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Barbosa, Luís Romero. Groundwater recharge in tropical wet regions via GIS-based 

methods and Cosmic-Ray Neutron Sensing. PhD thesis: Federal University of Paraíba – 

UFPB, University of Potsdam – UP, p. 209, 2020. 

ABSTRACT 

Studies on the unsustainable use of groundwater resources are still considered incipient since 

it is frequently a poorly understood and managed, devalued and inadequately protected 

natural resource. Groundwater Recharge (GWR) is one of the most challenging elements to 

estimate since it can rarely be measured directly and cannot easily be derived from existing 

data. To overcome these limitations, many hydro(geo)logists have combined different 

approaches to estimate large-scale GWR, namely: remote sensing products, such as IMERG 

product; Water Budget Equation, also in combination with hydrological models, and; 

Geographic Information System (GIS), using estimation formulas. For intermediary-scale 

GWR estimation, there exist: Non-invasive Cosmic-Ray Neutron Sensing (CRNS); wireless 

networks from local soil probes; and soil hydrological models, such as HYDRUS. 

Accordingly, this PhD thesis aims, on the one hand, to demonstrate a GIS-based model 

coupling for estimating the GWR distribution on a large scale in tropical wet basins. On the 

other hand, it aims to use the time series from CRNS and invasive soil moisture probes to 

inversely calibrate the soil hydraulic properties, and based on this, estimating the 

intermediary-scale GWR using a soil hydrological model. For such purpose, two tropical 

wet basins located in a complex sedimentary aquifer in the coastal Northeast region of Brazil 

were selected. These are the João Pessoa Case Study Area and the Guaraíra Experimental 

Basin. Several satellite products in the first area were used as input to the GIS-based water 

budget equation model for estimating the water balance components and GWR in 2016 and 

2017. In addition, the point-scale measurement and CRNS data were used in the second area 

to determine the soil hydraulic properties, and to estimate the GWR in the 2017-2018 and 

2018-2019 hydrological years. The resulting values of GWR on large- and intermediary-

scale were then compared and validated by the estimates obtained by groundwater table 

fluctuations. The GWR rates for IMERG- and rain-gauge-based scenarios showed similar 

coefficients between 68% and 89%, similar mean errors between 30% and 34%, and slightly-

different bias between -13% and 11%. The results of GWR rates for soil probes and CRNS 

soil moisture scenarios ranged from -5.87 to -61.81 cm yr-1, which corresponds to 5% and 

38% of the precipitation. The calculations of the mean GWR rates on large-scale, based on 

remote sensing data, and on intermediary-scale, based on CRNS data, held similar results 

for the Podzol soil type, namely 17.87% and 17% of the precipitation. It is then concluded 

that the proposed methodologies allowed for estimating realistically the GWR over the study 

areas, which can be a ground-breaking step towards improving the water management and 

decision-making in the Northeast of Brazil. 

 

KEYWORDS: Groundwater Recharge, Remote Sensing, Cosmic-Ray Neutron Sensing, 

Soil Hydraulic Properties, Northeast of Brazil.  
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Barbosa, Luís Romero. Recarga de águas subterrâneas em regiões úmidas tropicais por 

métodos baseados em SIG e Detecção de Nêutrons de Raios Cósmicos. Tese de 

Doutorado: Universidade Federal da Paraíba – UFPB, Universidade de Potsdam – UP, p. 

209, 2020. 

RESUMO 

Estudos sobre o uso insustentável dos recursos hídricos subterrâneos ainda são considerados 

incipientes, por se tratar de um recurso natural pouco compreendido e gerenciado, 

desvalorizado e mal protegido. A Recarga de Água Subterrânea (GWR) é um dos elementos 

mais desafiadores para estimar, pois raramente pode ser medido diretamente e não pode ser 

facilmente derivado dos dados existentes. Para superar essas limitações, muitos 

hidro(geo)logistas têm combinado diferentes abordagens para estimar a GWR em larga 

escala, a saber: produtos de sensoriamento remoto, como o produto IMERG; Equação do 

Balanço Hídrico, também em combinação com modelos hidrológicos no solo, e; Sistema de 

Informação Geográfica (GIS), com o uso de fórmulas de estimativa. Para as estimativas de 

GWR em escala intermediária, existem: Detecção Não-invasiva de Nêutrons de Raios 

Cósmicos (CRNS); redes sem fio a partir de sondas locais inseridos no solo; e modelos 

hidrológicos, como o HYDRUS. Neste contexto, a tese de doutorado visa, por um lado, 

demonstrar um acoplamento de modelo baseado em GIS para estimar a distribuição da GWR 

em larga escala em bacias tropicais úmidas. Por outro lado, visa utilizar as séries temporais 

de CRNS e de umidade do solo de sondas invasivas para calibrar inversamente as 

propriedades hidráulicas do solo, e com base nisso, estimar a GWR em escala intermediária 

usando um modelo hidrológico do solo. Para tanto, foram selecionadas duas bacias 

hidrográficas úmidas tropicais, localizadas em um aquífero sedimentar complexo na região 

costeira do Nordeste do Brasil. Estas são a Área de Estudo de Caso de João Pessoa e a Bacia 

Experimental do Guaraíra. Vários produtos de satélite foram usados na primeira área como 

entrada no modelo de balanço hídrico baseado em GIS para estimar os componentes do 

balanço hídrico e a GWR em 2016 e 2017. Além disso, as medições em escala pontual e os 

dados de CRNS foram usados na segunda área para determinar as propriedades hidráulicas 

do solo, e estimar GWR nos anos hidrológicos 2017-2018 e 2018-2019. Os valores 

resultantes de GWR em escala larga e intermediária foram então comparadas e validadas 

pelas estimativas obtidas pelas flutuações do lençol freático. As taxas de GWR para os 

cenários baseados no IMERG e em medidores de precipitação mostraram correlações 

semelhantes entre 68% e 89, erros médios semelhantes entre 30% e 34%, e viés ligeiramente 

diferentes entre -13% e 11%. Os resultados das taxas de GWR para os cenários de umidade 

do solo para sensores inseridos no solo e CRNS variaram de -5,87 a -61,81 cm ano-1, o que 

corresponde a 5% e 38% da precipitação. Os cálculos das taxas médias de GWR em grande 

escala, com base em dados de sensoriamento remoto, e em média escala, com base em dados 

de CRNS, apresentaram resultados semelhantes para o tipo de solo Espodossolo, a saber 

17,87% e 17% da precipitação. Conclui-se então que as metodologias propostas permitiram 

estimar realisticamente a GWR nas áreas de estudo, o que pode ser um passo inovador no 

tocante ao aprimoramento do gerenciamento e tomada de decisão da água no Nordeste do 

Brasil. 

 

PALAVRAS-CHAVE: Recarga de Águas Subterrâneas, Sensoriamento Remoto, Detecção 

de Nêutrons de Raios Cósmicos, Propriedades Hidráulicas do Solo, Nordeste do Brasil.  
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Barbosa, Luís Romero. Grundwasserneubildung in tropisch-feuchten Gebieten über 

GIS-basierte Methoden und Messung der Neutronen aus kosmischer Höhenstrahlung. 
Doktorarbeit: Bundes-Universität Paraíba – UFPB, Universität Potsdam – UP, p. 209, 2020. 

ZUSAMMENFASSUNG 

Studien über die nicht nachhaltige Nutzung von Grundwasserressourcen gelten nach wie vor 

als am Anfang, da es sich oft um eine schlecht verstandene und unkontrolliert genutzte, 

geringgeschätzte und unzureichend geschützte natürliche Ressource handelt. Die 

Grundwasserneubildung (GWR) ist eines der am schwierigsten abzuschätzenden 

Einflussgrößen, da sie selten direkt gemessen werden kann und nicht einfach aus 

vorhandenen Daten abzuleiten ist. Um diese Einschränkungen zu überwinden, haben viele 

Hydro(geo)logen verschiedene Ansätze kombiniert, um die GWR in großem Maßstab zu 

ermitteln, darunter sind: Fernerkundungsprodukte, wie das IMERG-Produkt; Wasserbilanz-

Abschätzungen, auch in Kombination mit hydrologischen Modellen und; Geographische 

Informationssysteme (GIS) unter Nutzung von Abschätzungsformeln. Für die Ermittlung 

von GWR auf mittleren Flächenskalen existieren: Nicht-invasive Messung der 

Albedoneutronen an der Landoberfläche (CRNS); Drahtlosnetzwerke von lokalen 

Bodensonden, und bodenhydrologische Modelle, wie bspw. HYDRUS. In diesem Kontext 

zielt die Doktorarbeit zum einen darauf ab, eine GIS-basiert Modellkopplung zur Schätzung 

der GWR-Verteilung im großen Maßstab in tropisch-feuchte Einzugsgebiete aufzuzeigen. 

Zum anderen verwendet sie CRNS- und invasive Bodenfeuchtesonden-Zeitreihen zur 

inversen Kalibrierung der hydraulischen Bodeneigenschaften und darauf aufbauend zur 

Schätzung der GWR im mittleren Maßstab über ein bodenhydrologisches Modell. Zu diesem 

Zweck wurden zwei tropisch-feuchte Einzugsgebiete ausgewählt, die sich in einem 

komplexen Sedimentgrundwasserleiter der Küstenregion des Nordosten-Brasilien befinden. 

Dies sind das João Pessoa-Fallstudiengebiet und das Guaraíra-Flusseinzugsgebiet. Mehrere 

Satellitenprodukte wurden im ersten Gebiet als Eingangsdaten für das GIS-basierte 

Wasserbilanz-Modell zur Schätzung der Wasserhaushaltskomponenten und der GWR in den 

Jahren 2016 und 2017 verwendet. Daneben wurden im zweiten Gebiet die Punktmessungen- 

und CRNS-Daten verwendet, um über ein bodenhydrologisches HYDRUS-1D-Modell die 

hydraulischen Bodeneigenschaften zu ermitteln und die GWR in den hydrologischen Jahren 

2017-2018 und 2018-2019 abzuschätzen. Die resultierenden GWR-Werte im großen und 

mittleren Maßstab wurden dann mit den gemessenen Schwankungen der Grundwasserstände 

verglichen und daran überprüft. Die GWR-Raten aus IMERG- und Niederschlagsmessern-

basierten Szenarien zeigten ähnliche Korrelationen zwischen 68% und 89%, mittlere Fehler 

zwischen 30% und 34%, und leicht unterschiedliche Abweichungen zwischen -13% und 

11%. Die berechneten GWR-Raten für Bodensonden- und CRNS-Bodenfeuchtewerte lagen 

im Bereich von 58,7 bis 618,1 mm im Jahr, was 5% bzw. 38% der Niederschlagsmengen 

entspricht. Die Berechnung der mittleren GWR-Raten auf großer Landschaftsskala, 

basierend auf Fernerkundungsdaten, und auf mittlerer Skala, basierend auf CRNS-Daten, 

ergaben für den Bodentyp Podsol ähnliche Ergebnisse, nämlich 17,87% bzw. 17% der 

Niederschläge. Daraus wurde der Schluss gezogen, dass die vorgeschlagenen Methoden eine 

realistische Schätzung der GWR in den Untersuchungsgebieten ermöglichen, was ein 

wegweisender Schritt zur Verbesserung des Wassermanagements und 

Nutzungsentscheidungen im Nordosten Brasiliens sein kann. 

 

SCHLÜSSELWÖRTER: Grundwasserneubildung, Fernerkundungsprodukte, Neutronen 

aus kosmischer Höhenstrahlung, hydraulische Bodeneigenschaften, Nordostbrasilien.  
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θk – Weighted average soil moisture 

θmineral – Soil moisture from the PR2/6 generalised polynomial mineral soil curve 

θr – Residual soil moisture content 

θs – Saturated soil moisture content 

θ(z) – Soil moisture profile along the vertical coordinate 

λ – Latent heat flux density of vaporisation | Initial abstraction ratio 

λE – Latent heat flux from the surface 

λEsoil – Soil evaporation in MOD16 algorithm 

λEtransp – Plant transpiration in MOD16 algorithm 

λEsoilpot  – Potential soil evaporation in MOD16 algorithm 

π – Natural constant equal to ~3.1415 

ρ – Air density 

ρbd – Soil bulk density 

ρs(z) – Local bulk density of dry soil per unit area at depth ‘z’ 

ρw(z) – Total soil water density including lattice water per unit area at depth ‘z’ 

σ – Constant of Stefan-Boltzmann 

σθ – CRNS-based soil moisture error propagation 

σG – Standard deviations of gauge precipitation 

σS – Standard deviations of satellite precipitation 
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τsw24 – Average daily atmospheric transmissivity 

φ – Latitude of the reference point of the meteorological station 

ωs – Hourly angle of sunrise 

∆ – Median of matched-pairs differences | Slope vapour pressure curve 

∆e – Measurements of vapour pressure difference 

Δhpeak – Actual groundwater rise 

Δhrec – Potential groundwater decline 

Δt – Time interval 

Δxi – Size of the element between nodes 

ΔH – Potential groundwater table rise 

∆T – Measurements of the temperature difference 

ΔS – Soil water storage changes 

∑ – Sum of a dataset 

Φ(q) – Least-squares objective function to optimize a set of SHP parameters (q) 

a – 
Regression coefficient between longwave incoming radiation and τsw24 | Parameter of 

CN empirical equation 

a0’ – Slope parameter of the PR2/6 recalibration curve 

a1’ – Offset parameters of the PR2/6 recalibration curve 

A – April | August | Available energy in Penman-Monteith equation 

Asoil – Total net incoming radiation (A or Rn) partitioned to the soil 

AC – Total net incoming radiation (A or Rn) partitioned to the canopy and soil 

Ampeq – Water depth diver datalogger by Ampeq company 

AnnAGNPS – Distributed parameter, physically based, continuous simulation model 

Al – Aluminium 

AESA – Executive Agency for Water Management of the Paraíba state 

AGRMET – Air Force Weather Agency’s AGRicultural METeorology 

ARC – Antecedent Runoff Condition 

ARC-I – Dry Antecedent Runoff Condition 

ARC-II – Moderate Antecedent Runoff Condition 

ARC-III – Wet Antecedent Runoff Condition 

APAC – Pernambuco State Water and Climate Agency 

AQTESOLV – AQuifer TEst SOLVer 

ASF – Alaska Satellite Facility 

b – Parameter of Curve Number (CN) empirical equation 

b(x) – Normalized water uptake distribution 

BEER – Experimental and Representative Basins of Semiarid Hydrology 

BRAMAR – BRAzilian Managed Aquifer Recharge 

cph – Neutron Count Per Hour (counts h-1) 

C – Carbon | Capillarity rise 

Cj – Vector line with ‘m’ (columns) total number of rain gauges 
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Cp – Specific heat capacity of air in constant pressure 

Ca – Calcium 

CC – Stomatal conductance at canopy surface level 

CL – Mean potential stomatal conductance per leaf unit area 

CS – Stomatal conductance at leaf level 

C(q) – Parameter covariance matrix 

C(qjj*) – Parameter covariance matrix of the q* diagonal elements 

CC – Correlation Coefficient 

CEH – Centre for Ecology and Hydrology 

CLM – Common Land Model 

CMA-ES – Global optimizer Covariance Matrix Adaptation-Evolution Strategy 

CMB – Chloride Mass Balance 

CMRSET – CSIRO MODIS Reflectance-based Scaling EvapoTranspiration 

CN – Curve Number 

CNI – Curve Number at dry condition 

CNII – Curve Number at moderate condition 

CNIII – Curve Number at wet condition 

CAPES – Brazilian Coordination for Improvement of Higher Education Personnel 

CNPq – Brazilian National Council for Scientific and Technological Development 

CO2 – Carbon dioxide molecule 

COSMIC – COsmic-ray Soil Moisture Interaction Code 

COSMOS – Cosmic-ray Soil Moisture Observing System 

CR – Pasture/Crop Residue cover 

CRNS – Cosmic-Ray Neutron Sensing 

CS – Control Surface 

CS616 – Water content reflectometer model of Campbell Scientific company 

CSA – Case Study Area 

CSIRO – Commonwealth Scientific and Industrial Research Organisation 

CT – Center of Technology 

CTD – Diver datalogger of Conductivity, Temperature and Depth 

CV – Coefficient of Variation | Control Volume 

d – Soil sampling depth 

dk,x
p

  – Geodesic distance from point ‘x’ to station ‘k’, for ‘p’ power parameter 

dr – 
Square relative distance between the Earth and Sun | Distance at ‘r’ radius in the R86 

weighting function 

ds – Sequential day of the year 

dϕ – Angle of soil volume element in the horizontal plane 

dθ – Angle of soil volume element in the vertical plane 

dz – Thickness of soil volume element 

D – December 
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D86 – Penetration depth at which 86% of the neutrons are detected by CRNS 

Dr – Doctorate title in Brazil 

DAAC – Distributed Active Archive Center for biogeochemical dynamics 

DAAD – German Academic Exchange Service 

DEM – Digital Elevation Model 

DFG – German Science Foundation 

DL6 – Data Logger for 6 soil moisture sensors of Delta-T 

DOY – Days Of Year 

DPR – Dual-frequency Precipitation Radar 

DS – Dormant Season 

DTI-B – Scholarship of Technological and Industrial Development, category B 

ea – Actual water vapour pressure 

es – Saturated water vapour pressure 

E – Maximum potential rate of infiltration or evapotranspiration 

E | Ei – Actual evapotranspiration 

Ea – Actual evaporation  

Ep – Potential evaporation 

Etr – Actual evapotranspiration 

Eto – Reference evapotranspiration 

Etp – Potential evapotranspiration 

EASE – Equal-Area Scalable Earth grid 

EBF – Evergreen Broadleaf Forest 

EC – Electrical Conductivity 

EU-HYDI – EUropean HYdropedological Data Inventory 

EVI – Enhanced Vegetation Index 

EVI2 – Enhanced Vegetation Index (without blue band) 

EVI2max – EVI signal from dense green vegetation 

EVI2min – EVI signal from bare soil 

fm – Incoming cosmic radiation correction factor 

fp – Air pressure correction factor 

fv – Water vapour correction factor 

F – February 

Fi – Parameters (F1,…, F8) of Wr weighting function dependent on θij and ha  

FC – Surface Cover Fraction (same as SCF) 

Fe – Iron 

FeO: – Iron (II) oxide 

FAO – Food and Agriculture Organization of the United Nations 

FAPESQ-PB – Paraíba State Research Foundation 

FAS – USDA Foreign Agricultural Services 

FINEP – Brazilian Innovation Agency 
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FOR – German research unit 

g – Gravitational acceleration 

G – Soil heat flux | Gauge observed precipitation 

Gs – Solar constant 

Gauge – Ground-based precipitation data source 

GDAS – Global Data Assimilation System 

GEB – Guaraíra Experimental Basin 

GIS – Geographic Information System 

GLDAS – Global Land Data Assimilation Systems 

GMAO – Global Modelling and Assimilation Office 

GMI – Global Precipitation Measurement Microwave Imager 

GPCP – Global Precipitation Climatology Project 

GPM – Global Precipitation Measurement 

GRACE – Gravity Recovery And Climate Experiment 

GS – Growing Season 

GSFC – Goddard Space Flight Center 

GWC – Gravimetric Water Content 

GWL – Groundwater Level 

GWR – Groundwater Recharge (same as R) 

h0 – 
Absolute air humidity in an arbitrary baseline reference time | Dynamic water level in 

the well at time 0 

h50 – Soil water potential whose root water extraction rate is reduced by 50% 

ha | h – Absolute/specific humidity | Pressure head or soil matric potential 

hr – Mean relative humidity 

hr,max – Maximum relative humidity 

hr,min – Minimum relative humidity 

ht  Dynamic water level in the well at time t 

hA – Minimum permitted pressure head 

hCV – Height of CV (from soil surface down to the bottom of the root zone) 

hS – Maximum thickness of the surface water layer 

H – Sensible heat flux from the surface | Hydrogen 

H0 – Null hypothesis 

H1 – Alternative hypothesis 

H2O – Water molecule 

Ha – Altitude 

Hveg – Vegetation height 

He – Helium 

HSG – Hydrological Soil Group 

HSC – Hydrologic Surface Condition 

HYBRAS – HYdrophysical database for BRAzilian Soils 
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HRSL – USDA Hydrology and Remote Sensing Laboratory 

HYDRUS – Software for simulating water flow and solute transport 

HYPRES – HYdraulic PRoperties of European Soils 

HYSOGs250m – Globally-gridded HSG dataset 

i – Interception constant 

I – Interception depth 

Ia – Initial abstraction 

Id – Index of measurement location 

Inf – Infiltration 

IAEA – International Atomic Energy Agency 

IBESA – Implementation of Semiarid Experimental Basins 

IDW – Inverse Distance Weighting interpolation method 

IESG – Institute of Environmental Science and Geography 

IMERG – Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) 

IMERG* – IMERG data corrected by Linear Scaling (LS) bias correction 

INMET – Brazilian National Institute of Meteorology 

INPE – Brazilian National Institute for Space Research 

IUSS – International Union of Soil Sciences 

J – January | June | July 

JAXA – Japanese Aerospace Agency 

JPA – João Pessoa 

JPL – Jet Propulsion Laboratory 

k – Light extinction coefficient 

K – Hydraulic conductivity | Potassium 

KS – Saturated hydraulic conductivity 

KGE – Kling-Gupta Efficiency coefficient 

KJV – King James Version 

l – Lumped parameter that accounts for soil pore tortuosity and connectivity 

lat – Latitude at decimal degree in WGS84 datum 

lon – Latitude at decimal degree in WGS84 datum 

L – 
Adjust factor of SAVI calculation | Mass attenuation length for high-energy neutrons | 

Length of soil profile discretization 

L0 – Mean precipitation of ‘m’ (columns) total number of rain gauges 

L1 | L2 | L4 – Site-independent, time-constant parameters of COSMIC operator 

L3 – Bulk-density-dependent, time-constant parameter of COSMIC operator 

Li – Column vector or regional vector with ‘n’ (lines) total number of years 

Le – Filter section length of the well 

Lr – Root zone total depth 

Lw – Saturated thickness of the well 

L4 – Level 4 of SMAP satellite product | Level 4 of GLDAS Noah product 
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LAI – Leaf Area Index 

LARHENA – Laboratory of Water Resources and Environmental Engineering 

LIS – Land Information System 

LSM – Land Surface Models 

LW – Lattice Water equivalent 

m105 – Soil mass weighting after the drying at 105°C 

m400 – Soil mass weighting of 10-g dry soil sample after the burning at 400°C 

m1000 – Soil mass weighting of 10-g dry soil sample after the burning at 1000°C 

ms(z) – Integrated mass of dry soil per unit area at depth ‘z’ 

mw(z) – Integrated mass of water per unit area at depth ‘z’ 

m(Tmin) – Potential stomatal conductance for minimum air temperatures 

m(VPD) – Potential stomatal conductance for Vapour Pressure Deficits 

meana – Arithmetic-mean 

meanw – Weighted-mean 

M – March | May | Molecular weight of water 

M.Sc. – Master of Science 

M0 – Neutron intensity in an arbitrary baseline reference time 

Ma – Molecular weight of dry air 

Mi – Incoming monitored neutron intensity at the time step of measurement 

Mw – Molecular weight of water vapour 

MapBiomas – Research project in Brazilian land use/cover on high spatial resolution  

MA – Brazilian Ministry of Agriculture 

MABC – Ministry of Agriculture of British Columbia 

MCD43A2/A3 – MODIS surface albedo product 

MODFLOW – Modular three-dimensional finite-difference groundwater flow model 

MOD16 – MODIS Global Evapotranspiration Project 

MOD09Q1 – MODIS reflectance product on-board Terra satellite 

MODIS – MOderate-Resolution Imaging Spectroradiometer 

MRC – Master Recession Curve 

MYD09Q1 – MODIS reflectance product on-board Aqua satellite 

n – Measure of pore size distribution 

N – November | Nitrogen | CRNS-measured neutron intensity 

N’ – Corrected neutron intensity 

N0 – Dry neutron intensity 

NC – High-energy neutrons at the soil surface 

NCOSMIC – Aboveground neutron intensity simulated by COSMIC operator 

NASA – National Aeronautics and Space Administration of USA 

NCEP – National Centers for Environmental Prediction 

NPM – Neutron Pulse Module 

NOAA – National Oceanic and Atmospheric Administration 
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NRCS – Natural Resources Conservation Service 

NSIDC – National Snow and Ice Data Center 

O – October | Oxygen 

O2 – Oxygen molecule 

O3 – Ozone molecule 

p – Probability value | Empirical coefficient (=2 to IDW; =3 to RWU) 

P – Precipitation | rainfall 

P0 – Arbitrary baseline reference pressure 

P5d – 5-days-antecedent cumulative precipitation 

Patm – Mean barometric air (atmospheric) pressure 

Pd
s  – Original satellite precipitation on the dth day of the mth month 

Pd
s’ – Bias-corrected satellite precipitation on the dth day of the mth month 

Pi – 
Barometric air (atmospheric) pressure at the time step of measurement | Precipitation 

depth in water balance equation 

P̂i,j  – Original precipitation of a rain gauge ‘j’ in a year ‘i’ on regional vector 

Pi,j – 
Synthetic precipitation of a rain gauge ‘j’ in a year ‘i’ on regional vector | Precipitation 

values at four nearest pixels on original spatial resolution 

Pm
o – Observed accumulated precipitation in the mth month per grid box 

Pm
s – Satellite accumulated precipitation in the mth month per grid box  

Px – Interpolated precipitation at a point ‘x’ in IDW interpolation method 

Px,y – Predicted value of precipitation at the new point (x, y)  

PhD – Doctor of Philosophy 

PBIAS – Percent bias 

PD – Post-Doctoral fellowship 

PDF – Probability Density Function 

PEST – Parameter ESTimation software 

POE – Probability Of Exceedance 

PPGECAM – Postgraduate Program in Civil and Environmental Engineering of UFPB 

PR2/6 | PR2 – Six-levelled soil moisture profile probe 

q – Vector of the parameters of the soil hydraulic properties to be optimized by CMA-ES 

q* – Final parameter set of q, obtained by the square root of C(qjj*) 

q0 – Net infiltration rate 

qi – Nodal water flux 

qjj – Diagonal elements of C(q) 

Q | Qi – Surface runoff 

r – Radial distance 

r1 – Spectral reflectance of band 1 (red) of MOD09Q1-MYD09Q1 products 

r2 – Spectral reflectance of band 2 (near-infrared) of MOD09Q1-MYD09Q1 

ra – Aerodynamic resistance 

rc – Convective heat transfer resistance | Piezometer radius 
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ri(q) – Residuals of the ‘q’ vector to be optimized by CMA-ES 

rr – Radiative heat transfer resistance 

rs – Surface resistance 

rtot – Aerodynamic resistance to the vapour transport 

rtot,c – Adjustment parameter of total aerodynamic drag   

rv – Vapour transport resistance 

rw – Well perforation radius 

rad – Downward short-wave radiation 

R | Ri – Universal gas constant | Groundwater Recharge (same as GWR) 

R2 – Coefficient of determination 

R63 – Footprint radius for 63% cumulative neutron counts 

R86 – Footprint radius for 86% cumulative neutron counts 

Re – Effective radial distance over which the hydraulic gradient is dissipated 

Rh | RH – Relative humidity 

Rn – Net radiation 

Rs – Global radiation 

RS↓ – Downward shortwave incoming radiation 

RS↓A – Downward shortwave incoming radiation on top of the atmosphere 

RWTF – Groundwater Recharge estimated by WTF method 

Rosetta – Software for estimating soil hydraulic properties by hierarchical pedotransfer functions 

RISE – Method of GWR estimation based on a fixed-interval 

RMSE – Root Mean Square Error 

RRMSE – Relative Root Mean Square Error 

RS – Remote sensing 

RWU – Root Water Uptake 

RWUa – Actual Root Water Uptake 

RWUp – Potential Root Water Uptake 

s – Slope of curve relating saturated water vapour pressure to temperature 

S – September | Maximum potential retention  

Sa – Actual surface flux 

Si | Si+1 – Soil moisture in water balance equation at the current and next day (same as θi | θi+1) 

Sp – Potential surface flux 

St – Sink term in Richards’ equation 

Sy – Aquifer specific yield 

Si – Silicon 

SiO2 – Silicon dioxide 

SiBCS – Brazilian System of Soil Classification 

SAVI – Soil Adjusted Vegetation Index 

SCF – Surface Cover Fraction (same as FC) 

SCS – Soil Conservation Service 
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SD – Standard Deviation 

SDS – Science Data System 

SEBAL – Surface Energy Balance Algorithm for Land 

SEEG/OC – Greenhouse Gas Emission and Removal System/Climate Observatory 

SMAP – Soil Moisture Active and Passive 

SMOS – Soil Moisture Ocean Salinity 

SOSMA – SOS Atlantic Forest foundation 

SOW – Soil Organic matter Water equivalent 

SPL4SMAU – SMAP level-4 surface (root zone soil moisture analysis update product) 

SR – Agriculture cultivated in Straight Rows 

SRTM – Shuttle Radar Topography Mission 

SUDENE – Development Superintendency of the Northeast of Brazil 

SWDI – Soil Water Deficit Index 

SWAT – Soil and Water Assessment Tool 

SWIG – Soil Water Infiltration Global database 

t – Time 

T – Mean air temperature | Water temperature 

Ta – Actual transpiration 

Tmax – Maximum temperature 

Tmin – Minimum temperature 

Tminclose  – Minimum air temperature of stomatal closing 

Tminopen  – Minimum air temperature of stomatal opening 

Tp – Potential transpiration 

Ts – Soil temperature 

TDR – Time-Domain Reflectometry 

TERENO – TERrestrial ENvironmental Observatories 

TMPA – TRMM Multi-satellite Precipitation Analysis 

TRMM – Tropical Rainfall Measuring Mission 

u2 – Wind speed at 2-m height of measurement 

uz – Wind speed at ‘z’ height of measurement 

UB – University of Bologna 

UFC – Federal University of Ceará 

UFCG – Federal University of Campina Grande 

UFPB – Federal University of Paraíba 

UFPE – Federal University of Pernambuco 

UK – United Kingdom 

UNSODA – UNsaturated SOil hydraulic DAtabase 

UP – University of Potsdam 

USA – United States of America 

USGS – United States Geological Survey 
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USDA – United States Department of Agriculture 

UTC – Coordinated Universal Time 

V – Actual volume of water | Variable of PR2/6 measurement in millivoltage 

Vj | Vj-1 – Water volumes in a soil region at the current and previous time levels 

VBA – Visual Basic for Application 

VIC – Variable Infiltration Capacity 

VPD – Vapour Pressure Deficit 

VPDclose  – Vapour Pressure Deficit of stomatal closing 

VPDopen  – Vapour Pressure Deficit of stomatal opening 

VWC – Volumetric Water Content 

wk – Weigh between the interpolated point ‘x’ and kth nearby rain gauges 

W – Well identification 

Wd – Vertical weighting function 

Wij – Weights for each point ‘i’ and depth ‘j’ 

Wk – Vertical (Wd) or horizontal (Wr) weighting functions 

Wr – Radial weighting function 

WMTL – Water and Mass Transport in Landscapes 

WRB – World Reference Base for soil resources 

WTF – Water Table Fluctuation method 

x – 
Simplified variable in COSMIC operator to speed up calculations | Vertical coordinate 

from soil bottom in HYDRUS-1D  

y – Function of ‘x’ variable in COSMIC operator to speed up calculations 

z – 
Vertical coordinate along the soil profile in COSMIC operator | Vertical coordinate 

along the soil profile in ΔS calculation 



1 

1 INTRODUCTION 

Studies over the groundwater resources unsustainable use, albeit recently 

documented at global and regional scales, are still considered incipient when compared to 

surface water assessments (Gleeson et al., 2012), even though groundwater represents the 

most extensive unfrozen freshwater source on Earth (Aeschbach-Hertig and Gleeson, 2012). 

Nevertheless, due to its strong dependence on local features and insufficient access to it, 

groundwater is still considered a poorly understood and managed, devalued and inadequately 

protected natural resource (Foster et al., 2013). 

The low cost and high availability of groundwater are advantages which attract 

people for using this water resource worldwide (Maliva, 2014), either for agricultural, 

industrial or human consumption purposes. However, changes in natural drainage patterns 

and groundwater exploitation may have negative consequences, such as dramatic volume-

stored reduction (Chaudhuri and Ale, 2014), coastal aquifers marine-intrusion risk (Cary et 

al., 2015), soil subsidence risk (Pardo et al., 2013), and groundwater contamination (Chatton 

et al., 2016). Additionally, the excessive use of groundwater resources may impair the water 

cycle running and weaken the aquifer-rivers hydraulic connections (Zou et al., 2015), with 

severe consequences to the humanity and environment. Hence, for sustainable aquifer use, 

it is necessary to better know the groundwater reservoir hydraulic properties and recharge 

processes. 

Among the water balance components, the Groundwater Recharge (GWR) 

contribution is one of the most challenging components to estimate, since it can rarely be 

measured directly (Crosbie et al., 2015) and cannot be easily derived from hydraulic head 

data due to the inherent uncertainty of hydraulic conductivities. Furthermore, it is a 

potentially random variable in space, whose observed data regularly represents local 

characteristics. Thus, the local-scale recharge data conversion into distributed regional 

information has become one of the leading challenges in hydrological research (Brunner et 

al., 2007). 

In recent years, innovative technologies and data processing tools, such as remote 

sensing and Geographic Information Systems (GIS), have played a key role for providing 

global-, regional-, and large-scale distributed information for the water resource 

management. Nevertheless, precisely for groundwater research, these techniques have 

substantially contributed to recharge zones delimitation (Agarwal and Garg, 2016; Rahman 



2 

et al., 2013) and aquifer vulnerability assessment (Ertürk et al., 2017; Valle Junior et al., 

2015). 

For GWR estimation, remote sensing has not been able to progress similarly since 

the current satellite imagery data can detect just spatial processes and patterns related to 

near-surface resources. On account of these limitations, all possibilities for achieving those 

goals are based on indirect methods (Lucas et al., 2015). Thus, the recharge inferences ought 

to be generated from satellite products able to translate large-scale detection patterns of 

further water balance parameters, required for groundwater modelling (Brunner et al., 2007), 

such as precipitation (Prakash et al., 2016), soil moisture (López López et al., 2016), 

evapotranspiration  (Mahmoud; Alazba, 2016) and surface runoff (Mahmoud, 2014).  

Recent studies have merged satellite and terrestrial measurements to estimate large-

scale GWR from water budget equations worldwide (Coelho et al., 2017; Gokmen et al., 

2013; Münch et al., 2013; Szilágyi, Kovács and Józsa, 2012). Despite the similarities of their 

methodologies, all these studies used different remote sensing products in the water budget 

equations. However, recent studies have assessed GWR based on the difference between 

precipitation and evapotranspiration, ignoring changes in runoff and soil moisture (Crosbie 

et al., 2015), even though some soil moisture remote sensing products are already available, 

such as SMAP (Soil Moisture Active and Passive) mission (Entekhabi et al., 2010). 

Furthermore, the emergence of meteorological retrospective analysis (or reanalysis) data has 

provided a novel source of grid-box near-surface meteorological data useful for better 

estimating the water balance components (Ji, Senay and Verdin, 2015). 

The use of remote sensing data for GWR estimation through a simple water budget 

equation, however, is frequently constrained on large-scale due to the lack of consideration 

of soil water storage changes, which could lead to unrealistic estimations if provided on 

intermediary scale. Its account is particularly important for understanding the GWR in 

complex sedimentary coastal basins, whose unsaturated vadose zone width may vary from 

thin to thick soil layers. This is the case of mostly the metropolitan cities of Northeast of 

Brazil, which are occasionally featured by sandy soils with high hydraulic conductivity and 

shallow groundwater table, subjected to heavy rainy seasons and very hot dry seasons  

(Araújo Filho et al., 2000; Cabral da Silva et al., 2000a). Those characteristics require a 

proper survey of the soil hydraulic properties when intending to estimate the GWR, which 

not always reflect the field-scale features when directly-measured at point scale. 

Inverse modelling then emerges as an underlying tool to obtain information about a 

physical entity from its direct or indirect measurements (Tarantola, 2005). In soil science, 
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inverse modelling may allow for calibrating the parameters of pedotransfer functions from 

internal measuring conditions, namely soil moisture or soil water storage, by setting the 

boundary conditions, such as meteorological variables and groundwater level, and 

eventually the parameters of rooting growth and Root Water Uptake (RWU) (Šimůnek, van 

Genuchten and Šejna, 2016). These models contain the pedotransfer functions, which consist 

of van Genuchten-Mualem parameters that, when calibrated, may allow for obtaining soil 

hydraulic properties, which are essential to simulate the vertical water percolation rates at 

different depths and the GWR rate as the percolation rate at the bottom boundary. 

The calibration of the soil hydraulic properties by inverse modelling, however, 

requires the use of soil moisture time series that often lack a high data quality (Vereecken et 

al., 2016), although there exists a wide range of invasive point-scale measurement sensors 

available, such as Time-Domain Reflectometry (TDR) probes (Graeff et al., 2010). To fill 

this gap, Cosmic-Ray Neutron Detection (CRNS) probes may be a promising solution as 

they can continuously measure the average soil moisture over hundreds of meters and deep 

to tens of centimetres (Brocca et al., 2017; Köhli et al., 2015; Rivera Villarreyes, Baroni and 

Oswald, 2014). Recently, Brunetti et al. (2019) externally coupled in the hydrogeological 

model HYDRUS-1D, the forward neutron operator COsmic-ray Soil Moisture Interaction 

Code (COSMIC) (Shuttleworth et al., 2013), allowing for inputting the neutron intensity 

time series assimilated by CRNS. The application of inverse modelling on CRNS data in 

HYDRUS-1D-COSMIC coupled model allows for averaging on soil hydraulic properties, 

better representing the soil characteristics in a simulation of intermediary-scale GWR. 

Although several achievements on the use of remote sensing and vadose zone 

modelling in the simulation of hydrogeological response have been accomplished, the lack 

of validation of the water balance components estimates has put in check the reliability of 

the results. On the other hand, there is a high availability of methods that could be used to 

analyse the uncertainties and to validate the results of those techniques (Uusitalo et al., 2015), 

among which the data-based approaches are frequently used in the hydrogeological sciences 

(van Steenbergen, Ronsyn and Willems, 2012). For validating the resulting values of GWR, the 

following ones are stand out: the Water Table Fluctuation (WTF) method (Cai and Ofterdinger, 

2016; Chung et al., 2016); and tracer techniques, such as Chloride Mass Balance (CMB) method 

(Crosbie et al., 2018; Hornero et al., 2016). Nonetheless, these techniques still have been few 

used to validate the water balance components in order to improve their estimates and better 

understand their effects over the GWR. 
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Therefore, this PhD thesis evaluated the estimations of water balance components 

from different techniques and methods, with certain modifications, validating their estimates 

with those from ground-based methods, and providing comparative discussions of results. 

For such purpose, different data sources, namely: remote sensing, reanalysis data, CRNS, 

and unsaturated vadose zone modelling; were employed, so that GWR estimates on different 

spatial resolutions could embrace the specificities of complex sedimentary coastal basins in 

Atlantic Forest biome of Brazil.   
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2 LITERATURE REVIEW 

The literature review was subdivided in five major items, addressing all subjects of 

the methodology in the following order: contextualization of hydrological scenario; remote 

sensing products for estimating the water balance components; soil moisture assimilation 

based on CRNS method; vadose zone modelling, and; uncertainty and validation of water 

balance components. 

2.1 Contextualization of the local hydrogeological scenario 

In countryside areas of metropolitan cities of the Northeast of Brazil, the crop 

production has increased thanks to a growing expansion of energy and ethanol production 

stemmed from the city growth and the excessively-used road system, respectively (Filoso et 

al., 2015; Montenegro and Ragab, 2010). These capital cities are mainly located on complex 

sedimentary aquifers subjected to heavy rainy seasons mostly concentrated in winter, 

followed by very hot, dry seasons (Cabral da Silva et al., 2000a). They eventually are 

featured by sandy soils, high hydraulic conductivity and shallow groundwater levels, which 

confers a low soil crop capacity requiring a high employ of fertilizers (Araújo Filho et al., 

2000). 

The low nutrient fixation and high leaching in potential agricultural areas, however, 

have prevented a faster crop expansion, which allowed for crucial conservation of natural 

vegetation covers, but made them valuable sand extraction sources for the civil construction 

industry (Araújo Filho et al., 2000). These natural areas are responsible for the sustainable 

maintenance, regulation and control of water cycle, leading to the recycle of contaminants 

coming from agricultural fertilizer (Mateo-Sagasta, Zadeh and Turral, 2017). Their 

excessively low natural fertility soils are subjected to waterlogging during the rainy season, 

leading to high water drainage through lateral flow (Araújo Filho et al., 2000). Accordingly, 

other hydrological processes are triggered: perennial creek runoff with short travel time 

(Barbosa, 2015), very high to extreme contamination risk (Linhares et al., 2014), 

heterogeneous sediment yields (Silva, 2009), and stream sediment load because of erosion 

susceptibility partly due to anthropological action (da Silva and Almeida, 2017).  

Due to the critical hydrogeological scenario of the aforementioned areas, a few 

Brazilian research projects, such as IBESA (Implementation of Semiarid Experimental 

Basins) and BEER (Experimental and Representative Basins), and an international project, 
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named BRAMAR (BRAzil Managed Aquifer Recharge), have settled and maintained some 

representative and experimental basins in Northeast of Brazil (IBESA, 2004; Tsuyuguchi et 

al., 2018). Such research projects aim to provide insights on water resources management 

strategies in the region, by gaining knowledge about the relationships among the 

hydrological processes. In the same region, the Guaraíra Experimental Basin (GEB) was 

installed and, more recently, the João Pessoa Case Study Area (JPA CSA) was then 

conceived, both under the tropical wet climate condition. 

The JPA CSA is located in the Alhandra sub-basin, within the Paraíba-Pernambuco 

sedimentary basin. They are mainly formed by the following sequence of stratigraphic units: 

Precambrian basement, Beberibe, Itamaracá, Gramame, Maria Farinha and Barreiras 

Formations, and Post-Barreiras sediments (Figure 1); whose origins were summarized by 

Andrades Filho (2014) as follows. The sedimentary fill of the JPA CSA began in the 

Coniacian-Santonian epochs, after the opening of the Atlantic Ocean (Matos, 1992). 

Throughout these epochs and the Campanian one, Beberibe unit was formed by the 

sandstones and conglomerates consisting of medium to coarse grains in fluvial and lacustrine 

environments (Beurlen, 1967). During the Campanian-Maastrichtian epochs, the Itamaracá 

unit was formed by a mixing of carbonates, calciferous sandstones and shales on the estuaries 

and lagoons in shelf environments (Barbosa et al., 2003). Then, all over the Maastrichtian-

Paleogene epochs, a transgression between a generalized and less expressive deposition of 

carbonate rocks in shallow shelf environment were recorded, which were called Gramame 

and Maria Farinha units, respectively (Barbosa et al., 2003; Mabesoone, 1994). Between the 

Itamaracá and the Gramame units, a phosphatic horizon can be eventually found (Furrier, de 

Araújo and de Meneses, 2006). 

In the first half of Miocene epoch, the Barreiras unit formed by sandstones 

interbedded with conglomerates and mudstones was deposited in fluvial and estuarine 

environments (Araújo et al., 2006; Morais et al., 2006; Rossetti et al., 2012). Overlying this 

unit were formed the Late Pleistocene and Holocene Post-Barreiras Sediments (Rossetti et 

al., 2011), the former was composed mostly of seismites consisting of sandstones, 

mudstones, conglomerates and breccias that display soft sediment deformation (Rossetti et 

al., 2012), and the latter was constituted solely of friable massive sands. Between the 

Barreiras and Post-Barreiras units, as well as between the Marinha Farinha and Barreiras 

units, there were developed the lateritic paleosol unconformity (Rossetti et al., 2012). 
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Figure 1 – Representations of the (a) location of Paraíba-Pernambuco sedimentary basin, (b) typical 

geological mapping, (c) stratigraphic units in geologic time scale, and (d) tectono-sedimentary 

Quaternary cross-section. Sources: modified from Rossetti et al. (2011) and Andrades Filho (2014). 

In this context, the JPA CSA is mostly composed of Haplic Acrisols, Fluvisols and 

Carbic Podzols, according to World Reference Base (WRB) for soil resource (IUSS Working 

Group WRB, 2015), or by Argissolos Vermelho-Amarelo, Neossolos Flúvicos and 

Espodossolos Humilúvicos according to Brazilian System of Soil Classification (SiBCS) 

(dos Santos et al., 2018). In turn, GEB also encompasses both Haplic Acrisols and Carbic 

Podzols, mainly the latter, which is characterised by the: arenic, organic, moderated horizon 

A (98.41%); eluvial, albic horizon E; illuvial, spodic horizon B, followed by duripan horizon 

(Araújo Filho et al., 2000; Cabral da Silva et al., 2000a; de Lira, 2015) (Figure 2). On one 

hand, the horizons A and E have thickness usually ranging from 8 to 90 cm and 60 to 90 cm, 

respectively, and together they can exceed 2 m in some cases; holding many small pores and 

loose consistency for wet and dry conditions, and non-plastic and non-sticky consistency for 

wet condition (Araújo Filho et al., 2000). On the other hand, the horizon B is often cemented 
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and compact, constituting the duripan, which is rich in concretes or iron oxides, with silt and 

clay contents that can exceed 10% (Araújo Filho et al., 2000). 

  

Figure 2 – Representation of the (a) Podzol and Acrisol soil types over Brazil, (b) typical soil profiles, 

and (c) main land uses. Available on: http://www.agencia.cnptia.embrapa.br. 

2.2 Remote sensing products for estimating the water balance components 

2.2.1 Fundamental concepts of the remote sensing 

Remote sensing techniques are based on the acquisition or measurement of object 

information or phenomenon properties through a recording device without physical contact 

(Braga, 2014). As such, remote sensing can provide a synoptic and multi-temporal view of 

large areas over Earth surface, which turn the acquisition by on-board sensors in artificial 

satellites (at orbital level), a vastly used approach in environmental studies (Florenzano, 

2007) (Figure 3). Amongst the application are the agriculture (Bastiaanssen, 2000), water 

resources (Tong et al., 2014), land use and vegetation cover (Coelho et al., 2014) and 

climatology (Zeng et al., 2013). In addition, the remote sensing allows for identifying the 

Earth surface changes stemming from natural and/or anthropic phenomena (Gusmão et al., 

2012). 

http://www.agencia.cnptia.embrapa.br/
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Figure 3 – Remote sensing conceptual diagram. Source: modified from Shaw and Burke (2003). 

The information trade-off between the Earth surface objects and the on-board satellite 

sensors are transmitted at the light speed through the electromagnetic radiation, which 

originates mainly from the Sun and propagates in all directions through the electromagnetic 

waves (Aggarwal, 2004). Such electromagnetic radiation can be ordered through its 

wavelength or frequency, forming the spectrum regions that together bring forth the 

electromagnetic spectrum, in which the most used regions comprehend the bands between 

the micro-waves (100 m) and the visible (4×10-7 m) spectrum (Scarinci and Marineli, 2014) 

(Figure 4). 

 

Figure 4 – Electromagnetic radiation spectrum. Source: Modified from https://www.mpoweruk.com/ 

radio.htm, according to Scarinci and Marineli (2014). 

https://www.mpoweruk.com/%20radio.htm
https://www.mpoweruk.com/%20radio.htm
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The electromagnetic radiation arrives at the Earth surface with less intensity, as it is 

subjected to atmospheric component effects (Figure 5). Amongst these components, there 

exist the H2O, O2, O3, CO2 and other gases, which are responsible for the main radiation 

absorption bands (Lillesand, Kiefer and Chipman, 2004). Nevertheless, some spectral bands 

are less affected by those atmospheric components, such as the visible band, allowing for a 

better transmission of the solar electromagnetic radiation, which in turn makes the remote 

sensing of the Earth surface possible.  

 

Figure 5 – Standard solar spectrum. Source: modified from ASTM (2003). 

Upon reaching the Earth surface, the electromagnetic radiation can be partially 

transmitted, reflected or absorbed, of which only the two latter can be captured by the sensors 

and transformed into electrical signals. The absorbed portion used by remote sensing is that 

reemitted by the target through the thermal processes and/or dissipated as heat (Weng, 2010). 

The physical, chemical and biological properties of the imaged targets, as well as their 

surface irregularities, affect the reflected, absorbed and transmitted solar radiation, which 

characterizes the spectral signature of different resources (Figure 6). 
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Figure 6 – Comparison among the generalized spectral signatures of some Earth surface materials. 

Source: modified from the file available on: http://www.rsacl.co.uk/images/base2.jpg. 

Earth surface and atmospheric characteristics detected and recorded by the on-board 

satellite sensors depend on their resolutions, which vary according to their use purposes. 

