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ABSTRACT
Genetic studies of the Eurasian brown bear (Ursus arctos) have so far focused on
populations from Europe and North America, although the largest distribution area
of brown bears is in Asia. In this study, we reveal population genetic parameters
for the brown bear population inhabiting the Grand Kaçkar Mountains (GKM) in
the north east of Turkey, western Lesser Caucasus. Using both hair (N = 147) and
tissue samples (N = 7) collected between 2008 and 2014, we found substantial levels
of genetic variation (10 microsatellite loci). Bear samples (hair) taken from rubbing
trees worked better for genotyping than those from power poles, regardless of the year
collected. Genotyping also revealed that bears moved between habitat patches, despite
ongoing massive habitat alterations and the creation of large water reservoirs. This
population has the potential to serve as a genetic reserve for future reintroductions
in the Middle East. Due to the importance of the GKM population for on-going and
future conservation actions, the impacts of habitat alterations in the region ought to be
minimized; e.g., by establishing green bridges or corridors over reservoirs and major
roads to maintain habitat connectivity and gene flow among populations in the Lesser
Caucasus.

Subjects Biogeography, Conservation Biology, Genetics, Zoology, Population Biology
Keywords Ursus arctos, Microsatellite, Conservation, Anatolia, Isolation, Source population,
Noninvasive sampling, Rubbing tree, Turkey

INTRODUCTION
The brown bear (Ursus arctos Linnaeus, 1758) is a widely distributed Holarctic old world
species. Although the main distribution of the species is in Asia, genetic studies have largely
focused on Europe and North America (Swenson, Taberlet & Bellemain, 2011). Currently,
there are only a few genetic studies from the Asian portion of the species’ distribution
(Bellemain et al., 2007; Murtskhvaladze, Gavashelishvili & Tarkhnishvili, 2010; Çilingir et
al., 2016). The main brown bear population in southwest Asia is in northeastern Anatolia
(hereafter using the term Anatolia for the Asiatic part of Turkey), consisting of more than
2,000 individuals (Ambarlı, Ertürk & Soyumert, 2016). This population is characterized by a
higher abundance (Ambarlı, 2016) and a highermtDNA diversity (Çilingir et al., 2016) than
the neighboring, and mostly isolated, populations in the Lesser Caucasus parts of Georgia,
Armenia, and Azerbaijan (Lortkipanidze, 2010). Additional brown bear populations from
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Figure 1 Map of the study area.
Full-size DOI: 10.7717/peerj.5660/fig-1

Lebanon, Syria and Iraq have recently become extinct (IUCN, 2016). The northeastern
Anatolian population can thus be considered the main source population in southwest
Asia (Ambarlı, 2016). In order to protect this population and properly manage the species
in this region, it is essential to gain greater insight into its ecology and population genetics,
particularly when the continued habitat fragmentation and destruction of the natural
ecosystems of Turkey are considered (Şekercioğlu et al., 2011).

In spite of the recent increase in anthropogenic pressure threatening the survival of brown
bears in Turkey, the northeastern Anatolian population still appears viable (Ambarlı, Ertürk
& Soyumert, 2016). However, thorough assessment regarding its future viability is not yet
possible because detailed population parameters (ecological, genetic and demographic) are
still unknown. The Grand Kaçkar Mountains (GKM) are located in northeastern Anatolia,
and are home to the largest intact brown bear population in southwest Asia (Fig. 1). The
GKM form a natural barrier between inner Anatolia and the Black Sea Region, and provide
continuous pristine habitat (e.g., natural old forests) for large carnivores in the region.

However, there are increasing threats from growing touristic activities and numerous
planned hydro-electrical power plants (HEPP). For example, 28 big dams on Çoruh
River (eastern part of GKM) and more than 1,000 small HEPP are to be constructed in
the montane area of the Black Sea and Eastern Anatolia Regions at elevations between
750–2,500 m above sea level (Atak & Öztok, 2013). The construction of HEPPs in this
region (325 HEPPs are already constructed, and 400 are under construction, and 350
more HEPPs are planned; http://www.enerjiatlasi.com/hidroelektrik/) requires substantial
logging to build new roads and high-voltage transmission lines at these high altitudes
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(Şekercioğlu et al., 2011). This logging destroys areas of pristine habitat currently used by
bears for hibernation and cub rearing (Ambarlı, Ertürk & Soyumert, 2016).

