One focus of this thesis is thus on machine
learning models that are probabilistic, in the sense that they capture such distri-
butions. The thesis exploration of the problem starts with the development of a
probabilistic model that is based on psychological domain knowledge in the form of
short local patterns such as saccades and fixations. As eye movement data is low-level
sensor data, deep neural networks might be able to learn more complex and informa-
tive patterns directly from the raw eye movement data. The thesis, therefore, next
investigates deep neural networks for biometric identification from eye movements.
The thesis specifically introduces a novel statistical aggregation layer for deep neural
networks, which can fit the distribution of learned deep patterns within a sequence,
thereby integrating probabilistic modeling and deep learning. As in most applica-
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tions of biometric identification, there is no fixed set of classes (subjects), the thesis
finally investigates metric learning approaches for eye movement biometrics. The the-
sis proposes a novel approach that integrates deep metric learning with probabilistic
modeling.

1.1 Eye Movements

Humans are not simply exposed to an incoming flow of visual data, they actively select
their visual input through their eye movements. Eye movements have shown to be the
result of visual attention, cognition, and motor control [Liversedge 00, Henderson 03,
Kliegl 06], holding significant information about identities. Eye movements can be
accurately measured by devices called eye trackers. Eye trackers emit infrared light
that is reflected by the eye. Eye trackers track the reflection relative to the position of
the pupil, and thereby determine the direction of the gaze. The position the subject
looks at can then be calculated by projecting the gaze direction on the screen at
a constant temporal resolution. Thus, the raw gaze movement data is a series of
coordinates sampled at a fixed rate depending on the capability and settings of the
eye tracker device. As such, an individual viewing an input on a screen results in a
time-series of coordinates.

According to the psychological literature, every gaze movement sequence can be
expressed as a number of fixations that last between 200–300 milliseconds on average,
and fast movements between these fixations called saccades [Rayner 98, Salvucci 00].
A fixation is when the eye is fairly still so that it can take in the information at the
fixated point. A fixation is made up of multiple gaze points in the raw sequence,
usually described by the fixation duration. A saccade is the movement between
fixations or points of interest and lasts between 20–40 milliseconds, on average. A
saccade amplitude is the distance skipped by the eye, which is the distance between
two fixations. The duration of a saccade and its amplitude are linearly correlated.
Saccades are usually described by their amplitudes. Alternating between fixations
and saccades allows our brain to have an efficient perception by skipping over areas
that have no information and fixating on areas that interest us. Studies dealing
with eye movements usually preprocess the raw time-series to sequences of fixations
and saccades, such that fixations are described by their durations and fixating point
coordinates and saccades are described by their amplitudes. Different people have
different fixation durations and different saccade amplitudes. For example, while
reading, some tend to have many fixations, but others tend to skip through. As
another example, when watching a video clip, some subjects tend to have longer
fixations with smooth pursuit, while others tend to have larger saccade amplitudes.

1.2 Problem Setup

Eye movement biometrics can be formalized as a sequence classification problem.
Considering each individual as a class, the task is to classify a sequence of gaze move-
ments. The sequence is generated by an individual while viewing an arbitrary input
on the screen. This thesis is concerned with a setting where the input is arbitrary in
contrast to studies that have investigated the problem for fixed inputs or designed
stimuli. The dataset is a collection of sequences generated while viewing arbitrary
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inputs, such that each sequence is labeled by a class (individual). To simulate an
application setting in which subjects are viewing arbitrary inputs, all available data
should be split into training and test data in such a way that the test data contains
visual inputs not seen by the model in the training data. The training data contains
eye movement recordings for the subjects. It is used to train the models to distinguish
between sequences of different subjects. During testing, sequences generated while
viewing test inputs by unknown subjects are used to test the abilities of models to
predict the identities of those subjects.

Modeling the biometric problem as a classification problem would require the clas-
sification model to be retrained every time a new user joins the system. For a more
general approach, the problem can be formalized as a metric learning problem, in
which the model learns a generic distance function to compare instances. In metric
learning, distances between sequences generated by the same subject are minimized
while distances between sequences generated by different subjects are maximized.
Metric learning summarizes the whole sequence with an embedding, which repre-
sents individual characteristics in a low dimensional space. As in the classification
setting, the test data contains eye movement sequences obtained on inputs not seen
in the training data. Additionally, data should be split such that the test data con-
tains sequences generated by novel subjects. Thus, the test dataset has a set of
subjects that the model did not see during training, testing the ability of the model
to generalize beyond the classes in the training data.

Two tasks are usually considered in biometric studies: multi-class classification
(identification) and binary classification (verification). In multi-class classification,
the model identifies to whom a given eye movement sequence belongs, out of all
the known subjects. As the number of known subjects increases, identification gets
more difficult, which is why identification performance is measured as a function of
the number of subjects that the model needs to distinguish. In contrast, in binary
classification, the model has to verify whether a given sequence of eye movements is
generated by a given individual. The verification setting is independent of the number
of classes and can deal with instances that do not belong to any of the classes present
during training (imposters). The multi-class classification setting can directly detect
imposters only in a metric learning problem setting.

This thesis investigates the stated problems in three incremental studies, which
the following sections introduce. The thesis is initially inspired by psychological
studies, which segment the raw eye movement data into sequences of several types
of saccades and fixations. Based on these sequences, the thesis introduces the prob-
abilistic classification model in Section 1.3 for reader identification. In Section 1.4,
the thesis abandons the psychological concepts and introduces end-to-end learnable
deep neural networks that classify the raw eye movement time-series data. In this
section, the thesis introduces a novel method for fitting distributions of learned pat-
terns within deep neural networks. The thesis then continues with metric learning in
Section 1.5. In the section, the thesis introduces a generic probabilistic deep metric
learning approach, in which an instance is represented by a set of distributions. The
proposed method is evaluated on several biometric domains including eye movement
biometrics.
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1.3 A Semiparametric Probabilistic Model of Eye

Movements

The thesis begins by developing a probabilistic model based on psychological con-
cepts about eye movements, which have emphasized preprocessing eye movement
sequences into saccades and fixations. In psychological studies, the gaze movements
during reading are divided into four different types: refixating the current word (refix-
ation), fixating the next word (next word movement), moving the fixation to a word
after the next word (forward skip), and regressing to fixate on a word occurring earlier
than the currently fixated word (regression) [Heister 12]. The latest state-of-the-art
study [Landwehr 14] in reader identification at the time the thesis was started had
illustrated that modeling reader-specific distributions over saccade amplitudes and
fixation durations of these types can help identify readers accurately. The study
approximated these distributions with simple parametric Gamma distributions. By
approximating the true distribution with a simple parametric density, the model can
be robust to sparse data, but it might not be flexible enough to fit the differences
between distributions of different readers. Instead of employing simple parametric
modeling for the distribution, the study in Chapter 2 develops a semiparametric
model that allows the fitted distribution to be more flexible. The densities are in-
ferred under a Gaussian process prior, centered at the parametric family. If the data
is sparse, the posterior will favor the simple parametric family, reducing the flexibility
of the model and minimizing overfitting. If more data is available, the model will
deviate from the simple parametric prior towards more general densities. By adjust-
ing the kernel function for the Gaussian process prior, any density function can be
represented. However, the inference process is nontrivial as the text structure induces
truncations to the semiparametric distributions, which is different for each observed
sample. The thesis introduces a Metropolis-Hastings based algorithm for Bayesian
inference that can reflect these observation-specific truncations. The proposed ap-
proach can fit the individual-specific distribution, balancing between robustness and
flexibility. In a large-scale study, it demonstrates much better accuracy than the
state-of-the-art methods.

In this work [Abdelwahab 16], and jointly with Niels Landwehr, I developed the
mathematical framework, probabilistic model, and algorithms for inference and learn-
ing. I implemented the method and baselines, and designed and implemented all the
empirical studies. Moreover, I contributed to the writing of the manuscript. In an-
other study [Makowski 18], where my contributions are limited and therefore not
part of this thesis, I adapted the semiparametric model and the fully parametric
model [Landwehr 14] to work on the free viewing of a full document to assess the
text comprehension of the readers and to identify readers.

1.4 Statistical Aggregation in Deep Neural Net-

works

Gaze movements are low-level sensor data, for which deep learning excels. The next
study thus abandons the psychological concepts in favor of deep learning, which can
automatically learn informative patterns from raw data. By examining the previous
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model introduced in Section 1.3 and other state-of-the-art models from the literature,
it is clear that distributions of short-term local patterns (saccades and fixations) are
very informative for identifying individuals from their eye movements. Therefore, the
study in Chapter 3 proposes an end-to-end learnable neural network architecture that
extracts informative local patterns and characterizes their distributions. The study
introduces a parametrized learnable statistical aggregation layer called a quantile
layer. The quantile layer allows the network to explicitly fit the distributions of
learned deep patterns and allows the network to process variable-length sequences.

Specifically, a convolution architecture is used to learn local, short-term patterns
in a sequence, while the quantile layer is used to describe the distribution of the
learned patterns. The quantile layer approximates the quantile function (the inverse
of the cumulative distribution function) of the filter activations across the entire
sequence and samples the function at multiple learnable points, which may differ
from one filter to another. The whole method is end-to-end learnable directly from
raw time-series data. The quantile layer generalizes standard pooling layers and can
converge to maximum pooling or average pooling (for zero skewness distribution)
but can also be more expressive. The empirical study shows that the proposed deep
learning method outperforms the state of the art in eye movement biometrics by a
large margin.

In this work [Abdelwahab 19b], I designed and implemented the proposed method
as well as all baseline methods. Furthermore, I designed and conducted the empirical
study, including the data preprocessing and adaptation required by the different
baseline methods. I contributed to the writing of the manuscript.

1.5 Deep Metric Learning with Distributional Em-

beddings

One of the weaknesses of the previous study introduced in Section 1.4 is that the
model has to be retrained every time a new class is added. Therefore, every time
a new subject joins or enrolls, there must be enough training data for the subject,
and the model must be retrained. The model also cannot directly detect imposters
because it can only classify a given sequence into a fixed set of classes, namely the
subjects present in the training data. In Chapter 4, the thesis does not deal with
the biometric problem as a sequence classification problem but as a sequence metric
learning problem. The chapter extends the previous approach introduced in Sec-
tion 1.4 to describe an instance in a metric space by a set of continuous distributions,
using an interpolated version of the quantile layer. Unlike existing deep metric learn-
ing methods, which use a fixed-point vector for representation, the chapter describes
a sequence by a set of distributions. The distance between the embeddings needs
to reflect the fact that the embeddings are distributions. This leaves the current
deep metric learning losses — based on fixed-point vectors — not applicable. The
study, therefore, introduces a loss based on Wasserstein distances, which satisfies
the metric properties. Compared to other statistical distance functions — such as
Kulback-Leibler or Jensen-Shannon divergence — the advantage of using Wasserstein
distances is that it considers the space on which the random variable is defined. This
property enables Wasserstein distances to be continuous and avoid the zero-gradient
problem observed in other distances between distributions. This enables end-to-end
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learning of distributional embeddings by directly optimizing model parameters ac-
cording to a metric learning loss based on Wasserstein distances. The empirical
study in this work includes multiple domains and is not limited to eye movement bio-
metrics, as the proposed method is a general method to learn sequence embeddings.
In all studied domains in the empirical study, the proposed loss function outperforms
the state-of-the-art loss function in deep metric learning. Furthermore, the empirical
study demonstrates that for eye movement biometrics the proposed approach has a
better performance than the previous model introduced in Section 1.4.

In this work [Abdelwahab 19a], I developed the idea, mathematical framework,
architecture, and algorithmic details of the method. I also implemented the method
and all the baseline methods, and I designed and conducted all the experiments. I
wrote the manuscript jointly with Niels Landwehr.
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Abstract

We study the problem of identifying individu-
als based on their characteristic gaze patterns
during reading of arbitrary text. The motiva-
tion for this problem is an unobtrusive biomet-
ric setting in which a user is observed during
access to a document, but no specific chal-
lenge protocol requiring the user’s time and at-
tention is carried out. Existing models of indi-
vidual differences in gaze control during read-
ing are either based on simple aggregate fea-
tures of eye movements, or rely on paramet-
ric density models to describe, for instance,
saccade amplitudes or word fixation durations.
We develop flexible semiparametric models of
eye movements during reading in which den-
sities are inferred under a Gaussian process
prior centered at a parametric distribution fam-
ily that is expected to approximate the true dis-
tribution well. An empirical study on read-
ing data from 251 individuals shows signifi-
cant improvements over the state of the art.

1 Introduction

Eye-movement patterns during skilled reading con-
sist of brief fixations of individual words in a
text that are interleaved with quick eye movements
called saccades that change the point of fixation to
another word. Eye movements are driven both by
low-level visual cues and high-level linguistic and
cognitive processes related to text understanding; as
a reflection of the interplay between vision, cog-
nition, and motor control during reading they are
frequently studied in cognitive psychology (Kliegl
et al., 2006; Rayner, 1998). Computational mod-
els (Engbert et al., 2005; Reichle et al., 1998) as well

as models based on machine learning (Matties and
Søgaard, 2013; Hara et al., 2012) have been devel-
oped to study how gaze patterns arise based on text
content and structure, facilitating the understanding
of human reading processes.

A central observation in these and earlier psycho-
logical studies (Huey, 1908; Dixon, 1951) is that eye
movement patterns strongly differ between individu-
als. Holland et al. (2012) and Landwehr et al. (2014)
have developed models of individual differences in
eye movement patterns during reading, and studied
these models in a biometric problem setting where
an individual has to be identified based on observing
her eye movement patterns while reading arbitrary
text. Using eye movements during reading as a bio-
metric feature has the advantage that it suffices to
observe a user during a routine access to a device
or document, without requiring the user to react to
a specific challenge protocol. If the observed eye
movement sequence is unlikely to be generated by
an authorized individual, access can be terminated or
an additional verification requested. This is in con-
trast to approaches where biometric identification is
based on eye movements in response to an artificial
visual stimulus, for example a moving (Kasprowski
and Ober, 2004; Komogortsev et al., 2010; Rigas et
al., 2012b; Zhang and Juhola, 2012) or fixed (Bed-
narik et al., 2005) dot on a computer screen, or a
specific image stimulus (Rigas et al., 2012a).

The model studied by Holland & Komogort-
sev (2012) uses aggregate features (such as average
fixation duration) of the observed eye movements.
Landwehr et al. (2014) showed that readers can be
identified more accurately with a model that cap-
tures aspects of individual-specific distributions over
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eye movements, such as the distribution over fixa-
tion durations or saccade amplitudes for word refix-
ations, regressions, or next-word movements. Some
of these distributions need to be estimated from very
few observations; a key challenge is thus to design
models that are flexible enough to capture character-
istic differences between readers yet robust to sparse
data. Landwehr et al. (2014) used a fully paramet-
ric approach where all densities are assumed to be in
the gamma family; gamma distributions were shown
to approximate the true distribution of interest well
for most cases (see Figure 1). This model is robust
to sparse data, but might not be flexible enough to
capture all differences between readers.

The model we study in this paper follows ideas
developed by Landwehr et al. (2014), but em-
ploys more flexible semiparametric density models.
Specifically, we place a Gaussian process prior over
densities that concentrates probability mass on den-
sities that are close to the gamma family. Given
data, a posterior distribution over densities is de-
rived. If data is sparse, the posterior will still be
sharply peaked around distributions in the gamma
family, reducing the effective capacity of the model
and minimizing overfitting. However, given enough
evidence in the data, the model will also deviate
from the gamma-centered prior—depending on the
kernel function chosen for the GP prior, any density
function can in principle be represented. Integrating
over the space of densities weighted by the posterior
yields a marginal likelihood for novel observations
from which predictions are inferred. We empirically
study this model in the same setting as studied by
Landwehr et al. (2014), but using an order of mag-
nitude more individuals. Identification error is re-
duced by more than a factor of three compared to
the state of the art.

The rest of the paper is organized as follows.
After defining the problem setting in Section 2,
Section 3 presents the semiparametric probabilis-
tic model. Section 4 discusses inference, Section 5
presents an empirical study on reader identification.

2 Problem Setting

Assume R different readers, indexed by r ∈
{1, . . . , R}, and letX = {X1, . . . ,Xn} denote a set
of texts. Each r ∈ R generates a set of eye move-

ment patterns S(r) = {S(r)
1 , . . . ,S

(r)
n } on X , by

S
(r)
i ∼ p(S|Xi, r,Γ)

where p(S|Xi, r,Γ) is a reader-specific distribution
over eye movement patterns given a text Xi. Here,
r is a variable indicating the reader generating the
sequence, and Γ is a true but unknown model that
defines all reader-specific distributions. We assume
that Γ can be broken down into reader-specific mod-
els, Γ = (γ1, . . . ,γk), such that the distribution

p(S|Xi, r,Γ) = p(S|Xi,γr) (1)

is defined by the partial model γr. We aggregate the
observations of all readers on the training data into a
variable S(1:R) = (S(1), . . . ,S(R)).

