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The brain orchestrates organ function and regulates whole body metabolism by the 
concerted action of neurons and glia cells in the central nervous system. To do so, 
the brain has tremendously high energy consumption and relies mainly on glucose 
utilization and mitochondrial function in order to exert its function. As a consequence 
of high rate metabolism, mitochondria in the brain accumulate errors over time, such 
as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and 
aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid 
or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial 
function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells 
evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic 
systems, help to maintain a low steady-state level of misfolded/aggregated proteins. 
Their importance is exemplified by the occurrence of various brain diseases which exhibit 
reduced action of chaperones. Chaperone loss (expression and/or function) has been 
observed during aging, metabolic diseases such as type 2 diabetes and in neurode-
generative diseases such as Alzheimer’s (AD), Parkinson’s (PD) or even Huntington’s 
(HD) diseases, where the accumulation of damage proteins is evidenced. Within this 
perspective, we propose that proper brain function is maintained by the joint action of 
mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, 
and that upon failure, alter brain function which can cause metabolic diseases.

Keywords: insulin signaling, brain, chaperones, mitochondria homeostasis, mitochondrial dysfunction, 
neurodegeneration

MitoCHondria iMpaCt Brain FUnCtion

Though the brain holds about 2% of total body mass, it consumes about 20% of total body energy. 
This high energy demand is due to constant brain action, even when at rest (1). The main energy 
supply represents glucose and liver-derived ketone bodies during fasting. Mitochondria are able 
to metabolize the end product of glycolysis pyruvate, as well as ketone bodies, to generate ATP. 
Mitochondria regulate oxidative phosphorylation, redox state, oxidative stress, intracellular sign-
aling, ion homeostasis, and thus, provide the energy and ion milieu for proper neuronal action 
and excitability. In addition, mitochondria affect protein acetylation by providing the necessary 
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acetyl-CoA moieties for histone acetylation, thereby affecting 
chromatin structure and gene transcription of stress responsive 
genes (2, 3). Therefore, mitochondria occupy a unique position 
in regulating brain function and metabolism on various levels. 
Not surprisingly, most defects of mitochondria are linked to 
neurodegenerative and metabolic diseases (4–6).

The brain regulates metabolism by controlling, e.g., food 
intake, satiety, and hepatic glucose production, and thus aberrant 
mitochondria in the brain are connected to insulin resistance (IR) 
and to metabolic diseases such as metabolic syndrome and type 
2 diabetes (T2D) (7–10) as well as aging (11). Conversely, many 
aspects of brain alterations seen during aging are also observed 
in metabolic diseases pointing to common origins and linked to 
mitochondrial dysfunction (12, 13).

To facilitate brain metabolism, metabolites have to enter the 
brain via blood vessels, taken up mostly by glia cells, which reside 
in close proximity to blood vessels and transferred to neurons 
(14). As each brain cell population differs regarding their func-
tion and cellular components, also mitochondrial function 
differs between cell populations (15, 16). Even more complex is 
the scenario within neurons, where mitochondria at the soma 
are important for generating energy for cellular survival, and at 
the synapses are crucial for providing ATP for vesicle release and 
neurotransmitter uptake (17). A reduction in neuronal ATP levels 
deteriorates normal firing rate causing abnormal brain function 
(18, 19). Glia release ATP, which reduces neuronal firing rate, 
indicating that alterations in mitochondrial generated ATP in 
glia, can also change neuronal activity and impact brain function 
(20). Mitochondrial dysfunction and reduced ATP production in 
glia cells do not cause immediate cellular degeneration but affects 
neuronal homeostasis due to an intensified neuron-glia crosstalk 
and it promotes neurodegeneration (21, 22). Increased reactive 
oxidative species (ROS), a byproduct of mitochondrial respira-
tion, can also propagate an inflammatory response, abnormal 
neuronal firing and associates with IR, metabolic diseases and 
aging (23). ROS is especially detrimental to neurons because of 
their low antioxidant capacity, such as dopaminergic neurons of 
the substantia nigra, which degenerate in Parkinson’s disease (24).

Mitochondria are not static; they fuse and split to generate a 
dynamic network. Alterations of mitochondrial dynamics affect 
neuronal action and can cause neurodegeneration and obesity 
(8, 9). Increased mitochondrial fusion in dopaminergic neurons 
causes axonal loss and contributes to cell death and neurodegen-
eration (25). In addition, deficiency of prohibitins, which induces 
mitochondrial fragmentation, leads to reduced ATP production, 
abnormal mitochondrial morphology, protein aggregation, 
and causes neuronal death (26), indicating the importance 
of proper mitochondrial dynamics for neuronal health. 
Deteriorated mitochondria will be eliminated and recycled by 
a cytoprotective pathway called mitophagy, which depends also 
on proper mitochondrial dynamics. Aberrant mitophagy leads 
to increased oxidative stress and is linked to neurodegenerative 
diseases such as AD, PD, and HD (27–29). The Mitochondrial 
Unfolded Protein Response (UPRmt) can regulate this process, 
where the accumulation of misfolded mitochondrial proteins 
induces PARK2/Parkin-mediated mitophagy (30). UPRmt rep-
resents a signaling pathway where the abundance of misfolded 

mitochondrial proteins causes a nuclear signal to re-establish 
protein homeostasis by inducing mitochondrial chaperones and 
proteases to re-instate protein homeostasis within mitochondria 
(31). Alterations of the mitochondrial proteome due to misfold-
ing of proteins or protein aggregation decreases mitochondrial 
activity, causes oxidative stress and neurodegenerative diseases 
(32–35). Accordingly, proper mitochondrial function and regula-
tion of its stress response has been shown to associate with or 
even promote longevity (36, 37). Thus, mitochondrial chaperones 
occupy a pivotal role in regulating mitochondrial health and 
brain function.