Furthermore, the flooding of large areas by new water reservoirs and the construction
of new big dams in the eastern GKM will likely hamper the movement of bears between
GKM and the Lesser Caucasus Mountains in Georgia (Fig. 1). A habitat modeling study
examining the consequences of these reservoirs and dams for the local fauna in the GKM
reported that habitats of large mammal species will become fragmented, causing the
isolation of populations (Özdemirel, Turak & Bilgin, 2016). An additional concern is that
the high-voltage transmission lines and pylons needed for HEPPs will further contribute to
habitat fragmentation in the region (Balkenhol & Waits, 2009). Wildlife refuges at higher
altitudes are further threatened by extended road construction above 2,000 m to boost
‘‘ecotourism activities’’ (WWF-Türkiye, 2015; Ambarlı, Ertürk & Soyumert, 2016). These
roads starting in the middle of the Black Sea Region and stretching for more than 2,500 km
to the Georgian border, will further fragment pristine habitats and enhance their erosion.

An additional concern is human-induced fatalities, because bears are frequently involved
in human-wildlife conflicts in the region and are thus the target of retaliatory poaching
and trophy hunting (Ambarlı, Ertürk & Soyumert, 2016). After a hiatus of more than 10
years, the Board of National Park Directors of Turkey has recently reissued a bear trophy
hunting quota, and decreased the fine for illegal poaching from $3,500 to $800, despite the
lack of reliable sustainability information (e.g., by using demographic and genetic tools).

Habitat fragmentation and population isolation has been shown to result in low
within-population genetic diversity in American grizzly bears (Paetkau et al., 1998). If large
mammals in northeastern Anatolia become subjected to increased habitat fragmentation
and population isolation, as predicted by modeling studies (Balkenhol & Waits, 2009;
Özdemirel, Turak & Bilgin, 2016), then it is likely that the brown bear population in the
GKM will also suffer a loss of genetic diversity (Paetkau et al., 1998; Frankham, 2005).
This would be further exacerbated by human-induced fatalities resulting from increased
hunting quotas, as well as by the reduced deterrent for poaching (significantly reduced
fines). Considering the multiple threats to brown bears and their habitat outlined above,
the fate of the main population in northeastern Anatolia over the next decades is uncertain.

In this study, we focus on the bear population of the Grand Kaçkar Mountains (GKM;
Fig. 1) in northeastern Anatolia. In this mountain chain, connected to the Lesser Caucasus,
several bear subpopulations are distributed in habitats separated by high mountains or
fast-flowing rivers in deep and rugged valleys. It is currently not known if there is gene-flow
between these subpopulations, and if so, to what degree. Thus, the aims of this study were
(i) to characterize the current level of genetic variability of the GKM population, and
(ii) to determine if geographic features of the Grand Kaçkar Mountains impact dispersal
sufficiently to impede gene flow between subpopulations in the area. The study presented
here is the first one using nuclear loci to assess levels of genetic diversity of the main brown
bear population in Turkey. By doing so, we will also generate a ‘‘genetic baseline’’ needed to
measure future impacts of anthropogenic habitat alterations and poaching in this region.
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MATERIALS & METHODS
Samples
We collected 154 samples from the Grand Kaçkar Mountains (GKM) region in two
neighboring Turkish provinces, Artvin and Bayburt (Fig. 1; Table 1), respectively located
on the eastern and the southwestern edges of the GKM. Both are small montane provinces
in the Lesser Caucasus Region characterized by steep mountains and large fast-flowing
rivers. We chose to sample in these provinces because current dam construction activities
(including new roads and forest logging) may reduce connectivity between eastern and
western GKM (sub)populations even further in the near future. Obtaining samples from
these locations enabled us to assess population connectivity between areas separated by up
to 300 km, a distance near the limit of the homing ability of brown bears (Conover, 2001).
The bear population in Artvin is connected to bear populations in Georgia, and the bear
population in Bayburt is connected to bear populations in Eastern and Central Anatolia
(Ambarlı, Ertürk & Soyumert, 2016).