We follow a Bayesian approach, defining a prior
p(Γ) over the joint model that factorizes into priors
over reader-specific models, p(Γ) =

∏R
r=1 p(γr).

At test time, we observe novel eye movement
patterns S̄ = {S̄1, . . . , S̄m} on a novel set of
texts X̄ = {X̄1, . . . , X̄m} generated by an unknown
reader r ∈ R. We assume a uniform prior over
readers, that is, each r ∈ R is equally likely to be
observed at test time. The goal is to infer the most
likely reader to have generated the novel eye move-
ment patterns. In a Bayesian setting, this means in-
ferring the most likely reader given the training ob-
servations (X ,S(1:R)) and test observation (X̄ , S̄):

r∗ = arg max
r∈R

p(r|X̄ , S̄,X ,S(1:R)). (2)

We can rewrite Equation 2 to

r∗ = arg max
r∈R

p(S̄|r, X̄ ,X ,S(1:R)) (3)

= arg max
r∈R

∫
p(S̄|r, X̄ ,Γ)p(Γ|X ,S(1:R))dΓ

= arg max
r∈R

∫
p(S̄|X̄ ,γr)p(γr|X ,S(r))dγr (4)

where

p(S̄|X̄ ,γr) =

m∏

i=1

p(S̄i|X̄i,γr) (5)

p(γr|X ,S(r)) ∝ p(γr)
n∏

i=1

p(S
(r)
i |Xi,γr). (6)
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In Equation 3 we exploit that readers are uniformly
chosen at test time, and in Equation 4 we exploit
the factorization p(Γ) =

∏R
r=1 p(γr) of the prior,

which together with Equation 1 entails a factoriza-
tion p(Γ|X ,S(1:R)) =

∏R
r=1 p(γr|X ,S(r)) of the

posterior. Note that Equation 4 states that at test
time we predict the reader r for which the marginal
likelihood (that is, after integrating out the reader-
specific model γr) of the test observations is high-
est. The next section discusses the reader-specific
models p(S|X,γr) and prior distributions p(γr).

3 Probabilistic Model

The probabilistic model we employ follows the gen-
eral structure proposed by Landwehr et al. (2014),
but employs semiparametric density models and al-
lows for fully Bayesian inference. To reduce nota-
tional clutter, let γ ∈ {γ1, . . . ,γR} denote a par-
ticular reader-specific model, and let X ∈ X de-
note a text. An eye movement pattern is a sequence
S = ((s1, d1), . . . , (sT , dT )) of gaze fixations, con-
sisting of a fixation position st (position in text that
was fixated) and duration dt ∈ R (length of fixation
in milliseconds). In our experiments, individual sen-
tences are presented in a single line on screen, thus
we only model a horizontal gaze position st ∈ R.
We model p(S|X,γ) as a dynamic process that suc-
cessively generates fixation positions st and dura-
tions dt in S, reflecting how a reader generates a se-
quence of saccades in response to a text stimulus X:

p(S|X,γ) = p(s1, d1|X,γ)

T∏

t=2

p(st, dt|st−1,X,γ),

where p(st, dt|st−1,X,γ) models the generation of
the next fixation position and duration given the old
fixation position st−1. In the psychological litera-
ture, four different saccade types are distinguished:
a reader can refixate the current word (refixation),
fixate the next word in the text (next word move-
ment), move the fixation to a word after the next
word, that is, skip one or more words (forward skip),
or regress to fixate a word occurring earlier in the
text (regression), see, e.g., Heister et al. (2012).
We observe empirically that for each saccade type,
there is a characteristic distribution over saccade am-
plitudes and fixation durations, and that both ap-
proximately follow gamma distributions—see Fig-
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Figure 1: Empirical distributions of saccade amplitudes in

training data for first individual, with fitted Gamma distribu-

tions and semiparametric distribution fits.

ure 1. We therefore model p(st, dt|st−1,X,γ) us-
ing a mixture over distributions for the four different
saccade types. At each time t, the model first draws
a saccade type ut ∈ {1, 2, 3, 4}, and then draws a
saccade amplitude at and fixation duration dt from
type-specific distributions p(a|ut, st−1,X,γ) and
p(d|ut,γ). More formally,

ut ∼ p(u|π) (7)

at ∼ p(a|ut, st−1,X,α) (8)

dt ∼ p(d|ut, δ), (9)

where γ = (π,α, δ) is decomposed into compo-
nents π, α, and δ. Afterwards, the model updates
the fixation position according to st = st−1 + at,
concluding the definition of p(st, dt|st−1,X,γ).
Figure 2 shows a slice in the dynamical model.

The distribution p(u|π) over saccade types
(Equation 7) is multinomial with parameter vector
π ∈ R4. The distributions over amplitudes and du-
rations (Equations 8 and 9) are modeled semipara-
metrically as discussed in the following subsections.

3.1 Model of Saccade Amplitudes

We first discuss the amplitude model
p(a|ut, st−1,X,α) (Equation 8). We first de-
fine a distribution p(a|ut,α) over amplitudes for
saccade type ut, and subsequently discuss condi-
tioning on the text X and old fixation position st−1,
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tu 1tu 

ta 1ta td 1td 

t 1t 

X

ts 1ts 

π

α

δ

Figure 2: Plate notation of of a slice in the dynamic model.

leading to p(a|ut, st−1,X,α). We define

p(a|ut = 1,α) =

{
µα1(a) : a > 0

(1− µ)ᾱ1(−a) : a ≤ 0
(10)

where µ is a mixture weight and α1, ᾱ1 are densities
defining the distribution over positive and negative
amplitudes for the saccade type refixation, and

p(a|ut = 2,α) = α2(a) (11)

p(a|ut = 3,α) = α3(a) (12)

p(a|ut = 4,α) = α4(−a) (13)

where α2(a), α3(a), and α4(a) are densities defin-
ing the distribution over amplitudes for the remain-
ing saccade types. Finally, the distribution

p(s1|X,α) = α0(s1) (14)

over the initial fixation position is given by another
density function α0. The variables µ, α0, α1, ᾱ1,
α2, α3, and α4 are aggregated into model compo-
nent α. For resolving the most likely reader at test
time (Equation 4), densities in α will be integrated
out under a prior based on Gaussian processes (Sec-
tion 3.3) using MCMC inference (Section 4).

Given the old fixation position st−1, the text X,
and the chosen saccade type ut, the amplitude is
constrained to fall within a specific interval. For in-
stance, for a refixation the amplitude has to be cho-
sen such that the novel fixation position lies within
the beginning and the end of the currently fixated
word; a regression implies an amplitude that is neg-
ative and makes the novel fixation position lie be-
fore the beginning of the currently fixated word.

These constraints imposed by the text structure de-
fine the conditional distribution p(a|ut, st−1,X,α).
More formally, p(a|ut, st−1,X,α) is the distribu-
tion p(a|ut,α) conditioned on a ∈ [l, r], that is,

p(a|ut, st−1,X,α) = p(a|a ∈ [l, r], ut,α),

where l and r are the minimum and maximum am-
plitude consistent with the constraints. Recall that
for a distribution over a continuous variable x given
by density α(x), the distribution over x conditioned
on x ∈ [l, r] is given by the truncated density

α(x|x ∈ [l, r]) =

{
α(x)∫ r

l α(x̄)dx̄
: x ∈ [l, r]

0 : x /∈ [l, r].
(15)

We derive p(a|ut, st−1,X,α) by truncating the dis-
tributions given by Equations 10 to 13 to the min-
imum and maximum amplitude consistent with the
current fixation position st−1 and text X. Let w◦l
(w◦r ) denote the position of the left-most (right-
most) character of the currently fixated word, and
let w+

l , w
+
r denote these positions for the next word

in X. Let furthermore l◦ = w◦l − st−1, r◦ = w◦r −
st−1, l+ = w+

l − st−1, and r+ = w+
r − st−1. Then

p(a|ut = 1, st−1,X,α) =
{
µα1(a|a ∈ [0, r◦]) : a > 0

(1− µ)ᾱ1(−a|a ∈ [l◦, 0]) : a ≤ 0
(16)

p(a|ut = 2, st−1,X,α) =α2(a|a∈ [l+, r+]) (17)

p(a|ut = 3, st−1,X,α) =α3(a|a∈ (r+,∞)) (18)

p(a|ut = 4, st−1,X,α) =α4(−a|a∈ (−∞, l◦))
(19)

defines the appropriately truncated distributions.

3.2 Model of Fixation Durations
The model for fixation durations (Equation 9) is sim-
ilarly specified by saccade type-specific densities,

p(d|ut = u, δ) = δu(d) for u ∈ {1, 2, 3, 4} (20)

and a density for the initial fixation durations

p(d1|X, δ) = δ0(d1) (21)

where δ0, ..., δ4 are aggregated into model compo-
nent δ. Unlike saccade amplitude, the fixation du-
ration is not constrained by the text structure and
accordingly densities are not truncated. This con-
cludes the definition of the model p(S|X,γ).
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3.3 Prior Distributions
The prior distribution over the entire model γ fac-
torizes over the model components as

p(γ|λ, ρ, κ) = (22)

p(π|λ)p(µ|ρ)p(ᾱ1|κ)
4∏

i=0

p(αi|κ)
4∏

i=0

p(δi|κ)

where p(π) = Dir(π|λ) is a symmetric Dirich-
let prior and p(µ) = Beta(µ|ρ) is a Beta prior.
The key challenge is to develop appropriate pri-
ors for the densities defining saccade amplitude
(p(ᾱ1|κ), p(αi|κ)) and fixation duration (p(δi|κ))
distributions. Empirically, we observe that ampli-
tude and duration distributions tend to be close to
gamma distributions—see the example in Figure 1.

Our goal is to exploit the prior knowledge that
distributions tend to be closely approximated by
gamma distributions, but allow the model to devi-
ate from the gamma assumption in case there is
enough evidence in the data. To this end, we de-
fine a prior over densities that concentrates probabil-
ity mass around the gamma family. For all densities
f ∈ {ᾱ1, α0, ..., α4, δ0, ..., δ4}, we employ identical
prior distributions p(f |κ). Intuitively, the prior is
given by first drawing a density function from the
gamma family and then drawing the final density
from a Gaussian process (with covariance function
κ) centered at this function. More formally, let

G(x|η) =
exp(ηTu(x))∫

exp(ηTu(x′))dx′
(23)

denote the gamma distribution in exponential family
form, with sufficient statistics u(x) = (log(x), x)T

and parameters η = (η1, η2). Let p(η) denote a
prior over the gamma parameters, and define

p(f |κ) =

∫
p(η)p(f |η, κ)dη (24)

where p(f |η, κ) is given by drawing

g ∼ GP(0, κ) (25)

from a Gaussian process prior GP(0, κ) with mean
zero and covariance function κ, and letting

f(x) =
exp(ηTu(x) + g(x))∫

exp(ηTu(x′) + g(x′))dx′
. (26)

Note that decreasing the variance of the Gaussian
process means regularizing g(x) towards zero, and
therefore Equation 26 towards Equation 23. This
concludes the specification of the prior p(γ|λ, ρ, κ).

The density model defined by Equations 24 to 26
draws on ideas from the large body of literature
on GP-based density estimation, for example by
Adams et al. (2009), Leonard (1978), or Tokdar et
al. (2010), and semiparametric density estimation,
e.g. as discussed by Yang (2009), Lenk (2003) or
Hjort & Glad (1995). However, note that existing
density estimation approaches are not applicable off-
the-shelf as in our domain distributions are truncated
differently at each observation due to constraints that
arise from the way eye movements interact with the
text structure (Equations 16 to 19).

4 Inference

To solve Equation 4, we need to integrate for each
r ∈ R over the reader-specific model γr. To reduce
notational clutter, let γ ∈ {γ1, . . . ,γR} denote a
reader-specific model, and let S ∈ {S(1), . . . ,S(R)}
denote the eye movement observations of that reader
on the training texts X . We approximate

∫
p(S̄|X̄ ,γ)p(γ|X ,S)dγ ≈ 1

K

K∑

k=1

p(S̄|X̄ ,γ(k))

by a sample γ(1), . . . ,γ(K) of models drawn by

γ(k) ∼ p(γ|X ,S, λ, ρ, κ),

where p(γ|X ,S, λ, ρ, κ) is the posterior as given by
Equation 6 but with the dependence on the prior hy-
perparameters λ, ρ, κ made explicit. Note that with
X and S, all saccade types ut are observed. Together
with the factorizing prior (Equation 22), this means
that the posterior factorizes according to

p(γ|X ,S, λ, ρ, κ) = p(π|X ,S, λ)p(µ|X ,S, ρ)

· p(ᾱ1|X ,S, κ)
4∏

i=0

p(αi|X ,S, κ)
4∏

i=0

p(δi|X ,S, κ)

as is easily seen from the graphical model in Fig-
ure 2. Obtaining samples π(k) ∼ p(π|X ,S)
and µ(k) ∼ p(µ|X ,S) is straightforward because
their prior distributions are conjugate to the likeli-
hood terms. Let now f ∈ {ᾱ1, α0, ..., α4, δ0, ..., δ4}
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denote a particular density in the model. The
posterior p(f |X ,S, κ) is proportional to the prior
p(f |κ) (Equation 24) multiplied by the likeli-
hood of all observations that are generated by
this density, that is, that are generated accord-
ing to Equation 14, 16, 17, 18, 19, 20, or 21.
Let y = (y1, . . . , y|y|)T ∈ R|y| denote the vector of
all observations generated from density f , and let
l = (l1, . . . , l|l|)T ∈ R|l|, r = (r1, . . . , r|r|)T ∈ R|r|
denote the corresponding left and right boundaries
of the truncation intervals (again see Equations 14
to 21), where for densities that are not truncated we
take li = 0 and ri =∞ throughout. Then the likeli-
hood of the observations generated from f is

p(y|f, l, r) =

|y|∏

i=1

f(yi|yi ∈ [li, ri]) (27)

and the posterior over f is given by

p(f |X ,S, κ) ∝ p(f |κ)p(y|f, l, r). (28)

Note that y, l and r are observable from X , S.
We obtain samples from the posterior given by

Equation 28 from a Metropolis-Hastings sampler
that explores the space of densities f : R → R,
generating density samples f (1), ..., f (K). A density
f is given by a combination of gamma parameters
η ∈ R2 and function g : R → R; specifically, f is
obtained by multiplying the gamma distribution with
parameters η by exp(g) and normalizing appropri-
ately (Equation 26). During sampling, we explicitly
represent a density sample f (k) by its gamma param-
eters η(k) and function g(k). The proposal distribu-
tion of the Metropolis-Hastings sampler is

q(η(k+1), g(k+1)|η(k), g(k)) =

p(g(k+1)|κ)N (η(k+1)|η(k), σ2I)

where p(g(k+1)|κ) is the probability of g(k+1) ac-
cording to the GP prior GP(0, κ) (Equation 25),
and N (η(k+1)|η(k), σ2I) is a symmetric proposal
that randomly perturbs the old state η(k) accord-
ing to a Gaussian. In every iteration k a proposal
η?, g? ∼ q(η, g|η(k), g(k)) is drawn based on the
old state (η(k), g(k)). The acceptance probability is
A(η?, g?|η(k), g(k)) = min(1, Q) with

Q =

q(η(k), g(k)|η?, g?)p(η?)p(g?|κ)p(y|f?, l, r)

q(η?, g?|η(k), g(k))p(η(k))p(g(k)|κ), p(y|f (k), l, r)
.

Here, p(η?) is the prior probability of gamma pa-
rameters η? (Section 3.3) and p(y|f?, l, r) is given
by Equation 27 where f? is obtained from η?, g?

according to Equation 26.
To compute the likelihood terms p(y|f (k), l, r)

(Equation 27) and also to compute the likelihood
of test data under a model (Equation 5), the den-
sity f : R → R needs to be evaluated. Accord-
ing to Equation 26, f is represented by parame-
ter vector η together with the nonparametric func-
tion g : R → R. As usual when working with
distributions over functions in a Gaussian process
framework, the function g only needs to be repre-
sented at those points for which we need to evalu-
ate it. Clearly, this includes all observations of sac-
cade amplitudes and fixation durations observed in
the training and test set. However, we also need
to evaluate the normalizer in Equation 26, and (for
f ∈ {α1, ᾱ1, α2, α3, α4}) the additional normalizer
required when truncating the distribution (see Equa-
tion 15). As these integrals are one-dimensional,
they can be solved relatively accurately using nu-
merical integration; we use 2-point Newton-Cotes
quadrature. Newton-Cotes integration requires the
evaluation (and thus representation) of g at an addi-
tional set of equally spaced supporting points.

