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Nonlinear dynamics in complex networks and modeling human dynamics 
Ye Wu 

Institute of Physics and Astrophysics, University Potsdam 

Abstract 
The availability of large data sets has allowed researchers to uncover complex properties in 

complex systems, such as complex networks and human dynamics. A vast number of systems, 

from the Internet to the brain, power grids, ecosystems, can be represented as large complex 

networks. Dynamics on and of complex networks has attracted more and more researchers’ 

interest.  

In this thesis, first, I introduced a simple but effective dynamical optimization coupling 

scheme which can realize complete synchronization in networks with undelayed and delayed 

couplings and enhance the small-world and scale-free networks’ synchronizability. 

Second, I showed that the robustness of scale-free networks with community structure was 

enhanced due to the existence of communities in the networks and some of the response 

patterns were found to coincide with topological communities. My results provide insights 

into the relationship between network topology and the functional organization in complex 

networks from another viewpoint.  

Third, as an important kind of nodes of complex networks, human detailed correspondence 

dynamics was studied by both data and the model. A new and general type of human 

correspondence pattern was found and an interacting priority-queues model was introduced to 

explain it. The model can also embrace a range of realistic social interacting systems such as 

email and letter communication. My findings provide insight into various human activities 

both at the individual and network level.  

Fourth, I present clearly new evidence that human comment behavior in on-line social 

systems, a different type of interacting human dynamics, is non-Poissonian and a model based 

on the personal attraction was introduced to explain it. These results are helpful for 

discovering regular patterns of human behavior in on-line society and the evolution of the 

public opinion on the virtual as well as real society.  

Finally, there are conclusion and outlook of human dynamics and complex networks. 
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Zusammenfassung 

Durch große Datenmengen können die Forscher die Eigenschaften komplexer 
Systeme untersuchen, z.B. komplexe Netzwerk und die Dynamik des 
menschlichen Verhaltens. Eine große Anzahl an Systemen werden als große 
und komplexe Netzwerke dargestellt, z.B. das Internet, Stromnetze, 
Wirtschaftssysteme. Immer mehr Forscher haben großes Interesse an der 
Dynamik des komplexen Netzwerks. 

Diese Arbeit besteht aus den folgenden drei Teilen. Der erste Teil ist ein 
einfacher dynamischer Optimierungs-Kopplungs-Mechanismus, aber sehr 
wirksam. Durch den Mechanismus kann synchronisation in komplexen 
Netzwerken mit und ohne Zeitverzögerung realisiert, und die Fähigkeit der 
Synchronisation von small-world und scale-free Netze verbessert werden. 

Im zweiten Teil geht um die Verstärkung der Robustheit der scale-free Netze 
im Zusammenhang mit der Gemeinden-Struktur. Einige Reaktionsmuster und 
topologische Gemeinden sind einheitlich. Die Ergebnisse zeigen einen neuen 
Aspekt der Beziehung zwischen den Funktionen und der Netzwerk-Topologie 
von komplexen Netzwerken. 

Im dritten Teil welche eine wichtige Rolle in komplexen Netzwerken spielt, wird 
die Verhaltens-Dynamik der menschliche Mitteilung durch Daten- und 
Modellanalysierung erforscht, dann entsteht ein neues Mitteilungsmodell. Mit 
Hilfe von einem Interaktion priority-Queue Model kann das neue Modell erklärt 
werden. Mit Hilfe des Models können viele praktische Interaktions-Systeme 
erklärt werden, z.B. E-Mail und Briefe (oder Post). Mit Hilfe meiner 
Untersuchung kann man menschliches Verhalten auf der Individuums- und 
Netzwerkebene neu kennenlernen. 

Im vierter Teil kann ich nachweisen, dass menschliches Kommentar-Verhalten 
in on-line Sozialsystemen, eine andere Art der Interaktionsdynamik von 
Mensch non-Poisson ist und dieses am Modell erklären. Mit Hilfe der 
non-Poisson Prozesse kann man das persönliche Anziehungskraft-Modell 
besser verstehen. Die Ergebnisse sind hilfreich zum Kennenlernen des 
Musters des menschlichen Verhaltens in on-line Gesellschaften und der 
Entwicklung von öffentlicher Meinung nicht nur in der virtuellen Gesellschaft 
sondern auch in der Realgesellschaft.  

Am Ende geht es um eine Prognose von menschlicher Dynamik und 
komplexen Netzwerken.   
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Chapter 1 Introduction 
1.1 Basic concept of complex networks  

1.1.1 Introduction of complex networks 

It is a true saying that the 21st century is the world of networks [R. Albert, 2002, S. Boccaletti, 

2006]. Networks arise in our daily life by various ways. The first task we did when we open 

our eyes and get up in the morning was to turn on the light. There was complex power grid 

network [R. V. Solé, 2008] under the light. We used the traffic network to go to office, 

meanwhile public traffic networks [J. Sienkiewicz, 2005, P. Sen, 2003, R. Guimera, 2004], 

including bus, train, ship, and plane help us to travel all over the world. After we arrive at the 

office, we read the news, send E-mails to friends by the internet networks [S. Maslov, 2004, G. 

Yan, 2006]. When some individuals meet together, there is a friendship networks [A. 

Arenas,2008, K. Klemm, 2003], etc. In general, complex networks are a set of nodes and 

edges. All kinds of individuals such as human, load, bus, power station, web side, etc are the 

nodes of complex networks and the relationships between any pairs of nodes are the edges.  

The complex network is changeable, even if the nodes maintain the same. The change is 

according to the reaction of edges. For example, we consider students as the nodes, and the 

edges are created when two students send emails to each other, the behavior is defined as 

Email Network. If they make phone calls, the action will be Phone Network. Not only human 

can build an invisible network, but also all kind of substance, such as: food chain networks [T. 

Gross, 2006, 2008, 2009], finance institute networks, computer networks, brain networks. 

Obviously, the edge actions will be crucial factor in defining a complex network. 

Complex networks theory is growing up gradually with the development of the simulation 

function of computer. Without the help of computers, it is hardly to figure out the statistic 

properties and the model mechanism of complex networks. Under the assistance from the 

computer power and the data access technology, researchers can study the statistic properties 

of complex networks composed from millions of nodes. That will be a great help to propose 

more and more models to explain the origin of networks, Furthermore, relationships between 

the function and topology of the networks are studied extensively.   

1.1.2 History of complex networks 

There are three landmarks on the origin and history of complex networks. The first one is the 

Euler graph [H. Ren, 2009]. There was a very famous mathematics problem which was called 

“Konigsberg seven-bridge problem”. Euler who is an intelligent guy, solved the problem very 

artifice. He demonstrated that it is an impossible task by considering the islands as nodes and 



 3

the bridges as edges. His considering the individual as nodes and the relationship between 

individuals as edges was the origin of networks theory. 

The second one is the Erdös-Rényi graph (ER random graph) [H. Ren, 2009]. Two 

mathematicians Erdös and Rényi presented a random graph model which enhanced the 

development of graph theory in 1960. Researchers consider the ER random graph as the best 

model to describe networks in the following years. The ER model still has many applications 

nowadays. However, with the development of computer power in the 20th century, people can 

understand the network in more details. More and more evidences have shown that realistic 

complex networks were neither random nor regular. The ER model can not describe some 

important topologies and statistic properties of networks. At the end of the 20th century, the 

third landmark appeared. There are two excellent works leading to the development of 

complex networks. One is “Collective behavior of small-world networks” which was 

published in “Nature” by Watts and Strogatz in 1998[D. J. Watts, 1998]. The other one is 

“Emergence of scaling in random networks” which was published in “Science” by Barabási 

and Albert in 1999[A. L. Barabási, 1999]. The two works announce the small-world effect and 

the scale-free effect of complex networks and introduce a model to explain it. Of course, more 

and more other interesting properties of complex networks have been found and different 

models have been proposed up until now.  

However, there is no agreement about the clear definition of complex network. In general, 

complex network is any system that admits an abstract mathematical representation as a graph,  

whose nodes identify the elements of the system and the set of links represent the presence of 

a relation or interaction among those elements. Complex networks are helpful to understand 

an important problem “why complex systems are complex”, which is the basic elements of 

many complex systems. 

1.1.3 Some statistical characterizations of complex networks 

Our intention is to select those notions and notations which will be used throughout the rest of 

this book.  

1) Graphs  

An undirected graph G is defined by a pair of sets ),( EVG = , where V is a non-empty 

countable set of nodes and E is a set of edges. From a mathematical point of view, it is 

convenient to define a network by means of the adjacency matrix }{ ijAA =   ( NN × ) which 

is defined:  

. 
⎩
⎨
⎧

∉
∈

=
Ejiif
Ejiif

Aij ),(,0
),(,1
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The adjacency matrix is symmetric for undirected networks and not symmetric for directed 

networks. 

2) Degree and degree distribution 

The degree ik  of a vertex i is defined as the number of edges in the graph incident on the 

vertex i. The degree distribution )(kP  of undirected networks is defined as the probability 

that any randomly chosen vertex has degree k. For scale free networks, the degree distribution 

is power-law. γ−∝ kkP )( . 

3) Weighted networks [S. H. Yook, 2001, A. Barrat, 2004] 

In a number of real-world networks, not all links in a network have the same capacity. In other 

words, many networks are intrinsically weighted, their edges having different strengths. For 

example, in the friendship network, some individuals are acquaintances, but some individuals 

maybe meet each other only few times. In bus networks, the number of buses between two 

stops is different. In other words, the edges between two any stops have different weighted. 

The weighted on the edges can be note as: jiW , . 

4) Community structure 

In the context of networks, community structure is defined as collections of nodes within 

which the connections are dense, while between the communities the connections are sparse. 

Community structures are supposed to play an important role in many real networks. For 

example, communities in a citation network might represent related papers on a single topic 

[S. Render, 1998]; communities on the web might represent pages on related topics [G. W. 

Flake, 2002]; communities in a biochemical network or neuronal system might correspond to 

special functional units [P. Holme, 2003, O. Sporns, 2004a]. 

1.1.4 Nonlinear dynamics in complex networks 

In the past decade, the dynamics of complex networks has been extensively investigated, with 

special emphasis on the interplay between the complexity in the overall topology and the 

dynamics process in the complex networks [A. Barrat, 2008]. Such as: phase transitions on 

complex networks, resilience and robustness of networks, synchronization phenomena in 

networks, walking and searching on networks, epidemic spreading in population networks, 

social networks and collective behavior, traffic on complex networks. One of our aims of this 

thesis is to study the synchronization in complex networks and the response of scale-free 

networks with community structure to external stimuli. 
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1.2 Basic concept of human dynamics 

Human which is a kind of nodes of complex networks, participate various kinds of activities 

everyday. How to understand these dynamics of human behavior is a very interesting problem. 

Human dynamics in complex networks will open a new insight on the flow modeling and 

prediction. Here we give a short introduction about human dynamics. 

1.2.1 Introduction of human dynamics 

Human participate various kinds of activities everyday. He/She gets up in the morning and 

then goes to work. He/She may send emails to his friend in the middle of day, go shopping in 

the afternoon, and make a phone with his best friend in the evening. How to understand 

regular pattern of these human activities which is called human dynamics always attracts 

sociology, psychology, economic and physics interest. It seems very hard to find a scaling in 

human activities due to complexly and diversity of human behavior and it is difficult to 

describe it by mathematical and physical models. But patterns of deliberate human activity 

and behavior are of utmost importance in areas as diverse as information spread, resource 

allocation and emergency, especially in phone line availability and bandwidth allocation in the 

case of Internet or Web use.  

Research about human dynamics has a long history. It was modeled firstly in the probability 

theory and has reemerged at the beginning of the 20th century when the phone was devised 

due to the phone system required a quantitative understanding of the call patterns of 

individuals.  

1.2.2 Basic property of human dynamics 

Human behavior is so complexity that it is hard to quantitative understanding. So far, 

researchers mainly pay attention to the inter-event time distribution )(τP and the waiting time 

distribution )( WP τ  of human dynamics only.  

1) Inter-event time: 

The time interval between two consecutive events was denoted by the inter-event timeτ . For 

example, an individual sends two consecutive Emails, two consecutive visits on a web by the 

same user, two consecutive transactions by the broker. The inter-event time distribution 

)(τP is the most important character to study a human dynamics. For example, different kinds 

of distribution need different design for the phone system. 

2) Waiting time:  

In some systems, for example, E-mail communication, surface mail correspondences, on-line 

chat, waiting time Wτ , denotes the time interval between the time one individual send a 
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message, and the time the other one reply it. Waiting time is an important variable to study a 

human dynamics too. 

We expect that more and more features of human dynamics will be introduced to understand 

the regularity patterns of human activities in the future. 

1.2.3 Bursts and heavy tails in human dynamics 

In the early stage of study, researchers assumed that human activity is a homogeneous Poisson 

process. Such processes are very popular to model a large class of phenomena, including 

some aspects of human activity, such as traffic flow patterns or accident frequencies. 

Especially, they are at the heart of the celebrated Erlang formula [Erlang, 1909]. The most 

important statistical properties of Poisson processes are that their inter-event time follows an 

exponential distribution [F. A. Haight, 1967]. However, an increasing number of recent 

measurements indicate that the inter-event time of some human activities are better 

approximated by a heavy tailed or power-law distribution. Here we list some typical 

evidences bellow [A. Vázquez, 2006]. 

1) E-mail communications 

Barabasi [A. L. Barabási, 2005] studied a dataset which contains the email exchange between 

3,188 individuals in a university for three months. He showed that both the inter-event time 

distribution and the waiting time distribution are power-law with an exponent approximated 

to 1.  

2) Surface mail communications 

Three famous scientists’ (Einstein, Darwin and Freud) surface mail communications records 

were analyzed by Vazquez and his co-workers [J. G. Oliveira, 2006, A. Vázquez, 2006]. They 

showed that the distributions of response times follow a power-law from with an exponent 

approximated to 1.5 which is different from E-mail activity. 

3) Financial activities 

Vazquez analyzed a dataset that contains all buy/sell transactions initiated by a stock broker at 

a Central European bank between June 1999 and May 2003[A. Vázquez, 2006]. There were in 

total 54,374 transactions during the 3 years. Although the inter-event time distribution for 

stock transactions is obviously differ from a power-law function which is different from the 

communication activity. They display clearly heavy-tailed distribution which is different from 

an exponential form. This result was confirmed by a recent empirical analysis on a 

double-auction market [E. K. Scalas, 2006]. 
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4) Library loans 

48,409 checks out records of books or periodicals by 2,247 individuals at a University during 

three years were studied by Vazquez [A. Vázquez, 2006]. The inter-event time between two 

consecutive books or periodicals checked out by the same patron follows power-law 

distribution with exponent from 0.5 to 1.5, with the average around 1.0. 

5) Web browsing 

The dataset of web browsing contains the visiting records of 25,000 unique visitors to the site 

www.origi.hu between 8th, Nov. to 8th, Dec, 2002. Dezsõ shown [Z. A. Dezsõ, 2006] that the 

inter-event time distribution of a single user is power-law with exponent 1.0. 

There are other evidences that the timing of human activities follows non-Poisson statistics, 

such as surface mail communication of Chinese scientist, on-line moving watching, and 

on-line chat. We expect that more and more non-Poisson regularly of human dynamics will be 

found in the future. 

1.2.4 The origin of bursts and heavy tails in human dynamics 

Until now, there are mainly three kinds of models proposed to explain the non-Poisson 

activities which would be listed bellow. 

1) Queue-based model 

Most of the time a person needs to face many tasks in his/her daily life, such as shopping, 

sending emails, making telephone call, reading news, going to a theater, playing basketball 

and so on. Indeed, person only can do one work at a moment. In the modeling of human 

behaviors, these activities on human life can be considered as tasks on a queue and person do 

the task as a server process. Accordingly, Barabasi [A. L. Barabási, 2005] proposed a model 

based on queuing theory which is call queue-based-model.  

The underlying mechanism of the queue-based-model is that person always needs to do more 

than one task at a moment and he prefers to finish important task first. The model was 

separated into two parts: 

1) Priority queue. An individual has a priority list with L tasks, ie. a person needs to do L 

tasks at a moment. Each task is assigned a priority parameter ),2,1( Lixi L=  which means 

that some task is more important than others and needs to do first. In the model, ix  is chosen 

from a uniform distribution ]1,0[∈ix . At each time step, a task from the list was chosen to 

execute and removed from the list at the same time. A new task was added in the list after the 

old one was executed.  
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2) Selection protocol. At each time step, it assumes that the individual executes the task with 

the highest priority with probability p, and with probability 1-p executes a randomly task. If 

1→p , it means a person prefers to do the most important task first, but not always. 

Simulation results are shown in Fig 1.1. For 0→p , the waiting time distribution )(τP  

decays exponentially as a Poisson process, for 1→p , it follows a power-law distribution 

with exponent 1, which agrees well with the empirical data of Email communication. These 

results imply that higher p could be an important mechanism leading to the non-Poisson 

statistics of human dynamics.  

Numerical simulations indicate that the tail of )(τP  is independent of the length of the 

priority list. It means a burst, heavy-tailed inter-event dynamics will emerge even when 

individuals balance at least two tasks. In order to simulate different individual behaviors, the 

queue-based-model can be extended by considering a stochastic version of the model in 

which the probability to choose a task with priority x for execution in a unit of time is 

∏ ≈ γxx)(  where x is chosen from the )(xρ  distribution. From the analysis in Ref [A. L. 

Barabási, 2005], the waiting time distribution γ

γ

τ
τρτ /11

/1 )()( +

−

≈P . In the ∞→γ  limit, which 

converges to 1→p  in the model, both predicts 1)( −≈ ττP . 

 

 

 

 

 

 

Fig. 1.1 The waiting time distribution predicted by the investigated queuing model. The priority were 
chosen from a uniform distribution ]1,0[∈ix , and the parameter 100=L , it was monitored over 610  
time steps. (a), Log-Log plot of the tail of probability )(τP that a task spends τ  time on the list obtained 
for 99999.0=p , corresponding to the deterministic limit of the model. The continuous line of log-log 
plot has slope -1, in agreement with the numerical results and the analytical predictions. The data were 
log-binned, to reduce the uneven statistical fluctuations common in heavy-tail distributions, a procedure 
that does not alter the slope of the tail. (b), Linear-log plot of the )(τP  distribution for 00001.0=p , 
corresponding to the random choice limit of the model. The fact that the curve follows a straight line on a 
linear-log plot indicates that  )(τP  decays exponentially. It is an exact copy from Ref. [A. L. Barabási, 
2005], and its copyright belongs to the Nature Publishing Group. 

After the queue-based-model was proposed by Barabasi, many researchers pay attention to it 

and its extension. A. Vázquez [A. Vázquez,, 2005] and C.Anteneodo [C. Anteneodo, 2009] 

used different methods to give exact result for the queue-based-model independent. A. 
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Vázquez [A. Vázquez,, 2006] etc. discussed two queuing models that capture two kinds of 

human activity. The first model assumes that there are no limitations on the numbers of tasks 

an individual can handle at any time, resulting that the waiting time follows a heavy tailed 

distribution with exponent 2/3=α , which corresponds to human surface mail based 

communication. The other model imposed limitations on the queue length, predicting a heavy 

tail waiting time distribution with exponent 1=α  which corresponds to human Email, web 

browsing and library visitation dynamics. A.Gabrielli [A. Gabrielli, 2007] and his co-worker 

studied the invasion and critical transient in the queue-based-model of human dynamics. G. 

Grinstein and R.Linsker [G. Grinstein, 2006] study the structure and robustness of universality 

classes for queuing. They derivied analytic results for priority-basic models with 

continuous-valued priorities. 

J. G. Oliveira and A. Vazquez [J. G. Oliveira, 2009] considered the impact of interaction on 

human dynamics. They introduced a minimal queuing model of human dynamics that already 

takes into account human-human interactions. They showed that the exponent of the 

power-law distributed inter-event times were changed by the interactions. Byungjoon M and 

his co-workers [M. Byungjoon, 2009] considered a scalable interaction protocol to the 

queue-based-model and then examined the effects of the network topology on the human 

dynamics. They found power-law tails in all cased considered, yet with model-dependent 

power-law exponents. 

2) Non-homogeneous Poisson model. 

R. D Malmgren and his co-workers [R. D Malmgren, 2008] introduced a totally different 

model from the queue-based-model to explain heavy tails in E-mail communication. They 

considered that human behavior is primary driven by external factors such as circadian and 

weekly cycles. Heavy tails are results of distinct characteristic time scales. They also 

demonstrated that the distribution of inter-event times in E-mail correspondence patterns 

display systematic deviations from the truncated power-law null model. They relate the rate of 

the non-homogeneous Poisson process to the daily and weekly distribution of activity interval 

initiation: )()()()( WttptpNt wdw +== ρρ , where the period W is one week and wN  is the 

average number of activity intervals per week. )(tpd  and )(tpw  are the probabilities of 

starting an active interval at a particular time of day and week respectively. The result was 

shown in Fig. 1.2 which fit well with the data. 
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Fig. 1.2 Comparison of the predictions of the cascading non-homogeneous Poisson process (red line) with 
the empirical cumulative distribution of inter-event times(black line) for four users. It is an exact copy from 
Ref [R. D Malmgren, 2008]. and its copyright belongs to PNAS. 