There exist four basic sensing capabilities of the sensors: spatial, temporal, radiometric and 

spectral resolutions (Jensen, 2009). Spatial or geometric resolution refers to the 

instantaneous field of view, namely the spatial details represented by the smallest surface 

area, which the sensor is capable of individualizing. Temporal resolution is the time of 

satellite passage in the same place, namely the frequency that a sensor returns to a previously 

imaged location. Radiometric resolution is the electromagnetic radiation reflected and/or 

emitted by terrestrial surface targets, represented by binary digits or bits, required to store 

the maximum value of each pixel. Spectral resolution is the size and number of wavelength 

ranges or bands that a sensor can record, namely the sensor ability to distinguish different 

objects on the surface. 

2.2.2 Global Precipitation Measurement mission and Integrated Multi-satellitE 

Retrievals for Global Precipitation Measurement algorithm 

Global Precipitation Measurement (GPM) mission is an international network of 

satellites project undertaken by the National Aeronautics and Space Administration of USA 

(NASA) and the Japanese Aerospace Agency (JAXA), which provide the next-generation of 

http://www.rsacl.co.uk/images/base2.jpg
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global observations of rain and snow (Huffman, Bolvin and Nelkin, 2017). According to 

Huffman, Bolvin and Nelkin (2017), the GPM mission was designed to provide 

climatological and precipitation monitoring on near-real-time, and aims to improve the: (1) 

precipitation estimates; (2) knowledge about precipitation mechanisms, water cycle 

variability and fresh water availability; (3) climate modeling and forecasting; (4) weather 

forecasting and four-dimensional climate reanalysis; (5) hydrological forecasting and 

modeling. 

The GPM Core Observatory launched in February 28th, 2014, accounts for GPM 

Microwave Imager (GMI), a microwave sensor with multichannel-tapered scanning with 

frequency of channels ranging from 10 GHz to 183 GHz, and a Dual-frequency Precipitation 

Radar (DPR) with: Ku-band at 13.6 GHz, and Ka-band at 35.5 GHz (Li et al., 2015). Thus, 

GPM provides rainfall and snow global information through the Integrated Multi-satellitE 

Retrievals for GPM (IMERG) products (consisting of eight satellites) on 0.1º (spatial) and 

30-min (temporal) resolutions, with a 65º to North and South orbital slope (Hou et al., 2014; 

Liu et al., 2017; Skofronick-Jackson et al., 2017) (Figure 7). 

 

Figure 7 – Half-hourly precipitation obtained by GPM IMERG satellite product on 0.1° spatial 

resolution over the Earth. Source: https://pmm.nasa.gov/. 

According to Huffman, Bolvin and Nelkin (2017), the GPM improved the main 

features of its precursor Tropical Rainfall Measuring Mission (TRMM), namely: (1) 

measurement of microphysical properties and vertical structure information using active 

remote sensing techniques over a wide spectral range; (2) measurement of snow and light 

https://pmm.nasa.gov/
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rain rates through high-frequency passive microwave radiometry; (3) algorithm 

improvements on passive microwave recovery over the Earth; and (4) better precipitation 

measurements at medium and high latitudes during colder seasons. 

The IMERG algorithm embodies infrared and microwave estimates from GPM 

constellation, ground-based observations, and other ancillary data (Huffman, Bolvin and 

Nelkin, 2017). Several products are provided by NASA Goddard Space Flight Center 

(GSFC), available on https://pmm.nasa.gov/data-access/downloads/gpm. To date, six 

IMERG versions (from V01 to V06) are available in three different products, namely: Early 

Run, Late Run, and Final Run. The two first products provide proper data at near-real-time 

for time-sensitive applications, whose data are accessible between 4 and 12 h after the 

assimilation. On the other hand, the latter product improves the satellite estimations by 

ground-based data from the Global Precipitation Climatology Centre (GPCC) appropriate 

for hydrological modelling purposes, whose data are accessible around 3.5 months after the 

assimilation (Tang et al., 2016).  

Wang et al. (2018) compared the IMERG V03, V04 and V05 Early, Late and Final 

Run products to different satellite-based and ground-based data over the Earth. They found 

that V04 and V03 Final Runs show comparable performance, while V05 Final Run generally 

outperforms both V04 and V03, holding the best performance. Over Brazil, Gadêlha et al. 

(2019) found that the IMERG V05 Late Run captures effectively the precipitation spatial 

patterns, with a slight overestimating behaviour compared to ground-based rainfall data. 

Conversely, they also found a relevant underestimation of the IMERG data throughout the 

coastal zone of the Northeast of Brazil, likely due to the inability of the passive microwave 

and infrared sensors in detecting warm-rain processes over land. Recently, the IMERG V06 

was also released, but the version V06A presented failures and the V06B did not outperform 

the prior IMERG V05B (Anjum et al., 2019). 

2.2.3 Moderate Resolution Imaging Spectroradiometer sensors and Global 

Evapotranspiration Project algorithm 

The MODerate Resolution Imaging Spectroradiometer (MODIS) is a scientific 

instrument launched in Earth orbit by NASA GSFC, which is composed by sensors on-board 

the Terra (since 1999) and Aqua (since 2002) satellites, which transmit data of 36 spectral 

bands, available on https://modis.gsfc.nasa.gov/data/. Amongst those, the visible and 

medium infrared (0.405 to 2.155 μm) regions are proposed to terrestrial, oceanic and 

https://pmm.nasa.gov/data-access/downloads/gpm
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atmospheric applications, while the thermal portion of the electromagnetic spectrum (3,660 

to 14,385 μm) can be used by further fields of investigations on natural sciences (Justice et 

al., 2002). MODIS sensor also holds wide spatial, radiometric and temporal resolutions, 

featuring from 250 m (red and near-infrared ranges) to 1 km (thermal infrared range) grid 

cells, mapping the surface every 8-day, and releasing information on monthly and annual 

resolutions (Velpuri et al., 2013). 

The main features of MODIS sensor are: (1) the high geometric quality of imagery; 

(2) the almost daily imaging frequency over the entire terrestrial globe; (3) the sophisticated 

procedure for atmospheric imagery correction (Arai and Freitas, 2007; Caballero, 2012), (4) 

a wide range of products related to biophysical vegetation parameters, and (5) the free 

availability of imagery (Latorre et al., 2007). With regards to the available MODIS products, 

Anderson et al. (2003) listed the most notable ones, namely: (1) MOD09, which collects the 

surface spectral reflectance; (2) MOD11, which provides the surface temperature and 

emissivity; (3) MOD13, which contains the spatiotemporal data of Earth surface vegetation 

cover; and (4) MOD44, which identifies the global changes resulting from extreme natural 

events and human activities.  

The MODIS Global Evapotranspiration Project (MOD16) emerged from the MODIS 

measurements (Mu et al., 2007), providing exceptional information about vegetation and 

surface energy on the regional and global scale (Justice et al., 2002). The original MOD16 

evapotranspiration algorithm (Mu et al., 2007) based on the Penman-Monteith equation 

(Allen et al., 1998) covered the entire 109.03 Million km2 global vegetated land areas, 

masking out water bodies, urban/built-up areas and barren lands. This algorithm uses as 

inputs the MODIS products: leaf area index (LAI), Enhanced Vegetation Index (EVI), 

albedo, and land cover; as well as the daily meteorological data from NASA Global 

Modeling and Assimilation Office (GMAO) reanalysis dataset (Mu et al., 2007; Mu, Zhao 

and Running, 2011).  

Improvements were latter provided by Mu, Zhao and Running (2011) in the original 

MOD16 algorithm (Figure 8), namely: (1) simplification of the calculation of the vegetation 

cover fraction; (2) separation between dry and wet canopy surfaces; (3) enhanced estimates 

of stomatal conductance and aerodynamic drag; (4) adding the heat flux calculation in the 

soil; (5) creation of saturated and moist surfaces from a single prior soil surface, and; (6) 

evapotranspiration calculation as sum of daily and night evapotranspiration components. On 

the other hand, an important source of errors in MOD16 estimates may stems from land use, 

as shown by Ruhoff et al. (2013). 
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Figure 8 – Annual actual evapotranspiration obtained by MOD16 global evapotranspiration product 

on 250-m spatial resolution over the Earth. Source: adapted from Mu, Zhao and Running (2011). 

Estimates of MOD16 evapotranspiration between the original and modified 

algorithm stood on 416 to 431 mm yr-1, respectively, with a mean annual estimate of 

1,180.16 mm yr-1 over evergreen broadleaf forests (Mu, Zhao and Running, 2011). A multi-

decadal trend analysis of MOD16 evapotranspiration revealed a significant positive 

tendency driven mainly by Leaf Area Index (LAI) increase, dominated by greening, whose 

estimates compared to 95 eddy-covariance flux towers yielded a good agreement, indicated 

by R² and PBIAS equal to 77% and -6% (Zhang et al., 2016). The choice of forcing input 

data may produce a mean uncertainty on monthly evapotranspiration corresponding to ~20% 

of global mean one, with net radiation driving the majority difference (Badgley et al., 2015). 

Further comparisons for different uses and soil cover reported errors of up to 13% on the 

annual scale (Loarie et al., 2011). In Northeast of Brazil, the reliability of MOD16 products 

was also confirmed, once the monthly MOD16 data produced a value of R² equal to 82% 

(Miranda et al., 2017). Recently, in the same region, the MOD16 evapotranspiration product 

showed a better performance throughout all seasons, with BIAS, RMSE and R² equal to -

0.08 mm d-1, 0.61 mm d-1 and 80%, in relation to eddy-covariance measurements, whose 

mean energy balance closure achieved 84%, considerably high for the region (dos Santos et 

al., 2020). In such region, the land degradation together with precipitation are the main 

drivers on evapotranspiration anomalies, holding the former a high potential impact on the 

hydrological cycle, which feedbacks the land degradation cycle (Mariano et al., 2018). 
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2.2.4 Surface runoff by Natural Resources Conservation Service–Curve Number 

method 

The Natural Resources Conservation Service–Curve Number (NRCS–CN) method 

(NRCS, 1986), originally called Soil Conservation Service (SCS) method (SCS, 1972), is a 

popular, ubiquitous, and enduring method of runoff estimation originally based on rainfall 

event that requires a single parameter per ungauged catchments (Hawkins et al., 2009). 

Although originally created for rural areas of the United States of America (USA), it has 

been gained credibility and is now employed over different areas worldwide (Nagarajan and 

Basil, 2014). 

According to Ponce and Hawkins (1996), the grounds of NRCS–CN popularity 

comes from its clear advantage in simply, conveniently and responsively identify catchment 

properties, namely: land use/cover, soil type, surface condition, and Antecedent Runoff 

Condition (ARC). Furthermore, NRCS–CN methodology is the only well-established 

method that provides readily-grasped and properly-documented environmental inputs, 

making it widely accepted throughout the world (Abdulkareem et al., 2019). 

After the introduction of Geographic Information Systems (GIS) in the 1990s, the 

NRCS–CN method could easily employ remote sensing products to estimate distributed 

surface runoff for several hydrological applications. Sinha et al. (2019) applied NRCS–CN 

to compute the urbanization impact on distributed surface runoff over 44 years. Kayet et al. 

(2018) employed NRCS–CN to assess the annual soil erosion in 15 catchments related to 

distributed surface runoff. Coelho et al. (2017) estimated the GWR distribution in the 

semiarid zone of Brazil by inputting distributed NRCS–CN surface runoff in the water 

budget equation. However, Hong et al. (2007) were the first who simulated global surface 

runoff using TRMM satellite-based rainfall estimation (Figure 9). 

 

Figure 9 – Annual mean surface runoff (1998-2016) simulated on 0.5º spatial resolution derived from 

TRMM data through the NRCS–CN method over the Earth. Source: adjusted from Hong et al. (2007). 
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Although the NRCS–CN method is successfully used in hydrology, some limitations 

have been eventually claimed in literature. Amongst the limitations of NRCS–CN, the most 

important are: fixed initial abstraction ratio equal to 0.20; instability of CN parameters to 

ARC values, and; the weak physical basis for infiltration (Ajmal et al., 2015; Ajmal, Kim 

and 2015; Cho and Engel, 2018). In addition, using NRCS–CN to estimate continuous long-

term runoff time series and its use in large-sized watersheds are not recommended by some 

authors (Efstratiadis et al., 2014; Ponce and Hawkins, 1996). Thus, NRCS–CN hybrid 

methods have attempting to improve the estimates of long‐term, spatially-distributed surface 

runoff (Cho and Engel, 2018). 

Despite the limitations, NRCS–CN holds a high and distinct potential to estimate 

distributed surface runoff in relation to other methods (Muthu and Santhi, 2015). By 

comparing three different methods, Meresa (2019) found that NRCS–CN outperforms the 

others by showing median bias close to zero in 10 catchments, being suitable to predict  

runoff with reasonable accuracy and calculate distributed surface runoff. The good 

performance of NRCS–CN method stems from its flexibility in combining climatic and 

physiographic characteristics in the Curve Number (CN) parameter (Nagarajan and 

Poongothai, 2012). 

2.2.5 MapBiomas land use/cover project 

Land use/cover is commonly obtained by remote sensing data, which may vary in 

spatial and temporal resolution. Satellite-based land use/cover with 30-m grid-box is a good 

solution for large watersheds, providing up to 80% reality compliance (Kwoczyńska et al., 

2014; Lunetta et al., 2006). On the other hand, land use/cover time series has been 

systematically updated leading to a quick outdating of existing databases (Siejka et al., 2017; 

Walega and Salata, 2019). Nevertheless, depending on the characteristics of the 

classification algorithm, changes in land use/cover overtime may be improperly undetected 

(Lu et al., 2012). 

The MapBiomas project is an initiative of the Greenhouse Gas Emission and 

Removal System/Climate Observatory (SEEG/OC), composed of a collaborative network 

and launched in 2015, which that provides annual national-level land use and land cover 

transitions in all biomes of the Brazilian territory with a 30-m spatial resolution on annual 

basis (Figure 10), available on http://mapbiomas.org. The collection 1.0, 2.0 and 2.1 were 

released in April 2016, April 2017, and January 2018, respectively, applying a simplified 

http://mapbiomas.org/
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legend in the former and providing enhancements after the random forest using. Then, the 

collections 3.0 and 3.1 were released in August 2018 and in April 2019, respectively, 

providing data from 1985 to 2017 based on a pixel-per-pixel automatic classification using 

the entire archive of Landsat observations. More recently the collection 4.0 and 4.1 were 

released, but little information about its accuracy has been published since then. 

 

Figure 10 – Annual land use/cover obtained by MapBiomas collection 3.1 on 30-m spatial resolution 

over Brazil. Source: http://plataforma.mapbiomas.org/map#coverage. 

As a relatively new project at national-scale, the MapBiomas data are recently getting 

more attention and supporting Brazil-based studies in many areas (Garrett et al., 2018; 

Mariano et al., 2018; Mccord, Tonini and Liu, 2018; Tyukavina et al., 2017; Wang et al., 

2019d), but just a few have used them to estimate evapotranspiration and runoff (Cavalcante 

et al., 2019; Lima and Ribeiro, 2018; Silva, Manzione and Teixeira, 2018). Wang et al. 

(2019c) showed the MapBiomas capacity in allowing for the identification of forest 

degradation and secondary-growth vegetation. In the Northeast of Brazil, land use changed 

minimally during the 2000–2016 period with greater agricultural expansion in the 

southwestern zone (Dias et al., 2016; Noojipady et al., 2017). In the Brazilian shoreline zone, 

the mangrove area from 1985 to 1998 showed an upward trend in detriment to a lesser trend 

recorded from 1999 to 2018; however, ~75% of the Brazilian mangroves remained 

unchanged for two decades or more (Diniz et al., 2019).  

http://plataforma.mapbiomas.org/map#coverage
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2.2.6 Soil Moisture Active Passive mission 

Soil Moisture Active Passive (SMAP) is a NASA GSFC mission in cooperation with 

Foreign Agricultural Services (FAS) and Hydrology and Remote Sensing Laboratory 

(HRSL), both from United States Department of Agriculture (USDA). SMAP monitors the 

global near-surface soil moisture since April 2015, mapping the globe between 85.044°N 

and S in 2–3 days, depending on location (Entekhabi et al., 2010). SMAP was designed to 

record co-located L-band active radar and passive radiometer measurements at a constant 

incidence angle of 40°, in order to provide global measurements of surface soil moisture and 

soil freeze/thaw stat (Leon, Khalsa and Leslie, 2015; Montzka et al., 2017). Although the 

on-board radar failed after 3 months, the radiometer continues to work, producing brightness 

temperatures and derived products on a 36 km fixed Earth grid. 

SMAP holds four levels of products comprehended by Level 1 passive microwave 

products and Level 2-4 passive microwave and radar products (Entekhabi et al., 2014). The 

National Snow and Ice Data Center (NSIDC, https://nsidc.org/) and Alaska Satellite Facility 

(ASF, http://asf.alaska.edu) are responsible for the storage, distribution, and support of the 

SMAP data supplied by SMAP Science Data System at Jet Propulsion Laboratory (SDS/JPL, 

Level 1-3), and GMAO at NASA GSFC (Level 4).  

SMAP Level 4 (L4) product provides global near-surface (0-5 cm) and root-zone (0-

100 cm) soil moisture from brightness temperature data from an L-band (1.4 GHz) 

microwave radiometer. The brightness temperature scaling parameters are based on eight 

years of Soil Moisture Ocean Salinity (SMOS) observations and three years of SMAP 

observations. The current baseline Single Channel Algorithm (Jackson, 1993) and a 

dielectric mixing model converts horizontally polarized brightness temperatures to soil 

moisture. 

The L4 root-zone product assimilates the near-surface (5 cm) retrieved by passive 

radiometer into the catchment land surface model, providing the SMAP L4 Surface and Root 

Zone Soil Moisture Analysis Update (SPL4SMAU) product (Reichle et al., 2017). 

SPL4SMAU product is gridded using an Earth-fixed, global, cylindrical, 9-km, Equal-Area 

Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection (Brodzik et al., 2012). 

SPL4SMAU product provides root-zone soil moisture data at 3-hour temporal resolution, 

corrected by satellite- and ground-based precipitation estimates (Liu et al., 2011). The soil 

water storage in the root zone can also be calculated easily by averaging the soil moisture 

increments (Reichle et al., 2018) (Figure 11). 

https://nsidc.org/
http://asf.alaska.edu/
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It is worthwhile to mention that another option available to assimilate the soil water 

storage change is the GRACE (Gravity Recovery And Climate Experiment) mission. The 

GRACE mission is composed of two twin satellites – GRACE-A and GRACE-B – whose 

aim is to map the terrestrial gravitational field, with a 30-day time scale and a spectral range 

from 400 km to 40,000 km (Tapley et al., 2004). Data are available at three levels: Level-

1A, Level-1B, and Level-2, of which the latter produces uncertainties, on a global scale, less 

than 9.4 mm (Ferreira et al., 2016); available on http://www.csr.utexas.edu/grace. Moreover, 

these uncertainties take into account: (1) errors of subtracting residuals from long-term 

trends, annual and semi-annual signs, and (2) errors introduced in the data filtering process. 

 

Figure 11 – Root-zone soil moisture increments obtained by SMAP SPL4SMAU satellite mission 

from April 1st, 2015, to April 1st, 2018, on 9-km spatial resolution. Source: Reichle et al (2018). 

Regarding the SMAP surface soil moisture products, the data performances of the 

first eleven months were assessed through 34 core validation sites spread throughout the 

Earth (Colliander et al., 2017). The results indicate that the SMAP radiometer-based soil 

moisture data product meets its expected unbiased root mean square error of soil moisture 

equal to 0.04 m3 m-3. Furthermore, six different soil moisture satellites products, including 

SMAP, were validated on intermediary field scale using CRNS probes on five continents 

(Montzka et al., 2017). Amongst the satellites, the use of SMAP data was recommended 

since it showed relatively low bias, an adequate dynamic range as identified by the triple-

collocation error covariance, and the highest signal-to-noise ratio. 

http://www.csr.utexas.edu/grace
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2.2.7 Global Land Data Assimilation Systems 

The Global Land Data Assimilation Systems (GLDAS) is a global, high-resolution, 

offline (uncoupled to the atmosphere) terrestrial modelling system developed in 2001 by 

NASA/GSFC and the National Oceanic and Atmospheric Administration (NOAA)/National 

Centers for Environmental Prediction (NCEP) (Rodell et al., 2004). GLDAS project 

combines satellite- and ground-based data to constrain the modelled Land Surface Models 

(LSMs) to produce optimal fields of land surface states and fluxes on near-real-time (Rodell 

et al., 2004). According to Bi et al. (2016), GLDAS mainly uses the following LSMs: Noah 

(Chen et al., 1996), Common Land Model (CLM) (Dai et al., 2003), Mosaic (Koster, Suarez 

and 1996), and Variable Infiltration Capacity (VIC) (Liang et al., 1994). 

The GLDAS version 2 (hereafter, GLDAS-2) that replaced the GLDAS version 1 

(hereafter, GLDAS-1) hold two components: one forced entirely with the Princeton 

meteorological forcing data (hereafter, GLDAS-2.0), and the other forced with a 

combination of model and observation-based forcing datasets (hereafter, GLDAS-2.1) 

(Rodell et al., 2004). The reanalysis data are available on https://disc.gsfc.nasa.gov/, from 

1979 to present (GLDAS-1.0), 1948 to 2010 (GLDAS-2.0), and from 2000 to present 

(GLDAS-2.1). The spatiotemporal resolutions of the products vary from 3 hours to monthly, 

and from 1° (CLM, Noah, Mosaic and VIC) to 0.25° (Noah), depending on the concerning 

version. Moreover, the newly GLDAS-2.1 NOAH 0.25°, 3-hourly dataset simulated with the 

Noah Model 3.3 in Land Information System (LIS) Version 7, contains 36 land surface 

fields. 

The main difference between the previously-mentioned versions lies on their forcing 

data. Overall, GLDAS products include meteorological forcing data (precipitation, near-

surface air temperature, specific humidity, wind speed, downward shortwave/longwave 

radiations, and surface pressure) (Figure 12), land surface states (sub-surface runoff and soil 

moisture), and flux data (sensible heat flux and evaporation) (Wang et al., 2016). Lv et al. 

(2018) lists the following main differences between GLDAS-1 and GLDAS-2.1: the GPCP 

(Global Precipitation Climatology Project) and GDAS (Global Data Assimilation System) 

precipitation combination; the AGRMET (Air Force Weather Agency’s Agricultural 

Meteorology) and GDAS radiation corrections; the use of MODIS-based land surface 

parameters; the Noah model version upgrade; and, a soil moisture initialization enhancement 

over desert.  

https://disc.gsfc.nasa.gov/
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Figure 12 – Three-hourly time averaging map obtained by GLDAS Noah 2.1 on 0.25° spatial 

resolution over the Earth, on May 1st, 2017 from 00:00 to 12:00, of (a) specific humidity, (b) 

downward shortwave radiation, (c) air temperature, and (d) air pressure. Source: averaged on 

https://giovanni.gsfc.nasa.gov/. 

By evaluation GLDAS-1.0 and GLDAS-2.0, Wang et al. (2016) showed that 

GLDAS-1.0 may present serious discontinuity issues in its forcing data, with large 

precipitation and temperature errors, while the GLDAS-2.0 holds a better temporal 

continuity, reduced biases, but larger mean absolute errors. According to them, using 

GLDAS-2.0 to simulate water balance components, such as runoff and evapotranspiration, 

provides more accurate estimates than GLDAS-1.0, even though both versions were not very 

capable of capturing the seasonal variation in monthly soil water storage. 

Zhang et al. (2019) built a coupled diagnostic biophysical model for estimating global 

evapotranspiration by inputting GLDAS-2.1 forcing data, whose results compared to 95 

widely-distributed flux towers indicates a robust model performance. Furthermore, Baik, 

Liaqat and Choi (2018) found that GLDAS-2.1 product outperformed the evapotranspiration 

estimates among different satellite- and reanalysis-based products, mainly over cropland 

areas and in tropical regions. In Brazil, de Oliveira et al. (2016a) integrated successfully 

MODIS images with GLDAS 2.0 products to retrieve distributed net radiation in Amazon 

biome, eliminating the need for ground-based measurements. Lima and Ribeiro (2018) found 

that using GLDAS-2.1 forcing data for evaluating the daily evapotranspiration in Atlantic 

Forest biome of Brazil, may allow for capturing in detail the evapotranspiration spatial 

distribution without using ground-based data. 

https://giovanni.gsfc.nasa.gov/
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2.2.8 Groundwater Recharge rate retrieved via water budget equation 

The groundwater recharge rates (GWR rates), frequently understood as the vertical 

water percolation rate below the root zone in the unsaturated zone, is a valuable underground 

information but hugely challenging to be measured directly due to its boundary conditions 

and sensitivity to climate forcing (Mathias, Sorensen and Butler, 2017). This requires 

alternative means of indirect estimation, for example, by using soil moisture and 

groundwater level data (Crosbie et al., 2015; Mathias, Sorensen and Butler, 2017; Naylor et 

al., 2016; Rivera Villarreyes, Baroni and Oswald, 2014). Additionally, in underdeveloped 

and developing countries, this information frequently is only poorly estimated on point-

scale, in small-density hydrogeological networks, and often with limited data access and 

only as short time series, which may compromise the modelling feasibility and reliability 

(Ottoni et al., 2018). To date, solely Mohan et al. (2018) managed to globally estimate the 

GWR rates, which was done through a multi-model inference approach (Figure 13), using 

715 estimates retrieved for a period of 34 years. They were obtained by the following 

methods: WTF, tracers, water budget equation, lysimeter, modelling, and baseflow  

 

Figure 13 – Long-term (1981-2014) annual groundwater recharge rates obtained by a multi-model 

inference approach on 0.5° spatial resolution over the Earth. Source: adapted from Mohan et al. 

(2018). 

Although the GWR spatial distribution may be considerably variable, most of the 

existing methods are based on observed data that characterise the hydrological features only 

on a local scale (Coelho et al., 2017). Such circumstance is not be a problem in regions where 

the monitored network is very dense; however, this is not the usual scenario in most regions 
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throughout the Earth. Therefore, the hydrological challenge in respect to this is to estimate 

distributed information about GWR (Brunner et al., 2007).  

Some methods using orbital remote sensing data are now in discussion, and most of 

these approaches are based on the application of the simplified water budget equation using 

precipitation and evapotranspiration data as input on a grid-box basis, ignoring changes in 

soil moisture and surface runoff (Crosbie et al., 2015; Gokmen et al., 2013; Khalaf and 

Donoghue, 2012; Lucas et al., 2015; Münch et al., 2013; Szilagyi et al., 2011; Szilágyi, 

Kovács and Józsa, 2012; Yin et al., 2011). More recently, in order to improve the GWR 

estimates, a few studies have attempted to add other water balance components in the water 

budget equation using remote sensing approaches, such as interception by vegetation, 

irrigation, surface runoff, and soil water storage (Coelho et al., 2017; Kahsay et al., 2019; 

Kubicz et al., 2019; Subramanian and Abraham, 2019; Mushtaha, van Camp and 

Walraevens, 2019; Usman, Liedl and Kavousi, 2015). 

Most of the previous studies have used distinct remote sensing products to calculate 

the water balance components in order to estimate the GWR through the water budget 

equation. For example, Khalaf and Donoghue (2012) used data derived from TMPA (TRMM 

Multi-satellite Precipitation Analysis) product and SEBAL (Surface Energy Balance 

Algorithm for Land) algorithm, whereas the study conducted by Crosbie et al. (2015) used 

the Bureau of Meteorology gridded data and the CMRSET (CISRO MODIS Reflectance-

based Scaling Evapotranspiration) algorithm, to calculate precipitation and 

evapotranspiration, respectively, and to estimate the GWR as their difference. Nevertheless, 

the spatial resolution of some satellite products, such as the TMPA, were recently 

outperformed by using satellite constellation and improving the algorithms, whereas other 

methods, such as the SEBAL method, depends on ground-based data availability; which can 

limit their uses in poorly-monitored, tropical wet representative basins. 

More importantly, most of the aforementioned studies were conducted in regions 

under semiarid or continental climates where precipitation tends to be scarce or moderate in 

amount, respectively. As a result, the performance of these approaches could be checked in 

regions under clear-sky conditions, but not comprehensively under cloud-sky conditions (as 

typical for tropical wet basins), and that is why the quality of estimates of satellite-based 

water balance components turns out to be substantially affected (Luo et al., 2015).  

Therefore, those situations reveal an important lack of knowledge by using remote 

sensing products for GWR estimation in tropical wet basins, which calls for the development 

of an enhanced GIS-based model that copes with their particular characteristics. 
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2.3 Soil moisture assimilation based on Cosmic-Ray Neutron Sensing 

Soil moisture plays a vital role in the water cycle, influencing climate and weather 

conditions (Wu and Dickinson, 2004), as well as determining surface runoff after precipitation 

events, and controlling the GWR. Despite the importance of soil moisture, there is still a lack of 

high-quality soil moisture data (Vereecken et al., 2016), even though a wide range of invasive, 

point-based measurement sensors are available, such as TDR probes (Graeff et al., 2010). There 

still are other techniques that can deliver large-area soil moisture estimates using remote sensing 

products, such as SMAP mission (Entekhabi et al., 2010). In addition, soil water storage 

estimates obtained from GRACE satellite data may provide a satisfactory representation of soil 

water storage changes for large areas (de Oliveira et al., 2014). Nevertheless, these satellite 

techniques – with exception of GRACE – assimilate soil moisture data just in near-surface layers 

and with low spatial resolution.  

For overcoming this limitation, the CRNS method (Zreda et al., 2008) is one of the most 

promising techniques concerning soil moisture monitoring in the rooted zone at field scale 

(Brocca et al., 2017; Schrön et al., 2017). CRNS probes can continuously measure mean soil 

moisture over several hectares and down to about half a meter depth (Köhli et al., 2015; Zreda 

et al., 2012). The CRNS method is one of the few candidates to close the inconvenient scale gap 

between ground-based point data and remote sensing products (Bogena et al., 2015; Robinson 

et al., 2008), making it attractive for studies at experimental basins. 

2.3.1 Theory of the Cosmic-Ray Neutron Sensing 

Primary cosmic-ray particles consist mainly of high-energetic protons and helium 

nuclei derived permanently from supernovae, throughout the Milky Way (galactic cosmic 

rays) and eventually from the Sun (solar cosmic rays) (Vink et al., 2006; Blasi, 2014). They 

are also derived secondarily from extragalactic origins, where long-living jets and outflows 

from active galactic centers can contribute to post-acceleration of cosmic-rays (Dorfi and 

Breitschwerdt, 2012). The main acceleration processes of thermal cosmic-rays are the 

multiple diffusive shocks occurring in supernovae remnants (Blandford and Ostriker, 1978; 

Malkov and Drury, 2001; Hillas, 2005), whose strong magnetic gradient forces make them 

spin and accelerate until enough energy is reached to leave the structure, peaking at about 1 

GeV and quickly decreasing logarithmically (Cronin, Gaisser and Swordy, 1997; Schrön, 

2016) (Figure 14). However, once in the heliosphere, the galactic cosmic ray particles are 
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strongly influenced by the solar magnetosphere, where the solar activity index prevails upon 

the cosmic-ray intensity (Forbuch, 1954; Schlickeiser, 2002). By reaching the Earth 

magnetosphere, the solar cosmic ray particles are partially or even nearly completely 

deflected when below an energy-dependent cut-off rigidity (Forbuch, 1954; Köhli et al., 

2015). As a result, the typical incoming radiation energies are diminished to several hundreds 

of MeV per nucleon (Nesterenok, 2013). 

 

Figure 14 – Galactic cosmic rays acceleration process by (a) disturbed magnetic fields in dense shock 

regions of supernova remnants, depicted by the (b) cosmic-ray energy spectrum with typical energies 

of 1 GeV, indicating extra-galactic processes beyond the “knee” (or bend). Source: Cronin, Gaisser 

and Swordy (1997). 

Secondary cosmic-ray particles originate from the electromagnetic and nuclear 

interactions of primary cosmic rays that penetrate the outer part of the Earth atmosphere. 

The primary cosmic rays then collide with atomic nuclei, mainly nitrogen and oxygen 

(Letaw and Normand, 1991), losing energy by ionization interactions, exploding particle 

nuclei, and producing cascades of protons, neutrons and other subatomic particles, such as 

mesons, pions, and alpha particles (IAEA, 2017; Lal and Peters, 1967; Villarreyes, 2013). 

Secondary neutrons are high-energy neutrons (energy up to 10 MeV), which multiply at 

number but decelerate in energy as a chain reaction when they move down towards Earth 

surface. As a result, eventually, they no longer propagate effectively being absorbed or 

moderated in an exponential radiation attenuation that depends on the atmospheric column 

and its composition (Phillips, Stone and Fabryka-Martin, 2001). According to Krane (1988), 

they are following classified into energy level classes (Figure 15), namely: (1) thermal 
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neutrons (~0.025 eV); (2) epithermal/fast neutrons (~1 eV - ~ 100 keV) (3) fast evaporation 

neutrons (~ 100 keV – 10 MeV). 

 

Figure 15 – Energy spectra of detected neutron counts at the soil surface coloured according to initial 

high-energy neutron deceleration after the atom collisions. Solid line: pure incoming component after 

subtracting the ground reflected component. Vertical coordinate: neutron counts; dashed line: 

simulation by Sato and Niita (2006); Grey bars: exemplary measurement by Goldhagen et al. (2002). 

Source: Köhli et al. (2015). 

Fast evaporation, cosmogenic neutrons originate from interactions of high-energy 

neutrons or protons with nuclei in the atmosphere and first few meters of the Earth crust after 

penetrating the soil porous media, in a nuclear evaporation process (Desilets and Zreda, 

2013) (Figure 16). When a secondary cascade particle collides with terrestrial nuclei (H, N, 

O, C, Al and Si), those simply heat up rather than immediately bursting into fragments but 

then cool off rapidly by releasing (evaporating) fast neutrons in random directions (IAEA, 

2017). After several collisions, the unbound neutrons lose most of the energy and eventually 

are captured by terrestrial nuclei, ceasing to contribute to the environmental radiation. This 

process occurs below the ~1-MeV peak, whose strong absorption is due to distinct 

resonances of non-hydrogen atoms (Köhli et al., 2015). 
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Figure 16 – Cascade of high-energy secondary neutron and production of fast neutrons in (a) air and 

(b) ground. Coordinates are in mass shielding units (distance multiplied by density). Source: adapted 

from Desilets, Zreda and Ferré (2010) and IAEA (2017). 

Epithermal/fast neutrons mostly originate from elastic collisions moderated mainly 

by hydrogen atoms above soil surface due to relatively large elastic scattering cross-section 

(Sears, 1992) (Figure 17). Because neutrons and the hydrogen atoms have similar mass, a 

number of collisions is needed to moderate epithermal/fast neutrons, so that it can be directly 

correlated to their intensity. These characteristics confer to hydrogen a very high capacity to 

slow down epithermal/fast neutrons, leading the sub-MeV region to be a very sensitive band 

to water and organic molecules, because they contain hydrogen (Köhli et al., 2015). From 

the different types of natural neutrons, those at the fast energy level present the better 

estimation of soil moisture (Zreda et al., 2008). 

 

Figure 17 – Elastic neutron scattering cross sections for Hydrogen (red) and other chemical elements. 

H: Hydrogen; N: Nitrogen; O: Oxygen; C: Carbon; Al: Aluminum; Si: Silicon. Source: Köhli et al. 

(2015). 
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Thermal neutrons originate from progressive elastic collisions with hydrogen and 

other light nuclei, which remove them from the system since they are slowed to thermal 

equilibrium being prone to be captured by the nearby nuclei (Heidbüchel, Güntner and 

Blume, 2016; Köhli et al., 2015). Absorbing elements are mainly Fe, Ca, K and some trace 

elements, on top of them being scattered by hydrogen, the thermal neutron intensity is 

sensible to soil chemistry but less to soil water changes (IAEA, 2017; Zreda et al., 2008). 

Thus, the CRNS probes can register the neutron intensity by two channels (Figure 18): (1) a 

moderated counter, which responds to neutrons in epithermal to fast (soil moisture) regions, 

avoiding non-hydrogen-atoms dependency on soil chemical composition; and (2) a bare 

counter, which responds to neutrons in thermal (soil chemistry) regions, but also may be 

used to correct and calibrate the moderated counter signal. 

 

Figure 18 – Components of the CRNS probe, CRS 1000 model, Hydroinnova Ltd. 3Helium is used 

as counter gas. NPM: Neutron Pulse Module. Source: adapted from Schrön et al. (2018). 

Since the number of hydrogen atoms in soil rises with increasing soil moisture, these 

soils with high water content re-emit fewer epithermal/fast neutrons than soils with low 

water content. This leads to fewer fast neutrons being detected aboveground by the CRNS 

probe, which is generally installed at 1 to 2 m above the soil surface (Heidbüchel, Güntner 

and Blume, 2016). In addition, water vapour, oxygen, and nitrogen are particularly 

responsible for the neutron deceleration in air, so that the range a neutron can travel before 

thermalization is expected to diminish with decreasing altitude and increasing air humidity 

(Köhli et al., 2015). Additionally, dense soils, organic matter, and soil moisture are expected 

to reduce the penetration depth into soil (Köhli et al., 2015). 
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2.3.2 Applications of the Cosmic-Ray Neutron Sensing 

The first study using cosmogenic neutrons for soil moisture measurement was 

conducted by Kodama, Kudo and Kosuge (1985) by burying a neutron probe at 40-cm depth 

into the soil, but this covered a short soil area of less than 1-m radius. Zreda et al. (2008, 

2012) found a much higher areal sensitivity to soil moisture of several hectares when a 

CRNS probe was installed aboveground and defined the footprint to be the area around the 

sensor where 86% of detected neutrons originate from (Desilets and Zreda, 2013). According 

to Köhli et al. (2015), the footprint radius ranges from 130 to 240 m depending on air 

humidity, soil moisture, and vegetation (Figure 19). In addition, the penetration depth 

depended on moisture and ranged from 15 to 83 cm decreasing exponentially downwards 

from the sensor. Thereby, CRNS method can fill the gap between the conventional point-

scale (electromagnetic sensors) and large-scale measurement (satellite sensing) methods 

(Bogena et al., 2015). 

 

Figure 19 – Simulation of (a) neutron intensity detected over distance from the CRNS probe, and of 

(b) radial weighting function, for dry and wet conditions. θ: soil moisture; h: absolute humidity; N: 

detected neutron; r: radial distance; Wr: radial weighting function; R63/R86: footprint radii for 63% 

and 86% cumulative neutron counts. Source: Köhli et al. (2015). 

Background cosmic radiation holds an inverse relationship between cosmic-ray 

neutrons intensity and all closer hydrogen content pools (Desilets, Zreda and Ferré, 2010; 

Hendrick and Edge, 1966), affecting the CRNS signal statically, quasi-statically and 

dynamically (Andreasen et al., 2017a) (Table 1). The hydrogen pools affecting CRNS 

signals are: (1) subsurface water (Andreasen et al., 2017b), such as soil moisture and lattice 
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water; (2) open water (Köhli et al., 2015), such as sea, lake, river and puddles; (3) vegetation 

biomass (Franz et al., 2013a) such as stems, leaves, roots, fruits and also soil organic matter; 

(4) canopy water interception (Baroni and Oswald, 2015), anthropogenic infrastructure 

(Schrön et al., 2017), such as buildings, tanks and roads; (5) snow cover (Rivera Villarreyes, 

Baroni and Oswald, 2011; Schattan et al., 2017), and (6) atmospheric humidity (Köhli et al., 

2015).  

Table 1 – The hydrogen pools influencing the CRNS signal and its dynamics. Source: Andreasen et 

al. (2017b). 

Medium Static Quasi-static Dynamic 

 (yearly) (sub-yearly) (daily) 

Soil moisture   × 

Tree roots  ×  

Soil organic matter  ×  

Water in soil minerals ×   

Vegetation (cellulose, water)  × × 

Snow  × × 

Puddles   × 

Open water (river, sea, lake)  ×  

Canopy-intercepted water   × 

Buildings/roads ×   

Atmospheric water vapour   × 

    

New perspectives of promising methods for separating the different hydrogen pool 

signals have been developed and tested aiming for further hydrological applications 

(Andreasen et al., 2016). The recently-started Cosmic Sense research project in Germany 

(https://www.uni-potsdam.de/cosmicsense/) aims at bridging existing gaps between scales 

and disciplines, applying CRNS method together with remote sensing, hydrological and 

land-surface models, to infer also GWR and atmospheric fluxes (Figure 20). The non-

invasive character still confers to CRNS technique the roving capacity for regional soil 

moisture estimates (Chrisman and Zreda, 2013; Dong et al., 2014). The neutron ratio 

between thermal neutron and fast neutron intensity contains also information on other 

hydrogen pools such as vegetation dynamic, canopy interception, and snow (Jakobi et al., 

2018). Thus, the singular potential of CRNS method requires a greater investigation for 

averaging soil moisture, which includes calibration functions for soil moisture estimation, 

correction factors, and footprint analyses (Andreasen et al., 2017a). 

https://www.uni-potsdam.de/cosmicsense/
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Figure 20 – Range of applications of CRNS probes and related activities in the Cosmic Sense research 

project. Source: https://www.uni-potsdam.de/de/cosmicsense/about/structure-of-cosmic-sense.html 

The performance of the CRNS method can be improved by calibrating it from the 

theory described by Desilets, Zreda and Ferré (2010) based on one-field-dependent and 

three-semi-physical parameters. The integrative character of CRNS signal to wetting and 

drying cycles shows a good agreement between neutron intensity and gravimetric soil 

moisture observations when averaged by horizontal and vertical weighting (Franz et al., 

2012a, 2013b; Köhli et al., 2015). As a result, only one calibration campaign would a priori 

be enough to calibrate the field-dependent parameter while the semi-physical ones would 

hold fixed values (Desilets, Zreda and Ferré, 2010). Conversely, some studies have proposed 

and tested at least two calibration campaigns at dry and wet conditions for either better 

calibrate the CRNS probes or recalibrate the fixed parameters (Heidbüchel; Güntner; Blume, 

2016; Iwema et al., 2015; Rivera Villarreyes, Baroni and Oswald, 2013). Zreda et al. (2008) 

proposed a widely-applied soil sampling scheme composed by three concentric circles 

around the CRNS probes at 25, 75, and 200 m radii, intersected by six straight lines equally 

spaced for 60° from azimuth reference. Moreover, Schrön et al. (2017) proposed a revised 

formulation of the spatial sensitivity function, so-called the weighting function, for 

improving CRNS calibration, which takes into account for dry, humid and wet conditions 

on its footprint (Figure 21). 

According to Andreasen et al. (2017a), important networks of CRNS probes have 

been installed worldwide, mainly on the Northern Earth hemisphere and almost none close 

to the equator (Figure 22), accounting for 194 stationary stations making the data openly 

available, namely: (1) COsmic-ray Soil Moisture Observing System (COSMOS) network 

(Zreda et al., 2012); (2) the United Kingdom COSMOS-UK network (Evans et al., 2016); 

(3) the Australian CosmOz network (Hawdon, Mcjannet and Wallace, 2014); and, (4) parts 

https://www.uni-potsdam.de/de/cosmicsense/about/structure-of-cosmic-sense.html
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of the Terrestrial Environmental Observatories (TERENO) network in Germany (Baatz et 

al., 2014). 

 

Figure 21 – Illustration of (a) equally-detected neutron contribution regions for different climates, 

and (b) comparative triple-quantile-radii soil sampling schemes based on COSMOS scheme (yellow) 

and on the revised weighting function for dry and wet condition. COSMOS: COsmic-ray Soil 

Moisture Observing System. Source: Schrön et al. (2018). 

 

Figure 22 – CRNS probes operated within the COSMOS network initiative (blue dots), with the 

cutoff rigidity and the attenuation length isolines in 2010 for incoming primary cosmic rays in red. 

Northern Brazil has a cut off rigidity similar to China, Northern Australia or Southern Africa, though 

being close to the equator. Source: Andreasen et al. (2017a). 
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2.4 Vadose zone modelling 

2.4.1 Inverse modelling of the soil hydraulic properties via HYDRUS-1D model 

Understanding how near-surface soil moisture is affected by land surface net water 

flux (i.e., infiltration minus evapotranspiration) allows for a more comprehensive modelling 

of GWR (Sadeghi et al., 2018), whose simulations depend fundamentally on soil hydraulic 

properties which should be known. Some existing vadose zone models, such as HYDRUS-

1D, solve the governing flow equations for partially-saturated porous media by simulating 

water flux via Richards' nonlinear partial differential equation (Šimůnek, van Genuchten and 

Šejna, 2008). These models can hold pedotransfer functions, which yield soil hydraulic 

properties, such as the van Genuchten-Mualem (shape and normalization) parameters and 

unsaturated hydraulic conductivity. After calibrating the soil hydraulic properties (retention 

curve and hydraulic conductivity curve), the models should be even better suited to calculate 

vertical water percolations (Wessolek, Duijnisveld and Trinks, 2008).  

According to Vogeler et al. (2019), many hydraulic databases have compiled soil 

hydro-physical data for different soil types and textures allowing for modelling applications, 

namely: the Unsaturated SOil hydraulic DAtabase (UNSODA) (Nemes et al., 2001); the 

EUropean HYdropedological Data Inventory (EU-HYDI) (Weynants et al., 2013); the Soil 

Water Infiltration Global (SWIG) database (Rahmati et al., 2018); Rosetta (Schaap, Leij and 

van Genuchten, 2001); and HYdraulic PRoperties of European Soils (HYPRES) (Wosten et 

al., 1999). In Brazil, Ottoni et al. (2018) recently established a dedicated Hydrophysical 

Database for Brazilian Soils (HYBRAS) suitable for the development of pedotransfer 

functions. However, these databases not always reflect the local characteristics of each study 

area, thus requiring another approach. 

Inverse modelling seems to be a suitable solution as it may optimize the parameter 

calibration of the soil hydraulic properties from direct or indirect measurements of physical 

entities (Šimůnek, van Genuchten and Šejna, 2016; Tarantola, 2005). Nevertheless, for a 

well-posed inverse problem, three conditions should be satisfied: existence, uniqueness, and 

stability of the solutions (Maclaren and Nicholson, 2019). For such purpose, it is important 

that the model uses an inverse approach capable of quantifying and evaluating the prediction 

uncertainty, particularly for complex systems, where the observations are limited, models 

reflect imperfectly the processes, and unknown parameters and observable variables have 

nonlinear and non-unique relationships (Sun et al., 2013). 
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Graham et al. (2018) compared four different methods of parameterisation of the soil 

hydraulic properties and found that inverse parameter estimation based on field soil moisture 

data yielded the best prediction of drainage by the HYDRUS-1D model. Vogeler et al. (2019) 

found the good performance of inverse modelling on determining the soil hydraulic 

conductivity in slowly permeable subsoil horizons, such as fragipan and duripan. And, 

Børgesen et al. (2006) claim that under near-saturated condition, such as shallow 

groundwater table, the relationship between hydraulic conductivity and soil moisture is very 

important when simulating water movement in the unsaturated zone. Thereby, under all 

these local environmental constraints (which actually are the conditions at GEB), the 

HYDRUS-1D is able to calibrate the soil hydraulic properties by inverse modelling. 

Brunetti et al. (2019) externally coupled the forward neutron operator COSMIC 

(COsmic-ray Soil Moisture Interaction Code) (Shuttleworth et al., 2013) into HYDRUS-1D, 

allowing for directly using CRNS neutron intensities for calibrating the parameters of the 

soil hydraulic properties. According to Shuttleworth et al. (2013), COSMIC is a simple, 

physically-based and analytic operator capable to represent the following main processes 

(Figure 23): (1) exponential reduction of high energy neutron flux towards deeper soil layers, 

(2) fast neutron generation from high energy neutrons at different depths, and (3) additional 

depth-dependent reduction of lower energy neutrons before they are detected at the surface. 

The code then counts the resulting fast neutrons that enter a defined detector volume above 

the ground, which is perfectly compatible with CRNS method (Shuttleworth et al., 2013; 

Brunetti et al., 2019). COSMIC requires several site-independent and site-specific time-

constant parameters, among which the latter ones may be inferred from dry bulk density, 

total lattice water content, and empirical equations (Baatz et al., 2014). The use of CRNS 

data and COSMIC coupled externally with HYDRUS-1D allows for obtaining the soil 

hydraulic properties on intermediary-scale by inverse modelling, which should better 

represent the soil characteristics for water flux modelling purposes. 
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Figure 23 – Three main physical processes as considered in the COSMIC model for simulating the 

aboveground fast neutron intensity. Source: Shuttleworth et al. (2013). 