When the set of test observations S̄, X̄ is large,
the need to evaluate p(S̄|X̄ ,γ(k)) for all γk and all
test observations leads to computational challenges.
In our experiments, we use a heuristic to reduce
computational load. While generating samples, den-
sities are only represented at the training observa-
tions and the supporting points needed for Newton-
Cotes integration. We then estimate the mean of the
posterior by γ̂ = 1

K

∑K
k=1 γ

(k), and approximate
1
K

∑K
k=1 p(S̄|X̄ ,γ(k)) ≈ p(S̄|X̄ , γ̂). To evaluate

p(S̄|X̄ , γ̂), we infer the approximate value of the
density γ̂ at a test observation by linearly interpo-
lating based on the available density values at the
training observations and supporting points.

5 Empirical Study

We conduct a large-scale study of biometric iden-
tification performance using the same setup as dis-
cussed by Landwehr et al. (2014) but a much larger
set of individuals (251 rather than 20).

Eye movement records for 251 individuals are
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Figure 3: Multiclass accuracy over number of test observations (left) and number of individuals R (right) with standard errors.

Method Accuracy
Semiparametric 0.9502 ± 0.0130
Semiparametric (TD) 0.8853 ± 0.0142
Semiparametric (TA) 0.7717 ± 0.0361
Landwehr et al. 0.8319 ± 0.0218
Landwehr et al. (TA) 0.5964 ± 0.0262
Landwehr et al. (T) 0.2749 ± 0.0369
Holland & K. (unweighted) 0.6988 ± 0.0241
Holland & K. (weighted) 0.4566 ± 0.0220
Table 1: Multiclass identification accuracy ± standard error.

obtained from an EyeLink II system with a 500-
Hz sampling rate (SR Research, Ongoode, Ontario,
Canada) while reading sentences from the Potsdam
Sentence Corpus (Kliegl et al., 2006). There are 144
sentences in the corpus, which we split into equally
sized sets of training and test sentences. Individu-
als read between 100 and 144 sentences, the training
(testing) observations for one individual are the ob-
servations on those sentences in the training (testing)
set of sentences that the individual has read. Results
are averaged over 10 random train-test splits. Each
sentence is shown as a single line on the screen.

We study the semiparametric model discussed in
Section 3 with MCMC inference as presented in
Section 4 (denoted Semiparametric1). We employ a
squared exponential covariance function κ(x, x′) =

α exp
(
−‖x−x′‖2

2σ2

)
, where the multiplicative con-

stant α is tuned on the training data by cross-

1An implementation is available at github.com/
abdelwahab/SemiparametricIdentification

validation and the bandwidth σ is set to the av-
erage distance between points in the training data.
The Beta and Dirichlet parameters λ and ρ are
set to one (Laplace smoothing), the prior p(η)
for the Gamma parameters is uninformative. We
use backoff-smoothing as discussed by Landwehr
et al. (2014). We initialize the sampler with the
maximum-likelihood Gamma fit and perform 10000
sampling iterations, 5000 of which are burn-in it-
erations. As a baseline, we study the model by
Landwehr et al. (2014) (Landwehr et al.) and sim-
plified versions proposed by them that only use sac-
cade type and amplitude (Landwehr et al. (TA) ) or
saccade type (Landwehr et al. (T) ). We also study
the weighted and unweighted version of the feature-
based model of Holland & Komogortsev (2012) with
a feature set adapted to the Potsdam Sentence Cor-
pus data as described in Landwehr et al. (2014).

We note that there are two recent extensions of the
feature-based model (by Rigas et al. (2016) and Ab-
dulin & Komogortsev (2015)) that are unfortunately
not applicable in our empirical setting but might
yield improved results in other scenarios. Rigas et
al. (2016) study a model that is focused on repre-
senting reader-specific differences in saccadic vigor
and acceleration, which are both derived from the
dynamics of saccadic velocity. In the preprocessed
data set that we use, saccadic velocities are not avail-
able, therefore we do not make use of velocities in
our model and cannot easily compare against their
model. Abdulin & Komogortsev (2015) study a
model that is based on features that relate eye move-
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Figure 4: False-accept over false-reject rate when varying τ .

ments to the 2D text structure, that is, to the way
words are arranged into lines in a text. As in our
empirical study each sentence is presented as a sin-
gle line on screen, this 2D structure does not ex-
ist. Moreover, Abdulin & Komogortsev (2015) only
report accuracy improvements for their method in
a setting where individuals have to be identified in
the future based on data collected in the past (aging
test), which is not the focus of our study.

We first study multiclass identification accuracy.
All test observations of one particular individual
constitute one test example; the task is to infer the
individual that has generated these test observations.
Multiclass identification accuracy is the fraction of
cases in which the correct individual is identified.
Table 1 shows multiclass identification accuracy for
all methods, including variants of Semiparametric
discussed below. We observe that Semiparametric
outperforms Landwehr et al., reducing the error by
more than a factor of three. Consistent with results
reported in Landwehr et al. (2014), Holland & K.
(unweighted) is less accurate than Landwehr et al.,
but more accurate than the simplified variants. We
next study how the amount of data available at test
time—that is, the amount of time we can observe a
reader before having to make a decision—influences
accuracy. Figure 3 (left) shows identification accu-
racy as a function of the fraction of test data avail-
able, obtained by randomly removing a fraction of
sentences from the test set. We observe that iden-
tification accuracy steadily improves with more test
observations for all methods. Figure 3 (right) shows
identification accuracy when varying the number R
of individuals that need to be distinguished. We ran-
domly draw a subset of R individuals from the set
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Figure 5: False-accept over false-reject rate when using 40%

(dotted), 60% (dashed-dotted), 80% (dashed), and 100% (solid)

of test observations, for selected subset of methods.

Method Area under curve
Semiparametric 0.0000119
Semiparametric (TD) 0.0000821
Semiparametric (TA) 0.0001833
Landwehr et al. 0.0001743
Landwehr et al. (TA) 0.0010371
Landwehr et al. (T) 0.0017040
Holland & K. (unweighted) 0.0027853
Holland & K. (weighted) 0.0039978

Table 2: Area under the curve in binary classification setting.

of 251 individuals, and perform identification based
on only these individuals. Results are averaged over
10 such random draws. As expected, accuracy im-
proves if fewer individuals need to be distinguished.

We next study a binary setting in which for each
individual and each set of test observations a deci-
sion has to be made whether or not the test observa-
tions have been generated by that individual. This
setting more closely matches typical use cases for
the deployment of a biometric system. Let X̄ de-
note the text being read at test time, and let S̄ de-
note the observed eye movement sequences. Our
model infers for each reader r ∈ R the marginal
likelihood p(S̄|r, X̄ ,X ,S(1:R)) of the eye move-
ment observations under the reader-specific model
(Equation 3). The binary decision is made by
dividing this marginal likelihood by the average
marginal likelihood assigned to the observations by
all reader-specific models, and comparing the result
to a threshold τ . Figure 4 shows the fraction of false
accepts as a function of false rejects as the thresh-
old τ is varied, averaged over all individuals. The
Landwehr et al. model and variants also assign a
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with standard errors for Semiparametric variants.

reader-specific likelihood to novel test observations;
we compute the same statistics again by normaliz-
ing the likelihood and comparing to a threshold τ .
Finally, Holland & K. (unweighted) and Holland
& K. (weighted) compute a similarity measure for
each combination of individual and set of test ob-
servations, which we normalize and threshold anal-
ogously. We observe that Semiparametric accom-
plishes a false-reject rate of below 1% at virtually
no false accepts; Landwehr et al. and variants tend
to perform better than Holland & K. (unweighted)
and Holland & K. (weighted) . Table 2 shows the
error under the curve for the experiment shown in
Figure 4, as well as for variants of Semiparametric
discussed below.

We finally study the contribution of the individual
model components for saccade type, saccade am-
plitude, and fixation duration (see Figure 2) by re-
moving the corresponding model components, as in
Landwehr et al. (2014). By Semiparametric (TD)
we denote a variant of Semiparametric in which the
variable at and the corresponding distribution is re-
moved, that is, only the distribution over the sac-
cade type and duration is modeled. Semiparamet-
ric (TA) denotes a variant in which the variable
dt and the corresponding distribution is removed.
Figure 6 shows identification accuracy as a func-
tion of the fraction of test data available for model
variants Semiparametric (TD) and Semiparametric
(TA) in comparison to Semiparametric; results for
these variants are also included in Table 1. Figure 7
shows the fraction of false accepts as a function of
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Figure 7: False-accept over false-reject rate when varying τ for

the Semiparametric variants.

false rejects in the binary classification setting dis-
cussed above for these two model variants; Table 2
includes area under the curve results for the experi-
ment shown in Figure 7. We observe that accuracy
is substantially reduced when removing any model
component. Note that if both the amplitude and du-
ration components of the model are removed, it be-
comes identical to the model Landwehr et al. (T) .

Training the joint model for all 251 individuals
takes 46 hours on a single eight-core CPU (Intel
Xeon E5520, 2.27GHz); predicting the most likely
individual to have generated a set of 72 test sen-
tences takes less than 2 seconds.

6 Conclusions

We have studied the problem of identifying read-
ers unobtrusively during reading of arbitrary text.
For fitting reader-specific distributions, we employ a
Bayesian semiparametric approach that infers den-
sities under a Gaussian process prior centered at the
gamma family of distributions, striking a balance be-
tween robustness to sparse data and modeling flex-
ibility. In an empirical study with 251 individuals,
the model was shown to reduce identification er-
ror by more than a factor of three compared to ear-
lier approaches to reader identification proposed by
Landwehr et al. (2014) and Holland & Komogort-
sev (2012).
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Abstract. Human eye gaze patterns are highly individually character-
istic. Gaze patterns observed during the routine access of a user to a
device or document can therefore be used to identify subjects unobtru-
sively, that is, without the need to perform an explicit verification such
as entering a password. Existing approaches to biometric identification
from gaze patterns segment raw gaze data into short, local patterns called
saccades and fixations. Subjects are then identified by characterizing the
distribution of these patterns or deriving hand-crafted features for them.
In this paper, we follow a different approach by training deep neural net-
works directly on the raw gaze data. As the distribution of short, local
patterns has been shown to be particularly informative for distinguishing
subjects, we introduce a parameterized and end-to-end learnable statis-
tical aggregation layer called the quantile layer that enables the network
to explicitly fit the distribution of filter activations in preceeding layers.
We empirically show that deep neural networks with quantile layers out-
perform existing probabilistic and feature-based methods for identifying
subjects based on eye movements by a large margin.

Keywords: eye movements · deep learning · biometry.

1 Introduction

Human visual perception is a fundamentally active process. We are not simply
exposed to an incoming flow of visual sensory data, but rather actively control the
visual input by continuously performing eye movements that direct the gaze focus
to those points in space that are estimated to be most informative. The interplay
between visual information processing and gaze control has been extensively
studied in cognitive psychology, as it constitutes an important example of the
link between cognitive processing and motor control [9, 19].

One insight from existing studies in psychology is that the resulting gaze
patterns are highly individually characteristic [22, 23]. It is therefore possible
to identify subjects based on their observed gaze patterns with high accuracy,
and the use of gaze patterns as a biometric feature has been widely studied.
Approaches for using gaze patterns for identification can be divided into two
groups. One group of methods uses an active challenge-response protocol, that
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is, identification is based on eye movements in response to an artificial visual
stimulus [13, 25]. This has the disadvantage that additional time and effort of a
user is required in order to confirm her identity. In the second group of methods,
biometric identification is based on gaze patterns observed during the routine
access of a user to a device or document [17, 26]. This way the identity can be
confirmed unobtrusively, without requiring reaction to a specific challenge proto-
col. If the observed gaze patterns are unlikely to be generated by an authorized
individual, access can be terminated or an additional verification requested.

Existing approaches for identifying subjects from gaze patterns mostly seg-
ment the raw eye gaze data into fixations (short periods of time in which the
gaze is relatively stable) and saccades (rapid movements of the gaze to a new
fixation position). They then either use probabilistic models that characterize
the distribution of saccades and fixations [17, 1, 20], or hand-crafted statistical
features that characterize different properties of saccades such as lengths, ve-
locities, or accelerations [12, 26, 7]. In this paper, we follow a different approach
by training deep neural networks on the raw gaze position data, without seg-
menting gaze movements into saccades and fixations or applying handcrafted
aggregate features. However, we take inspiration from existing probabilistic ap-
proaches, which have shown that the distribution of local, short-term patterns
in gaze movements such as saccades and fixations can be highly characteristic
for different individuals. We therefore design neural network architectures that
can extract such local patterns and characterize their distribution.

More specifically, we introduce a parameterized and end-to-end learnable
statistical aggregation layer called the quantile layer that enables the network to
explicitly fit the distribution of filter activations in preceeding layers. We design
network architectures in which stacked 1D-convolution layers extract local, short-
term patterns from eye movement sequences. The quantile layer characterizes
the distribution of these patterns by approximating the quantile function, that
is, the inverse cumulative distribution function, of the activations of the filters
across the time series of gaze movements. The quantile function is approximated
by sampling the empirical quantile function of the activations at a set of points,
which are trainable model parameters. Natural special cases of the quantile layer
are global maximum pooling and global median pooling; median pooling will
approximate average pooling if filter activations are approximately symmetric.
The proposed quantile layer can thus be seen as an extension of standard global
pooling layers that retains more information about the distribution of activations
than the average or maximum. In the same way as standard global pooling layers,
the quantile layer aggregates over the entire sequence, enabling the model to work
with variable-length sequences. By learning the sampling points, the model can
focus on those parts of the distribution function that are most discriminative for
identification. Using a piecewise linear approximation to the empirical quantile
function makes the layer fully differentiable; models can thus be trained end-to-
end using gradient descent. We empirically show that deep neural networks using
quantile layers outperform existing probabilistic and feature-based approaches
for identification based on gaze movements by a large margin.
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Unobtrusive biometric identification has been most extensively studied based
on gaze patterns during reading. In this paper, we study biometric eye gaze
models for arbitrary non-text input. We specifically use data from the dynamic
images and eye movements (DIEM) project, a large-scale data collection effort
during which gaze movements of over 200 participants each watching a subset of
84 video sequences were recorded [21]. This data is approximately representative
of scenarios where a user is not reading text (e.g., watching a live stream from
a security camera), broadening the application range of gaze-based biometrics.

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the quantile layer, Section 4 discusses deep neural
network architectures for eye gaze biometrics. We empirically study identification
accuracy of the proposed methods and different baselines in Section 5.

2 Related Work

Biometric identification from eye gaze patterns observed as a response to a spe-
cific stimulus has been studied extensively. The stimulus can for example be a
moving [13, 16, 18, 31] or fixed [2] dot on a monitor, or a specific image stimu-
lus [25]. More recently, unobtrusive biometric identification based on gaze pat-
terns observed during the routine access of a user to a device or document
has been studied. This approach has the advantage that no additional time and
attention of a user are needed for identification, because gaze patterns are gener-
ated on material that is viewed anyway. Most unobtrusive approaches are based
on observing eye movements of subjects generated while reading text [11, 1, 26],
but identification based on eye movements generated while viewing non-text
input has also been studied [15].

Existing approaches for biometric identification (with the exception of the
work by Kinnunen et al. [15], see below) first segment the observed eye move-
ment data into fixations (periods of little gaze movement during which the visual
content at the current position is processed) and saccades (short, ballistic move-
ments that relocate the gaze to a new fixation position). One approach that has
been widely studied in the literature is to derive hand-crafted features of these
saccades and fixations that are believed to be characteristic for individual sub-
jects. Holland and Komogortsev have studied relatively simple features such as
average fixation duration, average saccade amplitude and average saccade veloc-
ity [11, 12]. This line of work was later extended to more complex features such as
saccadic vigor, acceleration, or the so-called main sequence feature [26, 7]. Sub-
jects are then identified by matching the features of observed eye gaze sequences
generated by an unknown individual to those of known individuals, using for
example shortest distance[11], statistical tests [12, 26], or an RBF classifier [7].

Another popular approach is to use probabilistic models that characterize
user-specific distributions over saccades and fixations. Landwehr et al. [17] have
studied simple parametric models based on the Gamma family. Abdelwahab
et al. [1] have studied semiparametric models in which the identity of a user
is inferred by Bayesian inference based on Metropolis-Hastings sampling under
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a Gaussian process prior. Makowski et al. [20] study a discriminative model
that takes into account lexical features of fixated words, such as word frequency
and word lengths, and show that this can further increase identification accu-
racy from gaze patterns obtained during reading. The approach discussed by
Kinnunen et al. [15] also uses a probabilistic approach, by fitting a Gaussian
mixture model to the distribution of angles between successive gaze positions.
Unlike the approaches discussed above, Kinnunen et al. do not segment the eye
signal into fixations and saccades, but rather use all recorded gaze positions. Our
work differs from these existing approaches to biometric identification from gaze
patterns in that we train deep neural networks on the raw eye gaze to distinguish
between different subjects. We show empirically that this leads to large gains
in identification accuracy compared to existing feature-based and probabilistic
approaches, including the model by Kinnunen et al. [15].