Furthermore, similar with the Non-homogeneous Poisson model, R.D Malmgren and his 

co-workers [R. D. Malmgen, 2009] introduce another cascading Poisson process to explain 

the heavy tails in human letter correspondence activity. They consider two additional 

ingredients for modeling letter correspondence. First, circadian and weekly cycles of activity 

may influence when individuals communicate as Non-homogeneous Poisson model. All time 

are divided into some segments. Then the non-homogeneous Poisson process )(tρ  is 

approximated by a homogeneous Poisson process with constant rate iρ  during time segment 

i. Second, there is a probability iξ  that individuals will write another letter when they finish 

writing a letter. This process repeats itself at which point the individual’s behavior is again 

governed by a homogeneous Poisson process with rate iρ .  

3) Interest-driven model 

Han, Zhou and Wang [X. P. Han, 2008] proposed a very interesting model to explain the 

real-world human activities. The underlying mechanism is from our life habit. For example, 

you had eaten a kind of food (for example, hamburger) with very good taste at time t. You will 

eat the hamburger with high probability in the following time until you feel you have eaten 

too much hamburger. Then the good feeling of hamburger disappears, and you will not like 

eating hamburger anymore.  

To mimic these habits, two simple assumptions were exacted in the modeling of the 

interest-driven model. Firstly, each activity will update the current interest and the more 

interest, the more frequency of activities. Secondly, the interest will be depressed when the 

inter-event time τ  is too small; otherwise, the interest will increase. A casual action will be 

occurrence when the time gap τ  is too long. The formula describes of the model is listed as 

follows: 

The time is discrete and labeled by ,,2,1,0 L=t . )(tr  denotes the occurrence probability of 

an event at time step t.  
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If the (i+1)th event occurred at time step t, the value of r is updated as )()()1( trtatr =+ . And  

 

 

 

The result was shown in Fig. 1.3 Some simple activities, such as watching TV, browsing web, 

playing on-line game can be indicated by the interest-driven model. 

 

 

 

 

 

 

 

Fig. 1.3 The inter-event time distributions in log-log plots. (a) Given 5.00 =a , )(τP  for different 2T , 
where the black, dark gray and bright gray curves denote the cases of 32

2 10,10=T ,and 410 , 
respectively. (b) Given 4

2 10=T , )(τP  for different 0a , where the black, dark gray and bright gray 
curves denote the cases of 2.05.0,8.00 anda = , respectively. The black dash line in both (a) and (b) 
has slope -1. All the data points are obtained by averaging over 100 independent runs, and each includes 

410  events. It is a black-white copy from the Ref. [Han, 2008]. 

Thought the three kinds of model can explain the power-law distribution of inter-event time in 

some kinds of human dynamics, they have a common limitation. They did not consider the 

interaction between individual’s own behavior and his partners’ behavior. Obviously, 

individual’s communication activities, such as Email and letter communication are influenced 

by his partners’ directly. Sometime, they did not want to write Email, but they have to write 

response Emails to his partners. Unfortunately, previously examined data often do not allow 

us to analyze this interaction precisely. However, we have the data (Short Message account 

bills) obtained from a mobile phone operator which provides a very attractive proxy for 

studying the interaction of human activity. Moreover, we also obtain data from ‘tianya’ which 

is one of the most popular on-line social systems in China which can be used for study human 

comment dynamics. Quantitative understanding of complex human behavior, such as human 

communication, human comment dynamics is one of the most important aims of my research. 
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1.3 Outline 

In chapter 2, we consider complete synchronization in small-world networks of identical 

Rössler oscillators. By applying a simple but effective dynamical optimization coupling 

scheme, we realize complete synchronization in networks with undelayed or delayed 

couplings, as well as ensuring that all oscillators have uniform intensities during the transition 

to synchronization. Further, we obtain the coupling matrix with much better synchronizability 

in a certain range of the probability p for adding long-range connections. Direct numerical 

simulations fully verify the efficiency of our mechanism. This part of work has been 

published in Chaos [Y. Wu, et al. 2008]. 

In chapter 3, the response of scale-free networks with community structure to external stimuli 

is studied. By disturbing some nodes with different strategies, we find that the robustness of 

this kind of network can be enhanced due to the existence of communities in the networks. 

Some of the response patterns are found to coincide with topological communities. We show 

that such phenomena also occur in the cat brain network which is an example of a scale-free 

like network with community structure. Our results provide insights into the relationship 

between network topology and the functional organization in complex networks from another 

viewpoint. This part of work has been published in Physica A [Y. Wu, et al. 2009]. 

In chapter 4, here we present clear empirical evidences from Short Messages (SM) 

correspondence that observed human actions are the result of interplay of three basic 

ingredients: Poisson initiation of tasks and decision-making for task execution in individual 

human and the interaction among individuals. This interplay leads to new types of inter-event 

time distribution, neither completely Poisson nor power-law, but a bimodal combination of 

them. We show that the events can be separated into bursts which are generated by frequent 

mutual interactions following independent, random initiations by the individuals. We 

introduce a minimal model of two interacting priority-queues incorporating the three basic 

ingredients which fit well the distributions using the parameters extracted from empirical data. 

The model can also embrace a range of realistic social interacting systems such as email and 

letter communications when taking the time scale of processing into account. Our findings 

provide insight into various human activities both at the individual and network level. This 

part of work has been submitted [Y. Wu, et al. 2010a].. 

In chapter 5, human comment is studied using data from 'tianya' which is the most popular 

on-line social systems in China. We found that the time interval between two consecutive 

comments on the same topic, called inter-event time, follows a power-law distribution. This 

result shows that there was no characteristic decaying time on a topic. It allows for very long 
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periods of no comment that separate bursts of intensive comments. Furthermore, the 

frequency of different ID comments on a topic also follows a power-law distribution. It 

indicates that there were some "hubs" in the topic who lead the direction of the public 

opinion.  Based on the personal comments habit, a model was introduced to explain the 

phenomena. The numerical simulations of the model fit well with the empirical results. Our 

findings are helpful for discovering regular patterns of human behavior in on-line society and 

the evolution of the public opinion in the virtual as well as realistic society. This part of work 

has been submitted [Y. Wu, et al. 2010b].  

In chapter 6, it is a conclusion of the whole thesis and some outlook. Appendix A is about 

“Enhanced synchronizability in scale-free networks” which is published in Chaos [M, Chen, 

2009].Appendix B is about “Matrix measure criterion for synchronization in coupled map 

networks” which is published in Phys. Rev. E [P. Li, 2009]. I am a co-worker in appendix A 

and appendix B. 
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Chapter 2 Synchronization in small world networks 
2.1 Introduction 

In the past decade, the dynamics of complex networks has been extensively investigated, with 

special emphasis on the interplay between the complexity in the overall topology and the local 

dynamical properties of the coupled oscillators [D. J. Watts 1998, A. L. Barabasi 1999, S. H. 

Strogatz, 2001, I. Z. Kiss, R. Albert, 2002, S. Strogatz, 2003, L. F. Lago-Fernandez, 2000,  A. 

Arenas, 2004a, 2004b]. As a typical kind of dynamics on complex networks, synchronization, 

especially the ability of networks to become synchronized (synchronizability), has attracted a 

lot of interest in multidisciplinary fields.  

The works on synchronizability in networks with a given topology can be divided into two 

classes according to the coupling matrix. One is the static mechanism, where the coupling 

matrix remains fixed during the transition to synchronization. The character is that the 

coupling matrix unidirectional affects synchronization [G. Osipov, 2007, M. Barahona, 2002, 

T. Nishikawa, 2003, G. A. Polis, 1998, V.Latora, 2001, M. Chavez]. It has been recently 

shown that for randomly enough unweighted and weighted networks [C. S. Zhou, 2006a], the 

synchronizability is controlled by minmax SS , where maxS  and minS are the maximum and 

minimum of the intensities iS , defined by the sum of the couplings for oscillator i. For 

unweighted scale-free networks (SFNs) generated by the Barabási–Albert [A. L. Barabási 

1999] model, 2/1
minmaxminmax NKKSS ≈= , where N is the network size, maxK and 

minK are the maximal and minimal degrees, respectively. From the degree [A. E. Motter, 

2005a, 2005b] and load [M. Chavez 2005, 2006] based weighted networks, the 

synchronizability becomes optimal when the intensities of all oscillators become uniform.  

The other is the dynamical mechanism, where the coupling matrix evolves in time by 

introducing adaptive strengths between connected oscillators. The adaptation process can 

enhance synchronization by modifying the coupling matrix. However, during the transition to 

synchronization, the dynamical mechanism [C. S. Zhou, 2006b, Q. Ren, 2007] cannot ensure 

uniform intensities even for small-world networks (SWNs), which is not consistent with the 

necessary condition for the optimal synchronizability in the static mechanism. Zhou and 

Kurths [C. S. Zhou, 2006b,] proposed a dynamical mechanism using local information among 

each oscillator and its neighbors. In the corresponding networks the connections between 

different oscillators are strengthened. The adaptive process drives the network into the 

direction of a more homogeneous topology, ongoing with an enhanced ability for 

synchronization. Thereby it is possible to synchronize networks that exceed by several orders 

of magnitude the size of the largest comparable random graph that is still synchronizable [T. 
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Gross, 2007]. For simplicity, we call this mechanism the ZK method. It shows that the ZK 

method is very effective to realize synchronization in SFNs, and can enhance the 

synchronizability in SFNs substantially. After the adaptation of the couplings, the weights of 

incoming links iV  scale with the degree k of the corresponding oscillator iX  as 
θ−≈ kkV )( , and the synchronizability is characterized by 2/

minmax
βNSS ≈ with 

θβ −=1 and 01.054.0 ±=θ for SFNs of Rössler oscillators, and the average intensity 

)(kS over oscillators with degree k increases as βkkS ≈)( [C. S. Zhou, 2006b,].  

In this chapter we consider complete synchronization in SWNs, especially the 

Newman–Watts (NW) model [M. E. J. Newman, 1999], by introducing a simple but effective 

dynamical mechanism. Our aims are to (i) realize complete synchronization in SWNs with 

undelayed or delayed couplings, whose oscillators all have uniform intensities during the 

transition to synchronization, and (ii) to assign the coupling matrix with enhanced 

synchronizability in certain cases.  

By applying the dynamical optimization (DO) mechanism, we will achieve the above aims. 

The DO mechanism adjusts the coupling strengths based on the ‘winner-take-all’ strategy. It 

realizes complete synchronization in SFNs with undelayed couplings, as well as enhances the 

synchronizability greatly [M. Chen, 2009].  

In this chapter, we extend the DO mechanism to NW networks with undelayed or delayed 

couplings. We show that the DO mechanism is more effective in realizing synchronization in 

NW networks than the ZK method. Since the DO mechanism can ensure the uniform 

intensities of all oscillators, it can also effectively realize synchronization in NW networks 

with delayed couplings. But the ZK method cannot realize synchronization in networks with 

delayed couplings. Moreover, in a certain range of the probability p for adding long-range 

connections, we design a coupling matrix for NW networks, which has much better 

synchronizability than unweighted networks, degree based weighted networks and the ZK 

method.  

This chapter is organized as follows: In section 2.2, by applying the DO mechanism, we can 

realize complete synchronization in NW networks of identical Rössler oscillators, as well as 

ensure the uniform intensities of all oscillators during the transition to synchronization. In Sec. 

2.3, we enhance the synchronizability in NW networks by designing the coupling matrix. We 

draw up our conclusions in the last section. 

2.2 Synchronization in small world network 

Our general model for networks consisting of N coupled identical Rössler oscillators with a 
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time-varying coupling matrix is given by  

),()(
1

ij

N

j
ijii XXHGXFX ∑

=

+=&       …………………………………………………… 2.1 

Where iX  is the state, )( jXF  is the dynamics of the individual oscillator iX , ),( ij XXH  

is the inner coupling function, )( ijGG =  is the outer coupling matrix. ijijij WAG = , where 

)( ijAA =  is the binary adjacency matrix, ijW is the coupling strength of the incoming link 

),( ji XX  pointing from oscillator jX  to oscillator iX  if they are connected, 

,∑ ∈
−=

iKj ijijii WAG  iK  is the neighbor set of oscillator iX . 

In this chapter we consider complete synchronization in network in two cases. (i) One case is 

the network with undelayed couplings, where the function )()(),( 00 ijij XHXHXXH −= , 

and 0H  is the output function for each oscillator. (ii) The other case is the network with 

delayed couplings, in which the function )]([)]([),( 00 tXHtXHXXH ijij −−= τ  with a 

time delay 0>τ . 

Our aim is to realize complete synchronization in network, as well as ensure that all 

oscillators in network have uniform intensities during the transition to synchronization. 

Recently, we have already obtained some results on this problem. For different variants of the 

Kuramoto model, we have proposed a dynamical gradient network approach to realize phase 

synchronization [M. Chen, 2008]. It shows that all the oscillators have uniform intensities 

during the transition to synchronization. However, the DGN approach is very special in two 

aspects. One is that it should assign a scale potential to each oscillator within any time 

interval, which depends on the extent of the local synchronization among itself and its 

neighbor oscillators. The other is that the incoming link to be adjusted by the DGN approach 

is often not mostly effective. Inspired by the idea of the DGN approach [M. Chen, 2008], we 

have further introduced a DO mechanism for SFNs [M. Chen, 2009]. It reflects the 

‘winner-take-all’ strategy, where the incoming link to be adjusted is always chosen as a pair of 

oscillators with the weakest synchronization. This means that the DO mechanism is more 

effective than the DGN approach. We also show that the DO mechanism has much better 

synchronizability in SFNs than the ZK method [M. Chen, 2009].  

In this chapter, we apply the DO mechanism to SWNs. Here we first introduce the idea of the 

DO mechanism. The DO mechanism is to increase the strength of only one incoming link of 

each oscillator by a small amountε , at every time step nTttn += 0  for 1≥n , where 0t  is 

the transient time, and 0>T  is the length of time intervals. For oscillator iX  and its 

neighbor oscillator jX , the total synchronization difference. 

dtXXjiE n

n

t

t jin ∫
−

Φ=
1

),(),( ……………………………………………………………  2.2 
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Within the interval ),[ 1 nn tt − , is evaluated, where Φ  is a synchronization error function. For 

complete synchronization in SWNs, the function Φ  is a non-negative error function if 

oscillators ji,  are not synchronized, and satisfies 0),( =Φ ji XX  if oscillators ji,  are 

synchronized. To check complete synchronization in network, the function Φ  is chosen as 

jijijiji zzyyXXXX −+−+−=Φ ),( ………………………………………… 2 . 3 

The total synchronization difference ),( jiEn  reflects the competition ability of the incoming 

link ),( ji XX within the time interval ),[ 1 nn tt − . For oscillator iX , the incoming link with 

the weakest synchronization, i.e., ),(
max
nji XX , is the winner within the interval ),[ 1 nn tt − , 

where the index njmax is decided by the following dynamical optimization problem: 

),(maxargmax jiEj nKj

n

i∈
= …………………………………………………………… 2 . 4 

The solutions of the optimization 2.3 within different intervals are also different, which 

depends on the dynamics of oscillators. The connection strength is then adjusted dynamically 

by: 

nn
ij

n
ij

n
ij

n
ij

jjWWWW nn max
11 ,,

maxmax
≠=+= ++ ε ………………………………………………2 .5 

Where 0>ε  is a small value, and n
ijW is the coupling strength in the interval ).,[ 1 nn tt −  

From Eqs. 2.4 and 2.5, we strengthen the incoming link with the weakest synchronization, 

namely, the link with the maximal competition ability. For complete synchronization in SWNs 

with undelayed couplings, the additional term )(
max

ij
XX n −ε  can be regarded as the negative 

feedback term for the unidirectional synchronization from oscillator nj
X

max
to oscillator iX . 

This could make the synchronization difference between oscillator iX  and its neighbor 

nj
X

max
be smaller, which implies the synchronization in SWNs be realized. 

Note that the intensities of all oscillators in network are uniform, since at each step the 

intensity of each oscillator increases by the same amount ε . This is consistent with the 

necessary condition for optimal synchronizabiliy in the static mechanism [M. Chavez, 2005, 

2006, A. E. Motter, 2005a, 2005b, X. Wang, 2007].  

In order to show the effectiveness of the DO mechanism, our analysis and simulations are 

based on SWNs generated by the NW model. The initial network is a K nearest neighbor 

coupled network consisting of N oscillators arranged in a ring, with each oscillator iX  being 

adjacent to its neighbor oscillators 2/1 ,, Kii XX ±± L , and with K being even. Then one adds 

with probability p a connection between a pair of oscillators. In the following, network is a 

network of Rössler oscillators 

 ),,( iii zyxX = , ]4.0)5.8(,15.097.0,97.0[)( +−+−−= iiiiiii xzyxzyXF  
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the function )0,0,()(0 ii xXH = . In order to show complete synchronization, we define the 

average synchronization error as 

  , 

where ),,( zyxX =  is the mean-field of all iX . In our simulations, the initial coupling 

strengths for all incoming links are zero, the transient time is st 1000 = , the length of time 

intervals is T=1 s, and the small value is 001.0=ε . Further, initial conditions for all 

oscillators are randomly chosen from the chaotic attractor. The solution of network is solved 

by using the Euler method with the time step h=0.01 s, and our ending condition for the DO 

mechanism is 510−<E . 

In this chapter we consider complete synchronization in NW networks in two cases. One case 

is the network with undelayed couplings, where the function )()(),( 00 ijij xHxHxxH −= . 

From recent works [C. S. Zhou, 2006, Q. Ren. 2007], the dynamical mechanism can realize 

complete synchronization both in SFNs with undelayed couplings and in SWNs with  

 

 

 

 

 

 

Fig. 2.1 The intensities iS  as a function of time t for arbitrarily 20 oscillators in networks with undelayed 
couplings (a), or delayed couplings (b), by the ZK method. The parameters are 

01.0,0002.0,0003.0,4,500 ===== τγpKN  

 

 

 

 

 

 

Fig. 2.2 The average synchronization error E in networks with undelayed couplings as a function of (a) 
time t, and (b) the intensity S, by the DO mechanism. The parameters are 

0001.0,1,0003.0,4,500 ===== εsTpKN . 
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undelayed couplings. However, even for NW networks with homogeneous degrees, the 

dynamical mechanisms cannot ensure uniform intensities if all oscillators have different initial 

conditions. We plot the intensities iS , defined by the sum of the coupling strengths of 

neighbor oscillators of oscillator I (i.e. ∑ ∈
=

iKj iji GS ).for 20 arbitrarily chosen oscillators in 

NW networks according to the ZK method (Fig. 2.1(a)). When the adaptation parameter is 

chosen as 002.0=γ  in the ZK method, we find that the ZK method cannot ensure uniform 

intensities during or after the adaptation. Based on the DO mechanism, complete 

synchronization in NW networks are realized effectively Fig2.2(a), and the intensities are 

always uniform during the transition to synchronization. From Fig. 2.2(b)，the intensity 

iSS = is also a good indicator for synchronization in networks. As S increases to a critical 

�value, a network becomes synchronous. (ii) The other case is the network with delayed 

couplings, in which the function )]([)]([),( 00 txHtxHxxH ijij −−= τ  with a time delay 

0>τ . Even for a small time delay τ  such as s01.0=τ , the ZK method  

 

 

 

 

 

 

Fig. 2.3 The average synchronization error E in networks with delayed couplings as a function of time t. (a) 
The ZK method s01.0=τ ,(b) The DO mechanism( s2=τ ). The parameters 

001.0,1,002.0,003.0,500 ===== εγ sTpN . 

cannot realize synchronization in NW networks (Fig. 2.3(a)). The synchronization error 

between two connected oscillators is about 550010 2 =×−  for networks with N=500. Due to 

the DO mechanism, complete synchronization can be realized effectively when the time delay 

s2=τ (Fig. 2.3(b)). The synchronization error is about 005.050010 5 =×− . Hence the DO 

mechanism is more effective than the ZK method. The main reason is that the DO mechanism 

ensures that the intensities are always uniform during the transition to synchronization. But 

the ZK method cannot ensure uniform intensities even for the small time delay Fig. 2.1(a). 

Though the difference of intensities between oscillators is small initially, it becomes large as 

time increases. The uniformity of intensities is the necessary condition for the existence of a 

synchronous manifold in NW networks with delayed couplings. After the adaptation, the 

synchronous manifold is given by NitXtX i ,,2,1),()( 0 L== , where )(0 tX is the solution of 

the isolated dynamics { })]([)]([)]([)( 0000000 tXHtXHStXFtX −−+= τ& ， 00 nS ε= is the 
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ultimate intensity, and 0n  is the ending adjustment step. 

2.3 Synchronizability of small world networks 

In this section we discuss the synchronizability of NW networks. We first briefly review the 

stability of networks,  

∑
=

−+=
N

j
ijijii XHXHGXFX

1
00

0 )]()([)( σ&  

where 0H  is the output function, and σ  is the overall coupling strength in networks. 