2.4.2 Water flux modelling via HYDRUS-1D model 

HYDRUS-1D and HYDRUS (2D/3D) models have a user-friendly, interactive 

interface based on graphics for information pre-processing, soil profile discretisation, and 

graphical outcome representation (Šimůnek and van Genuchten, 2008; Šimůnek, van 

Genuchten and Šejna, 2008) (Figure 24). HYDRUS is a model recognized for its many 

applications implemented in the finite element method for one-, two- and three-dimensional 

simulations (Šimůnek, van Genuchten and Šejna, 2016). The HYDRUS programs are 

applicable for modelling the water and solute transport in saturated and variably-saturated 

systems, and they are also widely used to assess the transport and fate of several chemicals 

on top of conservative transport, especially in the vadose zone between the soil surface and 

groundwater table (Šimůnek et al., 2013a). The popularity of the HYDRUS models is in part 

due to the implementation of a large number of processes in their codes, their flexibility in 

allowing its application to a broad range of agricultural, industrial and environmental 

problems, the possibility to consider inverse (parameter estimation) problems, and their ease 

of use (Šimůnek et al., 2013a; Šimůnek, van Genuchten and Šejna, 2016). 
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Figure 24 – Soil discretization available for (a) an one-dimensional domain in HYDRUS-1D, as well 

as for (b) two-dimensional and (c) three-dimensional domains in HYDRUS (2D/3D). Source: 

Šimůnek, van Genuchten and Šejna (2016). 

Recent developments on HYDRUS-1D have also allowed for considering different 

processes from the vadose zone in hydrological modelling, among which the following are 

highlighted: Root Water Uptake (RWU), soil heat transport and variable bottom boundary 

condition (Šimůnek, van Genuchten and Šejna, 2016). RWU is controlled by the root density 

distribution that is influenced by the average vegetation rooting (Hoffman and van 

Genuchten, 1983; Van Genuchten, 1987). The average rooting in typical native vegetation 

in Northeast of Brazil reached ~70 cm (Pinheiro, Costa and de Araújo, 2013), which affects 

the soil moisture profiles and, in turn, the vertical water percolation (MABC, 2015; 

Narasimhan, 2009). The soil heat flux of HYDRUS-1D encompasses molecular heat 

conduction and convective heat transport by liquid water flux and water vapour flux (Iden 

et al., 2019; Šimůnek et al., 2013b), requiring the calibration of specific parameters (Chung 

and Horton, 1987).  

For simulating the vertical water percolation and GWR under a shallow groundwater 

table condition the way setting the lower boundary condition, however, may be more 

important than properly adjusting the soil hydraulic properties (Wang et al., 2009). 

Variations on boundary conditions in pure phase (non-aqueous) and interlayered one-

dimensional profiles may cause significant deviations in water fluxes, soil moisture and 

hydraulic conductivities (Leão and Gentry, 2011). As such, the water percolation time-lag 

between infiltration and GWR was found to be related to depths to groundwater table (Lu et 

al., 2011). In addition, the capillarity rise from the groundwater table may have strong effects 

on plant transpiration (Han et al., 2015). Evapotranspiration and GWR are then controlled 

by the lower boundary condition under shallow groundwater systems (Doble and Crosbie, 

2016). All those conclusions were drawn from HYDRUS-1D simulations, showing its 

capacity on estimating the water percolation and GWR in field conditions similar to GEB. 
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2.5 Uncertainty and validation of the water balance components 

Uncertainty is the lack of exact knowledge that, irrespective of what is the cause of 

this model deficiency, may stem from natural variability, inherent randomness, systematic 

error, subjective judgement, model characteristics and measurement error (Refsgaard et al., 

2007; Regan, Colyvan and Burgman, 2002). The best way to evaluate the uncertainty 

depends on the model selection and from the quantity and quality of data available to the 

modeller (Uusitalo et al., 2015). In hydro-meteorological sciences, the atmospheric 

processes have chaotic characteristics which yield uncertainties in hydrological variables, 

whose instability in the initial condition determination influences the modelling results of 

meteorological variables (Gusev et al., 2016). While the primary source of uncertainties on 

hydro(geo)logical response may arises from errors in the satellite-based precipitation data, 

the uncertainties on water balance components are mainly due to the inconsistent monitoring 

of hydro-meteorological data (de Oliveira et al., 2014; Sheffield et al., 2009). Hence, 

although the remote sensing is a useful tool able to yield good regional estimates, the use of 

consistent ground-based measurements is still indispensable for validating the water balance 

components, whose monitoring requires high costs and suffer with data transparency and 

accessibility (Sheffield, Wood and Roderick, 2012; Voss et al., 2013). 

Several methods have been used to analyse uncertainties and validate the outputs of 

deterministic models, among which are expert judgement, analysis of model sensitivity, 

analysis of spatiotemporal variability, and statistical methods (Uusitalo et al., 2015). Within 

the hydro-meteorological fields, the data-based approaches are frequently used for validation 

due to data availability, which allows for a statistical assessment upon the model outputs 

(Steenbergen, Ronsyn and Willems, 2012). For validating the water balance components, 

several ground-based techniques have been used for analysing the uncertainties of those 

model-based and remote sensing estimates. For example, for the actual evapotranspiration, 

there exist the Bowen ratio-energy balance and lysimeter approaches (Escarabajal-Henarejos 

et al., 2015), as well as the large aperture scintillometers and the eddy covariance systems 

(Liu et al., 2013). Moreover, for the GWR, there exist several ground-based methods 

available, among which stands out the tracer techniques, such as the Chloride Mass Balance 

(CMB) method (Crosbie et al., 2018; Hornero et al., 2016), and the WTF method (Healy and 

Cook, 2002; Cai and Ofterdinger, 2016; Chung et al., 2016). Still for GWR, a comparative 

study applying multiple methods revealed that the uncertainties of estimates depend on 

several aspects, namely: spatiotemporal scales; inherent uncertainty of the method, and; what 
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recharge represents (actual, potential, minimum recharge or change in aquifer storage) 

(Walker et al., 2019). 

The WTF is frequently used to validate the GWR estimates due to the small variety 

of monitoring data required for. There exist three commonly-used WTF methods: graphical 

method, RISE method, and Master Recession Curve (MRC) method (Nimmo, Horowitz and 

Mitchell, 2015). The graphical method calculates the GWR on hydrologic episode scale, 

from the difference between the water table peak and the extrapolated recession curve, 

depending strongly on expert judgement (Scanlon, Healy and Cook, 2002). The RISE 

method calculates the GWR on fixed-time intervals, when the differences between the water 

table at the end and beginning of the interval is positive, lacking on recession curve 

correction (Delin et al., 2007). The MRC method also calculates GWR on fixed-time 

intervals, but the recharge episode is defined as a period during which the recharge exceeds 

its steady-state condition due to a substantial water-input event (Nimmo, Horowitz and 

Mitchell, 2015). Recently, a modified WTF method was also proposed to characterize the 

regional groundwater discharge patterns in stressed aquifers resulting from intensive 

agricultural pumping (Yang et al., 2018).  
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3 HYPOTHESES AND AIMS 

3.1 Main hypotheses 

The hypotheses that oriented the activities of this PhD thesis are following described: 

 Large-scale groundwater recharge may be estimated via water budget equation in 

tropical wet regions under cloudy-sky condition using the distributed information of 

water balance components obtained solely by satellite products and reanalysis data; 

 Intermediary-scale groundwater recharge may be estimated via a soil hydrological 

model after the inverse modelling of the parameters of soil hydraulic properties from 

soil moisture datasets based on Cosmic-Ray Neutron Sensing and invasive probes. 

3.2 Overarching aim 

This PhD thesis aims, on the one hand, to demonstrate a GIS-based model coupling 

for estimating the groundwater recharge distribution in a large tropical wet region, by using 

remote sensing satellite products and reanalysis data rather than ground-based monitoring 

data. On the other hand, it also aims to use the soil moisture time series from Cosmic-Ray 

Neutron Sensing and invasive probes to inversely calibrate the soil hydraulic properties, and 

based on this, estimating the intermediary-scale GWR using a soil hydrological model. 

3.3 Specific aims 

The specific aims for accomplishing the overarching aim are listed below: 

 Establish the necessary improvements on hydrological methods for modelling the 

tropical wet regions with cloudy-sky condition and complex sedimentary aquifer; 

 Assess the spatiotemporal distribution of the water balance components obtained 

solely by satellite products and reanalysis data through geoprocessing in GIS; 

 Determine the soil hydraulic properties via inverse modelling from soil moisture 

datasets based on Cosmic-Ray Neutron Sensing and invasive probes;  

 Compare the groundwater recharge rates simulated on large- and intermediary-scale 

via water budget equation approaches in the Podzol soil type; 

 Verify the goodness-of-fit of the water balance components and groundwater 

recharge estimates via ground-based methods and monitoring data.  
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4 MATERIALS AND METHODS 

The methodology was subdivided according to the overarching and specific aims 

previously set up. However, information about the study areas and ground-based data 

sources are addressed upfront. 

4.1 Study areas 

This study was carried out in the João Pessoa Case Study Area (JPA CSA), 

metropolitan capital of the Paraíba state within the Northeast of Brazil, implemented at the 

end of 2014 by the BRAMAR project (Figure 25a,b,c). JPA CSA embraces a total area of 

1,032 km², between 7º09'22.55"–7º24'31.82"S and 34º50'21.36"–35º13'15.03"W, and 

comprehending the Gramame river basin (589.1 km2) and the right-bank downstream part 

of Paraíba river basin (442.9 km2), located within the Paraíba-Pernambuco sedimentary 

coastal aquifer. It is located in the Atlantic Forest biome and holds a tropical wet climate 

with dry summer (As) (Alvares et al., 2013; Köppen, 1936), with land use/cover traces of 

the semiarid transition zone. 

   

Figure 25 – Location of the (a) Northeast of Brazil, (b) Paraíba state, (c) João Pessoa Case Study 

Area (JPA CSA), and (d) Guaraíra Experimental Basin (GEB) with hydrogeological monitoring 

network, displaying photos of the (e, f, g, h, i) monitoring sites (1, 2, 3, 4, 5), respectively. 
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In JPA CSA, the precipitation is formed mainly by shallow convective clouds, 

registering the mean annual depth equal to ~1,700 mm, of which ~70% occurs throughout 

the rainy season that comprises five months (March to July) during the autumn and winter 

seasons (Barbosa et al., 2018). The mean air temperature ranges from 23.7 (July) and 28.2°C 

(January), and the mean relative humidity ranges from 67% (September) to 87% (July). The 

original native vegetation in JPA CSA comprises 147.78 km2 (13.89% of area), less than 

sugarcane (347.45 km2, 32.66%) and area of high urban density (162.55 km2, 15.28%), but 

higher than grassland (108.63 km2, 10.21%), the remaining land uses are described by 

Fernandes (2017). It also features a mean evaporation rate equal to 1,300 mm yr-1 obtained 

by class-A pan around grassland, and mean potential evapotranspiration rate over João 

Pessoa city reaching ~1,500 mm yr-1 (Almeida et al., 2017; Cabral da Silva et al., 2000a). 

The Guaraíra Experimental Basin (GEB) is a small-scale watershed that was 

implemented in 2003 by IBESA project within the JPA CSA (Figure 25d) It covers an area 

of 5.84 km², between in 7º16'34.94"–7º19'10.85"S and 35º01'17.79"–35º02'26.95"W, whose 

eastern border holds off ~25 km from the shoreline, at upstream of Gramame-Mamuaba dam 

(volume of 56.94 hm³), which supplies freshwater to more than 70% inhabitants of João 

Pessoa city (AESA, 2010). The elevation in GEB ranges from 37 to 135 m, featuring a mean 

slope equal to 1.8%. It consists of Quaternary-age sediments originating from the regional 

basement erosion, whose soil texture consists of sand (70%), sandy loam (26%) and sandy 

clay loam (4%) (Santos, Silva and da Silva, 2012). The vegetation cover is composed by 

secondary-growth vegetation (Capoeira xeric-shrubland vegetation) (67%), Atlantic Forest 

remnants (4%) and grassland (1%), while the anthropic land use consists mostly of sugarcane 

crops (27%), with small pineapple crops (1%), and few unpaved roads (IBESA, 2004; 

Santos, Silva and da Silva, 2012) (Figure 25e to i). 

The aforementioned study areas may be seen as partly representative of other shallow 

aquifers with similar hydrogeological and climate characteristics in the Northeast of Brazil. 

Nevertheless, these areas have been investigated by few studies related to groundwater yet, 

especially regarding the application of new technologies for GWR estimation. 

4.2 Sources of the ground-based data 

The data required for this study are periodically collected by team members of the 

Laboratory of Water Resources and Environmental Engineering (LARHENA) at UFPB. 

Currently, the GEB is equipped with 5 rain gauges with automatic precipitation records (see 
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item 4.1), installed during the IBESA project. The JPA CSA was also equipped with 15 rain 

gauges with manual and automatic precipitation measurements mainly monitored by AESA 

(Executive Agency for Water Management of the Paraíba State), INMET (Brazilian National 

Institute of Meteorology) and APAC (Pernambuco State Water and Climate Agency), as 

well as by the Usina Olho D’Água company. In addition, other manual and automatic rain 

gauges were being operated by other institutions or were installed by BRAMAR project, but 

their data either was missing data or not comprehended the period of study, and then, were 

not mentioned in this study. Figure 26 shows the different types of automatic rain gauges 

monitored by LARHENA team in JPA CSA. 

 

Figure 26 – Automatically-monitored rain gauges, type tipping bucket on (a) 0.254-mm and (b) 0.2-

mm resolutions, as well as type (c) wireless rain gauge, in operation in JPA CSA. 

Within the boundaries of the GEB, a meteorological station acquired and installed by 

BRAMAR project, as shown in Figure 27. It registers information of air pressure, 

precipitation at 6.3 m, wind speed at 6.3 m, air temperature and relative humidity at 6.3 and 

5.3 m, upward/downward longwave and shortwave radiation at 5.3 m, soil heat flux at -8 

cm, soil temperature at -2, -4 and -6 cm, soil moisture at -5, -20, -40, and also between -2.5 

and -7.5 cm, and groundwater level and temperature in a shallow well (~2 meters depth). 

The soil moisture was monitored by three TDR probes horizontally-inserted at site 5 to build 

the near-surface soil moisture profile, but also by three TDR probes vertically-inserted at 

site 2, 3 and 4 in GEB to roughly average soil moisture in GEB (see sites in Figure 25). 

Another thermo-hygrometer was temporarily installed at 4.3 m for calculating the actual 

evapotranspiration in different heights, but it was prone to errors already after four months 

of operation. Furthermore, in the vicinity of the shoreline, the A320 meteorological station 

monitored by INMET was used for checking some results obtained in this study. It measured 

air pressure, temperature and relative humidity, precipitation, wind speed and direction, and 
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global radiation; whose data were suitable to calculate the reference evapotranspiration (see 

item 4.4.2). 

 

Figure 27 – The (d) meteorological station in GEB monitoring the air pressure, (a) wind speed, (b) 

up-/downward longwaves and shortwaves, (c)  soil temperature and heat flux, (e) rainfall, (f) air 

temperature and relative humidity, (g) soil moisture, and (h) groundwater level and temperature. 

The CRNS probe, a CRS 1000 model from Hydroinnova Ltd., belonging to Institute 

of Environmental Science and Geography (IESG) at University of Potsdam (UP), was 

temporally imported and installed in the middle of GEB, at site 2 (see Figure 25d). The 

CRNS monitored the aboveground neutron flux associated to soil moisture on intermediary 

field scale from July 18th, 2018, to June 26th, 2019 (Figure 28). For such purpose, the CRNS 

probe had to be calibrated by collecting soil core samples at different depths and distances 

from the probe, so that the weighted mean soil moisture could be obtained. Moreover, three 

soil moisture profile probes, model PR2/6 Delta-T, from IESG were also temporally 

imported and installed at 17.5 m (DL6-2), 65.6 m (DL6-4) and 153.2 m (DL6-1) distance 

from CRNS probe, for monitoring the soil moisture at -5, -15, -25, -35, -55, and -95 cm 

(Figure 29). They have a range up to 0.4 m3 m-3 soil moisture and 40°C temperature 

(DELTA-T, 2016). Thus, the variability of the soil moisture profile could be investigated 

and the CRNS soil moisture measurements could be validated, once the three profile probes 

have the same period of operation as the CRNS probe. 
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Figure 28 – Process of (a) installation, (b) connection and (c) data download of CRNS probe in GEB. 

 

Figure 29 – Installation of PR2/6 probes in GEB. PR2/6: six-levelled soil moisture profile probe; 

DL6: data logger for six soil moisture sensors. 
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Concerning the groundwater, four monitoring wells were drilled manually from 2015 

to 2017 by the LARHENA team in the shallow unconfined aquifer of GEB, which includes 

monthly manual and sub-hourly automatic measurements of the groundwater levels. 

Furthermore, the JPA CSA holds a groundwater monitoring network created at the end of 

2015 by the BRAMAR project, from which 23 wells either built by inhabitants of rural area, 

so-called Amazon (large) wells, or built by specialized companies, so-called tubular 

(narrow) wells (Figure 30). Pressure transducers and monitoring divers were installed in 

some wells to automatically collect data every 15 minutes of groundwater depth, temperature 

and/or conductivity (this latter at site 2 as well, Figure 25d), as well as to check if the manual 

monitoring of the groundwater depth were suitable for being further used to validate the 

modelling results. The network consisted of other wells that were disregarded in this study, 

mainly because of unusual behaviour in the time series due to water pumping into housing 

supply, but also because of some negligible recharge values stemmed likely from the 

inappropriate well construction. 

 

Figure 30 – Automatically-monitored (a) Amazonas and (b) tubular wells in operation in JPA CSA. 

Ampeq: water depth diver by Ampeq company; CTD: diver of conductivity, temperature and depth. 

The water level and runoff data were also obtained automatically at one (at 

downstream) out of the three stream gauges within the GEB, both located in nearby streams 

(dark diamond in Figure 25c, and red squares in Figure 25d). Similar water depth divers used 

for groundwater monitoring were installed into wells at banks of the streams, and their data 

loggers were placed inside the polyvinyl chloride shelters fixed in tough tree trunks. The 

rating curves in their cross-sections were built in 2014 through bathymetry and discharge 

measurements, allowing for yielding the runoff time series (Figure 31). Furthermore, a few 

other stream gauges were installed throughout the JPA CSA by BRAMAR project, but their 

rating curves were not built, preventing their use for the purposes of this study. 
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The source of the measured data previously described are summarized in Table 2. 

Table 2 – Summary of measured data by monitoring station over JPA CSA and GEB. 

Station Identification Measured data  Period Time step Source 

Rain gauges 

(JPA CSA) 

ALH, BAY, BLR, 

CAG, EMA, CAM, 

CES, ITA, JAT, 

CED, INM, MAR, 

PDF, STR, SAP 

Rainfall 
2016 -

2017 

Manual:  

   24 hours  

Automatic: 

   1 min 

Usina Olho 

D'Água, 

AESA, 

APAC, 

INMET 

Monitoring 

wells  

(JPA CSA) 

W02, W04, W06, 

W07, W09, W11, 

W14, W16, W17, 

W20, W21, W22, 

W23, W25, W26, 

W29, W31, W32, 

W35, W36, W37, 

W38, W39 

Groundwater level 
2015 - 

2017 

Manual: 

   ~45 days 

Automatic: 

   15 min 

UFPB: 

   Tubular   

   wells 

Inhabitants:  

   Cacimba  

   wells 

Meteo-

rological 

station 

(JPA CSA) 

A302 

Rainfall,  

Wind speed, 

Wind direction, 

Global radiation 

Air pressure, 

Air temperature, 

Air relative humidity 

2016 - 

2017 
1 hour INMET 

Rain gauges 

(GEB) 

Site 1 (no well) 

Site 2 (used in JPA) 

Site 3 

Site 4  

Rainfall,  

Soil moisture,  

Groundwater level, 

2016 - 

2019 

Rainfall:  

   1 min 

Soil 

moisture:  

   1 hour 

Groundwater 

level: 15 min 

UFPB 

Salinity 

monitoring 

(GEB) 

Site 2 

Electrical conductivity, 

Groundwater level, 

Groundwater  

   temperature 

2018 - 

2019 
15 min UFPB 

CRNS 

gauge 

(GEB) 

Site 2 
Neutron intensity, 

Soil moisture profile 

2018 - 

2019 
1 hour UP 

Stream 

gauges 

(GEB) 

501  

502  

503 

Water level,  

Discharge 
2017 15 min UFPB 

Meteo-

rological 

station 

(GEB) 

Site 5 

Rainfall,  

Wind speed, 

Up-/downward long-/ 

   shortwave radiation, 

Air pressure, 

Air temperature, 

Air relative humidity, 

Soil heat flux, 

Soil temperature, 

Soil moisture, 

Groundwater level, 

Groundwater 
   temperature 

2017 - 

2019 

Majority:  

   10 min 

Air pressure: 

   15 min 

Groundwater 

level:  

   15 min 

Groundwater 

temperature:  

   15 min 

UFPB 
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Figure 31 – Measurements of (a) bathymetry and (b) discharge in stream gauges of GEB for runoff 

estimation. Source: (Barbosa, 2015). 

4.3 Satellite-based methods implemented in a Geographic Information System 

environment 

A set of satellite-based approaches and methods were used for determining the water 

balance components, and then, the water budget equation was applied for estimating the 

GWR below the root zone. In this study, they include the following products: GPM IMERG 

product; SMAP product; MODIS products; MapBiomas land use/cover data, and; GLDAS 

reanalysis data. Their main characteristics were summarized in Table 3. Those data were 

implemented in a GIS environment using a spatial model platform to optimise the image 

processing according to Figure 32, as it is a time-consuming and hard-tasking activity. Some 

routines were also programmed externally in Visual Basic for Application (VBA) to 

facilitate the data pre-processing. In the following items, the algorithms of every water 

balance component shall be thoroughly detailed.  

Table 3 – Summary of remote sensing data by satellite products in 2016 and 2017. 

Satellite product Remote sensing data  Spatial resolution Time step Source 

GPM IMERG V05B Precipitation 0.1° (~11.1 km) 30 min NASA/GSFC 

SMAP SPL4SMAU 
Soil moisture in  

root zone (1-m depth)  
9 km 3 hours 

NSIDC, 

ASF 

MOD09Q1 V006 and 

MYD09Q1 V006 

Spectral reflectances:  

 band 1 (red) and  

 band 2 (near-infrared) 

250 m 8 days NASA/GSFC 

MapBiomas collection 3.1 Land use and cover 30 m Annual MapBiomas 

GLDAS-2.1 Noah L4 

Downward shortwave  

 radiation,  

Air pressure, 

Air temperature,  

Air specific humidity 

0.25° (~27.7 km) 3 hours NASA/GSFC 
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Figure 32 – Flowchart of the logic behind the application of hydro(geo)logical and meteorological 

methods for estimating the water balance components. LAI: Leaf Area Index; EVI: Enhanced 

Vegetation Index. 

4.3.1 Integrated Multi-satellite Retrievals for Global Precipitation Measurement and 

ground-based datasets 

The main input in the water budget equation is the precipitation, which in this study 

was based on ground-based and satellite-based information obtained by the rain gauge 

network and IMERG Final Run V05B product, respectively. Only the precipitation data from 

the manual rain gauge network were employed in this study because the automatic time 

series were unable to encompass the entire 2016-2017 period of analysis. The selected 

IMERG data was the multi-satellite precipitation estimate with gauge calibration, so-called 

Final Run product (in mm h-1), identified by ‘precipitationCal’ in the data file; which is 

recommended for general use by Huffman, Bolvin and Nelkin (2017). Both datasets were 

used to assess the performance of remote sensing precipitation data in estimating the GWR 

with regards to a reference scenario of ground-based precipitation data. 

Firstly, the measurement time-steps of both data sources had to be aggregated and, 

then, converted to the same temporal resolution. Since the ground-based data are collected 

every day at 9:00 a.m. (at local time), the 30-min IMERG data unit were converted from mm 

h-1 to mm 30-min-1 dividing by 2, and then accumulated from 09:00 a.m. to the subsequent 

24 hours, i.e. from 12:00 to 12:00 of another day at UTC-0 datum. Then, the ground-based 
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(or simply Gauge) and IMERG datasets were subjected to some procedures to prepare them 

for use in the water budget equation, including the following activities: data correction, pixel 

resampling and data interpolation (Figure 33). 

 

Figure 33 – Flowchart describing the procedures for the IMERG pixel resampling and bias 

correction, and rain gauge (or simply Gauge) data correction and interpolation. 

4.3.1.1 IMERG pixel resampling and bias correction 

The IMERG precipitation was then resampled from 0.1° squared cell size (~11.1 km) 

to 0.045° (~0.5 km) spatial resolution by bilinear resampling because it is a uniform 

disaggregating method. Due to its simplicity, this method is used as a benchmark to explore 

potential enhancements of other downscale approaches, as it is able to minimize footprint 

impact of a coarse resolution providing a smooth interpolation (Ulloa et al., 2017; Zhang et 

al., 2019). The bilinear interpolation performs well when leading with continuous data, such 

as precipitation (Yang, 2015). Thus, it calculates the predicted value based on a weighted 

distance average of the four nearest pixels by Equation (1): 

Px,y =
1

(x2 − x1)(y2 − y1)
[x2 − x x − x1] [

P1,1 P1,2
P2,1 P2,2

] [
y2 − y
y − y1

] (1) 

where Px,y is the predicted value of precipitation, in mm, at the new point (x, y), and 

Pi,j are the precipitation values, in mm, at the four nearest pixels on the original spatial 

resolution. 

For the bias correction of the IMERG data, the linear-scaling (LS) approach was used 

based on a monthly correction factor (Teutschbein and Seibert, 2012), calculated as the ratio 

between the monthly mean data for ground and IMERG and applied to daily precipitation 

data. Rather than perform a grid-box correction (i.e. pixel-per-pixel), the IMERG estimates 
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over JPA CSA were corrected by one correction factor per month, to preserve the original 

IMERG precipitation gradient but correcting the shift (i.e. bias) between IMERG and gauge 

observation (Gadelha et al., 2019). The LS bias correction is calculated by Equation (2): 

Pd
s′ = Pd

s Pm
o

Pm
s  (2) 

where Pd
s and Pd

s’ (mm) denote, respectively, the original and bias-corrected satellite 

precipitation on the dth day of the mth month, and Pm
o and Pm

s (mm) denote, respectively, 

the observed and satellite accumulated precipitation in the mth month per grid box (latitude, 

longitude). 

4.3.1.2 Rain gauge data correction and interpolation 

The consistency analysis and data correction of 16 rain gauges – only one from GEB 

due to high density – was carried out by the regional vector method (Hiez, 1977), frequently 

used as benchmark (de Oliveira et al., 2010), which consists of determining the 

chronological, synthetic precipitation time series stemmed from the maximum likelihood 

between the data contained in a set of rain gauges regionally grouped, as shown in Equations 

(3) to (6): 

Li
o =

1

m
∑Pi,j

m

j=1

      ,     for i = 1 to n (3) 

Cj =
∑ Li

0Pi,j
n
i=1

∑ (Li
0)2n

i=1

     ,     for j = i to m (4) 

Li =
∑ CjPi,j
m
i=1

∑ (Cj)
2m

i=1

     ,     for i = i to n (5) 

      P̂i,j = LiCj               ,    (Pi,j − P̂i,j)
2
→ 0 (6) 

where P̂i,j and Pi,j (mm) are, respectively, the original and synthetic precipitation of a 

rain gauge ‘j’ in a year ‘i’, Li is the column vector or regional vector with ‘n’ lines, Cj is the 

vector line with ‘m’ columns, n is the total number of years, ‘m’ is the total number of rain 

gauges, e L0 is the mean precipitation of all ‘m’ rain gauges. 
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The ground-based map was then obtained by interpolating the datasets using the 

Inverse Distance Weighting (IDW) method, as it provides good results over Brazil (Xavier, 

King and Scanlon, 2016). In the IDW method, the interpolated precipitation depth Px at a 

point ‘x’ is based upon a weight (wk) that is inversely proportional to the distance between 

this point and the data from the kth nearby rain gauges, as shown in Equation (7): 

Px =
∑ wkxk
k
i=1

∑ wk
k
i=1

     ,     for i = i to k     ,     wk =
1

dk,x
p  (7) 

where dk,x
p

 is the geodesic distance between the station ‘k’ and a specified point ‘x’, 

and ‘p’ is the power parameter (= 2, from Ly, Charles and Degré, 2011). Due to the rainfall 

gradient from shoreline towards inward (Cabral da Silva et al., 2000b) and the small number 

of rain gauges available, the 12 nearest rain gauges were considered for the interpolation, 

smoothing the interpolated values instead of changing them abruptly if fewer gauges were 

considered. 

4.3.2 Mu’s algorithm and Penman-Monteith equation for actual evapotranspiration 

estimation 

The main limitation for obtaining satellite-based groundwater estimates over large 

regions under intense cloud coverage is related to the determination of the daily actual 

evapotranspiration component. For this purpose, this study used the algorithm based on the 

Penman-Monteith equation (Allen et al., 1998) calculated by Equation (8), the same applied 

by (Mu et al., 2007) to generate the 1-km MOD16 evapotranspiration product, with recent 

enhancements in the spatial resolution and in the calculation of vegetation indexes, 

vegetation cover fraction, net radiation and surface albedo (Gusmão, 2017; Mu, Zhao and 

Running, 2011; Running et al., 2017; Teixeira et al., 2014, 2013).  

λE = λEtransp + λEsoil  =
ΔA + ρCp(es − ea)/ra

Δ + γ(1 +
rs
ra
)

 (8) 

where λE is the latent heat flux density (W m-2) and represents the sum of plant 

transpiration (λEtransp) and soil evaporation (λEsoil), i.e. the evapotranspiration during the 

same time interval of precipitation (i.e. from 12:00 to 12:00 at UTC-0 datum), λ is latent heat 

flux density of vaporization (=2.45×106 J kg-1), A is the available energy (W m-2), ρ is the 

air density (=1.2 kg m-3), Cp is the specific heat capacity of air in constant pressure (=1005 
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J kg-1 °C-1, from Gusmão, 2017), es is the saturated water vapour pressure (kPa) calculated 

by Equation (9), ea is the actual water vapour pressure (kPa) calculated by Equation (10), ra 

is the aerodynamic resistance (s m-1), rs is the surface resistance (s m-1), Δ is the slope of the 

curve relating saturated water vapour pressure to temperature (kPa ºC-1) calculated by 

Equation (11), and γ is the psychrometric constant (kPa °C-1) calculated by Equation (12). 

According to Allen et al (1998), the aforementioned equations are: 

es = 〈es(Tmax), es(Tmin)〉 = 0.6108e(
17.27T
T+237.3

) (9) 

ea = 〈ea(hr,max), ea(hr,min)〉 = es
hr
100

 (10) 

Δ =
4098es

(T + 237.3)2
 (11) 

γ = (
CpPatm

ελ
) = 0.665 ∙ 10−3Patm (12) 

where T, Tmax and Tmin are the mean, maximum and minimum daily temperatures, 

respectively, hr, hr,max and hr,min are the mean, maximum and minimum daily relative 

humidity, respectively, Patm is the mean daily atmospheric pressure (kPa), ε is the ratio 

molecular weight between water vapour (Mw) and dry air (Ma) (= 0.622). The Patm can be 

calculated by as a function of the air temperature (T, °C) and altitude (Ha) by Equation (13) 

in relation to the sea-level standard condition of barometric pressure (Patm = 101.3 kPa). 

Patm =  101.3 (
T

T + 0.0065Ha
)
5.26

 (13) 

The algorithm proposed by Mu et al. (2007) uses MODIS product collections to 

obtain the Leaf Area Index (LAI), Enhanced Vegetation Index (EVI), and surface albedo 

(α). The meteorological data of four pixels from GLDAS Noah L4 v2.1 reanalysis data with 

3-hourly and 0.25° resolutions were also retrieved and averaged in JPA CSA, namely: 

incoming short-wave radiation, air temperature, air pressure, and specific air humidity (quite 

similar in concept to absolute humidity) from which the relative humidity was averaged (see 

Equation (67), in item 4.5.1). In addition, the 30-m annual Landsat-based land use/cover 

maps by MapBiomas Project collection 3.1 were reclassified to match the biophysical 

parameters proposed by Running et al. (2017) and then used. These datasets were then used 

to estimate plant transpiration and soil evaporation, in order to determine the actual 
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evapotranspiration, as depicted in the schematic flowchart shown in Figure 34. The 

evaporation from water bodies, such as reservoirs, are disregarded in these methods, as shall 

be explained in the following items. 

 

Figure 34 – Flowchart of the logic behind the MOD16 global evapotranspiration algorithm for 

calculating daily actual evapotranspiration. LAI: Leaf Area Index; EVI: Enhanced Vegetation Index. 

Source: modified from Mu et al (2007). 

4.3.2.1 Canopy conductance and vegetation cover fraction 

The original Mu’s algorithm uses the Leaf Area Index (LAI) to scale stomatal 

conductance (CS, leaf level) up to canopy conductance (CC, surface level) (Landsberg and 

Gower, 1997) by Equations (14) and (15). CS is mainly expressed as a function of minimum 

air temperature (Tmin) and Vapour Pressure Deficit (VPD), as follows (Oren et al., 1999; Xu 

and Baldocchi, 2003): 

CS = CL ∗ m(Tmin) ∗ m(VPD) (14) 

CC = CS ∗ LAI (15) 

where CL (m s-1) denotes the mean potential stomatal conductance per leaf unit area 

(m s-1), fwet denotes the water cover fraction, and m(Tmin) and m(VPD) are limiting factors 

of potential stomatal conductance for minimum air temperatures (°C) and vapour pressure 

deficits (Pa), respectively, high enough to reduce canopy conductance. The m(Tmin) and 

m(VPD) are obtained by Equations (16) and (17): 
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m(Tmin) =

{
 
 

 
 
                               1.0   ,      Tmin ≥ Tminopen                         

Tmin − Tminclose
Tminopen − Tminclose

 ,     Tminclose < Tmin < Tminopen  

                               0.1  ,      Tmin ≤ Tminclose                        

 (16) 

m(VPD) =

{
 

 
                               1.0   ,      VPD ≤ VPDopen                        

VPDclose − VPD

VPDclose − VPDopen
 ,     VPDopen < VPD < VPDclose  

                               0.1  ,      VPD ≥ VPDclose                       

 (17) 

where ‘open’ indicates no inhibition for transpiration and ‘close’ indicates almost 

complete inhibition (closure of stomata). The values of Tminopen, Tminclose , VPDclose, 

VPDopen and CL are summarized in Table 4: 

Table 4 – Parameterization of stomatal opening and closing control in MOD16 algorithm. Tminopen: 

minimum air temperature of stomatal opening; Tminclose: minimum air temperature of stomatal 

closing; VPDclose: vapour pressure deficit of stomatal closing; VPDopen: vapour pressure deficit of 

stomatal opening; CL: mean potential stomatal conductance per unit leaf area. Source: based on Mu 

et al. (2007, 2011) and Running et al. (2017). EBF: Evergreen Broadleaved Forest. 

Parameter Water Forest (EBF) Mosaic/Pasture Urban Bare soil 

Tminopen(°C) 8.31 9.09 12.02 12.02 12.02 

Tminclose(°C) -8 -8 -8 -8 -8 

VPDclose(Pa) 2900 4000 4200 4200 4200 

VPDopen(Pa) 650 1000 650 650 650 

CL (m s-1) 0.0000 0.0024 0.0055 0.0055 0.0055 

      

The cloud cover in the tropical coastal areas of Brazil are frequently high, which can 

lead to incorrect evapotranspiration estimates (Running et al., 2017). Thus, the algorithm 

uses an empirical equation set forth by Bastiaanssen et al. (1998) and Allen et al. (2007) to 

compute LAI using both 8-days MOD09Q1 (Terra Satellite) and MYD09Q1 (Aqua Satellite) 

reflectance products. Thus, LAI is calculated by the Soil Adjusted Vegetation Index (SAVI) 

proposed by Huete (1988), as shown in Equations (18) and (19): 

SAVI =
(1 + L)(r2 − r1)

(L + r2 + r1)
 (18) 

LAI = −
ln (

0.69 − SAVI
0.59

)

0.91
 (19) 
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where r1 and r2 are the spectral reflectances of the bands 1 (red) and 2 (near-infrared) 

of the MOD09Q1 and MYD09Q1 reflectance products, and L is an adjust factor considered 

in this study equal to 0.1, the same used by Silva et al. (2015). 

The algorithm also uses the surface cover fraction (FC, varying from 0 to 1) 

information for partitioning the net radiation between canopy and soil surface. Similarly to 

Jiang et al. (2008), this study calculated the FC by using the 2-band (red and infrared) 

Enhanced Vegetation Index (EVI2, without a blue band) to reduce pixel size as shown in 

Equations (20) and (21), differently from Mu et al. (2007) who used the Enhanced 

Vegetation Index (EVI). This approach provides satisfactory results mainly when 

atmospheric effects are insignificant and data quality is good (Bolton and Friedl, 2013; 

Rocha and Shaver, 2009). 

EVI2 = 2.5
r2 − r1

r2 + 2.4r1 + 1.0
 (20) 

FC =
EVI2 − EVI2min

EVI2max − EVI2min
  (21) 

where EVI2min is the signal from bare soil (LAI → 0) and EVI2max is the signal from 

dense green vegetation (LAI → ∞) during the study period, generally set as invariant 

constants varying between 0.05 and 0.95, respectively. LAI maximum values were limited 

up to 6 m2 m-2, similar to Gusmão (2017). Similar to the SAVI procedures, the EVI2 was 

also considered a fixed input parameter throughout the month using 8-days MOD09Q1-

MYD09Q1 reflectance products. 

To minimize cloud-sky condition, monthly compositions of 8-day LAI and EVI2 

maps were then performed by simply overlapping the map pixels influenced by clouds for 

pixels of another map in the same month, whose values indicated clear sky condition, 

assuming, therefore, that these variables are monthly parameters (de Oliveira et al., 2016a). 

4.3.2.2 Net radiation and albedo 

The available energy (A, in Equation (8)) is usually determined by calculating the 

daily net radiation of the land surface (Rn) (Cleugh et al., 2007; Mu et al., 2007), as shown 

in Equation (22): 

Rn = (1 − α) RS↓ + σ (εa − εs)(273.15 + T)
4 (22) 
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where α corresponds to the surface albedo, RS↓ is the downward shortwave incoming 

radiation, σ is the constant of Stefan-Boltzmann (= 5.67.10-8 W m-2 K-4), εa is the atmospheric 

emissivity, εs is the surface emissivity, and T represents the mean daily air temperature in 

°C.  

However, in this study the Rn was calculated using the equation proposed by de Bruin 

(1987), which has been often employed in the literature (Bastiaanssen et al., 1998; Gusmão, 

2017; Santos et al., 2015), as shown in Equation (23): 

Rn = (1 − α) RS↓ + aτsw24 (23) 

Where α corresponds to the surface albedo, RS↓ is the downward shortwave incoming 

radiation obtained from 3-hours GLDAS Noah L4 v2.1 reanalysis data, ‘a’ is the regression 

coefficient between the daily longwave incoming radiation and daily atmospheric 

transmissivity (= ~-75.5, from Gusmão, 2017) and τsw24 is the average daily atmospheric 

transmissivity calculated by Equation (24): 

τsw24 =
RS↓
RS↓A

 (24) 

where RS↓ is the downward shortwave incoming radiation, and R𝑆↓A is the downward 

shortwave incoming radiation on top of the atmosphere that is calculated by Equation (25): 

RS↓A =
24(60)

π
Gsdr[ωs sin(φ) sin(δ) + cos(φ) cos(δ) sin(ωs)] (25) 

where Gs is the solar constant (= 0.0820 MJ m-2min-1), dr is the square relative 

distance between the Earth and Sun (rad), ωs is the hourly angle of sunrise (rad), δ is the 

solar declination angle (rad), and φ is the latitude of meteorological station (=-7.25π/180 

rad). The values of dr, δ and ωs were obtained, respectively, from the Equations (26) to (28): 

dr = 1 + 0.033 cos (
2π

365
ds) (26) 

δ = 0.409 sin (
2π

365
ds − 1.39) (27) 

ωs = cos
−1[− tan(φ) tan(δ)] (28) 

where ds is the sequential day of the year. 

The surface albedo (α) is provided in the original algorithm from the 8-day composite 

MCD43A2/A3 product with 500 m spatial, which may also be contaminated by cloud cover 
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and dramatically increase the albedo signal (Running et al., 2017). However, this study 

considered again the two MOD09Q1-MYD09Q1 bands product to calculate the surface 

albedo using the Equation (29) calibrated by (Teixeira et al., 2014, 2013), with good results 

found by Gusmão (2017). 

α = 0.08 − 0.41r1 + 0.14r2 (29) 

where r1 and r2 are the spectral reflectances of the bands 1 (red) and 2 (near-infrared) 

of the MOD09Q1 and MYD09Q1 products. Similar to SAVI and EVI2, the monthly 

composition of surface albedo was also considered in this step to reduce the influence of 

clouds on actual evapotranspiration estimates. 

4.3.2.3 Plant transpiration and soil evaporation 

For the determination of plant transpiration and soil evaporation, the available energy 

(A) represented by net radiation (Rn) had to be firstly linearly partitioned between the canopy 

(AC) and the soil surface (Asoil), to what the vegetation cover fraction (FC) was used, as 

shown in Equations (30) and (31): 

AC = FCA (30) 

Asoil = (1 − FC)A (31) 

where AC and Asoil are the total net incoming radiation (A ou Rn) partitioned to the 

canopy and soil, respectively. In this study, soil heat flux (G) was assigned as zero in this 

study due to its small magnitude compared to Rn on daily scale, similarly to Gusmão (2017).  

The plant transpiration and potential soil evaporation were determined by the 

Penman-Monteith equation (see Equation (8)) using the AC and Asoil parcels, as shown in 

Equations (32) and (33): 

λEtransp = 
ΔAC + ρCp(es − ea)/ra

Δ + γ(1 +
rs
ra
)

 (32) 

λEsoilpot = 
ΔAsoil + ρCp(es − ea)/ra

Δ + γ(1 +
rtot
ra
)

 (33) 

where rtot denotes the aerodynamic resistance to the vapor transport (s m-1), 

represented by the sum of the surface resistance (rs, s m-1) – equal to the inverse of canopy 
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conductance (CC, see item 4.3.2.1) (Mu et al., 2007) – and the vapor transport resistance (rv, 

s m-1), namely rtot= rs+rv (van de Griend and Owe, 1994). The rtot can be straightforward 

calculated by Equations (34) and (35), for the standard atmospheric conditions of air 

temperature (T = 20°C) and barometric pressure (Patm = 101.3 kPa). 

rcor =
1.0

101.3
Patm

(
273.15 + T
293.15

)
1.75 

(34) 

rtot = rtot,crcor (35) 

where rtot,c (= 107 s m-1) is an adjustment parameter that refers to total aerodynamic 

drag  (Mu et al., 2007). The ra is calculated as a function of convective heat transfer resistance 

(rc, s m-1) and radiative heat transfer resistance (rr, s m-1), as shown in Equations (36) and 

(37). In addition, rc is calculated in the same way as rtot, because it is assumed to be equal to 

the resistance of the boundary layer (Thornton, 1998). 

rr = 
ρaCp

4.0σT3
 (36) 

ra = 
rcrr
rc + rr

  (37) 

The actual soil evaporation of the soil (λEsoil) is then calculated based on the 

interactions between the surface and the atmosphere from VPD and relative humidity (hr,%) 

(Mu et al., 2007), as shown in Equation (38): 

λEsoil = λEsoilpot (
hr
100

)
(es−ea) 100⁄

 (38) 

4.3.3 Surface runoff by Natural Resources Conservation Service–Curve Number 

method 

The Natural Resources Conservation Service–Curve Number (NRCS–CN) method 

(NRCS, 1986), originally called Soil Conservation Service (SCS) method (SCS, 1972), is an 

approach based on empirical formulas, which converts basic descriptive data into numeric 

values to estimate the excess precipitation that was not intercepted, stored in depressions, 

and/or lost through infiltration into the soil (Ajmal et al., 2015; Ajmal and Kim, 2015). Apart 

from descriptive data, NRCS–CN also requires information about precipitation depth and an 
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empirical parameter, which allow for simulating surface runoff at a given point (e.g. surface 

site or cross-section), without modelling the flow direction over time (Matei, 2012). 

The NRCS–CN is based on the water budget equation and on two fundamental 

hypotheses (NRCS, 2004). The first hypothesis states that the ratio between the actual soil 

water storage (F, mm) and potential maximum soil water storage (S, mm) both after runoff 

begins, is equivalent to the ratio between the actual runoff (Q, mm) and potential maximum 

runoff (P, mm) (if no initial abstraction occurs), as shown in Equation (39): 

F

S
=  
Q 

P
 (39) 

Nevertheless, for most applications the rainfall is abstracted. Thereby, the second 

hypothesis is that the initial abstraction (Ia) is a fraction of the S, as shown in Equation (40). 

There exist three main abstractions: interception (precipitation minus throughfall, stem flow 

and water drip); depression storage (topographic undulations); and infiltration into the soil. 

Ia =  λS (40) 

Thus, the total precipitation must exceed the initial abstraction before any runoff is 

triggered, leading to available potential maximum runoff (P – Ia) and available actual soil 

water storage (P – Ia – Q), so that Equation (39) is substituted by Equation (41): 

P − Ia − Q

S
=  

Q 

P − Ia
 (41) 

Rearranging the Equation (41), surface runoff (Q) can be expressed by Equation (42): 

Q = {

(P + Ia)
2

(P − Ia + S)
       , if P ≥ Ia = λS     

0                   ,         if P = 0       

 (42) 

Since the NRCS–CN method comes up with rainfall-runoff relationships based on S, 

a need for its average estimation under distinct land use/cover conditions shows up. For such 

purpose, the NRCS–CN proposed the dimensionless empirical parameter Curve Number 

(CN), which reflects, in just one value, the soil impervious nuance intimately related to S 

component. Thereby, after assessing different scenarios, an inverse relationship between CN 

and S was found and expressed by Equation (43): 

CN =
25400

254 + S
, for 0 ≤ CN ≤ 100 (43) 
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The Ia is conventionally assigned equal to 0.20 of S (NRCS, 1986; SCS, 1972) due 

to unavailability of a complete database of CN calibrated values. Conversely, Lal et al. 

(2016) and Lal, Mishra and Kumar (2019) reviewed the initial abstraction ratios for 63 

watersheds worldwide with different land covers, finding λ equal to 0.03 as best value for 

runoff simulation, and proposing an equation to convert the original CN values. Thus, this 

study applied the Equations (44) and (45) proposed by the aforementioned authors. 

Q = {

(P − 0.03S)2

(P + 0.97S)
      , if P ≥ Ia = 0.03S

0                 ,          if P = 0     

 (44) 

S =
25400

CNII,λ=0.03
− 254 (45) 

The surface runoff was calculated by the NRCS–CN method using the Gauge and 

IMERG-bias-corrected precipitation data. They were summed from 09:00 to 09:00, and then, 

the resulting surface runoff was summed to annual and monthly basis. This artifice was 

carried out because obtaining the annual or monthly runoff straightforwardly from the annual 

or monthly rainfall would be a violation of the event-based Hortonian principle (Awadallah, 

Farahat and Haggag, 2017). It is assumed that adapting the NRCS–CN temporal basis from 

event-based to daily resolution would result in inexpressive uncertainties for monthly and 

annual runoff estimates; which was similarly used by several studies in literature (Mushtaha, 

van Camp and Walraevens, 2019; Freitas et al., 2019; Subramanian and Abraham, 2019). 

Lastly, Figure 35 depicts the NRCS algorithm for obtaining the daily surface runoff. 

 

Figure 35 – Flowchart of the logic behind the NRCS–CN method algorithm for calculating the daily 

surface runoff. ARC-I, ARC-II and ARC-III: dry, average and wet Antecedent Runoff Condition. 
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4.3.3.1 Hydrologic Soil Groups 

Due to the extremally variable aspect of soil types, a new classification reflecting the 

influence of soil properties over the surface runoff was required by the NCRS method. 

Thereby, SCS (1972) and NRCS (1986) assumed that soil profiles with similar 

characteristics respond similarly to long-term rainfall and high intensity. Such soils were 

grouped in four Hydrologic Soil Groups (HSG) based on their water infiltration and 

transmission capacities, i.e. A, B, C and D, as described in Table 5. If the soil is placed in 

group D because of a shallow groundwater table, it may be assigned to a dual hydrologic 

group (i.e. A/D, B/D, or C/D), first letter representing the soil’s group if drained, and the D 

the natural condition. 

Table 5 – Hydrologic Soil Groups (HSG) defined for the NRCS–CN method. Source: NRCS (1986).  

HSG Soil characteristics Infiltration rate 

A 

Soils with high infiltration rate, high water transmission 

rate and low runoff potential, when completely wet. It 

comprises deep, well-drained sands and gravelly sands. 

> 7.62 mm h-1 

B 

Soils with moderate infiltration rate, moderate water 

transmission rate and moderate runoff potential, when 

completely wet. It comprises moderately to deep, well-

drained soils featuring moderately fine to moderately 

coarse textures. 

3.81 to 7.62 

mm h-1 

C 

Soils with slow infiltration rate, slow water transmission 

rate and high runoff potential, when completely wet. It 

comprises fine-textured soils holding layers that impede 

the downward water movement. 

1.27 to 3.81 

mm h-1 

D 

Soils with a very slow infiltration rate, very slow water 

transmission rate and very high runoff potential, when 

completely wet. It comprises high shrink-swell clays, 

featuring a claypan near-surface impervious layer and a 

shallow water table. 