HypotHesis

In recent years, several studies have shown the importance of 
functional mitochondria in regulating brain metabolism. Here, 
we go one step further and postulate that the disruption of the 
mitochondrial chaperone network in the brain, which controls 
mitochondrial proteostasis and function, is responsible for IR in 
the brain and concomitant altered metabolism. This alteration 
reduces brain function and neuron plasticity resulting in changes 
in whole body metabolism and increasing the risk for metabolic 
complications.

Our assumptions rely on studies showing many of the features. 
We could show that type 2 diabetic mice exhibit a reduction of 
the heat shock protein 60 (Hsp60) mRNA in the hypothalamus, a 
mitochondrial chaperone which is part of the UPRmt. A reduc-
tion of Hsp60 is sufficient to induce hypothalamic IR (7). Mice 
deficient for the mitochondrial protease ClpP, a protease involved 
in UPRmt, exhibit increased food intake (38), a phenotype of 
deficient brain insulin action showing that altered UPRmt directly 
affects brain function and brain insulin-regulated behavior (39). 
Interestingly, while deficiency of ClpP causes hyperphagia, 
these mice are paradoxically protected against diet-induced IR, 
exhibiting increased insulin sensitivity in white adipose tissue 
with increased expression of Hsp60 and Hsp10, strengthening the 
hypothesis that increased mitochondrial chaperones expression 
is beneficial for insulin sensitivity (38). Another recent paper 
showed that ClpP deficiency decreases adaptive thermogenesis 
(40), which has been also observed in mice deficient for brain 
insulin signaling (41). Though it is unclear whether ClpP defi-
ciency alters mitochondrial chaperone expression in the brain, the 
effect that alterations of the mitochondrial proteome in the brain 
causes brain insulin resistant phenotypes support our hypothesis 
that ensuring proper mitochondria homeostasis (mitostasis) in 
the brain supports brain health and proper metabolism.

Furthermore, it has been shown that there is an intricate 
connection between mitochondrial dynamics and the UPRmt, 
as UPRmt induces the expression of genes responsible for 
mitochondrial dynamics (42). Functional mitochondrial 
dynamics, which are regulated by mitochondrial chaperones, 
regulate Agouti-related peptide neuronal activity to avoid diet-
induced obesity (8). Adding to this, under high fat diet (HFD) 
dynamin-related protein 1 (DRP1), another crucial protein for 
mitochondrial dynamics, increases mitochondrial fission in the 
Dorsal Vagal Complex, and impairs insulin action. Also, DRP1 
alone was able to induce IR in healthy rodents and inhibiting 
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FiGUre 1 | The central role of chaperones in mitochondrial protein homeostasis. In the brain, mitochondria are kept under optimal functional conditions by 
employing two major mitochondria homeostasis (mitostasis) processes, (re)folding and degradation. Under tight regulation and concerted action these processes 
avoid the accumulation of different types of damage such as ROS, mitochondrial DNA mutations or misfolded/aggregated proteins known to promote mitochondrial 
dysfunction. Moreover, a mild increase in the level of misfolded proteins triggers the UPRmt response that quickly helps to establish mitostasis. In the brain, under 
these conditions, chaperones promote mitochondrial function keeping the brain and whole body in an insulin sensitive state. In contrast, if refolding or degradation 
processes become impaired due to the loss of mitochondrial chaperones expression or activity this results in misfolded and aggregated protein accumulation. This 
detrimental state leads to oxidative stress that can affect mitochondrial function and thus brain metabolism. A likely consequence is the resistance to insulin not only 
initially in the brain but also to peripheral tissues later on, abrogating whole body metabolic homeostasis. This metabolic shift is a likely percursor for aging, 
neurodegenerative and metabolic diseases progression, and establishment. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 
Unported License.
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DRP1 was sufficient to reverse HFD-induced IR (43). Consistent 
with these results, diet-induced obesity increases fission and 
alters the contacts between mitochondria and the ER showing the 
importance of a proper crosstalk between organelles in order to 
maintain metabolic regulation. Moreover, the same study showed 
that a specific-POMC neurons Mitofusin-2 ablation resulted in 
the loss of contact between the mitochondria and ER leading to 
leptin resistance and energy imbalance (9), both clearly signs of 
metabolic dysregulation. Exercise as an intervention improves 
mitochondrial dynamics, increases insulin sensitivity, and is able 
to modulate the Hsp response in the brain by increasing the levels 
of many of the Hsps such as Hsp60. They also found that this 
effect was even stronger in non-diabetic mice able to produce 
insulin (44). Also noteworthy, is a study where a combination 
of mouse population genetics and RNAi in C. elegans was used 
to identify mitochondrial ribosomal protein S5 and other mito-
chondrial ribosomal proteins (MRPs) as regulators of metabo-
lism and longevity. Remarkably, when the authors performed a 
MRP knockdown mitonuclear protein imbalance was triggered, 
mitochondrial respiration was reduced but this activated UPRmt, 
and an increase life span was seen. Moreover, compounds known 
to extend life span such as spermidine or resveratrol are able 

to induce mitonuclear protein imbalance as well as trigger the 
UPRmt (45).