Without loss of generality, we assume that the coupling matrix )( 00
ijGG = is asymmetric. The 

coupling matrix )( 00
ijijWAG = is similarly defined as the matrix G in network. The variation 

equation for the synchronous state { }isX i ∀= ,  is given by ili sDHsDF ξσλξ )]()([ 0−=& , 

where )(sFs =&  is the dynamics of the isolated oscillator, D is the Jacobian operator, 

 

 

 

 

 

 

Fig. 2.4 (a) and (b) Distribution of eigenvalues of the Laplacian matrix of normGσ in network  with 
undelayed couplings ( o ) and delayed couplings (*), Solid line: The stability region R. The parameters are 

ssTpKN 1,2,001.0,1,003.0,4,500 ======= τσε  

and lλ  is a complex eigenvalue of the Laplacian matrix )( 0GL −= , satisfying 

)Re()Re()Re( 21 Nλλλ ≤≤≤ L . The largest Lyapunov exponent（LLE）, ),( βαΛ  , of the 

master stability equation ηβαη )]()()([ 00 sDHisDF +−=&  is a function of the parameters 

α  and β , which is known as the master stability function（MSF）[J. F. Heagy, 1995, L. M. 

Pecora, 1998]，Let R be the region in the complex plane where the MSF provides a negative 

LLE (Fig. 2.4). The region R bounded by the solid line. The condition for complete 

synchronization in network is that the set is entirely contained in R [J. F. Heagy, 1995, L. M. 

Pecora, 1998]. Here we only consider the case where the region R is bounded. For the 

networks of Rössler oscillators in this chapter, the stability region R is shown by the solid line 

in Fig. 2.4(a). In order to judge whether the set { }0, ≠ll λσλ  is in the stability region in the 

case of the complex eigenvalues of the Laplacian matrix L, one should minimize the ratio 

)Re(/)Re( 2λλN for a fixed value of the max )Im( lλ , and one should minimize max )Im( lλ  

for a fixed value of the ratio )Re(/)Re( 2λλN . Summing up the above minimization, a good 
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condition is that )Re(/)Re( 2λλN  and max )Im( lλ  are simultaneously minimized [M. 

Chavez, 2006, D. Huang, 2005]. 

In this section we analyze the synchronizability in NW networks by applying the DO 

mechanism. From our recent work [M. Chen, 2009] the DO mechanism can ensure uniform 

intensities of all oscillators in networks, regardless of the initial conditions of the oscillators in 

networks with undelayed or delayed couplings. Here we design the coupling matrix 0G  in 

network through the adaptation of the coupling strengths in network. After the adaptation by 

the DO mechanism, the coupling matrix 0G  in network is assigned by the following matrix:  

00 / SGGG endnorm == ,where endG  is the coupling matrix of network after the adaptation. For 

the coupling matrix normGG =0 , all eigenvalues are fully contained within the unit circle 

centered at 1[M. Chavez, 2006, D. Huang, 2005]. So 1)Im(,2)Re(0 ≤≤≤ ll λλ , and the 

largest )Re( Nλ  still never diverge. During the transition to synchronization in network, 

minmax / SS always equals 1 in the DO mechanism. 

 

 

 

 

 

 

Fig. 2.5 (Color online)  The ratio )Re(/)Re( 2λλN  as a function of network size N for a fixed 
probability 003.0=p , and the probability p for a fixed size N=500 (b). Yellow line (): type I networks; 
green line (): type II networks; blue line (): type III networks; red line (): type IV networks; black dashed 
line: the maximal ratio )Re(/)Re( 2λλN  in the region R. The parameters are 

001.0,1,002.0,4 ==== εγ sTK . All the estimates are averaged over 20 realizations of networks. 

It should be pointed out that max )Im( iλ is sufficiently small due to the DO mechanism (the 

maximal value is less than 0.1). Even for a large coupling strength 2=σ , all the nonzero 

eigenvalues of the Laplacian matrix of normGσ are located in a narrow region around the real 

axes in the stability region R (Fig. 2.4(a)). Hence the ratio )Re(/)Re( 2λλN  indicates the 

synchronizability in networks. In order to show the enhanced synchronizability in NW 

networks, we compare the synchronizability in the unweighted network (type I network: 

1=ijW ), the degree based weighted network (type II network: iij kW /10 = ), network with 

adaptive couplings by the ZK method(type III network), and network with the coupling 

matrix being designed by network with undelayed couplings (type IV networks.) 
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We find that for a fixed small probability p such as p=0.003 for adding long-range 

connections, the synchronizability in type III networks is better than that in type I networks, 

but it is worse than that in type II networks, no matter how large the size N of the networks in 

Fig 2.5, Table I. However, we find that type IV networks have a better synchronizability than 

both type II networks and type III networks when the size is not too large. Of course, the 

smaller the probability p, the larger the size of type IV networks with better synchronizability 

than both type II networks and type III networks. For the fixed size N=500, we observe 

similar results in a certain range of the probability p (Fig. 2.5, Table II). From Fig. 2.5 and 

Tables I and II, we see that the synchronizability in type IV networks is better than those in 

type II networks and type III networks in some cases. It is reasonable that type IV networks 

have better synchronizability than type III networks. This is because the DO mechanism 

ensures uniform intensities of all oscillators in type IV networks. Now we further analyze the 

reason why type IV networks have better synchronizability than type II networks in a certain 

range of the probability p. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 The dependence of mW  on m in (a), (d) and (g) of mL  on m in (b), (e), and (h), and the 

relationship between mW  and mL  in (c), (f) and (i), respectively. 30,0 21 == nn [(a),(b) and (c)]; 

90,60 21 == nn [(d),(e)and (f)]; 150,120 21 == nn [(g),(h) and (i)]. The parameters in type V 

networks are 001.0,1,2.0,4,300 ===== εsTpKN  
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In order to do so, we slightly modify NW networks. The initial network is a 

K-nearest-neighbor coupled network consisting of N oscillators arranged in a ring, with each 

oscillator iX being adjacent to its K neighbor oscillators 2/1 , Kii XX ±± L , and with K being 

even. Then one adds with probability p a long-range connection between a pair of oscillators 

with indices satisfying { } 21 ,min njiNjin ≤−−−≤ , where 2/,0 21 Nnn <≤ are two 

positive integers. This kind of network is called type V networks. Based on type V networks, 

we adjust the coupling strengths by the DO mechanism. After the adaptation, we define the 

average coupling strength mW over the WK links having the same 

{ }jiNjim −−−≤ ,min . 

 

 

Frther, for the unweighted type V networks, the average load mL over the Lk  links having 

the same m is given by 

 

 

where the load ijL  of the link connecting oscillators iX  and jX  quantifies the traffic of 

the shortest paths passing that link. Here the size of type V networks is N=300 and the 

probability p=0.2. For different 1n  and 2n , we plot the relationship between mW  and m 

(Fig. 2.6 (a), (d), (g)), and the relationship between mL  and m (Fig. 2.6(b) (e), and (h)), 
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respectively. From these subfigures, we conclude that mW  has a similar dependence on m 

as mL , which is further verified by the relationship mm LW ≈ Fig. 2.6 (c), (f), (i). This 

implies that the adaptation due to the DO mechanism ay lead to a similar synchronizability as 

the load based weighted networks. This may in part explain why type V networks have a 

better synchronizability than type II networks n a certain range of the probability p for adding 

long range connections. 

2.4. Conclusion 

This chapter considers complete synchronization in small world networks of identical Rössler 

oscillators. Differing from the exiting dynamical mechanism, we apply a simple but effective 

DO mechanism to networks with undelayed or delayed couplings. We realize complete 

synchronization in networks, as well as ensure that all oscillators have uniform intensities 

during the transition to synchronization. The uniformity of the intensities is consistent with 

the necessary condition for the optimal synchronizability in the static mechanism. Further, we 

design a coupling matrix with much better synchronizability in a certain range of the 

probability p for adding long-range connections. 

The DO mechanism can also be applied to the phase synchronization in SWNs with 

non-identical oscillators. For example, we consider the phase synchronization in the 

Kuramoto model [Q. Ren, 2007, M. Chen, 2008, Y. Kuramoto, 1984, J. Acebron, 2005]. In 

this case, iiii wXFX == )(,θ , iw  are frequencies uniformly distributed in the interval 

],[ ΔΔ− , with  0>Δ , )sin(),( ijij XXH θθ −= for the undelayed couplings and 

]))(sin[,( ijij tXXH θτθ −−= for the delayed couplings, the error function 

),(1),( jirXX nji −=φ with 2/)(),( ),( ijn eeejir ji
n

ξθξθξψ += and 12 −=ξ  where 

1),(0 ≤≤ jirn measures the extent of the synchronization of oscillators i , j, and ),( jinΨ  

stands for an average phase. Hence ),( ji XXφ  are non-negative oscillators ji XX ,  are not 

synchronized, and 0),( =ji XXφ if oscillators ji XX ,  are synchronized. Of course, our 

mechanism can be applicable to the synchronization in networks with non-identical chaotic 

�oscillators such as Rössler oscillator provided that the term of “phase” in networks is 

well-defined [G. Osipov, 2007]. 
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Chapter 3 Response of scale-free networks with community 
structure to external stimuli 
3.1 Introduction 

Many natural systems are found, on one hand, to be able to react to small selected stimuli 

with large alterations, whereas, on the other hand, they can with stand large environmental 

variations (sometimes even unpredictable ones) with minimal changes or loss of functionality. 

This implies two complementary attributes of dynamical systems: sensitivity and robustness. 

Sensitivity implies the possibility of a large response to small stimuli and robustness implies 

the possibility of a small response to large stimuli. Not only biological systems but also 

several man-made complex systems, such as power grids or communication systems require 

this combination of traits to optimize the system's performance. Recently, the focus on 

understanding the interplay between dynamical behavior and their topologies has attracted a 

lot of interest [S. Boccaletti, 2006, T. C. Jarrett, 2006, J. A. Acebrn, 2007, E. A. Variano, 2004, 

C. Piccardi, 2008, A. Arenac, 2008, S. N. Dorogovtsev, 2008]. Recent research [B. Shargel, 

2003] shows that the observed network topologies which are often scale-free or scale-free like 

[A. L.Barabasi] are not necessarily optimal in their connectivity and connectivity-related 

attributes. Moreover, it is manifesting [B. R. Bollobas, 2003] that scale-free networks are 

fragile to intentional attack but resilient to random failures, in the face of node removal. We 

ask why so many networks found in nature have a scale-free (like) architecture with a lack of 

optimal network connectivity? In this paper, we study the properties which determine the 

efficiency of networks by analyzing the response of such systems to external perturbations. 

To describe a complex system, one can take the units of response as nodes and the interactions 

between them as edges and then generate a network model. It is well known that many 

complex networks exhibit not only short average distances, but also a high clustering 

coefficient, the ‘small-world’ property [D. J. Watts, 1998]. Moreover, several of them can be 

approximated well by a power-law degree distribution, γ−∝ kkP )( , the ‘scale-free’ property 

[A. L. Barabasi, 1999]. Many real-world networks exhibit not only the ‘small-world’ and 

‘scale-free’ property, but also have a community structure which is defined as collections of 

nodes within which the connections are dense, but between the communities the connections 

are sparse. Community structures [L. Danon, 2008, A. Arenas, 2004] are supposed to play an 

important role in many real networks. For example, communities in a citation network might 

represent related papers on a single topic [S. Redner, 1998]; communities on the web might 

represent pages on related topics [G. W. Flake, 2002]; communities in a biochemical network 

or neuronal system might correspond to special functional units [P. Holme,2003, O. Sporns, 
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2004]. Therefore, it is important to study the response of a scale-free network with 

community structure.  

In this chapter, we use the dynamical model presented by Bar-Yam and Epstein [Y. Bar-Yam, 

2004] to study the response of scale-free networks with community structure to external 

stimuli. Our investigation reveals that the community characteristic of the networks is crucial 

to enhance its robustness. Some of the response patterns are found to coincide with the 

topology communities. As an example of scale-free like networks with community structure, 

such phenomena also occur in mammal brain networks.  

This chapter is organized as follows: In Section 3.2, the model of the network is introduced. 

The dynamical attractor network model is presented in Section 3.3. Numerical simulations 

and a detailed analysis are presented in Section 3.4. In Section 3.5, we study the response of 

the cat brain network to stimuli as an example. Finally, our conclusions are given in Section 

3.6. 

3.2 The model of the network 

In order to create a scale-free network with community structure, we use a modified 

procedure of the algorithm proposed in [C. G. Li, 2005]. We assume that there are )2( >MM  

communities in the network. This model is defined by the following scheme:  

Step 1: Initialization: Start from a small number )1( 00 >mm  of fully connected nodes in 

each community. There are 0n  random links between every two communities.  

Step 2: Growth: At each time step, a new node is added to the network. We assume that the 

probability P(I) of which community I the new node is added to depends on the number of 

nodes in the communities In  , i.e.: 

 

 

The new node will be connected to )1( 0 ≥≥ mmm nodes inside the same community I 

through m intra-community links (defined as the links that connect nodes in the same 

community), and with probability α connected to )1( ≥≥ nmn nodes (none with 

probability α−1 ) to the other 1−M  communities through inter-community links (defined as 

the links that connect nodes among different communities). We assume that the probability 

),( IiP  that a new node will be connected to node i in community I which is selected before 

depends on the inner-degree iIS (define as the number of intra-links connected to node i) of 

that node, i.e.: 

∑
=

I
I

I

n
nIP )(
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We also assume that the probability ),( KjP that a new node will be 

connected to node i in community )1( ≠KK depends on the inter-degree jKl (defined as the 

number of inter-links connected to the node), i.e.: 

 

 

We call this network a community-scale-free (CSF) network (compare with scale-free 

network (SF)). It is shown in Fig. 3.1 that such a CSF network has also a power-law degree 

distribution  γ−∝ kkP )( . 

 

 

 

 

 

 

Fig. 3.1 The degree distribution of CSF. 3,1,1,6,5,1000 ====== γαmnMN  

3.3 The dynamic model 

To investigate the response of CSF networks, we choose a conventional multi-attractor 

network model; which describes a dynamical system. The node states Nisi ,2,1,1 L∈±= are 

binary. The states of the network system are then composed by the set of the node states is . 

The dynamical attractor system evolves as follows:  

))(()1(
1
∑
=

=+
N

j
jiji tsAsignts  

where NNijAA ×= )( is the connection matrix whose elements ijA  are positive if there is a 

link going from node i to node j with ji ≠ and zero otherwise ( 0=iiA ) (A is symmetric if 

the network has no weights and no directions). This model can also be interpreted as social 

opinion models of binary states, such as yes (+1) or no (-1). It is known [J. J. Hopfield, 1982] 

that there are multiple attractors generated by this model. Any attractor with a non-empty 

attracting basin is stable to perturbation and thus can represent a functional state of the 

system. 

External stimuli are modeled by flipping the signs of a specified set of nodes. When the states 
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of some nodes are changed, the system either evolves back to its initial state or switches to 

other attractors. The response of the network system is described as a process of switching 

between the attractors. The size of the basin of attraction, i.e., the number of nodes whose 

states can be changed before the dynamics of the network fails to bring the systems back to its 

original states, indicates the degree of stability of the system. The system is said to be 

sensitive to a certain disturbance if it changes its current state to another one, and vice versa. 

We calculate the size of the basin of attraction in different cases of stimuli to reveal the 

sensitivity and robustness of the network [L. K. Gallos, 2005, G. Bianconi, 2006]. 

 

 

 

 

 

 

Fig. 3.2 Size of the basin of attraction (fraction of total nodes, b) as a function of the average degree k ,* 

CSF network and random stimulus,  o SF network and random stimulus, •  CSF network and directed 

stimulus,  SF network and directed stimulus, mk = in SF, nmk α+= in CSF, 

4,1000 == MN . 

3.4 Numerical simulations and analysis 

We study the CSF networks mentioned in Section 3.2 and the Barabási-Albert model of SF 

networks. Without loss of generality, we can randomly choose two states to represent the 

functional states of the system. To ensure that these states are stable, we adopt the Hebbing 

imprinting rule ∑= α
αα
jiij ssJ  to construct the desired attractors. For sufficiently many links 

and for a broad range of network topologies, this form of non-zero links will make the 

pre-selecting functional states into stable attractors of the network dynamics [J. J. Hopfield, 

1982]. For the sake of convenience, we consider two attractors S1 and S2 

(S1=(+1,+1,……,+1), S2=(-1,-1,……,-1 )). as the stable states between which the system can 

switch. Initially, all the nodes are set to be in the state +1, that is, Nisi ,,2,1,1 L=+= . We 

suppose, at some time t, such environment changes or new information arises, which induce 

the states of some nodes being selected to flip to the opposite state sk riS
i

,,2,1,1 L=−= , 

where sr  is the number of the nodes whose states are flipped. Then after a period of transient 

time, the system evolves into a stable state which is either its original state or another attractor. 

To explore the changes of the system state, 100 simulations are performed for each different  
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Fig. 3.3 CSF networks: 4,1000 == mN . (a) The probability P that the system evolves into S1, S2 or 

other steady states under different disturbances sr : oall the nodes were in status +1, i.e. the system evolves 

back to its initial state. C some of the nodes were in status +1, others were in status - �1;  all the nodes were 

in status -1, i.e. all the nodes were influenced. (b) The average number of influenced nodes B in the 

long-time behavior for different sr . 

 

 

 

 

 

 

Fig. 3.4 Connection matrix A of the CSF network, 0:,1: ==• ijij AblankA . The parameters of the CSF 

network 1,6,4,100 ==== nMMN . 

average degree. We find (Fig. 3.2) that for the two basic types of stimuli: direct stimuli 

(changes are made to the most highly connected nodes, the hubs) and random stimuli 

(changes are made to randomly chosen nodes), CSF networks are more robust than SF 

networks. Therefore, the community structure enhances the robustness of the networks. In 

order to see how the community structure influences the robustness of the network, we 

randomly chose a CSF network to investigate the probability P that the system evolves into S1, 

S2 or other steady states under different random disturbances. 

It is shown in Fig. 3.3 that the CSF network maintains the original states under a small 

perturbation, which illustrates its robustness to some extent, until the strength of perturbation 

(numbers of flips sr ) exceeds a critical value. For intermediate stimuli, the system converges 

to mixed steady states in which some node states are +1 but the others are -1. By increasing 

the stimuli continuously, all of the nodes are influenced and the system evolves into an all -1 
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Fig. 3.5 The pattern of R with different initial conditions: 0:,1,,1: ==•−= ijijij RblankRRo , The 

parameters of the CSF network 48,1,1,6,4,100 ====== srnmMN α  

state (S2), which is an extreme response. It should be noted that there are two phase transition 

points in the process of response. The first one corresponds to the transition of the system 

from a normal state to partial destruction. The second one corresponds to the transition from 

partial destruction to complete destruction. 

It is interesting to ask: why is the response of a CSF network different from a SF network 

without modular structure, though the degree distribution of the CSF is also scale-free? In the 

following, we explore the response patterns for sr  in the intermediate region i.e. in the 

region between both phase transitions. We randomly choose some nodes to be flipped and 

identify whose states are changed in the network as the system evolves into a steady state, 

which illustrates the response to stimuli. To describe the response patterns, a new variable is 

defined as follows: 

 

 

 

R indicates which part of the network was influenced. In order to see the patterns clearly, we 

use a small size network here as an example. The connection matrix is shown in the Fig. 3.4. 
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We have also found similar results in much larger CSF networks and smaller networks. It is 

shown in Fig. 3.5 that for certain sr  in the intermediate region; some patterns of R appear 

with large probability, which almost correspond to the topological communities. Clearly, the 

community structure plays a crucial role in response to the stimuli. When some segments of 

the network are destroyed, the community structure can prevent the damage from spreading to 

other segments. A similar impact of clustering has been also found in Ref. [M. Kaiser, 2007]. 

This phenomenon can be explained by the underlying structure of communities which has a 

high density of connections inside the communities and sparse connections with the outside 

nodes. Therefore, those nodes which connect two communities can hardly be affected by the 

negative nodes with respect to our majority opinion-like model. In this sense, the network 

structure coincides well with the dynamical pattern. By detecting some special patterns 

appearing with high probability, our results are expected to provide a new approach for 

community detection. 

3.5 Response of cat brain networks to stimuli 

As an example, the response of cat brain networks to stimuli is analyzed here. The cerebral 

cortex of a cat can be percolated into 53 areas, linked by about 830 fibers of different 

densities into a weighted complex network as shown in Fig. 3.6 [C. S. Zhou, 2006]. This 

network displays a heterogeneous structure, where some nodes have only 2 links while others 

have up to 35 connections. It is clear that the size of the network is too small to claim that the 

degree distribution is scale-free. Nevertheless, the distribution is very close to that of 

networks of the same size and density generated by scale-free models. Moreover, the cortical 

network of cats exhibits a hierarchically clustered organization. There exists a small number 

of topological clusters that broadly agree with four functional cortical sub-divisions: visual 

cortex (V,16 areas), auditory (A, 7(SM,16 areas) and fronto-limbic (FL,14 areas). In addition, 

this network also displays typical small-world properties, i.e. short average path length and 

high clustering coefficient [O. Sporns, 2004, C. C. Hilgetag, 2000, 2004, E. D. Bullmore, 

2009]. 