< 1.27 mm h-1 

   

Some modifications on the hydrologic group of soils types have been proposed due 

to relatively subjective aspect of the HSG classification, as claimed by Langan and Lammers 

(1991). For instance, Berhanu, Melesse and Seleshi (2013) provided a spatial geodatabase 

of HSGs for the Ethiopian soils types identifying and mapping the hydrological zones, and 

Cordeiro et al. (2018) derived the agriculturally relevant soils types to HSGs in Canada for 

using in runoff simulation. In 2018, the Distributed Active Archive Center for 



63 

biogeochemical dynamics (DAAC) provides a globally-gridded HSG dataset 

(HYSOGs250m) a 250-m projected resolution, derived from soil texture classes and depth 

to bedrock on (Ross et al., 2018). 

Because some inconsistencies on HSG classification may stem from using foreign 

and global parameters, some studies have suggested new criteria for classifying Brazilian 

soil types (Lombardi Neto et al., 1989; Sartori et al., 2005). Sartori (2010) proposed 19 

criteria for HSG soil classification based on survey of 58 soil profile and hydrodynamic data 

in Brazil, as described in Table 6. In this study, this soil classification method was applied 

to the soil types of the coastal sedimentary aquifer in Paraíba state to obtain the HSG in JPA 

CSA. 

Table 6 – Classification of Hydrologic Soil Groups (HSG) for Brazilian soils. Source: Sartori (2010). 

Depth to the 

water table 

----- Restrictive layer ----- 
Further soil characteristics HSG 

Hard Moderate 

> 100 cm > 100 cm > 100 cm 

Sandy texture throughout the well-

drained hydromorphic soil profile. 
A 

Sandy or medium texture (< 20% 

clay) down to restrictive layer. 
A 

Medium to very clayey texture, with 

low colloidal activity and high FeO 

content and/or acric properties. 

A 

> 100 cm - 
50 and 

100 cm 

Sandy or medium texture down to 

moderate restrictive layer and clay 

with low colloidal activity. 

B 

Medium to very clayey texture, with 

low colloidal activity and high FeO 

content and/or acric properties 

B 

Sandy or medium texture down to 

moderate restrictive layer and clay 

with high colloidal activity. 

C 

> 100 cm - ≤ 50 cm 

Sandy to very sandy texture with 

abrupt clayey change and low 

colloidal clay activity. 

C 

Medium, clayey or very clayey 

texture down to moderate restrictive 

layer and low clay colloidal activity. 

C 

Sandy to very clayey texture with 

abrupt change and high clay colloidal 

activity. 

D 
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> 100 cm - Absent 

Clayey/clayey or clayey/very clayey 

texture, with low colloidal activity 

and a textural ratio less than 1.5. 

B 

Medium/medium, medium/clayey or 

clayey/very clayey texture, with low 

colloidal clay activity. 

B 

Clayey/very clayey texture, with low 

colloidal activity, low/medium FeO 

content and non-acric. 

B 

Incipient B horizon, with 

morphological characteristics similar 

to the subsurface ferralsol horizon. 

B 

Medium/medium, medium/clayey or 

clayey/very clayey texture, with high 

colloidal clay activity. 

C 

Medium/clayey, clayey/clayey or 

clayey/very clayey texture and vertic 

horizon. 

D 

> 100 cm 
50 and 

100 cm 
- 

Sandy to very clayey texture, with 

low clay colloidal activity; or 

medium with high clay activity. 

C 

Medium texture (≥ 20% clay), clayey 

or very clayey, with high colloidal 

clay activity. 

D 

> 100 cm - - - D 

≤ 100 cm - - - D 

     

4.3.3.2 Curve Number values and Antecedent Runoff Conditions 

The combinations among HSG and land use/cover, soil treatment and hydrological 

surface condition yield a hydrological soil-cover complex (NRCS, 2002; SCS, 1972). Land 

use classes comprise all types of vegetation, crop residues, exposed soil, water and 

impermeable surfaces. Land treatment is applied mainly to agricultural lands, with 

distinctions between mechanical practices (contouring and terracing) and management 

practices (grazing control and crop rotation). Hydrological surface condition is commonly 

stated as poor, fair or good. 

Each hydrological complex holds a mean CN value that reflects its potential surface 

runoff, calculated or assigned by interpolation from rainfall-runoff events observed in 
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American watersheds. All the hydrological complexes and their respective mean values of 

the CN are arranged in three tables available in the NRCS (2004), divided according to their 

characteristics in agriculture lands, urban areas and arid/semiarid rangelands. Therefore, the 

CN (Curve Number) is a dimensionless index ranging from 0 (no runoff, S = ∞) to 100 (all 

precipitation becomes runoff, S = 0). 

In this study, all possible CN values were selected from NRCS (2004) tables, and 

then spatially assigned to hydrological soil-cover complexes in a GIS platform. A Look-Up 

table was build and used for geoprocessing the combination of HSG (assigned by soil type 

characteristics in Table 7) and land use/cover by MapBiomas collection 3.1 (NRCS, 1986). 

Table 7 – Runoff curve numbers for agricultural lands. CN: Curve Number; HSG: Hydrologic Soil 

Group; HSC: Hydrologic Surface Condition. Source: NRCS (2004). 

----------------- Cover description ----------------- --------------- CN for HSG -------------- 

Cover type Treatment HSC A B C D 

Fallow Bare soil - 77 86 91 94 

Forest* - Good 30 55 70 77 

Pasture** - Good 39 61 74 80 

Urban area*** - - 77 85 90 92 

Mosaic**** SR + CR Good 67 78 85 89 

*Woods are protected from grazing, and litter and brush adequately cover the soil. 

**Pasture/grassland having the ground covered higher than 75%, and lightly or only occasionally grazed. 

***Townhouses by average lot size lower than 1/8 acres (506 m2) with 65% average impervious area. 

****Mosaic of agriculture cultivated in straight rows (SR) with pasture/crop residue (CR) cover. 

 

The runoff potentiality before the surface runoff event is also taken into account in 

the SCS–CN method by the Antecedent Runoff Condition (ARC) index. Three ARC are then 

considered, namely: ARC-I, which denotes the dry soils able to be ploughed and cultivated; 

ARC-II, which denotes the moderately-wet soils, mostly due to flood occurrence; ARC-III, 

which denotes the practically-saturated soils, due to antecedent rainy events. As stated by 

Hawkins et al. (2010), the ARC-II is the benchmark condition for obtaining the listed CN 

values (Table 7), whereas the dry (ARC-I) and wet (ARC-III) conditions are obtained by 

empirical equations for defined application ranges. 

Plenty of empirical equation for ARC-I and ARC-III calculation are available in 

literature (Ajmal et al., 2015; Ajmal and Kim, 2015; Arnold et al., 1990; Chow, Maidment 

and Mays, 1988; Hawkins, Hjelmfelt and Zevenbergen, 1985; Lal et al., 2016; Lal, Mishra 
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and Kumar, 2019; Mishra et al., 2008; Sobhani, 1975; Woodward et al., 2003). Most of these 

equations may be obtained by fitting the parameters of the Equation (46) – minimizing the 

sum of squared residuals – using rainfall-runoff datasets monitored or published in literature. 

Lal, Mishra and Kumar (2019) performed comparative analyses of different, well-known 

methods and three proposed methods, using data from 63 watersheds spread in almost all 

continents. The better performance was found by fitting Equations (44) and (45), from which 

they CNI and CNIII (λ=0.03) with Probability Of Exceedance (POE) equal to 12% and 88%. 

CN =
CNII

a −  bCNII
, where b =

(1 − a)

100
 (46) 

In this study, the CNI and CNIII values were determined under ARC-I and ARC-III 

conditions, respectively, by Equations (47) and (48) (Lal, Mishra and Kumar, 2019). For 

selecting the proper condition, the 5-days-antecedent cumulative precipitations (P5d, mm) 

were spatially-calculated from ground-based and IMERG product. To this end, similarly to 

Ajmal et al. (2015), Ajmal and Kim (2015) and Lal, Mishra and Kumar (2019), intervals 

were considered for distinguishing the ARC, and the P5d values were calculated for 

determining them. For the Growing Season (GS, from March to July) and Dormant Season 

(DS, from August to February), the ARC intervals were the following: for ARC-I, if P5d < 

35.56 mm (GS) or P5d < 12.7 mm (DS); for ARC-II, if 35.56 ≤ P5d ≤ 53.34 mm (GS) or 12.70 

≤ P5d ≤ 27.94 mm (DS); and, for ARC-III, if P5d > 53.34 mm (GS) or P5d > 27.94 mm (DS) 

(Chow, Maidment and Mays, 1988; SCS, 1972). While the urban area and bare soil were 

considered only in DS condition, the forest was considered only in GS condition. 

CNI,λ=0.03 =
CNII,λ=0.03

2.42081 −  0.01421CNII,λ=0.03
 (47) 

CNIII,λ=0.03 =
CNII,λ=0.03

0.42405 + 0.00576CNII,λ=0.03
 (48) 

As shown in Equations (47) and (48), the CNII values must be obtained for λ equal 

to 0.03 instead of the conventional λ equal to 0.20 before estimating the surface runoff. Lal, 

Mishra and Kumar (2019) found that in 61 out of 63 watersheds throughout the world, the λ 

was lower than 0.20, among which roughly 50% featured λ lower than 0.05. In Southern 

Brazil, da Costa et al. (2019) found that 67% of the rainfall events held λ lower than 0.06, 

whereas only 12% held λ higher than 0.20. Thus, for converting CNs from λ equal to 0.2 

(CNII, λ=0.20) to λ equal to 0.03 (CNII, λ=0.03), the Equation (49) was used (Lal et al., 2016). 
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CNII,λ=0.03 =
25400

[254 + 0.654 (
25400

CNII,λ=0.20
− 254)

1.248

]

  
(49) 

4.3.4 Soil water storage changes from soil moisture imagery 

Soil water storage capacity is defined, in soil science, as the total amount of water 

stored in soil within the plant root zone (MABC, 2015). This stored water can either be 

returned to the atmosphere by plant transpiration and evaporation or be conducted to lower 

levels and groundwater (Saxton and Rawls, 2006). Soil water storage depends importantly 

on the soil structure and texture, as well as on organic content and crop rooting depth, which 

affects the percolation flux and root water uptake (MABC, 2015; Narasimhan, 2009), leading 

to different soil moisture profiles.  

According to Clothier and Green (2005), the change in the soil water storage, ΔS, 

can be calculated by the change in the soil moisture content profile, θ(z), from one day to 

another, Δt, integrated from the surface down to the base of root zone, hCV, by Equation (50): 

∆S = ∫ ∆θ(z)dz
hCV

0

 (50) 

A vertically-averaged soil moisture (in %) was retrieved from SMAP SPL4SMAU 

product, which assimilates one integrated value per pixel down to 1 m at every 3 hours. Thus, 

1 m was considered as the average rooting depth and, therefore, as the bottom boundary of 

the Control Volume (i.e., the hCV), for applying the water budget equation. The ∆S may be 

either positive or negative when the average soil moisture of the next day (θi+1, or simply 

Si+1) is higher and lower than the current day (θi, or simply Si), respectively, through Si+1 - 

Si in Equation (51). Similarly, Long, Longuevergne and Scanlon (2014) found the water 

budget equation closure by calculating the soil water storage changes from land surface 

models and from remote sensing data. 

∆S =
(Si+1 − Si). hCV

∆t
=
(Si+1 − Si). 1000mm

1 day
, for Si+1 and Si given in % (51) 

Since the JPA CSA is located near to the equator, the soil moisture was retrieved at 

6:00 a.m. and 6:00 p.m. (at the local solar time), when SMAP satellite crosses the 

hemispheres. Conversely, since the satellite takes 2 to 3 days to map the whole globe, some 

images over the JPA CSA were unmapped on a couple of days of the year. Thus, similarly 
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to Souza, Neto and Souza (2018), the daily soil moisture data was computed in three ways: 

(1) if both orbits were completed on the same day, the two values were averaged; (2) if only 

one orbit had a valid value, this value was considered for that day; and (3) if no valid value 

was obtained in either orbit, the soil moisture calculated on the previous day was repeated. 

Lastly, the images were then resampled from 9-km to 500-m resolution by using bilinear 

interpolation (see Equation (1), in item 4.3.1.1). 

4.3.5 GIS-based water budget equation 

Water budget equation was employed on monthly and annual resolutions to obtain 

the GWR below the 1-m root zone, which is commonly understood, for the sake of modelling 

purposes, as the water effective infiltration parcel that crosses vertically the root-zone control 

volume. Four categories of variables were considered in the water budget equation according 

to JPA CSA conceptual model proposed in Figure 36, namely: (1) Main input: precipitation; 

(2) Output parcels: actual evapotranspiration and surface runoff; (3) Input-output variable: 

soil water storage changes in the root zone, and; (4) Outcome, either positive for GWR rates, 

or equal to zero for capillarity rise occurrence (Melo and Wendland, 2017).  

 

Figure 36 – Conceptual model of water budget equation by remote sensing in João Pessoa Case Study 

Area (JPA CSA); P: Precipitation; E: Actual Evapotranspiration; Q: Surface Runoff; ΔS: Soil Water 

Storage changes; R: Groundwater Recharge; Blue arrows: disregarded water balance components. 
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The data scarcity or unavailability with regards to irrigation, pumping and 

interception parcels, makes unfeasible their accounting in the water budget equation. 

Moreover, the complexity of unconfined-confined aquifer connections and the diversity of 

soil type and geological formations revealed the insufficient soil knowledge for more 

complex modelling, so that the horizontal inflow effects were disregarded. Such assumption 

of no lateral flow has been similarly adopted on different spatial resolutions in the literature 

(Liu et al., 2016; Long et al., 2015; Lv et al., 2017; Wan et al., 2015), which seems plausible 

due to monthly and annual resolution of calculation. Therefore, for the sake of simplicity 

and applicability, the application of the water budget equation was performed in the near-

surface root zone using the pixel area as the hydrological response unit. The water budget 

equation then represented the soil water balance in the root zone, as formulated in Equation 

(52): 

Si+1 = Si + Pi − Ei − Qi − Ri,      in mm (52) 

where ‘i’ denotes the present day, ‘i+1’ denotes the next day, and the other symbols 

are related to the water balance components, namely: ‘P’ is precipitation; ‘E’ is actual 

evapotranspiration; ‘Q’ is surface runoff; ‘S’ is average root-zone soil moisture, and; ‘R’ is 

groundwater recharge (same as GWR). 

The groundwater recharge, or simply ‘R’, is then the expected outcome of the water 

budget equation and stands for the downward soil water movements. As such, by isolating 

the ‘R’, the Equation (53) is formulated: 

{
R = P − E − Q − 1000. ∆S,      if P − E − Q − 1000. ∆S > 0
R = 0                                       ,      if P − E − Q − 1000. ∆S < 0

,   
   where ∆S =  (Si+1 − Si)

for S given in %
  (53) 

Once the water budget equation is formulated, some important scenarios can be 

highlighted, which are depicted in Figure 37 as follows. On one hand, if there exists 

precipitation (Figure 37a), two situations are possible: (1) the input (P, or P and ∆S) are 

higher than the losses (E and Q, or E, Q and ∆S), in this case there exists recharge, or; (2) 

the input are lower than the losses, in this case the capillarity rise ‘C’ occurs rather than 

recharge (i.e. R equal to zero, similar to Melo and Wendland, 2017). It is noteworthy to 

mention that ∆S can be input or loss component, namely: (1) if Si+1 is higher than Si, the ∆S 

is a loss component holding a negative sign in Equation (53) (i.e., -1000.∆S), or; (2) if Si+1 

lower than Si, the ∆S become an input component holding a positive sign in equation in 

Equation (53) (i.e., +1000.∆S).  
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Figure 37 – Two soil water balance scenarios, (a) precipitation higher than zero, and (b) precipitation 

equal to zero, for reasoning about the water budget equation through the root-zone Control Volume 

(CV). hCV: Height of CV equal to 1 m; CS: Control Surface; P: Precipitation; E: Actual 

Evapotranspiration; Q: Surface Runoff; ∆S: Soil Water Storage changes; R: Groundwater Recharge; 

C: Capillarity Rise;  

On the other hand, if there exists no precipitation but the Si is lower than Si-1 (Figure 

37b), then there may still be R, and two more situations are possible: (1) if ∆S is higher than 

‘E’, the water stored flows downward, or; (2) if ∆S is lower than ‘E’, the water stored is lost 

by ‘C’.  

4.4 Validation of the GIS-based water balance components 

4.4.1 Performance indexes for goodness-of-fit analysis 

Five statistic metrics were selected to evaluate comprehensively the goodness-of-fit 

of the results of this study (Table 8). Only relative values of the metrics were adopted so that 

a comparative discussion of the results in relation to literature outcomes could be performed. 

On one hand, the first category of metrics includes the correlation coefficient (CC, Equation 

(54)) the coefficient of determination (R2, Equation (55)) and the Kling-Gupta Efficiency 

coefficient (KGE, Equation (56)), describing the agreement between simulated and observed 

estimates. On the other hand, the second category of metrics includes the percent bias 

(PBIAS, Equation (57)) and the relative root mean square error (RRMSE, Equation (58)), 

which are used to describe the bias and error between simulated and observed estimates, 

respectively. The equations and perfect values of those metrics are listed in Table 8. 



71 

Table 8 – List of the performance indexes used in the evaluation and comparison. S: satellite 

precipitation estimate; G: gauge observed precipitation; σG: standard deviations of gauge 

precipitation; σS: standard deviations of satellite precipitation; 〈 〉: mean of a dataset; ∑  : sum of a 

dataset. 

Equation Statistic metrics Formulation 
Perfect 

value 

(54) 
Correlation 

Coefficient (CC) 
CC =

〈(S − 〈S〉)(G − 〈G〉)〉

σSσG
× 100% 100% 

(55) 
Coefficient of 

Determination (R²) 
R2 = CC2 100% 

(56) 

Kling-Gupta 

Efficiency coefficient 

(KGE) 

KGE = 1 − [(CC(S, G) − 1)2 + (
σS
σG
− 1)

2

+ (
〈S〉

〈G〉
− 1)

2

]

1
2

× 100% 

100% 

(57) Percent Bias (PBIAS) PBIAS =
∑(S − G)

∑G
× 100% 0% 

(58) 

Relative Root Mean 

Square Error 

(RRMSE) 

RRMSE =
(〈(S − G)2〉)1 2⁄

〈G〉
× 100% 0% 

    

The CC, PBIAS and RRMSE metrics were used to assess the goodness-of-fit of the 

bias-corrected precipitation and the GWR estimates. For the verification of runoff surface 

and soil moisture satellite product, the CC metric was applied. And, the KGE and R² metrics 

were used for validating the CRNS data and HYDRUS-1D-COSMIC results. 

4.4.2 Verification of the daily actual evapotranspiration 

The GIS-based actual evapotranspiration data could not be validated provided by 

Bowen ratio energy balance method (Bowen, 1926), because the meteorological data in GEB 

were available from September/2017, covering only the four last months of 2016-2017 

analysis period. As such, similar to what was done by de Oliveira et al. (2018), the actual 

evapotranspiration was compared to the reference evapotranspiration (Eto, mm h−1), the latter 

being calculated using the Penman-Monteith equation (Allen et al., 1998) in Equation (59): 
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Eto =
0.408∆(Rn − G) + γ[37/(T + 273)]u2(es − ea)

∆ + γ(1 + 0.34u2)
 (59) 

where Rn is the net radiation at the crop surface (MJ m−2 day−1), G indicates the soil 

heat flux density (MJ m−2 day−1), u2 is the mean hourly wind speed at 2 m height (m s−1), es 

defines the saturation vapour pressure at air temperature T height (kPa, see Equation (9)) 

and ea indicates the actual vapour pressure (kPa, see Equation (10)), ∆ represents the slope 

vapour pressure curve (kPa°C−1, see Equation (11), γ is the psychrometric constant (kPa°C−1, 

see Equation (12)), and T is the mean air temperature at 2 m height (°C). 

Since the wind speed data is measured at 6.3 m (see item 4.2), differently of the 2-m 

height advocated by Penman-Monteith equation, a logarithmic wind speed profile may be 

used to convert the data to the standard height of measurements, as shown by Equation (60): 

u2 = uz
4.87

ln(67.8z + 5.42)
 (60) 

where u2 and uz are the wind speeds (m s-1) at 2 m and z height of measurement (m) 

above the ground surface, respectively. To ensure the integrity of computations, the further 

weather measurements should similarly be converted to 2-m height (refer to Allen et al., 

1998), as they are measured at 5.3-m height (see item 4.2). These operations may all be 

carried out by hydro(geo)logical models, such as HYDRUS-1D (Šimůnek et al., 2013b). 

The verification of daily actual evapotranspiration was carried out against the daily 

reference evapotranspiration time series rather than potential evapotranspiration. It was 

performed because the JPA CSA is placed in a tropical wet area rather than a tropical dry 

semiarid zone, which was the case of Coelho et al. (2017). Such comparison may reveal if 

the simulated actual evapotranspiration behaves conveniently within the maximum 

boundary imposed by the reference evapotranspiration. Moreover, it is expected that such 

comparison may also reveal the influence of the meteorological forcing data over the two 

evapotranspiration time series. 

4.4.3 Verification of the monthly surface runoff 

Baseflow is a discharge phenomenon with distinctive and recognisable features and 

a plausible physical explanation, but very difficult to be precisely defined or reliably 

separated from other streamflow components (Duncan, 2019). Thus, the most widely used 

method to differentiate the runoff from baseflow is the graphical straight-line method, which 
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consists of graphically extending a straight line from hydrograph rising limb onset to an 

ending point of the hydrograph recession after the discharge peak (Boscha et al., 2017). The 

runoff is referred to as the discharge volume above the straight line, while the baseflow is 

the discharge volume below the line (Figure 38). The only dependence on expert judgement, 

make the straight-line method a valuable tool for validation purposes, even though several 

updated baseflow separation methods are available (Indarto, Novita and Wahyuningsih, 

2016; Yang, Choi and Lim, 2018; Yang et al., 2019b; Zhang et al., 2017). 

 

Figure 38 – An illustration of the baseflow separation through the straight-line method, where the 

dashed line connects the onset and ending point of the runoff. Source: adapted from Boscha et al. 

(2017). 

To date, only three stream gauges installed in GEB hold rating curves ready for 

yielding the runoff time series (Barbosa, 2015). The stream gauge 503, located slightly at 

downstream of the confluence of GEB tributaries, was selected for runoff verification 

because it encompassed the larger catchment. Yet, its water level time series only covered 

the year 2017 from the 2016-2017 study period. The catchment of gauge 503 was delimited 

through a GIS software from the Digital Elevation Model (DEM) provided by Shuttle Radar 

Topography Mission (SRTM) on 30-m spatial resolution (Supplementary Figure 18). 

Owing to the small-scale dimension of stream gauge 503, it was assumed that the 

time travel was lower than one day, so that the 15-min water level measurements were 

averaged from 09:00 to 09:00, due to ground-based precipitation resolution. Then, the 

baseflow separation was carried out over the daily discharge time series, in order to obtain 

the daily average runoff at the stream gauge. The daily water level positive differences 
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(increments) were compared to daily mean surface runoff values summed on gauge 503 

catchment, the later obtained by NRCS–CN method from both ground- and IMERG-based 

precipitation data. The daily increments obtained from either gauge 503 water level 

measurements or NRCS–CN estimates (using the Gauge and IMERG data) were then 

summed to compute the respective monthly water depth stemmed from the surface runoff, 

and the CC metric was calculated to assess the goodness-of-fit of the results. 

4.4.4 Test of the satellite-based soil moisture 

The high spatiotemporal variability of soil moisture hampers for the remote sensing 

products, such as SMAP products, using in situ monitoring networks. The presence of 

heterogeneous land use/cover should also be taken into account for SMAP validation, using 

a weighted average approach based on proportions of different coverages (Yee et al., 2016). 

Such SMAP validation might be even harder-tasking when considered along the 1-m root 

zone, such as SPL4SMAU product, which was used in this study for averaging on soil water 

storage changes. On the other hand, some studies have claimed about the good performance 

of SPL4SMAU root-zone product compared to in situ and other satellite (such as GRACE) 

measurements worldwide, stating its high potential to several applications (Das, Singh and 

Hazra, 2019; Jia et al., 2019; Zeng et al., 2016). In Northeast of Brazil, the lack of extensive 

ground-based networks, reported by Barbosa et al. (2019), impairs a comprehensive soil 

moisture validation, only possible by a few point-scale monitoring probes. Thus, three TDR 

probes vertically-inserted in GEB (site 2, 3 and 4, see Figure 25d) were used to averaged 

soil moisture down to 30-cm depth, allowing for testing the overall behaviour of SMAP 

SPL4SMAU product averaged on GEB after the 500-m pixel resampling. Thus, both soil 

moisture time series were plotted on daily scale, as well as the CC metric between them was 

calculated, so that the SMAP ability in responding to rainfall events could be checked. 

4.4.5 Validation of the annual Groundwater Recharge 

The Water Table Fluctuation method, so-called WTF method, was carried out using 

water level variation data in monitoring wells, to validate the GWR estimates obtained by 

water budget equation through the GIS-based modelling. The WTF method is based on the 

premise that the elevation of water levels in unconfined aquifers is the result of precipitation 

that reaches the free surface by infiltration, which characterises the recharge process 
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(Scanlon, Healy and Cook, 2002). For its application, manual and automatic groundwater 

level fluctuation data of the 23 wells in JPA CSA were used (see Figure 25c) – not the wells 

in GEB due to their shallow groundwater depths – because they featured GWR and their 

measurements were not meaningfully affected by water pumping.  

Accordingly, the WTF method requires only the knowledge of the aquifer specific 

yield (Sy, dimensionless) and the information about the potential groundwater level rise (ΔH, 

mm yr-1) during a particular time (Δt, yr) to estimate the GWR rates (RWTF, mm yr-1) 

(Equation (61) and Figure 39): 

RWTF = Sy
∆H

∆t
 (61) 

 

Figure 39 – Total groundwater rise (∆H) obtained by summing the actual groundwater rise (∆hpeak) 

and potential groundwater decline (∆hrec) for averaging on groundwater recharge rates in unconfined 

aquifers through the WTF method. Source: modified from Jie et al. (2011). 

The application of the Equation (61) for each water level elevation results in a 

recharge process where ΔH is set equal to the difference between the peak of the rise and the 

lowest point of an extrapolated antecedent recession curve at the peak time (Healy and Cook, 

2002). The extrapolated recession curve is the line that the water level would have without 

the elevation level; which was generated in this study by the same potential function adopted 

by Wendland et al. (2007). Furthermore, the Sy values of 0.10, 0.16 and 0.24 were simulated 

through the AQTESOLV v4.5 (AQuifer TEst SOLVer) software (Duffield, 2007) by Prof. 

Dr Nelson Caicedo. Such Sy values are similar to those reported by Vasconcelos, Teixeira 

and Neto (2010), ranging from 10.36% to 26.26%, in Jandaíra unconfined coastal aquifer in 

the Northeast of Brazil. Because of its simplicity and the wide availability of water level 
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hydrographs from the monitoring wells, the WTF method has been used for many years by 

hydrogeologists (Healy and Cook, 2002). 

4.5 Calibration of the Cosmic-Ray Neutron Sensing 

For estimating the GWR, the CRNS and TDR probes were installed at site 2 and site 

5 in GEB, respectively. The two techniques measure the soil moisture, but on different field 

scales: CRNS on intermediary-scale and TDR on point-scale. Both information were used 

to calibrate the parameters of the soil hydraulic properties via inverse modelling, as well as 

using the COSMIC operator for CRNS data. The soil hydraulic properties are essential for 

modelling the water flux processes in variably-saturated soils, such as GEB soil. As a result, 

the percolation water fluxes at different soil depths, and the GWR at the variable boundary 

bottom, could be estimated using HYDRUS-1D-COSMIC model. The stepwise procedures 

of data simulation and validation used for estimating the GWR are briefly described in Figure 

40, which include: Root Water Uptake (RWU), inward and outward water fluxes, percolation 

water fluxes, and GWR rates. 

 

Figure 40 – Flowchart describing the stepwise procedures of data simulation and validation for 

estimating the percolation water fluxes and groundwater recharge through the HYDRUS-1D-

COSMIC model. 
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4.5.1 Soil sampling, footprints and weighting functions  

The calibration scheme of the CRNS was conceived to cover different moisture 

conditions at 17 locations and 3 depths around the CRNS probe (Figure 41). The field 

campaign took place on July 20th, 2018, with the soil in a moderate humid condition. A 

higher number of soil core samples were extracted within ~10 m from the CRNS probe due 

to its high neutron counting sensitivity inside this radius (Köhli et al., 2015). Due to the 

presence of a shallow groundwater table in Podzol soil type, the soil was sampled only in 

three depth intervals: 0-5, 5-10 and 15-20 cm (IAEA, 2017). At laboratory, the soil core 

samples were immediately weighed before and after drying in an oven at 105°C, so that the 

Gravimetric Water Content (GWC, in g g-1), Volumetric Water Content (VWC, in cm3 cm-

3) and soil bulk density (ρbd, in g cm-3) could be calculated. 

 

Figure 41 – Soil core sampling scheme for CRNS probe calibration through the gravimetric method. 

Once the soil samples are collected, an average value shall be calculated in order to 

proceed with the CRNS calibration, whose procedures are depicted in Figure 42. Köhli et al. 

(2015) proposed a weighting method composed by the calculation sequence of VWC 

vertical, horizontal and final weighted average. 
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Figure 42 – Flowchart describing the procedure for site-specific CRNS calibration based on soil core 

samples, organic matter and lattice water equivalents and accounting for standard neutron intensity 

corrections. N0: dry neutron intensity parameter in CRNS calibration equation. 

Thus, the vertical weights are calculated in Equation (62): 

Wd(r, θ) = e−2d D86⁄  (62) 

where d is the depth of soil sampling and D86 the penetration depth. The D86 is given 

the vertical extent of the soil column from which – in our case during the calibration day – 

86% of the neutrons detected by CRNS probe have come from; and it is also called vertical 

footprint. It is negatively correlated to soil moisture, depends little on soil properties (e.g. 

bulk density: ρbd, in g cm-3), but can be influenced by other hydrogen pools (such as soil 

organic matter, lattice water and vegetation) (Bogena et al., 2013; Franz et al., 2012b). Thus, 

according to Köhli et al. (2015), the D86 decreases with distance to the CRNS probe similar 

to an irregular hemisphere, and can be calculated at a radial distance r (in m) by Equation 

(63): 

D86(ρbd, r, θ) = ρbd
−1 (8.321 + 0.142(0.967 + e−r 100⁄ )

26.42 + θ

0.057 + θ
) (63) 

Moreover, Köhli et al. (2015) also proposed a calculation of the horizontal footprint, 

R86, ranging usually from 130 to 240 m depending on absolute air humidity (ha, in g m-3), air 

pressure (p, in mbar), VWC (or θ,  in ), and vegetation height (Hveg, m), as shown by Equation 

(64): 
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R86(ha, θ, p, Hveg) = (
0.5

0.86 − e−p/1013.25
) ∙ (1 − 0.17(1 − e−0.41Hveg)(1 + e−7θ)) ∙ R86(ha, θ) (64) 

where R86(ha, θ) is a basic size of the horizontal footprint given by (0.86∫ Wrdr
∞

0
), which 

has to be calculated iteratively from horizontal weights, Wr, which are calculated as a 

function of radial distance, r, from the CRNS probe, r, and field-mean VWC by Equation 

(65): 

Wr(ha, θ) ≈ {
F1e

−F2r + F3e
−F4r, 0.5 m < r ≤ 50 m

F5e
−F6r + F7e

−F8r, 50 m < r ≤ 600 m
} (65) 

where Fi (i varying from 1 to 8) is individually dependent on field-mean VWC, 〈θij〉, 

and field-mean absolute air humidity, 〈ha〉, which can be averaged with equal weights, i.e.  

Wij=1∀i,j, for each depth ‘j’ and point ‘i’. Equation (66) summarizes the equations to 

calculate Fi:  

{
 
 
 

 
 
 
F1
F2
F3
F4
F5
F6
F7
F8}
 
 
 

 
 
 

=

{
 
 
 
 
 

 
 
 
 
 

8735(1 + 0.00978ha)e
−17.1758θ + 11720(1 + 0.003632ha) − 7045θ

((6.8513 × 10−5ha − 2.7925 × 10
−2)e−5.0399θ (1+9.2926θ)⁄ + 2.8544 × 10−2) (1 + 0.002455ha)

247970(1 + 0.00191ha)e
−17.63θ + 374655 − 195725θ

5.4818 × 10−2e−15.921θ + 0.6373 − 5.99 × 10−2θ + 5.425 × 10−4ha

1383702 (0.02 −
1

0.130(1521θ + ha − 0.130)
) (0.0156 − θ)e−4.156(θ−0.0156) + 5325(0.7 − 0.00238haθ)

6.031(ha + 98.5) + 1.0466 × 10
−3θ

(11747(1 − 0.00475ha)e
−41.66θ(1−0.00604ha) + 4521 − 2534θ)(2 + 0.01998ha)

((8.81 × 10−5ha − 1.543 × 10
−2)e−10.06θ (1+0.0405ha+20.24θ)⁄ + 1.807 × 10−2) (2 + 0.0011ha) }

 
 
 
 
 

 
 
 
 
 

 (66) 

The absolute air humidity is calculated from relative humidity (hr, in %) and air 

temperature (T, in °C) by Equation (67): 

ha = 
hr
100

(
6.112e

(
17.62T
243.12+T

)
216.68

T+ 273.16
) (67) 

Finally, the VWC final weighted average, 〈θk〉, is calculated by Equation (68): 

〈θk〉 =
∑ Wkθki

∑ Wki
 (68) 

where Wk refers to vertical (Wd) or horizontal (Wr) weighting functions, and θk 

denotes the VWC values obtained by gravimetric method. 

Köhli et al. (2015) recommend to first compute the vertical VWC average 〈θj〉i at 

each point ‘i’ with the weighting function Wdj(ri, 〈θij〉) (Equation (62)), and then average 

horizontally these values with the weighting function Wri(〈h〉, 〈θij〉) (Equation (65)). Later, 

Schrön et al. (2017) published a simpler, approximate formula for calculating the Wr. 
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4.5.2 Neutron intensity calibration and correction factors 

A theoretical relationship between corrected neutron intensity (N', in counts h-1) and 

VWC (or θ) in Equation (69) was proposed by Desilets, Zreda and Ferré (2010) after 

applying a neutron particle transport model for homogeneous sand (SiO2), which depends 

on one site-specific calibration parameter, the dry neutron intensity parameter (N0, in counts 

h-1). For calculating the N0, it shall be isolated in that equation and, then, N' and θ shall be 

averaged from the CRNS corrected intensity and the VWC weighting-averaged (see item 

4.5.1) in the calibration period, respectively. 

θ(N′, N0) = (
0.0808

N′ N0⁄ − 0.372
− 0.115) ρbd − SOW− LW (69) 

Similarly to Heidbüchel, Güntner and Blume (2016), the soil organic matter and 

lattice water equivalents (SOW and LW, respectively) were obtained in this study by 

weighting soil samples after the drying at 105°C, and the burning of 10 g of each dry sample 

at 400°C (for 16 h) and 1000°C (for 12 h), successively. The SOW and LW were then 

calculated in volumetric values by Equation (70) and (71): 

SOW = 0.556
m105 −m400

m105
ρbd (70) 

LW =
m400 −m1000

m105
ρbd (71) 

This ground-level neutron intensity is notably affected by air barometric pressure, 

incoming neutron flux, and atmospheric water vapour (Andreasen et al., 2017a). Thus, some 

correction models were developed to correct the CRNS intensity to arbitrary reference 

conditions. 

Air pressure is inversely proportional to neutron intensity acting as an atmospheric 

mass-shielding, which varies with geographic location and meteorological condition 

(Desilets and Zreda, 2001; Wang et al., 2019b). Thus, the air pressure correction factor for 

latitude and altitude is shown by Equation (72) (Desilets and Zreda, 2001): 

fp = e
(
Pi−P0
L

) (72) 

where L is the mass attenuation length for high-energy neutrons (Desilets, Zreda and 

Prabu, 2006), calculated as 138.45 hPa from geomagnetic cut-off rigidity map provided by 

(Andreasen et al., 2017a). P0 (in hPa) is an arbitrary baseline reference pressure, usually 
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averaged for the entire measurement period, equal to 1001.6 hPa in this study. Pi (in hPa) is 

the barometric air pressure at the time step of measurement. 

Solar activity can strongly influence the neutron intensity either on monthly or on 

weekly time scales (Desilets and Zreda, 2001). Thus, the incoming cosmic radiation 

correction factor normalizes the neutron intensity to a single reference solar activity level as 

shown by Equation (73) (Zreda et al., 2012): 

fm =
M0

M𝑖
 (73) 

where Mi (in counts h-1) is the incoming monitored neutron intensity retrieved from 

the neutron monitor database at the time step of measurement, available on: 

http://www.nmdb.eu/nest/. Data from the Potchefstroom monitor, South Africa, (PTFM), 

corrected by pressure and efficiency, were used because the nearby monitors either was 

closed down or had no data available online. In addition, M0 (in counts h-1) is the neutron 

intensity in an arbitrary baseline reference time, usually averaged for the entire measurement 

period, equal to 125 counts h-1 in this study. 

Atmospheric water vapour content affects the number of hydrogen atoms responsible 

to moderate the near-ground cosmic-ray neutrons (Köhli et al., 2015; Wang et al., 2019b). 

Thus, the water vapour correction factor was also developed to correct the CRNS intensity 

as shown by Equation (74) (Rosolem et al., 2013): 

fv = 1 + 0.0054(ha − h0) (74) 

where ha (in g m−3) is the absolute air humidity calculated at each measurement time 

by Equation (67) (see item 4.5.1), and h0 (in g m-3) is the absolute air humidity in an arbitrary 

baseline reference time, usually averaged over entire measurement period, equal to 18.45 g 

m-3 in this study.  

Finally, the corrected neutron intensity (N' in counts h-1) can be calculated from the 

measured neutron intensity (N in counts h-1) of the CRNS probe and the correction factors 

for air barometric pressure, incoming cosmic radiation, and atmospheric water vapour, as 

shown in Equation (75): 

N′ = N ∙ fp ∙ fm ∙ fv (75) 

Regarding the vegetation biomass, it may have an important influence over CRNS 

time series over forest condition (Heidbüchel, Güntner and Blume, 2016), but it was 

disregarded in this study due to unavailability of biomass information in GEB. The close 

http://www.nmdb.eu/nest/
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proximity of CRNS probe to leaves and stems induce the assimilation of exceeding 

thermalized neutrons that may compensate the subtraction effect of the biomass water 

equivalent term on CRNS calibration, such as obtained by Scheiffele (2015). Furthermore, 

the correction factor based on soil moisture profiles proposed by Baroni et al. (2018) was 

not used in this study due to insufficient amount and high sensibility of soil profile probes 

installed in GEB. 

4.5.3 Variably-saturated water flux modelling via HYDRUS-1D model 

4.5.3.1 Local environmental constraints for the groundwater flux modelling 

The GEB study area encompasses the main meteorological, geomorphological, 

geological, pedological and land covering characteristics of coastal sedimentary aquifer 

systems in coastal Northeast of Brazil (see item 2.1). It is featured by well-defined rainy and 

dry seasons, complex vegetation mosaic, high solar radiation incidence, shallow 

groundwater level and sandy soil texture, which together lead to a seasonally-variable soil 

saturation responsible for the high evapotranspiration rates, perennial stream flows, 

ephemeral sloped creeks, and ponding occurrences (see item 4.1).  

On one hand, the unconfined aquifer might be subject to high evaporation rates likely 

due to great net radiation during the dry season (Spring and Summer) (see Supplementary 

Figure 19). On the other hand, the free aquifer might undergo high transpiration rates through 

the Root Water Uptake (RWU) likely due to shallow groundwater capillarity rise during the 

rainy season (Fall and Winter) (Wolski and Savenije, 2006). These circumstances imply a 

strong groundwater dependency on rainfall depth temporal distribution, soil characteristics 

and vegetation cover that may lead to an accentuated annual variability of vertical 

percolation fluxes. Such characteristics may roughly mimic a semiarid condition, where 

well-defined rainy and dry seasons along with thin-flat-shaped sandy soil types, covered by 

complex variable vegetations, make them susceptible to seasonal saturation events (Ries et 

al., 2015). 

Vadose zone models are a suitable choice for modelling the recharge under shallow 

groundwater conditions, even though its use is hampered by short time series of a few poorly-

monitored hydrological data, which make the multi-dimensional modelling unfeasible due 

to the data-demanding calibration process (Neto, Chang and van Genuchten, 2013; Šimůnek, 

van Genuchten and Šejna, 2016). On the other hand, the one-dimensional simplification goes 
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along with the fact that the CRNS probe does not provide neither a horizontal nor a vertical 

resolution of soil moisture, but an integral quantification in its entire support volume instead 

(Baatz et al., 2014; Brunetti et al., 2019; Rivera Villarreyes, Baroni and Oswald, 2014). As 

such, unidimensional models can cope with these uncertainties simplifying the calibration 

process, but still providing valuable average information on intermediary scale. 

4.5.3.2 Soil hydraulic property model 

HYDRUS-1D model was selected to solve the governing flow equations for partially-

saturated porous medium, extended from the soil surface down to 1.94 m at CRNS location 

(site 2) and to 2.15 m at TDR location (site 5). Thus, the water flux was simulated using a 

modified form of Richards’ equation (Šimůnek and van Genuchten, 2008) shown in 

Equation (76): 

∂θ

∂t
=
∂

∂t
[K(h, x) (

∂h

∂x
+ cos β)] − St (76) 

where θ is the VWC [L3L-3], h is the water pressure head [L], t is time [T], x is the 

spatial coordinate [L] (positive upward), St is the sink term [L3L-3T-1], β is the angle between 

the flow direction and the vertical axis (= 0° for vertical flow, as in this study), and K is the 

unsaturated hydraulic conductivity function [LT-1]. 

HYDRUS-1D implemented the soil hydraulic functions of van Genuchten (1980) 

which used pore-size distributions of Mualem (1976) to solve Richards’ equation by 

Equations (77) and (78): 

θ(h) = {
θr =

θs − θr
[1 + |αh|n](1−1 n⁄ )

θs

    
,   if         h < 0

 
,   else if h ≥ 0

 (77) 

K(h) = Ks (
θ − θr
θs − θr

)
l

[1 − (1 − (
θ − θr
θs − θr

)
1 (1−1 n⁄ )⁄

)

(1−1 n⁄ )

]

2

,     if n > 1 (78) 

where are six parameters divided into three shape factors and three normalized 

factors, the latter are: α [L-1], factor inversely related to the air entry pressure, n [-], measure 

of pore size distribution, and l [-], lumped parameter that accounts for pore tortuosity and 

connectivity; the formers are: θr [L
3 L-3], residual soil moisture, θs [L

3 L-3], saturated soil 

moisture, and Ks [L T-1], saturated hydraulic conductivity.  
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For coarser soil textures as in GEB, GWR mostly depends on the shape n factor, 

where higher values produce higher GWR; however, this relationship is highly nonlinear 

(Wang et al., 2009). The air entry of -2 cm was tested, for it seems appropriate in reducing 

the non-linearity effect of the hydraulic conductivity function close to saturated conditions 

(Ries et al., 2015; Vogel, van Genuchten and Cislerova, 2001). In addition, for shallow 

groundwater level as in GEB, the upward soil moisture fluxes are largely controlled by the 

n factor as well as by the ‘l’ factor, whose effects still remain underexplored in the literature, 

which is usually assumed to be equal to 0.5 (Mualem, 1976; Wang et al., 2009; Ventrella et 

al., 2019). 

4.5.3.3 Neutron operator COSMIC and inverse modelling 

The inexistence of values of the soil hydraulic properties obtained experimentally in 

GEB, such as by Richards’ chamber equipment, leave the calibration process at the mercy 

of either literature-reviewed or indirectly-modelling-estimated values. In this study, the one-

dimensional inverse modelling were applied to TDR-based soil moisture and CRNS neutron 

intensity data to calibrate the soil hydraulic properties. For CRNS data, the physically-based 

neutron operator COSMIC (Shuttleworth et al., 2013), externally coupled with HYDRUS-

1D (Brunetti et al., 2019), was used to simulate the aboveground neutron intensity, so-called 

NCOSMIC, by Equation (79) and (80): 

NCOSMIC = NC  ∫ A(z)[αρs(z) + ρw(z)]e
−(
ms(z)
L1

+
mw(z)
L2

)
∙ dz

∞

0

 (79) 

A(z) =  (
2

π
) ∫ e

−
1

cosθ
(
ms(z)
L3

+
mw(z)
L4

)
∙ dθ

π 2⁄

0

= (
2

π
) ∫ e−

x
cosθ ∙ dθ

π 2⁄

0

= ey (80) 

where the pairwise ρs(z) and ms(z), and ρw(z) and mw(z), are respectively the: local 

bulk density and integrated mass of dry soil per unit area; and total soil water density 

including lattice water and integrated mass of water per unit area, at the depth z and from 

the soil surface (Figure 43). 
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Figure 43 – Fast neutron source volume element yielded in z-depth soil plane reaching the 

measurement point P, which is attenuated by an exponential factor with length constants L3 and L4. 

Source: Shuttleworth et al. (2013). 

The variables ‘x’ and ‘y’ in Equation (80) were associated to speed up the 

calculations when using COSMIC in data assimilation applications, using a set of functions 

defined for different ranges of ‘x’, as shown in Equation (81): 

{
 
 

 
 

x ≤ 0.05
0.05 < x ≤ 0.1
0.1 < x ≤ 0.5
0.5 < x ≤ 1
1 < x ≤ 5
5 ≤ x }

 
 

 
 

=

{
  
 

  
 
y = −347.86105x3 + 41.642335x2  − 4.018x − 0.00018

y = −16.240665x3 + 6.64468x2 − 2.82003x − 0.01389

y = −0.952455x3 + 1.44751x2 − 2.18933x − 0.04034

y = −0.097815x3 + 0.36907x2 − 1.72912x − 0.10761

y = −0.004165x3 + 0.05808x2 − 1.361482x − 0.25822

y = 0.00061x2 − 1.04847x − 0.96617 }
  
 

  
 

 (81) 

The COSMIC also requires several site-independent and site-specific time-constant 

parameters. Thus, while the parameters L1 = 162.0 g cm-2, L2 = 129.1 g cm-2, L4 = 3.16 g 

cm-2 were all found to be constant for all locations (Shuttleworth et al., 2013), the parameters 

L3 (g cm-2) and α (cm-3 g-1) were found to be dependent on  bulk density (Equations (82) and 

(83)), averaged down to 20-m depth in this study (see item 4.5.1). Moreover, two other 

parameters must be determined: total lattice water equivalent (SOW+LW) [L3 L-3] (see item 

4.5.2), and the high-energy neutrons at the soil surface, so-called NC. The latter was obtained 

by the correlation set forth by Baatz et al. (2014) in relation to parameter N0, as shown in 

Equation (84). The fully calibrated COSMIC neutron operator can then be used to inversely 

determine the soil hydraulic properties, retention curve and soil moisture from the measured 

neutron intensity. 
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L3 = −31.65 + 99.29ρbd (82) 

α = 0.404 − 0.101ρbd (83) 

NC = 0.1612N0 + 7.1956 (84) 

The convergence of the parameters of the soil hydraulic properties also relies on the 

input of initial values of the soil hydraulic properties. Thus, the Rosetta Lite v.1.1 module 

(Schaap, Leij and van Genuchten, 2001), incorporated to HYDRUS-1D (Šimůnek, van 

Genuchten and Šejna, 2008), was also used to calculate the initial values of the soil hydraulic 

properties from soil texture and soil hydrophysical data. The vertical soil texture was then 

obtained through the soil particle distribution experiment from soil samples collected at 

different depths (-5, -15, -25, -35, -55 and -95 cm), and averaged by sieving (particle size > 

0.063 mm) and sedimentation methods (particle size < 0.063 mm). 

The global optimizer covariance matrix adaptation-evolution strategy (CMA-ES) 

(Durner and Iden, 2011; Hansen, Müller and Koumoutsakos, 2003) was used to optimize 

the values of the soil hydraulic properties through the Parameter ESTimation software 

(PEST) from Doherty (2004). Inverse modelling used a least-squares objective function 

described in Equation (85):  

Φ(q) =∑{ri(q)}
2

N

i=1

 (85) 

where q denotes the vector of the parameters of the soil hydraulic properties to be 

optimized, ri are the residuals, and the summation is carried out over the number of 

observations N. The uncertainty of each optimized parameter qj, j = 1, ..., m, was 

determined from the diagonal elements (qjj) of the parameter covariance matrix C(q), 

evaluated for the final parameter set q* (Rivera Villarreyes, Baroni and Oswald, 2014). 

This result represents an estimate of the standard deviation: √C(qjj∗ ). 