Noninvasive genetic sampling was carried out from 2008 to 2014 (fromMay toOctober).
In the Artvin province, we collected hair samples from rubbing trees and power poles
impregnated with creosotes (N = 105), corral hair-traps (N = 7), and from barbed wires
placed on rubbing trees (N = 12), at altitudes between 700–2,500 m above sea level (Table
1). Additionally, we used three invasive hair samples from captured bears (N = 3). Samples
from the Bayburt province were collected from rubbing trees and power poles (N = 20).
Hair samples were placed in paper envelopes without contacting human skin and were then
stored at room temperature in zip lock bags with silica gel (Roon, Waits & Kendall, 2003).
In addition, fresh tissue samples (N = 7) were obtained from bears captured in the Artvin
province between 2010 and 2011 (Permission No:B.23.0.DMP.0.13.02–445.05-36125,
Ministry of Forestry and Water Affairs) (Ambarlı, 2012), and were stored in 98% ethanol.
In total, we collected 147 hair samples (Noninvasive N = 144, invasive N = 3) (Artvin
N = 127, Bayburt N = 20) and seven tissue samples (Artvin N = 7) (Table 1).

DNA extraction and genotyping
For both hair and tissue samples, DNA was extracted using a commercially available kit
(GEN-IAL GmbH, Troisdorf, Germany) following the manufacturer’s instructions without
any modifications.

We genotyped all samples at 10 microsatellite loci: G10C, G10X, UarD1585, UarT739,
UarD3139, UarD3684, G1D, Mu05, Mu23, Mu50, and at the sexing locus SRY (primer
details in Table S1). One primer of each primer pair was 5′ labeled with a fluorescent
dye (6-FAM, HEX, or NED), so that differently labeled primer pairs could be used in
a multiplex approach for genotyping. Loci were amplified using the Qiagen Multiplex
PCR Kit (Qiagen, Hilden, Germany) in three multiplexes of 10 µL final reaction volume,
following the manufacturer’s recommended conditions (multiplexes detailed in Table S1).

Following Miller, Joyce & Waits (2002), we used a Maximum Likelihood approach for
genotyping noninvasively collected samples: each sample was genotyped in parallel (N = 2
replicates per sample) and if amismatch occurred between replicates, results were discarded
and genotyping was repeated on a new DNA extraction of that sample, resulting in 2–4
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Table 1 Sample details.

Province Period Size of area
sampled (km2)

No. of
tissue
samples

No. of
hair
samples

No. of
hair
samples
successfully
genotypeda

No. of samples
used for individual
identificationb

No. of unique
genotypes
identifiedc

No. of samples
used in genetic
analysesc,d

Artvin 2008–2014 2,425 7 127 56 63 42 + 1 36 + 1

Bayburt 2012 2,280 – 20 8 8 5 + 1 5 + 1

Total 4,705 7 147 64 71 48 42

Notes.
aHere ‘successfully genotyped’ indicates that at least eight microsatellite loci amplified successfully.
bUnique genotypes were identified using data from both tissue and hair samples (see Methods for details).
cHere ‘+1’ is used to indicate that one unique genotype was observed in both provinces.
dGenetic analyses were conducted using genotypes with data missing for only one of ten microsatellite loci; again, ‘+1’ is used to indicate that one unique genotype was observed in both provinces.
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replicates per sample. The low number of hairs collected per sample limited us to two
DNA extractions per sample. Thus, if a mismatch occurred in the second round of parallel
genotyping, the sample was discarded.

As bears are highlymobile, we had to considermultiple sampling froma single individual.
To remove such bias, we looked for matching genotypes using the R package (R Core Team,
2015) allelematch (v2.5; Galpern et al., 2012) applying the option ‘alleleMismatch=2’.
Matching genotypes were always assigned to the same individual, mismatching genotypes
were only assigned to the same individual if either one of the following criteria was met: (i)
only one allele difference was observed between genotypes and could be attributed to large
allele drop-out or allele-size shift due to stuttering (N = 3), or (ii) two allele differences
between genotypes were observed but could be attributed to large allele drop-out, allele-size
shift or missing data (N = 6). Genotypes from tissue samples were included in this analysis.