The quantile layer we propose as a more expressive statistical aggregation
layer than standard global pooling is related to the learnable histogram layers
proposed by Wang et al. [30] and Sedighi and Fridrich [27]. Histogram layers
are also fully differentiable, parameterized statistical aggregation layers. They
characterize the distribution of values in the input to the layer in terms of an
approximation to a histogram, in which bin centers and bin widths are learnable
parameters. Wang et al. [30] use linear approximations to smoothen the sharp
edges in a traditional histogram function and enable gradient flow. Sedighi and
Fridrich [27] use Gaussian kernels as a soft, differentiable approximation to his-
togram bins. The histogram layers proposed by Wang et al. [30] and Sedighi and
Fridrich [27] directly approximate the probability density of the input values,
while the quantile layer we propose approximates the cumulative distribution
function. The quantile layer also naturally generalizes maximum pooling and
median pooling, while the histogram layers do not directly relate to standard
pooling operations. We use architectures based on the histogram layers of Wang
et al. [30] and Sedighi and Fridrich [27] as baselines in our empirical study.

Finally, Couture et al. [5] have recently studied quantiles as a method to ag-
gregate instance-level predictions when training deep multi-instance neural net-
works for detecting tumor type from tissue images. In their application, images
are represented as bags of subimages, and predictions on individual subimages
are combined into a bag prediction based on the quantile function.

3 The Quantile Layer

This section introduces the quantile layer, a parameterized and end-to-end learn-
able layer for characterizing the distribution of filter activations in a preceeding
convolution layer. This layer will be a central component in the deep neural net-
work architectures for eye gaze biometrics that we develop in the next section.

The gaze movement data we study is a discrete time series of 2D-coordinates
that indicate the current focus point of the gaze on a plane (e.g., a monitor).
The discrete time series is obtained by sampling the continuous gaze movements
at a regular frequency, and can be observed using standard eye tracking devices.
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Fig. 1. Density function, cumulative distribution function, and quantile function
(dashed lines) with empirical counterparts (solid lines) for a normally distributed vari-
able x ∼ N (0, 1). Tick marks at zero line show a sample from the distribution.

Existing approaches for user identification from eye movements first preprocess
the raw signal into two kinds of short, local patterns: saccades (rapid movements,
characterized by their amplitude) and fixations (periods of almost constant gaze
position, characterized by their duration). They then distinguish users based on
their distribution of saccade amplitudes and fixation durations (and possibly
other local features). This is done either by computing aggregate features [11,
12, 26] or by fitting parametric or semiparametric probabilistic models to the
observed distributions [17, 1, 20]. The key insight from this existing work is that
the most informative feature for identification is the distribution of short, local
gaze patterns seen in a particular sequence. In contrast, long-term dependencies
in the time series will be less informative, as these are more likely to be a function
of the visual input than the identity of the viewer.

Motivated by these observations in earlier work, we study network archi-
tectures that consists of a deep arrangement of 1D-convolution filters, which
extract local, short-term patterns from the raw gaze signal, followed by the
quantile layer whose output characterizes the distribution of these patterns. We
design the quantile layer in such a way that it naturally generalizes global max-
imum, median, and minimum pooling. As we assume that the distribution of
short-term patterns is most informative, we use standard non-dilated convolu-
tion operations, rather than dilated convolution operations which have recently
been used for modeling more long-term patterns in time series, for example for
audio data [29].

Let x denote a real-valued random variable whose distribution is given by
the probability density function f(x). The distribution of x can be expressed
in different forms: by the density function f(x), by the cumulative distribution
function F : R→ [0, 1] defined by

F (x) =

∫ x

−∞
f(z)dz, (1)

or by the quantile function Q : (0, 1)→ R defined by

Q(r) = inf{x ∈ R : r ≤ F (x)} (2)
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where inf denotes the infimum and (0, 1) ⊂ R the open interval from zero to
one. The quantile function Q is characterized by p(x ≤ Q(r)) = r. That is,
the quantile function yields the value Q(r) ∈ R such that all values of the
random variable x smaller than Q(r) together account for probability mass r. If
the cumulative distribution function F is continuous and strictly monotonically
increasing, which it will be if the density function f(x) is continuous and positive
everywhere on R, the quantile function Q is simply the inverse of the cumulative
distribution function, Q = F−1. Figure 1 visualizes the relationship between
density, cumulative distribution, and quantile functions for a standard normally
distributed variable x ∼ N (0, 1).

If X = {x1, ..., xn} with xi ∼ p(x) denotes a sample of the random variable
x, the empirical cumulative distribution function F̂X : R → [0, 1] is a non-
parametric estimator of the cumulative distribution function F . It is given by

F̂X (x) =
1

n

n∑

i=1

I(xi ≤ x) (3)

where

I(xi ≤ x) =

{
1 if xi ≤ x
0 if xi > x.

(4)

In analogy to the empirical distribution function, the empirical quantile function
Q̂X : (0, 1]→ R is a non-parametric estimator of the quantile function Q. It is
defined by

Q̂X (r) = inf{x ∈ R : r ≤ F̂X (x)}. (5)

Figure 1 visualizes the empirical cumulative distribution function F̂ (x) and the
empirical quantile function Q̂(r) together with a set of samples for a standard
normally distributed variable. For sufficiently large sample size n, the empirical
quantile function faithfully characterizes the distribution of x in the following
sense. According to the Glivenko-Cantelli theorem, F̂X uniformly converges to
the true cumulative distribution function F ,

sup
x∈R
|F̂X (x)− F (x)| a.s.−−→ 0 (6)

[28], where we use
a.s.−−→ to denote almost sure convergence in the sample size n.

For all r ∈ (0, 1) this implies almost sure convergence of Q̂X (r) to Q(r),

|Q̂X (r)−Q(r)| a.s.−−→ 0 (7)

provided that Q is continuous at r [24]. The empirical quantile function thus
faithfully estimates the quantile function in the limit. Finally, the quantile func-
tion Q determines the distribution over x, that is, for a given quantile function
Q there is a unique cumulative distribution function F such that Equation 2 is
satisfied [6].

Let π : {1, ..., n} → {1, ..., n} denote a permutation that sorts the sample in
ascending order, that is, xπ(i) ≤ xπ(i+1) for i ∈ {1, ..., n− 1}. Then

Q̂X (r) = xπ(k) (8)
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Fig. 2. Empirical quantile function, sorted samples, and piecewise linear approximation
to the empirical quantile function. The set of samples is identical to that in Figure 1.

for the unique k ∈ N fulfilling the condition

k − 1

n
< r ≤ k

n
. (9)

That is, the empirical quantile function Q̂X (r) can be computed by sorting the
samples in ascending order, and returning the sample at position dr · ne, where
for x ∈ R we use dxe to denote the smallest integer larger than or equal to
x. This is visualized in Figure 2, where the ordered samples xπ(1), ..., xπ(n) are

shown as a bar plot together with Q̂X .
We will also work with a piecewise linear approximation Q̃X to the em-

pirical quantile function Q̂X , as shown in Figure 2. This function is de-
fined on the interval [ 1

2n , 1 − 1
2n ] by Q̃X ( 2k−1

2n ) = Q̂X ( 2k−1
2n ) for k ∈

{1, ..., n} and by being piecewise linear in between. The piecewise lin-
ear approximation is needed in order to make the quantile layer that we
introduce below fully differentiable. Note that Q̃X will return the min-
imum, median, and maximum of the set of samples as special cases.
Equation 8 implies Q̃X ( 1

2n ) = min{x1, ..., xn}, Q̃X (0.5) = med{x1, ..., xn}, and

Q̃X (1− 1
2n ) = max{x1, ..., xn}.

We now define the quantile layer as the operation of sampling the piecewise
linear approximation Q̃X to the empirical quantile function Q̂X for a set X of
incoming filter activations. The quantile layer takes as input the output of a
convolution layer, and outputs a set of features in which the temporal dimension
has been aggregated out. The input to the quantile layer is thus a matrix Z ∈
RT×K of activations, where K is the number of filters and T the temporal
dimension in the preceding convolution layer. The output of the quantile layer
is a matrix Y ∈ RK×M , where M is a hyperparameter that determines at how
many points Q̂X is sampled. Let zt,k denote the element at row t and column
k of Z, and yk,m denote the element at row k and column m of Y. Then the
outputs yk,m of the layer are defined by

yk,m = Q̃Xk

(
σ(αk,m)

T − 1

T
+

1

2T

)
(10)
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where Xk = {zt,k|1 ≤ t ≤ T} is the set of activations of filter k across time,
σ(α) = 1

1+exp(−α) is the sigmoid function, and αk,m are learnable weights. The

quantity σ(αk,m) ∈ (0, 1) determines the point at which the approximation Q̃Xk

to the empirical quantile function of the set Xk is sampled. As σ(αk,m) is varied
from near zero to near one, yk,m will change continuously from the minimum
to the maximum of the values in Xk, following the piecewise linear function in
Figure 2. Due to the piecewise linear approximation, gradients of the weights
αk,m with respect to the network loss are nonzero and the layer can be trained
end-to-end using standard stochastic gradient methods.

The quantile layer is easily implemented in deep learning frameworks by sort-
ing the incoming activations for each filter k, linearly interpolating, and returning
the linearly interpolated values at the points prescribed by weights αk,1, ..., αk,M .
The output of the layer is a discrete approximation to the empirical quantile
function of the activations of filter k. The learnable weights determine at which
part of the cumulative distribution function the approximation is focused. For
example, sampling points can be spaced uniformly across the spectrum of values
or concentrate on those values that are near the maximum or minimum.

4 Model Architectures

We treat user identification from gaze movement patterns as a sequence clas-
sification problem. The input is a sequence of two-dimensional gaze positions,
separately recorded for the left and right eye, and sampled regularly over time.
The data we work with additionally contains a scalar measurement of the pupil
dilation for the left and the right eye at each point in time. We concatenate the
gaze positions and pupil dilations to form a sequence of shape T × 6, where the
sequence length T is typically different for each input.

We study 1D-convolutional neural networks to classify gaze movement se-
quences, using two different architectures. The first architecture stacks 1D-
convolution layers to extract local features from the sequence without reducing
the temporal dimension by intermediate pooling layers; the temporal dimension
is then aggregated out in a statistical aggregation layer before classification is
performed. The second architecture reduces the temporal dimension with in-
termediate pooling layers to capture more large-scale temporal patterns before
performing aggregation. Both architectures are 17 layers deep (not including
pooling or aggregation layers) and are shown in Table 1. As aggregation layer,
we study the quantile layer introduced in Section 3, global maximum pooling,
global average pooling, and the histogram layers proposed by Wang et al. [30]
and Sedighi and Fridrich [27]. More details about baselines are given in Section 5.

All convolution layers are followed by a nonlinear activation function. We
use parameterized ReLU activations [8], a generalization of leaky ReLUs, of the
form

s(y) =

{
y if y > 0

(1− βj)y if y ≤ 0.
(11)
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Table 1. Network architectures without (left) and with (right) intermediate pooling
layers. T denotes the sequence length. All convolution layers use stride one, the pooling
layers use stride two. Both architectures use dropout with parameter 0.5 before the fully
connected layer. As aggregation layer we study the quantile layer, global maximum
or average pooling, and the histogram layers by Wang et al. [30] and Sedighi and
Fridrich [27]. Output shape M and parameters vary across aggregation layers.

Architecture Without
Intermediate Pooling

Architecture With
Intermediate Pooling

Layer Output Size Layer Output Size Parameters

input T × 6 input T × 6 0〈[
conv 3× 1− 16

]
× 4 T × 16

[
conv 3× 1− 16

]
× 4 T × 16 2660

- - pool 2× 1 T/2× 16 0〈[
conv 3× 1− 32

]
× 4 T × 32

[
conv 3× 1− 32

]
× 4 T/2× 32 10884

- - pool 2× 1 T/4× 32 0〈[
conv 3× 1− 64

]
× 4 T × 64

[
conv 3× 1− 64

]
× 4 T/4× 64 43268

- - pool 2× 1 T/8× 64 0〈[
conv 3× 1− 128

]
× 4 T × 128

[
conv 3× 1− 128

]
× 4 T/8× 128 172548

aggregation 128×M aggregation 128×M variable

fully connected 210 fully connected 210 27090 ·M

where βj is a layer-specific parameter and j is the layer index. The parameters
βj are fitted during training and regularized towards zero, such that the slope of
the activation below zero does not become too small. The rationale for using this
activation is that we want to preserve as much information as possible about the
distribution of the responses of the convolution filters, so that this information
can later be exploited in the statistical aggregation layer. In contrast, regular
ReLU activations discard much information by not distinguishing between any
activation values that fall below zero.

As an alternative to the 1D-convolutional architectures shown in Table 1, we
also study a recurrent neural network architecture. We choose gated recurrent
units (GRU, [3]) as the recurrent unit, because we found architectures based on
GRUs to be faster and more robust to train and these architectures have been
shown to yield very similar predictive performance [4] as architectures based on
LSTM units [10]. We study a sequence classification architecture in which the
input layer is followed by two layers of gated recurrent units, and the state vector
of the last GRU in the second layer is fed into a dense layer that predicts the
class label. The first layer of GRUs contains 64 units and the second layer 128
units. We employ dropout with dropout parameter 0.5 before the dense layer.
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5 Empirical Study

In this section, we empirically study how accurately subjects can be distin-
guished based on observed gaze patterns. We evaluate different neural network
architectures and aggregation layers, and compare with existing probabilistic
and feature-based models for eye gaze biometrics.

5.1 Experimental Setup

Data The Dynamic Images and Eye Movements (DIEM) project is a large-scale
data collection effort in which gaze movements of subjects have been recorded
while viewing non-text visual input [21]. The DIEM data set contains gaze move-
ment observations of 223 subjects on 85 short video sequences that contain a va-
riety of visual material, such as recordings of street scenes, documentary videos,
movie excerpts, recordings of sport matches, or television advertisements. Sub-
jects in the data set have viewed between 6 and 26 videos. We restrict ourselves
to those subjects which have viewed at least 25 videos, which leaves 210 of the
223 subjects in the data. The average length of a video sequence is 95 seconds.
The entire data set contains 5381 gaze movement sequences.

Gaze movements have been recorded with an SR Research Eyelink 2000 eye
tracker. While the original temporal resolution of the eye tracker is 1000 Hz, in
the DIEM data set gaze movements are sampled down to a temporal resolution of
30 Hz [21]. This is a lower resolution than used in most other studies; for example,
Abdelwahab et al. [1] use 500 Hz, while studies by Holland and Komogortsev [11,
12] use either 1000 Hz or 75 Hz data. At each of the 30 time points per second,
the two-dimensional gaze position and a scalar measurement of the pupil dilation
is available for the left and the right eye, which we concatenate to form a six-
dimensional input.

Problem Setup We treat the problem of identifying individuals in the DIEM
data set based on their gaze patterns as a 210-class classification problem. A
training instance is a sequence of gaze movements (of one individual on one
video), annotated with the individual’s identity as the class label. We split the
entire set of 5381 gaze movement sequences into a training set (2734 sequences),
a validation set (537 sequences), and a test set (2110 sequences). The split is
constructed by splitting the 84 videos into 50% (42) training videos, 10% (8)
validation videos, and 40% (34) test videos, and including the gaze movement
observations of all individuals on the training, validation, and test videos in
the respective set of sequences. This ensures that predictions are evaluated on
novel visual input not seen in the training data. At test time, the task is to
infer the unknown identity of an individual after observing gaze patterns of that
individual on N video sequences drawn at random from all videos in the test
set viewed by that individual, where N is varied from one to five. Applying a
learned model to each of the N sequences yields predictive class probabilities
pi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ 210. The most likely identity is then inferred by
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Fig. 3. Identification error for convolutional neural network architectures without in-
termediate pooling (left), with intermediate pooling (right) and for the recurrent neural
network architecture (right) as a function of the number of test videos N on which a
user is observed. Error bars indicate the standard error.

arg maxj
∏N
i=1 pi,j and compared to the true identity. We measure identification

error, defined as the fraction of experiments in which the inferred identity is not
equal to the true identity of the individual. Results are averaged over the 210
individuals and 10 random draws of test videos for each individual.