We perform simulations on this network by applying the same dynamics as in our CSF model 

(Section 3.3). The responsively under different external perturbations can be found in Fig. 3.7 

and Fig. 3.8, which is similar to the case of our network model. It can provide insights into the 

relationship between network topology and functional organization of the cat brain networks 

from another viewpoint [L. Zemanova, 2006]. Furthermore, we make the stimuli acting on 

large-intensity nodes or on small-intensity nodes (directed stimuli) other than random stimuli 

and then see the response pattern of the network. We define the intensity ic  of node i as  
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Fig. 3.6 Connection matrix A of the cortical network of cat brain. The different symbols represent different 

connection weights: 1 (o sparse), 2 (. intermediate), 3 (* dense). 

 

 

 

 

 

 

Fig. 3.7 Cat brain network (a) probability P that the system evolves into S1, S2 or other steady states under 

different disturbances sr : o: all the nodes were in status +1, i.e. the system evolves back to its initial states. 

+: some of the nodes were in status +1, others were in status -1, ·:all the nodes were in status -1, i.e. all 

the nodes were influence. (b) The average number of influenced nodes B in the long-time behavior for 

different sr  

follows: ∑
≠=

=
N

ijj
iji Ac

,1
 

In particular, for unweighted networks, the intensity of a node is the degree of this node. It is 

known that scale-free networks are more robust to random attacks, while more sensitive to 

directed disturbance to the large-degree nodes. As shown in Fig. 3.8, the brain network can be 

partially disturbed when 30 > sr  > 16 directed stimuli are acting on small-degree nodes 

(shown in Fig. 3.9(b)). On the other hand, the system can be entirely disturbed when sr  > 24 

for large-node perturbation (shown in Fig. 3.9(a)). It is manifest that the robustness for 

directed stimuli acting on large-degree nodes is stronger case for directed stimuli on 

small-degree nodes. This enhanced robustness is also better than the case for random stimuli, 

which is different from the result in Refs. [Y. Bar-Yam, 2004, S. J. Wang, 2007] for scale-free 

networks.  
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Compared with the robustness of the classical scale-free network model, a complex brain 

network is likely to be more robust for direct stimuli. It should be noted that the brain network 

displays not only heterogeneity on the degree distribution but also hierarchical clustering 

characteristic. These special properties may play an important role in the response to stimuli. 

However, more evidence should be presented in future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Cat brain networks. The pattern of R with different initial conditions:  

 

 

 

 

 

 

 

Fig. 3.9 The number of nodes (B) whose states are changed in long-time behavior for different 

stimuli. (a) the responses for directed stimuli acting on large-degree nodes, (b) The responses 

for directed stimuli acting on small-degree nodes. 
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3.6 Conclusion 

In this letter, we investigate the relationship between dynamics of complex networks and their 

topology properties by studying the response of the whole system. An adaptive system should 

be robust for large stimuli, which makes the system stable. Additionally, it also should be 

sensitive for small stimuli, which makes the system react rapidly on the new external changes. 

According to the analysis of the response of scale-free networks with community structure, 

we find that the hierarchical characteristic of the networks enhances their robustness to 

external stimuli. Switching patterns are found to coincide with the topology communities. We 

verify our results in a real-world -cat brain network which has similar topological properties 

as our model. We show that the robustness for directed stimuli acting on large-degree nodes is 

better than in the case of directed stimuli on small-degree nodes, which is different from the 

response in the scale-free networks. Our results provide new insights into the relationship 

between network topology and the functional organization of the cat brain networks from 

another viewpoint. 
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Chapter 4 Modelling the human communication dynamics 
4.1 Introduction 

Humans participate in various activities every day in an apparently random manner. By 

assuming that human actions are Poisson processes [F. A. height, 1967, Reynolds, 2003] in 

which independent events occur at a constant rate λ  and the inter-event time τ  between 

two consecutive actions of an individual follows an exponential distribution λτλτ −= eP )( , 

one could perform a quantitative analysis of collective social activities as diverse as disease 

spreading, emergency response, resource allocation, in particular phone line availability and 

bandwidth allocation in the case of Internet or Web use.  

The recent proposal that human activities are somewhat generically non-Poissonian with 

power-law waiting times or inter-event times  γττ −∝)(P  due to various possible 

mechanisms [A. L. Barabasi, 2005, J. G. Olivera, 2005, A. Vazquez, 2005, 2006, J. P. 

Eckmann, 2004, J. Candia, 2007, A. Gabrielli, 2007, R. D. Malmgen, 2008, 2009, X. P. Han, 

2008] should significantly change the quantitative understanding of collective social 

dynamics, especially when taking into account the complex network structure in social 

interactions [M. E. J. newman, 2003, D. Rybski, 2009], if those observed non-Poisson 

activities are solely the behaviour of individual agents. While the power-law waiting time has 

been regarded as the result of the priority-queuing mechanism of decision-making in 

individuals [A. L. Barabasi, 2005, J. G. Olivera, 2005, A. Vazquez, 2005, 2006, J. P. 

Eckmann, 2004, J. Candia, 2007], the inter-event time of a certain type of activity of an 

individual, such as the interval between sending two consecutive emails, is influenced by the 

actions of this agent and the other communication partners.   

We can distinguish at least two types of communications: (1) initiation by the individual and 

(2) response to other interacting individuals. Therefore, to distinguish, when possible, what 

are the properties of separated individuals and what are the consequences of the interactions 

among individuals, is of paramount importance to elucidate the challenging problem of 

mutual interplay between individual and collective human dynamics.  In particular, are there 

Poisson processes at all in individual activity, and how do they express themselves when 

interacting with the decision-making mechanism of individuals and the interaction among 

individuals? Unfortunately, previously examined data often do not allow us to evaluate 

precisely both the waiting times and the inter-event times, and a detailed analysis of the 

relationship between individual and collective human activities is still lacking apart of some 

simple models of coupled priority queues [J. G. Oliveita, 2009, B. Min, 2009].   
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Here we address this important problem from both data analysis and modelling. The system 

we consider is Short Messages (SMs) correspondence; one of the most frequently used 

communication systems in modern society. Usually, people can only send emails when sitting 

before the computer. On the contrary, people can send and receive SMs almost anytime and 

anywhere. The time required to composite a short message is usually much shorter than Email, 

making it quite possible to get promotes response. But it is also flexible that a short message 

can be totally ignored without response or can be put into the waiting list as a task with lower 

priority. These features imply a nontrivial interplay between the activity of single individuals 

and the interaction with the network neighbours in SMs communication. The system thus 

provides a very attractive proxy for studying the interaction of human activity.  

Here we present clear empirical evidence from Short Messages (SM) correspondence that 

observed human actions are the result of interplay of three basic ingredients: Poisson 

initiation of tasks and decision-making for task execution in individual human and the 

interaction among individuals. This interplay leads to new types of inter-event time 

distribution, neither completely Poisson nor power-law, but a bimodal combination of them. 

We introduce a minimal model of two interacting priority-queues incorporating the three 

basic ingredients which fits well the distributions using the parameters extracted from 

empirical data. The model can also embrace a range of realistic social interacting systems 

such as email and letter communications when taking the time scale of processing into 

account. Our findings provide insight into various human activities both at the individual and 

network level.   

4.2 Empirical result 

4.2.1 Data description 

The data investigated in this work was obtained from a mobile phone operator. It contains 

three charging accountant bills from three companies over one month period. Each record 

comprises a sender mobile phone number, a recipient mobile phone number and a time stamp 

with a precision of one second. The detailed information about the data is listed in Table 4.1. 

Table 4.1. Information of the data sets.  

Name of the 

company 

The total number of 

the records 

The number of the 

users 

the number of the 

active users* 

A 548,182 44,430 9,567 

B 643,502 72,146 12,162 

C 398,185 31,096 7,727 

*Who sends more than 5 SMs and receives more than 5 SMs is a active user 
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For the purpose of retaining customer’s anonymity, each subscription is identified by a 

surrogate key such that it is not possible to recover the actual phone numbers from it. There is 

no other information available for identifying or locating customers; this guarantees that their 

privacy is respected.  

The inter-event time in our analysis is the time interval between sending two consecutive 

messages. For active users with at least several messages per day, the longest waiting time 

during a day is limited to 5-6 hours, on average shorter than the time interval between the last 

message of one day and the first message of the next day (8-9 hours). We thus exclude the 

time intervals crossing two days from the analysis, which have negligible effects on our 

results. Note that such time intervals associated to sleep break may not be so neatly separated 

for inactive users, and for many other human activity occurring at slower scales. 

4.2.2 Bimodal distribution 

While the degree, the number of partners of a user can be quite heterogeneous in SMs 

networks [Y. Wu, 2007], we have found that many users mainly have heavy communication 

with just one of their friends (see Fig. 4.1); thus in this work we will mainly focus on such 

pairs of users, with a typical one shown in Fig. 4.2. At a first glance, the burst-silence patterns 

in individuals (Fig. 4.2(a)) are similar to many other human activities [A. L. Barabasi, 2005, J. 

G. Olivera, 2005, A. Vazquez, 2005, 2006, J. P. Eckmann, 2004, J. Candia, 2007, A. Gabrielli, 

2007, R. D. Malmgen, 2008, 2009, X. P. Han, 2008]. However, the distributions )(τP  of the 

 

 

 

 

 

 

 

 

Fig. 4.1 Intensity of communication of the users is highly heterogeneous among their network neighbors.  
(a)-(c) The distribution of max

iW  in each company. (d) The ratio of active users who send more than 90% 
SMs to only one friend in each company. 
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inter-event  time τ , the interval between sending two consecutive messages, are bimodal 

rather than power-law (Fig. 4.2(c,d)):  they are  power-law in the range of 2-20 minutes, 

followed by an exponential tail extending to 5-6 hours, which can be well described as: 

 

                                             (1) 

In this bimodal distribution, the exponential tail is connected to the power-law with a hump 

well above the straight line extrapolation of the power-law. This feature is significantly 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Typical patterns of SMs activity of a pair of users. The users send more than 95% of the messages 
to each other. (a) Succession of events by user A (blue) and B (red). The horizontal axis denotes time (in 1 
second) and each vertical line corresponds to an event of sending a short message. (b) An enlargement of a 
short period  where the events of A (blue) and B (red) are put together, showing clearly a sending-response 
pattern by the alternating blue and red colours. The interval between two consecutive lines with the same 
colour is the inter-event time τ  and that between two consecutive lines with different colours is the  
waiting time wτ .  (c) and (d) are the distributions )(τP  of the inter-event times τ for the users A and 
B, respectively. )(τP is binned in the log-log scale.  The upper inset displays the corresponding 
accumulative distribution )(τF . The vertical dotted line indicates 7800 =τ , which is determined in the SI 
to separate the event sequence into independent bursts. The lower inset shows the exponential tails of  

)(τP  in the linear-log plot. The straight lines are the power law and exponential fitting functions, which 
are correspondingly shown by the red line and red curve in the upper inset. The exponents are: 

410)02.078.3(,01.079.1 −×±=±= AA βγ and 410)03.090.3(,05.093.1 −×±=±= BB βγ  (e) 
and (f) as (c)  and (d), but for  the distributions )( wP τ  of the waiting times wτ . The exponents are 

410)04.034.4(,01.012.2 −×±=±= wAwA βγ , 410)03.063.3(,02.090.1 −×±=±= wBwB βγ .  
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different from the usually truncated power-law with the form βτγτ −− e  , where the exponential 

tail is below the straight line of the power-law and is often considered as finite size effects [A. 

Vazquez, 2006]. Note that in a recent report of SM statistics [W. Hong, 2009], the 

distributions have been regarded as power-law for the tails also, without paying special 

attention to the humps and the underlying mechanisms.  

We can see that the burst-silence patterns of the two users appear to be synchronized (Fig. 

4.2(a)).  A clear sending-response pattern is observed by alternating colours when we join 

the events of both users (Fig. 4.2(b)), and we obtain the waiting time wτ  between two 

consecutive events with different colours. Similar to the inter-event time τ , the distributions 

)( wP τ  also display pronounced bimodal features (Fig. 4.2(e,f)), in contrast to the prediction of  

power-law tails from the priority-queuing mechanism [A. L. barabasi, 2003, A. Vaquez, 

2006].  

The bimodal feature of the distribution is found to be general, including those users with 

many active partners. The exponents wγγ ,  and wββ,   differ from user to user (see Fig. 4.3).  

These results are significantly different from previous observations of power-law heavy tails 

in other human dynamics, such as e-mails. The clearly distinguished distributions at small and 

large intervals imply that there are different processes underlying the observed patterns. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 The histogram of the exponents. (a) γ , (b) β , (c) wγ  and (d) wβ  for 36 most active users 
having the total number of messages 800≥N , considered for good statistics.  
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Fig.4.2(b) shows that a burst is initiated by one of the users, which is then followed by 

frequent mutual communications.  SMs or emails suggests that quite likely the initiation of 

communication over a topic could require a few dense mutual responses. The pronounced 

exponential tails in the distributions imply that the initiation of communication of the two 

users could be regarded as independent Poisson processes, which is consistent with the 

intuition of initiating relatively independent topics of communications in a random manner. 

4.3 Our model 

4.3.1 Model description 

The model we proposed here differs significantly from previous models of interacting queues. 

When considering two users as motivated by the empirical observation, it is a minimal model 

that incorporates the basic ingredients we observed in the data. In the following we present 

more detailed information and analysis of the model. The model consists of two main parts: 

(i) Priority-queue of tasks of individuals. 

Consider two individuals A and B, each with a priority list of L tasks. The L tasks correspond 

to different activity, ranging from sending SMs, shopping, sending emails to attending 

meetings, etc. A short message task, in particular, sending a message, is marked as I-task, 

while the others are denoted as O-tasks. At each processing step, i.e. every pt seconds (1 

second is the sampling precision in our SMs data and in many previous data of email 

communications), a task is executed and removed from the list, and a new task is added. As 

we will discuss later on, the introduction of the processing time pt  is very important because 

(1) it is obviously not realistic to consider the sampling time of 1 second as the time of actions, 

as has been done in previous analysis of email communications [A. Vazquez, 2006]; (2) 

without introducing pt  the model cannot fit to the data while using all the other parameters 

from the data; and (3) the introduction of pt  enables us to explain the observation of 

power-law inter-event time in email communications. Of course, in reality the processing time 

is different for different types of tasks and fluctuates for tasks of the same type, but for 

simplicity we assume that it is the same for different tasks. We have also simulated the model 

with a random distribution of pt  and obtain very similar fitting to the data.           

The tasks on the list compete with each other for the agent's time and attention. Each task is 

assigned a priority x  chosen from a uniform distribution )1,0(∈x . The probability to 

choose a task for execution is a function of the priority x  i.e., ∏ ∝ αxx)( , where the 

parameter α  can be used to indicate different habits of individuals in the execution of tasks. 

This part of the model is the same as the standard model proposed in [A. L. Barabasi, 2005].  

To account for random initiation of communication observed in the data, the I-tasks are added 
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to the list with a probability pp tλλ =  at each processing step. λ  is the rate of initiating an 

I-task in the sampling time unit of 1 second, as obtained from the data.  I-tasks can also be 

added to the list of one individual as a result of the communication from the other individual, 

which will be discussed in more detail in the following.  

(ii) The interaction between individuals. 

An interaction occurs when A or B (or both) selects an I-task in the list. For example, when A 

selects an I-task, A sends a short message to B. B then decides whether to reply a SM to A or 

not. According to our experience, SMs are mostly replied, but not always, which is consistent 

with the high response rates BAP ,  which would be obtained from the data later on. We assume 

that each received message is replied with the probabilities BA PP , for the two users A and B, 

respectively. If B decides to reply, an I- task with random priority x  is added to the task list 

of B to wait for execution according to the priority-dependent selection scheme in (i). When 

the I-task is executed by B, it is A's turn to decide whether to reply, with the probability AP . 

Depending on the product BAPP , there are a number of consecutive mutual communications 

until someone decides not to reply, governing the number of messages sent by a user during a 

burst of communication. The same procedure happens if B initiates the communication. If A 

and B execute the I-task at the same time, one task is randomly ignored. But this happens with 

only a very small probability. The priority-queue in our model is substantially different from 

previous priority-queuing models [1] mainly by introducing a processing time pt , by 

distinguishing the interacting I-task from the other tasks, and by adding the I-tasks with a 

small probability λ . The interaction between the individuals in our model is also different 

from previous models [J. G. Oliveita, 2009, B. Min, 2009], where the interaction follows the 

AND-protocol (both individuals select the I-tasks) or the OR-protocol (one individual selects 

the I-task and the other is forced to execute the I-task). In both protocols, the I-tasks are 

executed simultaneously by the two individuals, and a new I-task is added to each list 

immediately after the interaction.  The interaction in our model shows some similarity to the 

OR-protocal, but the receiver may choose not to reply at all, or put the message in the 

priority-queue list to reply later. These new features will generate different inter-event time 

patterns compared to previous models, which can provide a rather comprehensive 

understanding of SMs and other types of interacting human activity. 

There are three important parameters in our model, ,, iiP λ  and iα . iP  is the probability that 

a passivity I-task is added to the list of an agent when the other agent executes an I-task, iλ  

is the rate of adding initiative I-tasks and iα  controls the probability ∏ ∝ αxx)(  to select 

a task for execution according to the priority x . 
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4.3.2 Estimating important parameters from data 

The most important concept in our work, as suggested by the bimodal distribution of the 

inter-event time, is to associate the power-law distribution at small intervals and the 

exponential distribution at large intervals to different communication modes, one is correlated, 

passive and frequent sending-response in the bursts and the other one is random initiation of 

the bursts. Without relying on the contents of the communications, we are able to separate 

events into independent bursts and estimate important parameters from the data, in particular, 

the probability of response and rates of random initiation of bursts for the two users 

( BAiP ii ,,, =λ ), which can be used in our model simulations. Here we present the detailed 

methods of burst separation and parameter estimation. 

1) The parameter BA PP ,  

A straightforward method to separate the bursts is to consider a crossover time 0τ . The mutual 

communications between the two users A and B become very evident by alternating red and 

blue colors when we join the events of the two users together (Fig.4.2(b)). With such a joint 

sequence of events from the two users, we can take two events (regardless of the color) with 

an interval larger than 0τ  as the ending of one burst and the beginning of another one, so that 

the whole sequence is broken into bursts with various sizes. At first place, we take some 

values of 0τ  around the crossover point from the power-law to exponential distribution in 

Fig. 4.2(c,d) (e.g. 900~6000 =τ ), and we do not worry about the exact value of 0τ , because 

later on a more accurate 0τ  will be determined with the additional requirement that the 

separated bursts are best approximated as random processes (see next section). Important here 

is that we obtain a reliable and consistent estimation of the response rates BA PP ,  using a 

range of 0τ . After we separate the bursts using certain 0τ , we can divide them into two groups: 

one is initiated by user A and the other by B, by examining whether the first message (called 

initiative message) of the burst is blue or red. For each group, we can get the number of bursts 

where the i-th message in the burst is sent by A or by B, and denote them with bars of blue 

and red colors (Fig. 4.4 (a,b) for the two groups, respectively). From Fig.4.4 (a), it is clearly 

seen that after the initial message from A to B (the first blue bar), the next SMs are almost the 

response of B to A (red), and then the response of A to B, etc. There are a few mutual 

communications after the initial message. We can estimate the ratio of response for the two 

users from the two groups: )()()( 1 rednblueniP ii
BA

A +
→ =  and 

)()()( 1 bluenredniP ii
BA

B +
→ = from Fig. 4.4(a), and likewise )()()( 1 bluenredniP ii

BA
A +
→ =  

and )()()( 1 bluenredniP ii
AB

B +
→ =  from Fig. 4.4(b). Here the superscripts BA →  and 

AB →  denote the two groups of bursts initiated by A and B, respectively. 
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Fig. 4.4 Separation of bursts and estimation of parameters from data. (a) and (b) Communication patterns 
within the separated bursts (obtained at certain 0τ ) that are initiated by user A and B, respectively. The 
index i denotes the position of the message in a burst, and the height of the bar ( in ) is the number of 
bursts having a message at position i by user A (blue) or user B (red). (c) The response probability of the 
two users estimated at position i. (d) The average response probability estimated at different 0τ . (e) 
Accumulative distributions of the interval λτ  between two consecutive initiative messages by the same 
user A and the interval δτ  between two consecutive bursts either initiated by A or response to the 
initiative message of B. Linear approximation of these plots in linear-log scale gives the rates AA δλ , , 
which decreases at larger 0τ . The plots are similar for user B (not shown). (f) Relative error )( 0τE  
displays a minimum where the initiations of bursts in the two users are best approximated by independent 
Poisson random processes. 