Furthermore, key genes of the UPRmt are regulated by insulin 
in hypothalamic neurons (own observation). Fitting to this, key 
players of UPRmt, such as Hsp60 are decreased in insulin-resistant 
mice brains as well as mouse models deficient for insulin signaling 
highlighting the importance of functional brain-specific insulin 
signaling for the regulation of the UPRmt [own observation and 
(7)]. To further strengthen this point, reduced levels of Hsp60 
were found in brain samples of type 2 diabetic patients, which 
caused mitochondrial dysfunction and brain IR (7).

Taking all into account, we here propose that the disruption 
of the mitochaperone network induces mitochondrial dysfunc-
tion in the brain. This process can trigger brain IR, which alters 
food intake, induces obesity, and thus affects overall metabolism 
(41) (Figure 1). The following chapters are intended to provide 
an overview on the current knowledge and how it contributed 
to formulate our hypothesis. We here provide evidence on how 
chaperones are crucial players for mitostasis and brain insulin 
sensitivity and on how their impairment leads to mitochondrial 
dysfunction and may link neurodegenerative and metabolic 
diseases.
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CHaperones as Mitostasis Keepers

sources of Mitochondrial protein 
Misfolding
Upon mitochondrial dysfunction, it is not surprising that brain 
cells enter an energy and function deficit. The reasons that pro-
mote mitochondrial dysfunction over time or under metabolic 
dysregulation are now starting to be unraveled.

Evidence suggests that the main reasons may be the exacer-
bated ROS production and/or mitochondrial DNA (mtDNA) 
mutations that affect directly or indirectly the proteome of the 
mitochondria (hereafter referred as mitoproteome). Nowadays, 
it is clear that mitochondrial dysfunction is a hallmark of tissue 
aging and the brain is clearly to be included (46, 47); however, it 
remains unclear if during aging mitochondrial dysfunction is a 
cause or consequence that triggers the process (48). Regardless of 
which, mitochondria impact brain aging and metabolism. In fact, 
mitochondrial ROS leakage was proposed in the 1980s and later 
updated as the cause of aging itself, as the “mitochondrial free 
radical theory of aging” postulates (49). All tissues, although with 
different severity, seem to be affected. The brain is no exception 
in how the effects of mitochondrial dysfunctional on organ func-
tion is concerned. In fact, functional neuroimaging studies have 
shown that hypometabolism and mitochondrial dysfunction are 
early hallmarks of age-related modifications during brain aging 
and during the progression of age-related brain diseases (50–52).

In the brain, mitochondria are widely believed to be the main 
cellular source for the production of ROS, especially by complex 
I and III electron leakage, which generates superoxide anion after 
an incomplete water molecule reduction (53). During aging the 
leakage is intensified and the risk for molecule damage increases. 
For example, due to its localization, mtDNA is one of the primary 
targets which may lead to mutations and generate faulty electron 
transport chain (ETC) proteins contributing to cellular dysfunc-
tion. Moreover, the mitoproteome might be directly affected 
by ROS attack, which often results in protein carbonylation 
(54). This type of oxidative modification is an irreversible non-
enzymatic event, which can result in protein unfolding, exposure 
of the usually concealed hydrophobic core and, therefore, protein 
aggregation (54).

Regarding ROS-independent mtDNA alterations, mutations 
and deletions caused by rearrangements in the mitochondria 
accumulate over time and account, at least in part, for the age-
associated decline (55). mtDNA mutations have been shown 
to occur in the brain’s cortex and substantia nigra during aging 
and Parkinson’s disease development (56). However, although 
ROS- and mtDNA mutations-mediated protein misfolding are 
undoubtedly important, there are many other factors that con-
tribute to protein misfolding such as errors in mitochondrial or 
cytosolic protein translation and also disrupted stoichiometry 
in ETC complex assembly. Remarkably, the simple fact that 
most of the mitochondrial proteins are nuclear-encoded that 
need to be translated in the cytoplasm and imported into the 
mitochondria in an unfolded state reinforces the necessity of a 
specialized group of nuclear encoded-proteins named molecu-
lar chaperones (57).