Methods under Study We study the deep neural network architectures
with and without intermediate pooling layers shown in Table 1 in combination
with different aggregation layers: the quantile layer as described in Section 3
(Quantile), global maximum or average pooling (Global Maximum, Global Av-
erage), and the histogram layers proposed by Wang et al. [30] and Sedighi and
Fridrich [27]. The input to the histogram layers is identical to the input of the
quantile layer, namely a matrix Z ∈ RT×K of activations of the preceding con-
volution layer. The layers approximate the distribution of values per filter k in
Z by a histogram with M bins, where bin centers and bin widths are learnable
parameters. The output is a matrix Y ∈ RK×M ; an element yk,m of the output
computes the fraction of values of filter k that fall into bin m. The two histogram
baselines differ in how they smoothen the sharp edges in traditional histogram
functions in order to enable gradient flow: using linear approximations [30] or
Gaussian kernels [27]. For the models with quantile and histogram layers, the hy-
perparameter M is optimized on the validation set on a grid M ∈ {4, 8, 16, 32},
yielding M = 8 for both histogram-based models and M = 16 for the quantile-
based model. We use the Adam optimizer [14] with initial learning rate 0.0001
and train all models for 2000 epochs. For histogram-based models, optimization
failed with the default initial learning rate of 0.0001. We instead use an initial
learning rate of 0.00001, with which optimization succeeded. The batch size is
one in all experiments.

We also study the recurrent neural network architecture with two hidden
layers of gated recurrent units as discussed in Section 4. It is trained with the
Adam optimizer for 2000 episodes, using an initial learning rate of 0.001.
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Fig. 4. Identification error (left) and loss (right) for convolutional network architectures
without intermediate pooling and recurrent neural network as a function of the epoch
number during training. Dashed curves denote training error and loss while solid curves
denote test error and loss.

As further baselines, we study the probabilistic approaches by Kinnunen et
al. [15], Landwehr et al. [17], and Abdelwahab et al. [1], which respectively em-
ploy Gaussian mixture models, parametric models based on the Gamma family,
and semiparametric models based on Gaussian processes in order to characterize
distributions over gaze patterns. The model of Kinnunen et al. can be directly
applied in our domain. We tune the number of histogram bins, window size, and
number of mixture components on the validation data. The models of Landwehr
et al. [17] and Abdelwahab et al. [1] were designed for gaze movements during
reading; they are therefore not directly applicable. We adapt these models of to
our non-text domain as follows. Both models characterize individual gaze pat-
terns by separately fitting the distribution of saccade amplitudes and fixation
durations for different so-called saccade types: regression, refixation, next word
movement, and forward skip. The saccade types relate the gaze movement to the
structure of the text being read. We instead separately fit distributions for sac-
cade types up, down, left, right, which indicate the predominant direction of the
gaze movement. The DIEM data contains saccade and fixation annotations; we
can thus preprocess the data into sequences of saccades and fixations as needed
for an empirical comparison with these models. Another recently published prob-
abilistic model is that of Makowski et al. [20]. This model is more difficult to
adapt because it is built around lexical features of the text being read; without
lexical features it was empirically found to be no more accurate than the model
by Abdelwahab et al. [20]. We therefore exclude it from the empirical study.

We finally compare against the feature-based methods of Holland and Ko-
mogortsev [12] and Rigas et al. [26]. Both of these methods follow the same
general approach, only using different sets of features. We use the variant that
employs two-sample Kolmogorov-Smirnov test for the matching module and
weighted mean as the fusion method, since results reported in the paper were
best for these variants on low-resolution data [12].
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Fig. 5. Learned quantile sampling points σ(αk,m) as defined by Equation 10.

5.2 Results

Figure 3 shows error rates for identifying individuals in the DIEM data set for
different neural network architectures, including the recurrent neural network,
as a function of the number N of test videos on which gaze patterns of the
unknown individual are observed. We observe that architectures without inter-
mediate pooling layers have lower error rates. This is in line with the assumption
that local, short-term gaze patterns are most informative for identification: the
larger receptive fields of neurons in architectures with intermediate pooling do
not appear to be advantageous. We will therefore focus on architectures without
intermediate pooling in the remaining discussion. Architectures based on gated
recurrent units are also focused on fitting relatively long-term temporal patterns
in data; the recurrent architecture we study performs slightly better than con-
volutional architectures with intermediate pooling but worse than convolutional
architectures without intermediate pooling. Employing quantile layers for sta-
tistical aggregation outperforms global maximum or average pooling, indicating
that retaining more information about the distribution of filter activations is
informative for identification. Surprisingly, architectures based on the histogram
layers proposed by Wang et al. [30] and Sedighi and Fridrich [27] do not consis-
tently improve over the global pooling methods.

Figure 4 shows error rates and losses for architectures without intermediate
pooling layers on the training and test data as a function of the epoch number
during training. We observe that architectures with quantile and histogram layers
both achieve lower training error than architectures with global maximum or
average pooling, but only for the quantile-based model this translates into lower
error on the test data. Figure 4 thus does not suggest that there are any problems
with fitting the histogram-based models using our training protocol; manual
inspection of the learned histogram bins also showed reasonable bin centers and
widths. Rather, results seem to indicate that characterizing distributions in terms
of quantiles – which is closer to standard average or maximum pooling operations
– generalizes better than characterizing distributions by histograms.
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Fig. 6. Identification error as a function of the number of test videos N on which a
user is observed, using average gaze point only. Error bars indicate the standard error.

Figure 5 shows learned values for the quantile sampling points σ(αk,m) (see
Equation 10). We observe that sampling points adapt to each filter, and outputs
yk,m of the quantile layer focus more on values close to the maximum (σ(αk,m)
near one) than the minimum (σ(αk,m) near zero).

We finally compare against probabilistic and feature-based baselines from the
literature, specifically the models of Kinnunen et al. [15], Landwehr et al. [17],
Abdelwahab et al. [1], Holland and Komogortsev [12] and Rigas et al. [26].
These models only use the gaze position averaged over the left and right eye,
and do not use pupil dilation. We also study our models in this setting, using
only the average gaze position as input in the neural networks. Figure 6 shows
identification error as a function of the number of test videos for this setting. We
observe that identification errors are generally higher than in the setting where
separate gaze positions and pupil dilations are available. Moreover, the best
neural networks outperform the probabilistic and feature-based models by a large
margin. This may partially be explained by the fact that the probabilistic models
were originally developed for text reading, and for data with a much higher
temporal resolution (500 Hz versus 30 Hz in our study). The quantile-based
model again performs best among the neural network architectures studied.

6 Conclusions

We have studied deep neural networks for unobtrusive biometric identification
based on gaze patterns observed on non-text visual input. Differences in the
distribution of local, short-term gaze patterns are most informative for distin-
guishing between individuals. To characterize these distributions, we introduced
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the quantile layer, a learnable statistical aggregation layer that approximates
the empirical quantile function of the activations of a preceding stack of 1D-
convolution layers. In contrast to existing learnable statistical aggregation lay-
ers that approximate the distribution of filter activations by a histogram, the
quantile layer naturally generalizes standard global pooling layers. From our
empirical study we can conclude that neural networks with quantile layers out-
perform networks with global average or maximum pooling, as well as networks
that use histogram layers. In our domain, deep neural networks also outperform
probabilistic and feature-based models from the literature by a wide margin.
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Abstract Deep metric learning employs deep neural networks to embed in-
stances into a metric space such that distances between instances of the same
class are small and distances between instances from different classes are large.
In most existing deep metric learning techniques, the embedding of an instance
is given by a feature vector produced by a deep neural network and Euclidean
distance or cosine similarity defines distances between these vectors. In this
paper, we study deep distributional embeddings of sequences, where the em-
bedding of a sequence is given by the distribution of learned deep features
across the sequence. This has the advantage of capturing statistical informa-
tion about the distribution of patterns within the sequence in the embedding.
When embeddings are distributions rather than vectors, measuring distances
between embeddings involves comparing their respective distributions. We pro-
pose a distance metric based on Wasserstein distances between the distribu-
tions and a corresponding loss function for metric learning, which leads to
a novel end-to-end trainable embedding model. We empirically observe that
distributional embeddings outperform standard vector embeddings and that
training with the proposed Wasserstein metric outperforms training with other
distance functions.

1 Introduction

Metric learning is concerned with learning a representation or embedding in
which distances between instances of the same class are small and distances
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between instances of different classes are large. Deep metric learning ap-
proaches, in which the learned embedding is given by a deep neural network,
have achieved state-of-the-art results in many tasks, including face verification
and recognition (Schroff et al, 2015), fine-grained image classification (Reed
et al, 2016), zero-shot classification (Bucher et al, 2016), speech-to-text prob-
lems (Gibiansky et al, 2017), and speaker identification (Li et al, 2017). An
advantage of metric learning is that the resulting representation directly gen-
eralizes to unseen classes, so the model does not need to be retrained every
time a new class is introduced. This is, for example, a typical requirement in
biometric applications, where it should be possible to register new subjects
without retraining a model. Biometric systems also have to handle imposters,
that is, subjects who are not registered in the database, which is not straight-
forward in standard classification settings.

In this paper, we study deep metric learning for sequence data, with a
specific focus on biometric problems. Building on earlier work on quantile
layers (Abdelwahab and Landwehr, 2019), we specifically study how the dis-
tribution of learned deep features across a sequence can be represented in
the learned embedding. Quantile layers are statistical aggregation layers that
characterize the distribution of patterns within a sequence by approximating
the quantile function of the activations of the learned filters across the se-
quence. Characterizing this distribution has been shown to be advantageous
for biometric identification based on eye movement patterns (Abdelwahab and
Landwehr, 2019). The main contribution of this paper is to develop a deep met-
ric learning approach for distributional embeddings based on quantile layers.
Quantile layers return an estimate of the distribution of values for each learned
filter across the sequence. Instead of a fixed-length vector representation of an
instance, in our approach, the embedding of an instance is given by these sets of
distributions. When embeddings are distributions rather than simple vectors,
measuring distances between the embeddings involves comparing their respec-
tive distributions. We propose a distance metric in the embedding space that
is based on Wasserstein distances between the respective distributions. Com-
pared to other distance functions such as Kulback-Leibler or Jensen-Shannon
divergence, the advantage of using Wasserstein distance is that it takes into
account the metric on the space in which the random variable of interest is
defined. In our case, this means that distributions in which similar magnitudes
of filter activations receive similar amounts of probability mass will be con-
sidered close. We show how such embeddings can be trained end-to-end on
labeled training data using metric learning techniques.

Empirically, we study the proposed approach in biometric identification
problems involving eye movement, accelerometer, and EEG data. Empirical
results show that the proposed distributional sequence embeddings outperform
standard vector embeddings and that training with the Wasserstein metric
outperforms training with other distance functions.

The rest of the paper is organized as follows. Section 2 discusses related
work. In Section 3 we review quantile layers and develop a distributional em-
bedding architecture based on these layers. Section 4 introduces a Wasserstein-
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based distance metric for the proposed embedding model and from this derives
a novel loss function for metric learning. In Section 5 we empirically study the
proposed method and baselines.

2 Related work

Our work is motivated by the goal of capturing information about the dis-
tribution of patterns within a sequence in its embedding, where the patterns
are defined in terms of learned features of a deep neural network. It is related
to other work in deep learning that aims to capture distributions of learned
features using statistical aggregation layers. Wang et al (2016) proposed end-
to-end learnable histogram layers that approximate the distribution of learned
features by a histogram. Their work uses linear approximations to smoothen
the sharp edges in a traditional histogram function and enable gradient flow.
Sedighi and Fridrich (2017) proposed a similar histogram-based aggregation
layer, but use Gaussian kernels as a soft, differentiable approximation to his-
togram bins. Abdelwahab and Landwehr (2019) introduced quantile layers to
capture the distribution of learned features based on an approximation of the
quantile function, and empirically showed that this outperforms aggregation
using histograms. The contribution of our paper is to exploit quantile layers
in metric learning, by defining distributional embeddings based on approxi-
mations of quantile functions and deriving loss functions for metric learning
based on comparing the resulting distributions.

There is a large body of work on deep metric learning that studies different
network architectures and loss functions. For example, Hadsell et al (2006)
introduced a loss for a siamese network architecture that is based on all possible
pairs of instances in the training data, and its objective is to minimize distances
between positive pairs (same class) while maximizing the distances between
negative pairs (different classes). More recently, Schroff et al (2015) introduced
the triplet loss, with links positive and negative pairs by an anchor instance.
This idea has later been extended by Oh Song et al (2016) and Sohn (2016) by
providing several negative pairs linked to one positive pair to the loss function.
The loss function introduced by Sohn (2016) has shown superior performance
in several studies (Sohn, 2016; Wu et al, 2017; Yuan et al, 2017). Our method
builds on these established deep metric learning techniques, but extends them
by replacing vector embeddings with distributional embeddings, which requires
corresponding changes in distance calculations and the loss function.

Distributional embeddings have also been studied in natural language pro-
cessing in the context of word embeddings. Traditional word embedding models
such as word2vec represent words as vectors in a metric space such that seman-
tically similar words are mapped to similar vectors (Mikolov et al, 2013). Vilnis
and McCallum (2015) extend this idea by mapping each word to a Gaussian
distribution (with diagonal covariance), which naturally characterizes uncer-
tainty about the embedding. Athiwaratkun and Wilson (2017) further extend
this model by replacing the Gaussian distribution with a mixture of Gaus-
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sians, where the multimodal mixture can capture multiple meanings of the
same word. The motivation for these distributional embeddings is somewhat
different from our motivation in this paper: while the distribution in our model
results from the inner structure of the instance being mapped (distribution of
patterns within a sequence), the distribution in the model by Vilnis and Mc-
Callum (2015) captures remaining uncertainty and is inferred during training.
Another difference in the work by Vilnis and McCallum (2015) is that their
model is trained in an unsupervised fashion, while we study supervised metric
learning. An approach similar to that of Vilnis and McCallum (2015) has also
been taken by Bojchevski and Günnemann (2018) in order to map nodes of an
attributed graph onto Gaussian distributions that function as an embedding
representation. This is again an unsupervised approach, and specific to the
task of node embedding.

More generally, deep metric learning models have been recently used in
different application domains featuring sequential data, including natural lan-
guage processing (Mueller and Thyagarajan, 2016; Neculoiu et al, 2016), com-
puter vision (McLaughlin et al, 2016; Wu et al, 2018) and speaker identifica-
tion (Li et al, 2017; Chung et al, 2018), but these approaches are based on
vector embeddings rather than distributional embeddings.

3 Quantile Layers and Distributional Sequence Embeddings

This section reviews quantile layers as introduced by Abdelwahab and Landwehr
(2019) and discusses how they can be used to define distributional embeddings
of variable-length sequences.

In this paper, we focus on variable-length sequences and deep convolutional
neural network architectures that produce embeddings of such sequences. Typ-
ically, network architectures for such sequences would employ stacked convo-
lution layers to extract informative features from the sequence, and in the last
layer use some form of global pooling to transform the remaining variable-
length representation into a fixed-length vector representation. Global pooling
achieves this transformation by performing a simple aggregate operation such
as taking the maximum or average over the filter activations across the se-
quence. This has the potential disadvantage that most information about the
distribution of the filter activations is lost, which might be informative for the
task at hand. In contrast, quantile layers aim to preserve as much informa-
tion as possible about the distribution of filter activations along the sequence
by approximating the quantile function of this distribution. Earlier work has
shown that this information can be informative for sequence classification, sub-
stantially increasing predictive accuracy (Abdelwahab and Landwehr, 2019).

In this paper, we use quantile layers for defining distributional embeddings
of sequences. We assume that instances are given by variable-length sequences
of the form s = (x1, ...,xT ) where xt ∈ RD is a vector of attributes that de-
scribes the sequence element at position t. We denote the space of all such
sequences with D attributes by SD =

⋃∞
T=1 RT×D. When a sequence is pro-
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cessed by a convolutional deep neural network architecture Γ, which we take
to be the network without any final global aggregation layers, the result is a
variable-length representation of the instance over K filters. We denote this
mapping by Γ : SD → SK . Details of the deep convolutional architectures we
employ are given in Section 5. For s ∈ SD and k ∈ {1, ...,K} we will use Γk(s)
to denote the variable-length sequence of activations of filter k produced by
the network for sequence s.

As in Abdelwahab and Landwehr (2019) we use quantile functions in order
to characterize the distribution of filter activations across the sequence Γk(s).
Let x ∈ R be a real-valued random variable, let p(x) denote its density and
F (x) its cumulative distribution function. The quantile function for x is defined
by

Q(r) = inf{x ∈ R : F (x) ≥ r}
where inf denotes the infimum. If F is continuous and strictly monotonically
increasing, Q is simply the inverse of F . Let X = {x1, ..., xN} be a sample of
the random variable x, that is, xn ∼ p(x) for n ∈ {1, ..., N}. The empirical
quantile function Q̂X : (0, 1]→ R is a non-parametric estimator of the quantile
function Q. It is defined by

Q̂X (r) = inf{x ∈ R : r ≤ F̂X (x)} (1)

where F̂X (x) = 1
N

∑N
i=1 I(xi ≤ x) is the empirical cumulative distribution

function and I(xi ≤ x) ∈ {0, 1} is an indicator. Q̂X (r) is a piecewise con-
stant function that is essentially obtained by sorting the samples in X . More
formally, let π be a permutation that sorts the xi, that is, xπ(i) ≤ xπ(i+1)

for 1 ≤ i ≤ N − 1. Then Q̂X (r) = xπ(drNe), where dxe denotes the smallest

integer larger or equal to x. The empirical quantile function Q̂X faithfully ap-
proximates the quantile function Q in the sense that |Q̂X (r)−Q(r)| converges
almost surely to zero if N →∞ and Q is continuous at r (Resnick, 2013).