The average of the two groups,  2))()(()( ,,, iPiPiP AB
BA

BA
BABA

→→ += , is roughly independent of 

the position i of the message in the bursts (Fig. 4.4(c)), which means that when A (B) receive 

a SM from B(A), he/she responds with an almost constant probability. Further averaging over 

the positions i ( 103−=i ) improves the statistics and these averaged values are almost 

constant with respect to 0τ (Fig. 4.4(c)). This is because the pattern of communication in the 

middle of the bursts is rather independent of the definition of the bursts at different 0τ  which 

only affects the first and the last few positions of some bursts. We take the average in the 

range 9006000 −=τ  as the response probability BAP ,  of the two users, giving 

957.0,865.0 == BA PP  for the example presented here.  
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2) The parameter BA λλ ,  

After identifying the bursts with a given 0τ , we pay attention to the statistics of the bursts. We 

can easily distinguish whether a burst is initiated by user A or B by the color of the first 

message leading a burst, and compute the rates of initiation as BA λλ ,  (by definition, the 

number of initiations divided by time). At the meanwhile, we can sort the separated bursts 

into two groups ( BA GG , ) of a new type. The group AG  for user A includes the bursts initiated 

by user A (the first message is blue) and the responses to the initiative messages of B (the first 

message is blue and the second message red). And similarly we obtain BG  for user B and get 

the rates of such bursts as BA δδ ,  respectively. If the bursts were separated properly, we 

would expect that the initiation of communications by A and B are independent Poisson 

processes.  Neglecting the very small portion of messages that are not sent to each other, the 

number of bursts in the group AG  should include the number of initiations messages by A 

himself and the responses to those initiative messages by B with the probability AP . Thus the 

rates of the two independent processes are related as BAAABAAA PP λλλλλδ +≅−+= )1(  

( BAλλ <<1). Likewise, for the user B we have ABBB P λλδ +≅ .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Separation of the initiative and passivity messages with the most suitable 0τ . (a) Accumulative 
distributions )(τF for the interval between two consecutive bursts that are initiated by the same user  A 
(with rate )Aλ  and the interval between two consecutive bursts that can be either initiated by  A or the 
response to an initiative message of B (with rate )Aδ . These rates of the two users satisfy the relationships 

BAAA P λλδ +≅  and ABBB P λλδ +≅ , implying that the initiation of communications in the two users are 
independent Poisson processes. (b) The distribution of the size bn  of the separated bursts. The solid line is 
the exponential fitting bn

BAPP )( . (c,d) Distributions )( wP τ of the waiting time wτ  obtained only from 
the messages within the separated bursts, for the user A and B, respectively. The solid lines are the power 
law fitting with .01.089.1,01.005.2 ±=±= wBwA γγ  
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While the estimation of the response rates BAP ,  using the messages within the bursts is rather 

insensitive to the choice of 0τ , as discussed Section 4.3, the rates BABA ,, ,δλ  decrease when a 

larger 0τ  is employed. 

In our analysis, due to the small number of bursts in the data, the rates are not calculated 

directly by the number of bursts. Rather we examine the interval λτ  between two 

consecutive bursts initiated by the same user (related to BA,λ ) and the interval δτ  between 

two consecutive bursts that can be either initiated by the user or the responses to an initiative 

message of the other user (related to BA,δ ), and we obtained the accumulative distributions of 

these intervals λτ  and δτ , respectively (Fig.4.4(e), only user A is shown). The distributions 

display a linear dependence in the linear-log plots which support the hypothesis that the 

initiation of bursts can be well approximated by a random Poisson process. By fitting 

exponential functions to these distributions we can overcome strong finite size effects in the 

data and obtain more reliably the rates BABA ,, ,δλ . The assumption of independent Poisson 

processes in the two users is used as the criterion to select the most suitable 0τ . This means 

that the two relationships are best satisfied,    

 

                                                 4.1 

 

which corresponds to the minimum of the relative error function: 

 

( ) ( ))()(/)]()([)()]()([)()( 000000000 τδτδτλτλτδτλτλτδτ BAABBBBAAA PPE ++−++−= .    4.2 

 

For the pair of users considered here, we found that E is minimal at  

7800 =τ  (Fig. 4.4 (f)), and the corresponding rates are 
4444 10906.2,10708.2,10587.1,10490.1 −−−− ×=×=×=×= BABA δδλλ .   

With the bursts obtained using this optimal 0τ , we examine the distribution of the waiting time 

wτ for the two users (the interval between two consecutive lines with different colors in the 

bursts). As shown in Fig. 4.5(c,d), the waiting time displays power-law distribution. The 

interval between the last message of one burst and the first message of the next burst, if they 

have different colors, are not considered as waiting time, because in our framework of 

analysis, we regard the two bursts as independently initiated communications, although we 

cannot fully exclude the possibility that the next burst is indeed the response to the first one. If 

we take these long intervals into the distribution of the waiting time, we observe a pronounced 

bimodal feature as in distribution of inter-event times (Fig. 4.2(e,f)). The separation procedure 

proposed here is heuristic because the waiting times in the bursts and those relatively small 
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intervals of random initiation are unavoidably overlapping. The separation is meaningful 

when the crossover time is clearly smaller than the characteristic Poisson interval, βτ /10 << , 

which is the case for most of the active users in the data set, with clear bimodal distributions 

of the inter-event times. 

4.4 Fitting the model to the data 

We simulated the model using the parameters BABA PP ,,, λλ  extracted from the data by 

separating the events into independent bursts (see Sec. 4.3). For the parameters iα  used in 

priority-queues, we take )1/(1 −= wii γα , where wγ  is the exponent in the power-law 

distribution of the waiting time wτ  within the bursts in the data (Fig. 4.5(c,d)). This is based 

on the theoretical formula developed in [A. L. Barabasi, 2005] for this priority-queue model 

where it is predicted that αγ /11+=w . With these parameters, the model is simulated to 

generate the same number of events as in the data. We find that the distribution of the 

inter-event times from the model cannot fit to that of the data when 1=pt , but moves closer, 

when pt  increase and then deviates again. We monitor the quality of fitting by the relative 

difference E  between the accumulative distributions )(τMF  of the model and )(τDF  of 

the data, binned in the log-log scale with K  bins: 

 

                                (S3) 

 
E  has a minimum at 10~pt , where the model fit well the distributions of the inter-event 

and waiting times from the data  (Fig. 4.6). 

4.5 Analysis of the model 

4.5.1 The effect of the parameters 

In the following we present a more detailed analysis of the model in order to understand the 

bimodal inter-event distributions. An important ingredient in our model is the interaction 

between the individuals with response rates BAP , . Without loss of generality and for 

simplicity of discussion, we assume that the parameters of the two queues are the same, in 

particular, 1PPP BA == . We also take 1=pt  for the analysis in this subsection. The effect of 

1P  on the distribution of inter-event time τ  is shown in Fig. 4.7 when the other two 

parameters λ  and α  are fixed. At the extreme case 11 =P  the process happens as follows: 

A sends a message, B receives it and waits for a time wBτ  to reply to A, and then A receives 

it and waits for a time wAτ  to send back again. The time interval between sending two SMs 

by A (or B), i.e., the inter-event time, is wBwA τττ += . Here each of the priority-queue of A or 

B is the same as the original model [A. L. Barabasi, 2005] where the waiting time is a  
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Fig. 4.6 Fitting of the model to data. The model is simulated for various processing time pt , using all the 
other parameters obtained from the data, to generate  the same number of events as in the data. The 
relative difference E between the accumulative distributions )(τF  of the inter-event times τ  in the 
model and data, is obtained as a function of pt  (averaging over 10 realizations of independent model 
simulations) (insets of (a, b)). E  is minimal at 10=pt  for both users, yielding very accurate fitting of  

)(τF  (a,b), )(τP  (c, d) and )( wP τ  (insets of (c, d)), except for a few points with the minimal and 
maximal intervals  mainly due to finite size fluctuations. 

power-law wi
wiP γττ −∝)( . 

The distribution of τ  as a sum of the two queues is also a power-law, taking the form 
min)( γττ −=P , where minγ  is the smaller value of the exponents wAγ  and wBγ  in the queues 

A and B [5]. Here in our discussion, the parameters of the two queues are identical, so 

that γττ −∝)(P  ( αγγ /11+== w ). Since the I-tasks due to communication are created with a 

much higher probability than the Poisson rate λ , the inter-event time pattern will be 

dominated by the power-law, as seen clearly in Fig. 4.7. Note that the case of 11 =P  in our 

model corresponds to a model previously proposed to explain the power-law inter-event times 

in email communication from the power-law waiting times due to priority-queuing 

mechanism [A. Vazquez, 2006]. There it was assumed that email communication is the 

process that A sends an email to B as a response to an email B sent to A and vice versa in an 

endless manner [A. Vazquez, 2006]. This is in contrast with the intuition about email 

communication where we do have mutual responses, but do not reply every email (thus 11 <P ), 

and we also initiate independent communications in addition to passive responses. 
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Fig. 4.7 Effect of interaction on human activity patterns in the model. The cumulative 

distribution )(τF of the inter-event times obtained at various response rates 1P . The other 

parameters are fixed as .1,0.1,105.1 4 ==×= −
ptαλ  The inset shows the exponential tails in 

the linear-plot.  

It is important to emphasize that the activity patterns are very sensitive to 1P . As seen in Fig. 

4.7, when 1P  is only slightly smaller than 1.0 (e.g., 95.01 =P ), the distribution is no loner a 

complete power-law, but clearly bimodal with a pronounced exponential tail. This happens 

because frequent mutual communication will be terminated: the probability to get bursts of 

large size decreases exponentially (∏ ∝ bn
b Pn 2

1)( ). This means that the mechanism of 

mutual response as proposed in [A. Vazquez, 2006] cannot explain the power-law behavior in 

the email communication when 1P  is not exactly 1.0, and we need to seek an alternative, more 

natural explanation which allows generating a power-law distribution with 11 <P . This will be 

discussed in more detail soon.     

A value of 1P  close to but less than 1.0 is important for a pronounced bimodal distribution. 

The bursts have an average size )1/(1 2
1Pnb −= . Here a large number of SMs are replied, but 

they are put into the waiting list with a random priority x , and the inter-event time for these 

events follows a power-law distribution rP −∝ ττ )( . The cut-off of the power-law 

distribution by the finite event size bn  leads to a crossover waiting time 0τ , with the 

relationship bndP
p

/1)(
0

=∫
∞

τ
ττ , where pp t/00 ττ =  is the cut-off in the unit of processing step. 

Taking the power-law distribution γττ −∝)(P , we get  

.)1()( )1/(12
1

)1/(1
0

−−− −∝∝ γγτ Ptnt pbp                                            4.1 

Thus the crossover time 0τ  is on average larger if 1P  is closer to 1.0 because there will be 

larger number of SMs in a burst. As a result we observe a regime of power-law distribution of 

the inter-event time: there are many more short and intermediate intervals than we can expect 
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from the Poisson processes only. The bursts and the power-law regime will not be clearly 

observable when 1P  becomes smaller, since  )1/(1 2
1Pnb −=   becomes too small and the 

distribution is dominated by the exponential function, e.g., when 6.01 =P . 

As seen from the inset of Fig. 4.7, the inter-event time distributions display pronounced 

exponential tails when 1<<λ , with the exponent β  depending on the value of 11 <P . The 

exponential tails can be understood as follows: (1) The two users initiate communications 

independently with the rate λ , and respond to each other with the probability 1P . 

Consequently in the event sequence of an individual, we observe independent bursts either 

initiated by the individual or the response to the other with the rate λλδ 1P+= , and the 

interval between the first message of two consecutive bursts is δτ . In the inter-event 

distribution )(τP , the tail corresponds to long intervals between the last message of one burst 

and the first message of the next burst, bτττ
δ
−= , where bτ  is the total time spent in the 

first burst. The interval within the burst follows the power-law distribution, and 

0~)(0 τττττ
τ

∫= dPnbb . As a result, for those long intervals we have 
δ

ττ ≈ , corresponding 

to the exponential tails with the exponent λλδβ 1P+=≈  when 11 <P . 

4.5.2 From bimodal to truncated power-law distribution 

A pronounced bimodal distribution with clear power-law and exponential parts can be 

observed when the cut-off time βτ /11 0 <<<< , where β/1 is the characteristic interval of 

the Poisson process to initiate the bursts. The distribution will shift to a truncated power-law if 

the extrapolation of the power-law moves above the exponential tails, i.e., βτγτ −− > bea  for 

0ττ > , where banda  are the normalization constants. This happens when 
λββγτ /1~/1/))/(ln(0 ≈+> ab . This analysis shows that when the cutoff time 0τ  become 

comparable to the characteristic interval size λ/1  of the Poisson process of random 

initiation of communication, the bimodal distribution will move to a truncated power-law 

better described by the form βτγτ −− e . In email communication, such an exponential cut-off 

has been understood from the viewpoint of mathematics [A. Vazquez, 2006]: the scaling 
γττ −~)(P  cannot hold for infinitely long times because the resulting probability density 

cannot be normalized for 1≤γ . Therefore, a natural cut-off should emerge for large τ . In 

our framework, however, the power-law and the exponential distributions are explained by 

different processes, associated to interaction between individuals and random initiations of 

individuals, respectively. There is indeed a cut-off of the power-law, but it is resulted from the 

finite number of mutual communications within a burst due to the fact that the response rate 

11 <P . Clearly, these new interpretations provide a much deeper understanding of interacting 

human activity. 
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4.6 Discussion 

4.6.1 Extension to other human activity 

The three ingredients clearly identified from the empirical data of SMs communication, the 

task execution basing on the priority-queuing and random initiation of tasks of individuals 

and the interaction among individuals, are common in many other interacting human activities, 

including previously analyzed email and letter based communications. Therefore, our model 

should be able to explain some basic observations of these systems as well.  

Indeed, in the letter communication, the waiting time distributions without separating the 

initiative and passivity messages do show clear bimodal features with humps in the 

exponential tails (e.g., see Fig. 4 (a,b) in [A. Vazquez, 2006], similar to but not as pronounced 

as that in SMs (Fig. 1(e,f)). In Ref. [A. Vazquez, 2006] it has been pointed out that the 

inter-event time distribution appears to be a power law, but not stationary, mainly due to 

non-stationary activity of letter communications over a long time span (over 70 years for 

Einstein and Darwin). When a shorter period of 10 years is examined, an exponential 

distribution is observed for the inter-event time. In our model, this could be understood by a 

relatively small response rate 1P  as intuitively expected for letter communication. For 

example, we will no longer observe pronounced long bursts if we take 7.01 =P  where the 

average size of the burst  2≈bn ; consequently, there will not be a clear regime of power-law 

distribution, and the inter-event time distribution will be best described as an exponential 

function.  

As for email communication, previous data show that the inter-event intervals extend to 
410~  seconds similar to SMs, but the inter-event distribution has been described as a 

power-law. While a close inspection of the distributions in the previously published results 

(e.g., Fig. 2(b) in Ref. [A. Vazquez, 2006]) does indicate the bimodal feature, it is not as 

pronounced as in SMs. Two assumptions used in the previous analysis of the email 

communication [A. Vazquez, 2006] are not realistic. (1) Email communication is the process 

that user A sends an email to B as a response to an email B sent to A and vice versa, so that all 

the messages are replied (i.e., 11 =P ) and (2) The sampling time of 1 second is taken as the 

time unit of the action. Clearly our model of interacting queues with 11 <P  provides a more 

natural and realistic description of email communication. In this case, if we take a small rate 
410~ −λ  corresponding to 410~  seconds of longest intervals in emails, the inter-event time 

distribution would display a very pronounced bimodal feature even though 1P  is rather close 

to 1.0 if the processing time is considered to be 1 second ( 1=pt ) (see Fig. 4.7). This happens 

because λτ /10 << . As discussed in Sec. 4.4, when 0τ  becomes larger and comparable to 
λ/1 , the bimodal distribution will shift to a power law. This can be achieved when pt  is 
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increased, as seen in Fig. 4.8. The distributions in Fig. 4.8(c) and (d) are very similar to 

previously reported email activities (e.g., Fig. 2(b) in Ref. [A. Vazquez, 2006] and Fig. 2(a) in 

Ref. [A. L. Barabasi, 2005]). No doubt, with additional tuning of the parameter α  in the 

priority queue to adjust the exponent γ , our model should be able to fit well the email 

communication as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Change of distribution of the inter-event time τ  with respect to pt . The other parameters are 
fixed as 0.1,105.1 4 =×= − αλ . 

4.6.2 Extension of our analysis and modelling 

Several variations of the model could be considered to describe realistic situations in more 

detail. Here we assume that whether a message will be replied by user B is independent of the 

priority Ax  of this task in the list of A. In reality, a more urgent message would get more 

attention and be responded with higher probability or priority. We could introduce a 

transmission/correlation of priority between the queues.  The two-user model can be easily 

extended to a network of users where the users can have different number of communication 

partners and response rate. The comparison of the network model to the activity patterns of 

users with several or many regular partners (users with max
iW  clearly smaller than 1, see Fig. 

4.2) will be carried out in the near future. The algorithm for the separation of the events into 

independent bursts will have to be developed for that case. We envisioned that we will be able 

to identify the bursts associated to different network neighbours.   
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4.7 Conclusion 

Our findings reveal that there is a generic Poisson process in individual human behaviour 

which is connected to the power-law like bursts through the interaction with the other 

individuals, resulting in the interplay between the cut-off time 0τ  and the characteristic 

Poisson interval β/1  which are generally influenced by the network topology and the 

processing time pt  in various human activities. This picture has significantly changed the 

current competing views of human activity, either following Poisson or power-law statistics. 

Our findings open a new perspective in understanding human behaviour both at the individual 

and network level which is of utmost importance in areas as diverse as rumour and disease 

spreading, resource allocation and emergency response, economics, etc [A. Vazquez, 2009, J. 

L. Iribarren, 2009, D. Rybski, 2009]. The method of separation of the bursts into independent 

bursts should be useful for the analysis of some other bimodal natural phenomena, such as the 

inter-event times in human dialogue [D. G. Xenikos, 2009] and earth-quakes [S. Hainzl, 2006, 

S. Touati, 2009].  
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Chapter 5 Human comment dynamics in on-line social systems 
5.1 Introduction 

Recently, understanding regularity in complex human dynamics has attracted more and more 

attention in various fields. The classical view has assumed that human activities are 

homogeneous Poisson processes [Haight, 1967]. Such processes have a well-known statistical 

property: the time interval between two consecutive events, called the inter-event timeτ , 

follows an exponential distribution, λτλτ −∝ eP )( . Recent evidences [A. L. Barabási 2005, J. 

G. Oliveira, 2005, A. Vázquez, 2006, U. Harder, 2006, J. P. Eckmann, 2004, J. Candia, 2007, 

R. D. Malmgen, 2008, W. Hong, 2009, X. P. Han, 2008, A. Vázquez, 2007a, A. Grabowski, 

2007, F. Z. Wang, 2009, D. Rybskia, 2009, A. Carbone,, 2007] from various deliberate human 

activity patterns, including email and letter communications, library usage, broker trades, web 

browsing, etc., have shown that various human activities are non-Poissonian, with bursts of 

frequent actions separated by long periods of inactivity, leading to power-law heavy tails in  

the distribution of the inter-event time γττ −∝)(P . These findings are very important in areas 

as diverse as disease spreading, resource allocation and emergency response, etc. Several 

mechanisms proposed to explain the origin of bursts and heavy tails are limited in 

applications. More evidences about non-Poissonian human dynamics are needed. And the 

general origin of the heavy tails is still far from being clearly understood. 

As an important part of modern life, human behavior on the internet also attracts more and 

more research interest. Dezsõ et al. found that the time interval between consecutive visits by 

the same user to the site http://www.origi.hu follows a power-law distribution [Dezsõ, 2006]. 

They also showed that the exponent characterizing the individual user's browsing patterns 

determines the power-law decay in a document's visitation. A. Chmiel [A. Chmiel, 2009] 

investigated flows of visitors migrating between different portal sub-pages. A model of portal 

surfing is developed where the browsing process corresponds to a self-attracting walk on 

weighted networks with a short memory. A. Grabowski [A. Grabowski, 2009] found that the 

distribution of human activity (e.g. the total number of books read or songs played in on-line 

social systems) has the form of a power-law. All these findings indicate that human behavior 

on the internet is typically non-Poissonian. It is very interesting and important to further study 

the scaling about the human dynamics on the internet. 

In this chapter, based on the data collected from 'tianya' which is one of the most popular 

on-line social systems in China, we show that the inter-event time between two consecutive 

comments on the same topic follows a power-law distribution. Meanwhile, the distribution of 

the number of comments in the same topic from different users also follows a power-law. This 
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means that there were some "hubs" in the topic who lead the direction of the public opinion. 

Furthermore, the power-law distribution of the inter-event time shows that there is no 

characteristic decay time on a topic. A topic may be ignored for a long time, and is revisited 

and intensively commented again sometimes. To obtain more insights into these observations 

of the human dynamics in on-line social systems, we propose a model basing on the attraction 

mechanism. Our findings may be helpful to distinguish different types of public opinions in 

the virtual society in the future. 

This chapter is organized as follows: In section 5.2, the original of the data and the detailed 

information about the data are introduced. The statistic results are presented in section 5.3. 

The model and numerical simulations are presented in section 5.4. Finally, our conclusions 

are given in section 5.5. 