4.5.3.4 Root water uptake model 

The water taken up by roots is frequently assumed to be controlled by a root density 

exponential distribution that decreases with soil depth (Yu et al., 2016). Root water uptake 

is mathematically described by a macroscopic model that represents water extraction as the 

matric-potential related single sink term RWUa(h), defined by Equation (86) (van 
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Genuchten, 1987). This equation is a simplification of the one by Feddes, Kowalik and 

Zaradny (1978), which is recommended to be used when saturated or near-saturated 

conditions occur for a short period (van Genuchten, 1987). 

RWUa(h) =
1

1 + (
h
h50

)
p RWUp         , where RWUp =  b(x)Tp 

(86) 

where RWUp is the potential root water uptake calculated from the potential 

transpiration rate, Tp [L], and b(x) the normalized water uptake distribution [L-1], h is the 

pressure head [L], h50 represents the soil water potential [L] at which the water extraction 

rate is reduced by 50% from the potential rate, which can be set as -370 cm for a sand soil, 

and p is an empirical coefficient (= 3, van Genuchten and Gupta, 1993). Apropos, Rivera 

Villarreyes, Baroni and Oswald (2014) found a negligible effect of h50 relative to the 

parameters of the soil hydraulic properties on inverse modelling. The normalized water 

uptake distribution function is shown by Equation (87) (Hoffman and van Genuchten, 1983): 

b(x) =

{
 
 

 
 
1.667

Lr
                             ,     x > L − 0.2Lr                     

2.0833

Lr
(1 −

L − x

Lr
)    ,     x ∈ (L − Lr; L − 0.2Lr)   

    0                                  ,     x < L − Lr                          

 (87) 

where Lr is the total depth of the root zone [L] set constant equal to 0.70 m similar to 

wet-period rooting depth in Xeric Shrubland vegetation (Pinheiro, Costa and de Araújo, 

2013), and L is the x-coordinate of the soil surface [L] discretised on nodes at each 0.5 cm; 

knowing that the soil profile bottom is located at x = 0 and the soil surface at x = L. The L 

is set constant equal to 194 cm (389 nodes) at CRNS location (site 2) and to 215 cm (431 

cm) at TDR location (site 5), which were found when groundwater completely dried up in 

the observed wells, which is in agreement with the mean depth down to restrictive layer in 

the Podzol soil type of the Northeast of Brazil (MA and SUDENE, 1972).  

4.5.3.5 Vegetation growth, interception and evapotranspiration partition 

The vegetation growth plays important roles in modelling results due to shallow 

groundwater conditions at GEB. To account for time-dependent plant growth, monthly 

information about Leaf Area Index (LAI) variation obtained by remote sensing imagery was 

inputted into the model, as explained in item 4.3.2. On the other hand, since the GEB mostly 
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features the natural vegetation (see item 4.1), the crop height was set as a constant value 

equal to 330 cm, determined by arbitrary in situ observations. Regarding the intercepted 

water from rainfall, the plant canopy interception was calculated by an empirical equation 

using the aforementioned variables and daily precipitation data (Šimůnek et al., 2013b) due 

to lack of measurements in GEB, as shown in Equation (88):  

I = i ∙ LAI (1 −
1

1 +
SCF ∙ P
i ∙ LAI

) (88) 

where I is interception depth [L], P is precipitation depth [L], LAI is Leaf Area Index 

[L2 L-2], which was averaged over GEB from a map composition of bands 1 and 2 of 

MYD09Q1-MOD09Q1 satellite products (see item 4.3.2), i is the interception constant [L 

T-1], set equal to 0.25 mm d-1 commonly used for ordinary agricultural crops, and SCF is the 

Surface Cover Fraction [-] of incidence radiation not intercepted by the canopy, calculated 

by Equation (89) (Šimůnek et al., 2013b): 

SCF = e−k∙LAI (89) 

where k is the light extinction coefficient, set equal to 0.463 (Raoufi and Beighley, 

2017) due to arboreal-shrub physiognomies of the vegetation, with a generally rounded 

canopy. 

Although this study have considered the reference evapotranpiration (see Equation 

(59), in item 4.4.2) due to the tropical wet condition of GEB (see item 4.1), the potential 

evapotranspiration (Etp) could also be calculated by the Penman equation (Penman, 1948) 

modified by Shuttleworth (1993) in Equation (90): 

Etp =
∆Rn + 6.43γ(1 + 0.536u2)(es − ea)

2.45(∆ + γ)
 (90) 

where Rn is the net radiation at the crop surface (MJ m−2 day−1), G indicates the soil 

heat flux density (MJ m−2 day−1), u2 is the mean hourly wind speed at 2 m height (m s−1), es 

defines the saturation vapour pressure (kPa, see Equation (9)) and ea indicates the actual 

vapour pressure (kPa, see Equation (10)), ∆ represents the slope vapour pressure curve 

(kPa°C−1, see Equation (11), and γ is the psychrometric constant (kPa°C−1, see Equation 

(12)). 

Then, in this study, the Beer’s equation was used to split Eto rather than Etp into 

potential soil surface evaporation and potential plant transpiration based on LAI/SCF by 
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Equation (91) and (92), respectively. For a detailed explanation of the partitioning of 

evapotranspiration, see Sutanto et al. (2012). 

Tp = Eto(1 − e
−k∙LAI) = EtoSCF (91) 

Ep = Etoe
−k∙LAI = Eto(1 − SCF) (92) 

Both fluxes shall be reduced to actual values (Ta and Ea) based on a root water uptake 

model (Feddes, Kowalik and Zaradny, 1978), explained previously, and a surface energy 

balance model (Camillo and Gurney, 1986). Actual evaporation (Ea) in the model is the result 

of the Richards equation solution for the given boundary conditions, as shall be explained in 

Equation (93) (see item 4.5.3.6). Some other hydro-phenomenological influences were 

disregarded on model setting due to the data unavailability, such as temporal variations of 

rooting depth and root density. 

4.5.3.6 Boundary conditions 

Set boundary conditions for GWR simulation is always a pivotal initial step for 

yielding trustworthy outcomes, but in GEB its constrained environmental aspect makes it a 

prominent modelling step. According to Wang et al. (2009), setting an appropriate lower 

boundary condition should be more important than selecting values of the soil hydraulic 

properties (such as the hydraulic conductivity) for simulating the GWR in shallow 

groundwater condition.  

For the upper boundary, it was set the atmospheric condition allowing for a surface 

layer of water to built up when infiltration capacity is exceeded, due to the occurrence of 

surface ponding because of the flat landscape at upstream of GEB. The maximum thickness 

of the surface water layer (hS) before surface runoff be initiate was set as 5 cm, determined 

by arbitrary in situ observations. In the absence of surface ponding, for a flat surface, the 

boundary condition is obtained by limiting the absolute value of the flux by Equation (93) 

(Neuman, Feddes and Bresler, 1974): 

|−K
∂h

∂x
− K| ≤ E         , if hA ≤ h ≤ hS (93) 

where E is the maximum potential rate of infiltration or evapotranspiration under the 

current atmospheric conditions, K is the hydraulic conductivity, h is the pressure head at the 
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soil surface, and hA is the minimum permitted pressure head under the prevailing soil 

conditions. The hA was calculated by Equation (94) (Šimůnek et al., 2013b): 

hA = −
RT ln(hr)

gM
 (94) 

where R is the universal gas constant equal to 8.314 J mol-1K-1, T is the absolute air 

temperature (in K), hr is the relative humidity (in %), g is the gravitational acceleration equal 

to 9.81 m s-2, and M is the molecular weight of water equal to 0.018015 kg mol-1. 

Another option is to allow for building up a water height on the surface, in case of a 

surface ponding be expected for a flat surface, as shown in Equation (95) (Mls, 1982): 

(−K
∂h

∂x
− K) = q0(t) −

dh

dt
         , at x = L (95) 

The flux q0 denotes the net infiltration rate, namely the difference between 

precipitation and evaporation, and h(L,t) denotes the height of surface water layer (pressure 

head), which increases due to precipitation, and reduces due to infiltration and evaporation. 

The lower boundary was set as a variable pressure head condition, using the 

groundwater height from the bottom of soil discretization, since the Podzol soil type features 

a shallow groundwater table stemmed from the presence of a restrictive layer ~2 m below 

the surface (see item 2.1). This condition affects considerably the soil moisture profile which 

is highly influenced by capillary rise close to groundwater table, affecting, in turn, the 

downward water flux. The initial condition was assumed to be a soil moisture profile defined 

from the PR2 probes at the beginning of model processing. 

4.5.3.7 Water budget equation in HYDRUS-1D  

The GWR rates was calculated on an annual scale, after the accumulation of the daily 

water flux at the bottom boundary, which was set as variable pressure head, namely the 

groundwater level. The HYDRUS-1D code may perform the computations of the water 

budget equation at prescribed times for several and preselected subregions of the flow 

domain, but this study considered only one homogeneous region consisting of sandy soil 

texture. The water balance information consists of the actual volume of water, V, in that 

region, and the soil water storage changes, ΔS, of inflow or outflow to or from the region. 

These variables V and ΔS are evaluated in HYDRUS-1D through the Equations (96) and 

(97) (Šimůnek et al., 2013b). The volume difference in a certain time period yields ΔS. 
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V =∑∆xi
θi + θi+1

2
 (96) 

ΔS =
Vj − Vj−1

∆t
 (97) 

where θi and θi+1 refers to soil moisture evaluated at the corner nodes of the element, 

∆xi is the size of the element between nodes, and Vj and Vj-1 are volumes of water in a soil 

region (the entire profile) computed at the current and previous time levels, respectively. 

The water flux is simulated along the soil profile discretized into N-1 adjoining 

elements, being N the number of nodes, which was set equal to 194 cm (389 nodes) at CRNS 

location (site 2) and to 215 cm (431 nodes) at TDR location (site 5) (see item 4.5.3.4). 

HYDRUS-1D assumes that the vertical coordinate x is directed positive upward, and from 

Darcy’s law, the x-components of the nodal fluxes are computed for each node n according 

to Equation (98) (Šimůnek et al., 2013b): 

qi
j+1

=

−Ki+1 2⁄
j+1

(
hi+1
j+1

− hi
j+1

∆xi
+ 1)∆xi−1 − Ki−1 2⁄

j+1
(
hi
j+1

− hi−1
j+1

∆xi−1
+ 1)∆xi

∆xi−1 + ∆xi
 

(98) 

where subscripts ‘i-1’, ‘i’, and ‘i+1’ indicate the position in the finite-difference mesh 

and superscripts ‘j+1’ represent the current time levels. 

Finally, the annual GWR rate (or simply R) was calculated at the bottom boundary 

by integrating the water flux over time, and then, it was checked through the water budget 

equation, by applying all previously-mentioned water balance components, namely: rainfall 

(P), interception (I), actual root water uptake (RWUa), actual evaporation (Ea), surface runoff 

(Q), and soil water storage changes (ΔS), according to Equation (99): 

R = P − I − RWUa − Ea − Q − ΔS        ,        in cm d
−1 (99) 

4.6 Validation of the HYDRUS-1D-COSMIC results 

4.6.1 Validation of the CRNS-based neutron intensity 

The CRNS neutron counts recorded at hourly basis were smoothed with 8-h and 24-

h moving windows to diminish the measurement noise, similarly to Bogena et al. (2013). As 

such, the dry neutron intensity (N0, in counts h-1) was firstly calibrated for these different 

moving averages. Then, the corrected neutron intensity (N' in counts h-1) was calculated by 
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Equation (75) (see item 4.5.2) and summed for these different moving averages. Finally, the 

soil moisture could be calculated by Equation (69) (see item 4.5.2), together with its standard 

deviation calculated from error propagation by Equation (100), once the neutron intensity 

follows Poissonian statistics (IAEA, 2017). 

σθ =
0.372N0√N′

(N′ − 0.115N0)2
 (100) 

For validating the CRNS results, soil moisture data were monitored down to 1 m 

below soil surface from three profile probes, model PR2/6 by Delta-T Devices (see item 

4.2). The measurements of the three PR2/6 (or simply PR2) were converted from 

millivoltage output unit (denoted as V) to VWC (denoted as θmineral) using the generalised 

polynomial mineral soil moisture calibration by Equation (101). The generalised calibration 

curve was optimised by the manufacturer to cover a wide range of mineral soil types with 

organic content of ~1% (DELTA-T, 2016), which is the case at GEB. Then, the sensor 

measurements were smoothed using moving windows, similarly to CRNS situation, and then 

averaged using the weighting functions (see item 4.5.1) for validating the CRNS time series. 

θmineral =
(1.125 − 5.53V + 67.17V2 − 234.42V3 + 413.56V4 − 356.68V5 + 121.53V6) − 1.6

8.4
 (101) 

The PR2 recalibration for the GEB soil condition was also carried out by Equation 

(102) through the gravimetric method, double collecting and oven-drying soil core samples 

in each depth of measurement. Conversely, the results were not as good as that obtained by 

the generalised curve, likely due to the insufficient number of field campaign data. Likewise, 

the PR2 manufacturer recommends the curve recalibration only when soil features stood out 

of provided specification; whose number field campaign data should also cover all interval 

of soil moisture variation (DELTA-T, 2016). 

θ′ =
(1.125 − 5.53V + 67.17V2 − 234.42V3 + 413.56V4 − 356.68V5 + 121.53V6) − a0

′

a1
′  (102) 

where θ’ is the soil moisture obtained by PR2/6 recalibration curve, and a0’ and a1’ 

are the slope and offset parameters of the recalibration curve. 

4.6.2 Validation of the hydraulic conductivity 

Amongst the parameters of the soil hydraulic properties, the hydraulic conductivity 

is one of those obtained via inverse modelling, and one of the most important as it represents 

the ability of a medium to transmit water when subjected to a hydraulic gradient. The 
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hydraulic conductivity in an unconfined aquifer can be simply obtained by water-level 

displacement data, resulting from the overdamped injection or withdrawal of a slug in a well, 

the so-called Slug test. Bouwer and Rice (1976) developed an empirical logarithmic 

relationship describing the water-level response in an unconfined aquifer, which represents 

the vertical distance between the rising water level in a well and the equilibrium water table 

in an aquifer. This relationship can be expressed Equation (103), which was then used to 

validate the hydraulic conductivities estimated in [L T-1] via inverse modelling. 

K =
rc
2 ln (

Re
rw
)

2Le

1

t
ln (

h0
ht
) (103) 

where, rc and rw denote the piezometer and perforation radii, respectively, Re 

corresponds to the effective radial distance over which the hydraulic gradient is dissipated, 

Lw and Le are the saturated thickness and the filter section length of the well, respectively, 

and the h0 and ht represents the dynamic water level at time 0 and time t, respectively. For 

monitoring the water level variation, one fast-response pressure transducer (Diver) was 

installed in the soil due to the permeable aquifer system. 

4.6.3 Validation of the simulated soil moisture profile 

HYDRUS-1D model allows for plotting the soil moisture time series at different 

depths either at a regular time interval (daily in this study) or at every time step of simulation. 

After the inverse calibration of the soil hydraulic properties using the CRNS data (at site 2), 

the PR2 profile probe data was used to validate the soil moisture time series simulated by 

HYDRUS-1D-COSMIC model. For such purpose, six observation points were selected in 

HYDRUS-1D graphical editor, namely at: -2, -15, -25, -35, -55, and -95 cm; where the first 

depth was adopted to cope with the high total lattice water equivalent and the air-entry 

consideration (equal to -2 cm) at soil surface. Moreover, the goodness-of-fit metrics used for 

assessing the agreement between the predicted and observed time series were the coefficient 

of determination (R2) and the Kling-Gupta Efficiency coefficient (KGE) (see item 4.4.1). 

Similarly, the soil moisture time series using TDR data (at site 5) was obtained at three 

observation points, namely at -5, -20 and -40 cm, and the R² and KGE metrics were 

calculated. Moreover, the linear regressions for both CRNS and TDR datasets at the 

aforementioned depths were also plotted, for checking their shift in relation to the 1:1 perfect 
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fit. Thus, the time series and scatter plots for both CRNS and TDR sites were then plotted to 

allow for an overview of the overall behaviour of peak and recession differences.  

4.6.4 Validation of the daily Groundwater Recharge rate 

Since the HYDRUS-1D provides daily water flux estimates, the verification of GWR 

through the WTF graphical method becomes unfeasible. Therefore, a fixed-interval modified 

WTF method, combining the RISE and Master Recession Curve (MRC) approaches 

elucidated by Nimmo, Horowitz and Mitchell (2015) (Figure 44), was used as an alternative 

solution. The RISE procedure was used, which considers that: given a record of water level 

at equal time intervals, the rise for a given interval is the amount by which the water table at 

the end of that interval is higher than for the previous interval, namely only positive values 

are considered. Moreover, this study also considered the MRC approach for determining the 

contribution of the extrapolated recession curve obtained by a linear regression equation. As 

such, the MRC was defined along the longer available groundwater recession period, slightly 

different from Delin et al. (2007), which adopted a nonlinear regression equation. The water 

level elevation is calculated by the sum of the actual groundwater rise (Δhpeak) and potential 

groundwater decline (Δhrec) (Jie et al., 2011). Then, the specific yields equal to 0.10, 0.16 

and 0.24 were obtained (as explained in item 4.4.5), and they were used together with the 

water level elevation in the Equation (61) to calculate the GWR on daily fixed-interval. This 

approach is very simple and objective, as well as involves less subjectivity, once the user 

does not need to make a judgment based on previous experience to extrapolate the recession 

curve for each recharge event. Conversely, it is expected that the approach holds a relevant 

sensitivity to the measurement frequency and probe accuracy. 

 

Figure 44 – Two fixed-interval methods based on the WTF method for groundwater recharge 

estimation, namely: (a) RISE method, and; Master Recession Curve (MRC) method. Source: Nimmo, 

Horowitz and Mitchell (2015).  
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5 RESULTS 

5.1 Distributed Groundwater Recharge estimated by an enhanced GIS-based water 

balance model 

The distributed estimates of the water balance components were calculated for 2016 

and 2017 on annual and monthly scales and, then, plotted in maps, summarized by 

histograms and box plots, as well as verified by ground-based data collected over JPA CSA. 

The results of each water balance component are then presented separately in the following 

items. 

5.1.1 Precipitation analysis 

Two precipitation data sources were used in this study: ground-based and satellite-

based data; the former interpolated and the latter resampled to 500-m spatial resolution (see 

item 4.3.1). Comparisons between monthly median estimates revealed the IMERG data 

underestimation with a reasonable linear association, PBIAS and CC equal to -40% and 90%, 

respectively, which after the linear scaling bias correction was improved to PBIAS and CC 

equal to -9% and 99% (Figure 45). The errors were also reduced after the bias correction, 

once the RRMSE decreased from 59% (70.65 mm) to 15% (18.06 mm). Keeping the original 

spatial variability data pattern, the satellite-based annual mean values were increased on 

43.32% (953.98 to 1367.27 mm) in 2016 and 79.31% (912.17 to 1635.65 mm) in 2017. This 

underestimation stemmed likely from the inability of the passive microwave sensors in 

detecting warm-rain processes forced by topography on coastal Northeast of Brazil (Gadelha 

et al., 2019). Despite that precipitation shift in this coastal area, Figure 45 also showed a 

decreasing precipitation tendency from shoreline towards inward, which is in agreement, 

although biased, with the overall behaviour presented by Cabral da Silva et al. (2000b). 

Moreover, Gadelha et al. (2019) showed that the IMERG data had good performance across 

most of Brazil, with correlation and root mean square error equal to 99% and 17.6 mm on 

monthly basis in Northeast region, respectively. Thus, the literature justifies the suitability 

of using bias-corrected IMERG (henceforth named IMERG*) in comparison to ground-

based data (henceforth named Gauge). 
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Figure 45 – Bias correction by the linear-scaling method based on monthly mean correction factors 

applied on IMERG V05B daily precipitation data for correcting the (e) monthly and annual 

precipitation in (a, c) 2016 and (b, d) 2017 over JPA CSA. 

Gauge and IMERG* data distribution depicted annual decreasing gradients from East 

to West along the ~46 km from the coastline toward headboard of JPA CSA, averaged on: 

1,368.58 (Gauge) and 1,367.27 mm (IMERG*) in dry year (2016), and; 1,672.06 (Gauge) 

and 1,635.65 mm (IMERG*) in average year (2017) (Figure 46). Precipitation range in 2016 

varied from 1,001.24 to 1,626.14 mm for Gauge and 1,120.09 to 1,598.53 mm for IMERG*, 

while in 2017 it varied from 1,306.89 to 2,072.26 mm for Gauge and 1,049.69 to 2,298.53 

mm for IMERG*. Precipitation occurred mostly within the regular rainy season (refer to 

Barbosa et al., 2018), mainly from April to June in 2016, summing 769.31 mm (56.21%) for 

Gauge and 794.39 mm (58.10%) for IMERG*, and from May to July in 2017, summing 

901.8 mm (53.93%) and 898.06 (54.91%). The mean value of the monthly precipitation 

averages in 2016 and 2017 stood on 114.05 and 139.34 mm for Gauge, and 113.94 and 

136.30 mm for IMERG*, respectively, while the maximum values reached up to 306.22 and 

358.32 mm (Gauge) and 325.97 and 389.34 mm (IMERG*), respectively (see also 

Supplementary Figure 1 to Supplementary Figure 4). Moreover, in 2016, the scattering of 

IMERG* data was slightly smaller than Gauge one, whereas in 2017 the IMERG* data 

scattering was greater than Gauge one, once the monthly mean of interquartile ranges 

differences between IMERG* and Gauge was -4.09 and 18.03 mm, respectively. 



97 

 

Figure 46 – Annual distributed precipitation obtained by (a, d) Inverse Distance Weighting (IDW) 

interpolation through the rain gauge network, and by (b, e) bilinear interpolation and bias correction 

through IMERG imagery, as well as (c, f) monthly percentile (10%, 25%, 50%, 75%, 90%) 

variability in 2016 and 2017. Points: mean. 

5.1.2 Evapotranspiration and soil water storage change analyses 

For the actual evapotranspiration calculation, the ground-based meteorological data 

were replaced by reanalysis data assimilated by GLDAS-2.1 Noah (Figure 47). Since four 

pixels covered mostly JPA CSA and did not meaningfully vary among each other, they were 

averaged and then inputted in the adapted MODIS algorithm (Gusmão, 2017; Mu et al., 

2007; Mu, Zhao and Running, 2011; Teixeira et al., 2014, 2013) (see item 4.3.2). On average, 

JPA CSA featured a wide oscillation of high relative humidity values varying from 37.74 to 

98.01% (mean of 75.29%) and a short oscillation of high air temperature values varying from 

19.76 to 33.63°C (mean of 25.95°C). In addition, it held an intense incidence of incoming 

short-wave radiation reaching up to 982.02 W m-2 (mean of 390.99 W m-2) and is subjected 

to a mean air pressure condition varying from 100.16 to 101.40 kPa (mean of 100.77 kPa). 
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Figure 47 – Meteorological variables obtained by GLDAS-2.1 Noah L4 reanalysis data in 2016 and 

2017: (a) relative humidity, (b) incoming short-wave radiation, (c) air temperature, and (d) 

barometric air pressure. Solid line: mean; Dashed line: mean ± standard deviation. 

The MODIS-based evapotranspiration also requires the biophysical variables, which 

depend on the land use/cover spatial distribution over JPA CSA, provided on a high 

resolution by MapBiomas 3.1 collection. The study area comprehends 14 land uses/covers 

out of 25 MapBiomas classes listed over Brazil, which were further reduced to 6 classes: 

bare soil, forest, mosaic of agriculture and pasture, pasture, urban infrastructure and flooded 

areas (or water) (Figure 48). This procedure was used for simplicity sake on the spatial 

assignment of phonological parameters (see item 4.3.2.1). A relatively increasing on natural 

green areas coverage was noticed from 2016 to 2017, so that pasture and forest covers 

augmented in 6.32% (16.62 km²) and 4.76% (13.62 km²), respectively, whereas 

anthropologically-modified coverages decreased, namely bare soil in -15.43% (2.48 km²), 

urban area in -4.63% (4.65 km²) and mosaic in -7.16% (23.52 km²). Overall, JPA CSA was 

mainly covered 85.36% on average by all green areas (forest in 292.83 km², mosaic in 316.95 

km², and pasture in 271.09 km²), while urban infrastructure and bare soil comprehended only 

9.50% (98.05 km²) and 1.44% (14.83 km²). This happened due to recent public policies for 

conservation and recovery of green permanent areas and for gradual evacuation of irregular 

human-interfered areas (Crouzeilles et al., 2019; SOSMA and INPE, 2019). 
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Figure 48 – Land use/cover classification by MapBiomas collection 3.1 over JPA CSA in (a) 2016 

and (b) 2017. 

The actual evapotranspiration was spatially calculated over JPA CSA in 2016 and 

2017 on the daily resolution and then accumulated to a monthly resolution (Figure 49, 

Supplementary Figure 5 and Supplementary Figure 6). The mean actual evapotranspiration 

was 1,170.51 (2016) and 1,218.20 mm (2017), corresponding to 85.53% (Gauge) and 

85.61% (IMERG*) of mean precipitation depth in 2016, and 72.86% (Gauge) and 74.48% 

(IMERG*) in 2017. The urban area of JPA CSA, mostly located in Northeastern portion, 

portrayed low evapotranspiration values (less than 850 mm) due to the sizeable less-

permeable cover, despite the highest precipitation depths (see Figure 46). On the other hand, 

the vegetated areas and riparian zones of rural areas, mainly in downstream part of Gramame 

basin and in Western portion of Paraíba downstream right bank, featured the highest actual 

evapotranspiration values (higher than 1,450 mm). Regarding the monthly 

evapotranspiration distribution, it is noticed that the data scattering took the right-skewed 

leptokurtic histogram shape in rainy season (April to July), which depicted short interquartile 

ranges of 31.21 (2016) and 28.67 mm (2017). In the other months, the data scattering 

displayed larger interquartile ranges of 43.14 (2016) and 42.80 mm (2017), among which 

the drier months (September to October) presented left-skewed (2016) and centre-skewed 

(2017) histograms shapes with normal kurtosis. These actual evapotranspiration behaviours 

is likely due to a combination of high incident radiation, water availability, and land 

use/cover heterogeneity (de Oliveira et al., 2016b), which led to well-distributed histograms 

throughout the months in JPA CSA with mean of monthly means on 103.27 (2016) and 

100.09 mm (2017). 
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Figure 49 – Annual distributed (a, b) actual evapotranspiration (Etr) obtained by adapted MODIS 

algorithm (Gusmão, 2017; Mu et al., 2007; Mu, Zhao and Running, 2011; Teixeira et al., 2014, 2013) 

from MapBiomas land use/cover with map composition for cloud cleaning, and (d, e) soil water 

storage changes (ΔS) in 1-m root zone obtained by bilinear interpolation, as well as (c, f) monthly 

percentile (10%, 25%, 50%, 75%, 90%) variability in 2016 and 2017. Points: mean. 

The distributed soil water storage changes in the root zone were calculated from 

SMAP SPL4SMAU soil moisture data and interpolated to 500-m spatial resolution (Figure 

49, Supplementary Figure 7 and Supplementary Figure 8). In both dry (2016) and average 

(2017) years, the soil water storage changes declined throughout the JPA CSA, once they 

varied from -26.85 to -5.89 mm (2016), and from -40.60 to -11.81 mm (2017). The soil water 

storage changes in urban area on Northeastern portion featured deep decline in both years, 

whereas the headboard on Western portion featured a decline deeper in 2017 and shallower 

in 2016. On monthly scale, the soil water storage changes happened mainly along the rainy 

seasons (April to May in 2016, and March to July in 2017), and exceptionally on 

December/2016. This is likely the reason why the decline was deeper in 2017 (mean of -

24.04 mm) than 2016 (mean of -16.21 mm). Moreover, the monthly data scattering was 

averaged on 64.98% higher in 2017 than in 2016, whose interquartile range stood on 4.37 

mm and 7.22 mm, respectively. These set of results shows that an above-average rainy 

condition is required for a positive soil water storage change in JPA CSA, which may impact 

severely on water shortage over the area. 
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The precision of actual evapotranspiration estimates was verified against the ground-

based reference evapotranspiration, calculated by Penman-Monteith equation (Allen et al., 

1998), by averaging on the 500-m footprint of A320 INMET meteorological station (Figure 

50). The daily mean actual evapotranspiration on the A320 footprint ranged from 0.98 to 

4.60 mm, with the mean and standard deviation of 3.50 and 0.43 mm, respectively, whereas 

the daily mean reference evapotranspiration calculated from the A320 data varied between 

3.01 and 6.95 mm, with mean and standard deviation range of 4.95 and 0.86 mm. 

Furthermore, the daily mean actual evapotranspiration showed more clearly the annual 

variation over JPA CSA, which ranged from 1.00 to 4.70 mm d-1 (Figure 51). Moreover, two 

relevant behaviours were observed on the previously-mentioned variables, namely: (1) in 

dry season (September to December of 2016), the actual evapotranspiration decreased while 

the reference evapotranspiration increased; (2) in rainy season (April to July of 2016 and 

2017), the actual evapotranspiration tended to the reference evapotranspiration. The former 

behaviour is explained by the high incoming radiation along the dry season (see Figure 47) 

that increases the reference evapotranspiration occurrence, in spite of a low rainwater 

availability leading to low actual evapotranspiration rates. The latter behaviour occurred, in 

turn, due to the lower incoming radiation incidence, which decreased the actual 

evapotranspiration in spite of the high amounts of rainwater available in rainy season. It can 

be inferred, therefore, that the actual evapotranspiration calculated by the adapted MODIS 

algorithm was satisfactorily well-estimated over JPA CSA, as it was able to depict 

trustworthily the meteorological effects over evapotranspiration process. 

 

Figure 50 – Verification of daily actual evapotranspiration simulated by adapted MOD16 algorithm 

(Gusmão, 2017; Mu et al., 2007; Mu, Zhao and Running, 2011; Teixeira et al., 2014, 2013) averaged 

on 500-m footprint of A320 INMET meteorological station, against the ground-based reference 

evapotranspiration calculated by Penman-Monteith equation (Allen et al., 1998). 



102 

 

Figure 51 – Comparison between the daily mean actual evapotranspiration over the JPA CSA 

simulated by the adapted MOD16 algorithm (Gusmão, 2017; Mu et al., 2007; Mu, Zhao and Running, 

2011; Teixeira et al., 2014, 2013) with the ground-based reference evapotranspiration calculated by 

Penman-Monteith equation from A320 INMET meteorological station data (Allen et al., 1998). 

For testing the performance of SMAP SPL4SMAU soil moisture product used in the 

calculation  of soil water storage changes, three TDR probes vertically-inserted within the 

GEB were calibrated by using soil moisture samples collected in five sites (de Lira, 2015). 

For such purpose, a third-order polynomial function was chosen to associate the dielectric 

constant measurement to VWC (Figure 52), similarly to da Silva and Coelho (2014). 
   

 

Figure 52 – General soil moisture calibration curve of the TDR probes installed in GEB. Source: data 

from de Lira (2015). 
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The soil moisture time series assimilated by SMAP mission was averaged on GEB 

and plotted against the TDR-based time series (Figure 53). Comparing the daily mean of 

time series, it is noticed that both satellite- and ground-based datasets respond to the rainfall 

events similarly along the dry season, but in different magnitudes during the rainy season, 

with CC equal to 83%. The TDR peaks in rainy season were higher than SMAP standard 

deviation bounds likely due to original 9-km spatial resolution of the satellite product, which 

smooth the soil moisture estimates. Moreover, the mean of 100-cm SMAP mean was 0.104 

cm3 cm-3, relatively close to the mean of 30-cm TDR mean of 0.087 cm3 cm-3, showing that 

SMAP is able to detect the overall soil moisture patterns over GEB, and, by inference, over 

JPA CSA. 

 

Figure 53 – Comparison between the soil moisture time series assimilated by SMAP mission and 

ground-based measurements. Shaded interval: mean ± standard deviation. 

5.1.3 Surface runoff analysis 

For calculating the surface runoff by NRCS–CN method (Lal et al., 2016; Lal, Mishra 

and Kumar, 2019), it is essential to calculate the imperviousness of the soil types comprising 

the JPA CSA. Initially, the ancient soil databases of JPA CSA were retrieved and reclassified 

according to World Reference Base (WRB) for soil resources (IUSS Working Group WRB, 

2015), resulting on 8 distinct soil types with distinct soil characteristics (Figure 54). Acrisols 

and Lixisols cover 58.69% (605.66 km²) and 9.06% (93.47 km²) of JPA CSA, respectively, 

being very important for farming and crop production (see Figure 48), in addition to Acrisol 

be the largest soil type in JPA CSA, covering all regions of Brazil as well (see Figure 2). 

Fluvisols, Histosols and Gleysols cover 12.01% (123.94 km²), 5.47% (56.42 km²) and 0.69% 
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(7.16 km²), respectively, corresponding to the fluvial soils embracing the urban area and the 

two most important rivers of the coastal area. The Podzols covers 10.72% (110.58 km²), 

being permanent conservation area due to high contamination risk (Linhares et al., 2014). 

Luvisols and Ferralsols cover 3.16% (32.57 km²) and 0.21% (2.2 km²), respectively, and are 

located in the Western portion of JPA CSA, wherein traces of semiarid transition zone are 

found, such as rock outcrops. 

 

Figure 54 – Soil types and Hydrological Soil Groups (HSG) of JPA CSA. WRB: World Reference 

Base for soil resources. 

The soil types were clustered into 4 Hydrological Soil Groups (HSG, Figure 54), 

according to Sartori (2010) (see item 4.3.3.1), from their soil characteristics and depth to 

restrictive layer, for calculating the soil imperviousness. All the main HSGs were found in 

JPA CSA, namely A, B, C and D, varying from very permeable to very impermeable, 

respectively. HSG type B and D covered mostly of JPA CSA, totalizing 67.75% (699.13 

km²) and 15.74% (162.42 km²), respectively, followed by A and C encompassing 13.36% 

(137.88 km²) and 3.16% (32.57 km²), respectively. It means that 81.11% of JPA CSA is 

permeable, in opposition to 18.89% being impermeable. Furthermore, the soil 

imperviousness, so-called Curve Number (CN), were determined using HSG and land 

use/cover information (see Table 7) in JPA CSA, and calculated under the moderately-wet 

Antecedent Runoff Condition (ARC-II) by Lal et al. (2016) equation (Figure 55). The CN 

distribution at ARC-II in 2016 and 2017 exhibited similar histograms, whose CN varied from 

30 to 100, with mean values corresponding to 69.08 and 68.44, respectively. The fluvial soil 

types and urban area held the higher CNs, namely above 80, whereas the Podzol soils and 

forested areas held the lower CNs, namely below 60. These results were then used to obtain 

the CN under wet (CN-I) and dry (CN-III) ARCs, depending on 5-days-antecedent Gauge 
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and IMERG* cumulative precipitation, by Lal, Mishra and Kumar (2019) equations, for 

runoff surface estimation (see item 4.3.3.2) 

 

Figure 55 – Distributed Curve Number (CN) estimation under the moderately-wet Antecedent 

Runoff Condition (ARC) in 2016 and 2017 over JPA CSA. 

The distributed surface runoff was estimated from Gauge and IMERG* precipitation 

data by NRCS–CN method over JPA CSA in 2016 and 2017 on daily resolution, and then 

accumulated to a monthly resolution (Figure 56, Supplementary Figure 9 to Supplementary 

Figure 12). Surface runoff estimates for both Gauge and IMERG* were higher over the urban 

areas and fluvial soil types, reaching values greater than 450 mm, whereas the low values 

occurred on rural areas, reaching values smaller than 225 mm. The high estimates of surface 

runoff tended to increase even more from 2016 to 2017, due to combination of high 

precipitation depths and soil imperviousness or shallow groundwater table. The mean 

surface runoff in 2016 was 174.26 (Gauge) and 224.82 mm (IMERG*), corresponding, 

respectively, to 12.73% and 16.44% of the mean precipitation depth, whereas in 2017 it was 

176.43 (Gauge) or 301.31 mm (IMERG*), corresponding to 10.55% and 18.42%, 

respectively. Averaging the Gauge and IMERG* mean estimates, the mean annual value of 

relative surface runoff stood practically unchanged, once it corresponded to 14.59% (199.54 

mm) in 2016, and 14.49% (238.87 mm) in 2017. On the other hand, from 2016 to 2017, the 

mean annual surface runoff of Gauge was nearly unchanged (2.16 mm) compared to 

IMERG* (76.49 mm), likely because the short ARC values increased the potential soil water 

storage, not allowing for precipitation to exceed the initial abstraction to trigger the surface 

runoff (see item 4.3.3).  
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Figure 56 – Annual distributed surface runoff obtained by Natural Resources Conservation Service 

– Curve Number (NCRS-CN) method from soil type mapping, MapBiomas land use/cover, and (a, 

c) ground-based precipitation and (b, d) satellite-based IMERG imagery, as well as (e, f) monthly 

percentile (10%, 25%, 50%, 75%, 90%) variability. Points: mean. 

On the monthly scale, the surface runoff estimated by IMERG* dataset were higher 

than Gauge in rainy months, due to its more homogeneous distribution of the East-to-West 

precipitation gradient, which tended to augment the runoff estimates over JPA CSA inland. 

The sum of the mean surface runoff in the rainy months of 2016 (April to June) corresponded 

to 77.40% (138.78 mm) for Gauge and 81.25% (187.09 mm) for IMERG* from the total, 

whereas in those of 2017 (May to July) corresponded to 75.52% (138.77 mm) for Gauge and 

72.57% (231.64 mm) for IMERG*. Moreover, the monthly surface runoff in 2017 held the 

higher mean interquartile ranges of 17.21 (Gauge) and 29.19 mm (IMERG*), in comparison 

to 14.30 (Gauge) and 18.05 mm (IMERG*) in 2016 (Figure 56). 

To verify the monthly surface runoff, the daily mean Gauge- and IMERG*-based 

estimates in 2017, obtained by NRCS–CN method, were averaged on the catchment of 

stream gauge 503 and summed to monthly scale, so that they could be compared against the 

monthly sum of daily water level positive differences of the runoff estimates obtained by 

baseflow separation method at stream gauge 503 (Figure 57). The results showed that Gauge 

had a reasonable surface runoff estimation in April and May/2017, whereas the IMERG* 

had a better performance in June and July/2017. Both scenarios were reasonably well 

correlated to ground-based estimates, once the CC was equal to 93% for IMERG* and to 

90% for Gauge. Overall, the NRCS-based estimates responded relatively well to the rainfall 
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events, taking into account that this test was performed around the rural area of JPA CSA, 

where the lower precipitation incidence implies on a critical condition for NRCS-based 

surface runoff simulation. In addition, it was noticed that the mean base flow from January 

to March was lower than from October to December, which occurred due to small natural 

dams formed from tree branches within the stream channel that came from some fallen trees 

after the rainy season. Such behaviour, however, does not compromise the identification of 

daily mean water level positive differences, which were used for the surface runoff 

verification. 

 

Figure 57 – Verification of the surface runoff in 2017 by comparing the daily water level positive 

differences of (a) the runoff estimates obtained by baseflow separation method at stream gauge 503 

(b), to the daily mean surface runoff estimates obtained by NRCS–CN method from Gauge-based 

and IMERG*-based precipitation data, averaged on the gauge 503 catchment. 

5.1.4 Groundwater Recharge rate analysis 

The GWR was estimated by the water budget equation through satellite products on 

pixel scale, as well as by WTF method through water table level measurements in unconfined 

aquifer. The latter was conducted in 23 wells spread over JPA CSA, whose data started to 

be manually monitored either at the end of 2015 or in 2016 or even in 2017 (Fernandes, 

2017). The groundwater level recession was then extrapolated, as required for WTF 

application, or obtained similarly by the next groundwater recession, due to lack of data, 

such as in wells W06, W14, W21, W25, W26, W31, W32, W35, W36, W37, W38 and W39 

(Figure 58). Due to complex soil underground system, there were shallow and deep wells, 

whose groundwater levels stood on ~2 m in some wells and reached down to ~30 m in others. 

From the 16 monitoring wells in 2016, the potential groundwater level rise (ΔH) varied from 

0.83 to 3.69 m (mean of 1.91 m), while from the 23 monitoring wells in 2017, the ΔH varied 

slightly more from 0.85 to 5.30 m (mean of 2.54 m). 
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Figure 58 – Potential groundwater level rise (ΔH) obtained in 2016 and 2017 at 23 manually-

monitored wells spread over JPA CSA. W: Well identification. 
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Still for applying the WTF method, the soil specific yield (Sy) was calculated from 

datasets of production tests carried out by LARHENA team in three wells over JPA CSA. 

The Sy equal to 0.10 was obtained and initially assigned to mostly wells, similarly to 

Fernandes (2017), and to the other wells that presented a clear underestimated linear 

relationship with satellite-based recharge estimates, Sy was assigned to those as 0.24 (Table 

9). The WTF-based recharges in 2016 varied from 106.02 to 396 mm, and from 9.68% to 

24.32% of precipitation, whereas in 2017 they varied from 85.15 to 547.83 mm, and from 

6.14% to 28.48%. Those results were then confronted with satellite-based estimates.  

Table 9 – Groundwater recharge obtained by WTF method in 2016 and 2017 over JPA CSA. id: 

index of measurement location; lon/lat: longitude/latitude at decimal degree in WGS84 datum; Sy: 

soil specific yield; ΔH: potential groundwater level rise; P: precipitation averaged around 500 m from 

the well. 

id  

(-) 
lon 

(°) 
lat 

(°) 
Sy 

(-) 
 P 2016 

(mm) 
ΔH 2016 

(m) 
         R 

(mm) 
2016 

     (%) 
 P 2017 

(mm) 
ΔH 2017 

(m) 
         R 

(mm)  
2017 

     (%)  

W02 -35.0954 -7.2459 0.10  1244.2 1.55 155.04 12.46  1490.5 2.61 261.08 17.52 

W04 -35.1166 -7.2622 0.10  1257.0 2.55 254.68 20.26  1507.5 2.46 246.49 16.35 

W06 -35.1335 -7.3752 0.10  1095.6 1.06 106.02 9.68  1387.9 0.85 85.15 6.14 

W07 -35.0867 -7.1488 0.10  1175.9 1.34 134.36 11.43  1348.5 1.33 133.49 9.90 

W09 -35.0905 -7.3489 0.10  1196.2 2.14 213.69 17.86  1488.9 2.81 281.30 18.89 

W11 -35.1279 -7.1830 0.10  1209.1 1.65 165.49 13.69  1431.8 1.45 145.32 10.15 

W14 -35.0130 -7.2277 0.10  1368.6 2.08 208.39 15.23  1638.5 2.64 263.56 16.09 

W16 -34.9845 -7.2445 0.10  1431.1 3.11 310.73 21.71  1743.2 4.11 410.65 23.56 

W17 -35.1145 -7.2019 0.10  1202.8 2.49 249.29 20.73  1441.7 1.67 166.86 11.57 

W20 -35.0446 -7.2816 0.10  1462.6 2.17 217.02 14.84  1638.6 3.41 341.13 20.82 

W21 -34.9579 -7.3332 0.24  1415.4 0.97 232.72 16.44  1780.1 1.10 263.27 14.79 

W22 -34.9587 -7.3242 0.10  1423.7 2.23 222.57 15.63  1803.6 3.22 321.54 17.83 

W23 -34.8805 -7.2079 0.10  1483.6 1.64 164.50 11.09  1844.3 2.81 281.45 15.26 

W25 -34.9170 -7.2908 0.24  1446.9 1.11 266.64 18.43  1826.5 1.83 440.10 24.10 

W26 -34.8004 -7.1646 0.24  1519.8 0.83 199.74 13.14  1949.5 2.11 507.15 26.01 

W29 -34.9056 -7.1609 0.10  1517.2 3.69 369.00 24.32  1860.5 5.30 529.96 28.48 

W31 -34.8451 -7.0641 0.24  
 

 1930.2 2.28 547.83 28.38 

W32 -34.8485 -7.0931 0.24   1991.8 1.70 407.28 20.45 

W35 -34.8401 -7.1339 0.10   2026.6 3.24 324.35 16.00 

W36 -34.8571 -7.1365 0.24   2036.7 1.43 343.97 16.89 

W37 -34.8042 -7.1857 0.10   1928.8 3.81 380.76 19.74 

W38 -34.8184 -7.1845 0.10   1939.0 4.15 415.01 21.40 

W39 -34.8369 -7.1889 0.24   1935.4 2.13 510.35 26.37 

           

The GWR distribution was estimated based on the water budget equation for Gauge 

and IMERG* scenarios in 2016 and 2017 (Figure 59); the relative values are shown in 

Supplementary Figure 17. The GWR rates featured high estimates on Northeastern portion 

due to combination of decreasing precipitation gradient and permeable soil types, despite the 
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larger surface runoff values found on urban land use. The mean GWR rates in 2016 was 

230.02 (Gauge) and 219.13 mm yr-1 (IMERG*), corresponding to 16.81% and 16.03% of 

the mean precipitation depth, whereas in 2017 it was 364.62 (Gauge) and 301.63 mm yr-1 

(IMERG*), corresponding to 21.81% and 18.44%, respectively. The mean relative GWR 

over JPA CSA was then averaged on 18.27% (278.85 mm yr-1) for 2016 and 2017. The mean 

GWR rates in 2017 increased more using Gauge- than IMERG*-based data due to its great 

incidence on Western portion, which resulted from the larger precipitation depths and lower 

surface runoff, mainly in June and July. Conversely, in 2016, the Gauge- and IMERG*-

based data behaved fairly similarly, whose mean of monthly mean recharge stood on 26.11 

and 25.95 mm month-1, respectively; different from 2017, where they reached 33.69 and 

38.53 mm month-1 (see Supplementary Figure 13 to Supplementary Figure 16). All in all, 

both data sources were comparatively well-distributed over JPA CSA, since their monthly 

90th-percentiles were similar both in 2016, reaching up to 161.1 (Gauge) and 168.85 mm 

month-1 (IMERG*), and in 2017, up to 222.86 (Gauge) and 221.25 mm month-1 (IMERG*). 

 

Figure 59 – Annual distributed Groundwater Recharge (R) obtained by water budget equation and 

WTF method, using (a, b) ground-based, interpolated precipitation and (c, d) bias-corrected IMERG 

imagery, as well as (e, f) monthly percentile (10%, 25%, 50%, 75%, 90%) variability. Coloured 

circles: WTF-based recharge; Points: mean. 

For validation purposes, the absolute and relative estimates of GWR obtained by 

WTF method were plotted against the Gauge- and IMERG*-based outcomes, by averaging 

the recharge around 1-km of every well (Figure 60). Overall, it was noticed that Gauge and 
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IMERG* absolute estimates had relatively high goodness-of-fit, reaching 89% and 83%, 

respectively, while their relative estimates had satisfactory goodness-of-fit, reaching 73% 

and 68%; resulting in linear regressions closer to 1:1 perfect fit. Gauge-based data tended to 

slightly overestimate the WTF data, with a bias of 11% (absolute estimation) and 8% 

(relative estimation), whereas the IMERG*-based data tended to slightly underestimate WTF 

data, with a bias of -9% (absolute estimation) and -13% (relative estimation). In addition, 

both Gauge and IMERG* scenarios had similar, satisfactory mean errors either for absolute 

or relative estimates, with RRMSE equal to 31% and 34%, and to 31 and 30%, respectively. 

As a result, the mean annual GWR rates for Gauge and IMERG* data were relatively closer 

to WTF estimates, whose absolute and relative values stood on 230 (16.2%) and 219 mm yr-

1 (15.3%) compared to 217 mm yr-1 (16.1%) in 2016, and 365 (21.3%) and 302 mm yr-1 

(16.8%) compared to 331 mm yr-1 (18.6%) in 2017. 

 

Figure 60 – Validation of annual groundwater recharge rates at (a, b, e) absolute and (c, d, f) relative 

scales, for ground-based and remotely-sensed precipitation through WTF method, respectively. 

The relative estimates of GWR were zonally averaged by land use/cover and soil type 

over JPA CSA (Figure 61). By land use/cover, the mean plots were relatively well correlated 

with mean values higher for Gauge than IMERG*, featuring a shift more pronounced in 

2017 than 2016, averaged on 4.88% and 0.89%, respectively. In 2016, the mean relative 

recharge varied from 13.27% (Mosaic) to 24.75% (Urban) for Gauge, and from 12.40% 
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(Mosaic) to 23.68% (Urban) for IMERG*, whereas in 2017, it ranged from 19.62% (Bare 

soil) to 29.61% (Urban) for Gauge, and from 14.81% (Mosaic) to 22.03% (Urban) for 

IMERG* one. It is also worthwhile to mention that Forest held a recharge of 15.56% in 2016 

and 18.93% in 2017, on average. Similarly, the mean plots by soil type were higher for 

Gauge than IMERG*, and in 2017 than 2016, whose shift was averaged on 4.79% and 

1.95%, respectively. In 2016, the mean relative recharge varied from 7.60% (Luvisols) to 

22.90% (Fluvisols) for Gauge, and from 4.77% (Luvisols) to 24.22% (Fluvisols) for 

IMERG*, whereas in 2017, it ranged from 10.94% (Gleysols) to 28.68% (Ferralsols) for 

Gauge, and from 8.10% (Luvisols) to 21.81% (Fluvisols) for IMERG* one. Moreover, it is 

worthwhile to highlight the relative recharge values of Acrisols and Podzols, which held 

respectively 15.48% and 15.19% in 2016, and 19.26% and 20.56% in 2017; averaging both 

values, it results in 17.37% for Acrisols and 17.87% for Podzols. Those previous results 

show the high GWR potential within the unconfined aquifer of JPA CSA. 