To enable gradient flow in end-to-end learning, we will work with a piece-
wise linear interpolation of the piecewise constant function Q̂X (r). For i ∈
{1, ..., N} and r ∈ [n−1

N , nN ] we can define a linear approximation by

Q̃X (r) = N(xπ(n+1)− xπ(n))r+nxπ(n) + (1−n)xπ(n+1)

(
r ∈

[
n− 1

N
,
n

N

])

where we define xπ(N+1) = xπ(N) to handle the right interval border. Combin-
ing the linear approximations over the different n, we obtain for r ∈ [0, 1] the
piecewise linear approximation

Q̃X (r) =

N∑

n=1

δ̃(r, n)
(
N(xπ(n+1) − xπ(n))r + nxπ(n) + (1− n)xπ(n+1)

)

where δ̃(r, n) is an indicator function that is defined as one if r ∈ [n−1
N , nN ]

and zero otherwise. The piecewise linear approximation Q̃X (r) of the quan-
tile function depends on the sample size N , because there are N linear seg-
ments. To arrive at an approximation of the quantile function that is in-
dependent of the number of samples, we define a further piecewise linear
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approximation of Q̃X (r) using M sampling points σ(α1), ..., σ(αM ), where
σ(α) = (1 + exp(−α))−1 is the sigmoid function and αi ∈ R are parameters
with αi ≤ αi+1. Formally, we define

Q̄X (r) =
M∑

i=0

δ̄(r, i)(aX ,ir + bX ,i) (2)

where

aX ,i =
Q̃X (σ(αi+1))− Q̃X (σ(αi))

σ(αi+1)− σ(αi)
(3)

bX ,i = Q̃X (σ(αi))− σ(αi)
Q̃X (σ(αi+1))− Q̃X (σ(αi))

σ(αi+1)− σ(αi)
, (4)

δ̄(r, i) is an indicator function that is one if r ∈ [σ(αi), σ(αi+1)] and zero
otherwise, and we have introduced α0 = −∞ and αM+1 = ∞ to handle
border cases. The function Q̄X (r) provides a piecewise linear approximation
of the quantile function using M+1 line segments, independently of the sample
size N . The parameters αi are learnable model parameters in the deep neural
network architectures that we study in Section 5.

We are now ready to define the distributional embedding for an instance,
which is obtained by passing the instance through the neural network Γ and
for each filter in the output of Γ approximating the quantile function of the
filter activations by the piecewise linear function Q̄.

Definition 1 (Distributional embedding of sequence) Let s ∈ SD and
let Γ denote a convolutional neural network structure. The distributional em-
bedding of sequence s is given by the vector of piecewise linear functions

ΨΓ(s) =
(
Q̄Γ1(s), ..., Q̄ΓK(s)

)
(5)

where Q̄Γk(s) is defined by Equation 2 using X = Γk(s). Here, we slightly
generalize the notation by identifying the sequence of observations Γk(s) with
the corresponding set of observations.

We note that due to the piecewise linear approximations, gradients can
flow through the entire embedding architecture, both to parameters αm and
the weights in the deep neural network structure Γ. This includes the sorting
operation, where gradients can be passed through by reordering the gradient
backpropagated from the layer above according to the sorting indices π.

4 A Wasserstein Loss for Distributional Embeddings

For training the embedding model, we will use deep metric learning approaches
which train model parameters such that instances of the same class are close
and instances of different classes are far apart in the embedding space. In
order to apply such approaches, a distance metric needs to be defined on the
embedding space.
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4.1 Distances Between Distributional Embeddings

As discussed in Section 3, in our setting embeddings of instances are given
by distributions. Measuring the distance between two embeddings thus means
comparing their respective distributions. Different approaches to measure dis-
tances between probability distributions have been discussed in the literature.
One of the most widely used distance functions between distributions is the
Kullback-Leibler divergence. However, this measure is asymmetric and can re-
sult in infinite distances, and is therefore not a metric. A metric based on the
Kullback-Leibler divergence is the square root of the Jensen-Shannon diver-
gence, which is symmetric, bounded between zero and

√
log(2), and satisfies

the triangle inequality. However, this metric does not yield useful gradients in
case the distributions being compared have disjoint support, which in our case
would occur if two sequences with non-overlapping ranges of filter values are
compared. To illustrate, let q1 and q2 denote densities with disjoint support

A1 and A2, and let m(x) = q1(x)+q2(x)
2 . Then the Jensen-Shannon divergence

J of q1 and q2 is

J(q1, q2) =
1

2

∫

A1∪A2

q1(x)log

(
q1(x)

m(x)

)
dx+

1

2

∫

A1∪A2

q2(x)log

(
q2(x)

m(x)

)
dx

=
1

2

∫

A1

q1(x)log

(
2
q1(x)

q1(x)

)
dx+

1

2

∫

A2

q2(x)log

(
2
q2(x)

q2(x)

)
dx

= log(2)

independently of the distance between A1 and A2, resulting in a gradient of
zero.

A different class of distance functions which are increasingly being studied
in machine learning (Frogner et al, 2015; Gao and Kleywegt, 2016; Arjovsky
et al, 2017) are Wasserstein distances. Wasserstein distances are based on the
idea of optimal transport plans. They do not suffer from the zero-gradient
problem exhibited by the Jensen-Shannon divergence, because they take into
account the metric of the underlying space. They also guarantee continuity un-
der mild assumptions, which is not the case for the Jensen-Shannon divergence
as illustrated by Arjovsky et al (2017). In the general case, the p-Wasserstein
distance (for p ∈ N) between two probability measures ρ1 and ρ2 over a space
M with metric d can be defined as

Wp(ρ1, ρ2) =

(
inf

π∈J (ρ1,ρ2)

∫

M×M
d(x, y)pdπ(x, y)

) 1
p

(6)

where J (ρ1, ρ2) denotes the set of all joint measures onM×M with marginals
ρ1 and ρ2. For the purpose of this paper, we are interested in the case of
real-valued random variables. If q1(x1) and q2(x2) are two densities defining
distributions over real-valued random variables, xi ∈ R, the p-Wasserstein
distance between q1 and q2 is given by

Wp(q1, q2) =

(
inf

q∈J (q1,q2)

∫∫
|x1 − x2|pq(x1, x2)dx1dx2

) 1
p

(7)
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Fig. 1 According to the Wasserstein metric, distributions q1 and q2 are closer than q1 and
q3, while distances would be identical under the Jensen-Shannon measure.

where J (q1, q2) defines the set of all joint distributions over x1, x2 which have
marginals q1 and q2. A joint distribution q ∈ J (q1, q2) can be seen as a trans-
port plan, that is, a way of moving probability mass from density q1 such that
the resulting density is q2, in the sense that q(x1, x2) indicates how much mass
is moved from q1(x1) to q2(x2). The quantity

∫∫
|x1 − x2|pq(x1, x2)dx1dx2 is

the cost of the transport plan, which depends on the amount of probability
mass moved, q(x1, x2), and the distance by which the mass has been moved,
|x1 − x2|p. The infimum over the set J (q1, q2) means that the distance be-
tween the distributions is given by the optimal transport plan, which intu-
itively characterizes the minimum changes that need to be made to q1 in order
to transform it into q2. For p = 1 the distance is therefore also called the Earth
Mover Distance. The advantage of this measure is that it takes into account
the metric in the underlying space, as can be seen from Figure 1. Here, q1 is
closer to q2 than it is to q3 in the sense that the probability mass needs to
be moved less far. Thus, Wp(q1, q2) < Wp(q1, q3), while the Jensen-Shannon
distances between the two pairs of distributions would be identical.

Because Wasserstein distances are defined in terms of optimal transport
plans, computing them in general requires solving non-trivial optimization
problems. However, for the case of real-valued random variables xi ∈ R,
there is a simple closed-form solution to the infimum in Equation 7. Let
x1 ∼ q1, x2 ∼ q2 with xi ∈ R. According to Cambanis et al (1976), the
function K(x1, x2) = |x1 − x2|p for p ≥ 1 is quasi-antitone and therefore
the infimum of the expectation of this function over the set of all joint dis-

tributions, infq∈J (q1,q2)E[K(x1, x2)], is given by
∫ 1

0
K(Q1(r), Q2(r))dr, where

Qi(r) = inf{t : qi(xi ≤ t) ≥ r} is the quantile function to the density qi. We
can thus rewrite Equation 7 as

Wp(q1, q2) =

(∫ 1

0

|Q1(r)−Q2(r)|pdr
) 1

p

. (8)

We now define the distance between two embeddings ΨΓ(s) and ΨΓ(s′)
as the Wasserstein distance between the approximate representation of the
quantile functions in the embedding as defined by Definition 1, summed over
the different filters k.
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Definition 2 Let s, s′ ∈ SD, let Γ denote a convolutional neural network
architecture, and let ΨΓ(s) and ΨΓ(s′) denote the distributional embeddings
of s, s′ as defined by Definition 1. Then we define the distance between the
embeddings as

dp(ΨΓ(s),ΨΓ(s′)) =
K∑

k=1

(∫ 1

0

|Q̄Γk(s)(r)− Q̄Γk(s′)(r)|pdr
) 1

p

(9)

The next proposition gives a closed-form result for computing dp(ΨΓ(s),ΨΓ(s′)).

Proposition 1 Let s, s′ ∈ SD, let Γ denote a convolutional neural network
architecture, let ΨΓ(s) and ΨΓ(s′) denote the distributional embeddings of s,
s′, and let dp(ΨΓ(s),ΨΓ(s′)) denote their distance as defined by Definition 2.
Then

dp(ΨΓ(s),ΨΓ(s′)) =

K∑

k=1

( M∑

i=0

(āi,kσ(αi+1) + b̄i,k)|b̄i,kσ(αi+1) + b̄i,k|p
āi,k(p+ 1)

− (āi,kσ(αi) + b̄i,k)|āi,kσ(αi) + b̄i,k|p
āi,k(p+ 1)

) 1
p

(10)

with

āi,k = aΓk(s),i − aΓk(s′),i

b̄i,k = bΓk(s),i − bΓk(s′),i

where aX ,i and bX ,i for X ∈ {Γk(s),Γk(s′)} are defined by Equations 3 and 4,
σ is the sigmoid function, and as above we have introduced α0 = −∞ and
αM+1 =∞ to handle border cases.

Proof (Proposition 1) Starting from Definition 2 and plugging in Q̄Γk(s) as
defined by Equation 2, we see that

∫ 1

0

|Q̄Γk(s)(r)− Q̄Γk(s′)(r)|pdr

=

∫ 1

0

|
M∑

i=0

δ̄(r, i)
(
(aΓk(s),i − aΓk(s′),i)r + bΓk(s),i − bΓk(s′),i

)
|pdr

=
M∑

i=0

∫ σ(αi+1)

σ(αi)

|āi,kr + b̄i,k|pdr (11)

=
M∑

i=0

(āi,kr + b̄i,k)|āi,kr + b̄i,k|p
āi,k(p+ 1)

∣∣∣∣∣

σ(αi+1)

σ(αi)

(12)

where in Equation 12 we use the notation G(r)|ba= G(b)−G(a). In Equation 11
we integrate over subintervals [σ(αi), σ(αi+1)] of the interval [0, 1], and can
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therefore remove the indicator function δ̄(r, i). In Equation 12 we solve the
integral, where we exploit that according to product and chain rules

∂

∂r

(āi,kr + b̄i,k)|āi,kr + b̄i,k|p
āi,k(p+ 1)

=
āi,k|āi,kr + b̄i,k|p+(āi,kr + b̄i,k)p|āi,kr + b̄i,k|p−1sign(āi,kr + b̄i,k)āi,k

āi,k(p+ 1)

= |āi,kr + b̄i,k|p.

The claim directly follows from Equation 12. ut
An important note with respect to the distance function dp(ΨΓ(s),ΨΓ(s′))

is that its closed-form computation given by Proposition 1 allows gradients to
be propagated through distance computations (as well as through embedding
computations as discussed in Section 3) to the parameters of the model Γ
defining the embedding. Moreover, all computations can be expressed using
standard building blocks available in common deep learning frameworks, such
that all gradients are available through automatic differentiation.

4.2 Loss Function

Deep metric learning trains models with loss functions that drive the model
towards minimizing distances between pairs of instances from the same class
(positive pairs) while maximizing distances between pairs of instances from
different classes (negative pairs). Existing approaches differ in the way nega-
tive and positive pairs are selected and the exact formulation of the loss. For
example, triplet-based losses as introduced by Schroff et al (2015) compare the
distance between an anchor instance and another instance from the same class
(positive pair) to the distance between the anchor instance and an instance
from a different class (negative pair). However, comparing a positive pair with
only a single negative pair does not take into account the distance to other
classes and can thereby lead to suboptimal gradients; more recent approaches
therefore often consider several negative pairs for each positive pair (Oh Song
et al, 2016; Sohn, 2016). Inspired by these approaches, we consider several
negative pairs for each positive pair, leading to a loss function of the form

L =
∑

(s1,s2)∈P

∑

(s3,s4)∈N
s3∈{s1,s2}

`(s1, s2, s3, s4)

where P ⊂ SD × SD is a set of positive pairs and N ⊂ SD × SD is a set
of negative pairs of instances, and `(s1, s2, s3, s4) is a loss function that pe-
nalizes cases in which a negative pair (s3, s4) has smaller distance than a
positive pair (s1, s2). A straightforward linear formulation of the loss would be
`(s1, s2, s3, s4) = dp(ΨΓ(s1),ΨΓ(s2))−dp(ΨΓ(s3),ΨΓ(s4)). However, only pairs
of pairs that violate the distance criterion should contribute to the loss, lead-
ing to `(s1, s2, s3, s4) = max(0, dp(ΨΓ(s1),ΨΓ(s2)) − dp(ΨΓ(s3),ΨΓ(s4))). We
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further replace this loss by a smooth upper bound using log-sum-exp, leading
to our final Wasserstein-based loss function

L =
∑

(s1,s2)∈P

∑

(s3,s4)∈N
s3∈{s1,s2}

log
(

1 + expdp(ΨΓ(s1),ΨΓ(s2))−dp(ΨΓ(s3),ΨΓ(s4))
)
. (13)

Equation 13 is of similar structure as other losses used in the literature,
including the angular triplet loss (Wang et al, 2017), the lifted structured
loss (Oh Song et al, 2016), and the N-pair loss (Sohn, 2016).

It remains to specify how positive pairs P and negative pairs N are sam-
pled for each stochastic gradient descent step. We use the approach of Sohn
(2016) for generating P and N , which has been shown to give state-of-the-art
performance in several studies (Sohn, 2016; Wu et al, 2017; Yuan et al, 2017),
in particular outperforming triplet-based sampling (Schroff et al, 2015) and
lifted structure sampling (Oh Song et al, 2016). The approach constructs a
batch of size 2N (where N is an adjustable parameter) by sampling from the
training data N pairs of instances P = {(si, s+

i )}Ni=1 from N different classes,
such that each pair (si, s

+
i ) is a positive pair from a different class. From the

sampled batch, a set of N(N − 1) negative pairs is constructed by setting
N = {(si, s+

j )}Ni,j=1
j 6=i

. Note that Equation 13 can be computed by first comput-

ing the embeddings of the 2N instances in the batch, and then computing the
overall loss. Thus, although the computation is quadratic in N , the number of
evaluations of the deep neural network model Γ is linear in the batch size.

5 Empirical Study

We empirically study the proposed method in three biometric identification
domains involving human eye movements, accelerometer-based observation of
human gait, and EEG recordings. As an ablation study, we specifically eval-
uate which impact the different components of our proposed method – the
metric learning approach, the use of quantile layers to fit the distribution of
activations of filters across a sequence, and the Wasserstein-based distance
function – have on overall performance.

5.1 Data Sets

We study biometric identification based eye movements, the gait, or the EEG
signal of a subject. In all domains, the data consist of sequential observations
of the corresponding low-level sensor signal – gaze position from an eye tracker,
accelerometer measurements, or EEG measurements – for different subjects.
The task is to identify the subject based on the observed sensor measurements.

The Dynamic Images and Eye Movements (DIEM) dataset (Mital et al,
2011) contains eye movement data of 210 subjects each viewing a subset of 84
video clips. The video clips are of varying length with an average of 95 seconds
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and contain different visual content, such as excerpts from sport matches,
documentary videos, movie trailers, or recordings of street scenes. The data
contain the gaze position on the screen for the left and the right eye, as well
as a measurement of the pupil dilation, at a temporal resolution of 30 Hz. The
eye movement data of a particular individual on a particular video clip is thus
given by a sequence of six-dimensional vectors (horizontal and vertical gaze
coordinate for left and right eye plus left and right pupil dilation), that is,
D = 6 in the notation of Section 3. The average sequence length is 2850 and
there are 5381 sequences overall.