5.2 Data description 

Our data were obtained from "tianya"(http://www.tianya.cn/), which is one of the most 

popular on-line social systems in China. Every user is assigned a different identity name (ID). 

An ID can build a topic, and the other IDs can comment on it. They can discuss different 

opinions and communicate in the topic. Until 2010/02/11, there were 33,296,350 IDs in 

"tianya", and there were about 200,000 IDs on average on-line at the same time. The topics 

and the public opinion in "tianya" reflect part of the public opinions in the real society in 

China. We randomly sample some topics which were commented more than 3,000 times as 

our dataset. The types of the topics are different, from public news to personal stories, 

indicates that our results are general for different topics. The format of the data is shown in 

Table 5.1. 

User (ID) Comment time Topic 

ID 1 2009/02/12, 12:10:01 Topic A 

ID 2 2009/02/12, 12:11:05 Topic A 

…… …… Topic A 

ID 3 2009/02/15, 10:10:03 Topic A 

ID 2 2009/02/12, 11:02:01 Topic A 

Table 5.1 The detailed format of one topic 
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5.3 Statistic results 

The inter-event time plays an important role in many human collective behaviors. For 

example, the power-law distribution of the inter-event time about sending two consecutive 

E-mails can advance the spreading of the computer virus [A. Vázquez, 2007b]. The 

non-Poissonian distribution of arriving rate has also impact on the classical queue theory. 

Here, we also focus on the inter-comment time on the same topic, i.e., the time interval 

between two consecutive comments on the same topic. Although the inter-comment time has 

some relationship with inter-visit time on a website [Dezsõ, 2006], it is obviously different 

from inter-visit time because comment behavior is only a very little part of the web visiting 

behavior. Human comment dynamics on the web can reflect how individuals comment with 

each other while human dynamics of visiting a website cannot. Four different topics were 

taken as examples. The detailed information about the topics is given in Table 5.2. Duration is 

the time interval between the topics creation and data collection. Total clicks, total comments 

and total number of IDs are counted during the whole duration. 

 A B C D 

Total clicks 792,429 618,885 223,961 524,512 

Total comments 5,549 9,822 5,757 7,186 

Total number of IDs 3,965 1,760 3,959 2,663 

Duration (s) 24,989,467 464,957 829,408 1,082,256 

Table 5.2 The detailed information about four randomly selected topics 

The distribution of the inter-comment time is shown in Fig. 5.1. It is clearly seen that all the 

distribution are power-law, although the topics differ by contents and popularity. The 

exponent varies for the different topics. These results show that the human comment process 

is non-Poissonian as the human dynamics of the letter and E-mail communication, web 

browsing, on-line movie watching and broker trades. The heavy tail of the distribution allows 

for long periods of inactivity that separate bursts of intensive activity. Here, it also means 

there is no characteristic decay time in the human comment dynamics. A topic can be revisited, 

reactivated and commented frequently after a very long time. For example, topic A was 

created 8 months ago and it is still often commented now. A large population would read the 

topic and their opinions may be influenced by it. 

There were thousands of IDs taking part in the discussion in one topic (Table 5.2). It is an 
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interesting question to ask: do they contribute to the topic equally or are there some "hub" IDs 

who are more important in the topic? In order to answer this question, we study the number of 

times in  an ID participates in a topic. The distributions are shown in Fig. 5.2.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 The inter-comment time distribution of four different topics. The red line is the fitting function. (a)  
Topic A, slope 01.030.1 ±=γ , (b) Topic B, slope 02.073.2 ±=γ , (c) Topic C, slope 

01.079.1 ±=γ , (d) Topic D, slope 02.00.2 ±=γ , 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 The distribution of frequency of different ID comments on a topic. The black line is the fitting 
function. (a) Topic A, slope 01.056.2 ±=γ , (b) Topic B, slope 02.024.2 ±=γ , (c) Topic C, slope 

02.078.2 ±=γ , (d) Topic D, slope 01.039.2 ±=γ . 
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It is evident that they are power-law α
ii nnP ∝)(  in all the four topics. The exponents are 

slightly different but all in the range 32 ≤≤ α . The power-law distributions mean that most of 

the users only comment once or very few times in a topic. But there are also some users who 

comment many times in a topic. We may call these types of users as audiences and actors, 

respectively. The actors play a crucial role in leading the direction of the public opinion 

formation of the topic followed by the audiences. This could be useful for some commercial 

applications. For example, the topic could be about some negative news of a company, which 

maybe created by its competitor and the "hubs" could belong to or depend on this competitor. 

In such a case, the guidance of the opinion by the hubs will be harmful for this company. 

5.4 Model and simulation 

We propose a model in order to get a better understanding of our empirical observations from 

section 5.3. Based on our intuitive experience on comment habit, we can see that the number 

of the comments grows one by one. After the topic was created by a user a, some other users b 

and c et al. will comment on it later on. Then a would respond to their comments. b and c  

may come back to respond to the response to their original comments, and the process 

continues. Comment behavior can be regarded as a kind of communication. Someone who 

comments a topic before would come back to read the response of others to his comment. And 

he would comment again with higher probability than other IDs. This discussion indicates that 

the more times we participate in a topic; the higher is the probability that we make comments 

again. So our model is defined by the following scheme: 

Step 1: Growing. A topic is created at 0=t . There is an ID commenting on the topic at each 

time step in the following time. In other words, the number of the comments increases one by 

one. This is a simplification of the real situation where the time needed to make a comment 

varies due to various lengths of the comments. 

Step 2: Comment habit. A new comment is created with probability P  by a new ID who has 

never commented in the topic in the past time and with probability P−1  by other old IDs. 

The old IDs do not contribute equally to the creation of a new comment. Rather, the 

probability that a new comment is created by ID i is a function of the topic attraction of this 

ID: ,  

 

 

where )(tAi  is the attraction of user i at time t reflected by the number of comments in  

made by the ID in the past, i.e., )()( 0 tnAtA ii += . Here 0A  represents the initial attraction, 

∏ ∑
=

)(
)()(
tA

tAi
i

i
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which is different for different topics. )(tni  is the number of comments user i wrote until t. 

Mathematically, the model is similar to growing networks in Ref. [S. N. Dorogovtsev, 2000] , 

where an existing node is selected to be connected to a new node with a probability depending 

on the degree ik  as 

. 

  

Basing on the analysis of the growing network in this work, we obtain that the distribution of 

)(tni  is a power-law α−∝ )()( ii nnP at a large enough time t and with the exponent 

)0(2 A+=α .  

To compare our model with data, let us take topic C in our data as an example. Here 78.2=cα , 

and we take 78.02)()0( =−= cA α  in the model simulation. There were 5,757 comments 

and totally 3,959 IDs made comments in topic C. As a result, there are 3,959 comments which 

are made by new IDs when they first join the topic. Thus, we can estimate 

that 687.05757/3959 ==P . We then simulate the model with )0(A  and P obtained in this 

way. The results are shown in Fig. 5.3(a).  The distribution of the simulation is indeed a 

power-law with the similar exponent as found from the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 The simulation result of the model. (a-b) The distribution of frequency of different ID commenting 
on a topic in the model, the slope of the dash line is the same as in correspondence Fig. 5.2(c), Parameter (a) 

687.0,78.0)0( == PA , (b) 35)0(,687.0,78.0)0( 1 === APA , (c-d) Inter-comment time 
distribution of the most activity ID. (c) Data, exponent of the line is 36.1=β , (d) Model, the slope of the 
dash line is the same as in Fig. 5.3 (c) 
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Comparing to the model to the empirical data in Fig. 5.2, we note that there are a few IDs 

with extremely large in  in the data. Basing on our experience with on-line comments, this 

could result from the fact that some users, for example, the author and his strong supporters, 

have different behavior in the topic. They comment the topic with higher probability than 

others. This could be accounted in the model with larger )0(A  for these users. We test this 

by assuming that there was a user whose 35)0( =A  which is much larger than others, so that 

most of the comments by the old users of the topic in the early stage are from this particular 

user. The result is shown in Fig. 5.3(b). We can see that indeed there is an ID whose in  is 

much larger than the others, as observed in the data. So the difference between the data and 

the power-law fitting can be account by different initial attraction of some special users. This 

type of users is the "hubs" who could deliberately try to lead the public opinion formation of 

the topic. They play an important role in the topic, in other words, they are "opinion leader". 

It is very hard to know exactly the time used for a comment because the size of the comments 

can be very different. Therefore the model cannot simulate the distribution of the inter-event 

time directly. But we can do it in another way. We assume one comment takes one time step, 

i.e. the number of the comments between two comments can be taken as the time interval 

between the two comments. In this way, we can study the inter-event time between two 

consecutive comments made by the same ID. For example, the time interval between Ith and 

Jth comment was IJ −=′τ . We analyze the most active user to have good statistics. 

Furthermore, it is important to understand his behavior as an ``opinion leader''. We find that 

his inter-event time distribution is also power-law, as shown in Fig. 5.3 (c). Meanwhile, the 

corresponding result of the model is shown in Fig. 5.3 (d). Strikingly, the result of the model 

fits well with the real data. It clearly implies that individual user's behavior is non-Poissonian. 

He/She may not take part in the discussion for a long time and may make comments in the 

topic frequently in a short time. From the analysis above, our model can well describe most 

important features in the human comment dynamics in the on-line social systems. 

5.5 Conclusion 

In this chapter, we present clearly new evidence that human comment behavior in on-line 

social systems, a different types of interacting human dynamics, is non-Poissonian. The 

inter-comment time follows a power-law distribution as many other human dynamics. A 

model based on the personal attraction was introduced to explain the human comment 

behavior. Numerical simulations of the model fit well with the empirical results. Our work 

would be useful to understand human comment behavior in realistic society, for example, 

human discussion behavior in a meeting, group communications in trunked mobile telephone 
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[D. G. Xenikos, 2009]. We expect that quantitative understanding of the human comment 

dynamics, when combined with additional content analysis, will open a new perspective on 

how to distinguish fraud public opinion from realistic opinion. 
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Chapter 6 Conclusion and outlook 
In the past decade, as a typical kind of dynamics in complex networks, synchronization, 

especially the ability of networks to become synchronized, has attracted a lot of interest in 

multidisciplinary fields. From now on, several schemes including both static and dynamical 

mechanism were proposed to enhance the synchronizability of networks. However, the 

synchronizability was still far from being optimal. In this thesis, first, I studied a dynamical 

optimization coupling scheme to realize complete synchronization in networks with 

undelayed or delayed couplings. Moreover, the coupling matrix obtained from our method has 

much better synchronizability in a certain range of the probability p for adding long range 

connections in NW small world models than that obtained from degree based or ZK method. 

Our method can also be applied to the phase synchronization in SWNs with nonidentical 

oscillators and other topologies. 

Second, scale-free networks with community structure are very common in nature. However, 

the response of scale-free networks with community structure to external stimuli is never been 

studied until now. By using the dynamical model present by Bar-Yam and Epstein [Y. 

Bar-Yam, 2004], we shown that the community characteristic of the networks is crucial to 

enhance their robustness. Some of the response patterns are found to coincide with the 

topology communities. As an example of scale-free like networks with community structure, 

such phenomena also occur in cat brain networks. 

Third, interacting human activities which would be a new type of nonlinear dynamics in 

complex networks were studied both by data and the model. By analyzing the Short Message 

charging accountant bills, we found a new type of human activity pattern. The inter-event 

time distribution follows a bimodal distribution which is different from exponential or 

power-law that was found before. We showed that the new type of human activity pattern is 

the result of interplay of three basic ingredients: Poisson initiation of tasks and 

decision-making for task in individual human as well as the interaction among individuals. 

We introduce a model which fits well the distributions using the parameters extracted from 

the empirical data. The model was general for it can also embrace email and letter 

communications when taking the time scale of processing into account. Our method is also 

useful for understanding bimodal phenomena in other complex systems. 

Fourth, human comment dynamics in on-line social systems, as new types of human 

dynamics, was studied both by data and the model. People who comments a topic before 

preferred to come back to read the response of others to his comment. This comment habit 

leads to power-law distribution of the number of times an ID participates in a topic. Basic on 

the personal attraction comment habit, a model was proposed to explain the complex 
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dynamics of human comment behavior. We expect that quantitative understanding of the 

human comment dynamics, when combined with additional content analysis, will open a new 

perspective on how to distinguish fraud public opinion from realistic opinion. 

From now on, human communication dynamics and human comment dynamics which were 

new types of nonlinear dynamics were analyzed and modeled in detailed. However, 

understanding human dynamics was only in the individual level or small network level until 

now. It is more important to understanding human dynamics in large networks level. The 

following problem will be interesting and important for me to consider in the future. 

1) Until now, the study of human correspondence dynamics is only studied based on one 

individual or a pair of users. The detailed correspondence interaction among human which is a 

kind of nodes of complex networks, however, are poorly study. Quantitative understanding of 

human correspondence dynamics on complex networks, especially human phone calls and 

short message dynamics, is very important for designing efficacy phone served systems. In 

the future, I will try to get more data from mobile phone operator to study human 

correspondence in the network level.  

2) The interactions of human activities are also important to study other human collective 

behavior, such as rumor spreading. The classic view of rumor spreading models assumes that 

human spread rumor to his/her friends randomly and independently. Indeed, some types of 

rumor spreading dynamics are correlated directly with human correspondence patterns. 

Meanwhile, human correspondence patterns are influenced by the rumor spreading, too. The 

interplay between the events and human behavior are very interesting and important to study. 

3) Interestingly, bimodal patterns seem to be quite universal in a wide range of complex 

systems, including human dialogue [D. G. Xenikos, 2009], trading [E. Scales, 2005] and 

financial activity [E. Scales, 2004] in social systems, tsunami [E. L. Geist, 2008], rainfall [T. 

M. Heneker, 2001], forest fries [J. Benavent-Coral, 2007], earthquakes [S. Haizl, 2006, S. 

Touati, 2009], in nature. However, a bimodal distribution is found and analyzed only in the 

earthquake systems very recently. The bimodal feature of other complex systems is still 

poorly found and understood.  

4) How to distinguish fraud public opinion from realistic opinion is not only from a scientific 

viewpoint, but also from a commercial application. The classic view only focuses on the 

contents. Moreover, combined with additional quantitative understanding of the human 

comment dynamics, it will open a new perspective. Besides the features of human comment 

dynamics, we study in Chapter 5, more properties of human comment dynamics are needed to 

understand, such as the detailed behavior of each user, the difference dynamics in different 

time periods. I expect that fraud public opinion could be distinguished from real opinion when 
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data mixing methods are used in the future. 

5) I expect not only fraud opinion, but also fraud click in the internet can be distinguished 

after quantitative understanding of the human dynamics. Distinguishing the fraud click in the 

internet has more applications. Fraud click is the most barriers in google Ads and other Ads as 

well as some on-line vote systems. 
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We introduce a modified dynamical optimization coupling scheme to enhance the synchronizability
in the scale-free networks as well as to keep uniform and converging intensities during the transi-
tion to synchronization. Further, the size of networks that can be synchronizable exceeds by several
orders of magnitude the size of unweighted networks. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3062864�

Works on synchronizability in networks with a given to-
pology can be divided into two classes according to the
coupling matrix. One class is the static mechanism, where
the coupling matrix remains fixed during the transition to
synchronization. This mechanism includes the degree and
load based weighted networks. The other class is the dy-
namical mechanism, where the coupling matrix evolves in
time by introducing adaptive strengths between con-
nected oscillators. The adaptation process can enhance
synchronization by modifying the coupling matrix, but
the resulting networks have nonuniform intensities even
for networks with homogeneous degrees. In this paper,
we introduce a modified dynamical optimization mecha-
nism to enhance the synchronizability in the scale-free
networks as well as to keep uniform and converging in-
tensities during the transition to synchronization. Fur-
ther, the size of networks that can be synchronizable ex-
ceeds by several orders of magnitude the size of
unweighted networks.

I. INTRODUCTION

In the past few years, the dynamics of complex networks
has been extensively investigated.1–4 As a typical dynamical
process on networks, synchronization, especially the ability
of networks to obtain synchronization �synchronizability�,
has attracted a lot of interest.5–22 Recent studies have re-
vealed that unweighted small-world and scale-free networks
are more synchronizable than unweighted regular
networks.5,6 But the assumption that local units are sym-
metrically coupled with undirected couplings does not match
the properties of real networks �such as unequal connection
weights and asymmetry of the couplings�.7,8 Recent efforts
have been focused on achieving efficient synchronization by
introducing connection weights and directionality into
networks.9–15,18–21

From Ref. 20, works on the synchronizability in net-
works with a given topology can be divided into two classes
according to the coupling matrix. One class is the static
mechanisms, where the coupling matrix is invariant.6,9–17 For
randomly enough unweighted and weighted networks, the
synchronizability is controlled by Smax /Smin, where Smax and

Smin are, respectively, the maximum and minimum of inten-
sity Si, which is defined by the sum of the coupling strengths
of oscillator i.14 For unweighted Barabási–Albert �BA�
networks,14 Smax /Smin=kmax /kmin�N1/2, where kmax and kmin

are the maximal and minimal degrees, respectively. Hence,
the synchronizability can be enhanced if intensities become
more homogeneous. From the degree based weighted
networks,11,13 one necessary condition for the optimal syn-
chronizability Ropt is that the intensities become uniform.

The other class is the dynamical mechanisms, where the
coupling matrix is variant by introducing adaptive strengths
into networks of identical oscillators18 and nonidentical
oscillators.19 The adaptation process can enhance the syn-
chronization by modifying the coupling matrix, but the re-
sulting networks have heterogeneous intensities due to het-
erogeneous degrees. For BA networks, after the adaptation,
the synchronizability is characterized by Smax /Smin�N�/2

with �=1−� and ��0.5.18 Inspired by the static
mechanisms,11,13 one necessary condition for the optimal
synchronizability is that intensities become uniform. How-
ever, even for networks with homogeneous degrees, the
mechanisms18,19 cannot ensure uniform intensities due to dif-
ferent initial conditions of oscillators.20 Therefore, a problem
naturally arises: By the dynamical mechanism, how can we
realize the synchronization in networks as well as ensure
uniform intensities during the transition to synchronization
and enhance the synchronizability, regardless of heteroge-
neous degrees and initial conditions of oscillators?

II. THE MODIFIED DYNAMICAL OPTIMIZATION
MECHANISM

Recently, we have already obtained some results on the
above problem. For different variants of the Kuramoto
model, we have proposed a dynamical gradient network
�DGN� approach to realize phase synchronization.21 It is
shown that all the oscillators have uniform intensities during
the transition to synchronization. However, the DGN ap-
proach is very special in two aspects. One is that it should
assign a scale potential to each oscillator within any time
interval, which depends on the extent of the local synchroni-
zation among itself and its neighbor oscillators. The other is
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that the adjustment of the respective link by the DGN ap-
proach is often mostly ineffective. Inspired by the DGN
approach,21 we have further introduced the original dynami-
cal optimization �DO� mechanism for small-world networks
�SWNs�.20 The main idea in the original DO mechanism is to
increase the coupling strength of only one incoming link of
oscillator i by a small value in different intervals with a fixed
length. It reflects the “winner-take-all” strategy, where the
incoming link to be adjusted is always chosen as a pair of
oscillators with the weakest synchronization. This means that
the original DO mechanism is more effective than the DGN
approach. We previously showed that the original DO
mechanism has much better synchronizability in SWNs.20

Unfortunately, there exists one main shortcoming in the
original DO mechanism.20 That is, the coupling strength be-
tween two connected oscillators is an increasing function of
time as well as the intensities are diverging to infinity. Basi-
cally, this means that full synchronization is trivially ob-
tained for some kinds of networks, such as any variant of the
Kuramoto model21 and networks of Rössler oscillators
coupled through full states. The above networks always con-
verge to a fully synchronized regime if the couplings �or
intensities� are sufficiently large. However, for some kinds of
networks such as networks of Rössler oscillators coupled
through partial states,22 the synchronization cannot be real-
ized if the couplings �or intensities� are largely enough. In
our recent work,20 we have to end the original DO mecha-
nism provided that the synchronization error is small enough.
If not, the couplings �or intensities� are so large that the
synchronization can be destroyed and the synchronization
error becomes large again. Obviously, it is reasonable to in-
troduce one dynamical mechanism with limited couplings �or
intensities� even if time increases to infinity. Here we modify
the original DO mechanism such that the intensities are con-
verging and the ultimate intensity can be adjusted.

We consider networks consisting of N coupled oscilla-
tors

ẋi = F�xi� + �
j�i,j=1

N

Gij�H�x j� − H�xi��, 1 � i � N , �1�

where xi is the state, F is the dynamics of individual oscil-
lator, H is the output function, and G= �Gij� is the coupling
matrix. Gij =AijWij, where A= �Aij� is the binary adjacency
matrix, Wij is the coupling strength of the incoming link �i , j�
pointing from oscillator j to oscillator i if they are connected,
Gii=−� j�Ki

AijWij, and Ki is the neighbor set of oscillator i.
In unweighted networks, Wij =1 is uniform for all the incom-
ing links.