Chaperone–dependent Mitostasis
Molecular chaperones are crucial to assure mitochondrial pro-
teostasis (hereafter referred as mitostasis). They can be grouped 
into Hsp70, Hsp90, DNAJ/Hsp40, chaperonin/Hsp60, and small 
heat shock protein (sHsp) families (58). The mechanism of action 
of each chaperone is complex and may result from individual 
chaperone action or in combination with co-chaperones that 
regulate their interaction and activity with client proteins (59). In 
fact, co-chaperones play a key role as well, shown for example by 
mtHsp70 co-chaperones such as HSC20, which enables mtHsp90 
peptide binding activity (60) and DNAJA3 (also named TID1) 
that helps to prevent complex I aggregation and takes part in 
mtDNA maintenance (61). Moreover, another chaperone named 
Mdj1p has been shown to be involved not only in protein fold-
ing but also in mitochondrial biogenesis showing that the same 
chaperone can have different mitochondrial tasks. However, 
whether a homolog protein with similar functions is also present 
in mammalian cells still needs validation (62).

The nature of each specific interaction between these formed 
complexes can result in a wide range of outcomes for the client 
protein such as folding, disaggregation, degradation, or traffick-
ing within the cell (59) (Figure 2).

Within the mitochondria, there are four different compart-
ments where protein folding and assembly take place: the outer 
(OM) and inner membrane (IM), the intermembrane space 
(IMS), and the matrix. During stress, each compartment must be 
scanned in order to avoid misfolded protein accumulation (63). 
In order to maintain mitostasis, in the different compartments, 
different molecular chaperones must take action accordingly.

In the OM
For example, for the OM, evidence shows that Hsp70 and Hsp90 
are necessary for proper protein folding. This is not surprising 
since the OM is in close contact with the cytosol and as men-
tioned above, most of the mitoproteome needs to be imported 
into the mitochondria in an unfolded state, increasing the risk for 
aggregation. These chaperones hold the to-be-imported proteins 
in an unfolded (but soluble) state until they are delivered to the 
mitochondrial OM import translocase Tom 70 (64). Interestingly, 
Hsp70 and Hsp90 have mitochondrial homologs named Mortalin 
(mtHsp70) and tumor necrosis factor receptor-associated protein 
1 (TRAP1), respectively (65).

Moreover, mitochondrial dysfunction can induce cytosolic 
chaperone expression. One striking example shows that alteration 
in mitochondrial ceramide biosynthesis pathway triggers, either 
by genetic or pharmacological inhibition of carnitine palmitoyl-
transferase activity, the induction of chaperones (66). Another 
example shows that silencing of mtHsp70 in mammalian models 
of polyglutamine aggregates, typically seen in Huntington’s dis-
ease, leads to the activation of UPRmt, resulting in restoration 
of cellular proteostasis, diminishment of protein aggregates and 
finally amelioration of mitochondrial damage (66).

The UPRmt can be triggered not only by loss of mitostasis 
but also when the nuclear- encoded mitochondrial protein 
expression is not balanced which generates stress to the cell (67, 
68). Interestingly, stress responses have the ability to restore 
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FiGUre 2 | The mitochondrial chaperones localization. Due to the elevated mitochondrial activity in each compartment, it becomes necessary to employ 
mitochondrial chaperones to ensure proper function. The localization of several chaperones and co-chaperones and their association with several of their targets is 
shown. Each chaperone or co-chaperone is placed in different mitochondrial compartments such as outer membrane (OM), inner membrane (IM), intermembrane 
space (IMS), and the matrix according to their main function. From the cytosol to the OM, Hsp90 assists the delivery of to-be-imported proteins to the mitochondrial 
translocase Tom70. Within the IMS, several chaperones such as HtrA2 allow unfolded proteins to translocate from OM to the IM and avoid degradation. On the IM 
reside the electron transport chain (ETC) proteins, so there are several IM chaperones that have the ability to bind and guarantee proper folding and function to ETC 
complexes such as NDUFAF1 and FAD-dependent oxidoreductase-containing domain 1, which bind to NADH:ubiquinone oxidoreductase (complex I). Moreover, 
COX17p binds to cytochrome C oxidase (complex IV) and helps with its assembly. It is however on the matrix that most of the mitochondrial chaperones or 
co-chaperones are localized. For example, the chaperone heat shock protein 60 cooperates with its co-chaperone Hsp10 in order to promote correct protein 
folding. The mtHsp70 and its co-chaperone HSC20 help to promote protein folding and avoid protein aggregation, a detrimental feature that leads to mitochondrial 
dysfunction. Other chaperones exhibit more than one task. This is the case of DNAJA3, a chaperone that avoids complex I aggregation but is also able to assist 
mitochondrial DNA maintenance. Other crucial processes such as mitochondrial protein synthesis rely on a proper mitoribosome assembly, a task that is employed 
by the RNA chaperone ERAL1. In order to keep mitochondria homeostasis—besides correct (re)folding and synthesis—protein degradation is also mandatory. To 
this effect, mitochondria have proteases such ClpP and ClpX that play a role in degrading no longer required, misfolded, or damaged proteins, and ClpB mainly as a 
chaperonin and a disaggregase. The conformational display of each protein or complex and binding layout is merely illustrative.
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proteostasis intra- and inter-cellularly. A striking example comes 
from the nematode C. elegans, in which genetic disturbance of 
the thermosensory neurons modulates the whole organism’s 
response to acute or chronic stress (69, 70).