 

Figure 61 – Relative groundwater recharge rates averaged on JPA CSA in 2016 and 2017 by (a, b, 

e) land use/cover and (b, d, f) soil type, for Gauge and IMERG* scenarios. Mean plot: mean ± 

standard deviation. 
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5.2 Intermediary-scale Groundwater Recharge modelling coupled to soil hydraulic 

property inverse modelling 

The GWR was simulated on daily scale for a proof of two hydrological years, 2017 

to 2018 and 2018 to 2019, after the inverse calibration of the soil hydraulic properties using 

two soil moisture data sources, CRNS data and soil moisture profiles, and was, verified by 

WTF method over GEB. The results were sub-divided to present understandingly the 

calibration, parameterization, inverse modelling, validation, and water flux simulation. 

5.2.1 Cosmic-Ray Neutron Sensing curve calibration 

The CRNS probe operated in the middle of GEB (site 2, see Figure 25) from July 

18th, 2018, to June 26th, 2019, to monitor the aboveground neutron flux that can be 

associated to soil moisture. A fieldwork campaign was undertaken on October 1st, 2018, to 

collect soil cores according to sampling scheme of Figure 41, for obtaining the Volumetric 

Water Content (VWC) and bulk density (ρbd) by gravimetric method (Table 10). The mean 

VWC obtained by the weighting method (see item 4.5.1) at 17 locations spread around the 

CRNS probe was 8.8 cm3 cm-3, while the arithmetic-mean of BD was 1.11 g cm-3. The CRNS 

footprint included flooded and moderately-wet areas due to a shallow groundwater table, by 

applying the vertical weighting at the calibration time (Figure 62). The dense vegetation 

cover and soil organic aspect on southwestern portion showed its wet or saturated soil 

condition, which reached up to 0.296 cm3 cm-3, whereas the moderately-sparse vegetation 

and white soil aspect on centre-eastern portion showed the moderately-wet condition, which 

reached down to 0.056 cm3 cm-3. The addressed condition is a typical scenario of the Podzol 

soil type in Brazil, whose characteristics can be coped with the CRNS probe, once it has the 

ability to monitor indirectly the mean soil moisture on intermediary scale.  
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Table 10 – Soil moisture and bulk density weighting-averaged after the gravimetric experiment at 

three soil sampling depths carried out on October 1st, 2018. ρbd: bulk density; Id: index of 

measurement location; r: radial distance; D86: penetration depth; Wr: horizontal weighs; Wd: vertical 

weighs; meanw: weighted-mean; meana: arithmetic-mean. 

Id r D86 Wr Wd at (cm) VWC at (cm) ρbd at (cm) 

    -2.5 -7.5 -17.5 -2.5 -7.5 -17.5 meanw -2.5 -7.5 -17.5 meana 

(-) (m) (cm) (-) (%) (g cm-3) 

001 10.3 44.9 0.099 0.895 0.716 0.459 9.6  9.7  12.4  10.2  1.21 1.15 1.12 1.16 

002 14.9 44.2 0.085 0.893 0.712 0.453 10.7  7.9  4.7  8.4  1.07 1.03 1.25 1.12 

003 12.2 44.6 0.090 0.894 0.714 0.456 6.2  7.7  3.9  6.2  1.01 1.24 1.32 1.19 

004 13.4 44.4 0.088 0.894 0.713 0.455 11.5  7.1  3.1  8.1  0.81 0.89 1.18 0.96 

005 8.1 45.2 0.125 0.895 0.718 0.461 10.1  6.8  6.1  8.1  0.65 1.00 1.03 0.89 

006 8.1 45.2 0.125 0.895 0.718 0.461 8.0  5.6  3.7  6.2  0.97 1.18 1.33 1.16 

007 65 38.3 0.043 0.878 0.676 0.401 11.5  7.1  6.0  8.9  1.19 1.15 1.31 1.22 

008 81.3 36.8 0.038 0.873 0.665 0.386 11.7  14.2  8.3  11.9  1.18 1.21 1.25 1.21 

009 71.4 37.7 0.041 0.876 0.672 0.395 11.4  9.2  7.5  9.8  0.73 0.87 1.05 0.89 

010 64.5 38.3 0.043 0.878 0.676 0.401 12.3  10.9  9.3  11.2  0.26 0.54 0.60 0.47 

011 65 38.3 0.043 0.878 0.676 0.401 7.3  7.7  7.2  7.4  1.25 1.27 1.35 1.29 

012 64.1 38.4 0.043 0.878 0.676 0.402 6.5  6.9  4.6  6.3  1.06 1.21 1.27 1.18 

013 136 33.1 0.025 0.860 0.636 0.348 7.0  5.5  2.4  5.6  1.22 1.29 1.23 1.25 

014 103.9 35.1 0.032 0.867 0.652 0.369 6.7  6.6  6.4  6.6  1.26 1.22 1.36 1.28 

015 97.1 35.6 0.033 0.869 0.656 0.374 26.2  31.3  34.8  29.6  0.98 1.44 1.36 1.26 

016 124.5 33.8 0.027 0.862 0.641 0.355 7.8  6.2  7.9  7.2  1.06 0.99 1.15 1.07 

017 160 32.0 0.021 0.855 0.625 0.335 10.0  8.5  5.4  8.6  1.22 1.37 1.37 1.32 

mean          8.8     1.11 

 

Figure 62 – Distribution of the (a) mean vertically-weighted soil moisture for the (b) CRNS probe 

calibration through the gravimetric experiment carried out on October 1st, 2018. 



115 

The three soil profile probes (PR2 Delta-T model) monitored the soil moisture down 

to 1 m, during the same time period in which the CRNS probe operated (see Figure 29). 

After converting the voltage-signal to soil moisture data, the hourly measurements were 

converted to daily values by calculating the 24-hour moving average and, then, the mean 

soil moisture per day. The soil moisture profiles were built by connecting the daily soil 

moisture at depths of -5, -15, -25, -35, -55 and -95 cm (Figure 63). The median soil moisture 

in DL6-2, DL6-4 and DL6-1 in a distance of 17.5, 65.5 and 153.2 m from the CRNS probe, 

were 0.097, 0.093 and 0.124 cm3 cm-3, respectively. The DL6-4 probe better detected the 

wetting and drying fronts than the others, as well as assimilated soil moisture either on 

saturation or on dry condition. It was noticed that the capacitance sensor at 5-cm depth 

performed fairly well in all probes, whereas at the other depths the measurements oscillated 

remarkably, except for the DL6-4 probe (65.5 m from CRNS probe), which performed fairly 

well after October 15th, 2018. Thereby, the horizontal weighted mean of 5-cm measurements 

was used to assess the goodness-of-fit of CRNS soil moisture data, while the DL6-4 soil 

moisture profile was used to assess the goodness-of-fit of the simulated soil moisture profile. 

 

Figure 63 – Soil moisture profiles monitored by the three PR2/6 soil profile probes from July 18th, 

2018 to June 06th, 2019. 



116 

Another few analysis and experiments were carried out for the parametrization of the 

CRNS calibration curve and the COSMIC neutron operator (Figure 64). The energy spectra 

of the detected neutron counts showed that the CRNS probe seemed to reflected correctly 

the neutrons at the soil surface, as its neutron energy histogram was in accordance with the 

standard shape reported in the literature (Köhli et al., 2015). The soil organic and lattice 

water equivalents were determined at the six depths monitored by the profile probes, whose 

magnitudes were relatively small likely due to the sandy soil texture. The total lattice water 

equivalent down to -10 cm was summed to the weighted-mean soil moisture, and then 

considered in the CRNS calibration curve together with arithmetic-mean bulk density, 

resulting in the determination of N0 parameter equal to 550 counts. This N0 value was, in 

turn, plotted against the NCOSMIC parameter, the latter obtained by try-and-error through 

successive simulations in HYDRUS-1D using the mean soil moisture profile, resulting on a 

reasonable NCOSMIC value of 90 counts compared to the literature (Baatz et al., 2014). Thus, 

despite the lower neutron intensity, below 600 counts, the CRNS curve was successively 

calibrated under unfavourable hydrological and geographic conditions.  

 

Figure 64 – Data analysis and experiment results about (a) energy spectra of detected neutron counts 

and (b) soil organic and lattice water equivalent, for the parametrization of the (c) CRNS calibration 

curve and (d) COSMIC neutron operator.  
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The calibration curve was then applied to the CRNS neutron intensity to yield the 

VWC estimates on the hourly scale (Figure 65). Since the neutron intensity range in GEB 

stood low, the time series were smoothed by 24-hours moving average and, then, compared 

to 10-cm horizontal-weighted-mean of PR2 soil moisture. Overall, the CRNS time series 

responded fairly well to the rainfall events, behaving similarly to 10-cm PR2 time series in 

mostly study period. The mean soil moisture values of CRNS and 10-cm PR2 were 0.074 

and 0.068 cm3 cm-3, respectively. The scatter plot showed a relatively high goodness-of-fit 

between CRNS and PR2 datasets, depicted by KGE and R² equal to 80% and 89%, 

respectively, resulting in a linear regression close to 1:1 perfect fit. A slight influence of 

groundwater level over CRNS data could be noticed by its time series slope along the 

recession period from July to August 2018. The groundwater level at CRNS site reached up 

to 25.36 cm below soil surface. Furthermore, it was noticed a shift during the dry season, 

likely caused by the shape of the CRNS standard calibration curve, which consider three 

fixed parameters. Conversely, this behaviour could not be better checked due to data 

collection failure occurred from September 12th to November 8th, 2018. All in all, the CRNS 

monitoring period comprised either the dry or the rainy season, encompassing even one of 

the rainy day of the last decades, June 13th, 2019, reaching 159.26 mm. 

 

Figure 65 – Soil moisture time series based on (a) 1-h CRNS dataset smoothed by 24-h moving 

average (b) compared to 10-cm PR2 dataset. P: rainfall; Eto: reference evapotranspiration; GWL: 

Groundwater Level. 

5.2.2 Modelling input data and parameters 

For setting the model, the initial conditions had to be suitably identified through data 

analysis and soil experiments, in order to allow for converging correctly the model 

parameters (Figure 66). The initial soil moisture condition varied from 0.061 to 0.363 cm³ 
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cm-³, which was obtained by averaging the monthly mean soil moisture in the same period 

of the following hydrological year, as it was unavailable at the beginning of the study period. 

The root distribution was calculated using the Equation (87) (see item 4.5.3.4) down to 70 

cm, after the rooting in situ observation of typical tree species by digging a few boreholes, 

in accordance with the regional literature (Pinheiro, Costa and de Araújo, 2013). The 

normalized water uptake distribution highlighted the maximum value of 0.024 cm-1 down to 

14 cm, following by a linear water uptake decreasing. In addition, the soil particle 

distribution curves at 6 different depths were built by sieving experiment, finding a 

remarkable sandy texture along the soil profile. The soil texture consisted of 96.38% by 

coarse and fine sand contents so that a homogeneous soil discretization was set on the model. 

 

Figure 66 – Data analysis and experiment results of the initial model conditions about (a) soil 

moisture, (b) normalized water uptake distribution, (c) soil particle distribution curves, and (d) soil 

textures along the soil profile. b(x): normalized water uptake. 

The Leaf Area Index (LAI) of GEB vegetation were obtained by geoprocessing the 

MODIS remotely-sensed reflectance imagery on the monthly scale and, then, averaged on 

GEB due to its relatively-coarse 250-m spatial resolution (Figure 67). LAI showed a roughly 

annual sinusoidal pattern, reaching their high values on rainy seasons and low values on dry 
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seasons. It varied from 2.49 to 5.10 m2 m-2 in 2017-2018 hydrological year and 2.16 to 4.87 

m2 m-2 in 2018-2019 hydrological year, with monthly mean values of 3.95 and 3.71 m2 m-2, 

respectively. From the LAI and weather (see Supplementary Figure 19) datasets, the 

potential evaporation and transpiration could be estimated through Penman-Monteith 

equation for the two hydrological years. Overall, it was found that the potential evaporation 

reached high values on the dry seasons and that the potential transpiration reached them on 

the rainy seasons. The potential evaporation varied from 0.11 to 2.00 mm in 2017-2018 and 

from 0.07 to 2.33 mm in 2018-2019, whereas the potential transpiration ranged from 0.56 to 

5.93 mm in 2017-2018 and from 0.61 to 7.49 mm in 2018-2019.  The mean values for 

potential evaporation stood on 0.88 and 1.00 mm, and for potential transpiration stood on 

4.08 and 3.94 mm, in 2017-2018 and 2018-2019, respectively. 

 

Figure 67 – Time series of the (a) monthly Leaf Area Index (LAI) obtained by geoprocessing the 

MODIS reflectance imagery over GEB, and the (b) daily potential evaporation (Ep) and transpiration 

(Tp) estimated by Penman-Monteith equation. 

The 3 Time-Domain Reflectometry (TDR) probes (CS616 model, Campbell 

Scientific) monitored the soil moisture without flaws at 3 different depths (5, 20 and 40 cm) 

in a downstream GEB boundary location (site 5) along the two hydrological years (Figure 
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68). The dielectric signals of such TDR probes were retrieved and converted to soil moisture 

by the calibration curve shown in Figure 52 (see item 5.1.2). Overall, it is noticed that the 5-

cm TDR data responded more sensibly to rainfall events during the rainy seasons, while the 

40-cm TDR data dried faster during the dry seasons. The 40-cm TDR data was eventually 

saturated from June to July 2019, as a result of the capillarity rise stemmed from the 

groundwater level rise, which reached up to 73.11 cm below surface. Furthermore, the 

reference evapotranspiration varied from 0.74 to 6.83 mm in 2017-2018 hydrological year 

and 0.68 to 8.57 mm in 2018-2019 hydrological year, with mean (and standard deviation) of 

4.96 (0.99) and 4.94 (1.4) mm. The total rainfall depth in 2017-2018 and 2018-2019 

hydrological years stood on 1250.19 and 1616.46 mm, respectively, corresponding to a dry 

and rainy year in GEB. Thus, the inverse modelling and water flux simulation could be 

carried out at upstream (site 2) and downstream (site 5) of GEB. 

 

Figure 68 – Soil moisture time series based on 1-h TDR dataset at depth of -5, -20 and -40 cm. Eto: 

reference evapotranspiration; GWL: Groundwater Level. 

5.2.3 Inverse modelling of the soil hydraulic properties 

The CRNS or TDR datasets were used to calibrate the soil hydraulic properties by 

inverse modelling through HYDRUS-1D coupled externally with COSMIC neutron 

operator. The CRNS neutron intensity and the TDR soil moisture profiles were inputted into 

the model to optimize on the daily scale the objective function in Equation (85) (see item 

4.5.3.3). From the CRNS dataset, the model simulated the neutron intensity time series for 

the two hydrological years with a relatively high goodness-of-fit for KGE and R² equal to 

89% and 79%, respectively, resulting in a linear regression close to 1:1 perfect fit (Figure 

69). The COSMIC time series responded fairly well to the rainfall events, being able to 
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mirror consistently the variable pattern of neutron intensity along the period with available 

data. On the other hand, the COSMIC time series tended to underestimate slightly the CRNS 

neutron intensity particularly during the dry season, the latter, however, likely influenced by 

the standard parametrisation of the calibration curve in Equation (69) (see item 4.5.2). 

 

Figure 69 – Neutron intensity simulated by (a) COSMIC neutron operator, after the calibration by 

using the (b) CRNS dataset through the HYDRUS-1D model. 

The curves of the soil hydraulic properties at TDR and CRNS sites were built after 

the calibration of van Genuchten-Mualem parameters (Table 11 and Figure 70). An air-entry 

value of -2 cm was considered for CRNS modelling to reduce the non-linearity of hydraulic 

conductivity function because it was identified by preliminary simulations that parameter n 

tended to be around 1.2 (Ries et al., 2015; Šimůnek, 2018), and was at the end calibrated to 

be 1.2589. Both retention curves obtained by TDR and CRNS datasets were within the 

interquartile range of the curves obtained by Silva (2009) in GEB, whose difference between 

curve shapes stemmed mainly from parameter α, higher at CRNS site (0.4431 cm-1) than 

TDR site (0.0807 cm-1). On the other hand, the hydraulic conductivity curves were relatively 

more shifted, so that the CRNS curve was closer to the interquartile range (Silva, 2009) than 

the TDR curve, stemmed mainly from parameter Ks that was higher at TDR site (1.26×10-4 

m s-1) than CRNS site (6.47×10-4 m s-1). 
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Table 11 – Genuchten-Mualem parameters calibrated at TDR and CRNS sites through inverse 

modelling from soil moisture datasets. *Considered air-entry of -2 cm (Ries et al., 2015; Šimůnek, 

2018). θr: residual soil moisture content; θs: saturated soil moisture content; α: air-entry pressure 

factor; n: pore size distribution measure; Ks: saturated hydraulic conductivity; l: pore tortuosity and 

connectivity parameter. 

Sensor 
θr 

(cm3 cm-3) 
θs 

(cm3 cm-3) 
α 

(cm-1) 
n 
(-) 

Ks 
(m s-1) 

l 
(-) 

TDRs 0.0192 0.3000 0.0807 1.9156 6.47x10-4 0.5 

CRNS* 0.0101 0.3031 0.4431 1.2589 1.26x10-4 0.5 

       

 

Figure 70 – Soil hydraulic properties obtained through inverse modelling from TDR and CRNS 

datasets, namely (a) retention curves, and (b) hydraulic conductivity curves, compared to Silva 

(2009) results over GEB. h: soil matric potential; K: hydraulic conductivity. 

Since the hydraulic conductivity curves seemed reasonably different over GEB, the 

slug test was carried out through the Equation (103) (see item 4.6.2), so that the reliability 

of the Ks calibrated values could be verified (Figure 71). The experiment was repeated three 

times, which is subdivided between slug-in and slug-out, every test providing a single value 

of hydraulic conductivity. The groundwater level ranges from -141.9 cm to -92.5 cm in three 

slug test attempts. It was noticed an uneven recovering of the groundwater level to the 

original static level equal to -113 cm, either for the slug insertion or removal in the well. 

Accordingly, the hydraulic conductivity was differently estimated, overall varying from 

1.18×10-4 to 6.96×10-4 m s-1, with mean and standard deviation of 4.68×10-4 and 2.18×10-4 

m s-1, respectively. Thereby, since the Ks parameter values inferred by modelling do fit in 

the slug test interval, as well as the literature regular range for sand soils (NRCS, 2019), it 

is assumed that the parameters of the soil hydraulic properties were coherently calibrated 

from CRNS and TDR datasets. 
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Figure 71 – Slug tests carried out to determine the (a) adjusted water level time series for estimating 

the (b) hydraulic conductivity over GEB. GEB: Guaraíra experimental basin. Dashed line in (a): 

static water level; Solid line: mean; Dashed line in (b): mean ± standard deviation. 

5.2.4 Soil moisture simulation and validation 

The soil moisture time series obtained by the curves of the soil hydraulic properties 

were plotted against the CRNS and TDR datasets, to assess the goodness-of-fit of the 

calibration. In site 5, the soil moisture was simulated at TDR monitoring depths, namely -5, 

-20 and -40 cm, for the two hydrological years (Figure 72). Overall, it is noticed that the 

simulated time series responded fairly well to mostly rainfall events, as well as exhibited a 

proper recession curve during the dry season. As a result, the scatter plot showed reasonable 

goodness-of-fit, depicted by KGE and R² equal to 75% and 62% at -5 cm, 82% and 69% at 

-20 cm, and 70% and 64% at -40 cm, considering the daily data resolution. Conversely, by 

comparing the mean values in 2017-2018 and 2018-2019, the simulated data deviated from 

the observed ones in -10.88% and -12.25% at -5 cm, 11.36% and -1.00% at -20 cm, and 

30.76% and -16.34% at -40 cm, showing that the deeper the more variable the relative mean 

differences were. Such behaviour stemmed likely from the uncertainty caused by the great 

sensibility of TDR data to capillarity rise influence (Hird and Bolton, 2017), which resulted 

on a linear regression deviation from the 1:1 perfect line at -40 cm, differently from the -5 

and -20 cm. Nonetheless, those differences did not affect relevantly the aforementioned 

statistic metrics, suggesting that the soil moisture was realistically well simulated by the 

model. 
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Figure 72 – Soil moisture time series simulated by HYDRUS-1D using the soil hydraulic properties 

curves plotted against the TDR datasets at the depths of (a, b) -5 cm, (c, d) -20 cm, and (e, f) -40 cm. 

In site 2, the soil moisture was simulated at DL6-4 mean monitoring depths, namely 

-2, -15, -25, -35, -55 and -95 cm, from October 15th, 2018, to June 25th, 2019 (Figure 73). 

The first depth was adopted as -2 instead of -5 cm to cope with the air-entry account of -2 

cm, which seems appropriate due to the higher organic water equivalent immediately below 

the soil surface. Overall, it is noticed that the simulated time series responded relatively well 

to rainfall events at the shallow depths, where the CRNS neutron assimilation is higher. 

Accordingly, the scatter plot pointed out reasonable KGE and R² values of 70% and 82% at 

-2 cm, and 77% and 66% at -15 cm. Furthermore, at the subsequent depths of -25 and -35 

cm, the linear regressions stood not far from the 1:1 perfect line, similar to shallow depths, 

although the KGE and R² values stood around 60%. Lastly, at the deeper layers of -55 and -

95 cm, the simulated time series tended to be less sensitive to rainfall events, but the mean 

relative differences deviated in only 8.97% and -1.81%, respectively, a satisfactory result if 
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compared to 8.02% at -15 cm. It is worthwhile mentioning that the PR2 profile probes 

showed a high daily sensitivity under the GEB soil condition, which may have been 

influenced by the installation procedure and hampered by using the standard calibration 

curve. Nonetheless, despite these uncertainties, the previously-discussed results showed that 

CRNS-based simulations were able to reflect satisfactorily well the main soil moisture 

responses to the rainfall events along the soil profile. 
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Figure 73 – Soil moisture time series simulated by HYDRUS-1D, by using the soil hydraulic 

properties curves obtained by CRNS data, plotted against the PR2 profile probe data at the depths of 

(a, b) -2 cm, (c, d) -15 cm, (e, f) -25 cm, (g, h) -35 cm, (i, j) -55 cm, and (k, l) -95 cm. *Calculated at 

-2 cm due to air-entry of -2 cm and soil organic matter. 

5.2.5 Root Water Uptake and cumulative fluxes 

Root water uptake (RWU) was set at the model due to its important role in soil water 

removal, affecting remarkably the water flux along the soil profile. For GEB, a set of 

parameters was tested by trial-and-error, and lastly a conservative parameterization was 

adopted (see item 4.5.3.4). Nevertheless, the Electrical Conductivity (EC) data from two 

salinity events revealed a very salty aspect of GEB groundwater (Figure 74). In 2018, a 

prominent peak of EC equal to 13.84 dS m-1 on May 08th, 2018, was observed at the end of 

the rainy season, which was lagged from the groundwater peak of -87.22 cm, suggesting the 

particle travel time towards groundwater table of 24 days. In 2019, however, the salinity 

event started at the beginning of the rainy season, with no prevailing peak, but with salinity 

averaging on 4.93 dS m-1 during the analysis period, practically at the very salty limit of 5.00 

dS m-1 (DPIRD, 2019). It is also noticed that EC was inversely proportional to groundwater 

level (reaching up to -25.36 cm) but directly proportional to water temperature (reaching 

down to 25.47°C). These saline characteristics resulted from the evapotranspiration and soil 

podsolization processes, which, respectively, accumulated the salts on the soil surface and, 

then, leached them towards the groundwater table. This cycle of saline matter subjected the 
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vegetation under a stress condition, increasing the RWU by osmosis. Despite the saline 

stress, the sparse distribution and diversity of vegetation species in GEB led to high 

uncertainties about the proper model parameterization, reason why the RWU was simulated 

for a more conservative scenario. 

 

Figure 74 – Two salinity events over GEB occurred in (a) 2018 and (b) 2019, according to DPIRD 

(2019). P: rainfall; T; water temperature; GWL: Groundwater Level; EC: Electrical Conductivity. 

The time series of hydraulic head and actual RWU were calculated along the root 

zone at TDR and CRNS sites (Figure 75). Overall, it is shown that hydraulic head tends to 

null values during the rainy season, and to negative values during the dry period. In 2017-

2018 hydrological year, it varied from -1,490 to -18.1 cm at CRNS site and from -1,630 to -

38.5 cm at TDR site, with monthly mean values of -476.18 and -495.83 cm, respectively. In 

2018-2019 hydrological year, in turn, it varied from -1690 to -10.8 cm at CRNS site and 

from -1,990 to -33.5 cm at TDR site, with monthly mean values of -520.02 and -518.60 cm, 

respectively. The average hydraulic head was lower in the rainiest hydrological year because 

it encompassed a dry season with a smaller rainfall depth, along which the TDR site reached 

lower values than CRNS site. As a result, there was an influence on actual RWU values 

during dry seasons, in which the TDR site experienced a lower recession than CRNS site, 

whereas the actual RWU responded similarly to rainfall events at both TDR and CRNS sites 

during the rainy season. In 2017-2018 hydrological year, it reached up to 0.55 cm d-1 at 

CRNS site and up to 0.50 cm d-1 at TDR site, with monthly mean values of 0.25 and 0.20 

cm d-1, respectively. In 2018-2019 hydrological year, in turn, it reached up to 0.67 cm d-1 at 

CRNS site and up to 0.58 cm d-1 at TDR site, with monthly mean values of 0.22 and 0.19 

cm d-1, respectively. The actual RWU was slightly lower in the rainiest hydrological year, 

which was likely influenced by the shorter inter-event time between rainfall events, leading 

to an ample RWU oscillation during the rainy season compared to the prior year. These 



128 

behaviours may have an important influence on the magnitude and direction of water fluxes 

at both TDR and CRNS sites along the studied hydrological years. 

 

Figure 75 – Time series of (a) root zone pressure head and (b) actual root water uptake (RWUa), at 

TDR and CRNS sites. P: rainfall. 

5.2.6 Groundwater Recharge and cumulative water fluxes 

The main components of soil water removal were calculated and accumulated for 

CRNS and TDR sites along the two hydrological years (Figure 76). It is worthwhile to 

mention that no surface runoff (i.e. Q) was obtained by adopting the surface water layer 

equal to 5 cm after in situ observations (see item 4.5.3.6). Actual RWU (i.e. RWUa) 

represents a percentage of potential RWU (i.e. RWUp), which refers to potential transpiration 

(i.e. Tp) minus interception (i.e. I). In addition, actual surface flux (i.e. Sa) comes to 

infiltration (i.e. Inf) minus actual evaporation (i.e. Ea), which is a percentage of potential 

surface flux (i.e. Sp), referring to infiltration (i.e. Inf) minus potential evaporation (i.e. Ep).  

The actual outward water fluxes represented by RWUa and Ea, and the actual inward 

water fluxes represented by Sa, were accumulated to compute the annual absolute and 

relative values. The relative values refer to actual-potential ratios, calculated for Ep equal to 

32.3 and 36.5 cm yr-1, and Tp equal to 148.83 and 143.70 cm yr-1 in 2017-2018 and 2018-

2019, respectively, as well as for Sp equal to -81.1 and -113.0 cm yr-1 obtained from 
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infiltration equal to -113 and -149 cm yr-1, respectively. The infiltration corresponded to 

90.7% (-113.38 cm yr-1) and 92.2% (-149.02 cm yr-1) of the rainfall depth in 2017-2018 and 

2018-2019 years, respectively. Interestingly, the larger rainfall depth in 2018-2019 increased 

the infiltration in 36 cm yr-1 (31.9%), but decreased the Tp in 5.13 cm yr-1 (3.4%), which was 

likely due to slightly decline on net radiation and relative humidity time series (see 

Supplementary Figure 19). Furthermore, the RWUa held 90.1 (66%) and 81.9 cm yr-1 (62%) 

at CRNS site, and 73.3 (53%). and 72.5 cm yr-1 (55%) at TDR site, whereas the Ea held 21.6 

(63%) and 22.0 cm yr-1 (62%) at CRNS site, and 14.4 (44%) and 15.9 cm yr-1 (44%) at TDR 

site. Overall, the relative values showed negligible percentage differences between the dry 

and rainy hydrological year, but relevant differences between sites, once the CRNS site stood 

higher than TDR site for the: RWUa on 13%, and Ea on 19% in 2017-2018, and; RWUa on 

7%, and Ea on 18% in 2018-2019. On the other hand, the Sa held -91.8 (88%) and -127.0 cm 

yr-1 (89%) at CRNS site, and -99.0 (82%). and -133.0 cm (85%) at TDR site. The actual 

surface flux results at both locations showed similar water movement on soil surface, likely 

not affected by the different soil hydraulic properties and groundwater table capillarity rise. 

 

Figure 76 – Cumulative outward (positive) and inward (negative) water fluxes at (a) CRNS and (b) 

TDR sites in 2017-2018 and 2018-2019 hydrological years. P: rainfall; Tp: potential transpiration; 

RWUp: Potential Root Water Uptake; RWUa: Actual Root Water Uptake; Ep: potential evaporation; 

Ea: actual evaporation; Sp: potential surface flux; Sa: actual surface flux; Inf: infiltration. 
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Finally, the GWR (or simply R) at the variable bottom boundary, as well as the 

percolation water flux at -20, -30, -40, -60 and -100 cm soil depths, were calculated and 

accumulated along the two hydrological years (Figure 77). By analysing the vertical water 

percolation fluxes, it is possible to notice the influence of RWU along the root zone, which 

reduced the water flux down to -60 cm depth to -26.46 (21% of rainfall) and -61.07 cm yr-1 

(38%) at CRNS site, and to -47.09 (38%) and -77.93 cm yr-1 (48%) at TDR sites in 2017-

2018 and 2018-2019, respectively. In relation to infiltration, the water percolation 

corresponded to 23% and 41% at CRNS site, and to 42% and 52% at TDRs, in 2017-2018 

and 2018-2019, respectively.  

 

Figure 77 – Cumulative groundwater recharge (R) and percolation water flux and at -20, -30, -40, -

60 and -100 cm soil depths at (a) CRNS and (b) TDR sites in 2017-2018 and 2018-2019 hydrological 

years. P: Rainfall. 

Concerning the GWR rates, the downward water fluxes were overall greater in 2017-

2018 than in 2018-2019, and at TDR site than at CRNS site. The CRNS site held -5.87 (5%) 

and -46.9 cm yr-1 (29%) in 2017-2018 and 2018-2019, respectively, whereas the TDR site 

held -22.80 (18%) and -61.81 cm yr-1 (38%), respectively. In relation to infiltration, the 
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recharge corresponded to 5% and 31% at CRNS site, and to 20% and 41% at TDR site, in 

2017-2018 and 2018-2019, respectively. On average, the recharge stood on -26.39 cm yr-1 

(17% of the rainfall) at CRNS site, and -46.31 cm yr-1 (28% of the mean rainfall) at TDR 

site, showing that at downstream of GEB the recharge rate stood 75.48% higher than at 

upstream portion. This difference stemmed likely from the changing on soil hydraulic 

properties at the vicinity of the Podzol-Acrisol soil type transition, wherein the groundwater 

level is deeper. On the other hand, the relative recharge at CRNS site (17%), the most 

representative site on GEB (Barbosa et al., 2019), was close to remote sensing estimation 

over Podzol soil type averaged on 17.87% (see item 5.1.4). 

The GWR estimates were verified using the WTF-MRC-RISE approach, which 

applies a fixed time interval (daily in this study) on the WTF method to estimate episodic 

recharge (see item 4.6.4). In this study, one Master Recession Curve (MRC) for each sites 

was obtained by a linear regression equation along the longer available groundwater 

recession period (Figure 78). The master recession curves were fairly similar between the 

study sites, holding the slope of -0.6704 at CRNS site and the slope of -0.7018 at TDR site. 

Such difference is likely due to different depths to groundwater table, as well as to different 

values of the soil hydraulic properties. 

 

Figure 78 – Master Recession Curves (MRC) obtained by linear regression equation along the longer 

available groundwater recession period at (a) CRNS and (b) TDR sites. Δhrec: potential groundwater 

decline; Δt: daily time interval; C: constant relative to the time of recharge event occurrence. 

The GWR events expressed by the daily negative water flux were obtained by 

HYDRUS-1D and WTF simulations and accumulated along the two hydrological years for 

validation purposes (Figure 79). The WTF-MRC-RISE approach calculated the downward 

water fluxes using the specific yield (i.e. Sy) equal to 0.10, 0.16 and 0.24, obtained by 
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production tests in surrounding areas (see item 5.1.4). At CRNS site, the estimations held a 

reasonable goodness-of-fit for both 2017-2018 and 2018-2019 years, as KGE was equal to 

83% and 79%, respectively, by using only one value of Sy equal to 0.16. On the other hand, 

by using the same Sy value, the estimations at TDR site held a reasonable goodness-of-fit in 

2017-2018 but not in 2018-2019, once the KGE was equal to 78% and 36%. Conversely, for 

Sy equal to 0.24 the TDR site found a high goodness-of-fit of KGE equal to 84%. These 

results showed a more reliable performance at CRNS site than at TDR site for estimating the 

GWR in the shallow groundwater system of GEB. Nevertheless, it is worthwhile to mention 

that the specific yield may vary significantly along the soil profile influenced by the depth 

to groundwater table (Dettmann and Bechtold, 2016). Lastly, the results demonstrate the 

reliability and suitability of using the CRNS dataset for modelling inversely the soil 

hydraulic properties and, in turn, simulating the unidimensional groundwater flux. 

 

Figure 79 – Validation of groundwater recharge rates simulated by HYDRUS-1D through the 

comparison between the cumulative negative water fluxes obtained by WTF method, for specific 

yield (Sy) equal to 0.10, 0.16 and 0.24, at (a, b) CRNS and (c, d) TDR sites in 2017-2018 and 2018-

2019 years, respectively.  
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6 DISCUSSION 

6.1 Distributed Groundwater Recharge estimated by an enhanced GIS-based water 

balance model 

In this study, the satellite-based data inputted into the water budget equation for 

estimating the hydro(geo)logical responses was the precipitation based on a GPM IMERG 

V05B satellite product. This product was selected due to its very good performance over 

most of Brazil, in spite of its considerable bias on coastal area (Gadelha et al., 2019), which 

required a data correction for GWR estimation. For such a purpose, some studies have at 

least recommended performing the bias correction on IMERG products (Salles et al., 2019; 

Turini, Thies and Bendix, 2019; Yuan et al., 2018) and others have successfully applied it 

already to improve the IMERG data quality (Sun et al., 2018; Wang et al., 2019a). After the 

grid-box correction and resampling of IMERG data, the so-called IMERG* displayed an 

acceptable monthly performance according to Salles et al. (2019), once the CC, PBIAS and 

RRMSE were equal to 99%, -9% and 15%, respectively. In other words, IMERG* slightly 

underestimates the ground-based mean interpolated results, so-called Gauge, similar to 

literature results (Satgé et al., 2017; Sharifi, Steinacker and Saghafian, 2016; Yuan et al., 

2017), with a good monthly correlation in JPA CSA, also found in the literature (Tan and 

Duan, 2017; Wang et al., 2019c; Xu, Shen and Niu, 2019; Yang et al., 2019a). According to 

Tang et al. (2016), this behaviour may occur due to the better performance of IMERG over 

sub-regions with mild/wet climate and mid-/low-latitudes.  

The IMERG* yielded mean error values within the reviewed range either before or 

after the bias correction (Sharifi, Steinacker and Saghafian, 2016; Yuan et al., 2017). The 

high errors before the data correction (RRMSE equal to 59%) were likely due to poor 

sensitivity of IMERG to light precipitation events, similar to the RRMSE of 58% obtained 

by Wei et al. (2018). On the other hand, the high underestimation before the data correction 

(PBIAS equal to -40%), also found by Yuan et al. (2017), was likely caused by warm-rain 

process-dominated systems forced by topography, which is not well-detected by the passive 

microwave sensors (Gadelha et al., 2019; Palharini and Vila, 2017; Rozante et al., 2018). 

Nevertheless, both Gauge- and IMERG*-based data were able to depict the annual 

decreasing precipitation gradients from East to West toward the basin headboard, which is 

the prevailing behaviour reported over JPA CSA (Cabral da Silva et al., 2000a). Thereby, 

after the pixel resampling and bias correction, the IMERG* product better depicted the 
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spatial distribution of precipitation over JPA CSA, allowing for use it as input data in the 

water budget equation for simulating the hydro(geo)logical responses. 

The actual evapotranspiration was the first water-loss component analysed in JPA 

CSA. It was estimated on a distributed scale through an adapted MOD16 algorithm 

(Gusmão, 2017; Mu et al., 2007; Mu, Zhao and Running, 2011; Teixeira et al., 2014, 2013) 

based on the Penman-Monteith equation (Allen et al., 1998), using GLDAS reanalysis data 

rather than point-based meteorological data. Its spatiotemporal variability pattern was 

assessed over distinct land uses/covers under different temporal resolutions. The results 

highlighted a large difference in the evapotranspiration estimates between urban and rural 

areas because of the anthropologic pressure causing soil sealing. The daily actual 

evapotranspiration varied from 1.00 to 4.70 mm d-1 over JPA CSA (in Atlantic Forest 

biome), within the range of Brazilian biomes: 1.00-5.80 in Pampas Lowlands; 1.63-6.22 mm 

d-1 in Xeric Shrubland, 2.28-5.67 mm d-1 in Atlantic Forest, 2.50-6.6 mm d-1 in Neotropical 

Savannah; 3.30-10.00 mm d-1 in Amazon; 4.00-5.50 mm d-1 in Pantanal Wetland (Andrade 

et al., 2012; Mendonça et al., 2012; de Oliveira et al., 2018a; Paca et al., 2019; Silva; Silva; 

Santos, 2019; Souza et al., 2019). In Atlantic Forest, the mean annual and monthly actual 

evapotranspiration over JPA CSA stood on 1,207.65 mm yr-1 (79.93% of precipitation) and 

ranged from 72.81 to 118.64 mm month-1, respectively.  

The evapotranspiration results were relatively similar to ones found in São Paulo 

state, covered mostly by Atlantic Forest, whose annual mean value stood on 1,248 mm yr-1 

and the monthly results ranged from 26.1 to 116.8  mm month-1 (de Oliveira et al., 2016b). 

In addition, another study nearby the Brazil-Argentina-Paraguay triple border, also covered 

by Atlantic Forest, found the MOD16 evapotranspiration ranging from 1,161 to 1,389 mm 

yr-1 across native Atlantic Forest and tree plantations from remote sensing data (Cristiano et 

al., 2015). The monthly evapotranspiration estimates in Atlantic Forest were less variable 

than in Neotropical Savannah and Amazon biomes, which ranged roughly from 19 to 140 

mm month-1, and from 50 to 140 mm month-1, respectively (de Oliveira et al., 2018a; Ruhoff 

et al., 2013). In this sense, Templeton et al. (2014) found that distributed input measurements 

(such as reanalysis data) led to an improvement in estimating evapotranspiration (~7% 

reduction in error), compared to the single station data (~40% reduction in error). Although 

no straightforward validation of this evapotranspiration estimates could have been 

performed in this study, its performance was verified against the ground-based reference 

evapotranspiration. Overall, the difference between potential and actual evapotranspiration 

was higher in dry season than in rainy season, similarly to Coelho et al. (2017) and Oliveira 
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et al. (2018), due to high net radiation at the expenses of low rainwater availability along the 

dry season, and the opposite during the rainy season. It can be inferred, therefore, that the 

actual evapotranspiration calculated by the adapted MOD16 algorithm was well-estimated 

over JPA CSA, as it was able to depict the meteorological effects over evapotranspiration. 

The soil water storage changes were calculated from soil moisture data assimilated 

by SPL4SMAU satellite product down to the 1-m root zone. The SMAP was selected due to 

its better performance compared to other satellites, as validated by CRNS networks (Duygu 

and Akyürek, 2019; Montzka et al., 2017). Moreover, SPL4SMAU root-zone product was 

validated in 17 watersheds, meeting the accuracy requirements such as unbiased RMSE 

lower than 0.04 m3 m-3, under a greater variety of climate and land cover conditions (Reichle 

et al., 2017). Applying the SMAP to calculate in root zone, annual declines of soil water 

storage changes were obtained both in dry (2016) and moderately-rainy (2017) years, 

showing the high susceptibility of JPA CSA to water shortage. Similarly, Zhang (2018) 

found that the surface soil water storage changes decreased constantly by an average rate of 

-4 mm yr-1 from 2009 to 2017 in four regions of the semiarid of the Northeast of Brazil. The 

urbanization process and precipitation deficit are likely the more important factors impacting 

the decline of the soil water storage changes, whose tendency may alter between positive 

and negative along the decades (Chen et al., 2018). This represents a critical scenario due to 

the recent intensification of drought events not seen in several decades in the Northeast of 

Brazil, which affects mainly the rural areas for not being yet adapted for mitigating such 

hazards (Marengo, Alves and Alvala, 2018; Marengo, Torres and Alves, 2016). Using 

SMAP to assess the soil water storage changes was similarly performed by Bai et al. (2018), 

who proposed a Soil Water Deficit Index (SWDI) derived from SMAP dataset for 

monitoring the agricultural drought, showing a relatively good performance over a transition 

zone between humid and semiarid climates, similarly to JPA CSA condition. 

The surface runoff was the water-loss component that yielded the lowest hydrological 

output in JPA CSA. It was estimated on a distributed scale through the adapted NRCS–CN 

method on a daily basis for initial abstraction ratio equal to 0.03 and for recalculated Curve 

Numbers (Lal et al., 2016; Lal, Mishra and Kumar, 2019). The mean annual surface runoff 

over JPA CSA along the study period was roughly 14.54% (219.21 mm) of precipitation, 

close to mean value of 11.85% (141.86 mm) from the plot-scale runoff compiled data over 

Brazil (Anache et al., 2017). In Atlantic Forest biome of Brazil, the hydrological response 

was simulated by applying AnnAGNPS model, which use the NRCS–CN method for runoff 

calculations, reporting similarly a mean value of 14.82% for a sample of 11 erosive events 
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along three years (Zema et al., 2018). In Pernambuco, neighbour state to Paraíba, a mean 

surface runoff of ~15% over the bare soil coverage was found by plot-scale studies 

(Montenegro et al., 2019). On the other hand, still in the Northeast of Brazil, Coelho et al. 

(2017) found a surface runoff equal to 28.62% of the precipitation depth over a alluvial basin, 

nearly 2 times the estimation over JPA CSA, likely because the former area was 

encompassed mostly by HSG type C, and the latter by HSG type B, according to Sartori et 

al. (2005) and NRCS (1986). Thereby, using globally-gridded HSG, such as HYSOGs250m 

(Ross et al., 2018), for CN-based runoff modelling, may not suit to regional soil 

characteristics. Furthermore, IMERG* provided higher and more plausible runoff estimates 

than Gauge, similarly to Gilewski and Nawalany (2018), who claimed that the high degree 

of uncertainty stemmed from Gauge interpolated data may be higher than that caused by the 

low spatial resolution of IMERG. Similarly to Li et al. (2019), it may also be inferred that 

the soil imperviousness, together with the precipitation spatial distribution, are likely the 

more important conditions for runoff generation over JPA CSA, highlighted by the high 

estimates on urban area compared to other land uses/covers. 

The GWR was the target water balance component investigated in this study in JPA 

CSA. Since it comes to a hard-working, directly-measured variable, the water budget 

equation was chosen because of its simplicity and widely-used indirect approach for 

estimating the distributed GWR compared to other techniques and methods (Ali and 

Mubarak, 2017; Martos-Rosillo et al., 2015; Ni et al., 2018; Singh et al., 2019; Thakur, Singh 

and Ekanthalu, 2016; Xu and Beekman, 2018). Overall, the proposed GIS-based model 

showed reasonable GWR rates in JPA CSA, whose estimates in the average rainy year 

(2017) ranged from 301.63 to 364.62 mm yr-1, similar to the 360 mm yr-1 averaged on by 

semi-distributed hydrogeological modelling (Tsuyuguchi et al., 2018). Such results also 

showed a reasonable goodness-of-fit, namely CC and RRMSE ranging from 68% to 89%, 

and from 30% to 34%, respectively, and slight overestimation for Gauge (PBIAS varying 

from 8% to 11%) and slight underestimation for IMERG* (PBIAS varying from -13% to -

9%). The results showed a decreasing East-to-West recharge tendency mainly due to 

precipitation gradient, with the mean value of 18.27% (278.85 mm yr-1) of precipitation, 

which was 1.27 times higher than surface runoff and 0.23 times lower than 

evapotranspiration. Borges et al. (2017) found a similar mean annual value of 19.5% (333.83 

mm yr-1) averaged on an Atlantic Forest study area composed of 6 out of 8 JPA CSA soil 

types. Rabelo and Wendland (2009) also found a mean annual value of 21.71% (297.6 mm 

yr-1) in a transition zone between Neotropical Savannah and Atlantic Forest biomes.  
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The annual relative recharge was also calculated by soil type and land use/cover in 

JPA CSA, obtaining similar mean values for the classes of the latter analysis (except for 

urban use) than those of the former, which displayed either high or low mean values. 

Regarding the land uses/covers, the mean annual relative recharge in JPA CSA was 

relatively close to global estimates reviewed by Mohan et al. (2018), showing very close 

mean values for bare soil, cropland (mosaic) and forest, whose difference was equal to 

2.76%, -0.64% and -0.95%, respectively, and slightly higher differences of -6.74% and -

7.18% for pasture and urban covers, respectively. Regarding the soil types, the Acrisols and 

Fluvisols encompass together 70.7% of JPA CSA, similarly to Cinzas and Laranjinhas river 

basins (Borges et al., 2017), whose mean annual recharges differed satisfactorily by only -

5.70%. Comparing the relative recharge of Acrisol to another Atlantic Forest location (de 

Souza et al., 2019), a higher difference between the mean annual estimates of 9.63% was 

found, which, however, stemmed likely from the fairly higher evapotranspiration in JPA 

CSA. Finally, It can be then inferred that GWR was realistically well-estimated by the 

proposed GIS-based model, whose results backed up the considerable potential of GWR in 

the unconfined aquifer of JPA CSA. 

6.2 Intermediary-scale Groundwater Recharge modelling coupled to soil hydraulic 

property inverse modelling 

The hourly neutron intensity measured by the CRNS probe was initially converted to 

volumetric water content through the standard calibration curve based on the N0 site-specific 

parameter (Desilets, Zreda and Ferré, 2010), equal to 550 neutron counts when using the 

weighting function (Köhli et al., 2015; Schrön et al., 2017), which included other hydrogen 

pools as well. Earlier, Baroni et al. (2018) had shown that CRNS performed well when lattice 

water and organic carbon water equivalents are added to soil moisture. Notably, GEB gathers 

most of unfavourable environmental conditions for CRNS operation, namely low altitude, 

low latitude, high air humidity, and high soil moisture conditions; the two latter reducing the 

penetration depth and horizontal footprint of neutron sensing (Köhli et al., 2015).  

The CRNS time series smoothed by moving average to 24-hours showed a relatively 

high goodness-of-fit compared to weighted-mean soil moisture in 10-cm depth obtained 

from three soil profile probes, as the KGE and R² were equal to 80% and 89%, respectively. 

Similar to GEB, Schrön et al. (2017) found that CRNS better performed in areas under the 

influence of shallow groundwater level rise when the weighting function was used, reaching 
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high values of KGE and CC metrics. Furthermore, such results showed that CRNS also can 

hold a good performance in tropical Podzol soil type, featured by sandy texture with sand 

content averaged on 96.38%, which are found in Amazon and Atlantic Forest biomes. Such 

Podzol soil types encompass the intermediate secondary-growth vegetation, which together 

with small fragments (lower than 100 ha), comprehend from 32% to 40% of the original 

cover of Atlantic Forest, remaining only from 11.4% to 16% (Ribeiro et al., 2009). Despite 

the high importance of Podzol for native vegetation conservation and water resource 

regulation and preservation, still little information about the soil hydraulic properties of this 

soil type is available in tropical regions (Cooper et al., 2017). 

