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von
Paul Laz̆ar

geboren am 17.09.1972 in Focşani-Vrancea, Rumänien
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1. Introduction

Surfaces and interfaces can be found everywhere around us. In the last decades, surface science and
technology is subject of increasing interest due to the general trend of miniaturization. Many modern
applications require a good control of the way small amounts of liquid are transported. Liquids in
micro- or nanochannels must be pumped, distributed, mixed or forced to flow in jets (printing) in a
controlled way. For the scale at which these processes occur, the classical methods of handling liquids
(e.g. mechanical pumps or electrical valves) are either ineffective or it is technologically difficult to
manufacture such microdevices.

In biological systems, many important processes occur at surfaces of cells and membranes. One
may say that life itself developed in the early stages, and still develops at surfaces and interfaces. The
interactions at interfaces are important when, for instance, viruses attach themselves to the surfaces
of the cell. The properties of skin or leaf surfaces are also of tremendous importance; they represent a
defense system whose properties preserve the integrity of the whole system. Hence, two-dimensional
systems are essential for understanding the behaviour of biological interfaces.

Wetting and spreading phenomena have recently been the subject of renewed interest, both for
fundamental science and technology. Processes like painting, coating, glueing, lithographic printing,
lubrication, and many others cannot be understand and controlled without a good knowledge of the
underlying conditions and laws which govern them.

Long chain alkanes are the basic units for more complex organic molecules like surfactants, liq-
uid crystals, polymers and lipids. The properties of these molecules cannot be properly understood
without a knowledge of those of the alkanes.

Molecularly thin coverages of long-chain alkanes (tetracosane, triacontane and hexatriacontane)
on solid surfaces are excellently suited to study wetting, two-dimensional ordering and molecular
transport phenomena at the planar solid-vapour interface. The phase behaviour is rich and complex.

In chapter 2 of this thesis, are presented some of the basic concepts of surface thermodynamics,
molecular interactions, statics and dynamics of wetting, classical nucleation theory, and theory of
melting. The basic bulk and surface properties of alkanes are presented in the same chapter.

In chapter 3, the theoretical aspects of the experimental methods used in this work (SAXR, AFM,
and optical microscopy) are shortly presented. Chapter 4 describes the materials and sample prepara-
tion.

After a short description of the wetting properties of long-chain alkanes above and below their melt-
ing temperature, chapter 5 describes a two-dimensional mechanism of solidification (terrace growth).
Undercooled (few degrees below the melting temperature, Tmp), partially wetting alkane drops can
either solidify in bulk or start growing terraces on the silicon substrate. This is a nucleated process
and drop-to-drop propagation of the solidification front can be observed. The kinetics of growth is
”diffusive”, i.e. R ∝

√
time. By analyzing the growth behaviour, the presence of a molecularly thin,

”liquid-like” film on top of the solid terraces is deduced. An unexpected temperature dependence
of the growth kinetic is found: below Tmp the ”speed” of terrace growth decreases with increasing
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1. Introduction

temperature, at Tmp the growth stops, and slightly above Tmp the process is reversed (”terrace disso-
lution”). A model is proposed to explain the experimental findings.

Besides the ”terrace dissolution” mechanism of melting, at higher overheating temperatures (up to
≈ 1◦C above Tmp), solid terraces can melt via ”running” drops. This second mechanism is presented
and discussed in chapter 6. Tiny drops (sub-micrometer in size) nucleate at the terrace edges and
move subsequently on the surface ”eating” the solid in their way. The direction of movement can
be reversed, i.e. the drop moves solidifying at temperature below Tmp. The influence of tempera-
ture, chain length and droplet size on the drops velocity is analyzed in detail and two scenarios are
considered in order to explain the observations.

Defining a proper thermodynamic potential which takes into account bothsurfaceandbulk ener-
getical contributions, a theoretical analysis explains qualitatively and quantitatively the overheating
aspects of melting/solidification for both ”running” drops and terrace growth presented in chapters 5
and 6. It also predicts a third mechanism of melting, when melting ”propagates” faster than all-liquid
dewetting. This phenomenological approach is based only on experimentally accessible parameters
(molar entropy of fusion, liquid surface tension, contact angle, etc.). In the second part of chapter 7,
data related to the melting/solidification of thick terraces are presented and discussed.
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2. Theoretical background

This chapter describes the fundamental concepts for understanding the behaviour of solid and liquid
long-chain alkane molecules at planar solid-air interfaces. Statics and dynamics of wetting, transport
phenomena, adsorption and ordering of molecules at interfaces can not be properly described without
taking into account the forces acting at the microscopic scale.

2.1. Interfacial thermodynamics

2.1.1. Interfacial and surface energies

An interface is the zone separating two inmiscible, condensed phases (L/S, L/L or S/S). If one of
the phases is a gas, the limiting region is called surface. The interface (surface) region has a finite
thickness (usually less than 0.1µm) and composition and energy vary continuously from one phase
to the other. Unlike in the bulk, the pressure (force field) in the interfacial zone is nonhomogeneous,
having a gradient perpendicular to the interface. A consequence of this is that a net energy is required
to create an interface by the reversible transport of matter from the bulk to the interfacial zone. The
reversible work needed to create a unit interface (surface) area is the interfacial (surface) tension,γ:

γ ≡
(

∂G
∂A

)
T, p, n

(2.1)

where G is the total Gibbs free energy, A the interfacial area, T temperature, p pressure, and n the
total number of moles of matter in the system. The term surface tension (force per unit length) is
frequently used for liquids. It is numerically and dimensionally the same as surface energy (energy
per unit area), the term commonly used for solids.

The surface entropy per unit area is given by the change in the surface tension with temperature [1]

sσ ≡ Sσ

A
=−

(
∂γ

∂T

)
p, A

(2.2)

2.1.2. Statics of wetting, Young equation

When a small liquid droplet is put in contact with a flat solid surface, two distinct equilibrium con-
figurations may be found (see figure 2.1 a, b): partial wetting, with a finite contact angleθe, and
complete wetting forθe = 0 (uniform liquid film). Brochard et al. [2] describe a third situation, a
finite contact angle droplet in contact with a thin uniform liquid film, (2.1, c). In the case of partial
wetting, the wetted portion of the surface is delimited by a certain contact line, where the three phases
are in contact. Macroscopically, the angle between planes tangent to the L/V and S/V interfaces at
the wetting line is defined as contact angle,θe. At microscopic (molecular) scale, the structure of the
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2. Theoretical background

Figure 2.1. The three possible wetting regimes (a, b, and c), and the forces acting at the three phase contact
line (d). The energy balance upon shifting the line position with dx gives the Young equation.

contact line region is much more complex. However, it is possible to relateθe to the far-field interfa-
cial energiesγi j without any knowledge of the molecular scale structure. In equilibrium, the energy
must not change with respect to any shift dx of the line position. A horizontal shift dx generates, per
unit length, the following interfacial area variations: - dx for S/V, + dx for S/L and + cosθedx for L/V.
Setting to zero the sum of the three contributions one obtains the Young equation:

γSV = γSL+ γLV cosθe (2.3)

Determination of the thermodynamic contact angle requires very clean experimental conditions. In
many practical situations the three phase contact line is pinned and immobile within a finite interval
aroundθe,

θr < θe < θa (2.4)

The angleθa (advancing angle) is measured when the solid/liquid contact area increases, whileθr

(receding angle) is measured when the contact area shrinks. The hysteresis value,H ≡ θa− θr ,
may be 10◦ or more for surfaces without special preparation but may be less than 1◦ for carefully
prepared surfaces. The causes of this hysteresis are surface roughness, chemical contaminations or
inhomogeneities of the solid surface, and solutes in the liquid which may deposit a film on the solid,
altering the initial values of surface energies. The complete wetting situation corresponds to cosθe =
1 andγSV−γSL= γLV . At first sight, this situation appears rather exceptional. In fact, it is not, because
in thermodynamic equilibriumγSV− γSL− γLV can never be positive. If it were so, the free energy of
a solid/vapour interface could be lowered by intercalating a liquid film of macroscopic thickness. In
most practical applications the system is not in perfect thermodynamic equilibrium and we may have
a solid/vapour interfacial energyγS0 which is larger thanγSL+ γLV . The difference

Si ≡ γS0− γSL− γLV (2.5)

is called the initial spreading coefficient. Physically,γS0 is associated with a ”dry” solid surface,
while γSV is associated with a ”moist” surface. Si can be positive indicating a free energy gain upon
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2.1. Interfacial thermodynamics

spreading of the liquid onto the surface. In a similar way, one defines the equilibrium spreading
coefficient,

Se≡ γSV− γSL− γLV (2.6)

which is always negative. Adsorption of vapor on a bare solid substrate generally occurs if it leads
to the decrease of the free energy of the system. This will happen when the condensed vapor has
a surface tension similar or lower than that of the substrate. The equilibrium spreading pressure is
defined as

πe≡ γS0− γSV = Si −Se (2.7)

and can be measured by vapor adsorption,

πe =
∫ p0

0
Γ dµ = RT

∫ p0

0
Γ d(ln p) (2.8)

where p0 is the saturated vapor pressure,Γ the number of moles of vapor adsorbed per unit area of
the substrate,µ the chemical potential of the vapor and p the vapor pressure.

2.1.3. Work of adhesion and cohesion

Historically, the next development after Young was due to Dupré. He introduced the concepts of work
of adhesion and cohesion. The work required to separate reversibly the interface between two bulk
phases i and j from their equilibrium separation to infinity is the work of adhesion,

Wadh = γi + γ j − γi j (2.9)

When the two phases are identical, the reversible work is called the work of cohesion,

Wcoh = 2γi (2.10)

Combining the Young equation 2.3 with equation 2.9 we obtain the Young-Dupré equation

WSL
adh = γLV(1+cosθe) (2.11)

2.1.4. Laplace equation

The Laplace equation governs the shape of all macroscopic liquid interfaces, drops, and bubbles and
is the basis for all static measurements of interfacial and surface tensions. The pressure change across
a curved interface,∆p, is balanced by the capillary force, giving

∆p = pi − p j = γi j

(
1
R1

+
1
R2

)
(2.12)

where pi , pj are the pressures in the two phases, and R1 and R2 are the two principal radii of curvature.
An important implication of the above equation is that for a static situation (no flow) and absence of
external fields (e.g. gravity), the pressure is the same everywhere in the liquid and thus the interface
(surface) has the same curvature everywhere.
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2. Theoretical background

2.1.5. Molecular and surface forces

Intermolecular forces can be classified roughly into three categories [3]. Purely electrostatic forces
arising from the Coulomb force between charges form the first class. These forces act between
charges, permanent dipoles or quadrupoles (charge–charge, charge–permanent dipole, two perma-
nent dipoles). In the second category there are polarization forces arising from the dipole moments
induced in atoms or molecules by the electric field of nearby charges and permanent dipoles. The third
category are forces which are quantum mechanical in nature giving rise to covalent, chemical bond-
ing and to the repulsive steric (exchange) interactions which are short range and balance the attractive
forces at very short distances. Three types of forces described by the same power law variation with
distance (F∝ r−7) are usually denoted as van der Waals forces. They correspond to the interactions
between two freely rotating dipoles, a freely rotating dipole and a non-polar molecule, and two non-
polar molecules. Since our system does not contain charges, the main interactions considered are
long range attractive van der Waals interaction and short range repulsive, steric interaction.

Van der Waals interactions

Three different types of forces contribute to the total long-range interaction between polar molecules,
collectively known as the van der Waals force: induction (Debye), orientation (Keesom) and disper-
sion (London) force, each of which having an interaction Helmholtz free energy that varies with the
inverse sixth power of the distance

W(r) =−CVDW

r6 =−
Cind +Corient +Cdisp

r6 (2.13)

The first contribution, corresponding to the interaction between a freely rotating dipole and a polariz-
able molecule (Debye, dipole–induced dipole interaction) is given by the equation

W(r) =−Cind

r6 =− µ2α

(4πε0)2r6 (2.14)

whereµ is the dipole moment,α the polarizability (µind = αE), andε0 the vacuum dielectric constant.
The Keesom interaction, acting between two freely rotating permanent dipoles is described by

W(r) =−Corient

r6 =− µ2
1µ2

2

3(4πε0)2kBTr6 (2.15)

where kB is the Boltzmann constant and T the absolute temperature.
Even for polar molecules (except small highly polar molecules, e.g. water), the most important

part of van der Waals forces are the London forces, known also as induced-dipole–induced-dipole
or dispersion forces. They are always present because they do not request any special property of
interacting atoms or molecules. For an atom, the origin of the dispersion force can be understood by
considering the circulation of electrons with high frequencies of typically 1015–1016 Hz around the
positively charged nucleus. This movement leads to the random, spontaneous formation of temporary
dipoles. When two such oscillators approach each other, they start to influence each other. Attractive
orientations have higher probabilities than repulsive ones, giving rise to an attractive force. If the
ionization energies of the two molecules are hν1 and hν2, the interaction energy is given by

W(r) =−
Cdisp

r6 =− 3hν1ν2

2(ν1 +ν2)
α1α2

(4πε0)2r6 (2.16)
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2.1. Interfacial thermodynamics

The dispersion interaction can be described as follows: the electric field, generated by the sponta-
neous formation of a molecular dipole, travels with the speed of light (c) the distance r to polarize a
second molecule. In turn, the electric field from the induced dipole moment in the second molecule
needs the same time,∆t = r/c to reach the first molecule. The equation 2.16 is valid under the as-
sumption that the electric field has enough time to cover the distance r between the molecules before
the dipole moment has changed. The time during which the dipole moment changes is in the order
of 1/ν . The relevant frequenciesν are those corresponding to the ionization of the molecule (3x1015

Hz). Hence, if D> c/ν ≈ 10nm, the interacting electric field is ”retarded” and the energy decreases
more steeply with distance (i.e. W(r)∝ 1/r7 for molecules).

Short range repulsive interaction

At very small interatomic distances the electron clouds of the atoms overlap generating a strong
repulsive force. These forces are called steric or hard core repulsion and they are characterized by
having very short range, increasing sharply with decreasing distance. There is no general equation
for describing their distance dependence, and empirical potentials are considered. The three most
commonly used potentials are the hard sphere potential, the inverse power-law potential, and the
exponential potential. The equation

W(r) = +
(

σ

r

)n
(2.17)

whereσ/2 is the molecular radius, describes the hard sphere potential for n =∞ and the power-law
potential for n being a finite integer, usually taken between 9 and 16. The exponential potential is
W(r) = ce−r/σ0, where c andσ0 are adjustable constants. A total intermolecular pair potential is
obtained by summing the attractive and repulsive potentials. The best known of these is theLennard-
Jones(”6-12”) potential, widely used for its simplicity:

W(r) = +
A

r12−
B
r6 (2.18)

where A and B are constants.

The van der Waals force between macroscopic bodies

Under the assumption that the van der Waals interactions are additive and non-retarded, one can
calculate the vdW interaction energy between two macroscopic bodies with different geometry by
integration of the interaction energy between all molecules which form the two bodies. For two semi-
infinite planar bodies separated by the distance h in vacuum, made of molecules 1 and 2 respectively,
integration of the 1-2 pair interaction energy W(r) =−C12/h6 gives,

W(r) =−πC12ρ1ρ2

12h2 =− AH

12πh2 (2.19)

where AH = π2C12ρ1ρ2 is the so-called Hamaker constant, withρ1,ρ2 being the number densities of
molecules A and B in the two bodies [1,3]. The Hamaker constant has typical values in the range of
10−19 to 10−20J.

The assumption of simple pairwise additivity ignores the interfering influence of neighbouring
molecules. In condensed media this influence can be important. Lifshitz theory avoids this problem
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2. Theoretical background

by ignoring the molecular structure and treating large bodies as continuous media, which are charac-
terized by their bulk properties like dielectric constants and refractive indices. This leads to the same
expressions as the simple 1-2 pair interaction approach, in particular the distance dependence turns
out to be the same. Only the Hamaker constant is calculated in a different way. We need to know
how the dielectric permittivity of the media varies with frequency. In the case of two bodies 1 and
2 interacting in a medium 3, under the assumption that all the three media have the same absorption
frequencies,νe (typically around 3 x 1015Hz), the Hamaker constant has the approximate expression

AH = A132(εi ,ni)≈
3kBT

4

(
ε1− ε3

ε1 + ε3

)(
ε2− ε3

ε2 + ε3

)
+

+
3hνe

8
√

2

(n2
1−n2

3)(n
2
2−n2

3)√
(n2

1 +n2
3)(n

2
2 +n2

3)
(√

n2
1 +n2

3 +
√

n2
2 +n2

3

) (2.20)

whereε1, ε2 andε3 are the static dielectric constants of the three media, and n1, n2 and n3 are the cor-
responding refractive indices, respectively. Equation 2.20 allows not only to calculate the Hamaker
constant but also to predict whether the interaction is attractive (AH positive) or repulsive (AH neg-
ative). Van der Waals forces between identical materials are always attractive, irrespective of the
nature of the intervening material (Ai ji > 0). The same is valid if the medium 3 is vacuum. A repul-
sive1 interaction arises whenever the dielectric properties of the intervening medium are intermediate
between those of the two interacting media.

2.1.6. Thin films and disjoining pressure

In terms of interfacial energies, a thick film (h> 100 nm) on a solid substrate is described by consid-
ering only the two interfacial energiesγSL andγLV . This is not correct anymore when the film becomes
very thin (h→ 0), and we must recover the energy of the bare solid,γS0. For a correct description of
a thin film, an additional energetical contribution (per unit area), P(h), must be added

f (h) =
F
A

= γSL+ γLV +P(h) (2.21)

where f(h) is the free energy of the film per unit area. The correction term P(h) shall be 0 for very
thick films, P(∞) = 0. For the bare substrate it is per definition P(0) = Si = γS0− γSL− γLV . The
function P(h) may contain different types of contributions like steric effects (h≈ a, where a is the
size of the liquid molecule), long range van der Waals interactions, electrostatic interactions (charged
interfaces) and hydrogen bonds.

Since for thin films P(h) changes with the thickness, it is possible to relate this variation to the
reversible work of a force per unit area, which is a pressure. This pressure, usually denoted byΠ, is
called ”disjoining pressure”,

Π =−dP(h)
dh

(2.22)

It was introduced in 1936 by Derjaguin [4], who defined it as the difference between the hydrostatic
pressure in the film and the pressure in the bulk phase from which the film was formed.

1Strictly speaking, the interaction is not repulsive, rather are the interactions between 1 and 3 and 2 and 3 more attractive
than (the attractive) interaction between 1 and 2.
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2.1. Interfacial thermodynamics

Overall stress in a film

When the spreading coefficient is positive, we expect that a non volatile droplet will spread on a solid
surface. If the amount of liquid is limited to the initial volume of the droplet and the available surface
area is large enough, the final (equilibrium) state should take into account the energetic contribution
of the long range forces for the resulting very thin film. Constant liquid volume means that

dΩ = d(Ah) = hdA+Adh= 0 (2.23)

whereΩ is the droplet volume and A is the area covered by the liquid having an uniform thickness h.
By differentiating equation 2.21 we get the energy variation

dF = [γLV + γSL+P(h)]dA−AΠ(h)dh (2.24)

Combining the equations 2.23 and 2.24 we obtain the overall stress in the film

γ f ilm(h) = γLV + γSL+P(h)+hΠ(h) (2.25)

which is a useful parameter for discussing the equilibrium state between films of different thickness.
Thermodynamical stability of the film requires that [4,5]

dΠ
dh

=−d2P(h)
dh2 < 0 (2.26)

meaning that the function P(h) must be convex. Concave regions have to be eliminated by a double
tangent (Maxwell) construction, i.e. a film with the thickness h splits into two films of thickness h1

and h2 occupying fractionsα1 andα2 = 1−α1 of the surface. The energy becomesα1P(h1) + α2P(h2),
lower than the initial P(h). For systems in which the long range van der Waals forces are dominant
(when the film thickness is larger than the molecular size a), the function P(h) has the expression

P(h) =− AH

12πh2 a� h� l (2.27)

where l is the thickness above which the interaction becomes retarded.
When h is comparable to a, P(h) may display an oscillatory behaviour due to the short range (hard

sphere) interactions. Under the assumption that such oscillatory effects are not significant, three
possible dependencies of the film free energy vs. thickness are presented in figure 2.2. The graph
(a) corresponds to Si < 0, AH > 0 and partial wetting. Graph (b) corresponds to Si > 0, AH > 0
and pseudo-partial wetting. For h smaller than hmin, the film will split into regions with thickness hs

(”pancake”) and regions of bare substrate. The tangent construction means that f(0) = f(hs) + hsΠ(hs)
i. e. according to 2.25, equal film tensions. For h larger than hmin, an uniform film of thickness
hmin is in equilibrium with a residual droplet. The case of complete wetting, depicted in graph (c),
characterized by Si > 0 and AH < 0, can be either a uniform macroscopic film ( h> hs) or a ”pancake”
in equilibrium with the bare substrate, for h< hs.
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2. Theoretical background

Figure 2.2. Possible variations of the liquid film free energy versus thickness for different values of S and
AH . Situation (a) corresponds to partial wetting, (b) to pseudopartial wetting and (c) to complete wetting. The
Maxwell construction (red tangent) defines the stable film thickness.

2.2. Wetting dynamics

Based on thermodynamic arguments, the Young equation 2.3 relates the three interfacial energies via
the equilibrium contact angle,θe. Moving contact lines can be described in a similar way by a dy-
namic contact angleθd. Although many authors consider the dynamic contact angle as ”apparent”,
their caution derives from theoretical considerations, not experiment. Examined through an optical
microscope, the liquid/vapour interface appears to meet the solid surface with a well-defined slope,
for both static and dynamic cases. Observations made with a scanning electron microscope [6] have
given important insight into the effects of surface roughness and heterogeneity on wetting behav-
iour. Nevertheless, on smooth and homogeneous surfaces the technique reveals no sudden changes in
meniscus curvature down to distances as small as 0.5µm from a moving wetting line. Some geome-
tries used to study the dynamic contact angle are presented in figure 2.3. The sub-figure (e) shows
the experimental velocity dependence of the contact angle. The hysteresis,θa-θr , can be as small as
1◦ for smooth and homogeneous surfaces. In this case, it is possible to relate the deviation of the
dynamic contact angle from the equilibrium value to the velocity of the contact line. Experiments
on forced wetting showed that, in general, the dynamic contact angle depends not only on the speed
U but also on the viscosityη and the surface tensionγLV of the liquid. Thus, a convenient way to
relate the dynamic contact angle to the velocity is to use the capillary number Ca≡ ηU/γLV instead
of velocity. For Ca� 1 (low velocity limit) and complete wetting, the following relation was found
experimentally [7]

Ca∝ θ
m
d,a, (U ∝ θ

m
d,a) (2.28)

whereθd,a is the dynamic advancing angle and m = 3± 0.5. This law has a very interesting feature:
it does not depend on the magnitude of the initial (positive) spreading coefficient.
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2.2. Wetting dynamics

Figure 2.3. Geometries used to study the dynamic contact angle: (a) spreading drops; (b) forced flow in a
capillary; (c) steady immersion or withdrawal of fibers, plates from a pool of liquid; (d) rotation of a horizontal
cylinder in a pool of liquid. (e) - schematic velocity dependence of the experimentally determined contact
angle, whereθa andθr are the static advancing and receding limits.

2.2.1. Models describing the wetting dynamics

Two generally accepted approaches describing the wetting kinetics can be found in the literature.
They differ in the relevance of the dissipation force. The hydrodynamic approach [8–10] is based
on continuum hydrodynamics and assumes that the viscous friction is the only significant dissipative
force in the dynamic meniscus. To remove the singularity (the dissipation diverges in the vicinity of
the contact line) the theory operates with cutoff or slip lengths. The second model completely neglects
the bulk viscous drag. Instead, the dependence of the dynamic contact angleθd on the contact line
velocity U is derived from the balance between the driving force (i.e. nonequilibrium Young force),
and the (local) friction force in the three-phase contact zone. This approach, based on Eyring’s theory
of reaction kinetics has been proposed by Blake and Haynes [11]. A combination of the two models
was presented by Petrov [12].

2.2.2. The hydrodynamic model

Viscous dissipation, lubrication approximation

Let us consider a linear liquid front having the shape of a simple wedge which advances with constant
velocity on a solid substrate. If the dynamic advancing contact angleθd,a is small, and the friction
in the gas phase is negligible, the ”lubrication approximation” of fluid mechanics [13] can be used to
calculate the dissipation energy. The wedge is treated as a nearly flat film, with a velocity profile of
Poiseuille type (unidirectional flow field, parallel to the interface, see figure 2.4)

ux(z) = u(z) =
1

2η

∂ p
∂x

(z2−2zh) (2.29)

where h denotes the position of the liquid/vapour interface. This ensures u(0) = 0 at the solid surface
and no stress at the liquid/vapor interface, i.e. (∂u/∂z)(z=h) = 0. An explicit equation for the pressure
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2. Theoretical background

Figure 2.4. The flow field for a simple wedge in motion. For small contact angle the dissipated energy can be
calculated using the ”lubrication approximation”.

gradient is not necessary since we can express the total matter flux as function of the wedge velocity
U

Uh(x) =
∫ h

0
u(z)dz (2.30)

One can then write

u(z) =
3U
2h2(−z2 +2hz) (2.31)

The viscous dissipation integrated over the film depth is

∫ h

0
η

(
du
dz

)2

=
3ηU2

h
(2.32)

whereη is the liquid viscosity. The total energy dissipation per unit length and time in the wedge is

TṠ=
∫ xmax

xmin

3ηU2

h
dx=

3ηU2

tanθd,a

∫ xmax

xmin

dx
x
≈ 3ηU2

θd,a

∫ xmax

xmin

dx
x

(2.33)

whereṠ= dS/dt is the entropy creation during the irreversible process, h(x) = x tanθd,a ≈ xθd,a.
The cutoff xmax is related to the macroscopic size of the liquid in motion, e.g. xmax≈ R, for the
radius of a spreading drop. The microscopic cut-off xmin can be considered in the order of molecular
size a, otherwise for xmin → 0 the dissipation would diverge. If the wedge advances on a liquid
film of thickness hf , xmin can be approximated to hf /θd,a. Within these constrains, we can define a
dimensionless coefficient, L ∫ xmax

xmin

dx
x

= ln

(
xmax

xmin

)
≡ L (2.34)

which ranges from 10 to 15. Therefore, the viscous force per unit length (along the y direction) is
given by

FV =
TṠ
U

=
3ηUL
tanθd,a

≈ 3ηUL
θd,a

(FV ∝ U) (2.35)
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2.2. Wetting dynamics

The driving force

For a clean, ideally smooth surface, the equilibrium contact angleθe is defined by the Young equation.
If the liquid wedge is set in motion, the dynamical contact angle,θd, will differ from its equilibrium
value. This gives rise to an unbalanced (non-equilibrium) driving force which has the same direction
as the direction of movement, as depicted in figure 2.5. For partial wetting situations, this force is

FD(θd) = γSV− γSL− γLV cosθd = γLV(cosθe−cosθd) (2.36)

In terms of the equilibrium spreading coefficient, the equation 2.36 becomes

FD(θd) = Se+ γLV(1−cosθd). (2.37)

Figure 2.5. Wedge in motion and the deviation of contact angle from its equilibrium value for partial wetting:
(a) advancing angle,θd, a > θe, and (b) receding angleθd, r < θe; (c) the unbalanced Young forces for the
advancing and receding situations, having the same direction as the moving direction of the wedge.

If the initial spreading coefficient Si is positive, the wedge will usually advance on a solid surface
covered with a liquid film, the so-called precursor film. If this film is thick enough to ignore the
contribution of long range S-L interactions (i.e. larger than 1µm), the driving force for the wedge
movement will be given by equation 2.36 and 2.37 with cosθe = 0 and Se = 0, respectively. This
situation will be discussed in more detail in the section 2.2.4 of this chapter.

Balance of forces

Considering the dissipation in the wedge as the only force which opposes the capillary driving force,
the condition FD = FV (equations 2.36 and 2.35) will give

γLV(cosθe−cosθd) =
3ηUL
tanθd

(2.38)
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2. Theoretical background

This relation allows to calculate the velocity of the moving wedge

U =
γLV(cosθe−cosθd) tanθd

3ηL
(2.39)

Considering our first assumption thatθd andθe are small, we can use the approximations tanθ ≈ θ

and cosθ ≈ 1−θ 2/2. Therefore, the relation above becomes

U =
γLV(θ 2

d −θ 2
e )θd

6ηL
(2.40)

If θe is zero (complete wetting) this equation is consistent with the experimental measurements de-
scribed by equation 2.28. The spreading dynamics of non-volatile droplets on a totally wettable
surface can be also deduced from equation 2.40 which, together with volume conservation and the
assumption that the droplet has a spherical cap shape, leads toθD ∝ (time)−3/10 or, in terms of radius
of the liquid-substrate contact area, R∝ (time)1/10. These relations are known as Tanner’s laws [8]
and are remarkably universal.

2.2.3. The molecular-kinetic model

Blake and Haynes [11] and Cherry and Holmes [14] developed molecular-kinetic theories, postulating
that the entire energy dissipation occurs at the moving contact line. The wetting kinetics is viewed as
a process of desorption of the molecules of the receding fluid and adsorption of those of the advancing
one onto adsorption centers of the solid surface. Their model is illustrated schematically in figure 2.6.

Figure 2.6. Adsorption/desorption model of molecular displacement within the three-phase zone according
to [11]. If n is the number of adsorption sites per unit area, the average distance between sites isλ = n−1/2.