Besides chaperones, mitostasis is also maintained by damage 
removal pathways. This includes both the degradation of whole 
mitochondria by mitophagy and a set of intramitochondrial 
proteases. Both systems respond to stress and act in a concerted 
action (71). Mitostasis is also achieved by regulated protein 
turnover mainly performed by Lon protease (LonP) or ClpP 
and its partner chaperone ClpX. In fact, their function is so 
important for mitostasis that deficiency of ClpP causes upregu-
lation of mitochondrial chaperones and alters tissue-specific 
metabolism (38, 40). Deficiency of another protease ClpB 
leads to progressive brain atrophy in vivo and to inhibition of 

mitochondrial network restoration in  vitro highlighting the 
importance of proper mitostasis (Table  1). Again this process 
seems to be regulated specifically by a chaperone, the cytosolic 
Hsp90 which has the ability to modulate mitochondrial protein 
turnover. Thus, the inhibition of Hsp90 leads to a decrease in the 
degradation of mono- and polyubiquitinated ATP5o, a subunit 
of ATP synthase, and promotes alterations in the mitochondria 
morphology which can lead to mitostasis breakdown (72, 73). 
Moreover, either by mutations in Parkin, an E3 ubiquitin ligase, 
or by the loss of function of PINK1 (a mitochondrial surface 
protein target for Parkin), a decrease in neuronal mitophagy 
is observed and known to directly promote the progression of 
PD (74, 75). Adding to this, PD patients display augmented IR 
(76, 77). Taken together, the evidence implies that mitostasis is 
necessary to maintain insulin sensitivity in the brain.
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taBLe 1 | Chaperones and mitochondrial dysregulation in neurodegenerative and metabolic disease(s).

Chaperone/Chaperonin Function disease (Cns) deficiency/Knockdown reference

Hsp10 Co-chaperone of heat shock protein  
60 (Hsp60); folding of mitochondrial  
proteins

Neurological and developmental 
disorder

In vitro KO: cell death (78–80)

Hsp60 Folding of mitochondrial proteins SPG13; MitCHAP60 disease In vitro KO: cell death, In vivo KO: 
embryonic lethality

(7, 33, 34)

mtHsp70 Folding of mitochondrial proteins Contributes to PD pathology In vivo KO: embryonic lethality, In vitro  
KD: induced mitochondrial proteolytic 
stress

(81–83)

Tumor necrosis factor receptor-
associated protein 1

Protection against oxidative stress and 
mitochondrial cell death, regulation of 
mitophagy and mitochondrial  
dynamics

Congenital abnormalities of the 
kidney and urinary tract; ischemic 
damage; increases PD pathology 
when expression is reduced

In vivo KO: exhibit reduction in age-
associated pathologies; In vitro KO: 
Increased mitochondrial respiration and 
fatty acid oxidation

(84–90)

ERAL1 RNA chaperone; formation of the 28 S 
small mitoribosomal subunit

Perrault Syndrome In vitro KD: induces apoptosis (91–93)

HSC20 Iron-sulfur cluster co-chaperone; 
regulation of the ATPase and peptide-
binding activity of mtHsp70

Not known In vitro KD: reduces complex II  
assembly

(60)

DNAJA3 Co-chaperone of mtHsp70; stimulation 
of the ATPase activity of mtHsp70, 
prevention of complex I aggregation

Implicated in PD In vivo KO: embryonic lethality; In vitro 
KD: induces mitochondrial  
fragmentation

(61, 94)

CLPB Mitochondrial AAA ATPase chaperonin, 
disaggregase

Progressive brain atrophy, 
Autosomal-recessive mitochondrial 
disorder

In vitro KO: confers thermotolerance 
to mitochondria, inhibits restoration of 
mitochondrial network

(95–99)

CLPX Remodels the conformations of 
aggregates, partner of ClpP (protease); 
activation of heme biosynthesis

Not known Not known (100, 101)

COX17p Copper chaperone; assembly of 
cytochrome C oxidase

Not known In vivo KO: embryonic lethality;  
mutations: COX deficiency

(102, 103)

Several crucial mitochondrial chaperones and co-chaperones and their main functions are shown. Upon their failure either by the loss of expression or activity results in manifold 
diseases of the central nervous system (CNS). Consequences of deficiency or knockdown in experimental set ups and its consequences are also displayed.
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In the IM
Proteins of the ETC reside in the IM, which is therefore a criti-
cal mitochondrial sub-localization requiring exquisite protein 
quality control. In fact, the assembly of complex I seems to be 
highly coordinated by IM chaperones such as NADH:ubiquinone 
oxidoreductase complex assembly factor 1 (NDUFAF1) (104). 
In addition, the chaperone FAD-dependent oxidoreductase-
containing domain 1 (FOXRED1) seems to be crucial for the 
correct assembly of complex I and II as its mutation results in 
cell-type-specific assembly defects of these complexes (105). 
Interestingly, defects in complex I are overrepresented in PD and 
aging (106, 107) and can contribute to mitochondrial-mediated 
oxidative stress, which is highly involved in the establishment of 
IR (108–110), reinforcing the point that mitostasis is crucial to 
neuronal health.