Genotypic analyses
The probability of null alleles being present in the data set was assessed using Micro-
Checker (v.2.2; Van Oosterhout et al., 2004). To assess if the number of loci and alleles was
sufficient to discriminate individuals, we estimated the cumulative values of the unbiased
probability of identity (PIDunb) and of the probability of identity given siblings (PIDsib)
using the software package Gimlet (v.1.3.3; Valière, 2002).

We examined the genotypes of the GKM bear population using the following software
packages: Popgene (v.1.32; Yeh et al., 1997) to test for deviation from Hardy–Weinberg
equilibrium, and to estimate observed heterozygosity (HO) and expected heterozygosity
(HE), and fstat (v.2.9.3.2; Goudet, 2002) to estimate the inbreeding coefficient FIS.

Genetic structure among sampling sites was examined usingmultiple approaches because
these can differ in their assumptions aboutmarkers or populations, such as randommating,
absence of selection or absence of mutation. We thus included individual-based analyses
that do not make such assumptions, as well as analyses that infer population genetic
structure using allele frequencies that do make such assumptions.

The following analyses are individual-based and are not be impacted by, for example,
uneven sampling of populations or deviation from HWE. The R package memgene
(v.1.0; Galpern et al., 2014) was used to calculate the proportion of shared alleles among
samples (following Bowcock et al., 1994), and the package ape (v.5.1; Paradis, Claude &
Strimmer, 2004) to construct unrooted neighbor-joining trees from the distance matrix.
We used adegenet (v.2.0.1; Jombart, 2008) to conduct principal component analyses
(PCA). PopGenReport (v.2.1; Adamack & Gruber, 2014) was used to calculate pairwise
genetic dissimilarity between samples (following Kosman & Leonard, 2005) and to plot
these values against the geographic distance between samples. This allowed us to retain
information regarding the resampling of individuals (i.e., unique genotypes) in a geographic
context, as it was conducted on the dataset consisting of 71 samples that had been scored
at a sufficient number of microsatellite loci (Table 1). Thus, for example, the genotypes
that had been detected at more than one location could be included, together with spatial
data regarding sampling location. Native functions of R were also used to plot graphs.
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The following analyses infer population genetic structure using allele frequencies that
do make such assumptions, and can be impacted by deviations from these assumptions
(e.g., if they are not in HWE, by Wahlund effect). Arlequin (v.3.5.2.1; Excoffier & Lischer,
2010) was used to calculate population pairwise FST; significance was tested by permuting
individuals between populations (10,000 permutations).

We used Bayesian inference implemented in the software Structure (v.2.3.4; Pritchard,
Stephens & Donnelly, 2000; Falush, Stephens & Pritchard, 2003) to estimate the number of
genotypic clusters in our study area. We used the admixture model as prior and ran the
software for 600,000 steps following a burn-in of 200,000 steps. The most likely number of
genotypic clusters (K ) was evaluated in a range fromK = 1 toK = 6 and was assessed in ten
independent runs perK.We also used Bayesian inference implemented in the software tess
(v.2.3; Chen et al., 2007) to infer population structure, and included spatial data regarding
sampling location. We used the admixture model and ran the software for 100,000 sweeps,
discarding the first 50,000 as burn-in. We ran tess 100 times for each K in a range from
K = 2 to K = 6, and averaged results (per K ) over the 20% runs with the lowest Deviance
Information Criterion (DIC). Results were visualized using clumpp (v.1.12; Jakobsson &
Rosenberg, 2007) and distruct (v.1.1; Rosenberg, 2004).

To examine the impact of sampling date and sample source on genotyping success, we
compared results for hair samples collected from different noninvasive sources (N = 144)
and years (2008–2014) using Chi-square and contingency tables. Understanding how age
and source of samples impact genotyping success can inform improving sampling strategy
for further studies.