The gait data we use comes from a study by Ihlen et al (2015) who collected
the daily movement activity of 71 subjects for a period of 3 consecutive days.
The recorded data consists of time series of 3D accelerometer measurements
recorded at a sampling rate of 100Hz. For each point in time, the measurement
is a D = 6 dimensional vector consisting of the acceleration and velocity in
x, y, and z direction. In the original data set, a continuous measurement for
3 days has been carried out for each individual. These long measurements
contain different activities, but also long idle periods (for example, during
sleep). We concentrate on subsequences showing high activity, by dividing the
entire recording for each subject into intervals of length one minute, and then
selecting for each subject the 30 subsequences that had the largest standard
deviation in the 6-dimensional observations. This resulted in 2130 sequences
overall (30 for each of the 71 subjects), with a length of T = 6000 per sequence.

The EEG data we use come from a study by Zhang et al (1995) who
conducted EEG recording sessions with 121 subjects, measuring the signal
from 64 electrodes placed on the scalp at a temporal resolution of 256Hz of
the subjects while viewing an image stimulus. The original aim of the study
was to find a correlation between EEG observations and genetic predisposition
to alcoholism, but as subject identifiers are available for all recordings the data
can also be used in a biometric setting. Each subject completed between 40
and 120 trials with 1 second of recorded data per trial. The resulting data
therefore consist of sequences of D = 64 dimensional vectors with a sequence
length of 256 (one trial for one subject).

5.2 Problem Setting

As usual in metric learning, we study a setting in which there are distinct sets
of subjects at training and test time. The embedding model is first trained on
a set of training subjects. On a separate and disjoint set of test subjects, we
then evaluate to what degree the learned embedding assigns small distances to
pairs of test sequences from the same subject, and large distances to pairs of
sequences from different subjects. This reflects an application setting in which
new subjects are registered in a database without retraining the embedding
model. It also naturally allows the identification of imposters, that is, subjects
who have never been observed (neither during training nor in the database of
registered subjects) and try to gain access to the system.
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In all three domains, we therefore first split the data into training and test
data, such that there is no overlap in subjects between the two. For training
the embedding model, we use data of 105 of the 210 subjects (eye movements),
36 of 71 subjects (gait data), or 61 of 121 subjects (EEG data). For the eye
movement domain, we additionally ensure that there is no overlap in visual
stimulus (video clips) between training and test data by splitting the set of all
videos into training and test videos and only keeping the respective sequences
in the training and test data. During training, each sequence constitutes an
instance and the subject its class, and we train either embedding models using
metric learning as discussed in Section 4 or, as a baseline, multiclass classifi-
cation models (see Section 5.3 for details). We also set apart the data of 20%
of the training individuals as validation data to tune model hyperparameters.

At test time, we simulate a biometric application setting by first sampling,
for each test subject, a random subset of the sequences available for that sub-
ject as instances that are put in an enrollment database. We then simulate
that we observe additional sequences from a subject which are compared to
the sequences of all subjects in the enrollment database. An embedding is
good if the distance between these additional sequences and the enrollment
sequences of the same subject is low, compared to the distance to the enroll-
ment sequences of other subjects. More precisely, for each subject we use all
except five of the sequences available for that subject as enrollment sequences.
We then study how well the subject can be identified based on observing n of
the remaining sequences, for n ∈ {1, .., 5}. Given observed sequences s1, ..., sn
(representing a subject that is unknown at test time), we compute distances
to all subjects j as dj = 1

n

∑n
i=1 d(si, sij) where sij is the sequence of subject

j in the enrollment database with minimal distance to si. Here, the definition
of the distance function d is method-specific (see below for details).

We first study a verification scenario. This is the binary problem of deciding
if the observed sequences s1, ..., sn match a particular subject j, by comparing
the computed distance dj to a threshold value. Varying the threshold trades
of false-positive versus false-negative classifications, yielding a ROC curve and
AUC score. Note that the verification scenario also covers the setting in which
in imposter is trying to get access to a system as a particular user; the false-
positive rate is the rate at which such imposters would be accepted.

We then study a multiclass identification scenario, where we use the model
to assign the observed sequences s1, ..., sn to a subject enrolled in the database
(the subject j∗ = arg minj dj). This constitutes a multiclass classification prob-
lem for which (multiclass) accuracy is measured. In this experiment, we also
vary the number of subjects under study, by randomly sampling a subset of
subjects which are enrolled in the database; the same subset of subjects is
observed at test time. The identification problem becomes more difficult as
the number of subjects increases.

We finally study the robustness of the model to imposters in the multiclass
identification scenario, an experiment we denote as multiclass imposters. This
reflects applications in which access to a system does not require a user name,
because the system tries to automatically identify who is trying to gain access.
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In this experiment, half of the test subjects play the role of imposters who are
not registered in the enrollment database. As in the multiclass identification
setting, observed sequences are matched to the enrolled subject with minimum
distance. This minimum distance is then compared to a threshold value; if
the threshold is exceeded, the match is rejected and the observed sequences
are classified as belonging to an imposter. Varying the threshold trades off
false-positives (match of imposter accepted) versus false-negatives (match of
a subject enrolled in the database rejected), yielding a ROC curve and AUC.
Correctly rejecting imposters is harder in this setting because it suffices for an
imposter to successfully impersonate any enrolled subject. In this experiment
we also vary the number of subjects enrolled in the database.

In all three scenarios, the split of sequences into enrollment and observed
sequences is repeated 10 times to obtain standard deviations of results. More-
over, accuracies and AUCs will increase with increasing n, as identification
becomes easier the more data of an unknown subject is available.

5.3 Methods Under Study

We generally study the deep convolutional architecture proposed by Abdel-
wahab and Landwehr (2019) for biometric identification, which consists of
16 stacked 1D-convolution layers with PReLU activation functions. We vary
the aggregation operation, loss function, and training algorithm in order to
evaluate the impact of these components on overall performance.

QP-WL: Our method, combining the quantile embeddings of Section 3 with
the Wasserstein-based loss function and metric learning algorithm of Section 4.
In all experiments, we set the parameter p of the distance function (see Defini-
tion 2) to one, that is, we use the Earth Mover Distance variant of the Wasser-
stein distance. The convolutional neural network architecture Γ of Section 3 is
given by 16 stacked convolution layers with parametric RELU activations as
defined by Abdelwahab and Landwehr (2019). The number of sampling points
for the quantile function is M = 16. At test time, distance between instances
is given by the distance function from Definition 2.

QP-NPL: This method uses the same network architecture and quantile
embedding as QP-WL. However, the resulting quantile embedding is then
flattened into an K · M vector embedding, with entries Q̄Γk(s)(σ(αm)) for
k ∈ {1, ...,K} and m ∈ {1, ...,M}. Then the standard N -pair loss, which is
based on cosine similarities between embedding vectors (Sohn, 2016), is used
for training. At test time, the distance between instances is given by negative
cosine similarity. This method utilizes quantile-based aggregation and metric
learning, but does not employ our Wasserstein-based loss function.

MP-NPL: This method uses the same basic network architecture as QP-
NPL, but uses standard max-pooling instead of a quantile layer for global
aggregation. This results in a K-dimensional embedding vector. As for QP-
NPL, the model is trained using metric learning with the N -pair loss. At test
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Eye data 1 Video 2 Videos 3 Videos 4 Videos 5 Videos

QP-WL 0.9466±0.0032 0.9716±0.0020 0.9799±0.0013 0.9837±0.0008 0.9860±0.0005
QP-NPL 0.9345±0.0033 0.9584±0.0027 0.9667±0.0020 0.9705±0.0014 0.9738±0.0010
MP-NPL 0.8890±0.0035 0.9232±0.0028 0.9334±0.0017 0.9392±0.0014 0.9437±0.0016
QP-CLS 0.9007±0.0053 0.9318±0.0029 0.9424±0.0025 0.9503±0.0025 0.9538±0.0026

Gait data 1 Minute 2 Minutes 3 Minutes 4 Minutes 5 Minutes

QP-WL 0.9923±0.0008 0.9963±0.0003 0.9971±0.0003 0.9974±0.0002 0.9978±0.0001
QP-NPL 0.9889±0.0009 0.9932±0.0004 0.9943±0.0003 0.9947±0.0002 0.9951±0.0002
MP-NPL 0.9459±0.0027 0.9624±0.0027 0.9690±0.0021 0.9735±0.0016 0.9757±0.0012
QP-CLS 0.9579±0.0040 0.9756±0.0018 0.9812±0.0016 0.9856±0.0011 0.9878±0.0008

EEG data 1 Second 2 Seconds 3 Seconds 4 Seconds 5 Seconds

QP-WL 0.9968±0.0006 0.9985±0.0001 0.9988±0.0001 0.9991±0.0000 0.9992±0.0000
QP-NPL 0.9927±0.0005 0.9941±0.0005 0.9953±0.0003 0.9955±0.0002 0.9959±0.0001
MP-NPL 0.9611±0.0012 0.9687±0.0005 0.9713±0.0005 0.9722±0.0005 0.9732±0.0005
QP-CLS 0.9796±0.0017 0.9868±0.0009 0.9901±0.0010 0.9920±0.0006 0.9923±0.0007

Table 1 Area under the ROC curve with standard error for all methods and domains in
the verification setting for varying number n ∈ {1, 2, 3, 4, 5} of observed sequences.

time, distance is given by negative cosine similarity. This baseline uses metric
learning, but neither quantile layers nor the Wasserstein-based loss function.
QP-CLS: This baseline uses the same network architecture and flattened
quantile embedding as QP-NPL, but feeds the flattened embedding vector
into a dense classification layer with softmax activation. The models is trained
in a classification setting using multiclass crossentropy. Distance at test time
is given by negative cosine similarity. This model is identical to the model
presented in Abdelwahab and Landwehr (2019), except that we remove the
final classification layer at test time to generate embeddings for novel subjects.

For all methods, training is carried out using the Adam optimizer with
learning rate 0.0001 for 50000 iterations, and the regularizer of the PReLU ac-
tivation function is tuned as a hyperparameter on the validation set as in (Ab-
delwahab and Landwehr, 2019).

5.4 Results

We present and discuss empirical results for the different domains in turn.

5.4.1 Eye Movements

Table 1, upper third, shows area under the ROC curve for all methods and
varying number n of observed sequences in the eye movement domain. Com-
paring QP-WL and QP-NPL, we observe that the Wasserstein-based loss in-
troduced in Section 4, which works on the distributional embedding given by
the piecewise linear approximations of the quantile functions, clearly outper-
forms flattening the distributional embedding and using N -pair loss. Com-
paring MP-NPL with QP-NPL and QP-WL shows that using quantile layers
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Fig. 2 ROC curves in the eye movement domain for all methods using n = 5 observed
sequences. Shaded region in ROC curves indicates standard error.
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Fig. 3 Left: Identification accuracy in the multiclass identification scenario for the eye
movement domain and n = 5 observed test instances as a function of the fraction of subjects
that are enrolled. Right: area under the ROC curve for multiclass imposters as a function
of the fraction of subjects enrolled. In the imposter scenario, 50% of subjects are imposters
and therefore never enrolled. Error bars indicate the standard error.

improves accuracy compared to max-pooling even if the quantile embedding is
flattened (and more so if Wasserstein-based loss is used). Classification train-
ing (QP-CLS) reduces accuracy compared to metric learning (QP-NPL). As
expected, AUC increases with the number n of sequences observed at test
time. Figure 2 shows ROC curves in the verification setting for n = 5.

Figure 3 (left) shows multiclass identification accuracy for n = 5 observed
sequences as a function of the fraction of the 105 subjects who are enrolled. Rel-
ative results for the different methods are similar as in the verification setting.
Accuracy decreases slightly when more subjects are enrolled, as the multiclass
problem becomes more difficult. Figure 3 (right) shows the robustness of the
model to multiclass imposters as a function of the fraction of the 105 subjects
who are enrolled (up to 50%, as half of the subjects are imposters). We observe
that QP-WL is much more robust to imposters than the baseline methods.

In the eye movement domain, we also compare against the state-of-the-art
model by Jager et al (2019), denoted Jager et al. (2019). Jager et al. (2019)
uses angular gaze velocities averaged over left and right eye as input, which we
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Fig. 4 Comparison between QP-WL and Jager et al. (2019) in the eye movement domain:
area under ROC curve in verification scenario (left), identification accuracy in multiclass
identification scenario (center), and robustness of model to multiclass imposters (right). In
this experiment, the data is simplified for both methods to match the requirements of Jager
et al. (2019), see text for details. Results of QP-WL therefore differ from results presented
in Figure 2 and Figure 3. Error bars indicate the standard error.

compute from our raw data. We replicate the setting of Jager et al (2019) by
training the model using multiclass classification and using the last layer before
the classification layer as the embedding at test time. The Jager et al. (2019)
architecture cannot deal with variable-lenght sequences, we therefore split the
variable-length sequences in our data into shorter sequences of fixed length,
namely the length of the shortest sequence (27 seconds). For a fair comparison,
we also simplify the data for our model in this experiment: using only the
average gaze point rather than left and right gaze point separately, removing
pupil dilation, and using the same fixed-length sequences. Figure 4 shows ROC
curves for the verification scenario (left) and identification accuracy (center) as
well as AUC in the imposter scenario for our model QP-WL on the simplified
data and Jager et al. (2019). Comparing to Figure 2 and Figure 3 we observe
that accuracies are reduced for our model by using the simplified data, but the
model still outperforms Jager et al. (2019) by a wide margin. We note that the
model of Jager et al (2019) is focused on microsaccades, which are likely not
detectable in our data due to the low temporal resolution (30Hz compared to
1000Hz in the study by Jager et al (2019)), which might explain the relatively
poor performance of the model on our data.

5.4.2 Gait

Table 1, center third, shows area under the ROC curve for all methods and
varying number n of observed sequences in the gait domain. We observe the
ordering in terms of relative performance between the different methods as in
the eye movements domain, with clear benefits when using the proposed loss
function based on Wasserstein distance (QP-WL versus QP-NPL), when us-
ing quantile layers instead of max-pooling aggregation (QP-WL and QP-NPL
versus MP-NPL), and when using metric learning rather than classification-
based training (QP-NPL versus QP-CLS). Figure 5 shows ROC curves for
verification at n = 5 in the gait domain. Figure 6 (left) shows identification
accuracy as a function of the fraction of subjects enrolled in the gait domain;
in this setup the ordering of methods in terms of performance is the same
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Fig. 5 ROC curves in the gait domain for all methods using n = 5 observed sequences.
Shaded region in ROC curves indicates standard error.
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Fig. 6 Left: Identification accuracy in the multiclass identification scenario for the gait
domain and n = 5 observed test instances as a function of the fraction of subjects that
are enrolled. Right: area under the ROC curve for multiclass imposters as a function of the
fraction of subjects enrolled. In the imposter scenario, 50% of subjects are imposters and
therefore never enrolled. Error bars indicate the standard error.

but the difference between QP-WL and QP-NPL less pronounced. Figure 6
(right) shows robustness to multiclass imposters, with again a clear advantage
of QP-WL over the baselines.

5.4.3 EEG

Table 1, bottom third, shows area under the ROC curve for all methods and
varying number n of observed test sequences in the EEG domain. Relative
performance of methods is generally similar as in the other two domains. QP-
WL clearly outperforms the closest baseline, reducing 1-AUC by between 56%
(n = 1) and 80% (n = 5). Figure 7 shows ROC curves in the verification
setting. Figure 8 (left) and Figure 8 (right) show identification accuracy as a
function of the fraction of subjects enrolled and robustness of the models to
multiclass imposters. As in the gait domain, differences are more pronounced
in the latter setting.
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Fig. 7 ROC curves in the EEG domain for all methods using n = 5 observed sequences.
Shaded region in ROC curves indicates standard error.
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Fig. 8 Left: Identification accuracy in the multiclass identification scenario for the EEG
domain and n = 5 observed test instances as a function of the fraction of subjects that
are enrolled. Right: area under the ROC curve for multiclass imposters as a function of the
fraction of subjects enrolled. In the imposter scenario, 50% of subjects are imposters and
therefore never enrolled. Error bars indicate the standard error.