In the IMS
In the IMS, there are several small proteins that can partially act 
as chaperones allowing unfolded proteins to translocate from OM 
to the IM and avoid off-pathways such as degradation (111). One 
of these proteins is the high temperature requirement A2 (HtrA2 
or Omi), which possesses the common chaperone’s ability to bind 
hydrophobic residues by the use of its C-terminal PZD domain 
(112) and exhibits proteolytic activity (113). In fact, targeted 

deletion of HtrA2 gene, Prss25, leads to the loss of a population of 
neurons in the corpus striatum, resulting in a neurodegenerative 
disorder with parkinsonian features (113).

In the Matrix
The matrix hosts several critical cellular processes such as protein 
synthesis, tricarboxylic acid cycle, or fatty acid oxidation, and it 
becomes clear that molecular overcrowding is likely to happen. 
To ensure mitostasis at the matrix level, cells employ mainly two 
chaperone systems the mtHsp70 and the Hsp60/10 complexes 
(114–117). In recent years, the importance of Hsp60 as a mitosta-
sis keeper has been evidenced and reviewed extensively. Hsp60 
has been shown to be crucial in delaying metabolic complica-
tions and age-related diseases. Remarkably, long lived mammals 
and birds express higher levels of Hsps (118), clearly showing 
their role in life maintenance. By displaying an essential role on 
maturation and maintenance of mitoproteome, it becomes inti-
mately associated with energy production and thus regulation 
of metabolism. For example, a key process for mitochondrial 
homeostasis is the regulation of its protein synthesis which 
depends, among several other critical steps, on mitochondrial 
ribosomal formation. This is achieved by the RNA chaperone 
ERAL1, which is associated with the formation of the 28S small 
mitochondrial ribosome, and it plays such an important role that 
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its depletion results in mitochondrial dysfunction and growth 
retardation (91).

As a conclusion and to support the view on the dependence 
of molecular chaperones on ensuring mitostasis, their dysregula-
tion is linked to protein aggregation seen in neurodegenerative 
diseases (119) and aging (57, 120). In metabolic complications 
such as diabetes or IR (121, 122), altered mitostasis can be a 
consequence of chaperone machinery dysregulation (7).

Evidence from Carvalho et al. (123) showed “metabolic altera-
tions induced by sucrose intake and Alzheimer’s disease promote 
similar brain mitochondrial abnormalities,” in which the authors 
described many resembling features such changes in the res-
piratory chain and oxidative phosphorylation, dysregulation of 
calcium content, and morphological abnormalities. Strikingly, 
sucrose-treated wild-type mice presented a significant increase 
in amyloid β (Aβ) protein levels, which is a very well established 
hallmark of AD and also IR. Moreover, another study shows that 
the loss of the co-chaperone DNAJC3 leads to T2D and massive 
neurodegeneration (124). Taking all into account, the correla-
tion between mitochondrial dysfunction, chaperone/misfolded 
protein complex disruption, IR and brain impairment, emerge 
from these data. Therefore, the common features such as protein 
misfolding, aggregation, and IR are shared between AD and T2D 
(119), but more research is needed to tease out the importance 
and contribution of altered mitostasis in brain diseases. Though 
not in the brain but in white adipose tissue, rats under HFD have 
lower levels of Hsp60 and glucose intolerance (125), which may 
be a consequence of increased mitochondrial protein misfolding 
and thus dysfunction.

tHe speCiaL Case oF CHaperones as 
reGULators oF CentraL insULin 
sensitiVity

importance of insulin sensitivity in the 
Brain and Consequences in peripheral 
tissues
Insulin signaling in the brain does not only regulate food intake 
and energy expenditure but also improves cognitive function 
(126, 127). Consistently, IR has been shown to contribute to 
hyperphagia and obesity (39) but as well as to comorbidities like 
neurodegenerative diseases and neurological alterations such 
as mood disorders (128, 129). In addition to insulin action on 
brain function, central insulin sensitivity impacts peripheral 
tissues and contributes to overall IR (41, 130, 131). Insulin in 
the brain suppresses liver glucose production partly through 
the stimulation of STAT3 tyrosine phosphorylation showing 
the tightly regulated brain-liver control (132). Hypothalamic 
insulin signaling is further needed for regulation of food intake 
and glucose uptake in peripheral organs as well as lipogenesis in 
adipose tissue via POMC insulin receptor action (133, 134). It 
has been shown that insulin regulates protein synthesis via the 
activation of mechanistic target of rapamycin (135). To ensure 
protein homeostasis and thus functional insulin signaling in the 
brain, a tightly regulated cluster of stress proteins like Hsps and 
proteases seems to be needed, which are part of the UPRmt. The 

protective role of Hsps mostly resides in their capacity to repair 
protein damage and denaturation (136, 137).