RESULTS
Microsatellite variation
The microsatellite loci used were all highly polymorphic, with a range of seven to ten alleles
(Table 2). In total, 64 out of the 147 hair samples (43.5%) yielded data for at least eight
out of the ten microsatellite loci (Table 1). Applying the criteria outlined above (Materials
& Methods), we scored 48 unique genotypes among these 64 hair and the seven tissue
samples (71 samples total). Based on the SRY data, these consisted of 40 males (83.3%) and
eight females (16.7%). However, we also found that SRY worked for a tissue sample from a
captured female bear and for one hair sample (H58) that had four exact matches to a female
(Samples H20, H51, H110, H114, see dataset in the Supplemental Files). We detected 14
unique genotypes (12 males and two female genotypes) during a single sampling period
(2010) in a small part of the Artvin sampling area (<100 km2).

In order to reduce the impact of missing data on downstream analyses, we discarded
six unique genotypes because there were missing data at more than one locus (Table 1).
Out of the remaining 42 unique genotypes, 36 were detected in the Artvin province, five
were detected in the Bayburt province, and one genotype was observed in both provinces
(Table 1).

Evaluation of microsatellite allele distribution data using MicroChecker revealed that
five loci had a significant probability for the presence of null alleles (G10C, UarD1585, G1D,
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Table 2 Summary of genotyping results at 10 microsatellite loci for the Anatolian GKM population.

Locus Nallele HO HE HWE Nullch FIS
Mu50a 10 0.81 0.85 n.s. 0.03 0.063
UarT739a 7 0.71 0.73 n.s. 0.02 0.046
G10Xa 9 0.76 0.76 n.s. −0.01 0.009
UarD3139a 9 0.73 0.82 n.s. 0.06 0.119
UarD3684a 8 0.67 0.75 n.s. 0.06 0.121
G10C 9 0.66 0.83 * 0.12 0.219*

G1D 8 0.59 0.80 * 0.15 0.278*

UarD1585 10 0.62 0.86 * 0.16 0.290*

Mu05 8 0.50 0.69 n.s. 0.16 0.283*

Mu23 7 0.61 0.80 n.s. 0.14 0.252*

over five loci without null allelesa 8.6 0.74 0.78 0.072

Notes.
Number of alleles (Nallele ), observed (HO) and expected (HE ) heterozygosity, deviation from Hardy–Weinberg equilibrium
(HWE, n.s., not significant; *, significant at P < 0.05), estimated frequency of null alleles (Nullch) following Chakraborty et al.
(1992), inbreeding coefficient (FIS; *, significant at P < 0.05).

aLoci used in comparison to other brown bear populations (Table 5).

Mu05, and Mu23; Table 2). These five loci also displayed significant levels of inbreeding
(measured as FIS), and three of them (G10C, UarD1585, and G1D) showed significant
deviation from Hardy–Weinberg equilibrium (Table 2).

While inclusion of these loci did not alter the results of analyses on population structure,
we restricted analyses to the five remaining loci (Mu50, UarT739, G10X, UarD3139,
UarD3684) as these were still capable of distinguishing 41 out of the 42 unique genotypes
identified using the full set of markers. Reducing the number of loci resulted in the
cumulative estimates of ‘probability of identity’ dropping from PIDunb= 2.7×10−13 and
PIDsib= 5.2×10−5 (10 loci) to PIDunb= 8.7×10−7 and PIDsib= 7.7×10−3 (5 loci).

Over all genotypes (N = 42), expected and observed heterozygosity was high (HE = 0.78,
HO = 0.74; Table 2). When considering genotypes detected in only one province (i.e.,
excluding the genotype found in both provinces), we observed virtually identical values for
genotypes from the Artvin province (N = 36, HE = 0.79, HO= 0.74), and slightly lower
values for genotypes from the Bayburt province (N = 5, HE = 0.68, HO= 0.72).