At equilibrium the wetting line will appear to be stationary, but at molecular level, the three-phase
zone will usually be in vigourous thermal motion. The molecules of one species constantly inter-
change with those of the other, either by surface migration or via the contiguous bulk phase. If the
frequency of molecular displacements in the forward direction is k+ and that in backward direction is
k−, then, at equilibrium

k+ = k− = k0 (2.41)
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2.2. Wetting dynamics

Application of Eyring’s theory of absolute reaction rates allows to relate the equilibrium frequency of
molecular displacements k0 to the molar activation free energy of wetting∆Gw,

k0 =
kBT

h
exp

(
− ∆Gw

NkBT

)
(2.42)

where h is the Planck constant, kB the Boltzmann constant and N is the Avogadro number. A forward-
directed shear stress applied to the molecules within the three-phase zone modifies the profiles of the
potential-energy barriers to molecular displacement, lowering barriers in the forward direction and
rising those in the backward direction. The wetting line velocity which is related to the net frequency
of molecular displacement will be given by U =λ (k+ − k−). If the irreversible work done by the
shear stress per unit displacement of unit length of the wetting line is w, then the work done on each
site is w/n (n sites per unit area). If the energy barriers of molecular displacement are symmetrical,
w/2n is used to lower the barriers in forward direction while w/2n is used to rise the barriers in the
backward direction. Thus the expression of velocity will be

U = λ
kBT

h

[
exp

(
−∆Gw/N−w/2n

kBT

)
−exp

(
−∆Gw/N−w/2n

kBT

)]
(2.43)

If the shear stress driving the wetting line is provided by the out-of-balance Young forces (equation
2.36), the equation 2.43 becomes

U = 2λk0sinh

(
w

2nkBT

)
= 2λk0sinh

[
γLV(cosθe−cosθd)

2nkBT

]
(2.44)

For γLV(cosθe−cosθd)� 2nKBT and small angles, the velocity can be approximated by

U = k0λγLV
(θ 2

d −θ 2
e )

2nkBT
(2.45)

The merit of this model is that it provides a theoretical basis for the slip at the wetting line emphasizing
the role of molecular events occurring within the three-phase zone. The molecular-kinetic model
predicts a maximum wetting velocity Umax and a minimum dewetting velocity Umin. At speeds larger
than Umax gas bubbles form, which was indeed observed (e.g. for water Umax≈ 5 – 10 m/s).

2.2.4. Precursor films

For systems in which the liquid spreads spontaneously (to give a nominally zero contact angle), a
precursor or primary film of submicrometer to molecular scale thickness moves ahead of the main
body of the liquid. Observed for the first time a long time ago by Hardy (1919), such behaviour
was believed to be given by evaporation and subsequent condensation of volatile liquids in front of
the macroscopic wetting line. More recent experiments involving techniques such as interferometry,
ellipsometry or electron microscopy, suggest that the film is present even in the absence of any vapor
fraction [15–21]. Precursor films form in case of positive initial spreading coefficients. The driving
force of spreading is in such cases

FD = Si + γLV(1−cosθd). (2.46)
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2. Theoretical background

Figure 2.7. The three types of dissipation for systems forming precursor films: (a) in the macroscopic wedge,
(b) in the prewetting film, for positive spreading coefficient (c) at the microscopic contact line. For smallθd, a,
the velocity profile u(z) in the wedge, can be considered of Poiseuille type.

De Gennes [9] describes three types of dissipation for the case of dry spreading (advancing) of a
pure, non-polar liquid attracted towards the solid by long range van der Waals forces. These are
schematically presented in figure 2.7. The first type occurs in the macroscopic wedge and, as it
was shown, for small dynamic contact angles, it can be calculated by making use of the ”lubrication
approximation”. The second is the viscous dissipation in the precursor film, which was found to be
very strong. The third contribution occurs at the molecular scale. In the close vicinity of the contact
line, a special loss due to attachment of liquid molecules to the solid may be considered. This third
contribution is largely unknown. Thus, the total dissipation per unit time will be given by

FDU = TṠw +TṠf +TṠl (2.47)

where w, f, and l stand for wedge, film and microscopic wetting line contributions. At this point
we can explain why the kinetics of macroscopic spreading for systems with precursor films does not
depend on the magnitude of the positive initial spreading coefficient. The motion of the macroscopic
wedge is decoupled from that of the wetting line; hence, the liquid may be considered to spread across
an already wetted surface. From the total available driving force, the free energy Si is dissipated in
the film region. What is left,γLV(1−cosθd), drives the macroscopic wedge which advances on top of
the film. Regarding only the flow of the liquid within the precursor film, a common idea is to consider
the driving force in terms of disjoining pressure. The disjoining pressure is a steep, inverse function
of film thickness and therefore creates a correspondingly steep, negative pressure gradient between
the bulk liquid and the thin periphery of the film. Hence, the liquid is drawn out of the bulk and
into the film. A theory describing the dynamics of precursor films was developed by Joanny and de
Gennes [22]. Based on continuum hydrodynamics, their approach takes into account the long-range
van der Waals forces in terms of gradients of the disjoining pressure. However, this is justified only
as long as the thickness of the film remains at least in the mesoscopic range (� 20Å), and thus does
not explain the growth of molecularly thin films.

20



2.2. Wetting dynamics

Spreading at molecular scale

Refined ellipsometric and surface plasmon resonance measurements, carried out on different sub-
strates and with various kinds of simple liquids, polymers, surfactant melts, and liquid-crystals, have
investigated the growth of molecularly thin precursor films. They show that the length R of the film
along the solid surface obeys an universal law R∝

√
time [21, 23–27], regardless of the nature of

the species involved. Even in metallic systems like Pb, Bi, and Pb-Bi alloys spreading on a Cu(111)
surface, the growth of the precursor film follows the same diffusional law [28]. This law is valid for
spreading drops as well as for the capillary rise geometry, in which a vertical wall is placed in contact
with a bath of liquid.

In some cases, depending on the nature of the substrate, a remarkable effect of ”terraced spreading”
takes place, several monolayers advance together stacked on top of one another and each growing as√

t [21, 25, 26, 29]. The dynamic layering effect is believed to be generated by the structuring effect
of the surface. For instance, thickness profiles of tetrakis (2-etylhexoxy) silane (spherical molecule,
10 Å diameter) show well defined dynamic layering on uv-ozone cleaned, naturally oxidized (≈ 20
Å silica layer) silicon substrate [29], while the spreading of polydimethylsiloxane (PDMS) on the
same substrate proceeds by a fast evolving precursor layer of one molecule thickness [24]. For the
latter system, at intermediate stages of spreading, when the macroscopic droplet still supplies the
growth of the molecular film, the profile resembles a ”mexican hat” and the edge becomes more
diffuse. Further away from the spreading drop, the profile develops into submolecular thickness,
i. e. the layer compactness is lost by diffusion of molecules on the solid surface (two-dimensional
evaporation). The increase of this edge width with time is due to molecular diffusion while the time
evolution of the compact precursor film length is viewed as a pseudodiffusive process, in the sense
that the diffusion coefficient is thickness dependent. In the case of squalane on bare silicon substrate
the surface diffusion takes over liquid cohesion [23] and the profile approaches a Gaussian shape at
late times.

Cazabat et. al. [30] present a veritable catalog of spreading morphologies at molecular scale.
Following their treatment, for nonvolatile liquids which completely wet the surface and are well
below the two-dimensional critical temperature1 (T2C), the final state of spreading is a pancake of
thickness he with sharp edges. The value of he depends on the shape of the disjoining pressureΠ(h)
and can be obtained from the implicit equation

Si = P(he)+heΠ(he). (2.48)

In the molecular range of thicknesses the short range interaction comes into play: steric interactions
lead to an oscillating behaviour of the disjoining pressure. The period is h0, the size of the molecules
in the liquid film. In experiments, the regions for whichΠ(h) has a positive slope are instable and
lead to transitions between films of different thickness at constantΠ. Thus, if only steric interactions
play a role in the short range part, the allowed thicknesses are multiples of h0 (terrace spreading). If
the spreading occurs on surfaces with a grafted layer, this will introduce a negative contribution to the
short range part of the disjoining pressure and the smallest thickness can be significantly larger than
h0.

1Thermodynamically, a liquid is nonvolatile in three dimensions if the temperature is well below the T3C. However, this
bulk property does not fully characterize the behaviour of molecularly thin films with respect to evaporation. Two-
dimensional evaporation will occur if the temperature is above the two-dimensional critical temperature T2C, which is
usually≈ 0.5T3C.
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2. Theoretical background

Several approaches have been considered in order to explain why the molecularly thin precursor
layers spread following the

√
t law. The ”stratified droplet” model proposed by de Gennes and Caz-

abat [31] describes the evolution of the drops structured in terraces of equal thickness assuming that
the molecules evolve as a two dimensional incompressible fluid in each terrace. The fluid permeates
from the upper terrace to the lower terrace only in a thin annulus at the borders of each terrace. Al-
though this model does not explain the terraced structure, it recovers the

√
t law from the competition

between the liquid-solid attractions, which represent the driving force of spreading, and viscous-type
frictional forces, which control particle dynamics on the solid surface.

A microscopic, analytically solvable model [27,32] considers the precursor film as a lattice gas of
hard-sphere interacting particles connected to a reservoir (droplet). The fluid particles move under
the action of random thermal forces and attractive van der Waals forces exerted by the solid. Particles
at the tip of the film (boundary particles), which are in contact with the interface, are the subject
of the ”restoring” force exerted by the interface. This model establishes analytically the square root
behaviour and explains the growth mechanism by a diffusional transport of vacancies from the tip
of the film to the edge of the macroscopic meniscus. In another analytical study [33], depending on
the value of a dimensionless parameter describing the lateral liquid-liquid interaction, it is found that
the film can be either (i) an ideal surface gas which advances according to the

√
t ln(t) law, or (ii) a

liquid-like phase growing as A
√

t. A can be positive, zero or negative thus describing at molecular
scale the wetting, the partial wetting and dewetting, respectively. Molecular dynamics and Monte
Carlo simulations [34–36] also reproduce the square root behaviour.

2.3. Running Droplets

Spreading of droplets on a homogeneous solid surface is driven by a symmetrical field of unbalanced
Young forces acting at the contact line. As a consequence, the droplet center of mass does not change.
If the force field is asymmetrical, the drop will either be distorted and pinned, or it will move on the
surface.

Chemical inhomogeneities or temperature gradients can generate a spatial variation of the surface
tension of a liquid/vapour interface. In such cases, the liquid surface is subject to a stress given by the
surface tension gradient, and flow patterns in the liquid can be observed. This phenomenon is known
as Marangoni effect. An example of the Marangoni effect is the formation of ”wine tears” on the walls
of a glass of wine (mixture of water and alcohol). The alcohol evaporates faster than water. This leads
to an increase of the surface tension (γH20 > γethanol) in the film compared with the bulk mixture, which
generate an upwards flow in the film zone. A similar example is when two dissimilar droplets chase
each other like the case of PDMS and a solvent (transdecaline) [5]. The solvent evaporates faster and
condenses preferentially on the nearest region of the PDMS drop, leading to an increase of surface
tension which drives the PDMS towards the solvent drop.

2.3.1. Passive drops on a chemically heterogeneous solid surface

A droplet or a liquid ridge deposited on a solid surface at the boundary between two regions of
different wettability is not stable. In such a case, the droplet will move towards the more wettable
surface until the contact with the boundary between the two regions is lost. Based on theoretical
analysis proposed by Raphaël [37], this effect was studied experimentally by Ondarçuhu and Veyssié
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[38]. A similar behaviour can be observed when the solid surface energy varies in a continuous
way. Such substrates have been developed in biotechnology to separate proteins according to their
degree of hydrophobicity. Chaudhury and Whitesides succeeded to prepare hysteresis-free slides
with a wettability gradient by exposing a silicon wafer to the diffusion front of decyltrichlorsilane
vapor [39]. By this technique, they created a concentration gradient on the surface and, accordingly,
a hydrophobicity gradient. This leads to a contact angle with water varying from 10◦ to 25◦ over a
distance of one centimeter. Even when the wafer is tilted with the hydrophobic part at the bottom,
a small drop of water is able to run uphill at speeds of the order of mm/s. Coatings with wettability
gradients can be used in heat exchangers for increasing the efficiency of cooling as suggested by
Daniel et al. [40]. In their experiments they observe small drops (0.1 to 0.3 mm) driven by energies
of coalescence and collimated by the forces of the chemical gradient, moving with speeds that are
hundred to thousand times faster than those of typical Marangoni flows.

2.3.2. Reactive wetting

Drops may also move on initially homogeneous surfaces. This is the case for instance of ”active”
drops which are solutions of chemicals that can deposit a layer on the surface or react with it (e. g.
nitric acid on a copper plate). The mechanism is based on the physisorption of a dissolved surfactant
at the solid/liquid interface or a chemical reaction between a dissolved reagent with the solid surface.
In both cases the wettability underneath the droplet is altered. Fluctuations eventually brake the
symmetry leading to the motion of the droplet. By moving, the droplets leave behind a less wettable
trail. A moving drop will avoid such regions on the substrate (self-avoiding movement). Not only
solutions, also pure liquids (so-calledautophobicliquids) can behave in this way [41].

The effect of chemical reactions has been studied notably by Bain and coworkers [42] using fatty
acids in solution, which react with OH- groups of silica or glass rendering the surface hydrophobic.
The effect can be enhanced by using acids containing fluorinated chains, generating surfaces with
poor wettability for water. Another example has been studied by dos Santos and Ondarçuhu [43].
They used droplets of n-alkane containing chlorosilane which reacts with the glass or silicon sub-
strate forming dense grafted monolayers. In order to analyze the droplet velocity vs. size and reagent
concentration, they used patterned substrates (glass surfaces with hydrophilic stripes). Without this
precaution, the movement may be erratic due to very high sensitivity of the reaction to chemical het-
erogeneity of the substrate. Similar dynamic phenomena have been observed in systems consisting
of metals like reactive wetting and dewetting of an eutectic SnPb alloy on a Au/Cu/Cr thin multi-
layer structure [44], and alloying propelled migration of Sn islands on a Cu(111) surface at room
temperature [45].

2.3.3. Velocity of running drops

In order to analyze quantitatively the movement of drops on solid surfaces with a surface energy
gradient, we can ignore gravity and assume two simple geometries, circular ridges (2D) and spherical
cap (3D) drops. These geometries are valid if the lateral size of the region covered with liquid is

smaller than the capillary length,k−1 =
√

γ

ρg, otherwise the drop will be flattened by gravity.

In figure 2.8 (a), a small drop sits on a solid surface characterized by a small surface energy gra-
dient. If the drop does not move, the contact angles in A and B have their equilibrium values,θe,A
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2. Theoretical background

Figure 2.8. Drop on a surface with wettability gradient (solid surface energy increases from left to right). The
”static” situation (a) is not stable due to the Laplace pressure gradient. The asymmetry sets the drop in motion
(b), with a shape close to spherical cap.

andθe,B. Since the equilibrium contact angle decreases with increasing solid surface energy, the cur-
vature in A will be larger than in B and the corresponding (local) Laplace pressure will be greater in
the vicinity of A than close to B. This Laplace pressure gradient will set the drop in motion. When
the droplet moves (2.8 (b)), its shape can be approximated by a spherical cap. The contact angles are
the same at both, trailing and leading edges,θd,a≈ θd,r ≈ θd. The value of the dynamic contact angle
can be obtained by writing the equation 2.39 for both edges which move with the same speed [46].
The result is

θd = arccos

(
cosθe,A +cosθe,B

2

)
=

√
θ 2

e,A +θ 2
e,B

2
(2.49)

For the simplest case of a ridge (2D problem), the velocity can be calculated from the balance between
the driving force, in this case

FD = (γSV− γSL)B− (γSV− γSL)A = 2R
dS
dx

(2.50)

and the dissipation force, dominated by the two wedges,

FV = 3ηU
∫ xB

xA

dx
h(x)

≈ 6ηU
∫ x0

xA

dx
(x−xA)θd

= 6η
UL
θd

(2.51)

Hence, the velocity is

U =
2Rθd

6ηL
dS
dx

=
2hmax

3ηL
dS
dx

(2.52)

Note that, according to the equation above, the velocity increases linearly with R because the absolute
difference of unbalanced Young forces increases linearly with size. The same equation is also valid
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2.3. Running Droplets

for the spherical cap geometry but the derivation [46] is more complicated. To ensure the balance
between the viscous and unbalanced Young forces, the flow lines within the droplet must be normal
to the contact line in any point.

Raphäel [37] analyzed theoretically a different situation: instead of thesurface energy gradient,
he considered that the drop experiences aconstant difference in wettability, i.e. half of the drop
is in contact with a solid surface which gives an equilibrium contact angleθe,A, while the other half
contacts a surface characterized by the equilibrium contact angleθe,B. As expected, he found a slightly
different equation for the droplet velocity,

U =
γLV

6Lη
tanθd(cosθe,B−cosθe,A) (2.53)

indicates that the droplet velocity does not depend on its size.
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2.4. Physico-chemical properties of n-alkanes

Normal alkanes are linear hydrocarbon chains,CH3− (CH2)n−2−CH3 (in the following abbreviated
Cn, n is the number of carbon atoms in the molecule), some of the simplest organic compounds. The
alkane molecules are non-polar and their (long range) intermolecular interactions are only of van der
Waals type. They are the main building blocks of lipids, liquid crystals, polymers, surfactants, and
many other, more complex organic compounds. Thus, the alkane properties influence the properties
of these complex molecules, and a good knowledge of them can be helpful in understanding those
of more complex organic molecules [47]. Under normal conditions (room temperature, atmospheric
pressure), alkanes are gases from C1 to C4, from C5 to C16 they are liquids, and from C17 on they are
solids.

Figure 2.9. (a) The structure of the n-alkane molecule. (b) The bond conformations and structural parameters,
showing the positions fortrans (t) andgauche(g) conformations. The corresponding energy has two local
minima for the g positions and a global one for t.

As shown in Fig. 2.9, the C–C bond length is 1.54Å and the angle between two C–C bonds is
112◦ [47]. Any three neighboring carbons (two neighboring bonds) define therefore a plane, relative
to which a fourth carbon can assume one of three orientational positions, (shown in fig.2.9(b)). The
global energy minimum position for the fourth carbon is in the plane defined by the other three carbons
(a trans bond). Two local energy minima are obtained for the fourth carbon rotated by 120◦ out of
that plane (gauchebonds). The energy difference between thetransand thegauchebonds depends on
the intra- and interchain interactions. In the bulk crystalline phases at low temperatures, the energy
difference is significantly higher thankBT. Therefore almost all bonds remain in the lowest,trans,
conformation. The molecule is straight, with a length of (n-1)1.27Å between the terminal carbon
atoms, where 1.27̊A= 1.54Å sin(112◦/2) is the projection of the bond length on the chain axis. The
all-trans length H0 of an n-alkane molecule is [48]

H0 = 4.7+1.27(n−2) (2.54)
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2.4. Physico-chemical properties of n-alkanes

where the first term accounts for the two methyl groups.
The bulk solid structures of n-alkanes are well described in literature. For example, the recent

comprehensive review of Dirand et al. [49] presents the crystallographic structures, thermodynamic
properties, and crystallization behaviour for pure n-alkanes as well as for synthetic and real petroleum
mixtures.

In the liquid phase, at high temperatures, the energy difference betweentrans andgauchebonds
becomes smaller than kBT. The chain becomes flexible and bonds are excited intogaucheconforma-
tions, rendering the molecule nonlinear and aplanar.

2.4.1. Bulk, crystalline n-alkane structures at low temperatures

In the crystal, the molecules have the form of plane-zigzag chains of carbon atoms and their axes are
parallel, forming a layered structure. The low temperature structure as well as other physicochemical
parameters of n-alkanes show an ”even-odd effect” which is a consequence of the structure of the
chain itself. The structural difference lies in the symmetries of even- and odd-numbered molecules.
By moving along the long, c crystallographic axis, every second molecule in an odd n-paraffin crystal
will be translationally identical (structure composed of layers), while in an even n-paraffin crystal all
molecules are successively related by simple translation (one layer structure).

For the homologous series C13–C60, the lattice types, X-ray first long spacing, tilting angles, and
key structures(according to classification defined by Nyburg and Potworowski [50]) are presented in
table 2.1. All odd-numbered n-paraffins are packed in an orthorhombic (a6= b 6= c,α = β = γ = 90◦)
structure. For the even numbered n-alkanes the packing can be triclinic (a6= b 6= c, α 6= β 6= γ 6=
90◦), monoclinic (a6= b 6= c, α = γ = 90◦, β 6= 90◦) or orthorhombic, with two different key
structures.

Table 2.1. Low temperature n-alkane structures, X-ray first long spacing, tilting angles, and key structures as
function of the number of carbon atoms.

Alkane, Cn Lattice X-ray first long spacing, [Å] tilt [ ◦] Key structure
odd, 136 n 6 41 orthorhombic d002=1.2724n + 1.8752 0 ”C23–Pbcm”
even, 146 n 6 26 triclinic d001=1.2085n + 1.2868 18.23 ”C18–P1̄”
even, 286 n 6 36 monoclinic d001=1.1329n + 1.4962 27 ”C36–P21/a”
even, n=38, 40, and 44 orthorhombic c/2=1.1308n + 1.6137 27 ”Pbca”
even, n=46, 50, and 60 orthorhombic - - ”C36–Pca21”

2.4.2. Bulk structural behaviour in the vicinity of the melting point

With increasing temperature, bulk n-alkanes can display solid-solid transitions which can be observed
by X-ray diffraction or by differential scanning calorimetry (DSC). It is possible to distinguish two
categories of polymorphous phases: crystal phases at low temperatures, and the so-calledrotator
phasesat high temperatures (also denoted asplastic crystals or highly ordered smectics. The rotator
phases are layered structures, characterized by long range positional order of the molecules in three
dimensions but no long-range order in the rotational degree of freedom of the molecules about their
long axis. They can be distinguished from the crystal phases by the area per molecule (as viewed
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2. Theoretical background

along the chain axis) which is above≈ 19.5 Å2 in the rotator phases and below≈ 18.5 Å2 in the
crystal phases, respectively.

Figure 2.10. Temperature-chain length phase diagram plotted with respect to melting temperature, according
to reference [51].

Below the melting point, there are two possible types of transitions: (i) crystal-crystal and rotator-
rotator transitions (appearing in each category of polymorphous phases, especially for the odd-numbered
Cn’s), and (ii) crystal-rotator transitions, characterized by a higher transition enthalpy than the one as-
sociated to crystal-crystal and rotator-rotator transitions. All crystal-crystal transitions lead to phases
whose structures display differences in the stacking modes of molecular layers along the long crys-
talline c-axis and molecular conformation defects, especially of the end-gauchetype. Despite this,
any important modification of the molecule orientation around the c-axis is not observed in the crys-
talline phases of odd-numbered Cn’s [49].

The rotator phases have been known for quite some time in part due to the early work of Müller
[52]. Since then, clear distinctions between the rotator phases were made (Doucet et al. [53–58],
Ungar et al. [59, 60], Dorset et al. [61–63] and Sirota et al. [51, 64–66]). Initially four rotator phases
have been identified. The RII phase has the molecules untilted with respect to the layers which are
packed in a hexagonal lattice with a trilayer stacking sequence (also referred to as rhombohedral,
RH). RI phase is also untilted and contains a rectangularly distorted hexagonal lattice and a bilayer
stacking sequence (also referred to as face centered orthorhomblic, FCO). The RIV phase is tilted and
monoclinic, and the RIII is tilted and triclinic. Sirota et al. [64] found a fifth rotator phase, RV , similar
to the RI phase with the molecules tilted towards the next nearest neighbour. When any combination
of the five rotator phases occurs, it is always in the following order on reducing temperature: RIV →
RIII → RII → RI → RV [64]. In figure 2.10 is plotted the temperature-chain length phase diagram,
according to [51]. The temperature values are relative to the melting point.

2.4.3. Interfacial behaviour, surface freezing

Both theory and experiment show that with very few exceptions it is theless ordered surfacephase
which coexists with themore ordered bulkphase, i.e. the surface melts at lower temperature than the
surface. This phenomenon, called surface meting (shown schematically in figure 2.11, (a)) has been
discovered in almost all solids studied. The behaviour of long-chain alkanes is quite unique. They
show the rare phenomenon ofsurface freezing(SF), i.e. the melting temperature of the of the alkane
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molecules at interfaces is higher than in bulk, cartoon (b) in figure 2.11. This was observed for the first
time at liquid/vapour interface [67]. It has meanwhile also been observed at the solid(SiO2)/vapour
interface [68] where the surface freezing is correlated to a wetting transition. Surface freezing has
been explained by a fluctuation-based theory [69].

The sequence of images in figure 2.12 shows a morphological transition of an undecooled, partially
wetting, hexatriacontane drop from a spherical cap shape to a distorted shape. This transition may be
a consequence of surface freezing at the liquid/vapor interface. The rare occurrence of such a process
suggests that small size alkane drops do not usually freeze at the liquid/vapour interface even when
the temperature is a few degrees below the bulk melting temperature.

Figure 2.11. Schematic drawing of surface induced melting (a) of a semi-infinite solid and (b) of the surface
induced freezing of a a semi-infinite liquid.

Figure 2.12. Sequence of optical microscopy images showing changes in the morphology of a hexatriacontane
(C36) drop at 4◦C below bulk melting temperature. The drop sits on its own molecularly thin terrace. The time
values are relative to the initial moment of the transition.
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2.5. Theory of melting

2.5.1. Bulk melting mechanisms, surface premelting

Although freezing is a complicated process, there is a general agreement about its essential fea-
tures. In contrast, there has been a long-standing debate about the process that leads to melting in
solids [70, 71]. Many theoretical criteria explain the melting process in terms of various instability
considerations [72]. Among these, two of them have been frequently discussed in literature: the
Lindemann’s vibration instability criterion [73], predicting that melting takes place once the ther-
mal root-mean-square displacement of atoms from their equilibrium positions in the crystal reaches
a critical fraction of the interatomic distance (typically 10-20%) and Born’s shear instability crite-
rion [74], which states that melting occurs when the shear moduli of the crystal become zero, i.e.,
the crystal looses its rigidity. Originally, these theories consider the melting process as a break-
down of the crystal lattice occuring uniformly throughout the solid at the melting point, i.e. melting
is homogeneous. However, there is ample experimental evidence that melting is actually heteroge-
neous, involving nucleation of the liquid phase at some preferred sites of the solid. The melting
process can start between solid and vapour (”surface melting”), between two materials (”interfacial
melting”), and between crystallites of the same substance (”grain-boundary melting”) or from dislo-
cations (”dislocation-mediated melting”). The most likely site from where the melting starts is the
free surface of the solid.

Surface premelting solves the intriguing puzzle of melting, namely why liquids can be cooled
below the freezing point, whereas solids cannot be heated above the the melting point. On the basis
of classical nucleation theory one expects, upon melting and freezing, that hysteresis effects should
occur. The absence of ”overheating” of solids, is indicative of the general absence of an energy
barrier for the nucleation of melt. Tammann [75] was the first to point out that the surface may
play an important role in initiating melting. Surface premelting can be explained considering the
Lindemann criterion. Surface atoms are more loosely bound compared to bulk (reduced number
of neighbours) and therefore their vibrational amplitude is higher. Consequently, at the surface the
Lindemann criterion is satisfied at lower temperature.

Surface melting means wetting of a solid by its melt which occurs when the surface energy of the
combined solid-liquid-vapour interface is lower than that of the ”dry” solid,

γSL+ γLV < γS0 (at T < Tmp) (2.55)

The reduced surface energy makes it advantageous for a thin layer of the solid to premelt at temper-
atures lower than the bulk transition. Not all the facets are wetted by the melt liquid [76], but since
typical crystals have some facets that are wetted, premelting is a general rule. Theory predicts that
the temperature at which premelting begins and the temperature dependence of the film thickness are
controlled by the interactions within the system. In van der Waals solids, premelting begins typically
at a reduced temperature t = (Tmp− T)/Tmp smaller than 0.1, and the film thickness increases as t−1/3

close to Tmp. The power law has been confirmed by experiments on rare-gas films [77]. In many
metals the thickness typically varies as|log(t)|, which is the temperature dependence characteristic of
short range interactions [78].

By suppressing surface melting, overheating to temperatures well above the equilibrium melting
point (the temperature at which both solid and liquid forms of a material can exist in thermodynamic
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equilibrium) has been achieved. Up to now, the suppression of premelting has been attempted only by
completely confining the solid and burying all surfaces including those which premelt. For instance,
the experiments of Daeges et al. [79] demonstrated that silver monocrystals spheres (≈ 0.15 mm
diameter) covered with gold (TAu

mp > TAg
mp) can be overheated up to≈ 25K for periods in the order of

one minute. However alloying between the two metals (diffusion of Au into Ag) may have influenced
the result. Banhart et al. [80] found ”extreme” overheating effects in Sn and Pb clusters encapsulated
in graphitic fulerene-like shells. However, the observed overheating could be caused entirely by the
effect of very high pressure on the melting point (see also [81]).

2.5.2. Influence of size, dimensionality and confinement on the melting
temperature

Size and dimensionality are also important parameters determining the melting point. For solids with
free surfaces, a depression of the melting point with decreasing size was observed experimentally.
Applying the liquid drop model, Nanda et al. [82] derived a generalized expression for the melting
point depression in low-dimensional systems:

T∗mp = Tmp

(
1− β

zd

)
(2.56)

were z = 1, 3/2 and 3 for nanoparticles, nanowires and thin films, respectively, andT∗mp is the corre-
sponding size-dependent melting temperature for the considered geometries. Note that d represents
the diameter in case of nanoparticles and nanowires, whereas it represents the thickness in case of thin
films. The parameterβ depends on the three material parameters: the atomic volume (Vat), surface
energy (γ) and bulk melting temperature according to:

β ∝
Vatγ

Tmp
. (2.57)

The same model can be extended to the case of embedded nanoparticles with epitaxial interface
between their material and the one of the surrounding matrix (e.g. Pb in Al). In such cases, the
expression 2.56 becomes:

T∗mp = Tmp

[
1− β

d

(
1− γM

γ

)]
. (2.58)

were γM is the surface energy of the embedding matrix. It can be seen from equation 2.58 that
nanoparticles will melt above the melting temperature ifγM > γ.