Mitochondrial Chaperones as regulators 
of Brain insulin sensitivity
The most prominent and well characterized stress proteins 
belong to the Hsp70 family with at least 11 different isoforms 
in the various compartments of the cell. The inducible Hsp70 
is ubiquitously expressed and a highly conserved chaperone, 
localized in the cytosol and can be induced by heat, oxidative 
stress or by changes in the pH (138, 139). It has been shown that 
Hsp70 is a neuroprotective protein upregulated in the cortical 
brain of mice by alternate day fasting to ensure neuronal plastic-
ity (139). Neuronal plasticity and neurogenesis can be negatively 
influenced by hippocampal IR (140) and so, neuronal insulin 
sensitivity is crucial for appropriate brain function. In addition, 
a recent study showed that intranasally administered Hsp70 
improves insulin sensitivity in a diet-induced diabetic mouse 
model. This non-invasive procedure of administration of a 
highly abundant and easily producible therapeutic target like the 
chaperone Hsp70 could be a potential new treatment for diabetes 
(141). The mitochondrial member of the Hsp70 family, mtHsp70, 
encoded by the gene Hspa9 is also designated as mitochondrial 
chaperone glucose-regulated protein75 (Grp75) or mortalin. A 
study by Voloboueva et al. showed that overexpressing Grp75 in 
microglial BV-2 cells attenuated lipopolysaccharide-mediated 
inflammatory response and protects mitochondrial function 
(142). Strikingly, transient induction via heat shock as well as 
constitutively overexpressing hsp70F—a homolog of mtHsp70—
in C. elegans extends life span (143). The extension of life span was 
also achieved in Drosophila melanogaster by the upregulation of 
Hsp70 via heat shock (144). Longevity is known to be associated 
with improved insulin signaling in humans (145). In addition, 
Grp75 is crucial for the formation of mitochondria-associated 
ER membranes (MAM) and altered MAM formation has been 
shown to induce IR (146). Protecting functional mitochondria is 
an important part of ensuring insulin sensitivity in the brain since 
mitochondrial dysfunction induces insulin and leptin resistance 
(7, 9, 147). Functional mitochondria rely on dynamic networks 
alternating between fusion and fission states. Under nutrient 
excess in HFD, these organelles undergo fission to form frag-
mented mitochondria to prevent excessive ATP synthesis (148). 
This process is mediated by DRP1 and its increased expression is 
sufficient to induce IR (43, 148). Additionally, the mitochondrial 
TRAP1—also called the mitochondrial Hsp90—plays an impor-
tant role in the maintenance of mitostasis by using its antioxidant 
capacity as well as the regulation of mitophagy and mitochondrial 
dynamics (84–86). Reduced expression of TRAP1 has been 
linked to pathologies like PD and ischemic damage (Table 1). In 
contrast, TRAP1-KO in older mice leads to reduced weight and 
reduced glucose levels indicative of increased insulin sensitivity, 
which may be explained by increased fatty acid oxidation in these 
mice (87). Hence, changing mitochondrial chaperone activity 
and targeting mitochondrial dynamics is a promising therapeutic 
approach for increasing insulin sensitivity and controlling body 
weight.
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A rather interesting mammalian copper chaperone, COX17p, 
is crucial for cytochrome c (COX) activity, however, not for 
other ETC complex subunits. Thus, in its absence, copper can-
not be delivered to the mitochondria and this deficiency leads 
to disassembly of COX (149). Mutations in human COX17p lead 
to severe COX deficiency along with hypertrophic cardiomyo-
pathy (102). COX deficiency is known to induce mitochondrial 
dysfunction and lead to accelerated apoptotic cell death by the 
upregulation of ceramide synthase 6 (CerS6) in response to 
oxidative stress (150). It has been shown that obesity is also able 
to induce CerS6 in adipose tissue of obese patients, which has 
been implicated in reduced insulin sensitivity and weight gain 
due to increased ceramide production (151). Whether this is 
might occur in brain remains unknown, but it indicates that a 
reduction of COX17p can induce brain IR. Taken together, it 
shows that regulating mitochondrial function can be a thera-
peutic approach of treating obesity-induced IR. We observed 
reduced expression of Hsp60 and 10 in T2D mice, which can 
cause mitochondrial dysfunction and hypothalamic IR [(7) 
and own observations]. Hsp60 and its co-chaperone Hsp10 are 
required for folding nuclear-encoded mitochondrial matrix 
proteins and are key players of the UPRmt by propagating 
ATP-dependent refolding of misfolded proteins. This mito-
chondria-to-nuclear signal transduction pathway can induce 
mitochondrial protective genes including the chaperones itself 
as well as mitochondrial proteases such as the LonP and the 
serine protease complex ClpP to restore cellular homeostasis 
(152). Mitochondrial protein aggregates activate c-Jun kinase 
(JNK) and its downstream transcription factor c-Jun (153), a 
kinase which induces IR (154). To highlight the importance of 
JNK-signaling for the development of IR, it has been shown 
that HFD-fed mice with inactivated JNK in the hypothalamus 
show overall improved insulin sensitivity in the brain as well as 
peripheral tissue (155).