Population structure
Despite only obtaining a moderate number of genotypes from the Bayburt province,
we nevertheless attempted to resolve brown bear population structure in our study
area. However, excluding the genotype found in both provinces, we found no genetic
differentiation between the brown bear populations from the Artvin and Bayburt provinces
(FST= 0.004, P = 0.47;N = 41). When examining the proportion of shared alleles between
individuals (following Bowcock et al., 1994; N = 42), no clustering of genotypes based on
sample origin was apparent (Fig. 2A). Similarly, the principal component analysis (PCA;
N = 42) did not show a clustering of genotypes based on sample origin (Fig. 2B). Bayesian
inference using Structure (N = 42) suggested the presence of a single population (Fig. 2C;
for Structure plots of K = 1 to K = 6 see Fig. S1).
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Figure 2 Analyses conducted to examine genetic population structure. (A) The proportion of shared
alleles between individuals (following Bowcock et al., 1994), visualized as an unrooted neighbor-joining
tree. Sample origin is indicated by colour; genotypes from the Bayburt province are additionally indicated
by an asterisk ‘*’; the genotype found in both provinces is indicated by an arrow. (B) Principal compo-
nent analysis (PCA). Sample origin is indicated by colour; genotypes from the Artvin province are repre-
sented by blue circles; genotypes from the Bayburt province are represented by orange triangles; the geno-
type found in both provinces is represented by a black square. (C) Structure results; plot of mean log like-
lihoods for K = 1 to K = 6. (D) Plot of genetic dissimilarity (following Kosman & Leonard, 2005) versus
geographic distance (m). The line represents the running average of genetic dissimilarity.

Full-size DOI: 10.7717/peerj.5660/fig-2

To take spatial information into account, we firstly examined genetic dissimilarity versus
geographic distance (Fig. 2D). Within the geographic range of the study, we found both
samples with no genetic dissimilarity at short distances (up to ∼15 km apart, resampled
genotypes within provinces), and at long distances (160 km, the genotype detected in both
provinces, indicated by an arrow in Fig. 2D). Pairwise values among samples from the
two different provinces (geographic distance of ∼150 km to 300 km) were mostly on the
same order as pairwise values for samples from the same province (geographic distance of
0 km to ∼100 km). Thus, genetic dissimilarity did not increase with increasing geographic
distance at the spatial scale of our study (horizontal line in Fig. 2D).

We also assessed population structure by Bayesian inference implemented in tess,
incorporating spatial data. As this software does not calculate the likelihood of all individuals
belonging to a single population (K = 1), we conducted the analysis for K = 2 to K = 6.
Neither the Deviance Information Criterion (DIC) nor the plots of individual cluster
membership provided unambiguous evidence for a population subdivision. Only up to
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Table 3 Genotyping success rates for hair samples (N = 147) obtained in different time periods be-
tween 2008 and 2014.

2008 2009 2010 2011 2012 2014 Total

Successfully genotyped 11 1 16 12 17 7 64
Failed 23 14 11 18 15 2 83
Success rate % 32.4 6.7 59.3 40.0 53.1 77.8 43.5

Table 4 Genotyping success rates for non-invasively collected hair samples (N = 144) from different
sources in the field.

Poles Natural trees Barbed wire on trees Hair trap on the ground Total

Positive 19 29 10 3 61
Negative 53 24 2 4 83
Success rate % 26.39 54.72 83.33 42.86 42.36

five genotypes had a cluster membership probability above 0.8 (for K = 2) in any analysis
(Fig. S2).

Source of hair samples
Hair samples collected from rubbing trees (with or without barbed wire) yielded DNA
extracts that performed significantly better for genotyping than did samples collected from
power poles treated with creosotes (Chi-square = 15.81, Df = 1, P < 0.001) regardless
of the collection year (Tables 3 and 4). Overall, we observed a significant difference in
genotyping success among different noninvasive sources of hair samples (Chi-square =
19.09; Df = 3; P = 0.0026) (Table 4).

DISCUSSION
Measuring current levels of genetic variation is an essential aspect of conservation genetics
(Paetkau et al., 1998; Frosch et al., 2014; Tsaparis et al., 2015; Bull et al., 2016), as it provides
the data necessary for measures assuring a sustainable population in the future. In this
study, we focused on the bear population inhabiting the Grand Kaçkar Mountains (GKM)
in the north east of Turkey, which comprises the main source population in Eastern Turkey
and the Lesser Caucasus (Ambarlı, 2016).