Based on the Lindemann criterion for melting, a thermodynamic model for size-dependent melting
temperature has been proposed by Shi [83] and further developed, notably by Jiang et al. (see [84]
and the references therein). The model predicts the following size-dependent melting temperature

T∗mp = Tmpexp

(
1−α

d/d0−1

)
. (2.59)

In equation 2.59,α is a size independent parameter equal to the ratio between the mean-square dis-
placement (msd) of surface atoms of a crystal and that of volume atoms and d is either the diameter
(nanoparticles, nanowires) or the thickness for a film. The parameter d0 has the meaning of a crit-
ical size (at which almost all atoms of the nanocrystal are located on the surface). The value of d0
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depends on the dimensionality D of the crystal (D = 0, 1, 2 for nanoparticles, nanowires and films,
respectively). The relation between d0 and D is

d0 = 2(3−D)h (2.60)

with h being the atomic diameter. The equation 2.59 is monotonically controlled byα: if α >
1, T∗mp decreases with decreasing d whereas ifα < 1, T∗mp increases with decreasing d, relative to
Tmp. Depending on whether the system is an embedded nanocrystal with coherent or semi-coherent
interfaces or a free standing film, different expressions forα can be assumed (see [84]). This model
fits reasonably some experimental data presented in the literature for both nanocrystals with free-
standing surfaces (depression of T∗

mp) and nanocrystals embedded in a matrix with coherent or semi-
coherent interfaces. Furtheron, Jiang et al. conclude that overheating of nanocrystals occurs when the
following conditions are satisfied: (i) the melting temperature of the matrix material is higher than that
of the embedded nanocrystal; (ii) the interface between nanocrystals and matrix is (semi-)coherent;
(iii) the atomic diameter of the nanocrystal is larger than that of the matrix.

A detailed thermodynamic treatment of surface melting of nanoscopic epitaxial film is presented
by Müller and Kern [85]. They consider the following layered structure: V (vapour) / L(liquid film) /
S(solid film) / B (semi-infinite, bulk solid substrate). In addition to the usual spreading coefficient of
a liquid melt on its own semi-infinite solid:

S= γSV− γSL− γLV (2.61)

whose sign indicates whether a system premelts (S> 0) or not (S< 0), for the case of an epitaxial
solid film on a semi-infinite substrate they introduce a similar spreading coefficient:

S∗ = γBL− γBS− γSL (2.62)

The new parameter S∗ describes the wetting behaviour of the solid film intercalated between the liquid
film and the semi-infinite solid substrate. According to the sign of S∗ two types of surface melting can
be predicted. When this parameter is negative, the attraction between L/S and S/B interfaces boosts
the premelting which then occurs in two steps: a continuous premelting followed by a first order
transition. When S∗ is positive, the repulsion between the same interfaces suppresses the premelting
so that a part of the deposited solid remains solid above its melting point.
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2.6. Classical nucleation theory, crystallization from melt

The condition of undercooling below its Tmp alone is not sufficient for a system to begin to crystallize.
The formation of any new phase from a bulk parent phase requires (with the exception of spinodal
decomposition) the creation of an interface between the two phases. Before crystals can develop there
must exist in the liquid a number of minute solid bodies (embryos, nucleior seeds) that act as centers
of crystallization. The formation of such small particles requires an amount of work which depends
on the interfacial tension of the interface. Nucleation may occur spontaneously, or it may be induced
artificially. Agitation, friction, extreme pressures (e.g. in cavitation, on cavity collapse, the pressure
can reach 10−5 bar) can induce nucleation in melts. To avoid confusion, the terminology related to
nucleation (which is used in the following) will be defined here. In general, the termprimary refers
to cases of nucleation in systems that do not contain crystalline matter.Primary nucleation can be
of two types:homogeneousor heterogeneous(induced by foreign particles). In contrast,secondary
nucleation (nucleation induced by crystals) describes the formation of nuclei in the vicinity of crystals
present in a undercooled melt, due to similar or identical structure between the forming nuclei and
the crystal.

2.6.1. Homogeneous nucleation

Exactly how a stable crystal nucleus is formed within a homogeneous fluid is not known with cer-
tainty. The number of molecules in a stable crystal nucleus can vary from a few to thousands: ice
nuclei, for instance, may contain about 100 molecules. However, a stable nucleus can hardly result
from the simultaneous collision of the required number of molecules since this is an extremely rare
event. More likely, it will arise from a sequence of bimolecular additions according to the scheme:

A+A � A2

A+A2 � A3

. . .

A+An−1 � An, crit

Further molecular additions to the critical cluster would result in nucleation and subsequent growth of
the nucleus. Many of the embryos or ”sub-nuclei” fail to achieve maturity; they simply redissolve be-
cause they are extremely unstable. If, however, the nucleus grows beyond a certain size (ncrit , critical
nucleus), it becomes stable under the average conditions of undercooling. The classical nucleation
theory, stemming from the work of Volmer and Weber (1926), Farkas (1927), Becker and Döring
(1935) and others, was originally developed for droplet condensation from undercooled vapours but
can be extended to crystallization from undercooled melts. Assuming the formation of a spherical
nucleus, the associated excess free energy is

∆Gtot = ∆GI +∆GV = 4πr2
γSL+

4
3

πr3∆gV (2.63)

where r is the nuclei radius and∆Gtot is the overall excess free energy between a small solid particle
and the same amount of liquid in the undercooled melt. The two contributions to∆Gtot are the
positive∆GI , surface excess free energy, associated with the formation of the S-L interface and a

33



2. Theoretical background

Figure 2.13. Free energy plot for nucleation showing the existence of a ”critical nucleus”.

negative volume contribution∝ ∆gV , the excess free energy per unit volume between a very large
particle (r→ ∞) and the same amount of liquid in the melt. The two terms of the right-hand side of
equation 2.63 are of opposite sign (∆gV < 0) and scale differently with radius, hence the total free
energy passes through a maximum (see figure 2.13).

The maximum value of∆Gtot, i.e. ∆Gcrit , corresponds to the critical nucleus,rcrit . For a spherical
cluster it is obtained by settingd∆Gtot/dr = 0:

d∆Gtot

dr
= 8πrγSL+4πr2∆gV = 0 (2.64)

therefore:

rcrit =
−2γSL

∆gV
(2.65)

From the equation 2.63 and 2.65 we get:

∆Gcrit =
16πγ3

SL

3(∆gV)2 =
4πγr2

crit

3
(2.66)

The behaviour of a newly created crystalline lattice structure in a melt depends on its size; it can
either grow or remelt, but the process which it undergoes should result in the decrease of the free
energy of the particle. The critical size rcrit represents the minimum size of a stable nucleus, above
which the particle continues to grow because it reduces its free energy. The mean energy of a fluid
system at constant temperature and pressure is constant, but locally there are fluctuations around this
value. This statistical distribution of energy, or molecular velocity for the molecules constituting
the system means that there are regions with a temporarily high energy level where nucleation is
favoured. Therate of nucleation, J, i.e. the number of nuclei formed per unit time and unit volume,
can be expressed as an Arrhenius reaction velocity equation which is commonly used to describe the
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rate of thermally activated processes:

J = Aexp

(
−∆Gcrit

kBT

)
(2.67)

where kB is the Boltzmann constant and A is a preexponential constant. To obtain∆Gcrit we need
∆gV , which can be expressed as:

∆gV =
−∆SLS∆T

VS
=

∆H f (T−Tmp)
VSTmp

(2.68)

where∆SLS is the molar entropy change upon crystallization,VS is the molar volume of the solid,
Tmp is the solid-liquid equilibrium temperature,∆T = T −Tmp is the undercooling and∆H f is the
latent heat of fusion. The radius of a critical nucleus is then given by:

rcrit =
−2γSLVSTmp

∆H f ∆T
∝ (∆T)−1 (2.69)

and the rate of nucleation, from equations 2.68, 2.66, and 2.67 is:

J = Aexp

[
−16πγ3

SLV
2
S

3kBTmp∆H2
f Tr(∆Tr)2

]
(2.70)

whereTr is thereduced temperaturedefined byTr ≡T/Tmp. Equation 2.70 shows that undercooling
is the dominant effect on the nucleation rate (∆Gcrit ∝ (∆T)−2). Nevertheless, classical nucleation
theory does qualitatively explain most of the experimental evidence; in many cases the significant
deviations can be observed. Melts frequently demonstrate abnormal nucleation characteristics, for
instance the rate of nucleation follows an exponential curve only for low values of undercooling but
reaches a maximum and subsequently decreases on further cooling. This behaviour was explained by
a sharp increase in viscosity with undercooling which restricts molecular movement and inhibits the
formation of ordered crystal structures.

2.6.2. Heterogeneous nucleation

It is generally accepted that true homogeneous nucleation is not a common event. Crystallization can
be induced by inoculating or seeding a melt with small particles of material to be crystallized. These
seed crystals do not necessarily have to consist of the same material to be crystallized in order to be
effective; isomorphous substances can also be efficient. As an example, the success of silver iodide as
an artificial rain maker is generally attributed to the striking similarity of AgI and ice crystal lattices.
However, there are many cases where lattice similarity does not exist and undoubtedly other factors
have to be considered.

The overall free energy change associated with the formation of a critical nucleus under heteroge-
neous conditions∆G

′
crit , must be less than the corresponding free energy change,∆Gcrit , associated

with homogeneous nucleation, i.e.
∆G

′
crit = f ∆Gcrit (2.71)

where the factor f is less than unity.
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We can calculate the excess free energy for the heterogeneous nucleation case by assuming a crys-
tal nucleus with a spherical-cap shape, attached to a foreign planar body. The excess free energy,
∆G

′
, contains, like for the homogeneous case, two contributions:∆G

′
I and ∆G

′
V . The interfacial

contribution for heterogeneous nucleation is

Figure 2.14. Ratio of free energies of homogeneous and heterogeneous nucleation as a function of the contact
angleθ .

∆G
′
I = ACLγCL +πR2(γCS− γSL) (2.72)

where R is the radius of the contact area between the nucleus and the planar solid surface of the
foreign body andACL is 2πr2(1− cosθ), with θ the contact angle and r the radius of the spherical
cap. Using the Young equation,

γSL = γCS+ γCLcosθ (2.73)

and substituting R with rsinθ and sin2 θ with 1−cos2 θ we get

∆G
′
I = 4πr2

γCL

[
2−3cosθ +cos3 θ

4

]
(2.74)

The spherical cap volume, VC, multiplied with ∆gV gives the volume contribution to the excess free
energy:

∆G
′
V = VC∆gV =

πr3[2−3cosθ +cos3 θ ]
3

∆gV (2.75)

If we now sum up the two contributions, i.e. equations 2.74 and 2.75, the following expression results:

∆G
′
tot =

[
4πr3∆gV

3
+4πr2

γCL

][
2−3cosθ +cos3 θ

4

]
(2.76)
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which compared with equation 2.63 leads to

∆G
′
tot = ∆Gtot f (θ) (2.77)

where the factorf (θ) = (2+ cosθ)(1− cosθ)2/4. The equations 2.76 and 2.77 show that the nu-
cleation barrier is smaller in the case of heterogeneous nucleation (r = rcrit = r

′
crit , Vhomo > Vhetero).

In figure 2.14,f (θ) is plotted against the contact angle, indicating how the excess free energy ratio,
∆G

′
crit /∆Gcrit increases whenθ varies from 0 to 180◦. We find two limiting cases: ifθ is zero (com-

plete wetting), there is no barrier for heterogeneous nucleation and, ifθ is 180◦ the barrier has the
same value as in the case of homogeneous nucleation.
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3.1. Specular X-ray reflectometry

The investigation of surfaces and interfaces with x-ray and neutron scattering methods is a relatively
new field in physics. Technological developments concerning sophisticated surface diffractometers,
advancements in manufacturing of high quality and high complexity surfaces and development of the
surface scattering theory made the recent progress possible. The surface sensitivity of the method is a
consequence of the phenomenon of total external reflection, resulting from the fact that the real part of
the refractive index in matter is slightly smaller than unity for x-rays. For the particular cases of liquid
surfaces or buried layers, scattering methods have clear advantages over the complementary methods
like scanning tunneling (STM), atomic force (AFM) and high resolution transmission electron (TEM)
microscopy.

3.1.1. Basic concepts

For small angle X-ray scattering experiments, in the region of total reflection, the detailed locations of
the atoms in a medium may be neglected [86]. The properties of the medium can be simply described
by the complex refractive index:

n = 1−δ − iβ (3.1)

where the small, positive termδ accounts for dispersion, and the coefficient of the imaginary partβ ,
for absorption. The classical model of an elastically bound electron yields the following expression
of δ andβ :

δ =
λ 2

2π
reρe, (3.2)

β =
λ

4π
µ, (3.3)

where re is the classical electron radius (re = e2/4πε0mc2 = 2.81·10−5 Å), λ is the wavelength,ρe is
the electron density of the material (Z electrons per atom), andµ is the linear absorption coefficient.
This shows that the real part of the refractive index mainly depends on the electron density of the
material and on the wavelength. Typical values forδ are 10−5 to 10−6; β is ten times smaller.

Since the refractive index for x-rays is slightly less than unity, a beam impinging on a flat surface
can be totally reflected. The condition for total reflection is that the angle of incidenceθin (between
incident ray and surface) must be less than a critical angle. The critical angle,θc can be obtained by
applying Snell-Decartes’ law

n1cosθin = n2cosθtr (3.4)

if cosθtr is set to 1. In this case,θin = θc, and since n1 is unity (air on one side of the interface), cosθc

= n2 = 1 − δ (absorption is neglected). Sinceδ is of the order of 10−5, after an expansion of the
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cosine as 1-θ 2
c /2, one obtains

θ
2
c ≈ 2δ (3.5)

Typical values of the critical angle are in the range 0.2 to 0.5◦ for λ = 1 Å radiation. For silicon and
λ = 1.54Å (CuKα radiation) the dispersion termδ is 7.6·10−6, the linear absorption coefficientµ is
141 cm−1 and the critical angleθc = 0.223◦.

The essence of a specular reflectivity experiment is to measure the reflectivity R of a surface as
function of the incident angleθ or alternatively as a function of the modulusq = 4π

λ
sinθ of the

wave-vector transferq [87]. The reflectivity is defined by the following ratio

R=
Ir
Iin

, (3.6)

where Ir is the reflected intensity for the corresponding incidence angleθ or wave-vector transfer q
and Iin is the incident beam (figure A.2). By normalizing the intensity of the incident beam to unity,
the experimentally measurable reflected intensity will be the reflectivity, which is the square of the
modulus of the reflection coefficient

R= |r|2 = r∗r (3.7)

Under the approximation that the electron density can be considered as continuous, the reflection
is treated like in optics (more details in section A.2 of the appendix).

3.1.2. Kiessig fringes and Bragg peaks

The Fresnel reflectivity is applied to single uniform substrates. In the case of stratified media or mul-
tilayers, scattering from all interfaces has to be considered. If a thin layer, dissimilar to the substrate,
is deposited at the interface, the reflectivity profile becomes an oscillating function with periods of os-
cillations known asKiessig fringes. They are the result of the constructive/destructive interference of
the reflected beams from the two interfaces. In figure 3.1 is presented a set of three reflectograms for
a layer with a thickness of 40̊A (left graph) and the correspondingδ = 1− n versus thickness profile
(right graph). The solid and dotted lines correspond to ideally smooth interfaces and two values of the
refractive index for the film. The dashed reflectivity profile corresponds to the same refractive index
as the solid one but with rmsσ f ilm/air = 4 Å andσSi/ f ilm = 2 Å. The oscillation amplitude increases
if the contrast between air/film/layer refractive indexes is more pronounced. The main influence of
roughness at the interfaces is that the oscillation amplitude decreases with increasing q-values, and
that R decays faster with q.

A simple analysis of the Kiessig fringes in a reflectivity profile can allow direct determination of
the layer thicknessh from the∆q spacing of the minima of two neighboring interference fringes

h =
2π

∆q
(3.8)

More complex data analysis methods can provide further information about the sample, i.e. elec-
tron density profile, roughness of interfaces, and more accurate values of the layer thickness. The
reflectograms were analyzed withParratt32 reflectivity tool software. The calculations are carried
out by means of Parratt’s dynamical approach [88].
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3.2. Atomic force microscopy

Figure 3.1. Calculated X-ray reflectivity of a 40Å thick alkane film on Si substrate (left), and the corresponding
refractive index profile along the z direction (right).

If the layered systems consist of many identical repeating units with a thickness h, additional to
the Kiessig fringes, Bragg peaks of different orders i can be observed. The position of these peaks is
given by the Bragg equation,

iλ = 2n2hsinθ , i = 1,2,3, . . . (3.9)

The small angle X-ray reflectivity measurements were performed on a StadiPθ/θ Röntgen reflec-
tometer (StadiP, Stoe & CieGmbH, Darmstadt). The working parameters were: x-ray tube power
supply U = 30 kV, i = 15 mA, and the divergence of the incoming beam 0.1◦. For small angles, the
sample width is smaller than the corresponding beam illuminated width. In this case, the measured
intensities in theθ range 0 to arcsin(wb/ws) require the so-called ”footprint correction”,

Icorr = Imeas
wb

wssinθ
(3.10)

where ws is the sample width and wb is the beam width (slit width).

3.2. Atomic force microscopy

Scanning Probe Microscopy techniques are used to investigate surface structures at very high res-
olution. One of these techniques, atomic (scanning) force microscopy (AFM, SFM), developed by
Binning et al. [89], is applied for studying the topology of surfaces on the nm scale. The method
consists of scanning the surface with a very sharp tip at the end of a cantilever, which probes and
maps the morphology of the surface. When the tip approaches the sample surface, interactions like
van der Waals, capillary, steric, electrostatic or electromagnetic can be detected [90]. The interaction
force between the surface and the tip is detected by the deflection of the cantilever. The cantilever
bending is usually detected optically, by directing a laser beam onto the back side surface of the can-
tilever. The laser beam reflected by the cantilever is detected by a properly positioned, four sector
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photodiode. The electrical signals from the photodetector give the actual position of the tip. In most
of the cases, piezoelectric tube actuators perform the scanning by moving the sample or the probe
over the sample. The basic components of an atomic force microscope are illustrated in Figure 3.2.

Figure 3.2. Schematic diagram of an atomic force microscope. The arrows represent the electrical connections
between the main unit and the photodetector, XYZ piezo-actuator and cantilever piezo-actuator.

AFM imaging can be performed basically in two modes.
In contact mode, the tip is in continuous contact with the sample surface. An electronic feed-

back loop adjusts the probe position in such a way that the interaction force (cantilever deflection)
is kept constant (set point). In this way, the acquired image is the probe z-position signal recorded
versus the x,y scanning directions (sample plane). The resulting image called height image ideally
corresponds to the sample surface topography. In a similar way, lateral forces can be imaged. This
scanning method is appropriate for hard (non-deformable) surfaces. The cantilever deflection (the
force) originates usually from the repulsive forces in the force-distance curve and this may lead to
surface deformations or damage.

For imaging of soft samples a good alternative is the so-calledtapping mode, also referred to
as intermittent contact mode. In this mode, the cantilever is excited to vibrate close to its resonance
frequency, usually between 100 to 400 KHz, with a free amplitude in the range of 10 to 150 nm. When
the tip approaches the sample surface, the sample-surface interaction force changes the cantilever
spring constant. The resulting change in the resonance frequency leads to the attenuation of the
oscillation amplitude. The amplitude shift is used as feedback parameter. In this mode the tip is only
for a short time in contact with the sample and hence the lateral forces are drastically reduced.

In this work the AFM imaging was performed in air, with aNanoscope III(Digital Instruments,
Inc., Santa Barbara, CA).

3.3. Optical microscopy

If a thin, transparent film is deposited on a planar, solid substrate, two interfaces are created, film-
air and substrate-film. By illumination with light the two interfaces will reflect part of the light and
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the two reflected rays will interfere producing interference colours. For a film characterized by the
thickness H and refractive index n, the optical path difference will be given by:

∆p = 2Hnsinθ (3.11)

When such a film is illuminated with monochromatic light with the wave lengthλ , we can have
constructive or destructive interference. If i is an integer, constructive interference means

∆p = (2i)
λ

2
(3.12)

while destructive interference is obtained if

∆p = (2i +1)
λ

2
. (3.13)

By using as substrates silicon wafers covered with a thick oxide layer (e.g.≈ 292 nm), the image
contrast for the observation of molecularly thin alkane layers on top of the oxide layer can be dramat-
ically improved. This fact is based on the interference of rays reflected at the air/SiO2 (air/alkane)
and SiO2/Si interfaces. In figure 3.3 (a), an incoming ray (1) with the intensity I1 and amplitude A1

Figure 3.3. Contrast enhancement by using a silicon wafer covered with a thick oxide layer; (a) bare substrate
and (b) substrate covered with a molecularly thin alkane layer.

is reflected at the SiO2/air interface generating the ray (2) with the intensity I2 and the amplitude A2.
The refracted part of (1) is reflected at the second interface, SiO2/Si, and transmitted as ray (3) at the
SiO2/air interface. By neglecting the subsequent reflections/refractions, one can calculate the inten-
sity of outcoming light which results from interference (superimposing) of the two outcoming waves
(2) and (3). In 3.3 (b), a molecularly thin alkane layer with the thickness h covers the substrate. One
can treat this case in the same way like the bare substrate, under the approximation that the difference
in refractive indexes between silicon oxide and alkane is very small,nSiO2 ≈ nalkane≈ n2. Thus we
can ignore also the reflection at the SiO2/alkane interface. The relations between the three intensities
are

I2 = I1R1 (3.14)
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and
I3 ≈ I1(1−R1)R2 (3.15)

where Ri are the reflectivities of the corresponding interfaces. In equation 3.15 multiple reflections
are not considered. For the simplest case (normal incidence), the reflectivities at the two interfaces
are given by

R1 = Rair/SiO2
=

(
n2−1
n2 +1

)2

(3.16)

R2 = RSiO2/Si =
(

nSi−n2

nSi+n2

)2

(3.17)

In order to calculate the amplitude of the wave resulting from the interference of the two outcoming
waves (2) and (3), we should take into account the phase difference between them. If we regard the
amplitudes as vectors or complex numbers we can write

~A2 = A2cos(ωt +φ2) (3.18)
~A3 = A3cos(ωt +φ3) (3.19)

By applying the law of cosines, one can calculate A2, the square of the resultant amplitude

A2 = A2
2 +A2

3 +2A2A3cos(φ3−φ2) (3.20)

Since both reflections introduce the same phase change (180◦) and the optical path difference is
given by∆p = 2Hn2, the corresponding phase shift will beφ3− φ2 = 2kHn2, with k = 2π/λ0. The
reflected intensity can be calculated from equation 3.20 by considering I = A2,

I = I2 + I3 +2
√

I2I3cos(2kHn2) (3.21)

If the second partial derivative of the resulting intensity against thickness is set to zero, i.e. maxi-
mum or minimum of∂ I(H, k, n2)/∂H, one can find the thickness of the silica layer which corresponds
to the highest sensitivity to thickness variation:

∂ 2I
∂H2 =−2(2kn2)2√I2I3cos(2kHn2) = 0 (3.22)

Since for molecularly thin alkane films h� H, equation 3.22 is appropriate to calculate the SiO2

thickness values which correspond to maximum sensitivity. In figure 3.4 the function cos(2kHn2) is
plotted versus thickness of the silicon oxide layer (n = SiO550

2 = 1.46) and forλ0 = 550 nm.
The optical microscopy images were recorded using aOlympus (Provis) AX-70(Optical Co. GmbH,

Hamburg) research microscope. Two types of light sources were used, tungsten filament lamp (vari-
able intensity) and high pressure Hg lamp. A third (home-made) light source generating pulsed
(stroboscopic) light consists of a power LED and was used to improve the time resolution of the
recorded image sequence. This illumination mode is described in the section A.3 of the appendix,
together with other home-made equipment used in this work. For images recorded by illumination
with monochromatic light a green interference filter (LF550) with the peak at 550 nm was used.
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Figure 3.4. Dependence of the reflected intensity versus thickness of the silicon oxide layer. The arrows
indicate the thickness of the SiO2 layer for maximum sensitivity.

Images and movies were acquired with black/white and colour CCD cameras. The black/white
camera (TVCCD-460, MonacorTM, Bremen, Germany) has a 1/3” chip with 752(H) x 582(V) res-
olution, 0.1 Lux minimum illumination, electronic shutter, 1/50 to 1/100000 . The colour camera
(TVCCD-460COL, MonacorTM) has the same chip dimension and resolution, 1 Lux minimum illu-
mination, electronic shutter in the range of 1/50 to 1/10000. The picture and images were recorded
directly in digital format with the FAST AV MasterTM 2000 video acquisition card and processed
afterwards. The scale of the acquired images was determined using the 10µm resolution microscope
scale.
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4.0.1. Alkanes and substrates

The n-alkanes used in this work were tetracosane (n-C24H50), triacontane (n-C30H62) and hexatria-
contane, (n-C36H74). Their melting points are easily accessible experimentally and they have low
volatility. They were purchased from Aldrich (purity of 99+%). The alkane solutions were prepared
with toluene (purity 99% , Aldrich) with concentrations between 10−3 and 10−2 mol/L. Silicon wafers
are ideal substrates for SAXS and AFM: they are characterized by a good electron density contrast
(ρSi

el = 0.7 e−/Å3 vs. ρalkane
el = 0.3 e−/Å3), low roughness (typically 4± 1 Å ) and they are chemically

and physically well defined. Two types of monocrystalline Si wafers (cut along the (100) plane, one-
side polished, B-doped, with a resistivity of 8.5-11.5Ωcm) were used: (i) substrates covered with a
natural oxide layer (∼ 15 Å) and total thickness of 725± 15 µm, and (ii) substrates covered with
thick oxide layer (≈ 2920Å). For measurements, the wafers were cut to pieces of 20 mm x 15 mm.

Besides silicon wafers, glass slides (designed for optical microscopy) and mica glued onto glass
slides were used as substrates. The mica surface is crystalline and atomically flat. When freshly
cleaved, it has a high energy surface and therefore has to be used immediately.

Cleaning procedure and sample preparation

For the cleaning of the silicon and glass substrates, a modified RCA cleaning procedure was used
[91–94]. The cleaning procedure consists of two steps: a precleaning step, 10 min at 40◦C in a
water:2-propanol 1:1 mixture and subsequently, a main cleaning step, for 10 min, at 75◦ in a 1:1:5
solution mixture of NH4OH:H2O2:pure water (30% ammonium hydroxide, 99,99% purity, Aldrich
and 35% hydrogen peroxide ”medically pure”, Merck). The ultrapure water (resistivity≈18 MΩ
cm) was produced with a Seradest USF machine (Seral Company). Subsequently, the substrates were
washed in a flow of pure water for 10 min and stored under the same liquid to prevent contamination.
Prepared in this way, silicon and glass substrates are completely wetted by water. All the experiments
were performed with freshly prepared substrates, i.e. no more than 24 h after they have been cleaned.

Before alkane deposition the substrates were dried in a flow of pure nitrogen. A spin-coating
machine (1-EC101DT-R485, Headway Research Inc., Garland, Texas, USA) was used for deposition
of alkanes from solution. In order to achieve different alkane coverages, both the rotational speed
(1000 to 6000 rpm) and the concentration (10−3 to 10−2 mol/L) were varied. Typically one drop of
solution was used to obtain the desired coverage (obviously most of the solution is spun off in the
course of spin coating).

After alkane deposition, in most of the cases, the samples were heated to 10◦C above the melting
point to ensure reproducibility of the experimental results.
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5. Droplet solidification by growing
molecularly thin terraces

5.1. Introduction

Liquids on solid surfaces in thermodynamic equilibrium either form drops with a well-defined con-
tact angle (partial wetting) or cover the surface as a continuous film (complete wetting). Drops on
surfaces are, however, often not in their equilibrium conformation. The behaviour of the macroscopic
properties characterizing spreading drops, e. g. radius of the macroscopic liquid edge, the height, the
profile, and the contact angle, are described empirically by the Tanner laws [8, 9], which were origi-
nally deduced from hydrodynamic equations. At microscopic scale, in the case of complete wetting
(S > 0), a spreading drop has supposedly a thin liquid film (precursor) which precedes the macro-
scopic liquid edge. Ellipsometric measurements [21,23,25] indicate that the lateral dimension of the
film grows with R∝

√
time, irrespective of the nature of the species involved.

The wetting behaviour of long chain alkanes, in the temperature range around the bulk melting
point is shown in figure 5.1. Starting from about 10◦C above the melting point (a), where a complete
wetting film can be observed, on cooling the system passes through different reversible wetting states.
At about TDW ≈ TSF ≈ Tmp + 3◦C (DW - dewetting, SF - surface freezing) a dewetting transition
occurs. This leads to an uniform, compact and well defined surface frozen layer and partially wetting
droplets on top (b). Below the bulk melting point, the partially wetting droplets are metastable and
tend to solidify. The solidification behaviour depends on the extent of undercooling and on the cooling
rate. Thus, a cooling rate of≈ 0.5◦C/s, from above the melting point to room temperature, (path (1) in
the figure), leads to the topology (d), which consists mostly of solidified (amorphous) droplets on top
of the surface frozen layer. If the partially wetting drops are subject to only few degrees undercooling
(path (2)) they can solidify continuously by growing concentric, solid, circular multilayer terraces
on the surface, topology (d). Path (3) corresponds to a very fast cooling, e.g.≈ 100 ◦C/s, when
the cooling process is faster than the dewetting process. Such temperature treatment leads to a solid
replica (vitreous or polycrystalline state) of the completely wetting liquid.