In the original DO mechanism,20 we increase the cou-
pling strength of only one incoming link of oscillator i by a
small value, at the time step tn= t0+n�, where n�1 is the
positive integer, t0 is the transient time, and ��0 is the du-
ration time. This adaptation results from the competition be-
tween neighbor oscillators within the interval �tn−1 , tn�. For
oscillator i and one neighbor j�Ki, a total synchronization
difference, i.e., En�i , j�=�tn−1

tn ��xi ,x j�dt, within the interval
�tn−1 , tn� is evaluated, where � is a non-negative error func-
tion, and satisfies ��xi ,x j�=0 if oscillators i , j are synchro-

nized. For oscillator i, the incoming link with the weakest
synchronization, i.e., �i , jmax

n �, is the winner within the inter-
val �tn−1 , tn�, where the index jmax

n is decided by the optimi-
zation problem

jmax
n = arg

j�Ki

max En�i, j� . �2�

If several neighbors have the same synchronization differ-
ence, we choose only one randomly. In the original DO
mechanism, the coupling strength is adjusted dynamically
by20

Wijmax
n

n+1 = Wijmax
n

n + � ,

�3�
Wij

n+1 = Wij
n , j � jmax

n ,

where the incremental coupling ��0 is a small value, and
Wij

n is the coupling strength in the interval �tn−1 , tn�. Obvi-
ously, the intensities are diverging as time tends to infinity.

In order to ensure that the intensities converge to a lim-
ited value as time tends to infinity, we adjust the coupling
strength by

Wijmax
n

n+1 = Wijmax
n

n + 	n,

�4�
Wij

n+1 = Wij
n , j � jmax

n ,

where 	n�0 is the incremental coupling. Here we give some
basic rules for choosing the incremental coupling 	n, which
make the ultimate intensities be uniform and convergent. �i�
The incremental couplings 	n for all oscillators are identical
at the time step tn, which make the intensities Si be uniform
during the transition to synchronization. �ii� The incremental
coupling 	n is limited by the fixed constant �, which implies
that at the time step tn the incremental coupling 	n should not
be large. �iii� The incremental coupling 	n is a nonincreasing

function on the time step n, and the ultimate intensity S̄
=�i=1


 	i exists. This requirement means that after the time
step tn, the total intensity �i=1

n 	i is convergent and 	n ap-
proaches zero as the time step n tends to infinity. �iv� The

ultimate intensity S̄ can be adjusted. This is consistent with
realistic cases where the intensities �or couplings� for syn-
chronization are in a certain range �such as networks of
Rössler oscillators coupled through partial states�. We can
further discuss the relationship between network synchroni-
zation and network topology by adjusting the ultimate inten-

sity S̄.
Summing up the above analysis, the term �e−n/n0 is one

suitable choice of the incremental coupling 	n. Hence, we
choose 	n=�e−n/n0. We then adjust the coupling strength by

Wijmax
n

n+1 = Wijmax
n

n + �e−n/n0,

�5�
Wij

n+1 = Wij
n , j � jmax

n ,

where n0 is a suitable positive integer. Here we call this
mechanism �namely, Eqs. �2� and �5�� the modified DO
mechanism.

In this paper, the initial coupling strengths in networks
are assumed to be zero.23 Hence, the intensities are uniform
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at the time step tn, since the intensity of each oscillator in-
creases by the same amount �e−n/n0 at the time step tn. Fur-
ther, the intensity Si for oscillator i is bounded by the limit

S̄=limn→
Si, where

S̄ = �e−1/n0/�1 − e−1/n0� . �6�

We can adjust the ultimate intensity by the suitable param-
eter n0. For a fixed �, when n0 is larger �smaller�, the inten-

sity S̄ is larger �smaller�.

III. ENHANCED SYNCHRONIZABILITY
IN SCALE-FREE NETWORKS

We briefly review the stability of networks

ẋi = F�xi� + � �
j�i,j=1

N

Gij
0 �H�x j� − H�xi��, 1 � i � N , �7�

where � is the overall strength. For a generally asymmetric
matrix G0= �Gij

0 �, the variational equation on the synchro-
nous state �xi=s , ∀ i	 is u̇i= �DF�s�−��lDH�s��ui, where D
is the Jacobian operator, and �l is the complex eigenvalue of
the Laplacian matrix L �=−G0�, satisfying Re��1��Re��2�
� ¯ �Re��N�. The largest Lyapunov exponent �LLE�, i.e.,
�� ,��, of the master stability equation v̇= �DF�s�− ��
+ i��DH�s��v is a function of � and �, which is the master
stability function �MSF�.22 Let R be the region in the com-
plex plane where the MSF provides a negative LLE. The
synchronization condition is that the set ���l : �l�0	 is en-
tirely contained in R.22 Here we only consider the case
where the region R is bounded, which is shown by the
dashed line in Figs. 4�a� and 4�c�. A better synchronizability
is achieved if simultaneously the ratio Re��N� /Re��2� and
max
Im��l�
 are minimized.10,12

In this paper, we have two aims based on networks �1�
and �7�. One is to realize the synchronization in network �1�,
in which all the oscillators have uniform intensities during
the transition to synchronization. The other is to examine the
synchronizability in network �7� when the coupling matrix
G0 is assigned by the coupling matrix from the synchroniza-
tion in network �1�, during or after the adaptation. Our analy-
sis and simulation are based on BA networks.4 Initially, M
oscillators with labels i=1, . . . ,M are fully connected. At
every time step a new oscillator is introduced to be con-
nected to M existing oscillators. The probability that the new
oscillator is connected to oscillator i depends on degree ki,
i.e., �i=ki /� jkj. Here we choose Rössler networks to illus-
trate the effectiveness of our mechanism: xi= �xi ,yi ,zi�,
F�xi�= �−0.97yi−zi ,0.97xi+0.15yi ,zi�xi−8.5�+0.4�, H�xi�
= �xi ,0 ,0�, and ��xi ,x j�= 
xi−xj
+ 
yi−yj
+ 
zi−zj
. In order to
measure the synchronization, we define the average error as
E= �1 /N��i=1

N 
xi− x̄
, where x̄= �1 /N��i=1
N xi is the global

mean field.
In our simulations the initial conditions for oscillators

are randomly chosen from Rössler attractor �here, t0=0�. The

parameter n0 in Eq. �5� is n0=1200. Hence, the limit S̄ is
about 1.2 if the value �=0.001. From Fig. 1, the synchroni-
zation in network �1� is realized effectively. From Eqs. �2�
and �5�, all the oscillators have uniform intensities during the

transition to synchronization, regardless of heterogeneous
degrees and initial conditions. It is consistent with the nec-
essary condition for the optimal synchronizability in the
static mechanisms.11,13 But this is totally different from the
dynamical mechanisms.18,19 The average intensity S�k� over
oscillators with degree k increases as S�k��k� with
��0.5.18

During the transition to synchronization, the ratio
Re��N� /Re��2� in network �7� with G0=G decreases towards
the optimal synchronizability Ropt�3.8 �Fig. 2�. The value
Ropt is decided by the eigenratio of the Laplacian matrix
of G��0�, where G����= �Gij� ���� with Gij� ���
= �kikj�� /� j�Ki

�kikj�� and Gii����=−1.11 From Eqs. �2� and
�5�, the incoming link to be adjusted for each oscillator is
always chosen to be the pair of oscillators with the maximal
synchronization difference in the previous time interval,
which greatly decrease the ratio Re��N� /Re��2�. However,
there still exists the discrepancy between the ultimate value
of Re��N� /Re��2� and Ropt. Now we explain the reason for
the discrepancy. Due to the “winner-take-all” strategy inher-
ent in the DO mechanism, the coupling strengths Wij for
oscillator i are almost uniform statistically as the time step n
approaches infinity; namely, Wij �ki

−1. Unfortunately, the ex-
act uniform coupling strength Wij =ki

−1 cannot be realized by
dynamical mechanisms. In order to show it, we define the
average standard deviation Esd�k�= �1 / lk��El

0 between G0

0 1000 2000 3000
−2

0

5

10

15

t

E

FIG. 1. The average error E as a function of time t. The parameters are N
=1000, M =5, �=1, �=0.001, and n0=1200.
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FIG. 2. The ratio Re��N� /Re��2� as a function of the adjustment step n.
Solid line: the ratio by the modified DO mechanism; dashed line: Ropt. The
parameters are the same as those in Fig. 1.
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given by the following Eq. �8� and G��0�, where lk is the
number of oscillators with degree k and El

0

= �1 /k��� j�i�Gij
0 −1 /k�2 �Fig. 3�. From this figure, the exact

uniform coupling strength Wij =ki
−1 cannot be realized by dy-

namical mechanisms. This may be the reason for the discrep-
ancy between the ultimate value of Re��N� /Re��2� and Ropt.

We assign the coupling matrix G0 in network �7� by

G0 = Gnorm = Gend/S̄ , �8�

where Gend is the coupling matrix of network �1� after the
adaptation. Since all the oscillators have uniform intensities,
the Laplacian matrices of Gnorm and Gend have equal ratios
Re��N� /Re��2�. When �=1.5, all the nonzero eigenvalues of
the Laplacian matrix of �Gnorm are located in a very narrow
region around the real axes in the region R, and the absolute
values of imaginary parts are sufficiently small �Figs. 4�b�
and 4�c��.

The ratio Re��N� /Re��2� in network �7� with G0

=Gnorm increases slightly with increasing the network size N,
and this can be well fitted by a power-law dependence,
which means the synchronizability decreases slightly �Fig.
5�. From the fitting and the value R�, we find that the net-
work �7� is still synchronizable until N�10.11 The size of the
network �7� that can be synchronizable exceeds by several
orders of magnitude the size of unweighted networks ��103�
and networks with adaptive coupling ��8�105�.18 Obvi-
ously, this is a great enhancement of the synchronizability in

networks, compared with unweighted networks and networks
with adaptive coupling.18 It should be pointed out that for
different size of networks, max
Im��l�
 is sufficiently small
�the maximal value is less than 0.1�.

For the coupling matrix G0=Gnorm, all the eigenvalues
are fully contained within the unit circle centered at 1.24

Thus, 0�Re��l��2, 
Im��l�
�1, and the largest Re��N�
never diverges, independently of the network size N.10 Dur-
ing the transition to synchronization in network �1�,
Smax /Smin is always equals to 1. But in Refs. 14 and 18, the
synchronizability decreases with the increasing of Smax /Smin,
and Smax /Smin increases with the increasing of the size N.
Hence, the synchronizability here is better than Ref. 18,
whose main aim is to reduce the heterogeneity of the inten-
sities adaptively.

For the fixed n0 and N, we discuss the effect of param-
eters � and � on the synchronizability in network �7� with
G0=Gnorm �Figs. 6�a� and 6�b��. The value � can be chosen in
a wide range, and the length � can be arbitrary large. In our
simulations, the value � belongs to �0.0001,0.005� From
Figs. 6�a� and 6�b�, the ratio Re��N� /Re��2� is almost inde-
pendent of the values of � and �.
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IV. CONCLUSION

In this paper, we introduce a modified dynamical opti-
mization coupling scheme to enhance the synchronizability
in the scale-free networks as well as to keep uniform and
converging intensities during the transition to synchroniza-
tion. Moreover, the size of networks that can be synchroniz-

able exceeds by several orders of magnitude the size of un-
weighted networks.
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We present conditions for the local and global synchronizations in coupled-map networks using the matrix
measure approach. In contrast to many existing synchronization conditions, the proposed synchronization
criteria do not depend on the solution of the synchronous state and give less limitation on the network
connections. Numerical simulations of the coupled quadratic maps demonstrate the potentials of our main
results.
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Synchronization, as one of the most remarkable phenom-
ena that arise in many fields of sciences, ranging from natu-
ral to social systems, has attracted a lot of attention in a few
coupled subsystems but recently also in networks with com-
plex topology �1–13�. It has been shown that the topological
properties of coupled dynamical systems affect crucially the
synchronizability of subsystems in a network �3,6,12�. These
topological properties include the small-world �14� property
and scale-free �15� nature of the connectivity distribution,
typical for many real world networks. Random small-world
and scale-free networks are generally better synchronizable
than regular networks �3�. Moreover, systems with a homog-
enous connectivity are better synchronizable than heteroge-
neous ones. Until now, many criteria for network synchroni-
zation have been derived �e.g., �16–19��.

Pecora and Carroll �3� proposed the master-stability-
function �MSF� method to study complete synchronization of
coupled dynamical systems with complex network connec-
tions. Its main idea is to transform the stability of the syn-
chronous manifold into the stability of the corresponding
master-stability equation. It is valid for small perturbations
around the synchronous state. Another choice to derive syn-
chronization conditions is the Lyapunov direct method by
which one can construct a Lyapunov function and then ana-
lyze the local or global synchronization �12,20–22�. Re-
cently, the connection-graph stability was proposed in �13�
to provide global synchronization conditions by combining
graph properties.

The previous results obtained by these methods, to some
extent, have their limitations. The MSF method requires that
the Laplacian matrices are diagonal or block diagonal. Some
of the existing local stability criteria �such as �22�� are based
on the prerequirement of a synchronous state. Here we de-
velop local and global synchronization conditions for much
wider applications, especially without assuming that the cou-
pling matrix is non-negative and diagonal. By means of the
matrix measure approach �8,9�, we achieve synchronization
criteria independent of the uncoupled solution of the syn-
chronous state.

We study the following coupled-map networks:

xi�t + 1� = f�xi�t�� + ��
j=1

N

Wij�f�xj�t�� − f�xi�t��� �1�

for 1� i�N, where f�xi�t�� is a continuously differential
function governing the dynamics of the individual nodes,
often chosen to be a chaotic map. W= �Wij�N�N�RN�N de-
scribes the coupling configuration: if there is a connection
between node i and node j, then Wij�0; otherwise Wij =0.
Here W is not restricted to be completely symmetric and
non-negative. The network becomes synchronized if
limt→��xi�t�−xj�t��=0 for all 1� i , j�N , i� j. In this
case, each node evolves in the same manner, i.e., s�t+1�
= f�s�t�� and x1�t�=x2�t�= ¯ =xN�t�=s�t�. Denote S= �x
= �x1 ,x2 , . . . ,xN�T ,xi�R ,xi=xj , i , j=1,2 , . . . ,N� be the syn-
chronization manifold. Without loss of generality, let x1�t� be
the reference synchronized direction. Then we define the sta-
bility of the synchronization manifold as follows: �i� system
�1� is said to be locally synchronized if there exists a constant
��0 such that if 	xi�t0�−x1�t0�	�� for 1� i�N, then for
arbitrary 	�0, there exists a constant T� t0 such that 	xi�t�
−x1�t�	�	 for all t
T and 1� i�N and �ii� system �1� is
said to be globally synchronized if for arbitrary 	�0, there
exists a constant T� t0 such that 	xi�t�−x1�t�	�	 for all
t
T and xi�t0��R ,1� i�N.

Denote by X1i�t�=xi�t�−x1�t�, then

X1i�t + 1� = f�xi�t�� − f�x1�t�� + ��
j=1

N

Wij„f�xj�t��

− f�xi�t��… − ��
j=1

N

W1j„f�xj�t�� − f�x1�t��…

for 2� i�N. Define the matrix Sw,
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Sw = 

− �W12 + �

j�2
W2j� W23 − W13 ¯ W2N − W1N

W32 − W12
− �W13 + �

j�3
W3j� ¯ W3N − W1N

] ] � ]

WN2 − W12 WN3 − W13 ¯

− �W1N + �
j�N

WNj�  .

Then, we get one compact form,

X̄�t + 1� = �IN−1 + �Sw� f̄�x�t�� , �2�

where X̄�t�= �X12�t� ,X13�t� , . . . ,X1N�t��T and f̄�x�t��
= � f̄1�x2�t�� , . . . , f̄N−1�xN�t���= �f�x2�t��− f�x1�t�� , . . . , f�xN�t��
− f�x1�t���T.

We first introduce the concept of matrix measure. Let C
denote the field of complex numbers; the matrix measure of
a complex square matrix B�Cn�n is defined by �23�

��B� = lim
h→0+

	In + hB	 − 1

h
, �3�

in which 	 · 	 is a matrix norm and In is the identity matrix.
For the matrix norms 	B	1=maxj�i=1

N �bij�, 	B	2=��max�BTB�,
and 	B	�=maxi� j=1

n �bij�, we obtain the matrix measure �23�:
�1�B�=maxj�Re�bjj�+�i=1,i�j

n �bij��, �2�B�= 1
2�max�BH+B�,

and ���B�=maxi�Re�bii�+� j=1,j�i
n �bij��, respectively, where

�max� · � denotes the maximum eigenvalue of a complex ma-
trix and BH is the complex-conjugate transpose of a complex
matrix. Note that BH=BT if B is a real square matrix.

To obtain the condition for local synchronization, we con-
sider small perturbations i�t��1� i�N−1� near the refer-
ence direction of the synchronization manifold. Then

f̄ i�xi+1�t�� can be approximated by

f̄ i�xi+1�t�� = f��x1�t��i�t� , �4�

where f��x1�t�� is the derivative at the reference synchro-
nized direction. Then Eq. �2� is rewritten as

�t + 1� = f��x1�t���IN−1 + �Sw��t� , �5�

where �t�= �1�t� ,2�t� , . . . ,N−1�t��T. Next we construct a
non-negative function,

V�t� = T�t�P�t� , �6�

where P is an arbitrary positive definite matrix. Clearly,
V�t�
0 and the equality holds only if all components of �t�
are equal to zero. That is, the synchronization errors with
respect to the reference direction will disappear as V�t� con-
verges to zero. Note that P can be decomposed into P
=MTM, where M is an �N−1�� �N−1� nonsingular square
matrix. Then

V�t� = T�t�MTM�t� = f��x1�t − 1��2T�t − 1�MT

��M−T�IN−1 + �Sw�TMTM�IN−1 + �Sw�M−1�M�t − 1� .

�7�

We introduce U=M−T�I+�Sw�TMTM�I+�Sw�M−1. Then

V�t� � f��x1�t − 1��2���U�V�t − 1�

= �
k=0

t−1

�f��x1�t��2���U��V�0� , �8�

where ���U� is the matrix measure of U �23� and �
� �1,2 ,��. Thus if

lim
t→�

�
k=0

t−1

�f��x1�k�������U� = 0, �9�

then

lim
t→�

V�t� = lim
t→�

T�t�MTM�t� = 0.

Accordingly, the synchronization error �t� can be asymp-
totically stable. Hence Eq. �9� holds if

lim
t→�

1

t
log�

k=0

t−1

�f��x1�k�������U� = 0, �10�

that is,

log����U� + lim
t→�

1

t
�
k=0

t−1

log�f��x1�k��� = 0. �11�

Then a sufficient condition for local synchronization is

���U� � e−2�f
, �12�

where � f =limt→�
1
t �k=0

t−1 log�f��x1�k��� is the Lyapunov expo-
nent of the map f . For a chaotic map, the Lyapunov exponent
can be calculated. Therefore, the upper bound of the matrix
measure can be determined in Eq. �12�. Further, the proposed
condition can be used to evaluate the stability of the synchro-
nization manifold of coupled-map networks.

In Ref. �22�, the authors presented a local stability condi-
tion for synchronization in which the norm of the Jacobian is
related to the synchronization trajectory �a solution of the
uncoupled system�. However, it is well known that the syn-
chronization trajectory is unknown in advance, and the cri-
terion is hard to be used in applications. As for the condition
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given by Eq. �12�, the upper bound of the matrix measure is
only controlled by the Lyapunov exponent of the map f
which can be calculated independently. In addition, the con-
dition is less conservative than those in Refs. �17,18� where
the coupling matrices are diagonal or block diagonal. More-
over, the coupling in this Brief Report can be cooperative or
competitive, i.e., Wij �0 or Wij �0. Thus the condition de-
rived from the matrix measure has a wider range of applica-
tion.

The above analysis is based on the linear expansion
around the synchronization manifold, which is valid only for
small perturbations around the synchronization manifold. To
derive a global criterion that guarantees synchronization of
the coupled-map networks for arbitrary initial values, we as-
sume a basic property for f ,

�f�x� − f�y�� � sup�f���x − y� . �13�

A natural way is to choose a non-negative function for Eq.
�2� as

V�t� = X̄T�t�PX̄�t� , �14�

and we can derive a condition under which

V�t� → 0 as t → � . �15�

We get then

V�t + 1� = X̄T�t + 1�PX̄�t + 1�

= f̄ T�x�t���IN−1 + �Sw�TP�IN−1 + �Sw� f̄�x�t��

� ���U� f̄ T�x�t��MTMf̄�x�t�� � ���U�sup�f��2V�t� .

�16�

Then

V�t� � V�0�����U�sup�f��2�t. �17�

Therefore, network �1� globally asymptotically synchronizes
if

���U� �
1

sup�f��2
. �18�

Above criterion �18� allows us to consider any solution x�t�
of Eq. �1�.