Using both tissue and hair samples collected between 2008 and 2014 (Table 1), we
were able to detect at least 48 bears in the Artvin and Bayburt provinces. Previous bear
population density estimates in the Artvin province suggested that this region had one of
the highest bear densities in the world (Ambarlı, 2012). We can also infer a high density of
bears in this region from the 14 unique genotypes detected during a single sampling period
(2010) in the Özgüven valley of the GKM (Fig. 1). At least four females with cubs were
also present in the area (Ambarlı, 2012), and two went un-sampled in our study. Taking
these two females and undetected independent individuals into account, these numbers
can correspond to a similarly high density (about 20 bears/100 km2) as reported previously
by Ambarlı(2012).
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Table 5 Comparison of genetic diversity measures between GKM and other brown bear populations.

Population N allele
a HO H E F IS N samp N loc Source

Anatolian GKM 8.6 0.74 0.78 0.072 42 5 this study
other populations:
Russia (Kirov) 8.1 0.83 0.83 – 13 17 Tammeleht et al. (2010)
Russia (Arkhangelsk) 7.7 0.78 0.79 – 16 17 Tammeleht et al. (2010)
Finland N 10.8 0.83 0.83 −0.001 164 12 Kopatz et al. (2014)
Finland S 8.8 0.79 0.78 −0.012 122 12 Kopatz et al. (2014)
Romania 7.8 0.72 0.81 – 16 9 Zachos et al. (2008)
Romania 8.5 0.76 0.80 – 109 13 Straka et al. (2012)
Slovakia N 6.0 0.69 0.71 – 71 13 Straka et al. (2012)
Slovakia C 6.0 0.69 0.70 – 96 13 Straka et al. (2012)
Slovakia E 5.2 0.66 0.65 – 16 13 Straka et al. (2012)
Scandinavia M 5.8 0.65 0.66 – 88 19 Waits et al. (2000)
Scandinavia NN 5.5 0.66 0.66 – 29 19 Waits et al. (2000)
Scandinavia NS 6.2 0.66 0.66 – 108 19 Waits et al. (2000)
Scandinavia S 5.4 0.76 0.66 – 155 19 Waits et al. (2000)
Croatia 7.6 0.74 0.75 – 156 12 Kocijan et al. (2011)
Slovenia 6.8 0.73 0.74 – 513 20 Skrbinšek et al. (2012)
Macedonia 5.8 0.75 0.72 0.003 14 18 Karamanlidis et al. (2014a)
Serbia 5.4 0.78 0.69 – 10 16 Karamanlidis et al. (2014b)
Greece 5.6 0.65 0.69 0.059 49 10 Karamanlidis et al. (2012)
Bulgaria 8.8 0.66 0.73 – 125 13 Nowak et al. (2014)
Estonia 7.4 0.66 0.68 – 62 17 Tammeleht et al. (2010)
Italy 2.4 0.44 0.46 – 17 9 Zachos et al. (2008)
Spain W 3.3 0.44 0.45 – 39 18 Pérez et al. (2009)
Spain E 1.7 0.28 0.25 – 71 18 Pérez et al. (2009)

Notes.
Number of alleles (Nallele ), observed (HO) and expected (HE ) heterozygosity, inbreeding coefficient (FIS), number of samples (Nsamp), number of loci (Nloc ).
For populations with similar genetic variation as GKM, values are highlighted in bold.

aMean number of alleles per locus.

Genetic diversity
We found high levels of allelic variation among bears in our study area (HE = 0.78,
HO= 0.74; Table 2), whichwere also apparent when the two areas were examined separately
(Artvin province: N = 36, HE = 0.79, HO = 0.74; Bayburt province: N = 5, HE = 0.68,
HO = 0.72). While our estimates are not directly comparable with those obtained from
other studies employing different microsatellite loci (Table 5), they do provide the first
evidence that the brown bears in the GKM in northeastern Anatolia are not genetically
impoverished. Measures of genetic diversity for threatened populations, for example for
the brown bear population in Spain (Table 5), are far lower than those we report here. As
the main source population for brown bears in northeastern Anatolia and surrounding
regions, the GKM population represents an important genetic reservoir that needs to be
preserved.