This chapter describes the growth of solid terraces from undercooled drops according to the second
path in figure 5.1. The experimental results show that the growth of the solid mono/multilayers ter-
races is supplied by a diffusive flow of alkane in a precursor-like film on top of the terraces, between
the droplet perimeter and the terrace edge. In the following will be presented first the various nucle-
ation processes which can lead to either terrace growth or bulk solidification. Then, the structure of
the solid terrace will be discussed and finally the transport in the precursor film will be analyzed.
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Figure 5.1. Temperature dependence of wetting behaviour of C30 at Si/SiO2 interface: (a) complete wetting,
(b) partial wetting, (c) terrace growth from undercooled droplets (d) solidified drops, (e) ”completely wetting”,
amorphous solidified film resulting when cooling is faster than dewetting.
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5.2. Nucleation of bulk solidification and terrace growth

Undercooled, partially wetting alkane drops (contact angle≈ 15◦) on a planar Si/SiO2 substrate
can solidify either completely (at once, in 3D), when the entire liquid drop transforms into a poly-
crystalline ”drop”. Alternatively they can solidify continuously (2D), creating circular, well-defined,
molecularly thin solid terraces. These two solidification mechanisms do not start instantaneously as
soon as the temperature is below Tmp; undercooling and time is needed in order to overcome the
nucleation barrier. A systematic study of the droplet behaviour reveals that, at small undercooling
temperatures, the nucleation leads, in most of the cases, to the formation of discrete (mono)molecular
solid layers with the molecular axis oriented perpendicular to the surface plane. Thicker terraces
(thickness≈ multiple of all-trans length of the molecule) are created by a sequence of nucleation
events, each of them followed by the growth of monomolecular layers. In this way, starting from the
three-phase contact line, layer-by-layer growth leads to the formation of thick terraces. Although less
likely, multilayered terraces can also result from a single nucleation event.

Three types of nucleation were observed in the temperature range between Tmp and Tmp − 6◦C:
(i) ”homogeneous” (spontaneous nucleation), (ii) heterogeneous (caused by impurities, dust particles,
surface defects), and (iii) secondary nucleation, induced by a growing terrace front from a neighbour-
ing drop. Deeper undercooling (∆T ≡ T − Tmp larger than− 6◦C) promotes the 3D solidification
of the entire drop rather than 2D nucleation of growing solid terraces. The terminology used here to
describe the nucleation of terrace growth (2D) is obviously not strictly correct, since it is not really
homogeneous because both, S/L and L/V interfaces are present. In the following, the term ”homo-
geneous” means that the solidification is not initiated by either solid impurities (inside or outside the
drop) or solid fronts approaching the contact line.

Homogeneous (spontaneous) nucleation

Homogeneous nucleation may occur either inside the drop, at S(surface frozen)/L interface or at the
contact line. It is still under investigation which of the two processes prevails.

Secondary nucleation

Secondary (induced) nucleation is the most important mechanism for initiating the growth of terraces.
It (always) occurs when a growing solid front approaches the contact line of a droplet without terrace.

Figure 5.2. Drop-to-drop nucleation of terrace growth (C36, at two degrees below Tmp). One monolayer thick
solid terrace grows on the surface from drop A to the initially non-growing drops B, C, and D.
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When the distance is small enough, the liquid drop starts forming a solid terrace from the point of
smallest distance between the approaching terrace and its contact line. This freshly formed solid
terrace propagates fast (within less than 1 second) all-around the drop and forms a ring of solid
terrace. Thus, a drop-to-drop propagation of the growing front (a kind of ”domino effect”) can initiate
terrace growing from many drops. The sequence of optical microscopy images in figure 5.2 shows
the mechanism of induced nucleation. In image (a), the droplet A is already growing its terrace and B
is just before its nucleation. The contour of the terrace surrounding droplet A is not circular because
its growing front moved faster along the direction connecting its center and the center of droplet B.
This can be explained by the increased supply of solidifying alkane along that direction, i.e. because
the flux of molecules comes not only from A but also from B. In image (b), the front coming from B
is just about to trigger the terrace growth of drop C and in (c) the droplet C initiates the growth of D.
As a general rule it is observed that by this mechanism, the thickness of a freshly nucleated growing
terrace can not exceed the thickness of the one which nucleated it.

Heterogeneous nucleation

Dust particles or defects in the structure of the solid surface can promote heterogeneous nucleation
even outside the drop. This is presented in figure 5.3. The first image shows a dust particle (the circle
indicates its position) near a ”big” drop of C36, at three degrees under Tmp. In the second image (after
≈ 4min) a monomolecular terrace starts to grow from the dust particle. Its growth is directed towards
the drop, as one can observe in images (3) and (4). Images (5) and (6) show the growth of a circular
terrace around the drop, after the growing front ”touched” (secondary nucleation) the contact line of
the drop.

Figure 5.3. Heterogeneous nucleation at three degrees below Tmp: a dust particle (the circle indicates its
position) near an undercooled drop of C36 (1); (2) - (4) directed growth of a newly formed solid terrace towards
the drop; (5) and (6) radial terrace growth around the drop after the front ”touched” its contact line.

Figure 5.4 presents possible topologies for: (a) drop-to-drop induction of the solid terrace growth,
and (b) dust-induced nucleation. In the first cartoon, the terrace is supposed to be present under drop
A and to advance under drop B after reaching its contact line. This supposition is based on the fact

52



5.2. Nucleation of bulk solidification and terrace growth

Figure 5.4. Suggested topology during induced nucleation (a), and heterogeneous nucleation (b).

that a solidifying front has enough liquid available as soon as it ”touched” the contact line of an under-
cooled drop. The liquid molecules are most probably transported via a ”liquid-like”, molecularly thin
film (thinner than the all-trans length of the molecule) on top of the terraces (experimental evidence
supporting this scenario will be presented in the following sections). Qualitatively, it was observed
that the nucleation barrier for terrace growth decreases on increasing the substrate roughness, i.e. on
decreasing temperature, the growth starts at≈ Tmp. In these conditions, terraced structures were also
observed (see the AFM images in figure 5.5).

Figure 5.5. AFM images showing terraced structures with ”diffuse” edges, which grew on a rough substrate
surface.
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5.3. Structure and thickness of the growing film

Optical microscopy, AFM and X-ray reflectivity measurements indicate that the structure of the ter-
races growing from undercooled drops is an ordered, mono/multilayered solid.

5.3.1. Optical microscopy and AFM

One can observe that the brightness of the regions covered by the growing film is uniform (see figures
5.2 and 5.3). This suggests that the thickness of the film during growth is constant and its edge is
sharp.

Figure 5.6. Comparison between OM and AFM images (room temperature) of the same sample area after
terraced growth of C36 films. The section analysis shows discrete steps at the edge with the heights multiples
of the all-trans length of the molecule. In the section analysis, the continuous height variation on top of the
plateaus is an artifact of the AFM machine due to some drift when large areas are scanned.

Figure 5.6 compares optical microscopy (OM) and AFM images of the same sample area. Thus, it
is possible to attribute to each brightness value the corresponding film thickness. The section analysis
of the AFM images proves that: (i) the film consists of plateaus with constant thickness separated by
sharp steps (terraced structure) (ii) within the accuracy of the method, the height of the steps at the
terrace edge is a multiple of the all-trans length of the corresponding alkane.

5.3.2. Small-angle X-ray reflectivity data

Kiessig fringes

C30 samples prepared by spin-coating from toluene solution were heated at 10◦C above Tmp and then
cooled to 3◦ below Tmp. At this temperature they were kept for 3h in order to obtain solid terraces
as a result of the process of terrace growth. The mean alkane coverage was adjusted by preparation
to two and three monomolecular layers. The samples were measured by SAXR at the terrace growth
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temperature. The results are presented in the reflectograms (a) and (b) of figure 5.7. The fitting curves
(red points) correspond to the best fit assuming an uniform (complete) layer of constant thickness.
The values ofδ andβ (the two components of the complex refractive index) for SiO2 and (CH2)x

were taken from [95]. The fitting results are: H(thickness) = 80.8Å (≈ 2ML), σSiO2/alk(roughness) =
1.9 Å , σalk/air = 4.9Å for sample (a) and H = 118.9̊A (≈ 3ML), σSiO2/alk = 2.9Å , σalk/air = 5.7Å
for sample (b). The difference between the experimental data and fitting curves is a consequence
of the fact that the layered structure is not perfectly continuous (the substrate is covered by uniform
solid films whose thicknesses differ by the all-trans length of a C30 molecule). Such structures are
schematically presented in figure 5.8. The results prove that the structures resulting from terrace
growth have, at least locally, uniform thickness.

Figure 5.7. SAXR experimental data and the corresponding fitting curves for samples with different C30

coverages prepared by terrace growth - (a) and (b), and very fast cooling (≈ 100◦C/s) - (c) and (d).

Figure 5.8. Possible topologies of the solid films corresponding to the samples (a),≈ 2ML, and (b),≈ 3ML.

Similar results (reflectograms (c) and (d) in the figure 5.7) are obtained when samples with the
same mean coverage as the previous ones are cooled very fast (≈ 100◦C/s) from temperatures corre-
sponding to a completely wetting film to room temperature (path (3) in figure 5.1). The measurements
were performed at room temperature after few minutes of annealing at 3◦C below Tmp. The fitting
curves correspond to H(thickness) = 78.2Å (≈ 2ML), σSiO2/alk(roughness) = 1.8̊A , σalk/air = 5 Å
for sample (c) and H(thickness) = 118.1Å (≈ 3ML), σSiO2/alk(roughness) = 2.3̊A , σalk/air = 5.9 Å
for sample (d). At this cooling rate, the dewetting process does not occur and the resulting struc-
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5. Droplet solidification by growing molecularly thin terraces

tures consist of disordered solids in the ”completely wetting” regime. These results indicate that even
in solid, disordered state, the alkane molecules have a strong tendency to form lamellae structures
oriented parallel to the sample plane.

Bragg peaks

By terrace growth it is not possible to obtain, within reasonable time, ”thick” solid terraces (more
than 3ML) covering large areas of the substrate. However, using the very fast cooling method such
structures can be produced. Figure 5.9 shows the AFM section analysis of a sample prepared in this
manner, indicating a solid film thickness of about 5-6 ML.

Figure 5.9. AFM image of a C30 sample which was cooled at a rate of≈ 100◦C/s. The section analysis is
performed in a region with holes formed by dewetting (stopped in its early stages due to the high cooling rate).

The graph in figure 5.10 presents the SAXR scans from the sample whose AFM image is presented
in figure 5.9.

Figure 5.10. Reflectograms of the sample presented in figure 5.9, measured at 25◦C immediately after prepa-
ration (open circles), and after 24h (full circles).

The open circles in figure 5.10 correspond to the measurement immediately after preparation (at
room temperature). The presence of the first and second order Bragg reflections indicate a layered
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5.3. Structure and thickness of the growing film

solid with the same repeat unit. The first order reflection consists of a broad peak while the second
order one consists of two overlapping peaks. The scan after 24h (full circles) is shown in the same fig-
ure. In this case, one can observe two distinct Bragg peaks for both first and second order reflections.
This indicates that, by annealing at room temperature, the structure becomes more ordered (layered)
and that two structures with different layer spacing coexist.

Figure 5.11. The second order Bragg peaks of the reflectogram presented in figure 5.10 on (a) increasing
temperature, and (b) decreasing temperature.

Figure 5.12. Same data as in figure 5.11 plotted as peak area vs. Bragg spacing at different temperatures.

Subsequently, the two peaks of the second order Bragg reflection were selected for a temperature
scan. The results (intensity vs. temperature and q) are presented in figure 5.11. The time interval
between two scans was≈ 15 min. The same data are also represented in figure 5.12 as peak area
(estimated by triangulation) vs. temperature plus the corresponding Bragg spacings, calculated from
the positions of the peak maxima. The graphs (a) and (b) in the two figures correspond to increasing
and decreasing temperature, respectively.

On increasing temperature, two phases are present in the temperature range 25 to 60◦C. The phase
with a Bragg spacing of≈ 35.8 Å corresponds to the monoclinic crystalline phase of bulk even-
numbered alkanes which is well described in the literature [49]. The Bragg spacing of the second
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5. Droplet solidification by growing molecularly thin terraces

crystalline phase is≈ 40.3 Å (≈ all-trans length of the C30 molecule) which corresponds to a per-
pendicular orientation of the molecules with respect to the layer plane. A similar phase coexistence
was observed by Mo et al. [96], in the case of C32 films with the ”ellipsometric” thicknesses of 99̊A
and 153Å. They suggested that the phase characterized by the longer spacing is stabilized by the
presence of the substrate surface. Between 60 and 65.5◦C the Bragg spacing is≈ 39.3Å which cor-
responds roughly to both RIII (triclinic) and RIV (monoclinic) rotator phases of bulk C30 which are
well described in the literature [64].

On cooling, the behaviour is reversible except the missing reflection corresponding to≈ 40.3Å.
This suggests that the phase with the Bragg spacing of≈ 40.3 Å is either a metastable crystalline
phase or a long equilibration time is needed for its formation.

These SAXR results indicate that the solid films resulting from either growth of terraces from
undercooled drops or fast cooling of a completely wetting liquid film are ordered, layered structures.
At temperatures above≈ 60◦C, the alkane molecules are perpendicularly oriented with respect to the
sample plane.

5.4. Equations describing the kinetics of terrace growth

The sequence of OM images presented in figure 5.13 shows the typical time evolution of a growing
terrace. Assuming a spherical cap geometry, the droplets can be fully described by their in-plane
radius (denoted in the following by R1) and their contact angleθ . On the other hand, for the circular
terrace surrounding the drop, the relevant parameters are its thickness H and the distance from the
center of the drop to the circular growing front (denoted by R2). This parametrization is shown in
figure A.5 of the appendix. Large drops barely decrease their volume during terrace growth. This

Figure 5.13. Terrace growth from the three-phase contact line of a ”large” C30 drop at 1◦C below Tmp.

is because the film thickness is much smaller (for instance≈ 4nm per monolayer of C30 alkane)
compared with the droplet height (usually in the order of microns). Thus, for large drops, R1 can be
considered constant during the growing process. However, in the case of small droplets, the variation
of R1 cannot be neglected and very small ones disappear completely (see, for instance the two drops
in the lower part of the images presented in figure 5.13).

The kinetics of growth from the droplet presented in figure 5.13 is shown in the two graphs of figure
5.14. Since in this case R1 can be considered constant, R2 and (R2 − R1) were chosen as parameters
describing the position of the growing front. In section A.4 of the appendix different speed-limiting
steps of the growing process (release-limited, transport limited and growth limited) are considered
and their corresponding equations are deduced for both linear and circular growing geometry. In
graph (a) of figure 5.14, one can observe that only log(R2 − R1) is a linear function of log(time). The
corresponding slope is≈ 0.5 which allows us to consider (R2 − R1)2 ∝ (time), the proper equation
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5.4. Equations describing the kinetics of terrace growth

describing the terrace growth process (see the linear time dependence in graph (b) of figure 5.14).
Although in theory the proportionality (R2 − R1)2 ∝ (time) is not exact for a circular geometry, for
short growing times i.e. small (R2 -R1)/R2, it is quite a good approximation.

A linear time dependence of the difference between the two squared radii would correspond to
a release-limited flow1 of alkane molecules supplying the growth. Graph (b) in figure 5.14 proves
that the growth does not correspond to a release-limited process. Both (a) and (b) graphs prove that,
for our circular geometry, the growth of terraces from undercooled drops is transport-limited and
diffusive in nature. Therefore, anapparent diffusion coefficient, defined by the equation:

Dapp =
(R2−R1)2

t
=

d[(R2−R1)2]
dt

(5.1)

will be used in the following as a measure of how fast the terraces grow.

Figure 5.14. Time dependence of both the terrace radius R2 and the terrace width R2 − R1: (a) double-
logarithmic plot and (b) (R2 − R1)2 and (R2

2 − R2
1) vs. time.

The supply of material which feeds the solidification front of a terrace comes not only from its
”own” drop but also from the neighbouring ones (see the figure 5.2 were the circular shape is distorted
towards neighbouring drops). The droplets which were used to analyze the growth kinetics were
selected as much as possible to fulfill the conditions: (i) to be far enough from the neighbouring
drops which do not build terraces (non-nucleated ones), and (ii) to have R1 larger than 10µm i.e. to
justify the neglection of the volume decrease of the drop upon terrace growth. In most of the cases
the nucleation happened by induction. This does not influence the kinetics of terrace growth of the
droplet of interest since a ”foreign” drop which builds terraces, (mainly) supplies its own growing
terrace. Regions where the growing terrace formed bulges were discarded from the data analysis.

The alkanes C30 and C36 can be considered non-volatile in 3D for the time scale of a typical
experiment. This was proven experimentally by the following: (i) even small drops (which are not
growing terraces), do not change significantly their R1 when kept for hours at temperatures close to
Tmp (ii) for all-solid structures (solidified drops and terraces) there is no detectable change in the
position of the terrace steps for the same time scale. C24 can be considered slightly volatile: (i)

1The growth of solid terraces from the contact line of undercooled drops can be viewed as a spreading process since it is
supplied by a flux of material coming from undercooled drops.
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5. Droplet solidification by growing molecularly thin terraces

in the final stages of terrace growth, holes in the solid film can be observed (probably due to 3D
evaporation/sublimation), and (ii) the kinetics of growth follows a power law (R2 − R1)n ∝ (time)
with a temperature dependent exponent (for instance n = 0.31 at 4◦C undercooling, n = 0.28 at 3◦C
undercooling, n = 0.19 at 2◦C undercooling).

5.5. Kinetics of sequential growth of monomolecular terraces at
constant temperature

Thick terraces form usually by monomolecular layer-by-layer growth. As soon as a new layer starts
growing, the previous layer stops its growth2 because the entire supply from the central drop is taken
by the newly growing one.

5.5.1. Growth of the second terrace on top of the first one

Figure 5.15 presents the sequential growth of two C30 monomolecular terraces on top of each other,
at two degrees below Tmp. At 0 s, the growth of the first terrace is nucleated by the growing front of
another drop (not in the image). Note that the terrace whose growing front induces the nucleation had
initially a thickness of two monolayers. On approaching the drop whose terrace is not yet nucleated,
the growing front splits into a slower one (on top) and a faster one. This leads to two distinct secondary
nucleation events followed by the observed growth sequence. The first terrace grows (72 s), reaching
at 264 s a width of≈ 5 µm, and stops as soon as the second terrace is nucleated. The snap-shots
at 348 s and 432 s present the growth of the second terrace before reaching the edge of the first one
which does not grow anymore. At about 600s, when the second terrace reaches the edge of the first
one, they both continue to grow together reaching at 2184 s a width of≈ 9µm.

Figure 5.15. Growth of C30 mono- and bilayer terraces at 2.0◦C undercooling, bar = 20µm.

The kinetics of terrace growth shown in figure 5.15 is presented in figure 5.16, graph (a).

2This is not entirely correct since the growth can be supplied from neighbouring ”foreign” drops which do not build
terraces.
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5.5. Kinetics of sequential growth of monomolecular terraces at constant temperature

Figure 5.16. Growth kinetics of a monolayer terrace followed by a second monolayer on top: (a) C30 at 2.0◦C
undercooling and (b) C36 at 1.5◦C undercooling.

The slopes calculated from the linear fit are for the first layer D1st
app ≈ 0.075µm2/s, and for the

second, before reaching the edge of the first one, D2nd
app≈ 0.076µm2/s. When they grow together as a

double-layer, the slope is Dboth
app ≈ 0.038µm2/s, about half of the value for one molecular layer. Graph

(b) of figure 5.16 describes a similar experiment, with C36 at 1.5◦C below the bulk melting point. The
corresponding slopes are D1st

app≈ 0.13µm2/s, D2nd
app≈ 0.12µm2/s, and Dboth

app ≈ 0.078µm2/s. Within
the experimental error, these results indicate a slope ratio D1st

app : D2st
app : Dboth

app is 2 : 2 : 1, i.e. the
flow supplying the growth is independent from the thickness of the terrace. This suggests a scenario
presented in figure 5.17 and discussed in further detail below.

Figure 5.17. Schematic cartoon showing the growth of a second terrace on top of the one which has grown
before: 1ML growing (a), and the two layers growing together (b). The scenario suggests the presence of a film
of mobile molecules on top of the terrace supplying the growth at the terrace edge.

Possible transport mechanisms are summarized in table 5.1, (see also the discussion in section
A.4 of the appendix). Only the transport mechanism occurring via a thin film of mobile molecules is
consistent with the experimental observations (diffusive transportanda slope ratio of 2:2:1). The most
plausible position of such a thin film would be on top of the terrace. A film between the layers or at
the substrate surface seems unlikely because the molecules would have to cross the solid monolayers.
If, however, the droplets sit on the frozen monolayer, or directly on the substrate, the molecules may
flow through a film between the SiO2 surface and the ”frozen” solid monolayer whose existence was
derived from ellipsometric data [97].
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5. Droplet solidification by growing molecularly thin terraces

Table 5.1. Different transport mechanisms and their corresponding equations for the first growing terrace
and the second terrace, before (1ML) and after (2ML) reaching the edge of the first one (* – surface frozen
monolayer not counted, ** – surface frozen monolayer counted.)

Transport mechanism 1st ML 2nd ML both (2ML) slope ratio
through the solid:
release limited R22 − R2

1 ∝ tR1 R2
2 − R2

1 ∝ tR1 R2
2 − R2

1 ∝ tR1/2 2:2:1
growth limited R2 ∝ t R2 ∝ t R2 ∝ t 1:1:1
diffusive∗ (R2 − R1)2 ∝ t (R2 − R1)2 ∝ 2t (R2 − R1)2 ∝ t 1:2:1
diffusive∗∗ (R2 − R1)2 ∝ 2t (R2 − R1)2 ∝ 3t (R2 − R1)2 ∝ 3t/2 4:6:3
via a thin film:
release limited R22 − R2

1 ∝ tR1 R2
2 − R2

1 ∝ tR1 R2
2 − R2

1 ∝ tR1/2 2:2:1
growth limited R2 ∝ t R2 ∝ t R2 ∝ t 1:1:1
diffusive (R2 − R1)2 ∝ t (R2 − R1)2 ∝ t (R2 − R1)2 ∝ t/2 2:2:1

5.5.2. Kinetics of growth for first, second, and third monomolecular layer

The images presented in figure 5.18 show the late stages of terrace growth from a C36 drop. Three
monomolecular terraces grow on top of each other. The image at 4800 s shows the first monolayer,
the one at 15600 s the second layer and the final one (22000 s) the third layer. The graphs in figure
5.19 show their kinetics of growth. Note that a solid front does not advance any more as soon as
a new layer nucleates and grows on top (open symbols). For all the three layers the slopes are very
similar. This observation supports the scenario that the transport of molecules from the central droplet
to the terrace edge occurs via a thin film on top of the terrace whose transport properties are barely
influenced by the number of molecular layers in the terrace underneath.

Figure 5.18. Snap-shots during the growth of first, second and third C36 monomolecular terraces at 3◦C below
Tmp.

During terrace growth the central drops do not have always a spherical-cap shape. Distortions
leading to a hexagonal shape of their three-phase contact line can be observed in some cases (see for
instance the last image of figure 5.18). A systematic study of this behaviour is quite difficult because
many parameters such as temperature, droplet size, thickness and width of the terrace growing seem
to play a role. However, some qualitative observations are worth to be mentioned: (i) the transition
from spherical-cap drops to hexagonal-shaped drops is, in most of the cases, continuous; (ii) its
occurrence increases with decreasing temperature; (iii) the thicker the growing terrace the more likely
the formation of hexagonal-shaped droplets; (iv) the smaller the width of the growing terrace (R2 -
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5.6. Influence of temperature on the terrace growth kinetics

R1) the more pronounced the distortion. For instance, after nucleation of the second layer of figure
5.18, the droplet shape was also hexagonal but relaxed to a spherical cap in the late stages; the highest
distortion occurred when the third layer started to grow. One can suppose that the distortion is a result
of anisotropy of the surface energy of the solid terrace or that it is generated by the surface freezing
at the L/V interface.

The above-mentioned observations suggest alternatively that the distortion is a dynamic effect,
which increases with the amount of alkane passing through the contact line of the central drop.

5.6. Influence of temperature on the terrace growth kinetics

Experiments performed at the same undercooling temperature (for the same alkane) show that the
values of the apparent diffusion coefficient for growing one monomolecular layer are varying consid-
erably. This may be attributed to slight changes of the experimental conditions such as temperature
drifts, surface preparation and roughness, sample history. In order to discard such possible influences,
for each alkane the growth was recorded for drops at the same sample area, using freshly cleaned sil-
icon substrate. To exclude the possible influence of sample history, after recording the growth at one
temperature, the samples were heated far above Tmp and undercooled to randomly chosen tempera-
tures for the next growth experiment. The results are presented in 5.20. In graph (a), on increasing
the undercooling from−1 to−4◦C, the values of the slopes (Dapp) are 0.043, 0.083, 0.145, and 0.172
µm2/s. This indicates a linear increase of Dapp with increasing undercooling. The same data are
plotted in the graph (b) as log(terrace width) vs. log(time). The corresponding slopes on increasing
undercooling are 0.50, 0.52, 0.43, 0.43 which confirms the suggested diffusive growth.

Similar results for two series of experiments with C36 and one with C30 are presented in figure
5.21. The data are plotted as Dapp vs. undercooling temperature. The two series corresponding
to C36 alkane are slightly different but for all the samples, Dapp decreases linearly with decreasing
undercooling and the curves can be extrapolated through the origin at the bulk melting point.

5.7. Behaviour of the solidified ”drops”

As soon as a drop solidifies it does not contribute anymore to the growth of the terraces. This behav-
iour is proven by the images of figure 5.22 (C36, 2◦C below Tmp). In the image (a) all the liquid drops
form terraces and, the front (1ML) coming from the droplet in the upper-left corner of the image is
about to ”touch” the contact line of the central drop. When the central drop ”senses” the solidifying
front (image (b),12 s), it solidifies as bulk instead of starting to build its terrace (induced nucleation).
Nine hours later, (image (c)), the solidified drop changed its shape (due to bulk annealing) but there
is no observable growth of a terrace from its contact line. One can estimate the maximum value of
DS

app for the terrace growth from the solidified drop. Differentiating the equation which defines Dapp

we get:

Dapp = 2(R2−R1)
d(R2−R1)

dt
≈ 2(R2−R1)

δ (R2−R1)
δ t

(5.2)

An estimated displacementδ (R2 − R1) smaller than 0.5µm (from the resolution of the optical mi-
croscopy image) and a value of (R2 − R1) of ≈ 1 µm, means that the value of DS

app is smaller than
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5. Droplet solidification by growing molecularly thin terraces

Figure 5.19. Kinetics of sequential growth of three monomolecular terraces on top of each other, corresponding
to the images presented in figure 5.18.

Figure 5.20. Growth kinetics of C36 alkane at different undercooling temperatures. The data are represented
as: terrace width squared vs. time (a), and logarithm of terrace width vs. logarithm of time, (b).
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5.8. Monolayer growth from a solid on the bare silicon substrate

1.5·10−5 µm2/s at two degrees below the melting point, i.e. at least three order of magnitude smaller
than in case of the liquid undercooled drops.

It is important to note that in the second image after solidification, the central drop shrank, revealing
a brighter contour of circular shape (with the same thickness as the solid front which touched the drop)
whose border describes the initial position of the contact line of the liquid drop. This is an evidence
that, after induced nucleation, the solid front advances very fast underneath the liquid, i.e. when a
drop grows its terrace, the thickness of the solid structure is the same outside and underneath the
undercooled drop.

In figure 5.23 four optical microscopy snap-shots show the difference between the behaviour of
solidified drops and liquid ones (different samples with C30, C36, at different undercooling tempera-
tures). One can observe not only that the solidified ones do not form terraces but also that ”foreign”
growing terracesavoid the three-phase line of the solidified ones. This behaviour can be explained by
a decreased supply towards the growing fronts when they get closer to solidified drops. Solid struc-
tures consume part of the available material for their own, (disordered) growth (see also the discussion
section).

For samples covered only with solid C36 (terraces and solidified drops), there is no observable
change in the positions of the terrace steps after keeping them≈ 20 hours at one degree below Tmp.
This proves that (i) sublimation in 3D can be neglected and the (ii) terraced solid structure does not
exchange molecules between their terrace steps.

5.8. Monolayer growth from a solid on the bare silicon substrate

As shown, solidified droplets do not form terraces on a silicon substrate covered with a surface frozen
monolayer. In contrast, a tiny amount of solid alkane, deposited on thebareSiO2 surface, at temper-
atures below the melting point, creates a monomolecular layer whose front advances slowly on the
surface. The sequence of OM images in figure 5.24 shows a piece of solid C30, forming a terrace on
a silicon wafer covered with a thick oxide layer, at 1.7◦C below the bulk melting point. Although
the advancing front does not move parallel to the apparent contact line between the solid alkane and
the substrate (the real three-phase line was under the crystal and obviously not a straight line due to
imperfect contact). Nevertheless, it is possible to measure its position along fixed directions. The
results averaged for two such directions are plotted in figure 5.25. The double logarithmic plot (a),
has a slope of≈ 0.53 which indicates a diffusive behaviour (x2 ∝ time). In the second graph (b), the
data are plotted according to the diffusional power law. The value of the slope (Dapp) is 0.188µm2/s.