Interestingly, apart from their classical function, mitochon-
drial chaperones can be found extracellularly in stressed condi-
tion and exert a pro-inflammatory response. Toll-like receptor 2 
and 4 can be activated by host-derived Hsps including Hsp60 and 
Hsp70 resulting in increased cytokine production (156, 157). In 
the case of Hsp60, this can even lead to neurodegeneration via 
neuronal cell death and demyelination of the cerebral cortex as 
well as dopaminergic cell death during PD (158, 159). This shows 
that Hsps released from damaged cells are implemented in an 
inflammatory response and neuronal cell death. Taken together, 
both the reduction in the mitochondria as well as the release of 
Hsps can be detrimental to neurons.

In conclusion, functional mitochondria along with proper 
regulation of UPRmt are crucial for healthy brain function and 
metabolism and can ensure brain insulin sensitivity.

Many features of brain alterations observed during age-
related neurodegenerative diseases are also observed in 
metabolic diseases pointing to common origins. In fact, some 
studies have shown that diabetic patients exhibit an increased 
risk of developing PD, AD, and IR (160–164). The common 
molecular underlying reason may evolve around mitochon-
drial dysfunction. The development and progression of PD 
and T2D shows mitochondrial dysfunction accompanied by 

an increase in oxidative stress and neuroinflammation (13). 
Since a hallmark of neurodegenerative diseases is the loss of 
(mito)proteostasis leading to the accumulation of aggregated 
proteins in the brain and in neurons (165), it is not surpris-
ing that its origin may underlie in mitochondrial dysfunction 
triggered by the disruption of the mitochaperone network 
followed by increased ROS formation which ultimately leads 
to protein carbonylation and aggregation. Along this line, 
aggregates are seen in most of neurodegenerative diseases, this 
includes the accumulation of Aβ and hyperphosphorylated 
tau in AD (166), the accumulation of synuclein in PD (167) 
or of the mutant form of the huntingtin protein in HD (168). 
Hyperphosphorylated tau has been also observed in brains of 
insulin receptor deficient mice (169).

Another type of mitochondrial dysfunction is shown by 
the disturbance of the mitophagy process which is found in 
PD. The accumulation of misfolded matrix proteins on healthy 
mitochondria induces PINK1/Parkin mediated mitophagy (30). 
This PINK1/Parkin complex seems to be disrupted leading to the 
accumulation of malfunctioning mitochondria and is linked to 
PD (170). Additionally, Parkin loss was also observed in brains of 
db/db and HFD mice (171).

But besides the impairment of protein degradation machiner-
ies by mutations, e.g., of LonP and ClpP (172), also the chaperone 
system can be compromised, as mutations of Hsp60 are implicated 
in hereditary spastic paraplegia (34). Furthermore, a discovered 
missense mutation of the Hspe1 gene (coding for Hsp10) has 
been associated with neurodegeneration (79) and thus likely to 
metabolic complications as well. Interestingly, reduction of these 
proteins also alter metabolism.

Moreover, in AD a downregulation of the Hsp70 family 
member, HspA9 was found (mtHsp70) (173). More evidence for 
this perspective originates from Hsp60 inhibition which results in 
Aβ-induced disturbance of complex IV assembly and therefore, 
indicating a role in the mitochondrial stress response against the 
proteotoxic stress in AD (174).

A mutation of the HtrA2 gene is associated with Parkinson’s 
disease (175). Interestingly, a knockout mutation of the Htra2/
Omi gene in mouse leads to neuromuscular changes similar to 
PD (176), while cellular studies revealed that HtrA2 knockout 
leads to mitochondrial dysfunction, accumulation of unfolded 
proteins, enhanced CHOP expression and increased ROS pro-
duction (177), features also seen in metabolic disorders. In HD, 
mitochondrial bioenergetics and dynamics are affected by the 
pathological state, mitochondrial phenotypes which have been 
observed in brains of obese mice. However, to which extend 
mitochondrial chaperones are affected under this disease remains 
unclear and requires further investigation.

ConCLUsion

Mitochondrial chaperones are crucial players for mitochondrial 
protein synthesis, protein folding, energy production, regulation 
of ROS and ion homeostasis (Figure  1). Age-related neurode-
generative and metabolic diseases show defects on mitostasis 
and chaperone expression/activity, which points to a common 
molecular origin.
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In this perspective paper, we provided evidence that brain 
mitochondrial dysfunction is a likely result from the disruption 
of the mitochaperone network affecting brain insulin sensitivity. 
This shift in brain metabolism contributes to the development of 
aging, age-related and metabolic diseases.

We therefore postulate that a dysregulation of the mitochaper-
one network directly affects brain function and insulin sensitivity, 
acting as a percursor event for the development of neurodegen-
erative and especially metabolic diseases. To gain more insights 
into this complex interaction, more research needs to focus on 
the interplay of mitochondrial chaperone activity in the brain and 
subsequent alterations in brain function and metabolism, in order 
to fully understand the process between mitochaperone disrup-
tion in the brain and the development of metabolic diseases.

In conclusion, supporting mitochaperone function in meta-
bolic and neurodegenerative diseases can improve brain insulin 
signaling as well as metabolism and represents a novel strategy to 

improve neuronal health and metabolism contributing to healthy 
aging.
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