Ambarlı et al. (2018), PeerJ, DOI 10.7717/peerj.5660 11/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.5660


Unfortunately, we were not able to satisfactorily resolve population structure in our
study area because we were only able to obtain a moderate number of genotypes from the
Bayburt province. None of the analyses could reject the hypothesis of a single population
in our study area (e.g., Fig. 2), and we did detect one bear in both provinces, indicating that
(current) landscape features do not hinder the movement of brown bears between these
two areas. However, due to the uneven sampling between areas, which can be problematic
for some analyses of population structure (e.g., Puechmaille, 2016), we prefer to refrain
from definitively stating that there is no population subdivision. Consequently, we cannot
claim that the bears in the GKM can be managed as a single conservation unit. Further
work is clearly needed to address this, particularly with respect to additional sampling;
ideally, also increasing the geographic scope of the current study.

Genetic monitoring of this population is also important to gauge the impact of habitat
loss and habitat fragmentation in the region (Şekercioğlu et al., 2011; Balkenhol & Waits,
2009). These result from the ongoing development of infrastructure (big dams, HEPPs,
roads and high-voltage transmission pylons) in areas where still continuous pristine
habitat exists (e.g., natural old forests) for large carnivores. Extensive loss of habitat,
and concomitant fragmentation of the remaining habitat, has already been reported for
Eurasian lynx, golden jackals and wild goats in the same region (Özdemirel, Turak & Bilgin,
2016). Due to the importance of the brown bear population in the GKM for on-going and
future conservation actions, the impacts of habitat alterations need to be understood, and
when possible minimized, in order to preserve both the current genetic variation in these
brown bears and the connectivity of their populations.

Sources of noninvasively collected samples
It was recently shown that hair samples obtained from rubbing trees perform better for
genotyping than hair samples collected by other noninvasive methods, such as hair from
corral traps (Berezowska-Cnota et al., 2017). We similarly observed that hair samples from
rubbing trees performed best among the hair sample sources used in our study (Table
4). Our hair sampling strategy relied mostly on rubbing objects (such as trees and power
poles) and barbed wire on rubbing trees. The significant reduction in genotyping success
of samples collected from power poles that we observed may be due to a higher proportion
of shed guard hair without follicles that got stuck to the creosote. Moreover, hair on
power poles were generally exposed to direct sunlight for long periods of time, which most
probably caused higher levels of DNA degradation (Stetz, Seitz & Sawaya, 2014), when
compared to hair obtained from trees where direct sunlight is almost absent. While power
poles with creosote should not be discounted as a source for hair samples in future studies,
it is advised to supplement these and rubbing trees with other sources from which samples
could be collected noninvasively. For example, adding some barbed wire to power poles
may increase the retention of underfur hair.

As reported for North American bears (Lamb, Walsh & Mowat, 2016), rubbing trees
in the GKM also appear to be mostly used by male bears as only 12 of 71 genotypes
belongs to female bears (Table S1). Thus, population estimates relying on noninvasive
sampling from rubbing trees will be male-biased. As we detected discrepancies in the sexes
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of individuals when using only SRY, using a more sophisticated sexing procedure (e.g., a
multilocus approach with internal controls/validation, Sastre et al., 2009) would be safer
for noninvasive samples to determine sex of individuals. Considering this, and the fact that
female brown bears in Turkey have very small home ranges (Ambarlı, 2012), greater effort
needs to be allocated to sample female bears with cubs, as well as sub-adult bears. This may
be accomplished by including fecal samples in the analyses or by establishing hair traps in
more remote areas.

CONCLUSIONS
Any conservation action plan for brown bears in the Lesser Caucasus needs to consider
the influences of big dam and HEPP constructions on this genetically highly diverse
bear population (high mtDNA diversity (Çilingir et al., 2016) and nuclear diversity (this
study)). Therefore, we would like to advocate the construction of conservation corridors
over reservoirs of big dams or major roads to decrease the severity of genetic isolation
and habitat fragmentation. In this way, brown bears in Turkey might continue to serve as
a genetic reserve for southwest Asia (e.g., not only for Lesser Caucasus, but also for the
Middle East). We suggest long term genetic monitoring of this valuable bear population by
using at least two noninvasive sampling techniques to include female bears. We also urge
authorities to plan a series of conservation measures in order to guarantee the gene flow
needed between subpopulations in order tomaintain sustainable levels of genetic diversity.
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