This experiment comes in support of the assumption that there must be a film of mobile alkane
molecules through which the growth of the terrace (in this case, the surface frozen monolayer) is
supplied. The fact that the solid film can grow from a solid crystal on the bare substrate but not from
a solidified drop sitting on the surface frozen layer indicates that the driving force is significant for the
former case and virtually zero for the later one. In other words, the higher surface energy of thebare
substrate compared to the substrate covered already with a frozen monolayer is the ”force” driving
the growth from the solid alkane crystal.
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5. Droplet solidification by growing molecularly thin terraces

Figure 5.21. Temperature dependence of Dapp for three series of experiments (for each series: same sample
area and preparation history, random variation of undercooling).

Figure 5.22. Sequence of optical microscopy images showing that solidified drops, although nucleated, do not
grow terraces.
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5.8. Monolayer growth from a solid on the bare silicon substrate

Figure 5.23. Growing (from undercooled, liquid) and non-growing (from solidified) drops (C30, C36 alkanes,
different undercooling temperatures).

Figure 5.24. Growing of a monomolecular layer (surface frozen) from a solid C30 piece on the bare thick oxide
covered silicon wafer, at 1.7◦C below the bulk melting point.
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5. Droplet solidification by growing molecularly thin terraces

Figure 5.25. Double-logarithmic plot of the front position vs. time describing the growth of a solid terrace on
the bare substrate (a), and plot of the position squared vs. time for the same data set, (b).

5.9. Terrace behaviour above bulk melting point

As shown, below Tmp droplets can create mono-/multilayer terraces on the substrate covered with
surface frozen monolayer. The presence of undercooled alkane droplets is required for this process.
In terms of kinetics, is was observed that the higher the undercooling the faster the terrace growth.
At Tmp the growth stops. Above Tmp the growth can even be reversed, i.e. the alkane from the solid
terrace can flow back into the liquid drop if the overheating temperature (of the solid terrace) does
not exceed a certain limit which depends on the number of molecular layers forming the terrace. For
a monomolecular terrace this limit is≈ + 0.3◦C. Above this limit, another mechanism of melting can
be observed (see chapter 6).

Figure 5.26. Gradual elimination of the monolayer terrace (brighter area) due to an alkane flux towards the
droplets (≈ 0.3◦C above bulk melting, C30).
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Figure 5.26 shows the time evolution of a monomolecular terrace at≈ + 0.3◦C overheating. In the
first frame (0 s) one can see a big and a small droplet surrounded by a terrace. A lengthy trench in the
terrace extends from the upper left corner nearly to the large drop. This trench advances towards the
drop (696 s) and eventually initiates the growth of a groove around the large drop (792 s). The groove
widens in time as one can see in the figure. The log(R2 - R1)-log(time) plot in figure 5.27 has a slope
of ≈ 0.35 (which is not too far from a ”diffusive” exponent).

Figure 5.27. Double-logarithmic plot showing the growth kinetics of the groove surrounding the big droplet in
figure 5.26.

The fact that the material from the terrace is mostly collected into the droplets and not lost by 3D
evaporation can be deduced from the behaviour of very small droplets. For instance, the volume of
the tiny drop in figure 5.26 increases gradually due to accumulation of alkane material supplied by
the melting at the terrace step (in the region close to the drop, the width of the trench increases in the
time interval 0 to 1608 s). The volume of the small drop continues to increase even after the terrace
edge reaches its contact line (1608 s to 13584 s) while the groove surrounding it widens. Note also
that the outer edge of the terrace surrounding the large drop does not change during the experiment
confirming that there is no significant 3D evaporation/sublimation.

5.10. Discussion and conclusions

The experimental results are explained with the model presented in figure 5.28. An undercooled
(overheated) alkane droplet partially wets a circular solid terrace (for simplicity, only a monolayer
terrace is considered). Both the droplet and the terrace are placed on the solid frozen alkane monolayer
which covers completely the planar SiO2 substrate. The experimental results document an alkane
flow between terrace edge and droplet perimeter which is independent from the thickness of the
terrace (figures 5.16, 5.19). Therefore a thin film of mobile alkane molecules on top of the terrace is
proposed. A film between the layers or between layers and substrate surface seems unlikely because
the molecules would have to cross the solid monolayer(s). If, however, the droplets sit on the frozen
monolayer or directly on the substrate, the alkanes may well flow between the layers. They may
migrate through the thin film intercalated between the SiO2 surface and the surface frozen monolayer
whose existence is derived from ellipsometric data [97].
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5. Droplet solidification by growing molecularly thin terraces

Figure 5.28. Proposed topology and scenario of the terrace growth (a), when the transport occurs via a molec-
ularly thin film on top of the terrace(s). The cartoon (b) presents the topology and transport mechanism for the
reversed process (terrace dissolution) at temperatures above the bulk melting point.

The model describes the idealized case of an isolated drop and its terrace. Any alkane exchange
between neighbouring droplets and terraces is neglected. In most of the experiments from which the
kinetics data were derived, the droplets from which terraces grew were selected such that the distances
from their terrace perimeter to the three-phase line of other drops whichdid not grow terraces,3 was
larger than that to their ”own” three-phase line.

A diffusive transport between the droplet perimeter and the terrace edge can explain the observed
behaviour. In general terms, a diffusive flux j, is given by j =− L∇µ (L ≡ phenomenological diffu-
sion coefficient,∇µ = chemical potential gradient). A chemical potential gradient drives the diffusive
transport. The gradient is between the terrace edge and the droplet perimeter. At the edge perimeter
local equilibrium is assumed (µ f ilm,1 ≈ µdrop, µ f ilm,2 ≈ µsolid). Either µdrop or µsolid does not cor-
respond to theirthermodynamic equilibriumvalues (undercooling or overheating) thus leading to the
driving gradient.

For alinear growing geometry, the flux is given by:

j =−L∇µ =−L
∆µ

R2−R1
=−L

µ f ilm,2−µ f ilm,1

R2−R1
≈−L

µsolid−µdrop

R2−R1

[
mol
m·s

]
(5.3)

On the other hand, the flux can be expressed as function of the velocity of the solidification front
of the terrace (which is experimentally accessible):

j =
∂R2

∂ t
HρS

M

[
mol
m·s

]
(5.4)

where∂R2/∂ t is the front velocity, H is the thickness of the growing terrace,ρS is the mass density of
the solid terrace and M is the molar mass of the alkane. Combining equations 5.3 and 5.4 we get the
following relation

dR2(R2−R1) =−L
∆µM
HρS

dt (5.5)

which becomes after integration

(R2−R1)2 =−2L
∆µM
HρS

t. (5.6)

3Neighbouring drops which grow terraces do not contribute to the growth of the terrace of the droplet of interest, i.e. their
growing front acts like a shield (separation line) between the growing front of interest and the external undercooled
liquid sources.
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For ourcircular growing geometry, the relations are different because the potential gradient is po-
sition dependent between R1 and R2. Instead of equation 5.6, a similar line of argumentations (see
section A.4 of the appendix, paragraph A.4.3), leads to
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t (5.7)

For (R2 - R1) � R1, equation 5.7 can be approximated by

(R2−R1)2 ≈−2L
∆µM
HρS

t. (5.8)

Using the definition of Dapp (equation 5.1), and equation 5.8, we obtain the following relation between
Dapp and the potential gradient

Dapp =−2L
∆µM
HρS

. (5.9)

If we assume that the potential difference between the terrace edge and the drop depends on temper-
ature as∆µ ≈ ∆SSL∆T (∆SSL ≡ molar entropy of fusion,∆T ≡ T − Tmp), the equation 5.9 can be
rewritten as

Dapp =−2L
∆SSLM
HρS

∆T ∝ ∆T. (5.10)

This agrees with the observed linear temperature dependence of Dapp and explains why the terrace
growth can be stopped (T = Tmp) or even reversed (terrace dissolution). The potential difference can
have positive or negative values if the sample temperature is above or below bulk melting, respec-
tively. With this configuration, the transport properties, L, are separated from the driving potential
and can be calculatedindependently! Typical values derived from the graph in figure 5.21 are L≈
6·10−22 [mol/j·s]. The experimental data still scatter too much to reveal systematic relations (e.g.
between transport properties and chain length).

In conclusion, partially wetting, undercooled alkane droplets solidify (continuously) on the surface
by growing molecularly thin, terraced structures. The terrace growth is a nucleated process. The
main nucleation mechanism is induction, i.e. a growing front from a terrace induces the growth to
non-nucleated drops by ”touching” their three-phase line. In the solid terrace, the molecules are
oriented up-right, i.e. the height of terrace steps is roughly a multiple of the all-trans length of the
molecule. Terraces thicker than 1ML form usually via layer-by-layer growth. The growth kinetics
obeys a ”diffusive” law, (distance)2 ∝ time.

The terrace growth ”speed” decreases with increasing temperature. At the melting point it stops
and, above this value the terraces even shrink. This behaviour can be explained considering the
solidification (melting) free energy4 as the driving force of the terrace growth (dissolution).

The analysis of the sequential growth of monomolecular terraces on top of each other show that
the flux of molecules does not depend on the total thickness of the terrace. This indicates that the
molecules are transported from the central drop to the growing front via a molecularly thin (a typical
”precursor-like”) film, most probably present on top of the terrace. The terrace growth can be viewed
formally as a peculiar case ofspreading5.

4Due to undercooling or overheating.
5In this case a precursor film spreads out radially from the nominal contact line of thepartially wettingundercooled drop.
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6. Reversible running drops driven by the S-L
phase transition

6.1. Introduction

This chapter describes the formation and movement of liquid alkane droplets on a planar surface,
at temperatures slightly above or below the melting point, Tmp. The movement occurs on either
melting or solidification and is temperature-dependent. Above the melting point, solid, molecularly
thin ordered terraces usually start melting from the edges. The edges are equivalent to defects in the
solid structure. They generate liquid droplets which subsequently move consuming the solid. In order
to move, the droplets must be subject to asymmetric (unbalanced) forces. This happens if a droplet
is attached to the terrace step contacting solid regions with different height. After the entire solid
structure is consumed, the droplets stop their movement.

Below the melting point, the direction of movement is reversed. In this case parts of the droplets
solidify creating a solid terrace. In general, the terrace thickness resulting from droplet movement is
preserved to its initial value. The solidification-driven movement may be stopped due to the compet-
ing process of symmetrical terrace growth (spreading). In the following the moving droplets resulting
from layer melting will be denoted as ”advancing” and the ones driven by solidification will be re-
ferred to as ”receding”.

6.2. Nucleation of the advancing running droplets

Terraced solid alkane structures can be obtained either as a result of terrace growth of undercooled
droplets or by very fast cooling of completely wetting liquid films from temperatures above the com-
plete wetting transition. In case of the first method the number of layers being formed can be easily
controlled by stopping the process at any time. It is easy to quantify the number of solid layers under
the optical microscope and the length of the terrace edge per unit area is large enough to analyze the
nucleation process. In order to observe the droplet nucleation, after the growth of the terraces the
samples were heated very slowly above the melting point until isolated drops appear at the terrace
edge. In most cases these droplets are not stable and a slight temperature fluctuation set them in
motion. They start to move on the surface consuming the solid terrace.

The nucleation of running drops occurs in two steps: (i) the formation of a drop (bulge) attached
to the terrace step1, and (ii) the detachment of the drops from the step (the drops start moving by
consuming the solid material of the terrace).

Such a situation is presented in figure 6.1. The sequence of optical microscopy images show the
nucleation and movement of the droplets marked A, B, C, D, and E from the edge of the monomole-

1The size of these drops increases gradually by collecting the material from the step, i.e.edge premelting.
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6. Reversible running drops driven by the S-L phase transition

Figure 6.1. Sequence of OM images showing a one molecular layer thick (1ML) terrace (bright area) of C30

on top of its own surface frozen (SF) monolayer (dark area), at the bulk melting temperature (0.00s). After a
slight increase (≈ + 0.4◦C) of temperature (images at 0.24, 0.80, 1.04, 1.48 and 1.52 s), tiny drops nucleate
at the edge of the terrace and subsequently move ”eating” into the solid terrace. The white arrows in the last
image (1.52 s) indicate the nucleation sites of the droplets A, B, C, D, and E. The black arrows in (1.04 s) show
the ”reflection” of the moving drops at the terrace edge. The apparent elongation of the moving drops is due
to stroboscopic (pulsed light) illumination of the sample, (details of the experimental set-up in the appendix
section A.3).

cular C30 terrace. Brighter area corresponds to one monolayer (1ML) sitting on top of the surface
frozen (SF) monolayer. In the last image (1.52 s) the regions of the step were nucleation occurred
(nucleation sites) are indicated with white arrows. The initial width of the grooves which result af-
ter nucleation and movement of the droplets is smaller than 1µm. When a drop reaches a terrace
edge (step) it changes its trajectory as if it had been ”reflected” by it. The black arrows in the im-
age (1.04 s) show the ”reflections” of the droplets A and B on their movement, after they reach the
border between the areas covered by the terrace and the surface frozen layer. In the last two images,
the drop C is immediately before (1.48 s) and after (1.52 s) touching the three-phase line of a larger
drop. After ”collision”, the shape of the large drop changes. This effect can not be explain (only) by
considering the momentum transfer since the drop increases almost symmetrically its in-plane size.
The droplet stretching2 suggest that the (metastable) solid terrace present under the large drop melts
instantaneously after the ”impact”. This change in the structure3 of the three-phase line may explain
the flattening (see section 6.3.5). Samples with thicker layers behave slightly different. The AFM
picture of an area covered with one- and two layer thick terraces of C36 is presented in figure 6.2.
From the section analysis it is easy to observe that the regions where the terrace edge has twice the

2This behaviour is analyzed in detail in the section 6.3.5 of this chapter.
3The S/L interface (underneath the drop) changes from two solid layer in contact with the liquid to one (SF) layer in

contact with the liquid.
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6.2. Nucleation of the advancing running droplets

height of a monolayer (≈ 9.7 nm) are preferred sites for nucleation. The initial width of the grooves
are in this case, 2.13 and 1.75µm, respectively. Other similar measurements gave the following val-
ues: 1.38µ(H) x 8.87 nm(V), 2.25µ(H) x 8.93 nm(V), 1.75µ(H) x 9.23 nm(V), 1.63µ(H) x 10.99
nm(V), 2.62µ(H) x11.25 nm(V). The temperature at which the nucleation occurs from steps of two
monolayers height is lower (∆ T = T − Tmp≈ + 0.15◦C) than that from one monolayer height steps
(∆ T ≈ + 0.4◦C).

Figure 6.2. AFM section analysis of a C36 terrace after the detachment of nucleated drops (tapping modus at
room temperature).

6.2.1. Instability of the wetting stripe at the terrace edge

In order to qualitatively explain the formation of the drops attached to the step on increasing temper-
ature, one can consider that a certain amount of liquid alkane is present all over the sample surface,
even when the temperature is a few degrees below the melting point. This molecularly thin liquid
layer was evidenced indirectly by its transport properties (it supplies the growth of terraces from
undercooled drops).

The existence of such a molecular film was proven also by imaging ellipsometry in a slightly
different configuration [98]. Samples covered with less than one up-right oriented alkane monolayer
were heated at different temperatures below the melting point. The presence of the film was proven
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6. Reversible running drops driven by the S-L phase transition

by comparing the area of the solid-covered regions with the thickness of the film in-between4.
On increasing temperature, the -CH3 (top) and>CH2 (lateral) terminated facets of the terrace

behave differently. The liquid film tends to increase its thickness only at the edge, where the -CH2

terminated facet is exposed. The liquid film on top does not change significantly its thickness. The
top surface of the terrace is partially wetted by liquid alkane compared to the step facet which is
supposedly completely wetted. The morphology of the liquid stripe which wets the step facet depends
on the extent of overheating and on the step height. Two parameters may describe the evolution
of the system: the amount of liquid per unit contour length of the step, and the step height. The
amount of liquid per contour length increases with increasing temperature and, beyond a certain limit,
the uniform liquid stripe becomes unstable. Gau et al. [99] describe the shape instability of liquid
microchannels on structured surfaces with a wettability pattern consisting of hydrophilic stripes (θ ≈
5◦) on a hydrophobic substrate (θ ≈ 108◦). They found that the channels undergo a shape instability at
a certain amount of absorbed volume, from a homogeneous state with spatially constant cross section
to a state with a single bulge. This type of instability differs from the classical Rayleigh-Plateau
instability because it leads only to a single bulge. On increasing the volume per unit stripe length, at
a certain contact angle value close to, but below 90◦, the homogeneous state becomes metastable and
the state with a single bulge becomes the state with the lowest free energy. Above 90◦, the uniform
cylindrical cap shaped channel is unstable leading to one bulge state of the liquid channel. The state
with a single bulge is described by a constant mean curvature.

Qualitatively, it is possible to apply their results to our geometry. For simplicity we consider the
extreme case, i.e. the top facet and the underlying surface frozen layer are non-wettable (θ = 180◦),
and the (lateral) facet of the step perpendicular to the sample plane is completely wetted (θ = 180◦) by
the liquid alkane. Thus, upon increasing the temperature, the step morphology may evolve following
the scenario presented in figure 6.3.

6.2.2. Critical radius and free energy barrier

Based on classical heterogeneous nucleation theory, one can roughly estimate the size of the critical
nucleus and the associated free energy barrier. Two simplifying assumptions are considered: (i) the
liquid droplet which forms as a result of melting, has a spherical cap shape and is not attached to
the solid terrace step; (ii) for small overheating temperatures, the surface energy of the solid on top
of the terrace is the same as the surface energy of the surface frozen monolayer (both layers having
the same molecular orientation with respect to the sample plane, exposing the same terminal -CH3

groups at the interface). The second assumption means that, for the solid terrace, the replacement of a
solid-vapour interfacial area of a thick layer by the same area covered with a thinner terrace does not
contribute to the free energy associated to the nucleus formation. Thus, the total free energy,∆Gtot,
for creating a nucleus can be calculated from the interfacial free energies associated to the liquid
drop formation (solid-liquid, solid-vapour and liquid-vapour interfaces) with the volume free energy
-∆T∆SρLVdrop, due to the overheating. The first graph (left) of figure 6.4, presents the dependence
of ∆Gtot, ∆GI (I = interface),∆GV (V = volume) on droplet size (expressed as radius of the circular
solid-liquid contact area) , for C36 at 0.2◦C overheating. For the calculation the following parameters

4The film is present directly on the substrate surface (SiO2) and changes its thickness with temperature; this behaviour is
probably the consequence of the (temperature dependent) thermodynamic equilibrium, SF(surface frozen monolayer)
� (liquid-like) film.
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6.3. Kinetics of running droplets on melting

Figure 6.3. Schematic description of the evolution of a solid alkane terrace edge on increasing temperature.
(a) Two molecular layer height step far below Tmp; (b) uniform wetting stripe covering the lateral facet of the
step; (c) bulge resulting from the instability; and (d) ”running” of the drop after detaching from the step.

were considered: enthalpy of fusion 173 J/g [49],γLV = 29 mN/m, andρL = 770Kg/m3 and a contact
angle of 20◦5. The corresponding radius of the resulting critical nucleus is 0.26µm. The second
graph (right) presents the variation of the free energy barrier and the radius of the critical nucleus as
function of overheating temperature. In the range of 0.15 to 0.3◦C overheating, the calculated Rcrit is
expected to vary between 0.35 and 0.17µm. Although a crude approximation, these results are close
to the observed sizes of the nucleated droplets which were experimentally observed.

In the temperature range between 0.05 to 0.6◦C, the height of the critical droplet varies from 184nm
to 15.3nm, i.e. it is much larger than the terrace thickness.

6.3. Kinetics of running droplets on melting

In this section we analyze the velocity of the droplets running on the surface covered with mono- and
multimolecular solid layers as function of size, temperature and chain-length of the alkane. For this
study, the movement of the droplets is observed under the optical microscope with a CCD camera
connected to a digital recording system. The maximum available acquisition rate, 25 frames per
second (PAL TV standard), proved to be not enough to get sharp images for fast moving drops. A
stroboscopic illumination described in the section A.3 was therefore developed. The power LED was
driven typically at a frequency of 250 Hz with a duty cycle of 5% maximum, corresponding to an
illumination time of less than 0.2µs. As a result, one recorded frame was an overlap of ten sharp
images corresponding to different positions of the droplets in motion, at equal time intervals, typically
4 ms.

In order to quantify the influence of the temperature on the velocity of the advancing drops, tem-

5This value was observed experimentally.
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6. Reversible running drops driven by the S-L phase transition

Figure 6.4. Size dependence of∆Gtot associated to nucleus formation for C36 at 0.20◦C above the melting
point (left) and the temperature dependence of∆Gcrit and Rcrit (right).

perature ramps were generated. The starting temperature of these ramps was chosen at one to three
degrees below the melting point in order to keep the transiental behavior of temperature out of the
range of interest (which is slightly above Tmp. By this we ensure that near the melting point and
immediately above, the heating rate is constant and small offsets eventually affecting the temperature
measurement are kept constant (constant heat fluxes towards the sample and towards the temperature
sensor). By synchronizing the temperature ramps and image recording, it was possible to get the
corresponding measured6 temperature for each image of the recorded sequence.

The heating rates ranged from 0.3 to 0.8◦/s, not too slow in order to cover a large enough tempera-
ture interval while the drops run and grow, but also not too fast to minimize the possible temperature
gradients and to get enough information for a certain temperature (under the assumption that within
short times the measured velocity corresponds to one temperature value). This assumption proved to
be true after analyzing the data. The frames containing ten overlapped images showed that the mov-
ing drop positions are roughly equidistant, i.e. within the corresponding time interval the temperature
can be considered constant.

In order to check if inertial effects can affect the validity of the results, slightly overheated samples
(for instance to Tmp+ 0.2◦C, for 1ML) were illuminated with an electronic flash to produce an ex-
tremely fast, superficial7 increase of temperature. The droplets moved instantaneously quite fast and
then the velocity decreased due to re-equilibration of the temperature.

The sequence of images shown in figure 6.5 is a typical time evolution of a mono- and bilayer
structure ofC24 upon heating (the surface frozen monolayer adjacent to the silicon surface is not
counted). The brightest area corresponds to the bilayer and the darker to the frozen monolayer. In
the first image (t = 0s) two solid spots (circled) are used as internal calibration for the bulk melting

6The measured temperature-time data set can be translated into temperature-frame pairs, i.e. it is possible to assign for
each image (frame) its corresponding temperature.

7This type of heating acts for a short period of time (the temperature decays exponentially to its initial value) since the
heat resulting from absorption at the solid surface is dissipated quite fast into the substrate by thermal conduction.
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6.3. Kinetics of running droplets on melting

Figure 6.5. Formation and time evolution of running droplets upon heating (≈ linear temperature increase) of
a solid C24 mono- and bimolecular layer on silicon substrate (illumination with pulsed light at 250 Hz, duty
cycle 5%). The white circles indicate two solid spots and the arrow in the fifth image (0.56 s) the nucleation
area for droplets moving into a monolayer.
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6. Reversible running drops driven by the S-L phase transition

temperature. Note that the other drops are not frozen, they consist of undercooled liquid. Immediately
afterwards, (not shown) the two spots melt simultaneously proving that temperature gradients can be
neglected. In the upper part of the second image (t = 0.44 s), the solid spot which melted into a drop
moves at a temperature which is few tens of a degree above the melting point. Most of the droplets
do not move because they are symmetrically surrounded by a solid layer with the same thickness. As
soon as the symmetry is broken, i.e. when the drop is in contact with layers having different thickness,
forces acting on the droplet are not in balance and set the droplet in motion. In the third image (t =
0.48 s), three new drops nucleate from the two-layer step and move ”eating” into the bilayer. The
velocities of these three drops are very similar (≈ 450µm/s) and more than 10 times higher that the
velocity of the drop which moves only on a monolayer. At 0.52 s the central bilayer which was
already touched in the previous frame by our first droplet, is now eaten by it. Upon changing from
one to two monolayers, the drop velocity becomes similar to the velocity of other drops ”eating” into
bilayer structure. New nucleated drops run into the right bilayer. In the upper-left corner of the image
one can also distinguish droplets running with two velocities, high speed for two layers and low for
the monolayer. The following image (t = 0.56 s) shows new droplets nucleating (the arrow indicates
their position) at the edge of a monolayer. The same velocity-thickness behaviour can be observed for
the rest of the droplets. In the last image the entire two-layer structure is consumed and many drops
of different size move ”eating” into the monolayer. The velocities at the same temperature (i.e. in the
same frame) are size-independent.

6.3.1. Dynamic contact angle of running droplets

Calculation of the dynamic contact angle from mass conservation

In the case of running droplets, the dynamic contact angle can be determined by using a mass conser-
vation argument. On movement, the increase of the droplet volume is given by the amount of solid
which melts8. The amount dmS of alkane melted when the droplet advances with dx into the solid
layer with the thickness H is

dmS =−ρSWHdx (6.1)

where W is the width of the solid layer consumed by the droplet on moving, x is the displacement
andρS is the solid density. In most of the cases when the droplets move, the interference rings and
contact lines have a circular shape. This observation allows us to assume that the running droplets
have a spherical cap geometry. Thus, the increase of droplet mass is related to the radius R of the
circular contact line by the relation

dmL = d[ρLΞ(θ)R3] (6.2)

whereρL is the liquid density close to the melting point andΞ(θ ) is a function which converts the
cube of radius into the spherical cap volume, V =Ξ(θ )R3. The value of the functionΞ(θ ) (under the
assumption thatθ is constant) can be calculated from the two previous equations, by setting dmS +
dmL = 0 and replacing the width with 2R. This gives,

Ξ(θ) =
2ρSHdx
3ρLRdR

(6.3)

8This assumption is particularly true for short time intervals (seconds) since the evaporation rate is very low.
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6.3. Kinetics of running droplets on melting

After integration, the above equation becomes

Ξ(θ) =
4ρSH∆x

3ρL∆(R2)
=

16ρSH∆x
3ρL∆(W2)

= f (θ ,∆W2,∆x) (6.4)

where∆(R2) is the increase of R2 associated to a∆x displacement. The contact angle can be recovered
from Ξ(θ ) (derivation in the section A.1.1 of appendix) by using the equation,

θ(Ξ) = π−2arctan(x−1
0 ) (6.5)

where x0 is the solution of the third order equation x3 + 3x− 6x/π = 0,
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Figure 6.6. Optical microscopy image showing the geometry used to calculateθD from mass conservation.
The five paths marked with dashed arrows correspond to different in-plane droplet sizes, ranging from 0.9 to 5
µm in diameter.

In figure 6.6 is presented a snap shot of a C24 mono- and bilayer structure during melting via
running drops, few tenths of a degree above the melting point. In the area covered by a molecular
double layer (2ML), five running droplet paths, marked with dashed lines, are selected for calculating
the dynamic contact angle (the droplets 2 and 3 are moving at a velocity of about 35µm/s). By
choosing two positions along these paths one can measure the corresponding displacement,∆x and
local path widths, for instance Wi and Wj for droplet 1. Considering a solid/liquid density ratio of
ρS/ρL ≈ 1.1 and H = 2 x 32.4̊A, the calculated dynamic contact angles are in the range of 10 to 15◦.
A slight decrease of contact angle with increasing size can be observed. By dividing the long path of
the droplet 1 into three regions it is possible to calculate three (size dependent) values of the contact
angle. These values are shown in table 6.1 together with the values for the droplets 2 to 5.

Static contact angle after melting the solid layers

Immediately after the entire solid structure is melted, the contact angle of the droplets is not changing
significantly if the temperature is far enough below the wetting transition (TW = Tmp + 3.5◦C). In the
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6. Reversible running drops driven by the S-L phase transition

Table 6.1. Calculated dynamic contact angle for C24 drops running into a two molecular layer structure
(velocity≈ 35 µm/s).

Drop No. size range, Wi-W j [µm] path length [µm] θD [◦]
1 0.9-2.3 25 15.0
1 2.3-3.8 42 12.2
1 3.8-5 44 11.9
1 0.9-5 111 12.6
2 1-1.9 14 14.0
3 1.4-2.7 25 12.8
4 4.2-5 28 10.7
5 2.3-3.9 47 12.8

graph of figure 6.7, the static (≈ equilibrium) contact angles of three alkane chain lengths is plotted
against droplet size, at≈ 1◦C above their melting point. The average values are 18.85± 2.23◦ for
C24, 19.30± 2.23◦ for C30, and 22.41± 1.17◦ for C36.

Figure 6.7. Static contact angle of C24, C30, and C36 drops as function of their in-plane diameter, (at≈ 1◦C
above the melting point).

6.3.2. Dependence of velocity on droplet size

The droplet velocities as a function of the overheating temperature, for different droplet sizes, is
shown in figure 6.8. The data refer to running droplets ”eating” into a C36 monolayer. They are
classified into four groups, according to their in-plane diameter.The plot indicates that the velocities
are size-independent. C24 and C30 show similar behaviour.

In the case of melting two or three solid layers, it is easier to observe experimentally that the
velocities are size-independent because, for the same displacement, the thicker the terrace, the faster
the increase in size.
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6.3. Kinetics of running droplets on melting

Figure 6.8. Dependence of droplet velocity on overheating temperature for different droplet sizes. The droplets
are classified into four classes according to the values of their in-plane diameter.

6.3.3. Dependence of velocity on temperature and number of molecular layers

As already described, the temperature at which the liquid droplets start moving is always above the
bulk melting point, defined as the melting temperature of solidified polycrystalline drops. The repro-
ducibility of the melting point as previously defined was checked by slowly heating the samples, from
a few degrees below the expected melting point, at a heating rate of less than 0.2◦C/min. For a set of
7 samples, the values of the melting point did not differ by more than± 0.05◦C.