Despite the CRNS broad applicability on soil sciences, only few studies so far have 

employed its data in inverse modelling to improve the accuracy of the calibration of the soil 

hydraulic properties (Baatz et al., 2017; Brunetti et al., 2019; Rivera Villarreyes, Baroni and 

Oswald, 2014). Brunetti et al. (2019) coupled externally the neutron operator COSMIC 

(Shuttleworth et al., 2013) with the HYDRUS-1D model, allowing for a confident estimation 

of the shape parameters α and n from van Genuchten-Maulem model, in spite of certain 

uncertainty found on saturated hydraulic conductivity Ks. In the present study, the 

HYDRUS-1D-COSMIC coupled model was run with soil moisture time series of CRNS and 

TDR datasets to calibrate the curves of soil hydraulic properties at upstream and downstream 

of GEB. By using the CRNS data, the model was able to simulate the neutron intensity with 

a relatively high goodness-of-fit (KGE and R² were equal to 89% and 79%, respectively), as 

well as to simulate satisfactorily well the soil moisture profiles. Similarly, Baatz et al. (2017) 

and Shuttleworth et al. (2013) coupled COSMIC with land models for updating the estimates 

of the soil hydraulic properties and recalibrating the model, respectively, reducing the errors 

between the simulated and observed estimates of soil moisture and neutron intensity.  

The aspect of both hydraulic conductivity and retention curves agreed reasonably 

with the results found in GEB through the Beerkan method (Santos, Silva and Silva, 2012; 

Silva, 2009). The Podzol soil types of GEB was susceptible to successive periods of water 

stress and flooding, as a consequence of high levels of hydraulic conductivity with low water 

retention. Thereby, the estimates of saturated hydraulic conductivity varied over GEB, 

holding 1.26×10-4 m s-1 at upstream and 6.47×10-4 m s-1 at downstream locations. Such 

results were likely due to combination of sandy texture and shallow groundwater table at the 

CRNS site, leading to higher estimates than the range obtained by Podzol in Ilha do Cardoso 

state park, which varied from 10−5 to 10−7 (Ribeiro et al., 2009), and the mean value of 

2.15×10-5 m s-1 obtained by Rosetta Lite software from Podzol hydrophysical data provided 
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by HYBRAS (Hydrophysical Database for Brazilian Soils) database (Ottoni et al., 2018). 

Nonetheless, the estimates of soil hydraulic properties based on inverse modelling were 

within the range determined by slug tests in GEB, which varied from 1.18×10-4 to 6.96×10-

4 m s-1, being within the range for porous media with high permeability, varying from 10−4 

to 10−5 (Reynolds and Canada, 1986). 

The HYDRUS-1D model was also used to simulate the root water uptake and 

percolation water flux along the root zone as well as the GWR rate obtained at the variable 

bottom boundary, both on daily scale, to avoid the bias caused by temporal averaging of 

meteorological data on higher temporal resolutions (Batalha et al., 2018). Thereby, the main 

cumulative water fluxes were simulated to assess the root distribution effects on the 

hydrogeological processes of GEB. On average, the vertical water percolation reduction due 

to root water uptake ranged from ~32% (CRNS) to ~47% (TDRs) of infiltration, in 

agreement with recent findings claiming that uniformly-distributed rooting in the 

unsaturated zone may halve the GWR rates (Grimaldi, Orellana and Daly, 2015). Moreover, 

the relative recharge upstream of GEB ranged from 5% to 29%, whereas at downstream of 

GEB the recharge ranged from 18% to 38%, for the dry and average hydrological years, 

respectively, showing the influence of the curves of the soil hydraulic properties and the 

groundwater depth on the predictions. The relative recharge on the average rainy year was 

within the range of a typical Podzol reported from Belgium, which spatially varied from 

27% (226 mm yr-1) to 47% (392 mm yr-1) of precipitation, with mean value of 29% (242 mm 

yr-1) (Dams et al., 2009; Leterme, Gedeon and Jacques, 2013). Šimůnek (2015) found GWR 

rates equal to ~39.5% (~350 mm yr-1) in a dry Podzol simulated by HYDRUS-1D.  

The GWR estimates were then validated by WTF-MRC-RISE approach, showing a 

reasonable goodness-of-fit at both CRNS and TDR datasets. The latter, however, showed 

different specific yield values between the dry and rainy years. This likely occurred because 

of the remarkable variability of the apparent specific yield in shallow groundwater systems, 

whose dependence on the depth to groundwater makes its measurement difficult or even 

impossible (Crosbie et al., 2019; Dettmann and Bechtold, 2016). Conversely, the specific 

yield of 0.16 found at the CRNS site was similar to mean estimate of ~0.15 found in a 

hydrogeological management zone at downstream of Paraíba river basin (Braga, Rêgo and 

Galvão, 2015). Lastly, the results of such studies are valuable for decision-makers in water 

resources, in view of the worldwide effects of climate changes on GWR, which may face a 

decrease of up to 72% in areas comprehended by Podzol soil type, according to a study 

carried out in four different analogue locations (Leterme, Mallants and Jacques, 2012).  
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7 CONCLUSION AND OUTLOOK 

Recent advances in remote sensing have launched new techniques and methods for 

estimating the water balance components with better spatiotemporal resolutions, which have 

allowed for a more accurate indirect simulation of GWR through the water budget equation 

over either large- and intermediary-scale areas. Accordingly, this study targeted on providing 

alternative means of GWR estimation by merging well-established hydrogeological models 

and state-of-the-art monitoring data sources. Such datasets comprehended: satellite products, 

reanalysis data, land use/cover mapping, hydrogeological models, Cosmic-Ray Neutron 

Sensing/Operators, in situ and laboratory experiments (gravimetric method, slug test, 

pumping test, and soil sieving), and various ground-based data sources (rain gauges, 

meteorological stations, stream gauges, soil moisture profile probes, and monitoring wells). 

The methodologies herein investigated were assessed in two tropical wet basins located in a 

complex sedimentary aquifer, in the coastal Northeast of Brazil. From the accomplished 

results, the following conclusions can be addressed: 

1. GPM IMERG V05B satellite product, after the bias correction and pixel resampling, 

estimated more comprehensibly the spatially-distributed precipitation patterns, 

depicting an East-to-West precipitation gradient; 

2. Adapted MOD16 algorithm estimated cohenrently the actual evapotranspiration by 

applying the reanalysis data and the monthly cloud-cleaning map composition on 

biophysical parameters, accounting for the land use/cover particularities; 

3. SMAP SPL4SMAU product allowed for averaging the soil water storage changes 

down to 1-m root zone, revealing the likely susceptibility of the study area to water 

shortage, in spite of the relatively coarse resolution even after pixel resampling; 

4. Updated NRCS–CN method, after the Curve Number recalculation and the 

Antecedent Runoff Condition reformulation, provided satisfactory surface runoff 

estimates, accounting for the soil type and land use/cover particularities; 

5. GIS-based model coupling showed that GWR estimates had a slight underestimation 

for Gauge scenario and slight overestimation for IMERG* one, and mean relative 

rates generally more variable when averaged by soil types than by land use/cover; 

6. CRNS-based soil moisture behaved convincingly with high goodness-of-fit in a 

region with a shallow groundwater system under tropical wet conditions, despite the 

unfavourable operational conditions including the low incoming neutron intensity; 
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7. COSMIC operator coupled with HYDRUS-1D model allowed for calibrating 

successfully via inverse modelling the parameters of the soil hydraulic properties, 

and for simulating the aboveground neutron intensity, in a sandy Podzol soil type; 

8. HYDRUS-1D was able to simulate on daily scale the vertical water percolation along 

the root zone and the GWR at the variable bottom boundary, the latter matching the 

WTF-MRC-RISE-based estimates in the CRNS location; 

9. The curves of the soil hydraulic properties and the groundwater depth were likely the 

most important environmental factors that differentiated the upstream and 

downstream GWR rates in the small-scale tropical wet basin; 

10. GWR estimates were realistically well estimated over the study areas through both 

the GIS-based methods and the HYDRUS-1D-COSMIC model based on CRNS data, 

as shown by the similar results found in the Podzol soil type. 

This study revealed the progressive improvement on the quality of satellite products 

as new sensor advancements and algorithm refinements have been released. Accordingly, 

enhancements on spatiotemporal resolution and goodness-of-fit in the sources of monitoring 

data shall cope with burdensome and time-consuming maintaining of extensive monitoring 

networks. Those advances shall boost increasingly more the hydrogeological applications, 

so that the hard-tasking measurement of relevant variables, such as GWR, can be promptly 

undertaken to afford a diligent water resource management. Conversely, the current 

technology limitations and the increasingly stringent environmental requirements have 

compelled immediate solutions for measuring the soil moisture at field scale. The present 

study then demonstrated the effective performance of CRNS probes under unfavourable 

operating conditions, thus encouraging the adoption of such technology in emerging 

countries, such as Brazil. Nevertheless, studies on the CRNS application for soil water and 

matter transport simulation have been underexplored in the literature yet. Thus, this study 

pioneering in South America showed the high potential of CRNS for further hydrogeological 

uses, representing a first step on the feasible employment of such state-of-the-art technology 

on the continent. Technical improvements are being made, e.g. in the Cosmic Sense research 

project, to enhance the CRNS sensitivity, modifying its ground penetration depth and 

horizontal footprint of measurement. Ultimately, further studies are firmly recommended to 

better assess the sources of uncertainty in water budget approaches, namely: (1) lack of water 

demand, interception and irrigation; (2) satellite-based precipitation and soil moisture spatial 

resolutions; (3) runoff potential and phenological regional parameters; (4) soil hydraulic 

property inverse modelling, and; (5) CRNS performance under tropical semiarid condition.  



142 

REFERENCES 

Abdulkareem, J. H. et al. Long-term runoff dynamics assessment measured through land use/cover 

(LULC) changes in a tropical complex catchment. Environment Systems and Decisions, v. 

39, n. 1, p. 16–33, 2019.  

AESA – Agência Executiva de Gestão das Águas do Estado da Paraíba. SIGAESA-WEB: Geo 

Portal. Disponível em: <http://geo.aesa.pb.gov.br/>. Access in: May, 2018.  

Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of 

groundwater depletion. Nature Geoscience, v. 5, n. 12, p. 853–861, 2012.  

Agarwal, R.; Garg, P. K. Remote sensing and GIS based groundwater potential and recharge zones 

mapping using multi-criteria decision making technique. Water Resources Management, 

v. 30, n. 1, p. 243–260, 2016.  

Aggarwal, S. Principles of remote sensing. Satellite Remote Sensing and GIS Applications in 

Agricultural Meteorology. p. 23–38, 2004. 

Ajmal, M. et al. Investigation of SCS-CN and its inspired modified models for runoff estimation in 

South Korean watersheds. Journal of Hydro-Environment Research, v. 9, n. 4, p. 592–

603, 2015.  

Ajmal, M.; Kim, T.-W. Quantifying excess stormwater using SCS-CN–based rainfall runoff models 

and different Curve Number determination methods. Journal of Irrigation and Drainage 

Engineering, v. 141, n. 3, p. 1–12, 2015.  

Ali, M. H.; Mubarak, S. Approaches and methods of quantifying natural groundwater recharge – a 

review. Asian Journal of Environment & Ecology, v. 5, n. 1, p. 1–27, 2017.  

Allen, R. G. et al. Crop evapotranspiration – Guidelines for computing crop water requirements. In: 

FAO Irrigation and drainage. Rome, Italy: FAO – Food and Agriculture Organization of 

the United Nations, 56p. 1–15, 1998.  

Allen, R. G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration 

with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage 

Engineering, v. 133, p. 380–394, 2007.  

Almeida, C. das N. et al. BRAMAR - Situação do estudo de caso de João Pessoa. XX Simpósio 

Brasileiro de Recursos Hídricos. Annals... Florianópolis: 2017 

Alvares, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 

v. 22, n. 6, p. 711–728, 2013.  

Anache, J. A. A. et al. Runoff and soil erosion plot-scale studies under natural rainfall: a meta-

analysis of the Brazilian experience. Catena, v. 152, p. 29–39, 2017.  

Anderson, L. O. et al. Sensor MODIS: uma abordagem geral. São José dos Campos/SP: INPE, 

2003.  

Andrade, R. G. et al. Geotecnologias aplicadas à avaliação de parâmetros biofísicos do Pantanal. 

Pesquisa Agropecuária Brasileira, v. 47, n. 9, p. 1227–1234, 2012.  

Andrades Filho, C. de O. Evolução tectono-sedimentar da porção central emersa da bacia 

Paraíba, Nordeste do Brasil. PhD thesis. University of São Paulo, 2014. 

Andreasen, M. et al. Modeling cosmic ray neutron field measurements. Water Resources Research, 

v. 52, p. 6451–6471, 2016.  

Andreasen, M. et al. Status and perspectives on the cosmic-ray neutron method for soil moisture 

estimation and other environmental science applications. Vadose Zone Journal, v. 16, n. 8, 

p. 11, 2017a.  



143 

Andreasen, M. et al. Cosmic-ray neutron transport at a forest field site: the sensitivity to various 

environmental conditions with focus on biomass and canopy interception. Hydrology and 

Earth System Sciences, v. 21, p. 1875–1894, 2017b.  

Anjum, M. N. et al. Assessment of IMERG-V06 precipitation product over different hydro-climatic 

regimes in the Tianshan Mountains, North-western China. Remote Sensing, v. 11, n. 2314, 

p. 1–23, 2019.  

Arai, E.; Freitas, R. Pré-processamento MODIS. In: Rudorff, B. F. T.; Shimabukuro, Y. E.; Ceballos, 

J. C. (Eds.). O sensor MODIS e suas aplicações ambientais no Brasil. São José dos 

Campos/SP: Editora Parêntese, p. 71–82, 2007.  

Araújo, D. et al. Fácies e Sistemas Deposicionais da Formação Barreiras na Região da Barreira do 

Inferno, Litoral Oriental do Rio Grande do Norte. Geologia USP (Série Científica), v. 6, n. 

2, p. 43−50, 2006. 

Araújo Filho, J. C. et al. Levantamento de reconhecimento de baixa e média intensidade dos 

solos do Estado de Pernambuco Boletim de Pesquisa n. 11. Rio de Janeiro/RJ: Embrapa 

Solos, 2000.  

Arnold, J. G. et al. SWRRB: a basin scale simulation model for soil and water resources 

management. Colege Station: Texas A&M University Press, 1990.  

ASTM. G173-03: standard tables for reference solar spectral irradiances - direct normal and 

hemispherical on 37° tilted surface. American Society for Testing and Materials (ASTM), 

2003. 

Awadallah, A. G.; Farahat, M. S.; Haggag, M. Discussion of "Interfacing the geographic information 

system, remote sensing, and the soil conservation service-curve number method to estimate 

curve number and runoff volume in the ASIR region of Saudi Arabia" by Fawzi S . 

Mohammad , Jan Adamowski. Arabian Journal of Geosciences, 2017.  

Baatz, R. et al. Calibration of a catchment scale cosmic-ray probe network : A comparison of three 

parameterization methods. Journal of Hydrology, v. 516, p. 231–244, 2014.  

Baatz, R. et al. Evaluation of a cosmic-ray neutron sensor network for improved land surface model 

prediction. Hydrology and Earth System Sciences, v. 21, p. 2509–2530, 2017.  

Badgley, G. et al. On uncertainty in global terrestrial evapotranspiration estimates from choice of 

input forcing datasets. Journal of Hydrometeorology, v. 16, p. 1449–1455, 2015.  

Bai, J. et al. Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an 

agricultural drought index in China. Remote Sensing, v. 10, n. 1302, p. 1–21, 2018.  

Baik, J.; Liaqat, U. W.; Choi, M. Assessment of satellite- and reanalysis-based evapotranspiration 

products with two blending approaches over the complex landscapes and climates of 

Australia. Agricultural and Forest Meteorology, v. 263, p. 388–398, 2018.  

Barbosa, L. R. Relações precipitação-umidade do solo-vazão de eventos subdiários em bacias 

experimentais do NE brasileiro. Master dissertation. Federal University of Paraiba, 2015. 

Barbosa, L. R. et al. Sub-hourly rainfall patterns by hyetograph type under distinct climate conditions 

in Northeast of Brazil: a comparative inference of their key properties. Revista Brasileira 

de Recursos Hídricos, v. 23, n. 46, p. 1–14, 2018.  

Barbosa, L. R. et al. Stability of soil moisture patterns retrieved at different temporal resolutions in 

a tropical watershed. Revista Brasileira de Ciência do Solo, v. 43, p. 1–21, 2019.  

Barbosa, J. A. et al. A estratigrafia da bacia Paraíba: uma reconsideração. Estudos Geológicos, v. 

13, n. 1, p. 89−108, 2003. 

Baroni, G. et al. Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-

ray neutron sensing. Journal of Hydrology, v. 564, p. 873–887, 2018.  



144 

Baroni, G.; Oswald, S. E. A scaling approach for the assessment of biomass changes and rainfall 

interception using cosmic-ray neutron sensing. Journal of Hydrology, v. 525, p. 264–276, 

2015.  

Bastiaanssen, W. G. M. et al. A remote sensing surface energy balance algorithm for land (SEBAL), 

Part 1: Formulation. Journal of Hydrology, v. 212–213, p. 213–229, 1998.  

Batalha, M. S. et al. Effect of temporal averaging of meteorological data on predictions of 

groundwater recharge. Journal of Hydrology and Hydromechanics, v. 66, n. 2, p. 143–

152, 2018.  

Berhanu, B.; Melesse, A. M.; Seleshi, Y. Gis-based hydrological zones and soil geo-database of 

Ethiopia. Catena, v. 104, p. 21–31, 2013.  

Beurlen, K. Estratigrafia da faixa sedimentar costeira Recife − João Pessoa. Boletim da Sociedade 

Brasileira de Geologia, v. 16, n. 1, p. 43−53, 1967. 

Bi, H. et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over 

the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, v. 121, p. 2658–

2678, 2016.  

Blasi, P. Recent results in cosmic ray physics and their interpretation. Brazilian Journal of Physics, 

v. 44, n. 5, p. 426–440, 2014.  

Blandford, R. D.; Ostriker, J. P. Particle acceleration by astrophysical shocks. The Astrophysical 

Journal. v. 221, p. L29–L32, 1978. 

Bogena, H. R. et al. Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: 

The worst case scenario. Water Resources Research, v. 49, p. 5778–5791, 2013.  

Bogena, H. R. et al. Emerging methods for noninvasive sensing of soil moisture dynamics from field 

to catchment scale: a review. Wiley Interdisciplinary Reviews: Water, v. 2, n. 6, p. 635–

647, 2015.  

Bolton, D. K.; Friedl, M. A. Forecasting crop yield using remotely sensed vegetation indices and 

crop phenology metrics. Agricultural and Forest Meteorology, v. 173, p. 74–84, 2013.  

Borges, V. M. et al. Groundwater recharge estimating in the Serra Geral aquifer system outcrop area 

– Paraná state, Brazil. Águas Subterrâneas, v. 31, n. 4, p. 338–346, 2017.  

Børgesen, C. D. et al. Soil hydraulic properties near saturation, an improved conductivity model. 

Journal of Hydrology, v. 324, p. 40–50, 2006.  

Boscha, D. D. et al. Temporal variations in baseflow for the Little River experimental watershed in 

South Georgia, USA. Journal of Hydrology: Regional Studies, v. 10, p. 110–121, 2017.  

Bouwer, H.; Rice, R. C. A slug test for determining hydraulic conductivity of unconfined aquifers 

with completely or partially penetrating wells. Water Resources Research, v. 12, n. 3, p. 

423–428, 1976. 

Bowen, I. S. The ratio of heat losses by conduction and by evaporation from any water surface. 

Physical review, v. 27, p. 779–787, 1926.  

Braga, A. C. Evapotranspiração e Produtividade Primária Bruta em áreas agrícolas utilizando 

técnicas de sensoriamento remoto. PhD thesis. Federal University of Campina Grande, 

2014. 

Braga, A. C. R.; Rêgo, J. C.; Galvão, C. de O. Variação intra-sazonal da potencialidade hídrica 

subterrânea e sua influência na outorga. Revista Brasileira de Recursos Hídricos, v. 20, n. 

3, p. 647–656, 2015.  

Brocca, L. et al. Soil moisture for hydrological applications: open questions and new opportunities. 

Water, v. 9, n. 140, p. 1–20, 2017.  

Brodzik, M. J. et al. EASE-Grid 2.0: incremental but significant improvements for Earth-Gridded 



145 

Data Sets. ISPRS International Journal of Geo-Information, v. 1, p. 32–45, 2012.  

Brunetti, G. et al. On the information content of cosmic-ray neutron data in the inverse estimation of 

soil hydraulic properties. Vadose Zone Journal, v. 18:180123, p. 1–24, 2019.  

Brunner, P. et al. How can remote sensing contribute in groundwater modeling? Hydrogeology 

Journal, v. 15, n. 1, p. 5–18, 2007.  

Caballero, L. A. Hydrology, hydrochemistry and implications for water supply of a cloud forest 

in Central America. PhD thesis. Faculty of the Graduate School of Cornell University, 

2012. 

Cabral da Silva, T. et al. Geologia, recursos minerais e atividade minerária, geomorfologia e estudo 

de erosão, pedologia, aptidão agrícola, classes de terra para irrigação e zoneamento 

edafoclimático para culturas. In: Governo da Paraíba; SEMARH; SCIENTEC (Eds.). Plano 

Diretor de Recursos Hídricos da Bacia do Rio Gramame. João Pessoa/PB: Governo do 

Estado da Paraíba, p. 1–57, 2000a.  

Cabral da Silva, T. et al. Climatologia. In: Governo da PARAÍBA; SEMARH; SCIENTEC (Eds.). 

Plano Diretor de Recursos Hídricos da Bacia do Rio Gramame. João Pessoa/PB: 

Governo do Estado da Paraíba, p. 1–48, 2000b.  

Cai, Z.; Ofterdinger, U. Analysis of groundwater-level response to rainfall and estimation of annual 

recharge in fractured hard rock aquifers, NW Ireland. Journal of Hydrology, v. 535, p. 71–

84, 2016.  

Camillo, P. J.; Gurney, R. J. A resistance parameter for bare-soil evaporation models. Soil Science, 

v. 141, n. 2, p. 95–105, 1986.  

Cary, L. et al. Origins and processes of groundwater salinization in the urban coastal aquifers of 

Recife (Pernambuco, Brazil): A multi-isotope approach. Science of The Total 

Environment, v. 530, p. 411–429, 2015.  

Cavalcante, R. B. L. et al. Opposite effects of climate and land use changes on the annual water 

balance in the Amazon arc of deforestation. Water Resources Research, v. 55, p. 1–15, 

2019.  

Chatton, E. et al. Glacial recharge, salinisation and anthropogenic contamination in the coastal 

aquifers of Recife (Brazil). Science of The Total Environment, v. 569, p. 1114–1125, 2016.  

Chaudhuri, S.; Ale, S. Long-term (1930–2010) trends in groundwater levels in Texas: influences of 

soils, landcover and water use. Science of The Total Environment, v. 490, p. 379–390, 

2014.  

Chen, F. et al. Modeling of land surface evaporation by four schemes and comparison with FIFE 

observations. Journal of Geophysical Research, v. 101, n. D3, p. 7251–7268, 1996.  

Chen, Z. et al. The impact of precipitation deficit and urbanization on variations in water storage in 

the Beijing-Tianjin-Hebei urban agglomeration. Remote Sensing, v. 10, n. 4, p. 1–12, 2018.  

Cho, Y.; Engel, B. A. Spatially distributed long-term hydrologic simulation using a continuous SCS 

CN method-based hybrid hydrologic model. Hydrological Processes, v. 32, n. 7, p. 904–

922, 2018.  

Chow, V.; Maidment, D.; Mays, L. Applied hydrology. New York/NY: McGraw-Hill, 1988.  

Chrisman, B.; Zreda, M. Quantifying mesoscale soil moisture with the cosmic-ray rover. Hydrology 

and Earth System Sciences, v. 17, p. 5097–5108, 2013.  

Chung, I. et al. Estimating groundwater recharge in the humid and semi-arid African regions: review. 

Geosciences Journal, v. 20, n. 5, p. 731–744, 2016.  

Chung, S.; Horton, R. Soil heat and water flow with a partial surface mulch. Water Resources 

Research, v. 23, n. 12, p. 2175–2186, 1987.  



146 

Cleugh, H. A. et al. Regional evaporation estimates from flux tower and MODIS satellite data. 

Remote Sensing of Environment, v. 106, n. 3, p. 285–304, 2007.  

Clothier, B. E.; Green, S. Leaching processes. Elsevier, 2005. 

Coelho, V. H. R. et al. Dinâmica do uso e ocupação do solo em uma bacia hidrográfica do semiárido 

brasileiro. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 1, p. 64–72, 

2014.  

Coelho, V. H. R. et al. Alluvial groundwater recharge estimation in semi-arid environment using 

remotely sensed data. Journal of Hydrology, v. 548, p. 1–15, 2017.  

Colliander, A. et al. Validation of SMAP surface soil moisture products with core validation sites. 

Remote Sensing of Environment, v. 191, p. 215–231, 2017.  

Cooper, M. et al. Hydro-physical characterization of soils under the Restinga Forest. Scientia 

Agricola, v. 74, n. 5, p. 393–400, 2017.  

Cordeiro, M. R. C. et al. Deriving a dataset for agriculturally relevant soils from the Soil Landscapes 

of Canada (SLC) database for use in Soil and Water Assessment Tool (SWAT) simulations. 

Easth System Science Data, v. 10, n. 3, p. 1673–1686, 2018.  

Cronin, J. W.; Gaisser, T. K.; Swordy, S. P. Cosmic rays at the energy frontier. Scientific American, 

v. 276, n. 1, p. 44–49, 1997. 

Crosbie, R. S. et al. Ground truthing groundwater-recharge estimates derived from remotely sensed 

evapotranspiration: a case in South Australia. Hydrogeology Journal, v. 23, p. 335–350, 

2015.  

Crosbie, R. S. et al. Estimating groundwater recharge and its associated uncertainty : Use of 

regression kriging and the chloride mass balance method. Journal of Hydrology, v. 561, p. 

1063–1080, 2018.  

Crosbie, R. S. et al. Constraining the magnitude and uncertainty of specific yield for use in the water 

table fluctuation method of estimating recharge. Water Resources Research, v. 55, n. 8, p. 

7343–7361, 2019.  

Crouzeilles, R. et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. 

Perspectives in Ecology and Conservation, v. 17, n. 2, p. 80–83, 2019.  

da Costa, A. M. et al. Groundwater recharge potential for sustainable water use in urban areas of the 

Jequitiba river. Sustainability, v. 11, n. 2955, p. 1–20, 2019.  

da Silva, A. F.; Almeida, C. das N. Utilização do método Bávaro para avaliação das condições 

hidromorfológicas de uma bacia experimental no Nordeste Brasileiro. Revista Brasileira de 

Recursos Hídricos, v. 20, p. 106–118, 2017.  

da Silva, A. J. P.; Coelho, E. F. Estimation of water percolation by different methods using TDR. 

Revista Brasileira de Ciência do Solo, v. 38, p. 73–81, 2014. 

Dai, Y. et al. The common land model. Bulletin of the American Meteorological Society, v. 84, n. 

8, p. 1013–1023, 2003.  

Dams, J. et al. Case Kleine Nete: hydrologie, wetenschappelijk rapport - NARA 2009. Brussels: 

2009.  

Das, K.; Singh, J.; Hazra, J. Comparison of SMAP, GLDAS and simulated soil moisture datasets 

over a Malaysian region. IEEE International Geoscience and Remote Sensing 

Symposium (IGARSS), p. 6298–6301, 2019.  

de Bruin, H. From Penman to Makkink. In: HOOGHART, J. C. (Ed.). Evaporation and Weather: 

Technical Meeting 44. Proceedings and Information/TNO Committee on Hydrological 

Research, p. 5–30, 1987.  

de Lira, N. B. Análise da variabilidade espaço-temporal da umidade do solo na bacia 



147 

experimental do riacho Guaraíra. Master thesis. Federal University of Paraíba, 2015. 

de Oliveira, L. F. C. et al. Comparação de metodologias de preenchimento de falhas de séries 

históricas de precipitação pluvial anual. Revista Brasileira de Engenharia Agrícola e 

Ambiental, v. 14, n. 11, p. 1186–1192, 2010.  

de Oliveira, G. et al. Use of MODIS sensor images combined with reanalysis products to retrieve net 

radiation in Amazonia. Sensors, v. 16, n. 956, p. 1–28, 2016a.  

de Oliveira, G. et al. Analysis of precipitation and evapotranspiration in Atlantic Rainforest remnants 

in Southeastern Brazil from remote sensing data. In: Tropical Forests - The Challenges of 

Maintaining Ecosystem Services while Managing the Landscape. INTECH, p. 93–112, 

2016b.  

de Oliveira, J. V. et al. Differences in precipitation and evapotranspiration between forested and 

deforested areas in the Amazon rainforest using remote sensing data. Environmental Earth 

Sciences, v. 77, n. 239, p. 1–14, 2018b.  

de Souza, E. et al. Spatial and temporal potential groundwater recharge: the case of the Doce River 

basin, Brazil. Revista Brasileira de Ciência do Solo, v. 43, n. e0180010, p. 1–27, 2019.  

Delin, G. N. et al. Comparison of local- to regional-scale estimates of ground-water recharge in 

Minnesota, USA. Journal of Hydrology, v. 334, p. 231–249, 2007.  

DELTA-T. User manual for the Profile Probe, type PR2. Cambridge/UK: Delta-T Devices Ltd., 

2016.  

Deshmukh, D. S. et al. Estimation and comparision of curve numbers based on dynamic land use 

land cover change, observed rainfall-runoff data and land slope. Journal of Hydrology, v. 

492, p. 89–101, 2013.  

Desilets, D.; Zreda, M. On scaling cosmogenic nuclide production rates for altitude and latitude using 

cosmic-ray measurements. Earth and Planetary Science Letters. v. 193, n. 1–2, p. 213–

225, 2001. 

Desilets, D.; Zreda, M. Footprint diameter for a cosmic-ray soil moisture probe: theory and Monte 

Carlo simulations. Water Resources Research, v. 49, p. 3566–3575, 2013.  

Desilets, D.; Zreda, M.; Ferré, T. P. A. Nature’s neutron probe: land surface hydrology at an elusive 

scale with cosmic rays. Water Resources Research, v. 46, n. W11505, p. 1–7, 2010.  

Desilets, D.; Zreda, M.; Prabu, T. Extended scaling factors for in situ cosmogenic nuclides: new 

measurements at low latitude. Earth and Planetary Science Letters, v. 246, p. 265–276, 

2006.  

Dettmann, U.; Bechtold, M. One-dimensional expression to calculate specific yield for shallow 

groundwater systems with microrelief. Hydrological Processes, v. 340, p. 334–340, 2016.  

Dias, L. C. P. et al. Patterns of land use, extensification, and intensification of Brazilian agriculture. 

Gloval Change Biology, v. 22, n. 8, p. 2887–2903, 2016.  

Diniz, C. et al. Brazilian mangrove status: three decades of satellite data analysis. Remote Sensing, 

v. 11, n. 808, p. 1–19, 2019.  

Doble, R. C.; Crosbie, R. S. Review: current and emerging methods for catchment-scale modelling 

of recharge and evapotranspiration from shallow groundwater. Hydrogeology Journal, v. 

25, n. 1, p. 3–23, 2016.  

Doherty, J. PEST: Model-Independent Parameter Estimation User Manual. 5th. ed. 

Brisbane/AU: Watermark Numerical Computing, 2004.  

Dong, J. et al. Calibration and validation of the COSMOS rover for surface soil moisture 

measurement. Vadose Zone Journal, v. 13, n. 4, p. 1–8, 2014.  

Dorfi, E. A.; Breitschwerdt, D. Time-dependent galactic winds. Astronomy & Astrophysics, v. 540, 



148 

n. A77, p. 1–15, 2012. 

dos Santos, C. A. C. et al. Spatio-temporal patterns of energy exchange and evapotranspiration during 

an intense drought for drylands in Brazil. International Journal of Applied Earth 

Observation and Geoinformation, v. 85, n. 101982, p. 1–11, 2020.  

dos Santos, H. et al. SiBCS – Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília/DF: 

Embrapa Amazônia Ocidental; Embrapa Solos, 2018.  

DPIRD. Water salinity and plant irrigation. DPIRD – Department of Primary Industries and 

Regional Development. Disponível em: <https://www.agric.wa.gov.au/water-

management/water-salinity-and-plant-irrigation>, Access in: September, 2019.  

Duffield, G. M. AQTESOLV for windows version 4.5 user’s guide. Reston/VA: HydroSOLVE, 

Inc., 2007.  

Duncan, H. P. Base flow separation – a practical approach. Journal of Hydrology, v. 575, p. 308–

313, 2019.  

Durner, W.; Iden, S. C. Extended multistep outflow method for the accurate determination of soil 

hydraulic properties near water saturation. Water Resources Research, v. 47, n. W08526, 

p. 1–13, 2011.  

Duygu, M. B.; Akyürek, Z. Using cosmic-ray neutron probes in validating satellite soil moisture 

products and land surface models. Water, v. 11, n. 1362, p. 1–29, 2019.  

Efstratiadis, A. et al. Flood design recipes vs . reality: can predictions for ungauged basins be trusted? 

Natural Hazards Earth System Sciences, v. 14, p. 1417–1428, 2014.  

Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proceedings of the IEEE, 

v. 98, n. 5, p. 704–716, 2010.  

Entekhabi, D. et al. SMAP handbook – Soil Moisture Active Passive: mapping soil moisture and 

freeze/thaw from Space. Pasadena/CA: JPL Publiser, 2014.  

Ertürk, A. et al. Model-based assessment of groundwater vulnerability for the Dalyan region of 

southwestern Mediterranean Turkey. Regional Environmental Change, p. 1193–1203, 

2017.  

Escarabajal-Henarejos, D. et al. Selection of device to determine temperature gradients for estimating 

evapotranspiration using energy balance method. Agricultural Water Management, v. 

151, p. 136–147, 2015.  

Evans, J. G. et al. Soil water content in southern England derived from a cosmic-ray soil moisture 

observing system – COSMOS-UK. Hydrological Processes, v. 30, n. 26, p. 4987–4999, 

2016.  

Feddes, R. A.; Kowalik, P. J.; Zaradny, H. Simulation of field water use and crop yield. New 

York/NY: John Wiley & Sons, 1978.  

Fernandes, L. A. Aplicação do método WTF para estimativa da recarga do aquífero livre da 

região da bacia do rio Gramame e do baixo curso do rio Paraíba/PB. Master thesis. 

Federal University of Paraíba, 2017. 

Ferreira, V. et al. Uncertainties of the Gravity Recovery and Climate Experiment time-variable 

gravity-field solutions based on three-cornered hat method. Journal of Applied Remote 

Sensing, v. 10, n. 1, 2016. 

Filoso, S. et al. Reassessing the environmental impacts of sugarcane ethanol production in Brazil to 

help meet sustainability goals. Renewable and Sustainable Energy Reviews, v. 52, p. 

1847–1856, 2015.  

Florenzano, T. G. Iniciação ao sensoriamento remoto. São Paulo: 2007.  

Forbuch, S. E. World-wide cosmic-ray variations, 1937-1952. Journal of Geophysical Research, 



149 

v. 59, n. 4, p. 525–542, 1954.  

Foster, S. et al. Groundwater – a global focus on the “local resource”. Current Opinion in 

Environmental Sustainability, v. 5, n. 6, p. 685–695, 2013.  

Franz, T. E. et al. Field validation of a cosmic-ray neutron sensor using a distributed sensor network. 

Vadose Zone Journal, v. 11, n. 4, p. 1–10, 2012a.  

Franz, T. E. et al. Measurement depth of the cosmic ray soil moisture probe affected by hydrogen 

from various sources. Water Resources Research, v. 48, n. W08515, p. 1–9, 2012b.  

Franz, T. E. et al. Ecosystem-scale measurements of biomass water using cosmic ray neutrons. 

Geophysical Research Letters, v. 40, n. 1936, p. 3929–3933, 2013a.  

Franz, T. E. et al. An assessment of the effect of horizontal soil moisture heterogeneity on the area-

average measurement of cosmic-ray neutrons. Water Resources Research, v. 49, p. 6450–

6458, 2013b.  

Freitas, L. et al. Assessment of sustainability of groundwater in urban areas (Porto, NW Portugal): a 

GIS mapping approach to evaluate vulnerability, infiltration and recharge. Environmental 

Earth Sciences, v. 78, n. 140, p. 1–17, 2019. 

Furrier, M.; de Araújo, M. E.; de Meneses, L. F. Geomorfologia e tectônica da formação barreiras 

no estado da Paraíba. Geologia USP – Serie Cientifica, v. 6, n. 2, p. 61–70, 2006.  

Gadelha, A. N. et al. Grid box-level evaluation of IMERG over Brazil at various space and time 

scales. Atmospheric Research, v. 218, p. 231–244, 2019.  

Garrett, R. D. et al. Intensification in agriculture-forest frontiers: land use responses to development 

and conservation policies in Brazil. Global Environmental ChangeChange, v. 53, p. 233–

243, 2018.  

Gilewski, P.; Nawalany, M. Inter-comparison of rain-gauge, radar, and satellite (IMERG GPM) 

precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment 

in Poland. Water, v. 10, n. 1665, p. 1–23, 2018.  

Gleeson, T. et al. Water balance of global aquifers revealed by groundwater footprint. Nature, v. 

488, n. 7410, p. 197–200, 2012.  

Gokmen, M. et al. Assessing groundwater storage changes using remote sensing–based 

evapotranspiration and precipitation at a large semiarid basin scale. Journal of 

Hydrometeorology, v. 14, n. 6, p. 1733–1753, 2013.  

Goldhagen, P. et al. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an 

ER-2 high-altitude airplane. Nuclear Instruments and Methods in Physics Research A, v. 

476, p. 42–51, 2002.  

Graeff, T. et al. A quality assessment of spatial TDR soil moisture measurements in homogenous 

and heterogeneous media with laboratory experiments. Hydrology and Earth System 

Sciences, v. 14, n. 6, p. 1007–1020, 2010.  

Graham, S. L. et al. Soil hydraulic modeling outcomes with four parameterization methods: 

comparing soil description and inverse estimation approaches. Vadose Zone Journal, v. 17, 

n. 170002, p. 1–10, 2018.  

Grimaldi, S.; Orellana, F.; Daly, E. Modelling the effects of soil type and root distribution on shallow 

groundwater resources. Hydrological Processes, v. 29, p. 4457–4469, 2015.  

Gusev, Y. et al. The uncertainty of assessments of the water balance components of river basins due 

to the climate noise. Geophysical Research Abstracts, v. 18, p. 2016, 2016.  

Gusmão, A. C. V. e L. Mapeamento da evapotranspiração real por imagens orbitais em bacia 

representativa no estado de Pernambuco. PhD thesis. Rural Federal University of 

Pernambuco, 2017. 



150 

Han, M. et al. Evaluating the impact of groundwater on cotton growth and root zone water balance 

using HYDRUS-1D coupled with a crop growth model. Agricultural Water Management, 

v. 160, p. 64–75, 2015.  

Hansen, N.; Müller, S. D.; Koumoutsakos, P. Reducing the time complexity of the derandomized 

evolution strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary 

Computation, v. 11, n. 1, p. 1–18, 2003.  

Hawdon, A.; Mcjannet, D.; Wallace, J. Calibration and correction procedures for cosmic-ray neutron 

soil moisture probes located across Australia. Water Resources Research, v. 50, n. 6, p. 

5029–5043, 2014.  

Hawkins, R. H. Et Al. Curve number hydrology. Reston/VA: American Society of Civil Engineers 

(ASCE), 2009.  

Hawkins, R. H. et al. Continuing evolution of rainfall-runoff and the curve number precedent. 

2nd Joint Federal Interagency Conference. Annals... Las Vegas/NV: 2010 

Hawkins, R. H.; Hjelmfelt, A. T.; Zevenbergen, A. W. Runoff probability, storm depth, and curve 

numbers. Journal of Irrigation and Drainage Engineering, v. 111, n. 4, p. 330–340, 1985.  

Healy, R. W.; Cook, P. G. Using groundwater levels to estimate recharge. Hydrogeology Journal, 

v. 10, n. 1, p. 91–109, 2002.  

Heidbüchel, I.; Güntner, A.; Blume, T. Use of cosmic-ray neutron sensors for soil moisture 

monitoring in forests. Hydrology and Earth System Sciences, v. 20, p. 1269–1288, 2016.  

Hendrick, L. D.; Edge, R. D. Cosmic-ray neutrons near the Earth. Physical review, v. 145, n. 4, p. 

1023–1025, 1966.  

Hiez, G. L'homogenéité des données pluviométriques. Cahiers ORSTOM. Série Hydologie. Paris: 

v. 14, n. 2, p.129–172, 1977. 

Hillas, A. M. Can diffusive shock acceleration in supernova remnants account for high-energy 

galactic cosmic rays? Journal of Physics G: Nuclear and Particle Physics, v. 31, n. 5, p. 

R95–R131, 2005. 

Hird, R.; Bolton, M. D. Clarification of capillary rise in dry sand. Engineering Geology, v. 230, p. 

77–83, 2017.  

Hoffman, G. J.; Van Genuchten, M. T. Soil properties and efficient water use: Water namagement 

for salinity control. In: Taylor, H. M.; Jordan, W. R.; Sinclair, T. R. (Eds.). Limitations and 

Efficient Water Use in Crop Production. Madison/WI: American Society of Agronomy, 

p. 73–85, 1983.  

Hong, Y. et al. A first approach to global runoff simulation using satellite rainfall estimation. Water 

Resources Research, v. 43, n. 8, p. 1–8, 2007.  

Hornero, J. et al. Integrating soil water and tracer balances, numerical modelling and GIS tools to 

estimate regional groundwater recharge: application to the Alcadozo Aquifer System (SE 

Spain). Science of the Total Environment, v. 568, p. 415–432, 2016.  

Hou, A. Y. et al. The global precipitation measurement mission. American Meteorological Society, 

p. 701–722, 2014.  

Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, v. 25, n. 

3, p. 295–209, 1988.  

Huffman, G. J. et al. Algorithm Theoretical Basis Document (ATBD) NASA Global 

Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM 

(IMERG). Greenbelt/MD: NASA/GSFC, 2015.  

Huffman, G. J.; Bolvin, D. T.; Nelkin, E. J. Integrated Multi-satellitE Retrievals for GPM 

(IMERG) Technical Documentation. 2017.  



151 

IAEA. Cosmic ray neutron sensing: use, calibration and validation for soil moisture estimation. 

IAEA-TECDOC-1809. Annals... Vienna: International Atomic Energy Agency (IAEA), 

2017 

IBESA. Relatório final da caracterização das bacias experimentais do Semiárido Brasileiro. In: 

UFRN-UFC-UFPB-UFCG-UFRPE-UFPE-UFBA (Ed.). IBESA – Implantação de bacias 

experimental do semiárido para o desenvolvimento de metodologias de avaliação dos 

balanços hídricos e energéticos em diferentes escalas temporais e espaciais. João 

Pessoa/PB: 2004.  

Iden, S. C. et al. Numerical test of the laboratory evaporation method using coupled water, vapor and 

heat flow modelling. Journal of Hydrology, v. 570, p. 574–583, 2019.  

Indarto; Novita, E.; Wahyuningsih, S. Preliminary study on baseflow separation at watersheds 

in East Java regions. Agriculture and Agricultural Science Procedia. Annals... Elsevier. 

2016. 

IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015, 

International soil classification system for naming soils and creating legends for soil 

maps. Rome: Food and Agriculture Organization (FAO) of the United Nations (UN), 2015.  

Iwema, J. et al. Investigating temporal field sampling strategies for site-specific calibration of three 

soil moisture–neutron intensity parameterisation methods. Hydrology and Earth System 

Sciences, v. 19, p. 3203–3216, 2015.  

Jackson, T. J. III. Measuring surface soil moisture using passive microwave remote sensing. 

Hydrological Processes, v. 7, p. 139–152, 1993.  

Jakobi, J. et al. Cosmic ray neutron sensing for simultaneous soil water content and biomass 

quantification in drought conditions. Water Resources Research, v. 54, p. 7383–7402, 

2018.  

Jensen, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. São 

José dos Campos/SP: Editora Parênteses, 2009.  

Ji, L.; Senay, G. B.; Verdin, J. P. Evaluation of the Global Land Data Assimilation System (GLDAS) 

air temperature data products. Journal of Hydrometeorology, p. 2463–2480, 2015.  

Jia, S. et al. Estimating live fuel moisture using SMAP L-band radiometer soil moisture for southern 

California, USA. Remote Sensing, v. 11, n. 1575, p. 1–20, 2019.  

Jiang, Z. et al. Development of a two-band enhanced vegetation index without a blue band. Remote 

Sensing of Environment, v. 112, p. 3833–3845, 2008.  

Jie, Z. et al. Combination of soil-water balance models and water-table fluctuation methods for 

evaluation and improvement of groundwater recharge calculations. Hydrogeology Journal, 

v. 19, n. 8, p. 1487–1502, 2011.  

Justice, C. O. et al. An overview of MODIS Land data processing and product status. Remote 

Sensing of Environment, v. 83, p. 3–15, 2002. 

Kahsay, G. H. et al. Spatial groundwater recharge estimation in Raya basin, Northern Ethiopia: an 

approach using GIS based water balance model. Sustainable Water Resources 

Management, v. 5, p. 961–975, 2019. 

Kayet, N. et al. Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in 

hillslope mining areas. International Soil and Water Conservation Research, v. 6, n. 1, 

p. 31–42, 2018.  

Khalaf, A.; Donoghue, D. Estimating recharge distribution using remote sensing: A case study from 

the West Bank. Journal of Hydrology, v. 414–415, p. 354–363, 2012.  

Kodama, M.; Kudo, S.; Kosuge, T. Application of atmospheric neutrons to soil moisture 

measurement. Soil Science, v. 140, n. 4, p. 237–242, 1985.  



152 

Köhli, M. et al. Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-

ray neutrons. Water Resources Research, v. 51, n. 7, p. 5772–5790, 2015.  

Köppen, W. Das geographisca System der Klimate. In: KÖPPEN, W. AND GEIGER, G. (Ed.). 

Handbuchder Klimatologie. Berlin: Gebrüder Borntraeger, p. 1–44, 1936  

Koster, R. D.; Suarez, M. J. Technical report series on global modeling and data assimilation: 

Energy and water balance calculations in the mosaic LSM. Greenbelt/MD: 1996.  

Kubicz, J. et al. Groundwater recharge assessment in dry years. Environmental Earth Sciences, v. 

78, n. 555, p. 1–9, 2019. 

Kwoczyńska, B. et al. Analysis of land development conformity obtained using photogrammetric 

and remote sensing methods with Geographic Information System (GIS) technology. 

International Journal of Physical Sciences, v. 9, n. 7, p. 123–139, 2014.  

Lal, D.; Peters, B. Cosmic ray produced radioactivity on the Earth. Berlin, Heidelberg: Springer, 

1967. 

Lal, M. et al. Evaluation of the Soil Conservation Service curve number methodology using data 

from agricultural plots. Hydrogeology Journal, v. 25, n. 1, p. 151–167, 2016.  

Lal, M.; Mishra, S. K.; Kumar, M. Reverification of antecedent moisture condition dependent runoff 

curve number formulae using experimental data of Indian watersheds. Catena, v. 173, p. 48–

58, 2019.  

Landsberg, J. J.; Gower, S. T. Applications of physiological ecology to forest management. San 

Diego/CA: Academic Press, 1997.  

Langan, L. N.; Lammers, D. A. Definitive criteria for hydrologic soil groups. Soil survey horizons, 

v. 32, n. 3, p. 69–77, 1991.  

Latorre, M. L. et al. Integração de dados de sensoriamento remoto multi resolucões para a 

representação da cobertura da terra utilizando campos contínuos de vegetação e classificação 

por árvores de decisão. Revista Brasileira de Geofísica, v. 25, p. 63–74, 2007.  

Leão, T. P.; Gentry, R. Numerical modeling of the effect of variation of boundary conditions on 

vadose zone hydraulic properties. Revista Brasileira de Ciência do Solo, v. 35, n. 1, p. 263–

272, 2011.  

Leon, A.; Khalsa, S. J. S.; Leslie, S. SMAP data and services at the NASA DAACS. IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS). Annals... 2015 

Letaw, J. R.; Normand, E. Guidelines for predicting single-event upsets in neutron environments. 

IEEE Transactions on Nuclear Science, v. 38, n. 6, p. 1500–1506, 1991.  

Leterme, B.; Gedeon, M.; Jacques, D. Groundwater recharge modeling of the Nete catchment 

(Belgium) using the HYDRUS-1D – MODFLOW package. Proceedings of 4th 

International Conference: HYDRUS software applications to subsurface flow and 

contaminant transport problems. Annals... Prague: Czech University of Life Sciences and 

PC-Progress, 2013 

Leterme, B.; Mallants, D.; Jacques, D. Sensitivity of groundwater recharge using climatic analogues 

and HYDRUS-1D. Hydrology and Earth System Sciences, v. 16, p. 2485–2497, 2012.  

Li, C. et al. Characteristics of impervious surface and its effect on direct runoff: a case study in a 

rapidly urbanized area. Water Supply, v. 19, n. 7, p. 1885–1891, 2019.  