6 Conclusions

We developed a model for distributional embeddings of variable-length se-
quences using deep neural networks. Building on existing work on quantile
layers, the model represents an instance by the distribution of the learned
deep features across the sequence. We developed a distance function for these
distributional embeddings based on the Wasserstein distance between the cor-
responding distributions, and from this distance function a loss function for
performing metric learning with the proposed model. A key point about the
model is end-to-end learnability: by using piecewise linear approximations of
the quantile functions, and based on those providing a closed-form solution
for the Wasserstein distance, gradients can be traced through the embedding
and loss calculations. In our empirical study, distributional embeddings out-
performed standard vector embeddings by a large margin on three data sets
from different domains.
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Chapter 5

Discussion

This thesis has studied machine learning approaches for eye movement biometrics.
On the one hand, it has shown that the proposed novel machine learning models can
improve the identification accuracy of eye movement biometrics in various settings.
On the other hand, the developed machine learning approaches — especially those of
Chapters 3 and 4 — are generally applicable, and thus also generally contribute to
the machine learning literature, especially the deep learning and deep metric learning
literature. Empirically, this thesis has systematically studied the performance of
the proposed models and baselines on several large-scale eye movement data sets,
comprising 461 individuals and 38,993 gaze sequences overall.

At first, the thesis introduced a Bayesian semiparametric model for eye movement
biometrics. On the application side, this model improves over earlier fully paramet-
ric models for eye movement biometrics. On the methodological side, the study
has introduced a solution for performing Bayesian inference with models involving
observation-specific truncations of densities. Next, the thesis introduced a statistical
aggregation layer to fit distributions of learned deep features within neural networks.
Empirically, using the proposed deep neural networks instead of probabilistic models
built upon psychological concepts improves biometric identification accuracy. More-
over, deep neural networks with the proposed statistical aggregation layer outperform
networks with standard pooling layers and the other statistical aggregation layers
proposed in the literature. Finally, in Chapter 4, the thesis introduced a novel deep
metric learning approach for sequence data, in which input sequences are represented
by the distributions of learned deep features across the sequence. This approach
is again general and not limited to eye movements, having been empirically shown
to outperform existing deep metric learning techniques in several domains. Before
discussing the biometrical empirical results in Section 5.2, I first discuss the related
work in Section 5.1. The contributions of this thesis to the field of machine learning
and eye movement modeling are discussed in Section 5.3.

5.1 Related Work

This thesis starts by proposing the semiparametric approach for modeling eye move-
ment sequences using a model based on the psychological concepts of eye movement.
The model is specifically based on the concepts for eye movements during reading,
distinguishing different saccade types [Heister 12]. In an effort to understand eye
movements during reading, several studies analyzed gaze paths based on the text
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content and structure, using machine learning techniques to predict the next gaze
movement [Hara 12, Matthies 13]. When developing Chapter 2, a number of stud-
ies addressed the problem of reader identification from eye movement while reading
arbitrary text [Landwehr 14, Holland 11]. One study used handcrafted aggregated
features across the gaze movement sequence to describe the sequence [Holland 11].
After computing similarities between these features, the overall similarity between
two given sequences was established by summing these similarities. In that study,
the contribution of each feature to the overall similarity was weighted. The majority
of the weights (more than two-thirds) were given to only two features: average fixation
duration and the number of fixations. In comparison to this feature-based model, bet-
ter performance was demonstrated for a probabilistic model that captures individual
differences in distributions over the fixation durations and saccade amplitudes of the
gaze sequences generated by an individual [Landwehr 14]. Specifically, in this model,
saccadic moves were segmented into four groups: refixation, next word movement,
forward skip, and regression. The distributions of fixation durations and saccade am-
plitudes over each movement group were modeled separately for each individual. As
some of these distributions were estimated from sparse data, and to avoid overfitting,
a simple parametric model based on Gamma distributions was used. This thesis com-
pares the semiparametric model proposed in Chapter 2 with different variations of
both models [Holland 11, Landwehr 14]. There is also general work on semiparamet-
ric density estimation in statistics and machine learning [Yang 09, Lenk 03, Hjort 95].
However, these approaches are not directly applicable to the distributions in our do-
main as they are truncated at each observation differently depending on the structure
of the input text.

Psychological concepts have so far been the foundation for most eye movement
biometric approaches, as well as for modeling eye movements on non-textual visual
input. Previous studies, not limited to textual input, focused on segmenting the
gaze movement sequences into fixations and saccades. Using fixations and saccades,
the studies mainly designed handcrafted features that could differentiate between
sequences generated by different individuals. Simple features such as average fixa-
tion durations and average saccade amplitudes were used for an identification study
[Holland 13]. This work was later extended to include more complex features like sac-
cade acceleration, using statistical tests to compare sequences [Rigas 16]. Another
study used probabilistic modeling [Kinnunen 10], wherein the authors slid a window
over the gaze movement sequence, after preprocessing the gaze coordinates into an-
gles between consecutive gaze points. The authors computed a histogram describing
the angles in each window. Assuming independence between the windows, the au-
thors built an individual-specific distribution as a mixture of multivariate Gaussians.
Jointly, existing work in the literature has shown that statistically modeling short-
term local patterns (fixations and saccades) best characterizes an individual. Instead
of preprocessing the data and using handcrafted features, a deep neural network is
introduced in Chapter 3. The network extracts the short-term local patterns with
stacked convolution layers, then characterizes their distribution using a statistical
aggregation layer. This chapter compares the proposed method with all the related
methods [Holland 13, Rigas 16, Kinnunen 10, Landwehr 14] and the prior work in
Chapter 2, illustrating that the proposed method outperforms them by a wide mar-
gin.

Other statistical aggregation layers for deep neural networks have been proposed
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in the literature [Wang 16, Sedighi 17]. The layers are based on approximating the
histogram of learned deep features within the network. The layers also contain train-
able parameters, namely the bin centers and widths within the histogram. One study
used a linear approximation of the histogram to enable the gradient to flow [Wang 16],
while the other used a Gaussian kernel as an approximation for the histogram bin
[Sedighi 17]. Unlike the quantile layer introduced in Chapter 3, they do not generalize
standard pooling layers. Empirically, this thesis compares these existing statistical
aggregation layers to the quantile layer and shows that the proposed quantile layer
outperforms these histogram-based layers. In the empirical study presented in Chap-
ter 3, the proposed model is compared with a recurrent architecture based on gated
recurrent units [Cho 14], which are a popular class of recurrent architectures, as they
have shown to be more robust and faster to train than LSTMs while giving similar
performance [Chung 14].

The deep metric learning approach studied in Chapter 4 is related to other work
in deep metric learning for sequences. A number of studies have worked with se-
quence deep metric learning. An earlier study [Chung 18] proposed an embedding
for voice sequences in two stages. First, the network was trained for classification
using a softmax loss, then it was fine-tuned with contrastive loss [Hadsell 06], using
Euclidean distance to compare embeddings. An alternative study [Li 17] used triplet
loss [Schroff 15] to train a speaker identification model, using cosine similarity to
compare embeddings. Another work [Mueller 16] introduced LSTM-based siamese
networks [Bromley 94] to calculate the similarity between two sentences, using the
Manhattan distance to compare embeddings. In Chapter 4, the thesis studied the
embeddings of sequences based on distributions. The existing deep metric learning
distance functions proposed in the literature are not directly applicable to measuring
the distances between distributional embeddings. There is also a rich literature on
loss functions for deep metric learning. Several studies [Sohn 16, Wu 17, Yuan 17]
illustrate that N-pair loss [Sohn 16] is a state-of-the-art loss function for deep met-
ric learning, outperforming lifted structure [Oh Song 16] and triplet loss [Schroff 15].
Chapter 4 compares the proposed Wasserstein based loss with the N-pair loss.

All the previously mentioned metric learning methods have studied a similar su-
pervised setting as the one studied in the thesis but employed (non-distributional)
fixed-point vector embeddings. Other studies have explored the distributional em-
beddings but in an unsupervised way. Distributional word embeddings were studied
in the field of natural language processing, representing an instance as a Gaussian
distribution [Vilnis 15] or mixtures of Gaussian distributions [Athiwaratkun 17]. A
similar approach proposed distributional embeddings for graph nodes based on Gaus-
sian distributions [Bojchevski 18]. The objective of these approaches was to find a
low dimensional embedding space that preserves the distribution of the neighbors
for each instance, as in the original space. The distribution in these models does
not capture the inner structure of the instance being mapped (distribution of deep
features across the sequence), but rather captures uncertainty about the embedding.
A further difference with the thesis proposed method is that the proposed method
does not assume any fixed parametric form (such as Gaussian) for the distribution,
but directly approximates its quantile function.

Concurrently with the work developed in the thesis, a new study [Jäger 19] ex-
plored the use of deep neural networks for eye movement biometrics. It proposed a
deep neural network framework for reader identification from micro eye movements
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after preprocessing the gaze coordinates into gaze angular velocity. The study then
divided the angular speed into fast and slow velocity to be processed by two different
neural networks. After training each network separately for identification, the au-
thors combined both networks, then trained the concatenating layer. The new study
used the intermediate layer as an embedding value for the input. The new study is
empirically compared with the approach proposed in Chapter 4.

5.2 Empirical Evaluation

This section summarizes the empirical performance in eye movement biometrics ob-
tained in this thesis, situating it with respect to the literature. Chapter 2 of the
thesis introduced a novel probabilistic model for the eye movements observed during
reading. The method was empirically evaluated and compared to baseline methods
from the literature on a dataset of 251 readers, wherein each read between 100–144
sentences from the Potsdam sentence corpus [Kliegl 06]. For arbitrary test inputs
different from the training inputs, the corpus sentences were split randomly into
equal sets: training and test sentences. Two settings were studied: multi-class clas-
sification setting (identification) and binary classification setting (verification). In
the multi-class classification setting, the proposed method in Chapter 2 reduced the
error by more than a factor of three compared to the state of the art in reader iden-
tification [Landwehr 14]. An even better performance gain is observed compared to
the feature-based model [Holland 11]. For the multi-class classification problem, the
effect of the number of readers on the performance of the different methods was mea-
sured. Another parameter that contributes to the identification error is the number
of test sentences read by the reader before identification. As the number of sentences
read at test time increases, the models become more certain about the identity of
the reader; however, a reader thus needs to be observed for longer before his or her
identity can be inferred. In all these experiments, the proposed model substantially
outperforms the baselines in terms of identification accuracy. In the binary classifi-
cation or verification setting, the results were presented as a plot between false reject
and false accept rates. The study summarized the results in a table for the area
under the curve of the different methods. The study evaluated the different methods
in the binary classification setting while varying the number of test sentences read
by the unknown reader. The proposed method also kept its lead in this setting by
a significant margin. In another study [Makowski 18], the proposed semiparametric
approach was compared with the parametric approach [Landwehr 14], and this lead
was demonstrated on yet another dataset of 61 participants reading a full document
at a time.

The thesis then transitioned from studying eye movements during reading to
studying eye movements with more general visual inputs. In Chapter 3, the proposed
method was evaluated on a large-scale dataset called DIEM [Mital 11]. The dataset
contains gaze movement recordings of 210 participants, viewing between 25–26 short
clips from a list of 84 videos of different visual content and varying length. The gaze
movement time-series were sampled at 30 Hz, which is an extremely low temporal res-
olution compared to other studies in eye movement biometrics. Chapter 3 introduced
the quantile layer — a statistical aggregation layer — to fit the distributions of learned
patterns within deep neural networks. The study used the same deep neural network
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convolution architecture for all the deep learning approaches but with different global
pooling methods: the standard pooling layer (Global max-pooling, Global average
pooling), proposed quantile layer, and other statistical pooling layers from the litera-
ture [Wang 16, Sedighi 17]. In addition to the convolution architecture, the chapter
studied recurrent architecture using Gated Recurrent Units [Cho 14]. To test on arbi-
trary input, the test inputs should be different from training inputs. The set of videos
was split evenly between training and test videos, and the models were trained to
differentiate between the gaze movements of different subjects. The multi-class classi-
fication identification errors were recorded while varying the number of videos seen by
the unknown subjects. As the number of videos watched increases, the problem gets
easier, and the models become more certain about the identity of the unknown sub-
ject. The results illustrate that the proposed quantile layer consistently outperforms
all the other methods. Furthermore, the study compared the new approach with the
previous model in Chapter 2 [Abdelwahab 16] and several models proposed in the eye
movement biometrics literature [Kinnunen 10, Rigas 12, Holland 13, Landwehr 14].
The proposed method outperformed the state-of-the-art methods in terms of identi-
fication accuracy by a wide margin.

Later, this thesis widened the domain of experiments to include all sequences, not
just eye movement sequences. In Chapter 4, the study used three different datasets
from different domains to validate the proposed approach. In addition to the gaze
movement DIEM dataset [Mital 11], the approach was evaluated on a collection of 3D
accelerometer recordings of 71 individuals [Ihlen 15], and another collection of elec-
troencephalography(EEG) recordings of 121 individuals [Zhang 95]. Each dataset
contained a list of time-series sequences generated by individuals. The study was
interested in learning an embedding of these sequences into a metric space that could
be used to identify or verify subjects from the observed sequences, even if the subjects
did not appear in the training data. For all of the datasets, two settings were studied:
the multi-class classification and verification settings. The chapter measured the per-
formance of the multi-class classification with two measures: the identification error
and the AUC of identifying an imposter as an enrolled individual versus identifying
an enrolled individual as enrolled. These two measures were calculated while varying
the number of enrolled individuals. In the verification case, the results are shown as
an ROC curve, where true positives are subjects correctly matched and false positives
are cases where a subject is matched against a different subject by the model. The
chapter compares the proposed loss function with the N-pair loss [Sohn 16] using
two different embeddings, with either global maximum pooling features or quantile
features as the embedding. The results illustrate that the proposed loss function
consistently outperforms the state-of-the-art loss (N-pair loss) for the different em-
beddings. Furthermore, the results emphasize the gains of using the quantile pooling
layer over a standard pooling layer across different domains. Moreover, the study
demonstrates the power of metric learning by showing that using the quantile layer
output with metric learning outperforms its output without metric learning by a wide
margin. In the field of eye movement biometrics, the proposed method has a large
performance gain over the latest state of the art in the eye movement biometrics field
[Jäger 19] across all experimental settings.
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5.3 Contributions to Machine Learning and Eye

Movements Modeling

The thesis has studied novel models for eye movement biometrics and novel machine
learning approaches motivated by this application. This section summarizes the main
contributions in terms of novel models and machine learning methods.

Chapter 2 introduced a novel Bayesian semiparametric model of human eye move-
ments during reading based on Gaussian process density estimation. The main
methodological challenge in the model is to perform inference with densities that are
truncated differently for each observation, which are caused by the structure of the
text being read. The thesis developed an inference algorithm based on Metropolis-
Hastings sampling while using 2-point Newton-Cotes quadrature to normalize the
truncated likelihoods for each observation. In terms of eye movement biometrics, the
proposed method extends the state-of-the-art probabilistic model [Landwehr 14] with
a semiparametric approach, which can capture individual differences more accurately
than the more rigid fully parametric formulation. Empirically, this method reduces
identification errors for eye movement biometrics based on reading by more than a
factor of three in a large-scale study of 251 readers and 33,612 sequences.

Chapter 3 introduced a novel statistical aggregation layer for deep neural networks
that approximates the distribution of learned deep features across a sequence. Specif-
ically, the layer approximates the quantile function of the distribution, sampled at a
set of learnable parameters. The proposed layer generalizes standard pooling layers
but provides a more expressive characterization of the distribution of feature activa-
tions than a simple maximum or average. Empirically, the proposed quantile layer
outperforms other statistical aggregation layers based on histograms that have been
proposed in the literature. Moreover, these existing layers do not generalize standard
pooling layers. The proposed method has been empirically studied on a large-scale
data set of eye movements of subjects viewing arbitrary non-textual inputs, compris-
ing a total of 151 hours of eye movement data. The method demonstrates a large
gain in the performance over the state-of-the-art methods in eye movement biomet-
rics, including the previous work introduced in Chapter 2. Furthermore, Chapter 3
[Abdelwahab 19b] provided the first study in the field of eye movement biometrics to
apply deep learning directly to the raw data without preprocessing, in an end-to-end
learnable approach. Concurrently, a deep learning model for identification from micro
eye movements [Jäger 19] was developed. The thesis compared this model with the
metric learning method introduced in Chapter 4.

Chapter 4 introduced a distributional deep metric learning approach for sequences
wherein the embedding of a sequence is given by a set of distributions. While distribu-
tional embeddings have been studied before in the literature [Vilnis 15, Bojchevski 18,
Athiwaratkun 17], the method proposed in this chapter is the first such approach for
supervised metric learning. Moreover, the learned distributions are not limited to
a fixed parametric form. Models based on the proposed loss function outperform
models trained with the N-pair loss — a state-of-the-art loss function in deep metric
learning [Sohn 16] — in three different datasets from different domains. For the do-
main of eye movement biometrics, the proposed method demonstrates a large gain
in performance compared to the most recent study in the field [Jäger 19] and to our
previous model presented in Chapter 3.
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Embedding of Graphs: Unsupervised Inductive Learning via Rank-
ing. In International Conference on Learning Representations,
pages 1–13, 2018.

[Bromley 94] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger &
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