In the following, data are presented based on the previous observation that the droplet size does not
influence significantly the velocity. As a consequence, velocity values are plotted irrespective of size.
A systematic study of droplet velocities vs. temperature and number of layers was performed for all
three alkanes C24, C30 and C36. The most accurate results are the ones for C30, presented in figure
6.99.

The initial temperature and the rate of temperature increase were very similar for all the samples,
Tinit − Tmp =− 2.75± 0.15◦C and dT/dt = 0.67± 0.03◦C/s.

The melting temperature of the frozen droplets (Tmp) measured during temperature ramp is very
close to the melting temperature measured under quasi-equilibrium conditions (extremely slow heat-
ing rates). The maximum observed difference,|Tmp,eq−Tmp,ramp|, did not exceed 0.14◦C, indicating
that the melting point is not shifted much by a high heating rate (no detectable kinetical effects on
melting). Rather the temperature sensed by the Pt100 sensor lags behind the temperature on top of
the sample due to the small heat capacity of the sensor. For each sample the melting point was de-
termined from the video frame sequence and not from the time-temperature record10. For samples
having many frozen drops on the observation area, the melting occurred for all of them within one
frame, corresponding to a melting interval of less than 0.02◦C. This proves that there is no significant

9This is mainly due to a better temperature sampling; for the experiment with C30, the temperature sensor, glued on a
silicon wafer with the same dimensions as the sample dimensions, was positioned on top of the heating plate, in a
position equivalent with the sample position, using the same silicon oil thermal connection.

10For each measurement, the temperature values recorded as temperature-time pairs were calibrated (shifted) according
to the melting point observed in the video frame sequence. Subsequently, the corresponding temperature value was
assigned to each frame in the video sequence.
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6. Reversible running drops driven by the S-L phase transition

Figure 6.9. The dependence of droplet velocity vs. temperature for different number of solid layers, in the case
of C30. The data in the four graphs correspond to different samples measured within one day, with the silicon
wafer substrates from the same cleaning batch.
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6.3. Kinetics of running droplets on melting

temperature gradient which may act11 as driving force for the running drops.
In the four graphs of figure 6.9, one can observe a linear increase of the velocities vs. temperature.

For both, one (black squares) and two molecular solid layers (blue circles) being eaten by running
droplets. The velocity error bars are twice the standard deviation calculated from the linear fit of each
data set and the estimated temperature error is± 0.06◦C. The corresponding linear relation can be
written as

U(∆T,N) = U0N +sN∆T (6.7)

where∆T = T− Tmp is the overheating, N is the number of solid, monomolecular layers, U0N is the
velocity (negative offset) at the bulk melting point and sN is the temperature slope of the velocity with
temperature. Since the value U0N does not have an obvious physical meaning, the linear dependence
may be described better by the zero velocity temperature intercept,∆T0N = − U0N/sN. The fitting
results describing the linear dependence are shown in table 6.2.

Table 6.2. Linear fit parameters of velocity-temperature dependence for one and two melting layers of C30,
(errors represent 2xσ , double of standard deviation).

Sample s1[µm/s◦C] s2[µm/s◦C] ∆T01[◦C] ∆T02[◦C] U01[µm/s] U02[µm/s]
C30-A 960 1839 0.44 0.22 -426 -402
C30-B 988 2066 0.36 0.20 -358 -420
C30-C 997 1720 0.46 0.17 -460 -300
C30-D 1132 2252 0.53 0.27 -597 -612
average 1019±154 1969±474 0.45±0.14 0.22±0.09 -460±201 -434±260

The slope of the velocity vs. temperature for two monomolecular layers (2ML), s2 = 1969± 474
µm/s◦C, is about twice the value for one monomolecular layer (1ML), s1 = 1019±154µm/s◦C. This
means that the slope of the driving force with temperature is proportional to the solid layer thickness.
The zero velocity temperature intercepts (∆T0N) decrease with the number of layers, from 0.45±
0.14◦C for 1ML to 0.22± 0.09◦C for 2ML.

The graph C30-B deserves special attention: the green square points labeled ”1ML of 2ML” are
the droplet velocities ”eating” a monomolecular layer on top of the first, surface frozen molecular
layer. Although this type of melting was rarely observed compared with the situation when the entire
thickness available is being ”eaten”, the result is important because it shows that the number of layers
being melted is the key parameter determining the velocity. The distance from the substrate does not
play an important role.

In the case of three solid layers (the red triangles in the graph labeled C30-A), the data points were
not enough to get a reasonable fit. However, it is clear that, at the same temperature, the velocity
increases with the number of layers being ”eaten”.

The velocity dependence with temperature and number of layers for C36 alkane are shown in fig-
ure 6.10 for two experimental runs. In terms of overheating values, these results are less accurate
compared with ones for C30 due to the a different position of the temperature sensor. The error bars
are twice the standard deviation calculated from the linear fit for the velocity, and± 0.08◦C for the
temperature.

The linear fit parameters for the two graphs are shown in table 6.3.

11Droplets can move on a planar surface if they are subject of a temperature gradient which generates usually a surface
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6. Reversible running drops driven by the S-L phase transition

Figure 6.10. The dependence of droplet velocity vs. temperature for different number of solid layers for C36.

Table 6.3. Linear fit parameters of velocity-temperature dependence for one and two melting layers of C36.
Sample s1[µm/s◦C] s2[µm/s◦C] ∆T01[◦C] ∆T02[◦C] U01[µm/s] U02[µm/s]
C36-A 999 2174 0.47 0.28 -473 -603
C36-B 1008 2131 0.39 0.26 -394 -562
Average 1004 2153 0.43 0.27 -434 -583

Besides the data describing the droplet velocities when the entire thickness of the available solid
structure is melting (1ML and 2ML), the graph labeled C36-B of figure 6.10 shows the velocity-
temperature dependence for the case when only one of the two available layers melts. The behaviour is
similar to the one observed for C30 (see the graph labeled C30-B in figure 6.9) i.e. the velocities at the
same overheating temperature depend on the thickness of the layer being consumed (one molecular
layer) and not on its position with respect to the solid substrate (on top of the surface frozen layer or
on top of two layers).

The graph in figure 6.11 describes the experimental results for C24 alkane. These data bring addi-
tional evidence that the number of molecular layers melting is the dominant parameter deciding the
droplet velocity at a certain overheating temperature. The velocity-temperature data points describing
the melting of 1ML of 2ML available (green rhombs) overlap with the ones corresponding to melting
of 1ML on the surface frozen layer (black squares). The same observation is valid for melting of
2ML of 3ML (red hexagons) compared with melting of 2ML on the surface frozen layer (blue cir-
cles). As previously observed for C30 (graph C30-A of figure 6.9), the velocities of the running drops
for melting of 3ML on the surface frozen layer (red triangles) are characterized by a higher slope vs.
overheating and a lower zero velocity temperature intercept as compared with the cases when two and
one solid monolayer is being consumed. The fitting results are presented in table 6.4.

6.3.4. Generalized dependence of velocity versus terrace thickness and
overheating

The analysis of the experimental results for the three alkanes, having different solid terrace thick-
nesses and at different temperatures, suggests that the data points can be unified into amaster curve.

tension gradient (Marangoni effect).
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6.3. Kinetics of running droplets on melting

Figure 6.11. The dependence of droplet velocity vs. temperature for different number of solid layers for C24.

Table 6.4. Linear fit parameters of velocity-temperature dependence for one, two and three melting layers of
C24.

Nr. of layers sN[µm/s◦C] ∆T0N[◦C] U0N[µm/s]
1ML 944 0.37 -347
2ML 2128 0.15 -326
3ML 2977 0.08 -245

The values of the velocity extrapolated to the bulk melting point are very similar (U0,1 ≈ U0,2 ≈
U0,3 ≡ U0), and the slopes are proportional to the terrace thickness. The equation of the master curve
is:

Ũ = s̃∆T (6.8)

where the ”reduced velocity” is defined bỹU ≡ [U(∆T, N)-U0]/N and s̃ is the slope of the reduced
velocity vs. overheating temperature when one molecular layer is being melted. The graph in figure
6.12 presents the master curve for the data points presented in figure 6.11. The value of U0 was cal-
culated by averaging the three U0,N. Using the result of the averaging, thẽU values were recalculated
and plotted against overheating. The slope ˜s which results from fitting is 944µm/s◦C.

6.3.5. Driving force: Surface tension or melting free energy?

In the temperature range between the bulk melting point and few tens of a degree above, interesting
aspects of the behavior of some drops reveal the driving mechanism for moving droplets.Non-moving
droplets sitting on their own solid terraced structure12 can show two different behaviors:

(i) the dropsdo not changesignificantly their contact angle13 and its value is very similar to the
one corresponding to the drops sitting on the surface frozen layer, i.e.≈ 20◦ (see, for instance, the

12This refers to drops whichare notattached to a step,
13See for instance the static drops in figures 6.1 and 6.5.
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6. Reversible running drops driven by the S-L phase transition

Figure 6.12. Unifying the data points of figure 6.11 into amaster curve, described bỹU = s̃∆T.

graph of figure 6.7).
(ii) on increasing the temperature dropletschange dramaticallytheir contact angle (see figure 6.13);

this behaviour is more pronounced with increasing number of molecular layers.
For the first case (i), considering the Young equation (which describes the horizontal balance of

forces at the three-phase line),

γLV(T)cosθ
(i)(T) = [γSV(T)− γSL(T)](i) (6.9)

and the fact that for liquid long chain alkanes (e.g. C20, C36), the temperature dependence ofγLV (in
the range Tmp to Tmp + 1◦C) is given by the equation14 [100],

γLV ≈ 28.6−0.1(T−Tmp) [mN/m] (6.10)

we can conclude that, in the temperature range of interest, both sides of the equation 6.9 do not vary
significantly with temperature (cosθ ≈ const.anddγLV /dT≈ 0.1 mN/(m◦C)). The line (i) in the graph
of figure 6.14 corresponds to the (almost constant) value ofγLV cosθ (i) (γLV is calculated according to
equation 6.10.

For the second case, under the assumption that at each temperature the contact angle corresponds
to a quasi-equilibrium shape15, we can also write the Young equation,

γLV cosθ
(ii)(T) = [γSV(T)− γSL(T)](ii) (6.11)

whereby assuming that in this caseθ (ii) varies significantly with temperature as presented in the
graph of figure 6.14(b). Something seems wrong because the left sides of the equations 6.9 and 6.11
are different while the right sides are the same. However, one may argue that, for the second case (ii),

14Not considering the formation of the surface frozen layer.
15This means that the viscous dissipation is small enough to reach very fast the equilibrium shape corresponding to each

temperature during the temperature ramp.
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6.3. Kinetics of running droplets on melting

Figure 6.13. Sequence of images showing the time (and temperature) evolution of a a C30 drop in contact with
its own 3ML thick solid terrace upon increasing temperature. In the first five images the drop does not move
on the surface but is ”stretched” symmetrically by a force field which increases with temperature (finally the
symmetry is broken and few running drops are generated).

Figure 6.14. Horizontal component ofγLV for: (i) droplets which do not change their contact angle on increas-
ing temperature and (ii) the drop depicted in figure 6.13 and two other similar drops.
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6. Reversible running drops driven by the S-L phase transition

Figure 6.15. Proposed structure for the three-phase line when the contact angle (a)does not varyand (b)
variessignificantly with increasing temperature. In order to explain the second behaviour aquasi-2D solid
film tensionγ f us ∝ ∆T , (red-dashed arrow is subfigure (b)), is considered as correction term in the horizontal
balance of forces at three-phase line.

the increase of cosθ (ii) with temperature may correspond to achange in the structureof the three-
phase line. We suggest that, in the cases whenθ barely change with temperature the solid terrace
remains present underneath the liquid while in case (ii) it does not. Figure 6.15 shows schematically
the two structures.

We can add a correction term to equation 6.11 and thus solve the inconsistency of equation 6.9.
This term takes into account the temperature variation ofγLVcosθ (ii),

γLV cosθ
(ii) = γSV− γSL+ τ∆T = γSV− γSL+ γ f us (6.12)

where∆T is the overheating andτ is the temperature slope ofγLV cosθ (ii) which is accessible experi-
mentally. In our case the values ofτ = ∂γLV/∂ T are 5.1, 4.8, and 4.2 mN/(m◦C) (the slopes of lines
(b) in the graph of figure 6.14). The correction term, aquasi-2D tensionwhich adds toγSV (same
direction) is namedγ f us because is most probably generated by the free energy of melting (fusion).

To check the validity of this assumption we calculate the force (per unit length) which will be
generated by the free energy of melting. For our geometry, the work done byγ f us is given by

γ f usdx=−∆gf us (6.13)

The free energy of melting which corresponds to dx is,

∆gf us =−HρS
∆H f us

Tmp
∆Tdx=−HρS∆Sf us∆Tdx (6.14)

whereρS is the solid (terrace) density, Hdx is the volume (per unit length),∆H f us and∆Sf us are the
enthalpy and entropy of fusion, respectively (per unit mass). Combining the two equations above we
get,

γ f us =−HρS
∆H f us

Tmp
∆T (6.15)

For C30, the enthalpy of fusion is about 160J/g [49]. For a molecular layer of up-right oriented
C30 molecules (40̊A thick, density of about 900 kg/m3), the value ofγ f us(T) is 1.69∆T mN/m. This
means that for three layers, the temperature slopeτ f us = dγ f us/dT is about 5.1 mN/(m◦C) which agrees
quite well with our experimental values.
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6.3. Kinetics of running droplets on melting

6.3.6. Calculation of the temperature slope of the driving force using the
hydrodynamic model

The hydrodynamic model describing the droplet movement on a solid surface assumes the balance of
driving force with the viscous force. Making use of the ”lubrication approximation” theory of fluid
mechanics (see section 2.2 in the chapter 2), the viscous force per unit length of a circular ridge in
motion can be approximated by,

FD = FV ≈ 6η
UL
θd

(6.16)

where U is the velocity, L is a dimensionless coefficient (L≡ln(xmax/xmin), xmin and xmax the micro-
and macroscopic cut-offs, respectively). The same equation stands also for a spherical cap drop
moving on the surface. The running drop experiments reveal values of the slope of velocity with
temperature (sN). By calculating the derivative of the FV (= FD) with respect to temperature,

∂FV

∂T
=

∂FD

∂T
=

6ηUL
tanθd

∂U
∂T

=
6ηL

tanθd
sN (6.17)

the temperature slope of FD can be derived. For C24 alkane, takingη60◦
C24 = 4.48 mPa s [101], andθd

≈ 10◦ (see section 6.3.1), the value of L is≈ 5.9 (the microscopic cut-off≈ 0.5 nm, the macroscopic
cut-off≈ 2 µm). Considering s1 ≈ 1 mm/s, we get∂FV/∂T = 0.96 mN/(m◦C). This is quite similar
to 1.38 mN/(m◦C), the theoretical value assuming as driving force the free energy of melting. This
result is another indication that, most probably, the movement is driven by the melting free energy,
balanced by the viscous dissipation.

The two quantitative analysis’ presented above suggest that there is no solid structure16 under the
melting-driven running drops.

6.3.7. Dewetting Kinetics of the all-liquid film

The dewetting transition occurs17 when the temperature decreases below TSF (i.e. ≈ 3◦C above the
bulk melting temperature). Using the stroboscopic illumination, the velocity of the dewetting front
was determined when the samples were cooled at a rate of≈ 2◦C/s. Figure 6.16 shows a sequence
of optical microscopy images describing the dewetting of a C30 film with a thickness of about 100̊A
(2-3 up-right oriented ML). In the first image (top, left) the white arrows indicate some darker spots
(defects) which, in the second image are the starting points of the dewetting process. Within one
image (40 ms) up to ten concentric rings can be observed. The distance between two consecutive
rings corresponds to a time interval of 4 ms. The dewetting velocity is independent of the radius of
the dewetted area (equal distance between the concentric circles).

Graph (a) in figure 6.17 shows the time variation of the circular ridge radius upon dewetting (the
data correspond to three dewetting regions in figure 6.16). The ridge radius varies linearly with
time, i.e. the dewetting velocity is constant. The corresponding slopes (velocities) are 620, 614, and
652 µm/s, respectively. The second graph (right) presents the the dewetting velocities for different
samples of C30 and C36. The average velocity in case of C30 is 598± 83 µm/s (SD) and 622± 67
µm/s (SD) in case of C36.

16Surface frozen layer is not counted.
17See the diagram 5.1 in chapter 5
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6. Reversible running drops driven by the S-L phase transition

Figure 6.16. Sequence of images at 40 ms time intervals, illuminated with 250 Hz pulsed light, showing the
dewetting kinetics of a C30 film (scale 50µm); in the first image (top-left), the starting points of dewetting
(black defects) are indicated with arrows.

Figure 6.17. Time evolution of the radius of the dewetted area (a) corresponding to the figure 6.16 and
dewetting velocities of C30 and C36 films measured for different samples (b).
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6.4. Running droplets driven by solidification

Comparing the dewetting velocity of the thin liquid alkane films with the velocities of the running
drops one can estimate that the liquid dewetting represents the limit case of ”solid dewetting” i.e
running drops. In other words, the velocities of the running drops increase with increasing overheating
but not beyond the liquid dewetting limit. A transition between the ”running drop” mechanism of
solid dewetting and liquid dewetting is expected at higher overheatings. This transition is discussed
in more detail in chapter 7.

6.4. Running droplets driven by solidification

In chapter 5 was shown how undercooled droplets form molecularly thin, circular solid terraces.
Under certain conditions an undercooled drop can form solid plateaus and move. Similar to the
melting-driven running drops, the movement is driven by an unbalanced force field acting parallel to
the sample plane. Most probably the difference in the front and rear contact line structures generates
the driving force.

The solidification via running dropletscompeteswith the formation of a round terrace and is a fairly
rare event. It typically occurs when moving drops which ”eat” into a solid terrace are stopped by
lowering the temperature below Tmp. This creates an asymmetrical situation where the undercooled
droplet is on one side in contact with a solid terrace and on the other side with the substrate.

Some characteristic features of solidification-driven running drops deserve special attention be-
cause they may help to elucidate the mechanism of movement:

(i) the movement occurs only in a very small temperature range below the melting point, not ex-
ceeding−1◦C undercooling, further undercooling destabilizes the movement leading to terrace for-
mation (symmetrical spreading);

(ii) the thickness of the solid trail which forms as the result of movement is usually more than 3-4
layers (solidifying running droplets forming only one molecular layer thick trail were not observed);

(iii) the velocity is more than two orders of magnitude slower than the melting-driven movement
for the same deviation from Tmp and the same solid thickness being formed or consumed.

6.4.1. Temperature dependence of the velocity for solidification-driven running
drops

The OM image sequence in figure 6.18 shows thereversiblemovement of three C24 dropsabove(19.6
s), andbelowTmp. During solidification the drops follow the path which was previously created by
partially melting the terraces. The trajectories are not straight, on their movement the droplets tend to
avoid the 6 ML height terrace ”walls” like being reflected by them. On their way, they reconstruct the
solid structure at a thickness corresponding to the highest solid terrace which they contacted when
they started moving. This feature can be observed in the area within the white rectangle (32.6 s) where
a small drop leaved behind a 6 ML thick solid although it moves on an area with thicker coverage.

The graph 6.19 shows the temperature dependence of the velocity for three solidifying drops with
roughly the same size (14µm). The velocity increases linearly with decreasing temperature. The
slope dU/dT is− 2.7 µm/(s◦C) and the zero velocity intercept is about−0.1◦C below Tmp.
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6. Reversible running drops driven by the S-L phase transition

Figure 6.18. Solid terraced structure of C24 with a maximum height of 6ML (the surface frozen layer not
counted) (0 s) at the melting point; (19.6 s) two (A, B) advancing drops ”eating” the terrace upon a slight
increase of the temperature; (20.04 s) the drops stop due to a slight decrease of temperature; further decrease
(28.08 s) of temperature (below Tmp makes the drops move in the reversed direction; drop B moves while A
stops (32.44 s) because it is surrounded by the terrace; in the rest of images the drop B and another drop C
move leaving behind the solid plateau (which has the same thickness as the highest terrace they were in contact
with when the movement driven by solidification started); finally both B and C stop moving and start to grow
terraces (after image at 32.44 s, the observation area was changed).
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6.4. Running droplets driven by solidification

Figure 6.19. Temperature dependence of velocity when 6ML thick terrace forms as a result of movement (data
correspond to figure 6.18).

6.4.2. Sequential initiation of solidifying running droplets

A special case for triggering the movement of droplets upon solidification is presented in figure 6.20,
(a). This was observed by studying the movement of C36 drops on a mica substrate, at few tenths of
a degree below Tmp. In subfigure (a), a sequence of optical microscopy images shows the movement
of a droplet marked A towards droplet B (time mark 0s). When the distance between the two drops
becomes very small (< 1µm), the droplet B becomes distorted and starts moving as if it was ”kicked”
by A (16s). Further on, following the same pattern, droplet B initiates the movement of droplet C
(20s), which continues to move (25s). The average velocity of droplets A and C was≈ 1.5 µm/s.
This behaviour is quite surprising since two droplets approaching each other at a distance at which
they can exchange liquid are expected to coalesce minimizing their surface free energy.

6.4.3. Mechanism of solidification-driven running drops when thin solid terraces
are formed

Section 6.3.5 suggested a possible structure of the three-phase line for moving drops driven by melt-
ing, i.e. most likely the melting-driven (advancing) running drops sit directly on top of the surface
frozen layer with their leading front attached to the terrace step18.

A possible mechanism, consistent with the features of solidifying moving drops, is schematically
presented in figure 6.20, (b). The proposed scenario assumes that the structure of the leading part of
the drop consists of a solid terrace (microscopic scale) whose solidifying front moves slightly ahead
of the nominal contact line (macroscopic scale) of the undercooled drop19. The growth of the solidi-
fying front is supplied from the macroscopic drop through a molecularly thin liquid film covering the
solid structure. The assumption that the solid terrace is present underneath the undercooled drop is
supported by the fact that, at few tenths of a degree below Tmp, a solidification front present at the rear

18In that case the thickness of the solid melting was in the order of few molecular layers; there are indications that the
same topology would be consistent with the experimental evidence presented in chapter 7 (i.e. drops attached to a thick
terrace adjust their position (melt or solidify gradually) upon extremely small changes of temperature.

19This implies the presence of the solid terrace (with the same thickness as the one which is formed) underneath the drop;
this consideration is consistent consistent with the undercooling range and extent at which the solidification-driven
running drops move.
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6. Reversible running drops driven by the S-L phase transition

Figure 6.20. Sequence of optical microscopy images, showing the droplet-to-droplet triggering of movement
during solidification of C36 on mica (a), and a possible mechanism explaining why the droplets do not coalesce
(b). Note that the drops which move are distorted, i.e. their three-phase line does not have the usual (static)
circular shape.

contact line (or in-between the front and rear contact lines) will grow very fast towards the leading
front since there is plenty of undercooled liquid to supply the growth. On moving, the macroscopic
contact line will always lag behind the solidifying front by a distanceδ . Coming back to figure 6.20,
when the distance between the solid front of a moving drop and the contact line of a static drop is
small enough, the solidification front gets supply from both droplets leading to a faster advance of
the solid front (left-hand side cartoon). As a result, the distanceδ will increase and the first drop
will slow down while the second will feed more and more the growth. Finally the second drop will
start moving because the solid leading front is transfered to it while the first drop stops. The distance
between the two drops will increase again and the droplets will not coalesce. If this mechanism is
true, a question arises: why do the droplets move when the solid terrace exceeds the nominal area of
the S-L interface underneath the drop? In other words, where is a asymmetric force field which drives
the movement? A possible answer is that the liquid film in front of the drop is, on average, thinner
(the solidifying front ”sucks” molecules from it) than the one behind. As a result, the surface energy
in front of the droplet is higher than the one behind.

This model allows us to estimateδ . A moving droplet will not detach from its leading solid terrace
if the velocity of the macroscopic drop equals the velocity of the advancing solid terrace, i.e. the
parameterδ is time independent (dynamic equilibrium, stationarity). The flux j supplying the growth
and the velocity U of the advancing solid front are constant. Assuming a linear geometry, the flux
(mass per unit time and unit length of the three-phase line) is related to the velocity of the droplets by

j = UHρS = UNH0ρS (6.18)
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6.4. Running droplets driven by solidification

where H and H0 are the terrace thickness and the all-trans length of the molecule, respectively. If the
transport is considered diffusional,

j =−D
Γ2−Γ1

δ
=

DkHρS

δ
(6.19)

with D the diffusion coefficient,Γ1 the surface concentration at the macroscopic contact line,Γ2 the
surface concentration at the growing front, and k≡ (Γ1− Γ2)/HρS, (see also the equations A.28,
A.29). Combining the equation 6.18 and 6.19 we getδ :

δ =
Dk
U

=
Dapp

2U
(6.20)

The apparent diffusion coefficient, Dapp was defined in the chapter 5 by the equation (R2-R1)2 =
Dappt. For one monolayer and 0.3-0.5◦C undercooling, the experimental value of Dapp was≈ 0.02
µ2/s. In the case of running drops on mica, the thickness of the solid layer can be estimated to about
3ML and Dapp,3ML ≈ 0.0067µ2/s. Thus, for the velocity of 1.5µm/s, we get forδ a value of about
2.2 nm, i.e. about five repeat molecular spacings.

Qualitative analysis of the stability of the ”running drop” regime with respect to the
”terrace growth” regime

A qualitative model may consider two velocity functions U(δ , ∆ T, H) for the microscopic solidifying
front velocity (U1) and macroscopic contact line velocity (U2). U1 may depend onδ according to the
following equation (see equation 6.20 in which Dapp ∝ ∆ T/H):

U1 ∝
∆T
δH

(6.21)

where H is the thickness of the growing solid terrace. A qualitative dependence of U2 on δ can
be obtained from the following considerations: (i) the velocity is proportional to the driving force;
(ii) the macroscopic three-phase line can not move faster than the microscopic solidifying front, i.e.
on decreasingδ there should be a value,δ = δ0 for which the driving force is zero; (iii) for large
values ofδ the driving force decreases gradually to zero (δ → ∞ means symmetrical force field);
(iv) in between the two limits the driving force reaches a maximum; (v) for anyδ , the driving force
increases with the magnitude of undercooling. To fit all these conditions, one can choose for instance
the following relation:

U2 ∝ ∆Tδ exp(−aδ ) (6.22)

where a is an adjustable parameter.
The graph (a) in figure 6.21 shows the qualitative dependence of the velocities U1 and U2 on δ for

a terrace thickness of 2H and constant undercooling. Let us consider the two functions describing the
growth of a 2H thick terrace (black solid and black dashed curves). The movement corresponds to a
dynamic equilibrium (stationarity) if,

U1 = U2 (6.23)

otherwise the system evolves increasingδ for U1 > U2 and 0< δ < δA or decreasingδ for U1 <
U2 andδA < δ < δB. Hence, A is a(meta)stablepoint (stationarity).
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6. Reversible running drops driven by the S-L phase transition

Figure 6.21. Velocities of the microscopic solidification front U1 (solid lines) and of the macroscopic con-
tact line U2 (dashed lines) versusδ : (a) constant terrace thickness (2H, constant undercooling), (b) different
terrace thicknesses (H, 2H, 3H, constant undercooling), and (c) constant terrace thickness (2H) atdifferent
undercoolings.

If δ > δB, the distance will increase and the system changes the behaviour from a ”running drop” to
a ”spreading drop”. The point B, although it fulfils the dynamic equilibrium condition, it describes an
unstableregime since small fluctuations ofδ may lead to either spreading regime or running regime
of point A.

According to the equations for U1 and U2 considered above, U1 (solid lines) decreases when the
thickness H increases while U2 is thickness independent. In graph (b) of figure 6.21 are plotted the
velocity functions U1(δ , H) for three thickness values H, 2H, 3H. In the case with terrace thickness H,
U1 and U2 do not intersect each other and the droplet can solidifyonlyby spreading. This may explain
why solidifying running drops forming for instance only one solid monolayer were not observed.

In graph (c) of figure 6.21 are plotted two pairs of U1 – U2 curves for the same terrace thickness
and two undercooling temperatures,∆T (red) and 2∆T (blue). Since both U1 and U2 increase linearly
with ∆T, the velocity describing the dynamic equilibrium (U1 = U2) increases linearly with undercool-
ing, UB(2∆T) = 2UA(∆T), as observed experimentally. The model does not explain why for a given
thickness of the growing terrace, on decreasing temperature beyond a certain limit, the mechanism of
solidification switches from the ”running droplets” regime to the ”terrace growth” regime. A further
refinement of the model may consider the influence of pinning, droplet distortion, and solidification
kinetics.

6.5. Discussion and conclusions

Long-chain alkane (C24, C30, C36) droplets in contact with their own molecularly thin solid terraces
can move on a planar solid substrate, as a result of a asymmetric force field. The movement is
strongly temperature dependent and its direction can be reversed. Above the melting point droplets
move consuming the solid whereas below Tmp they can recreate the solid structure. When only
solid terraces are present, the melting starts from the terrace edge (step). The submicrometer-sized
drops which nucleate at the edge move increasing their volume on the expense of the solid which is
consumed. Both advancing and receding running drops move on the surface self-avoiding their own
trails.

The velocity does not depend on the droplet size but increases linearly with both overheating tem-
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perature and solid film thickness (number of molecular layers melting). This indicates that the driving
force is the free energy gain upon melting or solidification. The driving force is balanced by viscous
forces. Inertial forces do not play any significant role20. Using the hydrodynamic model, the ex-
perimental slope of velocity vs. temperature can be translated into the slope of the driving force vs.
temperature. The numerical result is in agreement with the value calculated considering the melting
free energy as driving force. The same conclusion is confirmed quantitatively by analyzing droplets
which are symmetrically stretched by the ”melting force” given by the overheated solid film.