Li, Z. et al. Multiscale hydrologic applications of the latest satellite precipitation products in the 

Yangtze river basin using a distributed hydrologic model. Journal of Hydrometeorology, 

v. 16, n. 1, p. 407–426, 2015.  

Liang, X. et al. A simple hydrologically based model of land surface water and energy fluxes for 

general circulation models. Journal of Geophysical Research, v. 99, n. D7, p. 14415–



153 

14428, 1994.  

Lillesand, T. M.; Kiefer, R. W.; Chipman, J. W. Remote sensing and image interpretation. New 

York/NY: John Wiley & Sons, Inc., 2004.  

Lima, R. N. de S.; Ribeiro, C. B. de M. Spatial variability of daily evapotranspiration in a 

mountainous watershed by coupling surface energy balance and solar radiation model with 

gridded weather dataset. Proceedings, v. 2, n. 342, p. 1–6, 2018.  

Linhares, F. M. et al. Avaliação da vulnerabilidade e do risco à contaminação das águas subterrâneas 

da bacia hidrográfica do rio Gramame (PB). Sociedade & Natureza, v. 26, n. 1, p. 139–157, 

2014.  

Liu, Q. et al. The contributions of precipitation and soil moisture observations to the skill of soil 

moisture estimates in a land data assimilation system. Journal of Hydrometeorology, v. 12, 

p. 750–765, 2011.  

Liu, S. M. et al. Measurements of evapotranspiration from eddy-covariance systems and large 

aperture scintillometers in the Hai river basin, China. Journal of Hydrologic, v. 487, p. 24–

38, 2013.  

Liu, W. et al. A worldwide evaluation of basin-scale evapotranspiration estimates against the water 

balance method. Journal of Hydrology, v. 538, p. 82–95, 2016.  

Liu, Z. et al. Global precipitation measurement mission products and services at the nasa ges disc. 

Bulletin of the American Meteorological Society, v. 98, n. 3, p. 437–444, 2017.  

Loarie, S. R. et al. Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Climate 

Change, v. 1, n. 5, p. 105–109, 2011.  

Lombardi Neto, F. et al. Nova abordagem para calculo de espacamento entre terracos. Simpósio 

sobre terraceamento agrícola. Annals... Campinas/SP: Fundação Cargill, 1989 

Long, D. et al. Deriving scaling factors using a global hydrological model to restore GRACE total 

water storage changes for China’s Yangtze river basin. Remote Sensing of Environment, 

v. 168, p. 177–193, 2015.  

Long, D.; Longuevergne, L.; Scanlon, B. R. Uncertainty in evapotranspiration from land surface 

modeling, remote sensing, and GRACE satellites. Water Resources Research, v. 50, n. 2, 

p. 1131–1151, 2014.  

López López, P. et al. Improved large-scale hydrological modelling through the assimilation of 

streamflow and downscaled satellite soil moisture observations. Hydrology and Earth 

System Sciences, v. 20, n. 7, p. 3059–3076, 2016.  

Lu, D. et al. Land use/cover classification in the Brazilian Amazon using satellite images. Pesquisa 

Agropecuária Brasileira, v. 47, n. 9, p. 1185–1208, 2012.  

Lu, X. et al. Groundwater recharge at five representative sites in the Hebei Plain, China. 

Groundwater, v. 49, n. 2, p. 286–294, 2011.  

Lucas, M. et al. Evaluation of remotely sensed data for estimating recharge to an outcrop zone of the 

Guarani Aquifer System (South America). Hydrogeology Journal, p. 961–969, 2015.  

Lunetta, R. S. et al. Land-cover change detection using multi-temporal MODIS NDVI data. Remote 

Sensing of Environment, v. 105, p. 142–154, 2006.  

Luo, T.; Jutla, A.; Islam, S. Evapotranspiration estimation over agricultural plains using MODIS data 

for all sky conditions. International Journal of Remote Sensing, v. 36, n. 5, p. 1235–1252, 

2015.  

Lv, M. et al. Water budget closure based on GRACE measurements and reconstructed 

evapotranspiration using GLDAS and water use data for two large densely-populated mid-

latitude basins. Journal of Hydrology, v. 547, p. 585–599, 2017.  



154 

Lv, M. et al. Assessment of runoff components simulated by GLDAS against UNH–GRDC dataset 

at global and hemispheric scales. Water, v. 10, n. 969, p. 1–17, 2018.  

Ly, S.; Charles, C.; Degré, A. Geostatistical interpolation of daily rainfall at catchment scale : the use 

of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrology 

and Earth System Sciences, v. 15, p. 2259–2274, 2011.  

MA; SUDENE. Levantamento exploratório-reconhecimento de solos do estado da Paraíba. 

Technical Bulletin No. 15. Rio de Janeiro/RJ: Ministério da Agricultura (MA), 

Superintendência do Desenvolvimento do Nordeste (SUDENE), 1972.  

MABC. Soil water storage capacity and available soil moisture. Ministry Of Agriculture of British 

Columbia (MABC), 2015. 

Mabesoone, J. M. Sedimentary basins of Northeast Brazil. Recife. Editora Universitária, Federal 

University of Pernambuco (UFPE), p. 1−308, 1994. 

Maclaren, O. J.; Nicholson, R. What can be estimated? Identifiability, estimability, causal 

inference and ill-posed inverse problems. Technical course. Auckland/NZ: Cornell 

University, 2019.  

Mahmoud, S. H. Investigation of rainfall–runoff modeling for Egypt by using remote sensing and 

GIS integration. Catena, v. 120, p. 111–121, 2014.  

Mahmoud, S. H.; Alazba, A. A. A coupled remote sensing and the Surface Energy Balance based 

algorithms to estimate actual evapotranspiration over the western and southern regions of 

Saudi Arabia. Journal of Asian Earth Sciences, v. 124, p. 269–283, 2016.  

Maliva, R. G. Economics of managed aquifer recharge. Water, v. 6, n. 5, p. 1257–1279, 2014.  

Malkov, M. A.; Drury, L. O. Nonlinear theory of diffusive accelerationof particles by shock waves. 

Reports on Progress in Physics, v. 64, n. 4, p. 429–481, 2001. 

Marengo, J. A.; Alves, L. M.; Alvala, R. C. S. Climatic characteristics of the 2010-2016 drought in 

the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências, v. 90, p. 

1973–1985, 2018.  

Marengo, J. A.; Torres, R. R.; Alves, L. M. Drought in Northeast Brazil – past, present, and future. 

Theoretical and Applied Climatology, 2016.  

Mariano, D. A. et al. Use of remote sensing indicators to assess effects of drought and human-induced 

land degradation on ecosystem health in Northeastern Brazil. Remote Sensing of 

Environment, v. 213, p. 129–143, 2018.  

Martos-Rosillo, S. et al. Review on groundwater recharge in carbonate aquifers from SW 

Mediterranean (Betic Cordillera, S Spain). Environmental Earth Sciences, v. 74, n. 12, p. 

7571–7581, 2015.  

Matei, D. Runoff modeling using GIS: Application in torrential basins in the Apuseni 

Mountains. PhD thesis. Vrije Universiteit Brussel, 2012. 

Mateo-Sagasta, J.; Zadeh, S. M.; Turral, H. Water pollution from agriculture: a global review. 

Rome: Food and Agriculture Organization of the United Nations & International Water 

Management Institute. Available on: <http://www.fao.org/3/a-i7754e.pdf>. Access in: May, 

2018. 2017. 

Mathias, S. A.; Sorensen, J. P. R.; Butler, A. P. Soil moisture data as a constraint for groundwater 

recharge estimation. Journal of Hydrology, v. 552, p. 258–266, 2017.  

Matos, R. M. D. The northeastern Brazilian Rift System. Tectonics, v. 11, n. 4, p. 766−791, 1992. 

Mccord, P.; Tonini, F.; Liu, J. The telecoupling GeoApp : a Web-GIS application to systematically 

analyze telecouplings and sustainable development. Applied Geography, v. 96, p. 16–28, 

2018.  



155 

Melo, D. C. D.; Wendland, E. Shallow aquifer response to climate change scenarios in a small 

catchment in the Guarani Aquifer outcrop zone. Annals of the Brazilian Academy of 

Sciences, v. 89, p. 391–406, 2017.  

Mendonça, J. C. et al. Assessment of evapotranspiration in North Fluminense region, Brazil, using 

MOIS products and SEBAL algorithm. In: IRMAK, A. (Ed.). Evapotranspiration - Remote 

Sensing and Modeling. 1 ed. Rijeka: INTECH. p. 1–18, 2012.  

Meresa, H. Modelling of river flow in ungauged catchment using remote sensing data: application of 

the empirical (SCS-CN), Artificial Neural Network (ANN) and Hydrological Model (HEC-

HMS). Modeling Earth Systems and Environment, v. 5, n. 1, p. 257–273, 2019.  

Miranda, R. D. Q. et al. Reliability of MODIS evapotranspiration products for heterogeneous dry 

forest: a study case of Caatinga. Advances in Meteorology, v. 2017, n. 9314801, p. 1–15, 

2017.  

Mishra, S. K. et al. Comparison of AMC-dependent CN-conversion Formulae. Water Resources 

Management, v. 22, p. 1409–1420, 2008.  

Mls, J. Formulation and solution of fundamental problems of vertical infiltration. Vodohosp. Čas., 

v. 30, p. 304–313, 1982.  

Mohan, C. et al. Predicting groundwater recharge for varying land cover and climate conditions – a 

global meta-study. Hydrology and Earth System Sciences, v. 22, p. 2689–2703, 2018.  

Montenegro, A. A. A. et al. Spatio temporal soil moisture dynamics and runoff under different soil 

cover conditions in a semiarid representative basin in Brazil. Advances in Geosciences, v. 

48, p. 19–30, 2019.  

Montenegro, A. A. A.; Ragab, R. Hydrological response of a Brazilian semi-arid catchment to 

different land use and climate change scenarios: A modelling study. Hydrological 

Processes, v. 24, n. 19, p. 2705–2723, 2010.  

Montzka, C. et al. Validation of spaceborne and modelled surface soil moisture products with 

Cosmic-Ray Neutron Probes. Remote Sensing, v. 9, n. 2, p. 1–30, 2017.  

Morais, R. M. O. et al. Fácies sedimentares e ambientes deposicionais associados aos depósitos da 

Formação Barreiras no Estado do Rio de Janeiro. Geologia USP (Série Científica), v. 6, n. 

2, p. 19−30, 2006. 

Mu, Q. et al. Development of a global evapotranspiration algorithm based on MODIS and global 

meteorology data on MODIS and global meteorology data. Remote Sensing of 

Environment, v. 111, p. 519–536, 2007.  

Mu, Q.; Zhao, M.; Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration 

algorithm improvements to a MODIS global terrestrial evapotranspiration algorithm. 

Remote Sensing of Environment, v. 115, n. 8, p. 1781–1800, 2011.  

Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. 

Water Resources Research, v. 12, n. 3, p. 513–522, 1976.  

Münch, Z. et al. Satellite earth observation as a tool to conceptualize hydrogeological fluxes in the 

Sandveld, South Africa. Hydrogeology Journal, v. 21, p. 1053–1070, 2013. 

Mushtaha, A.; van Camp, M.; Walraevens, K. Quantification of recharge and runoff from rainfall 

using new GIS tool: example of the Gaza Strip Aquifer. Water, v. 11, n. 84, p. 1–14, 2019. 

Muthu, A. C. L.; Santhi, M. H. Estimation of surface runoff potential using SCS-CN method 

integrated with GIS. Indian Journal of Science and Technology, v. 8, p. 1–5, 2015.  

Nagarajan, M.; Basil, G. Remote sensing- and GIS-based runoff modeling with the effect of land-

use changes (a case study of Cochin corporation). Natural Hazards, v. 73, n. 3, p. 2023–

2039, 2014.  



156 

Nagarajan, N.; Poongothai, S. Spatial mapping of runoff from a watershed using SCS-CN method 

with remote sensing and GIS. Journal of Hydrologic Engineering, v. 17, n. 11, p. 1268–

1277, 2012.  

Narasimhan, T. N. Hydrological cycle and water budgets. Elsevier Inc., 2009.  

Naylor, S. et al. A hydropedological approach to quantifying groundwater recharge in various glacial 

settings of the mid-continental USA. Hydrological Processes, v. 30, p. 1594–1608, 2016.  

Nesterenok, A. Numerical calculations of cosmic ray cascade in the Earth’s atmosphere – results for 

nucleon spectra. Nuclear Instruments and Methods in Physics Research B, v. 295, p. 99–

106, 2013.  

Neto, D. C.; Chang, H. K.; van Genuchten, M. T. A mathematical view of water table fluctuations in 

a shallow aquifer in Brazil. Groundwater, v. 54, p. 82–91, 2013. 

Nemes, A. et al. Description of the unsaturated soil hydraulic database UNSODA version 2.0. 

Journal of Hydrology, v. 251, n. 3–4, p. 151–162, 2001. 

Neuman, S. P.; Feddes, R. A.; Bresler, E. Finite element simulation of flow in saturated-

unsaturated soils considering water uptake by plants, third annual reportThird Annual 

Report, Project No. A10- SWC-77. Haifa, Israel: Technion, Israel Institute of Technology, 

1974.  

Ni, B. et al. Review on the groundwater potential evaluation based on remote sensing 

technology. IOP Conf. Series: Materials Science and Engineering. Annals... 2018 

Nimmo, J. R.; Horowitz, C.; Mitchell, L. Discrete-storm water-table fluctuation method to estimate 

episodic recharge. Groundwater, v. 53, n. 2, p. 282–292, 2015.  

Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. 

Environmental Research Letters, v. 12, n. 2, p. 1–11, 2017.  

NRCS. Urban hydrology for small watersheds. Natural Resources Conservation Service (NRCS), 

United States Department of Agriculture (USDA), 1986.  

NRCS. Land use and treatment. In: VICTOR MOCKUS; NRCS (Eds.). Part 630 Hydrology, 

National Engineering Handbook. Washington/DC: Natural Resources Conservation 

Service (NRCS), United States Department of Agriculture (USDA). p. 1–11, 2002.  

NRCS. Hydrologic soil-cover complexes. In: MOCKUS, V.; MOODY, H. F.; NRCS (Eds.). Part 

630 Hydrology, National Engineering Handbook. Washington/DC: Natural Resources 

Conservation Service (NRCS), United States Department of Agriculture (USDA), p. 1–20, 

2004. 

NRCS. Saturated hydraulic conductivity in relation to soil texture. Natural Resources 

Conservation Service (NRCS), United States Department of Agriculture (USDA). 2019. 

Oliveira, B. S. et al. Improved albedo estimates implemented in the METRIC model for modeling 

energy balance fluxes and evapotranspiration over agricultural and natural areas in the 

Brazilian Cerrado. Remote Sensing, v. 10, n. 1181, p. 1–27, 2018a.  

Oliveira, P. T. S. et al. Trends in water balance components across the Brazilian Cerrado. Water 

Resources Research, v. 50, n. 9, p. 7100–7114, set. 2014.  

Oren, R. et al. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to 

vapour pressure deficit. Plant, Cell & Environment, v. 22, n. 12, p. 1515–1526, 1999.  

Ottoni, M. V. et al. Hydrophysical Database for Brazilian Soils (HYBRAS) and pedotransfer 

functions for water retention. Vadose Zone Journal, v. 17, n. 1, p. 1–17, 2018.  

Paca, V. H. Da M. et al. The spatial variability of actual evapotranspiration across the Amazon River 

Basin based on remote sensing products validated with flux towers. Ecological Processes, 

v. 8, n. 6, p. 1–20, 2019.  



157 

Palharini, R. S. A.; Vila, D. A. Climatological behavior of precipitating clouds in the northeast region 

of Brazil. Advances in Meteorology, p. 17–21, 2017.  

Pardo, J. M. et al. Instrumental monitoring of the subsidence due to groundwater withdrawal in the 

city of Murcia (Spain). Environmental Earth Sciences, v. 70, n. 5, p. 1957–1963, 2013.  

Penman, H. L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal 

Society of London, v. 193, p. 120–145, 1948.  

Phillips, F. M.; Stone, W. D.; Fabryka-Martin, J. T. An improved approach to calculating low-energy 

cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology, v. 175, n. 

2001, p. 689–701, 2001.  

Pinheiro, E. A. R.; Costa, C. A. G.; de Araújo, J. C. Effective root depth of the Caatinga biome. 

Journal of Arid Environments, v. 89, p. 1–4, 2013.  

Ponce, V. M.; Hawkins, R. H. Runoff curve number: has it reached maturity? Journal of Hydrologic 

Engineering, v. 1, n. 1, p. 11–19, 1996.  

Prakash, S. et al. From TRMM to GPM: How well can heavy rainfall be detected from space? 

Advances in Water Resources, v. 88, p. 1–7, 2016.  

Rabelo, J. L.; Wendland, E. Assessment of groundwater recharge and water fluxes of the Guarani 

Aquifer System, Brazil. Hydrogeology Journal, v. 17, p. 1733–1748, 2009.  

Rahman, M. A. et al. An integrated study of spatial multicriteria analysis and mathematical modelling 

for managed aquifer recharge site suitability mapping and site ranking at Northern Gaza 

coastal aquifer. Journal of Environmental Management, v. 124, p. 25–39, 2013.  

Rahmati, M. et al. Development and analysis of the Soil Water Infiltration Global database. Earth 

System Science Data, p. 1237–1263, 2018.  

Raoufi, R.; Beighley, E. Estimating daily global evapotranspiration using Penman–Monteith 

equation and remotely sensed land surface temperature. Remote Sensing, v. 9, n. 1138, 

2017.  

Refsgaard, J. C. et al. Uncertainty in the environmental modelling process – a framework and 

guidance. Environmental Modelling & Software, v. 22, p. 1543–1556, 2007.  

Regan, H. M.; Colyvan, M.; Burgman, M. A. A taxonomy and treatment of uncertainty for ecology 

and conservation biology. Ecological Applications, v. 12, n. 2, p. 618–628, 2002.  

Reichle, R. H. et al. Assessment of the SMAP Level-4 Surface and root-zone soil moisture product 

using in situ measurements. Journal of Hydrometeorology, v. 18, p. 2621–2645, 2017.  

Reichle, R. H. et al. Soil Moisture Active Passive (SMAP) project assessment report for version 

4 of the L4_SM sata product. Technical Report Series on Global Modeling and Data 

Assimilation, volume 52. Greenbelt/MD: NASA Goddard Space Flight Center, 2018.  

Reynolds, D.; Canada, A. A method for simultaneous in situ measurement in the vadose zone of 

field-saturated hydraulic conductivity, sorptivity and the conductivity‐pressure head 

relationship. Groundwater Monitoring & Remediation, v. 6, n. 1, p. 84–95, 1986.  

Ribeiro, M. C. et al. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest 

distributed? Implications for conservation. Biological Conservation, v. 142, n. 6, p. 1141–

1153, 2009.  

Ries, F. et al. Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst 

region. Hydrology and Earth System Sciences, v. 19, n. 3, p. 1439–1456, 2015.  

Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E. Integral quantification of seasonal soil moisture 

changes in farmland by cosmic-ray neutrons. Hydrology and Earth System Sciences, v. 

15, n. 12, p. 3843–3859, 2011.  

Rivera Villarreyes, C. A. Cosmic-ray neutron sensing for soil moisture measurements in cropped 



158 

fields. PhD thesis. Potsdam: University of Potsdam, 2013. 

Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E. Calibration approaches of cosmic-rayneutron 

sensing for soil moisturemeasurement in cropped fields. Hydrology and Earth System 

Sciences Discussions, v. 10, p. 4237–4274, 2013. 

Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E. Inverse modelling of cosmic-ray soil moisture 

for field-scale soil hydraulic parameters. European Journal of Soil Science, v. 65, n. 6, p. 

876–886, 2014.  

Robinson, D. A. et al. Soil moisture measurement for ecological and hydrological watershed-scale 

observatories: a review. Vadose Zone Journal, v. 7, n. 1, 2008.  

Rocha, A. V.; Shaver, G. R. Advantages of a two band EVI calculated from solar and 

photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, v. 149, n. 

9, p. 1560–1563, 2009.  

Rodell, M. et al. NASA/NOAA’s Global Land Data Assimilation System (GLDAS): recent 

results and future plans. Proceedings of ECMWF/ELDAS Workshop on Land Surface 

Assimilation. Annals... 2004 

Rosolem, R. et al. The effect of atmospheric water vapor on neutron count in the cosmic-ray soil 

moisture observing system. Journal of Hydrometeorology, v. 14, p. 1659–1672, 2013.  

Ross, C. W. et al. Data Descriptor: HYSOGs250m, global gridded hydrologic soil groups for curve-

number-based runoff modeling. Nature: Scientific Data, v. 5, p. 1–8, 2018.  

Rossetti, D. F. et al. Contribution to the stratigraphy of the onshore Paraíba Basin, Brazil. Anais da 

Academia Brasileira de Ciência, v. 84, n. 2, p. 313−334, 2012. 

Rossetti, D. F. et al. Late Quaternary sedimentation in the Paraíba Basin, Northeastern Brazil: 

implications for the interplay among landform, sea level and tectonics in Eastern South 

America passive margin. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 300, n. 

1–4, p. 191−204, 2011. 

Rozante, J. R. et al. Evaluation of TRMM/GPM blended daily products over Brazil. Remote 

Sensing, v. 10, n. 882, p. 1–17, 2018.  

Ruhoff, A. L. et al. Assessment of the MODIS global evapotranspiration algorithm using eddy 

covariance measurements and hydrological modelling in the Rio Grande basin Assessment 

of the MODIS global evapotranspiration algorithm using eddy covariance measurements and 

hydrologic. Hydrological Sciences Journal, v. 58, n. 8, p. 1658–1676, 2013.  

Running, S. W. et al. NASA Earth Observing System MODIS land algorithm user’s guide: 

MODIS global terrestrial evapotranspiration (ET) Product (NASA MOD16A2/A3). 

National Aeronautics and Space Administration (NASA), 2017.  

Sadeghi, M. et al. An analytical model for estimation of land surface net water flux from near-surface 

soil moisture observations. Journal of Hydrology, v. 570, p. 26–37, 2018.  

Salles, L. et al. Seasonal effect on spatial and temporal consistency of the new GPM-based IMERG-

V5 and GSMaP-V7 satellite precipitation estimates in Brazil’s Central Plateau region. 

Water, v. 11, n. 668, p. 1–18, 2019.  

Santos, C. A. G.; Silva, J. F. C. B. C.; da Silva, R. M. Caracterização hidrodinâmica dos solos da 

bacia experimental do riacho Guaraíra utilizando o Método Beerkan. Revista Brasileira de 

Recursos Hídricos, v. 17, p. 149–160, 2012.  

Santos, F. A. C. et al. Desempenho de metodologias para estimativa do saldo de radiação a partir de 

imagens MODIS. Revista Brasileira de Meteorologia, v. 3, p. 295–306, 2015.  

Sartori, A. et al. Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente 

com o Método do Serviço de Conservação do Solo dos Estados Unidos Parte 2: Aplicação. 

Revista Brasileira de Recursos Hídricos, v. 10, p. 19–29, 2005.  



159 

Sartori, A. Desenvolvimento de critérios para classificação hidrológica do solos e determinação 

de valores de referência para o parâmetro CN. PhD thesis. Campina State University, 

2010. 

Satgé, F. et al. Comparative assessments of the latest GPM Mission’s spatially enhanced satellite 

rainfall products over the main Bolivian watersheds. Remote Sensing, v. 9, n. 369, p. 1–16, 

2017.  

Sato, T.; Niita, K. Analytical functions to predict cosmic-ray neutron spectra in the atmosphere. 

Radiation Research, v. 166, n. 3, p. 544–555, 2006.  

Saxton, K. E.; Rawls, W. J. Soil water characteristic estimates by texture and organic matter for 

hydrologic solutions. Soil Science Society of America Journal, v. 70, p. 1569–1578, 2006.  

Scanlon, B. R.; Healy, R. W.; Cook, P. G. Choosing appropriate techniques for quantifying 

groundwater recharge. Hydrogeology Journal, v. 10, n. 1, p. 18–39, 2002.  

Scarinci, A. L.; Marineli, F. The wave model of light as a tool to explain the causes of color. Revista 

Brasileira de Ensino de Física, v. 36, n. 1, p. 1-14, 2014. 

Schaap, M. G.; Leij, F. J.; van Genuchten, M. T.. Rosetta: a computer program for estimating soil 

hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, v. 

251, p. 163–176, 2001.  

Schattan, P. et al. Continuous monitoring of snowpack dynamics in alpine terrain by aboveground 

neutron sensing, Water Resources Research, v. 53, p. 3615–3634, 2017. 

Scheiffele, L. M. Assessment of soil moisture dynamics on an irrigated maize field using cosmic 

ray neutron sensing. Master thesis. Potsdam: University of Potsdam, 2015. 

Schlickeiser, R. Cosmic Ray Astrophysics. Heidelberg: Springer, 2002. 

Schrön, M. Cosmic-ray neutron sensing and its applications to soil and land surface hydrology. PhD 

thesis. Potsdam: University of Potsdam, 2016.  

Schrön, M. et al. Improving calibration and validation of cosmic-ray neutron sensors in the light of 

spatial sensitivity – theory and evidence. Hydrology and Earth System Sciences, v. 21, p. 

5009–5030, 2017.  

Schrön, M. et al. Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an 

urban environment. Geoscientific Instrumentation Methods and Data Systems, v. 7, p. 

83–99, 2018.  

SCS. Section 4: Hydrology. In: National engineering hand-book. Washington/DC: Soil 

Conservation Service (SCS), United States Department of Agriculture (USDA), 1972.  

Sears, V. F. Neutron scattering lengths and cross sections. Neutron News, v. 3, n. 3, p. 26–37, 1992.  

Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation 

products against gauge data under fifferent topographic and climatic conditions in Iran: 

preliminary results. Remote Sensing, v. 8, n. 135, p. 1–24, 2016. 

Shaw, G.A.; Burke, H. K. Spectral imaging for remote sensing. Lincoln Laboratory Journal, v. 14, 

n. 1, p. 1–28, 2003. 

Sheffield, J. et al. Closing the terrestrial water budget from satellite remote sensing. Geophysical 

Research Letters, v. 36, n. 7, p. 1–5, 2009.  

Sheffield, J.; Wood, E. F.; Roderick, M. L. Little change in global drought over the past 60 years. 

Nature, v. 491, n. 7424, p. 435–438, 2012.  

Shuttleworth, J. et al. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data 

assimilation. Hydrology and Earth System Sciences, v. 17, p. 3205–3217, 2013.  

Shuttleworth, W. J. Evaporation. In: MAIDMENT, D. R. (Ed.). Handbook of Hydrology. New 



160 

York/NY: McGraw Hill, p. 4.1-4.53, 1993.  

Siejka, M. et al. Algorithm of land cover spatial data processing for the local flood risk mapping. 

Survey Review, v. 50, n. 362, p. 1–7, 2017.  

Silva, A. M.; Silva, R. M.; Santos, C. A. G. Automated surface energy balance algorithm for land 

(ASEBAL) based on automating endmember pixel selection for evapotranspiration 

calculation in MODIS orbital images. International Journal of Applied Earth 

Observation and Geoinformation, v. 79, p. 1–11, 2019.  

Silva, B. B. et al. Changes to the energy budget and evapotranspiration following conversion of 

tropical savannas to agricultural lands in São Paulo State, Brazil. Ecohydrology, v. 8, n. 7, 

p. 1272–1283, 2015.  

Silva, C. O. F.; Manzione, R. L.; Teixeira, A. H. C. Spatial modeling of evapotranspiration and water 

productivity in the outcrop area of the Guarani Aquifer in São Paulo state between 2013 and 

2015. Holos Environment, v. 18, p. 126–140, 2018.  

Silva, J. F. C. B. C. Análise espacial das características hidrodinâmicas e do uso e ocupação do 

solo da bacia experimental do riacho Guaraíra mediante uso de geotecnologias. Master 

thesis. Federal University of Paraíba, 2009. 

Šimůnek, J. et al. Numerical modeling of contaminant transport using HYDRUS and its specialized 

modules. Journal of the Indian Institute of Science, v. 93, n. 2, p. 265–284, 2013a.  

Šimůnek, J. et al. The HYDRUS-1D software package for simulating the one-dimensional 

movement of water, heat, and multiple solutes in variably-saturated media 1.0. 

Riverside/CA: University of California, Department of Environmental Sciences, 2013b.  

Šimůnek, J. Estimating groundwater recharge using HYDRUS-1D. Engineering Geology and 

Hydrogeology, v. 29, p. 25–36, 2015.  

Šimůnek, J. Convergence issue with sand and clay combination. PC-PROGRESS: Available on: 

https://www.pc-progress.com/forum/viewtopic.php?f=4&t=3241, 2018. 

Šimůnek, J.; van Genuchten, M. T. Modeling nonequilibrium flow and transport processes using 

HYDRUS. Vadose Zone Journal, v. 7, n. 2, p. 782–797, 2008.  

Šimůnek, J.; van Genuchten, M. T.; Šejna, M. Development and applications of the HYDRUS and 

STANMOD software packages and related codes. Vadose Zone Journal, v. 7, n. 2, p. 587–

600, 2008.  

Šimůnek, J.; van Genuchten, M. T.; Šejna, M. Recent developments and applications of the 

HYDRUS computer software packages. Vadose Zone Journal, v. 15, n. 7, p. 1–25, 2016.  

Singh, A. et al. An assessment of groundwater recharge estimation techniques for sustainable 

resource management. Groundwater for Sustainable Development, v. 9, n. 100218, 2019.  

Sinha, M. K. et al. Impact of urbanization on surface runoff characteristics at catchment scale. Water 

Resources and Environmental Engineering I, p. 31–42, 2019.  

Skofronick-Jackson, G. et al. The global precipitation measurement (GPM) mission for science and 

society. Bulletin of the American Meteorological Society, v. 98, n. 8, p. 1679–1695, 2017.  

Sobhani, G. A review of selected small watershed design methods for possible adoption to 

Iranian conditions. Master thesis. Logan/UT: Utah State University, 1975. 

SOSMA; INPE. Atlas dos remanescentes florestais da Mata Atlântica. Technical report. São 

Paulo/SP: SOS Mata Atlântica (SOSMA) and Instituto Nacional de Pesquisas Espaciais 

(INPE), 2019.  

Souza, A. G. S. S.; Neto, A. R.; Souza, L. L. Use of SMOS L3 soil moisture data : validation and 

drought assessment for Pernambuco state, Northeast Brazil. Remote Sensing, v. 10, n. 1314, 

p. 1–19, 2018.  



161 

Souza, V. De A. et al. Evaluation of MOD16 algorithm over irrigated rice paddy using flux tower 

measurements in Southern Brazil. Water, v. 11, n. 1911, p. 1–23, 2019.  

Subramanian, T. S.; Abraham, M. Assessment of natural groundwater recharge: a case study of North 

Chennai Aquifer. Environmental Geosciences, v. 26, n. 2, 41–50, 2019. 

Sun, W. et al. Evaluation and correction of GPM IMERG precipitation products over the capital 

circle in Northeast China at multiple spatiotemporal scales. Advances in Meteorology, v. 

2018, p. 1–14, 2018.  

Sun, Y. et al. Inverse modeling of hydrologic parameters using surface flux and runoff observations 

in the Community Land Model. Hydrology and Earth System Sciences, v. 17, p. 4995–

5011, 2013.  

Sutanto, S. J. et al. Partitioning of evaporation into transpiration, soil evaporation and interception: a 

comparison between isotope measurements and a HYDRUS-1D model. Hydrology and 

Earth System Sciences, v. 16, n. 8, p. 2605–2616, 2012.  

Szilagyi, J. et al. Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA. 

Hydrogeology Journal, v. 19, n. 8, p. 1503–1513, 2011.  

Szilágyi, J.; Kovács, Á.; Józsa, J. Remote-sensing based groundwater recharge estimates in the 

Danube-Tisza sand plateau region of Hungary. Journal of Hydrology and 

Hydromechanics, v. 60, n. 1, p. 64–72, 2012.  

Tan, M. L.; Duan, Z. Assessment of GPM and TRMM precipitation products over Singapore. 

Remote Sensing, v. 9, n. 720, p. 1–16, 2017.  

Tang, G. et al. Statistical and hydrological comparisons between TRMM and GPM Level-3 products 

over a midlatitude vasin: is day-1 IMERG a good successor for TMPA 3B42V7? Journal of 

Hydrometeorology, v. 17, n. 1, p. 121–137, 2016.  

Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation. 

Philadelphia/PA: Society for Industrial and Applied Mathematics, 2005.  

Tapley, B. D. et al. The gravity recovery and climate experiment: Mission overview and early results. 

Geophysical Research Letters, v. 31, n. 9, p. 1–4, 2004. 

Teixeira, A. H. D. C. et al. Coupling MODIS images and agrometeorological data for agricultural 

water productivity analyses in the Mato Grosso state, Brazil. Remote Sensing for 

Agriculture, Ecosystems, and Hydrology, v. 9239, n. 92390W, p. 1–14, 2014.  

Teixeira, A. H. de C. et al. Large-scale water productivity assessments with MODIS images in a 

changing semi-arid environment: a Brazilian case study. Remote Sensing, v. 5, p. 5783–

5804, 2013.  

Templeton, R. C. et al. High-resolution characterization of a semiarid watershed : Implications on 

evapotranspiration estimates. Journal of Hydrology, v. 509, p. 306–319, 2014.  

Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological 

climate-change impact studies: review and evaluation of different methods. Journal of 

Hydrology, v. 456–457, p. 12–29, 2012.  

Thakur, J. K.; Singh, S. K.; Ekanthalu, V. S. Integrating remote sensing , geographic information 

systems and global positioning system techniques with hydrological modeling. Applied 

Water Science, v. 7, n. 4, p. 1595–1608, 2016.  

Thornton, P. E. Regional ecosystem simulation: combining surface- and satellite- based 

observations to study linkages between terrestrial energy and mass budgets. PhD thesis. 

Missoula/MT: University of Montana, 1998. 

Tong, K. et al. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic 

modeling over the Tibetan Plateau. Journal of Hydrology, v. 519, p. 423–437, 2014.  



162 

Tsuyuguchi, B. B. et al. Modelagem Hidro(geo)lógica (Resultados do WP 2). In: ABELS, A. et al. 

(Eds.). PROJETO BRAMAR - Mitigação da Escassez de Água no Nordeste do Brasil. 

1. ed. Frankfurt: p. 38–57, 2018.  

Turini, N.; Thies, B.; Bendix, J. Estimating high spatio-temporal resolution rainfall from MSG1 and 

GPM IMERG based on machine learning: case study of Iran. Remote Sensing, v. 11, n. 

2307, p. 1–27, 2019.  

Tyukavina, A. et al. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000 – 2013. 

Science Advances, v. 2005, p. 1–16, 2017.  

Ulloa, J. et al. Two-step downscaling of TRMM 3b43 V7 precipitation in contrasting climatic regions 

with sparse monitoring: the case of Ecuador in tropical South America. Remote Sensing, v. 

9, n. 758, p. 1–23, 2017.  

Usman, M.; Liedl, R.; Kavousi, A. Estimation of distributed seasonal net recharge by modern satellite 

data in irrigated agricultural regions of Pakistan. Environmental Earth Sciences, v. 74, p. 

1463–1486, 2015.  

Uusitalo, L. et al. An overview of methods to evaluate uncertainty of deterministic models in decision 

support. Environmental Modelling and Software, v. 63, p. 24–31, 2015.  

Valle Junior, R. F. et al. Multi criteria analysis for the monitoring of aquifer vulnerability: a scientific 

tool in environmental policy. Environmental Science & Policy, v. 48, p. 250–264, 2015.  

van de Griend, A. A.; Owe, M. Bare soil surface resistance to evaporation by vapor diffusion under 

semiarid conditions. Water Resources Research, v. 30, n. 2, p. 181–188, 1994.  

van Genuchten, M. T. A closed-form equation for predicting the hydraulic conductivity of 

unsaturated soils. Soil Science Society of America Journal, v. 44, p. 892–898, 1980.  

van Genuchten, M. T. A numerical model for water and solute movement in and below the root 

zone. Research Report No 121. Riverside/CA: 1987.  

van Genuchten, M. T.; Gupta, S. K. A reassessment of the crop tolerance response function. Journal 

of the Indian Society of Soil Science, v. 41, n. 4, p. 730–737, 1993.  

van Steenbergen, N.; Ronsyn, J.; Willems, P. A non-parametric data-based approach for probabilistic 

flood forecasting in support of uncertainty communication. Environmental Modelling and 

Software, v. 33, n. 2012, p. 92–105, 2012.  

Vasconcelos, S. M. S.; Teixeira, Z. A.; Neto, J. A. Caracterização do Aquifero Jandaíra, porção 

situada no Estado do Ceará, Brasil. Revista de Geologia, v. 23, n. 1, p. 50–60, 2010.  

Velpuri, N. M. et al. A comprehensive evaluation of two MODIS evapotranspiration products over 

the conterminous United States: using point and gridded FLUXNET and water balance ET. 

Remote Sensing of Environment, v. 139, p. 35–49, 2013.  

Ventrella, D. et al. Assessment of the physically-based HYDRUS-1D model for simulating the water 

fluxes of a Mediterranean cropping system. Water, v. 11, n. 1657, p. 1–19, 2019.  

Vereecken, H. et al. Modeling soil processes: review, key challenges, and new perspectives. Vadose 

Zone Journal, v. 15, n. 5, 2016.  

Vink, J. et al. The X-ray synchrotron emission of RCW 86 and the implications for its age. The 

Astrophysical Journal. v. 648, n. 1, p 33–37, 2006. 

Vogel, T.; van Genuchten, M. T.; Cislerova, M. Effect of the shape of the soil hydraulic functions 

near saturation on variably-saturated flow predictions. Advances in Water Resources, v. 

24, n. 2, p. 133–144, 2001.  

Vogeler, I. et al. Estimation of soil subsurface hydraulic conductivity based on inverse modelling 

and soil morphology. Journal of Hydrology, v. 574, p. 373–382, 2019.  

Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for 



163 

transboundary water management in the Tigris-Euphrates-Western Iran region. Water 

Resources Reseach, v. 49, p. 904–914, 2013.  

Walega, A.; Salata, T. Influence of land cover data sources on estimation of direct runoff according 

to SCS-CN and modified SME methods. Catena, v. 172, p. 232–242, 2019.  

Walker, D. et al. Insights from a multi-method recharge estimation comparison study. Groundwater, 

v. 57, n. 2, p. 245–258, 2019.  

Wan, Z. et al. Water balance-based actual evapotranspiration reconstruction from ground and satellite 

observations over the conterminous United States. Water Resources Research, v. 51, p. 

6485–6499, 2015.  

Wang, C. et al. Global intercomparison and regional evaluation of GPM IMERG version-03, version-

04 and its latest version-05 precipitation products: similarity, difference and improvements. 

Journal of Hydrology, v. 564, n. February, p. 342–356, 2018.  

Wang, D. et al. Evaluation of TMPA 3B42V7, GPM IMERG and CMPA precipitation estimates in 

Guangdong Province, China. International Journal of Climatology, v. 39, p. 738–755, 

2019a.  

Wang, Q. et al. Application and accuracy of cosmic-ray neutron probes in three soil textures on the 

Loess Plateau, China. Journal of Hydrology, v. 569, p. 449–461, 2019b.  

Wang, S. et al. Evaluation of GPM IMERG V05B and TRMM 3B42V7 precipitation products over 

high mountainous tributaries in Lhasa with dense rain gauges. Remote Sensing, v. 11, n. 

2080, p. 1–20, 2019c.  

Wang, T. et al. Using pedotransfer functions in vadose zone models for estimating groundwater 

recharge in semiarid regions. Water Resources Research, v. 45, p. 1–12, 2009.  

Wang, W. et al. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations 

over China at the monthly scale. Journal of Hydrometeorology, v. 17, p. 2815–2833, 2016.  

Wang, Y. et al. Mapping tropical disturbed forests using multi-decadal 30 m optical satellite imagery. 

Remote Sensing of Environment, v. 221, p. 474–488, 2019d.  

Wei, G. et al. Evaluation of satellite-based precipitation products from IMERG V04A and V03D, 

CMORPH and TMPA with gauged rainfall in three climatologic zones in China. Remote 

Sensing, v. 10, n. 30, p. 1–22, 2018.  

Wendland, E.; Barreto, C.; Gomes, L. H. Water balance in the Guarani Aquifer outcrop zone based 

on hydrogeologic monitoring. Journal of Hydrology, v. 342, n. 3, p. 261–269, 2007.  

Weng, Q. Remote sensing and GIS integration: theories, methods and applications. New 

York/NY: McGraw-Hill, 2010.  

Wessolek, G.; Duijnisveld, W. H. M.; Trinks, S. Hydro-pedotransfer functions (HPTFs) for 

predicting annual percolation rate on a regional scale. Journal of Hydrology, v. 356, p. 17–

27. 

Weynants, M. et al. European HYdropedological Data Inventory (EU‐HYDI). Luxembourg, GD 

Luxembourg: Publications Office of the European Union, 2013.  

Wolski, P.; Savenije, H. H. G. Dynamics of floodplain-island groundwater flow in the Okavango 

delta, Botswana. Journal of Hydrology, v. 320, p. 283–301, 2006.  

Woodward, D. E. et al. Runoff curve number method: Examination of the initial abstraction 

ratio. World Water and Environmental Resources Congress. Annals... 2003 

Wosten, J. H. M. et al. Development and use of a database of hydraulic properties of European soils. 

Geoderma, v. 90, p. 169–185, 1999.  

Wu, W.; Dickinson, R. E. Time scales of layered soil moisture memory in the context of land-

atmosphere interaction. Journal of Climate, v. 17, n. 14, p. 2752–2764, 2004.  



164 

Xavier, A. C.; King, C. W.; Scanlon, B. R. Daily gridded meteorological variables in Brazil (1980-

2013). International Journal of Climatology, v. 36, n. 6, p. 2644–2659, maio 2016.  

Xu, L.; Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of 

blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree 

Physiology, v. 23, n. 13, p. 865–877, 2003.  

Xu, S.; Shen, Y.; Niu, Z. Evaluation of the IMERG version 05B precipitation product and comparison 

with IMERG Version 04A over mainland China at hourly and daily scales. Advances in 

Space Research, v. 63, n. 8, p. 2387–2398, 2019.  

Xu, Y.; Beekman, H. E. Review : Groundwater recharge estimation in arid and semi-arid southern 

Africa. Hydrogeology Journal, v. 27, n. 3, p. 929–943, 2018.  

Yang, H.; Choi, H. T.; Lim, H. Applicability assessment of estimation methods for baseflow 

recession constants in small. Water, v. 10, n. 1074, p. 1–15, 2018.  

Yang, L. et al. A modified water-table fluctuation method to characterize regional groundwater 

discharge. Water, v. 10, n. 503, p. 1–16, 2018.  

Yang, M. Benchmarking rainfall interpolation over the Netherlands. Master thesis. Enschede: 

University of Twente, 2015. 

Yang, M. et al. Integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) 

over the Tianshan mountains of China. Water, v. 11, n. 1139, p. 1–20, 2019a.  

Yang, W. et al. Two base flow separation methods based on daily average gage height and discharge. 

Water Supply, v. 19, n. 7, p. 1978–1985, 2019b.  

Yee, M. S. et al. On the identification of representative in situ soil moisture monitoring stations for 

the validation of SMAP soil moisture products in Australia. Journal of Hydrology, v. 537, 

p. 367–381, 2016.  

Yin, L. et al. Groundwater-recharge estimation in the Ordos Plateau, China: comparison of methods. 

Hydrogeology Journal, v. 19, n. 8, p. 1563–1575, 2011.  

Yu, G. et al. Root water uptake and profile soil water as affected by vertical root distribution. Plant 

Ecology, v. 189, n. 1, p. 15–30, 2016.  

Yuan, F. et al. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow 

simulations in a data-sparse mountainous watershed in Myanmar. Remote Sensing, v. 9, n. 

302, p. 1–23, 2017.  

Yuan, F. et al. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 

satellite precipitation products in the Yellow River source region, China. Journal of 

Hydrology, v. 567, p. 696–711, 2018.  

Zema, D. A. et al. Simulating the hydrological response of a small tropical forest watershed (Mata 

Atlantica, Brazil) by the ANNAGNPS model. Science of the Total Environment, v. 636, 

p. 737–750, 2018.  

Zeng, H. et al. Accuracy validation of TRMM multisatellite precipitation analysis daily precipitation 

products in the Lancang River Basin of China. Theoretical Applied Climatology, v. 112, 

p. 389–401, 2013.  

Zeng, J. et al. A preliminary evaluation of the SMAP radiometer soil moisture product over United 

States and Europe using ground-based measurements. IEEE International Geoscience and 

Remote Sensing Symposium (IGARSS), v. 54, n. 8, p. 4929–4940, 2016.  

Zhang, J. et al. Evaluating relative merits of four baseflow separation methods in Eastern Australia. 

Journal of Hydrology, v. 549, p. 252–263, 2017.  

Zhang, S. Mapping the surface water storage variation in densely impounded semi-arid NE 

Brazil with satellite remote sensing approach. PhD thesis. Berlin: Freie Universität Berlin, 



165 

2018. 

Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. 

Scientific Reports, v. 6, n. 19124, p. 1–12, 2016.  

Zhang, Y. et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and 

gross primary production in 2002–2017. Remote Sensing of Environment, v. 222, p. 165–

182, 2019.  

Zou, J. et al. Effects of anthropogenic groundwater exploitation on land surface processes: a case 

study of the Haihe river basin, Northern China. Journal of Hydrology, v. 524, p. 625–641, 

2015.  

Zreda, M. et al. Measuring soil moisture content non-invasively at intermediate spatial scale using 

cosmic-ray neutrons. Geophysical Research Letters, v. 35, n. 21, p. 1–5, 2008.  

Zreda, M. et al. COSMOS: The COsmic-ray Soil Moisture Observing System. Hydrology and Earth 

System Sciences, v. 16, n. 11, p. 4079–4099, 2012.  

  



166 

APPENDIXES 

 

Supplementary Figure 1 – Monthly distributed precipitation obtained by Inverse Distance Weighting  

interpolation through the rain gauge network in 2016. 

 

Supplementary Figure 2 – Monthly distributed precipitation obtained by bilinear interpolation and 

bias correction through IMERG imagery in 2016. 
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Supplementary Figure 3 – Monthly distributed precipitation obtained by Inverse Distance Weighting 

interpolation through the rain gauge network in 2017. 

 

Supplementary Figure 4 – Monthly distributed precipitation obtained by bilinear interpolation and 

bias correction through IMERG imagery in 2017. 
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Supplementary Figure 5 – Monthly distributed evapotranspiration obtained by MODIS algorithm 

from MapBiomas land use/cover with cloud cleaning map composition in 2016. 

 

Supplementary Figure 6 – Monthly distributed evapotranspiration obtained by MODIS algorithm 

from MapBiomas land use/cover with cloud cleaning map composition in 2017. 
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Supplementary Figure 7 – Monthly distributed soil water storage changes in 1-m root zone obtained 

by bilinear interpolation in 2016. 

 

Supplementary Figure 8 – Monthly distributed soil water storage changes in 1-m root zone obtained 

by bilinear interpolation in 2017. 
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Supplementary Figure 9 – Monthly distributed surface runoff obtained by NCRS-CN method from 

ground-based, interpolated precipitation in 2016. 

 

Supplementary Figure 10 – Monthly distributed surface runoff obtained by NCRS-CN method from 

bias-corrected IMERG imagery in 2016. 
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Supplementary Figure 11 – Monthly distributed surface runoff obtained by NCRS-CN method from 

ground-based, interpolated precipitation in 2017. 

 

Supplementary Figure 12 – Monthly distributed surface runoff obtained by NCRS-CN method from 

bias-corrected IMERG imagery in 2017. 
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Supplementary Figure 13 – Monthly distributed groundwater recharge rates obtained by water budget 

equation from ground-based, interpolated precipitation in 2016. 

 

Supplementary Figure 14 – Monthly distributed groundwater recharge rates obtained by water budget 

equation from bias-corrected IMERG imagery in 2016. 



173 

 

Supplementary Figure 15 – Monthly distributed groundwater recharge rates obtained by water budget 

equation from ground-based, interpolated precipitation in 2017. 

 

Supplementary Figure 16 – Monthly distributed groundwater recharge rates obtained by water budget 

equation from bias-corrected IMERG imagery in 2017. 
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Supplementary Figure 17 – Annual distributed relative groundwater recharge rates obtained by water 

budget equation and WTF method, using ground-based, interpolated precipitation in (a) 2016 and (c) 

2017, and using the bias-corrected IMERG imagery in (b) 2016 and (d) 2017.  

 

Supplementary Figure 18 – Delimitation of the 503 stream gauge catchment within the Guaraíra 

Experimental Basin (GEB). 
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Supplementary Figure 19 – Time series of the weather variables used for hydrogeological modelling 

in HYDRUS-1D, namely (a) daily mean global (Rs) and net radiation (Rn), and (b) relative humidity 

(RH), air temperature (T) and wind speed (U2). 
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