For the case when the droplets move consuming only part of the available solid layers, the results
show that the position of the melting layer(s) with respect to the substrate surface is not important.

Defining a ”reduced” velocitỹU ≡ [U(∆T, N)-U0]/N, it was shown that all the data points, irre-
spective of terrace thickness, can be unified into a master curve with the equationŨ = s̃∆T.

The movement driven bysolidificationcompetes withterrace growthand therefore occurs only
under specific conditions. A model based on the presence of the solid terrace underneath the moving
drop has been proposed. The model explains qualitatively the features of solidifying running drops,
especially the observed two orders of magnitude lower velocity21 as compared with melting-driven
running drops, the non-coalescing of the drops which initiate the movement from one another and
why moving drops forming only one molecular layer were not observed.

Within the experimental errors, the three studied alkanes do not reveal a systematic effect of the
chain length.

20Upon changing their moving direction, the initial velocity is extremely fast recovered i.e. the increase of velocity with
temperature results from the increase of the driving force and not from acceleration.

21At the same absolute deviation from the melting point
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7. Overheating aspects of solid alkane films of
different thickness

7.1. Introduction

The previous two chapters presented the behaviour of long-chain alkanes close to the bulk melting
temperature. Thin alkane terraces are not stable at temperatures slightly above the bulk melting point
and can relax either by:

(i) the dissolution of the terrace, i.e. the reversed process of terrace growth; this occurs by alkane
transport from the terrace edge to a macroscopic drop, via a thin ”liquid-like” film present in-between,
on top of the surface frozen monolayer (see sections 5.9 and 5.10 of the chapter 5), and

(ii) running drops, which travel on the area covered with the terrace and ”eat” the solid on their
way (see chapter 6).

In the previous chapters mainly the kinetic features were analyzed and different mechanisms of
solidification/melting were proposed.

Some questions are still not completely answered: (i) why the solid, ordered alkane films melt (con-
tinuously) by either ”dissolution of the terraces” or as ”running droplets” (chapter 6) and notentirely,
all-over the surface at once; (ii) how the system ”chooses” between the two melting mechanisms and
what are the relevant parameters?; (iii) what is the overheating limit (the maximum temperature at
which the film is still solid).

This chapter analyzes the experimental evidence from another perspective, i.e. the overheating
aspects (see section 2.5 of chapter 2).

It is unquestionable that, upon increasing the temperature, the system should change from a solid,
ordered film of different thicknesses, which ”wets completely” the surface frozen layer (equilibrium
state below its melting point), to macroscopic, partially wetting drops (equilibrium state above the
critical temperature)1. The topology of three states are presented in figure 7.1. Both (thin) ”com-
pletely wettingSolid Monolayer in contact with theVapour phase” (SoMoV) and thick ”completely
wettingSolid Mu ltilayer in contact with theVapour phase” (SoMuV) initial structures experience a
dilemma upon melting: todewet upon meltingor melt into a film which afterwords dewetsthe surface?

The main goal is to explain the relation of causality betweenstructure→ properties→ behaviour
(the thermodynamics and kinetics aspects). An interesting interplay between the two opposing ther-
modynamic forces (the melting free energy and capillary forces) is found as possible explanation for
the evolution of the system above Tmp.

1The term ”equilibrium” describing partially wetting drops is not entirely correct since large drops can grow on the expense
of the small ones (Oswald ripening) either via the vapour phase or via a molecular film present on the surface which
allows the drops to ”communicate”. However, for the time scale of the experiments discussed here, such a process can
be easily discarded.
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7. Overheating aspects of solid alkane films of different thickness

Figure 7.1. The melting process of alkane films implies thephase transitionitself and the change of the
wetting regime from”completely wetting”mono- and multilayer solid terraces topartially wetting(PW) drops.
(SoMoV) stands for ”completely wettingSolid Monolayer in contact with the Vapour phase”. (the surface
frozen layer not counted since it does not melt in the temperature range of interest) while (SoMuV) stands for
”completely wettingSolid Multilayer in contact with theVapor phase”.

7.2. Thermodynamic considerations for melting of a monolayer
thick solid terrace

Let us consider as reference states two of the equilibrium structures depicted in figure 7.1:
(i) a ”completely wetting” solid monolayer in contact with the vapour phase (SoMoV), for temper-

atures below the melting point, and
(ii) partially wetting (PW) drops ofequal sizeabove the melting point. The size of the droplets is

fixed to R0 (radius of the circular three-phase line) which is set for simplicity to≈ 5µm2. With this
size the drops are considered in the following ”macroscopic”3.

Furthermore, for all the states themean4 molar surface concentration, Γm (= number of moles
number per unit surface area of the substrate), is also fixed to a valueΓ01

m which corresponds to an
almost5 complete solid monolayer6. By definition, this parameter does not distinguish between solid
and liquid states. It can be calculated with the following formula:

Γ01
m =

H0ρS

M
≈ 8.35·10−6mol

m2 ( f or C30) (7.1)

All the numerical values will be calculated in the following using C30 as reference alkane.
As proper parameter describing the stability of different states is chosen theGibbs free energy per

unit area of the substrate surface. This intensive parameter denoted in the following by g contains

2The typical values of this parameter are in this order of magnitude for both types of experiments described in the previous
chapters: the reversed process of terrace growth above the melting point and ”running droplets”.

3Although the interfacial contributions are not discarded, the intensive quantities describing this state like molar entropy,
molar volume, molar enthalpy, etc. are similar to the bulk values.

4With the meaning of amount of alkane per unit area when the
√

unit areais much larger than any relevant lateral sizes of
the structures of interest.

5The layer is considered almost complete to allow the presence of steps.
6The surface frozen monolayer is not taken into account;Γ01

m refers only to the excess alkane (monolayer terrace or
partially wetting drops) on top of the surface frozen monolayer.
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7.2. Thermodynamic considerations for melting of a monolayer thick solid terrace

bothbulk andsurface7 contributions and refersstrictly to the above specified amount of alkane per
unit surface area of the substrate.Its definition is

g≡ G
A

=
(

∂G
∂A

)
T,p,Γ01

m

(7.2)

where G is the Gibbs free energy of the excess alkane8 with the fixed mean molar surface concentra-
tion Γ01

m . A is the sample surface area. It is important to note that according to the conditions defined
above, for each considered state, the variation of Gibbs free implies the variation of area and amount
of alkane considered.

Any energetical contribution due to long or short range molecular interactions is completely ig-
nored.

The melting point T∗mp of the completely wetting solid monolayer terrace (SoMoV) into partially
wetting drops of fixed size (PW) is defined9 as the temperature at which the Gibbs free energy per
unit area g is the same for the two reference states,

gSoMoV(T∗mp) = gPW(T∗mp)≡ gSV
0 (7.3)

The superscript SV denotes the solid-vapour interface since both structures expose (mainly) solid
surface to the vapour phase.

The diagram in figure 7.2 shows the theoretical variation of g with temperature for the different
states. The line marked (i) describes the structure which is stable below T∗

mp, i.e. the solid monolayer,
(SoMoV). Its equation is,

gSoMoV(T)≈ gSV
0 −SSoMoV(T−T∗mp) (7.4)

where SSoMoV is the entropy of the solid monomolecular layer per unit area.
The line (ii) describes the temperature dependence of g for the state (PW) and has the equation:

gPW(T)≈ gSV
0 −SPW(T−T∗mp) (7.5)

where SPW is the total entropy per unit area of the partially wetting liquid drops. Its value must be
very similar to the bulk entropy, (SPW ≈ Sbulk

L ) of the liquid alkane since the droplets are considered
”macroscopic” (see footnote 3). The difference between equation 7.5 and equation 7.4 represents the
temperature variation of the energy which drives the transition between the two states,

∆gSoMoV,PW =−(SPW−SSoMoV)(T−T∗mp) =−∆S(i),(ii)(T−T∗mp) (7.6)

Ocko et al. [102] found that the values of the entropy change upon formation of the surface frozen
layer is very similar to the value associated with the transitionbulk rotator phase→ liquid. Assuming

7The states discussed in the following may change the nature or shape of the interfaces; only the interfaces in which the
considered amountΓ01

m is part are relevant here.
8Excess has the meaning of the amount of alkane which is on top of the surface frozen layer.
9For bulk, the thermodynamic melting point is defined by the equality of free energy per molecule (chemical potential

or molar Gibbs free energy) in solid and liquid phases, respectively. The case discussed here is special because the
considered potential g contains energetical contributions from the interfaces.
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7. Overheating aspects of solid alkane films of different thickness

that our solid film has similar properties as the surface frozen layer at the liquid/vapour interface, we
can approximate the value of∆S(i),(ii) with the entropy change upon melting of the bulk rotator phase,

∆S(i),(ii) ≈ ∆Sbulk
SL ≈ ∆SSF,L = 1.72

mJ
m2 ·K

(7.7)

The line describing the temperature variation of the g potential for a completely wetting (CW) film
with the sameΓ01

m would be shifted relative to the line (ii) with the positive quantity

∆gCW(T) = gCW(T)−gPW(T)≈ [1−cosθ(T)]γLV(T) (7.8)

whereθ represents the equilibrium contact angle of the drops in the partially wetting state andγLV

the surface tension of the liquid alkane. The approximation comes from the fact that the L/V and S/L
interfaces are replaced almost entirely by the S/V interface (upon dewetting the areas of the S/L and
L/V interfaces are much smaller than the newly created S/V interface). (A more detailed discussion
of this approximation is presented in the section A.5 of the appendix). A further approximation,

∆gCW(T)≈ [1−cosθ(T∗mp)]γLV(T∗mp) = const. (7.9)

discards the temperature variation10 of both γLV andθ since the temperature range of interest is
very small. The numerical value of∆gCW calculated for C30 is≈ 1.72 mN/m.

The line (j) corresponds to a monolayer solid film immersed in its own (bulk) liquid melt ”com-
pletely wettingSolid Monolayer in contact with (its own)Liquid phase”, (SoMoL). It runs almost11

parallel but below the line (i) due to the replacement of S/V interface by S/L,

∆gIM(T) = γSL(T)− γSV(T) =−cosθ(T)γLV(T)≈−cosθ(T∗mp)γLV(T∗mp)≈ 26.3

[
mJ
m2

]
(7.10)

which has the numerical value of≈ 26.3 mJ/m2. Due to the same reason, the line (jj) is shifted
below (ii) with the same quantity. The temperature (T∗∗

mp) corresponding to the intersection (j) and (jj)
defines the melting point of theimmersedterrace, i.e. the transition from (SoMoL) to a completely12

liquid film of the same amount per area,Γ01
m (the dashed line in the cartoon represents a formal L-L

interface which obviously does not cost any energy). T∗∗
mp must be Tmp, the melting temperature for

bulk13. On the other hand, T∗∗mp should be the same as T∗mp since the lines (i) and (j) and (ii) and (jj),
respectively, run parallel, and are shifted with the same quantity. Hence,

T∗mp≈ T∗∗mp≈ Tmp (7.11)

This is as expected if long range forces are discarded!.
The above relation comes to support the assumptions which were considered in the chapter 6 i.e.:

10The value of∂γLV /∂T (≈ 0.1 mNm−1K−1 [100]) is much smaller thanγL(Tmp) itself (≈ 28.6 mNm−1 at the melting
temperature), and barely varies with the chain length; it was observed experimentally that also the temperature variation
of θ in the temperature range of interest is small.

11The differenceγSL − γSV = −γLV cosθ contains the same ingredients as the∆ gCW line; hence, based on the same
arguments its temperature dependence is discarded.

12Except the surface frozen monolayer.
13By replacing the SiO2 substrate with a semi-infinite alkane solid the system will correspond to L(bulk)/S(bulk) interface.
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7.2. Thermodynamic considerations for melting of a monolayer thick solid terrace

Figure 7.2. Diagram showing the temperature dependence of g (Gibbs free energy per unit area) for different
wetting regimes (the surface frozen monolayer is covered with either solid or liquid excess alkane at constant
mean molar surface concentration,Γ01

m ). The lines (i) and (ii) describe the the two reference states: 1ML thick
completely wetting solid film in contact with the vapour phase (SoMoV), below the melting temperature T∗

mp,
and partially wetting (PW) macroscopic drops of constant size above it, respectively. The line (j) describes
the state (SoMoL) which is the state (SoMoV) immersed in its own melt (the S/V interface replaced by L/S),
and the line (jj) represents the temperature variation of g when the immersed solid monolayer is molten (the
hypothetical interface L/L does not have any energetical contribution. The red dashed line (cw) corresponds to
the (hypothetical) complete wetting. The intersection points between the lines: (i) and (ii) defines the melting
point of 1ML solid→ partially wetting macroscopic drops; (j) and (jj) defines the melting point of SoMoL→
L; (i) and (cw) defines the temperature TMN at whichmassive nucleationand growth is expected to occurs.
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7. Overheating aspects of solid alkane films of different thickness

(i) a solid terrace underneath the liquid drop is not thermodynamically stable above Tmp (section
6.3.5) and,

(ii) a solid terrace will be stable underneath the drop if the temperature is below Tmp (section 6.4.3).

7.2.1. The (absolute) thermodynamic limit of overheating, TMN

The intersection between the line (i) describing the state (SoMoV), and line (cw) describing the
complete wetting state (CW) gives the (absolute) thermodynamic limit of overheating,∆TMN. TMN is
derived from:

gSoMoV(T) = gCW(T) (7.12)

which is equivalent to (see equations 7.6 and 7.9),

−∆gSoMoV,PW(T) = ∆gCW(T) (7.13)

The solution is:

∆TMN =−∆gSoMoV,PW

∆gCW ≈ 1◦C (7.14)

This is consistent with the experimental evidence, i.e. the melting mechanism of 1ML terrace via
running drops was not observed at higher overheatings than≈ 0.9◦C (see section 6.3.3 in chapter
6)14.

7.2.2. Hierarchy of the melting mechanisms

Depending on∆T15, a hierarchy of three melting mechanisms of a monomolecular solid terrace has
been observed experimentally. This hierarchy is consistent qualitatively and quantitatively with the
thermodynamic approach. The figure 7.3 shows schematically these three melting mechanisms in
a diagram which displays overheating temperature – degree of solid→ liquid conversion (time).
The sequence (a)→ (b)→ (c) describes the reversed process of terrace growth (terrace dissolution),
the sequence (α) → (β ) → (γ) describes the melting via running drops and (1)→ (2) → (3) the
sequence of ”massive nucleation” and growth of the liquid phase followed by dewetting (i.e. the
melting process is faster than dewetting). In the following are summarized the features of the three
melting mechanisms.

Terrace dissolution (the reversed process of terrace growth)

Immediately above Tmp (see figure 7.2 but below TRD (0 to ≈ 0.4◦C overheating) the monolayer
terrace is not stable. The blue triangle describes by its y dimension the magnitude of the driving
force of melting and by its x dimension the overheating range in which the system relaxes via terrace
dissolution. Depending on whether a liquid drop is present16 or not on the surface, the system is
unstableor metastable, respectively. In the first case the alkane molecules will travel from the terrace

14Or, terms of velocities, the maximum velocity of running drops does not exceed the dewetting velocity i.e.running drops
can not move faster than the dewetting front, (sections 6.3.3 and 6.3.7 in chapter 6).

15As the equation 7.6 shows, the magnitude of the thermodynamic driving force for melting∆g(SoMoV),(PW) increases with
the extent of overheating.

16This is the case for the experimentally observed (chapter 5) terrace dissolution mechanism.
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7.2. Thermodynamic considerations for melting of a monolayer thick solid terrace

Figure 7.3. Three melting mechanisms observed and predicted by the thermodynamic considerations for
melting of a solid alkane terrace (exemplified for the case of 1ML) in a diagramoverheating temperature vs.
degree of solid→ liquid conversion (time): path (a)→ (b)→ (c) corresponds to the reversed process of terrace
growth, path (α) → (β ) → (γ) to ”running droplets”, and path (1)→ (2) → (3) to (first) complete melting
followed by dewetting.

edge to the macroscopic drop through the liquid film in between. The kinetics of this process isslow
because the transport17 through the film isnot efficient. The excess free energy is dissipated in the
molecularly thin film.

The metastable case refers to the formation of anexternal, partially wetting, (macroscopic) drop.
This process was not observed experimentally and can be explained by the high nucleation barrier of
the formation of a liquid drop.

Running drops i.e. ”solid dewetting”

As shown in chapter 6, this melting mechanism occurs in the overheating range TRD – TMN (≈ 0.4
to ≈ 1◦C). The thermodynamic driving force is higher in this temperature range than in the case of
terrace dissolution and increases with overheating. This is reflected in the increase of running drop
velocity with increasing temperature. The experimental value of the temperature corresponding to
zero velocity18 of a running drop19 is not T∗mp. This contradicts apparently the theoretical analysis
because the drops are expected to move immediately above Tmpsince by droplet movement the system
decreases its free energy. Distortion and pinning may explain the shift of TRD with respect to T∗mp.

The initial stage of a running drop is the formation of drops attached to the step by accumulation
of the liquid which wets the terrace step, a process similar to the Rayleigh instability. The formation

17The molecular flux depends on the distance between the terrace edge and the macroscopic drop.
18This value is estimated extrapolating the velocity of the running drops to 0 in the linear dependence velocity-overheating.
19The size of a running drops considered here is macroscopic i.e. the TRD is not connected to a nucleation barrier.
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7. Overheating aspects of solid alkane films of different thickness

of droplets attached to the terrace step is a nucleated process (see section 6.2 in chapter 6) and the
nucleation barrier is overcame due to overheating. The melting via running drops is amore efficient
way compared with the transport of alkane molecules via a molecularly thin film. The excess free
energy is spent on viscous dissipation.

Massive nucleation and growth

Massive nucleation and growth of the liquid phase within the solid terrace is expected to occur above
the thermodynamic limit, TMN i.e. ≈ 1◦C overheating. The evolution of the system is expected to
follow the sequence (1)→ (2)→ (3) in the figure 7.3 i.e., first melting and then dewetting.

In order to observe the massive nucleation and growth of the liquid phase, the system must be
heated fast enough to reach the temperature∆TMN before the entire structure is melted via the running
drops. One can estimate the minimal heating rate taking into account the average lateral size of the
terraces, the slope of velocity vs. temperature and the minimal value of the temperature at which
massive nucleation and growth takes place. The timeτ needed to consume the entire solid structure
via running drops is given by the condition:

∫
τ

0
U(t)dt = lterr ⇔

∫
τ

0
s1rhtdt = lterr ⇔ τ =

√
2lterr

s1rh
(7.15)

were lterr is an average lateral size of the terraces (per nucleated drop), s1 is the slope of the running
drop velocity vs. temperature (s≡ ∂U/∂T) and rh is the heating rate (≡ ∂T/∂ t). The temperature at
which the massive nucleation and growth occurs must be reached within a time shorter thanτ. This
condition,

∆TMN

rh
< τ, (7.16)

gives a minimal rate of heating of

rh >
s1(∆TMN)2

2lterr
(7.17)

With the experimental values s1 = 1000µm/(s◦C), and lterr ≈ 100µm the minimal heating rate would
be≈ 5◦C/s. This is consistent with experiments20 where the samples (kept at temperatures between
Tmp and TRD) were illuminated with a electronic flash when the superficial heating rate is extremely
high.

7.3. Overheating of thick terraces

Figure 7.4 shows a thick C24 terrace progressively melting on increasing temperature. The terrace
thickness calculated from mass conservation is≈ 240 nm. The melting starts from the stepped con-
tour of the terrace forming an uniform liquid ”stripe” which gets wider and wider on increasing tem-
perature. On further heating, the liquid stripe eventually destabilizes forming two distorted droplets
attached to the step. Regions with higher curvature of the step contour are preferred for the droplet

20In the case of 1ML solid terrace, only the transitionsolid→ ”normal” dewetting liquid filmwas observed, i.e. no running
drops.
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formation. The droplet increases its volume on expense of the melting solid and finally the entire
solid becomes a liquid droplet. Detailed observation of the movement of such drops give evidence
that extremely small changes of temperature near Tmp can generate advancing or receding droplet
movement, driven by solidification or by melting. The direction of the movement can be reversed
within a much smaller temperature range(≈ 0.02◦C) as compared with the case of droplets con-
nected to a thin terrace of few molecular layers where a significant hysteresis of about 0.5◦C can be
observed.

Figure 7.4. Sequence of optical microscopy images showing the melting of a≈ 240 nm thick C24 terrace
(10µm scale bar). In the first three images, the liquid stripe wetting the stepped perimeter (white contour)
widens and then two distorted drops form in the regions of highest in-plane curvature. Finally the entire
structure is molten.

The optical microscopy images in figure 7.5 present the evolution of a thick (≈ 150nm) C24 terrace
upon heating. The corresponding overheating temperatures21 are shown for each image together with
the elapsed time from the beginning of the experiment. In the first image (0.0012◦C, 0 s)22 the solid
terrace is in its initial shape. After 14.5 s, at about 0.0877◦C above Tmp, the liquid stripe surrounding
the terrace destabilizes forming a drop which moves consuming part of the terrace. The third image,
(0.1100◦C, 24 s) is a snap-shot of the droplet moving with a velocity of about 2.45µm/s. In the next
image (0.0973◦C, 26 s) the drop was just stopped due to a slight decrease of the temperature. On fur-
ther decrease of the temperature, 0.0940◦C, 31.1 s, a tendency of movement backwards is observable
but only the wetting line connected to the terrace moves and not the one on the SF monolayer. In this
case the droplet seems to be ”compressed” between the terrace-connected wetting line and the three-
phase line on the SF layer which seems to be pinned. After the temperature is raised again (0.1118◦C
- 44 s), the droplet moves consuming the terrace with a velocity of about 2.5µm/s. At 0.0899◦C
and 48.2 s the drop just started to move very slowly ”backwards”, re-creating the terrace. In the final
picture, at 0.0652◦C the velocity of the solidifying drop reached 3.2µm/s. It is important to point
out that the droplet can advance stepwise upon a stepwisechangeof the temperature, passing through
staticmetastableconfigurations! In other words, to avoid melting23 the entire structure it is not nec-
essarily needed to decrease the temperature. These static states at slightly different temperatures can
have a lifetime on the order of minutes.

Another important observation is that, in addition to the melting as a result of droplet advancement,

21The temperature was calibrated with respect to the melting point of a macroscopic, amorphous solidified drop; what
is considered important in this experiment is not the accuracy of calibration but how extremely small temperature
variations (relative values) influence the system.

22This is of coarse not an absolute, correct number, it is only the number taken from temperature read-out (resolution) and
reflects only the change. For instance .0010→ .0012 means increase of the temperature.

23At constant temperature, as soon as the drop attached at the terrace step becomes ”macroscopic”, based on simple
thermodynamic considerations the entire solid is expected to melt.
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thick terraces melt also at the terrace step, all along the contour of the terrace. The resulting liquid
is ”pumped” towards the drop through the liquid stripe surrounding the terrace which preserves a
quasi-constant width. This second mechanism of melting of thick terraces can be clearly observed
in figure 7.5. At the beginning of the experiment, the lower part of the terrace has a neck. By
comparing the second and the third images, a decrease in area of the lowest part of the terrace can
be observed. On decreasing temperature the process is stopped and restarted when the temperature
increases again (see fifth and sixth images). The same effect leads also, on melting, to a depletion of
the solid material (decrease of the terrace width) immediately ahead of the advancing droplet front.
This second transport/melting mechanism is apparently non-reversible i.e. at lower temperatures
when the drop moves solidifying, the liquid is not pumped back to solidify all-around the terrace.
The non-reversibility can be explained by comparing the Laplace pressure (the most probable driving
force) within the liquid stripe with the pressure inside the drop. Thus, pL in the liquid stripe can be
much higher (high curvature, in the order of H−1) than its corresponding value in the drop while to
pump back the liquid, the maximum available driving force is limited to the absolute value of pL in the
drop. A second effect which may explain the non-reversibility is that, by decreasing the temperature,
the available section through which the liquid in transported decreases. Careful observations of the
melting via the second mechanism revealed that regions having higher in-plane curvature melt faster.
The transport through the liquid stripe which wets the terrace step is expected to occur also for terraces
of few monolayers but the kinetics is much slower making the process negligible.

It is important to note the distorted24 shape of the droplet when it is either stationary or moving.
The distortion is higher when the drop moves. The extra free energy cost associated to the distortion
acts as afree energy reservoirwhich, when the droplet moves, fuels the movement together with
the free energy gain on melting/solidification. A second important observation is that the wetting
line connected to the terrace has a much smaller curvature in thesample planethan anywhere else.
A non-moving drop is characterized by the same Laplace pressure (pL) everywhere inside the drop.
Moreover, fast equilibration of pL can be considered for drops moving at low velocities (in the order
of µm/s). The Laplace pressure is proportional to the total curvature, r−1

1 + r−1
2 were r1 and r2 are the

two main radii. Let us consider the plane P1 (see 7.7) defined by: (i) the z direction perpendicular to
the sample plane intersecting the the surface of the droplet in its highest point and (ii) the direction
of movement x, and associate to its intersection with the drop surface the main curvature r−1

1 . A
second plane P2 is perpendicular to P1 intersects the droplet surface and defines the second main
curvature r−1

2 . Since for our experimental conditions the Laplace pressure is position independent,
for both static and moving drops at low velocity, the curvature r−1

1 must reach its maximum in the
middle point of the wetting line connected to the terrace, while r2 has in the same point a larger value.
This observation is consistent with the tendency of the drop toapproach its equilibrium contact angle
everywhere along its contact line.

Forces which may play a role in the melting/solidification behaviour of thick terraces

Different forces affecting the melting/solidification behaviour may be considered:

(i) Melting force.

24With respect to the spherical cap shape which corresponds to lowest superficial free energy.
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Figure 7.5. Reversible movement of a C24 droplet connected to a thick terrace when the sample is slightly
heated and cooled within a temperature interval of about 0.03◦C.
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A melting/solidification force25,

∆Fadv, rec(∆T)(≡ ∆γ
N
f us(∆T)) = τ

1ML
f us ∆Tadv, recN (7.18)

where∆ Fadv, rec(∆ T) is the difference in force (per unit length) given by the free energy of melt-
ing/solidification which corresponds to∆T, γN

f us(∆ T) is the melting/solidification ”tension” as dis-

cussed in chapter 6, section 6.3.5, N the number of layers in the solid terrace andτ1ML
f us the slope of

the melting/solidification tension with temperature. Withγ
1ML,C24
f us ≈ 1.4 mN/(m◦C·ML)), H = 150nm

(≈ 47ML), ∆Tadv, rec ≈ 0.003◦C (the temperature difference which corresponds to the forth and fifth
images in figure 7.5, i.e. between two static situations) we get∆Fadv, rec≈ 0.2 mN/m.

(ii) Pinning and distortion.
In the graph (a) of figure 7.6 are plotted the approximate values of droplet contact anglesθF (front),

θR (rear). Note that the ”front” and ”rear” terms were chosen relative to the movement on solidifica-
tion. The contact angle values are calculated from the height of the droplet (deduced from the number
of interference rings), height of the terrace and the horizontal distances between the two contact lines
and the droplet center, assuming circular shapes with different r−1

1 curvatures for the front and back
parts of the drop. As reference, the average value of the contact angle in the same temperature range,
on the same sample, for three spherical-cap shaped drops (without contacting a solid terrace) was
17.86± 0.74◦.

Figure 7.6. Estimates of ”front” and ”back” contact angles (a) and Laplace pressure values (b) corresponding
to the images 3–8 of the figure 7.5.

The approximate values ofθF and θR corresponding to the forth and fifth images allow us to
estimate the values of thepinning forces. Thus, the change of the front (rear) contact angles when
the drop is about to move consuming the terrace (≈ 16◦) and to move building it again (≈ 18◦)
corresponds to a change in the horizontal force field (per unit length) of about 0.3 mN/m.

A comparison between the two results (melting/pinning forces) suggests that these to forces balance
each other.

25The solidification facet of the crystal acts as a piston driving the drop back and forth∆Fadv, rec can be calculated in the
same manner as for the thin terraces (see 6.3.5)
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Figure 7.7. Lateral view (section) of a drop attached to a thick terrace showing the balance betweenpinning
forcesandunbalanced Youngforces: (a) static situation when the terrace tends to melt (a) and to solidify (b).

”Step” force.
In section A.6 of the appendix is derived an expression of the unbalanced Young force which will

drive a liquid drop sitting on a solid stepped structure towards the equilibrium configuration (attached
to the solid step edge but without the solid underneath). Instead of a spherical cap shaped drop (3D)
a cylindrical ridge (2D) is considered. The estimated force (per unit length) is≈ 0.5 mN/m and does
not depend on temperature. This estimate means that the drop would be attached to the step and not
sitting (partly) on top of the terrace, i.e. the result supports the assumption that the moving drop at
the edge of the solid alkane terrace does not have solid underneath.

The behaviour and the conditions for moving drops onsolidifyingare different whether the terrace
which is formed is thin (i.e. few molecular layers), or thick (in the order of few tens of layers). The
following features describing moving drops connected to a thick terrace suggest that the mechanism of
movement is different compared to the one previously described for drops connected to thin terraces:
(i) the contact angle at the wetting line connected to the terrace varies significantly for extremely
small temperature changes; (ii) the temperature at which the movement occurs is closer to the melting
point26; (iii) the droplet can move with relatively high velocity. The previous scenario27 can not
account for all these differences. Most probably the difference consists in the position of the terrace
step with respect to the wetting lines. In the case of thick terraces, the droplet is attached to the step28

with its rear wetting line while in the case of thin terraces the solid is present under the liquid drop
moving slightly ahead of the front wetting line.

Together with pinning effects, this configuration may explain why, a ”large” droplet (with a size
much larger than the corresponding critical size) attached to an overheated thick terrace, can be ma-
nipulated and even stopped in different positions by slight changes in temperature (in this condi-
tions the total free energy of the system is expected to decrease continuously until the entire solid
is molten). Figure 7.7 presents schematically, for static situations, the balance between the pinning
forces and unbalanced Young forces for the case of an elongated drop just before it moves driven by
either melting (left cartoon) or solidification (right cartoon). Considering the pinning effects which
are indeed observed experimentally (see the forth and fifth images of figure 7.5 which correspond to
static configurations) it is possible to explain why the droplet stops although it is overheated.

(iii) Laplace pressure and the melting point (Clapeyronequation).

26This comes to support the supposition considered for the case ofmelting-drivenrunning drops eating thin terraces i.e.
the terrace is not present underneath the drop.

27See section 6.4.3 in chapter 6.
28Other experiments showed that the solid terrace can be present in-between the front an rear wetting lines; in that cases,

when the solidification front touched the front wetting line, the drop movement stopped.
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7. Overheating aspects of solid alkane films of different thickness

According to the Clapeyron equation, the equilibrium melting point is changed when the pressure
changes,

dT =
∆VSL

∆SSL
dp≈ 3·10−7dp[◦C] (7.19)

where∆VSL and∆SSL are the molar volume and entropy change upon melting. With the values for
C24: 5·10−5 m3/mol and≈ 170 J/(mol·◦C), dT/dp = 3·10−7◦C/Pa. Graph (b) in figure 7.6 presents the
Laplace pressure estimated from the two mean curvatures. An average Laplace pressure of≈ 3200 Pa
shifts Tmp by less than 0.001◦C; the relative change of pL which is≈ 200 Pa has obviously a smaller
effect (images fourth and fifth in figure 7.6). Based on these estimates we can discard the effect of
Laplace pressure on the melting temperature.

7.4. Conclusions

Based on thermodynamic arguments, it is possible to explain the mechanisms of terrace melting (ex-
emplified for the case of 1ML) which were described in the previous two chapters, i.e. ”terrace
dissolution”, (chapter 5) ”running drops” (chapter 6), and the overheating aspects of these processes.
The approach takes into account to aspects of terrace melting: thesolid–liquid phase transition itself
and thewetting transitioni.e. from a ”completely wetting” solid to a partially wetting drop. These
reference states are considered the equilibrium configurations below and above the melting tempera-
ture. An appropriate potential g (Gibbs free energy per unit area at constant coverage) is defined in
order to describe the transition between the equilibrium states. This thermodynamic potential takes
into account both ”bulk” and interfacial energetical contributions. Long range van der Waals forces
are ignored. The theoretical ”phase diagram” g–temperature agrees reasonably well (including the
numerical values) with the experimental findings.

A hierarchy (with respect to overheating temperature) of melting mechanisms is found:terrace
dissolution→ running droplets→massive nucleation and growthof the liquid phase into solid terrace
followed by dewetting (melting faster than dewetting). Both thermodynamic and kinetic aspects
are discussed in some details. A qualitative dependence between the degree of overheating and the
kinetics of the corresponding melting mechanism is found: the higher the thermodynamic driving
force the faster the rate of melting.

The second part of the chapter analyzes the melting mechanism of a ”thick” (hundreds of nanome-
ters) terrace. It is found that the melting process is continuous and reversible, i.e. by slight changes
of the temperature the drop attached to the terrace step can advance (melt into the terrace) or re-
cede (build again solid terrace). The influence of different types of forces which may influence the
melting process are discussed. It is found (not surprisingly) that the driving force of the process is
the melting/solidification free energy. Besides the ”usual” viscous force which opposes the move-
ment, pinning and distortion forced are relevant. They can explain why the droplet position can be
controlled and fixed by slight changes of temperature.
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8. Conclusions

In this work the behaviour of molecularly thin films of long-chain alkanes, tetracosane (C24, triacon-
tane (C30), hexatriacontane (C36)) at planar solid (SiO2)/vapour interface was analyzed in detail.

Making use of optical microscopy, SAXR and AFM it was possible to explore both thermodynamic
and kinetic aspects of the interplay between wetting behaviour and melting/solidification processes in
molecularly thin alkane films.

Chapter 5 presents the growth of molecularly thin solid terraces starting from the three-phase line
of partially wetting, undercooled drops (T< Tmp = bulk melting point). It is shown that the main
nucleation mechanism of terrace growth isinduction, i.e. as soon as a solid terrace front touches the
perimeter of an undercooled drop, this drop also starts to grow its ”own” terrace. Via this ”domino”
effect, originating from the rear event of a single homogeneously nucleated terrace growth, eventually
most drops grow solid terraces. The kinetics of growth isdiffusion-like. The width (R) of the solid
terrace surrounding the drops increases∝

√
time. The experimentally accessible apparent diffusion

coefficient defined as Dapp = R2(t)/t (t = time) was found to decrease with increasing temperature. At
Tmp, Dapp is zero and above it the solid terrace material is transported back into the drop (”terrace dis-
solution”). In other words, the terrace can either grow or melt depending on whether the temperature
is below or above Tmp, respectively. Solidified drops do not grow terraces under the same conditions
as undercooled drops. By analyzing the layer-by-layer growth of terraces on top of each other it was
possible to deduce the presence of a film of mobile alkanes everywhere on the sample ”precursor
film”. This is the first experimental evidence for a precursor film coexisting with a partially wetting
bulk phase. A model for the growth of the terraces considers as driving force the difference between
two local chemical potentials,∆µ = µsolid,edge− µdrop, i.e. between the terrace edge and the droplet
perimeter.

The mechanism of melting/solidification of molecularly thin solid terraces via ”running” drops is
presented in chapter 6. It was found that upon small overheating (typically< 0.3◦C, the solid terraces
melt via ”terrace dissolution” (the reversed process of terrace growth by diffusion between terrace
edge and bulk drop). At higher overheating, liquid alkane drops nucleate at the terrace edges (which
act as defects). These droplets grow in size by moving into the solid terrace area, ”eating” the solid
and leaving behind an alkane-free trail. The drop velocity is size-independent, but increases linearly
with both overheating and the thickness of the solid film (number of molecular layers melting). The
droplet movement can be reversed. Under certain conditions (asymmetric force field = droplets in
contact with solid alkane terraces of different height), below Tmp, the droplets move, leaving behind
traces of solidified alkane layers. There are indications that in the case of solidifying running drops
the terrace is present underneath the liquid while in the opposite case (melting-driven) not. The
topologies and driving forces are discussed in some detail.

Based on the thermodynamic approach discussed in chapter 7 the experimentally observed hierar-
chy of melting mechanisms could be explained. The experimental results confirm for the first time
a relation between overheating and wetting which has been suggested already a long time ago and
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8. Conclusions

never proven. Usually solids can not be overheated because their melt wets its own solid and there is
no nucleation barrier. The alkane melt is non-wetting, thus there is a barrier and overheating.

Figure 8.1 summarizes some findings of this work:

Figure 8.1. Schematic diagram showing thethermodynamic states(PW = partial wetting, CW = complete wet-
ting, CWS = ”completely wetting” solid) and some of themelting/solidification mechanisms(i.e. terrace growth
– terrace dissolution, melting-/solidifying–driven ”running droplets”, MN = massive nucleation and growth of
the liquid phase in a (overheated), molecularly thin alkane film) observed and analyzed in detail in this work.
The system consists of long-chain alkanes (e.g. C24, C30 and C36 at planar solid(SiO2/vapor interface. The x
coordinate denotes the log (typical time of a the experiment) and y the extent of undercooling/overheating.
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[98] R. Köhler. Personal Communication.

[99] H. Gau, S. Herminghaus, P. Lenz, and R. Lipowsky.Science, 283:46, 1999.

[100] X. Z. Wu, B. M. Ocko, E. B. Sirota, S. K. Sinha, M. Deutsch, B. H. Cao, and M. W. Kim.
Science, 261:1018, 1993.
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A. Appendix

A.1. Definitions

Table A.1. List of some of the symbols used in this work.
Symbol Meaning Symbol Meaning
R radius of a circular wetting line ν mole number
r spherical cap radius m mass (of a drop)
V (spherical cap) volume Ξ(θ ) conversion function, V≡ Ξ(θ )R3

A surface area h height of the spherical cap / thickness
θ contact angle x in-plane position, horizontal displacement
ρL (ρS) liquid (solid) densities H0 monolayer thickness
N number of molecular layers H film thickness

Figure A.1. Parametrization of a spherical cap drop.

A.1.1. Useful relations between different parameters describing spherical-cap
shaped drops

Spherical cap volume as function of different parameters:

V(h,R) =
π

6
h
(
3R2 +h2) (A.1)

V(r,θ) =
π

3
r3(1−cosθ)2(2+cosθ) (A.2)

V(R,θ) =
π

3sin3
θ

R3(1−cosθ)2(2+cosθ) (A.3)

The parameterΞ is defined by:
V(Ξ,R)≡ ΞR3 (A.4)

Relation betweenΞ andθ :
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A. Appendix

Ξ(θ) =
π

6

[
3

tan(π

2 −
θ

2 )
+

1

tan3(π

2 −
θ

2 )

]
(A.5)

The inverse function,θ(Ξ) can be calculated by using the notation x≡
[
tan

(
π

2 −
θ

2

)]−1
and solving

the resulting third-order equation,

x3 +3x− 6Ξ
π

= 0 (A.6)

The (real) solution is

x0 =−

 3

√
−3Ξ

π
+

√
1+

9Ξ2

π2 +
3

√
−3Ξ

π
−

√
1+

9Ξ2

π2

 (A.7)

θ(Ξ) = π−2arctan(x−1
0 ) (A.8)

Interfacial surface area of a spherical-cap shaped drop

ASL = πR2 (A.9)

ALV = 2πr2(1−cosθ) = 2πR2
(

1−cosθ

sin2
θ

)
(A.10)
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A.2. Fresnel reflectivity

A.2. Fresnel reflectivity

The reflected amplitude is obtained by writing down the boundary conditions at the interface, i.e.,
the continuity of the electric and magnetic fields at the interface. This leads to the classical Fresnel
relations.

Let us consider an electromagnetic plane wave propagating in the xz plane of incidence, with its
electric field polarized normal to this plane along the y direction. The interface between air and the
reflecting medium which is located at z = 0 (as shown in figure A.2) will be assumed ideally smooth
and sharp.

Figure A.2. Reflection and refraction of an incident wave polarized along y and traveling in the xz plane of
incidence.θin = θr = θ andq = kr −k in = qz (specular reflection).

By combining the expressions derived from Maxwell’s equations for the electric field in a homo-
geneous medium, one can get the propagation equation of the electric field known as Helmholtz’s
equation:

∆E(r)+k2
j E(r) = 0, (A.11)

wherek j = 2π/λ represents the wave vectork j in medium j. The electric field which is the solution
of Helmholtz’s equation is given for the incident (in), reflected (r) and transmitted (tr) plane waves
by,

E j = A j ei(ωt−k j r)ey (A.12)

with j = in, r or tr, |k in| = |kr | = k0 = 2π/λ , |ktr | = n2k0, andey is the unit vector along the y axis.
The components of the (in), (r), and (tr) wave vector are

E j = E0, j ei(ωt−k j r)ey (A.13)

k in = k0(cosθin,0,−sinθin)
kr = k0(cosθin,0,+sinθin)
ktr = k0n2(cosθtr ,0,−sinθtr) (A.14)
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A. Appendix

From the continuity of electric and magnetic fields at the interface (non-magnetic media) one gets the
following relations between Ain, Ar and Atr [87,103],

Ain +Ar = Atr (A.15)

(Ain−Ar) sinθin = n2 Atr sinθtr (A.16)

Defining the reflection coefficient, r, as Ar /A in and the transmission coefficient, t, as Atr /A in and
combining the two equations above, the reflection coefficients for (s) polarisation is found to be,

rs =
sinθin−n2 sinθtr

sinθin +n2 sinθtr
(A.17)

For (p) polarisation, a similar calculation leads to,

rs =
n2

2 sinθin−n2 sinθtr

n2
2 sinθin +n2 sinθtr

(A.18)

The relations above, (A.17) and (A.18), are known as Fresnel equations. Since n2 is very close to
unity, there is practically no difference between the (s) and (p) polarizations (rp ≈ rs≈ r). Only (s)
polarisation will be considered in the following.

Applying the Snell-Decartes’ law, equation (3.4), and considering the approximations for the small
incidence angles, cosθ ≈ 1−θ 2/2, n2

2 ≈ 1−2δ ≈ 1−θ 2
c , equation (A.17) becomes,

r(θ) =
θ −

√
θ 2−θ 2

c

θ +
√

θ 2−θ 2
c

(A.19)

The reflectivity which is the square of the modulus of the reflection coefficient, is given by,

R(θ) = rr ∗ =

∣∣∣∣∣θ −
√

θ 2−θ 2
c

θ +
√

θ 2−θ 2
c

∣∣∣∣∣
2

(A.20)

Below the critical angle, the reflectivity is unity (incident radiation is completely reflected by the
interface). A steep decrease of R occurs when q = qc. When the wave-vector transfer is very large
compared to qc, i. e. q& 3qc, the following asymptotic behaviour is observed:

R=
q4

c

16q4 (A.21)

Rough interfaces considerably damp the specularly reflected intensity [86]. The missing intensity
is diffusely scattered at exit anglesθr 6= θin. Corrections of the specular scattering which take into
account a continuous profile rather than a sharp interface are quite simple, at least for statistically
rough interfaces with Gaussian height distribution. By introducing the height function h(x,y), which
describes the height of a point at a lateral location (x,y) with respect to the mean vertical position
of the interface, it is possible to calculate the density profileρ(z) from its projection to the surface
normal. Thus, for a rough interface, instead of a jump in the refractive index, a continuous variation
must be considered.
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A.2. Fresnel reflectivity

The transition from a step-profile to a continuous function can be used to describe the transition
from a perfect crystal with fixed atoms to a crystal with thermal motion. For phonons this is described
in the harmonic approximation by a Debye-Waller factor. In the Born approximation, the Fresnel
reflectivityRrough

F of a rough interface with Gaussian height distribution is damped by a Debye-Waller
factor too

Rrough
F (qz) = RF(qz)e−q2

zσ2
(A.22)

whereσ is the rms-roughness of the interface.
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A.3. Home-made equipment, special set-up

The temperature controller, the heating stage and the temperature acquisition

For heating the samples under the optical microscope a home-made heating stage based on a Peltier
element was designed and build. The temperature was controlled by a digital temperature controller
(MR13, Shimaden Co. Japan).

Figure A.3. The power stage electronics (a) and the heating stage based on a Peltier element (b); the two
positions of the tiny temperature sensor are labeled 1 (lateral) and 2 (on top of the sample).

The output from the controller (0-10V) was used to drive a power stage presented in figure A.3, (a)
whose output (0-5V, max. 5A) was connected to the Peltier element. Part (b) of the figure shows
schematically the heating-stage with the two positions where tiny temperature sensors (Pt100 or
Pt1000) were mounted: position 1 - glued with epoxy resin on top of a silicon wafer which was
thermally connected with silicon oil to the metallic plate, simulating a real sample and position 2 -
glued laterally on the aluminium plate. The temperature signal for the control loop was given by the
temperature sensor mounted laterally (position 1). The ”running drop” experiments required temper-
ature ramps (heating rate in the range 0.3 to 0.8◦C/s) and continuous temperature recording. For this
purpose, in addition to the first temperature sensor (control loop, position 1), a second temperature
sensor (Pt100 or Pt1000, either in position 1 or 2) connected via a proper amplifier to a data logger
(Pico Technology Ltd., 10 bit) was used to record the temperature-time dependence. The tempera-
ture ramp was generated by a sudden change of the set temperature from typically 1–3◦C below the
alkane bulk melting point to 10◦ above it. This is equivalent to a constant power applied to the heater
which corresponds to a constant heating rate within the small temperature range of interest (0 to 1◦C
overheating).

Stroboscopic illumination for optical microscopy

Some experiments required a stroboscopic illumination of the sample under the optical microscope.
For this purpose, well-defined light pulses were generated with the set-up shown in figure A.4.

A pulse-shaped electric signal (a), from a function generator (AFG310, Sony-Tektronix) was driving
a home-made current amplifier (b), which supplies a power LED (type LXHL-NW98, 180 Cd,
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Figure A.4. Stroboscopic set-up: the electric signal (a) generated by the function generator drives the current
amplifier (b) which supplies the power for the LED (c). The LED was mounted on the microscope instead of
the original light source, using a mechanical adapter (not shown).

3.42V/350 mA, Luxeon, (c)). The electrical signal parameters were typically 10Vpp amplitude, 250
Hz frequency and 1 to 5% duty cicle. The LED was mounted on the optical microscope via a me-
chanical adapter, replacing the original light sorce.
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A.4. Mechanism-dependent equations describing the growth
kinetics of a thin solid film

A spherical-cap shaped liquid droplet creating a molecularly thin solid terrace by spreading onto a
solid surface can be analyzed by recording the time evolution of three parameters, the in-plane radius
of the central droplet, R1(t), and the terrace radius, R2(t), and the contact angle,θ (t), (see figure A.5).

Figure A.5. Linear (a) and circular (b) spreading geometries (droplet not to scale).

For isothermal conditions the contact angle is constant and the central liquid droplet is completely
described by R1(t) andθ . A further simplification is to consider the case of large droplets for which
the amount of alkane in the spreading terrace is negligible compared to the amount of alkane in the
central droplet and therefore R1(t) ≈ R01, the initial value of the droplet in-plane radius. Under these
considerations, the spreading can be described by a single variable R2(t) and two constants,θ and
R01.

In analogy with chemical reactions, the spreading kinetics can be analyzed in terms of speed-
limiting steps. Thus, three steps can be considered: (i) the release of the molecules from the central
drop, (ii) the transport of matter from the contact line to the growing front and (iii) the growth at
the edge (front). In the following, the time evolution of the spreading process is discussed for two
geometries (circular and linear) and three possible speed-limiting steps.

A.4.1. Release-limited, constant mass flux per unit length of contact line

Linear geometry

For linear geometry, a constant release rate per unit contact line length, jR leads to the following front
velocity

∂R2

∂ t
=

jR
ρSH

(A.23)
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A.4. Mechanism-dependent equations describing the growth kinetics of a thin solid film

where jR is the mass flux (amount released per unit length of the contact line), H is the thickness of
the terrace andρS is the solid alkane density in the terrace. Integrating the equation above gives the
linear dependence of R2 vs. time:

R2(t)−R01 =
jR

ρSH
t (A.24)

Circular geometry

The same consideration applied to a circular geometry gives

∂R2

∂ t
=

2πR1 jR
R2ρSH

(A.25)

which becomes after integration

R2
2(t) = R2

01+
4πR1 jR

ρSH
t (A.26)

A.4.2. Growth-limited, constant rate of solidification at the edge

If the speed-limiting step is the growth process at the terrace edge, the (geometry independent) ki-
netics is described by the same equations as in the case of release-limited, linear geometry, A.23 and
A.24. The only difference is that jR, the release rate per unit length, is replaced by the growth rate per
unit length, jG.

A.4.3. Transport-limited, ”diffusion-like” transport

Spreading kinetics can be controlled by the transport process. It may, for instance, be diffusive. Fick’s
first law can be used to calculate the time dependence of R2. Supposing that the alkane concentration
varies from a constant valueΓ1 near the contact line, to another constant valueΓ2 (Γ2 < Γ1) at the
growing front, this causes a concentration gradient which drives the transport. This assumption is
reasonable if the temperature is constant and the local concentration values at the contact line and the
growth front, respectively, are the result of two fast dynamic equilibria which are barely influenced by
the local amount of matter per unit time being taken from the contact line or coming to the growing
edge. According to Fick’s first law, the diffusive mass flux per unit length, jD in any position between
the contact line and the edge is

jD =−D
∂Γ
∂R

(A.27)

where D is the diffusion coefficient in two dimensions, andΓ(R,t) is the surface concentration of the
liquid alkane in grams per unit surface area.

Linear geometry

The diffusional growth rate for linear geometry is proportional to the concentration gradient. Con-
tinuity considerations (steady-state) imply that the gradient∂Γ/∂R is constant (i.e.∂ 2Γ/∂ 2R = 0)
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everywhere between the contact line and the growing front at any moment of spreading. Thus, the
front velocity is given by

∂R2

∂ t
=−D

(
∂Γ
∂R

)
1

HρS
=−D

(
Γ2−Γ1

R2−R01

)
1

HρS
(A.28)

After integration, the following time dependence is obtained

(R2−R01)2 =−2D
(Γ2−Γ1)

HρS
t = 2Dkt (A.29)

with the parameter k≡ (Γ1−Γ2)/HρS assumed constant for a given temperature and terrace thick-
ness.

Circular geometry

The concentration gradient in case of circular geometry depends on position. The concentration
profile profile,Γ(R) from R01 to R2, is needed in order to calculate the diffusional flux supplying
the growing edge. Making use of the equation of continuity, i.e. the total amount of alkane passing
through an arbitrary circle with the radius r (R01<r<R2) per unit time does not depend on position,
one can write

JD = 2πr jD =−2πrD
∂Γ
∂ r

(A.30)

Integrating the equation above gives the expression of total flux JD

JD =−2πD
Γ2−Γ1

ln(R2/R01)
(A.31)

On the other hand, the total flux JD is related to the velocity of the growing edge by

JD = 2πρSHR2
∂R2

∂ t
(A.32)

The equality of the two fluxes leads to a differential relation between R2 andt. By integration, one
obtains:

R2
01

[
R2

2

2R2
01

(
ln

R2

R01
− 1

2

)
+

1
4

]
= Dt

(Γ1−Γ2)
HρS

(A.33)

The left side of the above equation is a function of R01 and R2 having a linear dependence versus
time. Taking into account the k parameter defined in the equation A.29 this relation can be rewritten
as

Y(R01,R2) =
R2

2

2

(
2ln

R2

R01
−1

)
+

R2
01

2
= 2Dtk (A.34)

If the difference R2 − R01≡ ε � R01, the ln(R2/R01) can be approximated byε/R01− ε2/(2R2
01) (the

first three therms of the Taylor expansion). This leads to the following expression for Y(R01, R2)

Y(R01,R2)ε�R01 ≈ ε
2− ε4

2R2
01

≈ ε
2 (A.35)
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meaning that we recover the diffusional time dependence for linear geometry, (R2-R01)2 ∝ time (see
equation A.29). In figure A.6 are plotted the three possible time dependencies of R2, having as
reference a linear dependence of Y (i. e. the ideal case - diffusional transport, circular geometry).
In conclusion, the Y function can be well approximated by (R2-R01)2 if the ratio R2/R01 is not much
larger than 1.

Figure A.6. (R2-R01)2, Y(R01, R2) and R2
2-R2

01 functions vs. time, for the ratio R2/R01 in the range of 1 to 2.57.
One can observe that, at short times, the function (R2-R01)2 is a very good approximation of the ideal function
Y(R01, R2) and that R22-R2

01 function has non-linear time dependency.
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A.5. Free energy gain upon spontaneous dewetting

The Gibbs free energy cost per unit area∆gCW associated to the change of the wetting state from
partially wetting drops (PW) to an uniform, completely wetting film (CW) is the negative of the free
energy gain upon spontaneous dewetting,

∆gCW =−∆gDW. (A.36)

The value of∆gDW depends on the initial thickness H (see figure A.7) and on the size of partially
wetting drops1 resulting from the dewetting process and the equilibrium contact angle,θ . Let us
consider that all the (spherical-cap shaped) partially wetting drops which result from dewetting have
the same size R (the radius of their circular three phase line). Further on, we assume that the surface
area from which one drop collects the material upon dewetting is A. One can calculate the∆gDW

Figure A.7. Schematic representation of a spontaneous dewetting process. The associated Gibbs free energy
gain depends on the thickness H of the completely wetting film and the size R of the drops resulting from the
process.

from the difference between the surface free energy of the equilibrium state (partial wetting) and the
surface free energy of the completely wetting film:

∆gDW =
1
A

[
(A−πR2)γSV+πR2

γSL+2πR2(1−cosθ)
sin2

θ
γLV −AγLV −AγSL)

]
(A.37)

The first three terms are the surface free energies of the S/V, S/L and L/V interfaces, respectively,
and the last two describe the completely wetting film. Considering the Young equation,γSV = γSL−
γLVcosθ , the equation above becomes:

∆gDW =
1
A

[
(A−πR2)cosθ −A+

2πR2

sin2
θ

(1−cosθ)
]

γLV . (A.38)

Volume conservation gives the relation between A and R:

AH = Ξ(θ)R3, (A.39)

with Ξ(θ ) the coefficient converting R3 into the volume of the spherical cap. Combining A.38 and
A.39 we get:

1Or equivalently, their number per unit area
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∆gDW =
[(

1− πH
Ξ(θ)R

)
cosθ −1+

2πH
Ξ(θ)R

(
1−cosθ

sin2
θ

)]
γLV . (A.40)

In the particular case of a liquid film of C30 with a coverage corresponding to one up-right solid
monolayer the thickness H (of the liquid film) is≈ 4.6 nm. Considering a typical size R of a partially
wetting drop of≈ 5 µm, a contact angle of 20◦ andγLV ≈ 28.6 mJ/m2, the value of the ratioπH/(ΞR)
is≈ 0.01. Hence, the value of the dewetting free energy can be approximated as

∆gDW ≈ (cosθ −1)γLV (A.41)

and has, for the considered case the value of− 1.72 mJ/m2 (the relative deviation from the exact value
is smaller than + 1.6%).
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A.6. Instability of a droplet wetting the step region

Let us consider a solid substrate consisting of two semi-infinite horizontal solid surfaces separated
by a step of hight H. We analyze the stability of a tiny drop (smaller than the capillary length) which
covers the step region wetting a finite area of both terraces and the vertical step facet. In terms of wet-
ting properties, the horizontal surfaces are partially wetted by the liquid giving the sane equilibrium
contact angleθe whereas the vertical wall is completely wetted. The lateral view of such a geometry
is shown schematically in figure A.8, (a). For simplicity, we consider that the liquid shape is a ridge
(1D problem), having in section a circular shape of the L/V interface (minimization of interfacial
energies at constant volume). For reasons which will become clear later, the two contact angles are
denoted asθR in the rear part of the drop (left side) andθF in the front (right side).

Figure A.8. Ridge wetting the step region between two horizontal terraces at different z positions: (a) initial
configuration, (b) final state, (c) and (d) forces acting at the rear and front contact lines, respectively.

This configuration can be stable only if the two angles correspond to their equilibrium values
according to Young equation (θR = θF = θe) and the shape of L/V interface is circular (i.e. no
Laplace pressure gradient within the liquid drop). These to conditions can not bebothfulfilled due to
the height difference between the two terraces. As a result, the droplet will move towards the lower
terrace (right).

We find the direction of movement by considering the following initial geometry: (i) circular-
shaped L-V interface and (ii) one of the angles takes its equilibrium value. For instance, ifθF = θe,
θR will be smaller thanθe generating anunbalanced Young forceat the rear contact line of the droplet.
This force points towards right, the positive direction of x axis. As a result of the unbalanced Young
force, the droplet will move and the two contact angles will take their dynamic values. For small
velocities, the shape of the L/V interface will preserve its circular shape (same Laplace pressure
within the liquid) and, if the step height H is much smaller than the droplet height h, the angleθF,d

will be slightly larger andθR,d slightly smaller thanθe. The deviations of the two values fromθe

will result from the condition of equal velocities of the two contact lines, UF = UR
2. Hence, at each

2This condition is not entirely correct because, on movement, the radius of the circle describing the L/V interface decreases
as a result of the solid volume which leaves the control area defined by the circle of radius r.
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contact line, the driving force will be balanced by the viscous dissipation:

γLV(cosθR,d−cosθe) = 3ηL
UR

tanθB,d
(A.42)

γLV(cosθe−cosθF,d) = 3ηL
UF

tanθF,d
(A.43)

Combining the two equations and considering UF = UR, we get

tanθR,d(cosθR,d−cosθe) = tanθF,d(cosθe−cosθF,d) (A.44)

For small values of the contact angles, the previous equation becomes:

θR,d(θ 2
e −θ

2
R,d) = θF,d(θ 2

F,d−θ
2
e ). (A.45)

On the other hand, due to the circular geometry, the values of the two dynamic angles obey the
following equations:

h = Rtan
θF,d

2
(A.46)

h−H = Rtan
θR,d

2
. (A.47)

Coming back to the most simple approach (i.e. to assumeθF = θe, θR 6= θe) we are interested to
estimate the magnitude of the unbalanced Young force (per unit length) which drives the drop towards
the final state. In this case the two equations above become:

h = Rtan
θe

2
(A.48)

h−H = Rtan
θR

2
. (A.49)

Combining A.48 and A.48 we get:

θR = 2arctan

(
tan

θe

2
− H

R

)
(A.50)

Considering the above equation, the force driving the drop towards right is

FD(γLV ,H,R) = γLV

{
cos

[
arctan

(
tan

θe

2
− H

R

)]
−cosθe

}
(A.51)

The numerical value of FD for γLV = 28 mN/m,θe = 20◦, and H = 150 nm, and R = 5µm is≈ 0.5
mN/m.
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ajutat ĉand mi-a fost mai greu), Ana Cordeiro (obrigado por tudo), Chrystelle Egger (merci beau-
coup) and Narayan Mishra (anek dhanyabad). Many thanks also to: Liying Wang, Henning Kraß ,
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