To verify our criteria, we took a quadratic map for the unit
dynamics, that is, f�x�=ax�1−x� ,x� �0 1�. The Lyapunov
exponent for this map can be directly calculated for constant
a� �3 4�. As the simplest case, the globally coupled network
with N=100 is considered. The coupling matrix has then the
form

W = 

0 1 1 ¯ 1

1 0 1 ¯ 1

] � � � ]

1 1 ¯ 0 1

1 1 ¯ 1 0
 ,

which yields

S = 

− N 0 ¯ 0

0 − N ¯ 0

] � � ]

0 0 ¯ − N
 .

We take M as the identity matrix �i.e., M = IN� and get U= I
+��Sw

T +Sw�+�2Sw
TSw. From the definition of the matrix mea-

sure �23�, we have

��1,2,���I + ��Sw
T + Sw� + �2Sw

TSw� = ��N − 1�2. �19�

So we choose an �� 1
N such that ��I+��Sw

T +Sw�+�2Sw
TSw�

�e−2�F
. For different scales, the critical points for local syn-

chronization can be found as shown in Fig. 1. Then the con-
dition for local synchronization is obtained. For the case of
global synchronization, we have sup�f��2=a2. Applying the
condition in Eq. �18� we find that the system will globally
synchronize if ��N−1�2�

1
a2 . Further more, we also validate

FIG. 2. The dynamic behaviors of each node in the weighted
network. Here network parameters are N=100, m=5, and �k�=10
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FIG. 1. The matrix measure vs coupling strength in the global
coupled networks for different scales. In this case, a=3.59.
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our results for directed weighted networks by numerical
simulations. In contrast with the case of globally coupled
networks, there is no general expression of the matrix mea-
sure with respect to the coupling strength. For directed
weighted networks, we consider scale-free networks which

are generated by using the Barabasi-Albert �BA� model �15�
with N=100, m=5, and �k�=10. The weight on each connec-
tion in the scale-free networks is given by Wij =1 /ki for all
i , j.

Letting a=3.53 in the map, we take the coupling strength
�=0.4 which satisfies our criteria. From the time series of
each unit in coupled system, it can be seen that all units very
fast evolve in the same oscillating manner, as shown in Fig.
2. This synchronization process can also be detected by con-
sidering the average synchronization absolute error EX�t�
= 1

N−1� j=2
N �X1j�t�� with respect to x1. It is shown in Fig. 3 that

this system rapidly synchronizes to the reference direction.
To conclude, we study synchronization of coupled-map

networks. Conditions for the local and global synchroniza-
tions are derived using matrix measure approach. Comparing
with many existing synchronization conditions, the proposed
criteria do not depend on the solution of the synchronous
state and give less limitations on the network connections.
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In this paper we consider complete synchronization in small-world networks of identical Rössler
oscillators. By applying a simple but effective dynamical optimization coupling scheme, we realize
complete synchronization in networks with undelayed or delayed couplings, as well as ensuring that
all oscillators have uniform intensities during the transition to synchronization. Further, we obtain
the coupling matrix with much better synchronizability in a certain range of the probability p for
adding long-range connections. Direct numerical simulations fully verify the efficiency of our
mechanism. © 2008 American Institute of Physics. �DOI: 10.1063/1.2939136�

In the past decade, synchronization in complex networks,
especially the question of synchronizability, attracts a lot
of interest. The works on synchronizability in networks
with a given topology can be divided into two classes ac-
cording to the coupling matrix in networks. One is the
static mechanism, where the coupling matrix remains
fixed during the transition to synchronization. From the
degree and load based weighted networks, the synchroni-
zability becomes optimal when the intensities of all oscil-
lators become uniform. The other one is the dynamical
mechanism, where the coupling matrix evolves in time by
introducing adaptive strengths between connected oscil-
lators. The adaption process can enhance synchronization
by modifying the coupling matrix in networks, but the
synchronizability is still far from being optimal. This is
because the resulting networks have nonuniform intensi-
ties even for networks with homogeneous degrees. In this
paper we consider complete synchronization in small-
world networks of identical Rössler oscillators by apply-
ing a simple but effective dynamical optimization cou-
pling scheme. We realize complete synchronization in
networks with undelayed or delayed couplings, as well as
ensure that all oscillators have uniform intensities during
the transition to synchronization. Moreover, we obtain
the coupling matrix with much better synchronizability
in a certain range of the probability p for adding long-
range connections.

I. INTRODUCTION

In the past decade, the dynamics of complex networks
has been extensively investigated, with special emphasis on
the interplay between the complexity in the overall topology
and the local dynamical properties of the coupled
oscillators.1–28 As a typical kind of dynamics on complex

networks, synchronization, especially the ability of networks
to become synchronized �synchronizability�, has attracted a
lot of interest in multidisciplinary fields.8–28 The works on
synchronizability in networks with a given topology can be
divided into two classes according to the coupling matrix.
One is the static mechanism, where the coupling matrix re-
mains fixed during the transition to synchronization. The
character is that the coupling matrix unidirectionally affects
synchronization.9,10,13–20 It has been recently shown that for
randomly enough unweighted and weighted networks,20 the
synchronizability is controlled by Smax /Smin, where Smax and
Smin are the maximum and minimum of the intensities Si,
defined by the sum of the couplings for oscillator i. For un-
weighted scale-free networks �SFNs� generated by the
Barabási–Albert model,2 Smax /Smin=kmax /kmin�N1/2, where
N is the network size, kmax and kmin are the maximal and
minimal degrees, respectively. From the degree15,16 and
load13,14 based weighted networks, the synchronizability be-
comes optimal when the intensities of all oscillators become
uniform.

The other is the dynamical mechanism, where the cou-
pling matrix evolves in time by introducing adaptive
strengths between connected oscillators. The adaptation pro-
cess can enhance synchronization by modifying the coupling
matrix. However, during the transition to synchronization,
the dynamical mechanism21,22 cannot ensure uniform inten-
sities even for small-world networks �SWNs�, which is not
consistent with the necessary condition for the optimal syn-
chronizability in the static mechanism.13–16,19 Zhou and
Kurths proposed a dynamical mechanism using local infor-
mation among each oscillator and its neighbors.21 In the cor-
responding networks the connections between different oscil-
lators are strengthened. The adaptive process drives the
network into the direction of a more homogeneous topology,
ongoing with an enhanced ability for synchronization.
Thereby it is possible to synchronize networks that exceed
by several orders of magnitude the size of the largest com-
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parable random graph that is still synchronizable.29 For sim-
plicity, we call this mechanism the Zhou–Kurths method. It
shows that the Zhou–Kurths method is very effective to re-
alize synchronization in SFNs, and can enhance the synchro-
nizability in SFNs substantially. After the adaptation of the
couplings, the weights of incoming links Vi scale with the
degree k of the corresponding oscillator xi as V�k��k−�, and
the synchronizability is characterized by Smax /Smin�N�/2

with �=1−� and �=0.54�0.01 for SFNs of Rössler oscil-
lators, and the average intensity S�k� over oscillators with
degree k increases as S�k��k� �Ref. 21�.

In this paper we consider complete synchronization in
SWNs, especially the Newman–Watts �NW� model,28 by in-
troducing a simple but effective dynamical mechanism. Our
aims are to �i� realize complete synchronization in SWNs
with undelayed or delayed couplings, whose oscillators all
have uniform intensities during the transition to synchroni-
zation, and �ii� to assign the coupling matrix with enhanced
synchronizability in certain cases.

By applying the dynamical optimization �DO�
mechanism,24 we will achieve the above aims. The DO
mechanism adjusts the coupling strengths based on the
“winner-take-all” strategy. It realizes complete synchroniza-
tion in SFNs with undelayed couplings, as well as enhances
the synchronizability greatly.24 In this paper, we extend the
DO mechanism to NW networks with undelayed or delayed
couplings. We show that the DO mechanism is more effec-
tive in realizing synchronization in NW networks than the
Zhou–Kurths method. Since the DO mechanism can ensure
the uniform intensities of all oscillators, it can also effec-
tively realize synchronization in NW networks with delayed
couplings. But the Zhou–Kurths method cannot realize syn-
chronization in networks with delayed couplings. Moreover,
in a certain range of the probability p for adding long-range
connections, we design a coupling matrix for NW networks,
which has much better synchronizability than unweighted
networks, degree based weighted networks and the Zhou–
Kurths method.

This paper is organized as follows: In the next section,
by applying the DO mechanism, we can realize complete
synchronization in NW networks of identical Rössler oscil-
lators, as well as ensure the uniform intensities of all oscil-
lators during the transition to synchronization. In Sec. III, we
enhance the synchronizability in NW networks by designing
the coupling matrix. We draw up our conclusions in the last
section.

II. SYNCHRONIZATION IN SMALL-WORLD
NETWORKS

Our general model for networks consisting of N coupled
identical Rössler oscillators with a time-varying coupling
matrix is given by

ẋi = F�xi� + �
j=1

N

GijH�x j,xi� , �1�

where xi is the state, F�xi� is the dynamics of the individual
oscillator xi, H�x j ,xi� is the inner coupling function, G
= �Gij� is the outer coupling matrix. Gij =AijWij, where A

= �Aij� is the binary adjacency matrix, Wij is the coupling
strength of the incoming link �xi ,x j� pointing from oscillator
x j to oscillator xi if they are connected, Gii=−� j�Ki

AijWij, Ki

is the neighbor set of oscillator xi.
In this paper we consider complete synchronization in

network �1� in two cases. �i� One case is the network �1� with
undelayed couplings, where the function H�x j ,xi�=H0�x j�
−H0�xi�, and H0 is the output function for each oscillator. �ii�
The other case is the network �1� with delayed couplings, in
which the function H�x j ,xi�=H0�x j�t−���−H0�xi�t�� with a
time delay ��0.

Our aim is to realize complete synchronization in net-
work �1�, as well as ensure that all oscillators in network �1�
have uniform intensities during the transition to synchroni-
zation. Recently, we have already obtained some results on
this problem. For different variants of the Kuramoto model,
we have proposed a dynamical gradient network �DGN� ap-
proach to realize phase synchronization.23 It shows that all
the oscillators have uniform intensities during the transition
to synchronization. However, the DGN approach is very spe-
cial in two aspects. One is that it should assign a scale po-
tential to each oscillator within any time interval, which de-
pends on the extent of the local synchronization among itself
and its neighbor oscillators. The other is that the incoming
link to be adjusted by the DGN approach is often not mostly
effective. Inspired by the idea of the DGN approach,23 we
have further introduced a DO mechanism for SFNs.24 It re-
flects the “winner-take-all” strategy, where the incoming link
to be adjusted is always chosen as a pair of oscillators with
the weakest synchronization. This means that the DO mecha-
nism is more effective than the DGN approach. We also
show that the DO mechanism has much better synchroniz-
ability in SFNs than the Zhou–Kurths method.24

In this paper, we apply the DO mechanism to SWNs
with undelayed or delayed couplings. Here we first introduce
the idea of the DO mechanism. The DO mechanism is to
increase the strength of only one incoming link of each os-
cillator by a small amount �, at every time step tn= t0+nT for
n�1, where t0 is the transient time, and T�0 is the length of
time intervals. For oscillator xi and its neighbor oscillator x j,
the total synchronization difference,

En�i, j� = �
tn−1

tn

��xi,x j�dt �2�

within the interval �tn−1 , tn� is evaluated, where � is a syn-
chronization error function. For complete synchronization in
SWNs, the function � is a non-negative error function if
oscillators i , j are not synchronized, and satisfies ��xi ,xi�
=0 if oscillators i , j are synchronized. To check complete
synchronization in network �1�, the function � is chosen as
��xi ,x j�= �xi−xj�+ �yi−yj�+ �zi−zj�.

The total synchronization difference En�i , j� reflects the
competition ability of the incoming link �xi ,x j� within the
time interval �tn−1 , tn�. For oscillator xi, the incoming link
with the weakest synchronization, i.e., �xi ,x jmax

n �, is the win-
ner within the interval �tn−1 , tn�, where the index jmax

n is de-
cided by the following dynamical optimization problem:
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jmax
n = arg max

j�Ki

En�i, j� . �3�

The solutions of the optimization �3� within different inter-
vals are also different, which depends on the dynamics of
oscillators. The connection strength is then adjusted dynami-
cally by

Wijmax
n

n+1 = Wijmax
n

n + � , Wij
n+1 = Wij

n , j � jmax
n , �4�

where ��0 is a small value, and Wij
n is the coupling strength

in the interval �tn−1 , tn�.
From Eqs. �3� and �4�, we strengthen the incoming link

with the weakest synchronization, namely, the link with the
maximal competition ability. For complete synchronization
in SWNs with undelayed couplings, the additional term
��x jmax

n −xi� can be regarded as the negative feedback term
for the unidirectional synchronization from oscillator x jmax

n to
oscillator xi. This could make the synchronization difference
between oscillator xi and its neighbor x jmax

n be smaller, which
implies the synchronization in SWNs be realized.

Note that the intensities of all oscillators in network �1�
are uniform, since at each step the intensity of each oscillator

increases by the same amount �. This is consistent with the
necessary condition for optimal synchronizabiliy in the static
mechanism.13–16,19

In order to show the effectiveness of the DO mechanism,
our analysis and simulations are based on SWNs generated
by the NW model.28 The initial network is a K nearest-
neighbor coupled network consisting of N oscillators
arranged in a ring, with each oscillator xi being adjacent to
its neighbor oscillators xi�1 , ¯ ,xi�K/2, and with K being
even. Then one adds with probability p a connection between
a pair of oscillators. In the following, network �1� is a
network of Rössler oscillators, xi= �xi ,yi ,zi�, F�xi�
= �−0.97yi−zi ,0.97xi+0.15yi ,zi�xi−8.5�+0.4�, the function
H0�xi�= �xi ,0 ,0�. In order to show complete synchronization,
we define the average synchronization error as E= 1

N�i=1
N 	xi

− x̄	, where x̄= �x̄ , ȳ , z̄� is the mean-field of all xi. In our
simulations, the initial coupling strengths for all incoming
links are zero, the transient time is t0=100 s, the length of
time intervals is T=1 s, and the small value is �=0.001.
Further, initial conditions for all oscillators are randomly
chosen from the chaotic attractor. The solution of network
�1� is solved by using the Euler method with the time step
h=0.01 s, and our ending condition for the DO mechanism is
E	10−5.

FIG. 1. The intensities Si as a function of time t for arbitrarily 20 oscillators
in networks with undelayed couplings �a�, or delayed couplings �b�, by the
Zhou–Kurths method. The parameters are N=500, K=4, p=0.003, 

=0.002, �=0.01 s.

FIG. 2. The average synchronization error E in networks with undelayed
couplings as a function of �a� time t, and �b� the intensity S, by the DO
mechanism. The parameters are N=500, K=4, p=0.003, T=1 s, �=0.001.
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In this paper we consider complete synchronization in
NW networks in two cases. �i� One case is the network �1�
with undelayed couplings, where the function H�x j ,xi�
=H0�x j�−H0�xi�. From recent works,21,22 the dynamical
mechanism can realize complete synchronization both in
SFNs with undelayed couplings and in SWNs with unde-
layed couplings. However, even for NW networks with ho-
mogeneous degrees, the dynamical mechanisms cannot en-
sure uniform intensities if all oscillators have different initial
conditions. We plot the intensities Si, defined by the sum of
the coupling strengths of neighbor oscillators of oscillator i
�i.e., Si=� j�Ki

Gij�, for 20 arbitrarily chosen oscillators in
NW networks according to the Zhou–Kurths method �Fig.
1�a��. When the adaptation parameter is chosen as 
=0.002
in the Zhou–Kurths method, we find that the Zhou–Kurths
method cannot ensure uniform intensities during or after the
adaptation. Based on the DO mechanism, complete synchro-
nization in NW networks are realized effectively �Fig. 2�a��,
and the intensities are always uniform during the transition to
synchronization. From Fig. 2�b�, the intensity S=Si is also a
good indicator for synchronization in networks. As S in-
creases to a critical value, a network becomes synchronous.

�ii� The other case is the network �1� with delayed

couplings, in which the function H�x j ,xi�=H0�x j�t−���
−H0�xi�t�� with a time delay ��0. Even for a small time
delay � �such as �=0.01 s�, the Zhou–Kurths method cannot
realize synchronization in NW networks �Fig. 3�a��. The syn-
chronization error between two connected oscillators is about
10−2�500=5 for networks with N=500. Due to the DO
mechanism, complete synchronization can be realized effec-
tively when the time delay �=2 s �Fig. 3�b��. The synchro-
nization error is about 10−5�500=0.005. Hence the DO
mechanism is more effective than the Zhou–Kurths method.
The main reason is that the DO mechanism ensures that the
intensities are always uniform during the transition to syn-
chronization. But the Zhou–Kurths method cannot ensure
uniform intensities even for the small time delay �Fig. 1�b��.
Though the difference of intensities between oscillators is
small initially, it becomes large as time increases. The uni-
formity of intensities is the necessary condition for the exis-
tence of a synchronous manifold in NW networks with de-
layed couplings. After the adaptation, the synchronous
manifold is given by xi�t�=x0�t�, i=1, . . . ,N, where x0�t� is
the solution of the isolated dynamics ẋ0�t�=F�x0�t��
+S0
H0�x0�t−���−H0�x0�t���, S0=�n0 is the ultimate inten-
sity, and n0 is the ending adjustment step.

FIG. 3. The average synchronization error E in networks with delayed cou-
plings as a function of time t. �a� The Zhou–Kurths method ��=0.01 s�. �b�
The DO mechanism ��=2 s�. The parameters N=500, p=0.003, 
=0.002,
T=1 s, �=0.001.

FIG. 4. ��a� and �b�� Distribution of eigenvalues of the Laplacian matrix of
�Gnorm in network �1� with undelayed couplings ��� and delayed couplings
���. Solid line: The stability region R. The parameters are N=500, K=4,
p=0.003, T=1 s, �=0.001, �=2, �=1 s.
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III. SYNCHRONIZABILITY IN SMALL-WORLD
NETWORKS

In this section we discuss the synchronizability of NW
networks. We first briefly review the stability of networks,

ẋi = F�xi� + ��
j=1

N

Gij
0 �H0�x j� − H0�xi�� , �5�

where H0 is the output function, and � is the overall cou-
pling strength in networks. Without loss of generality, we
assume that the coupling matrix G0= �Gij

0 � is asymmetric.
The coupling matrix G0= �AijWij

0 � is similarly defined as the

matrix G in network �1�. The variational equation for the

synchronous state 
xi=s , ∀ i� is given by ̇i= �DF�s�
−��lDH0�s��i, where ṡ=F�s� is the dynamics of the iso-
lated oscillator, D is the Jacobian operator, and �l is a com-
plex eigenvalue of the Laplacian matrix L �=−G0�, satisfying
Re��1��Re��2�� ¯ �Re��N�. The largest Lyapunov expo-
nent �LLE�, ��� ,��, of the master stability equation �̇
= �DF0�s�− ��+ i��DH0�s��� is a function of the parameters
� and �, which is known as the master stability function
�MSF�.25,26 Let R be the region in the complex plane where
the MSF provides a negative LLE �Figs. 4�a� and 4�b�: The
region R bounded by the solid line�. The condition for com-
plete synchronization in network �5� is that the set 
��l ,�l

�0� is entirely contained in R.25,26 Here we only consider
the case where the region R is bounded. For the networks of
Rössler oscillators in this paper, the stability region R is
shown by the solid line in Fig. 4�a�. In order to judge
whether the set 
��l ,�l�0� is in the stability region in the
case of the complex eigenvalues of the Laplacian matrix L,
one should minimize the ratio Re��N� /Re��2� for a fixed
value of max�Im��l��, and one should minimize max�Im��l��
for a fixed value of the ratio Re��N� /Re��2�. Summing up
the above minimization, a good condition is that
Re��N� /Re��2� and max�Im��l�� are simultaneously
minimized.14,17

In this section we analyze the synchronizability in NW
networks by applying the DO mechanism. From our recent
work24 the DO mechanism can ensure uniform intensities of
all oscillators in networks, regardless of the initial conditions
of the oscillators in networks with undelayed or delayed cou-
plings. Here we design the coupling matrix G0 in network �5�
through the adaptation of the coupling strengths in network
�1�. After the adaptation by the DO mechanism, the coupling
matrix G0 in network �5� is assigned by the following matrix:

G0 = Gnorm = Gend/S0, �6�

where Gend is the coupling matrix of network �1� after the
adaptation. For the coupling matrix G0=Gnorm, all eigenval-
ues are fully contained within the unit circle centered at
1.14,17 So 0�Re��l��2, �Im��l���1, and the largest Re��N�
will never diverge. During the transition to synchronization
in network �1�, Smax /Smin always equals 1 in the DO mecha-
nism.

It should be pointed out that max�Im��i�� is sufficiently
small due to the DO mechanism �the maximal value is less
than 0.1�. Even for a large coupling strength �=2, all the
nonzero eigenvalues of the Laplacian matrix of �Gnorm are
located in a narrow region around the real axes in the stabil-

TABLE I. The ratio Re��N� / Re��2� as a function of network size N for a fixed probability p=0.003.

Type

N

300 400 500 600 700 800 900 1000

I 41.66 31.83 26.10 22.91 20.34 17.55 16.17 14.51
II 27.84 20.36 15.77 13.29 11.53 9.96 9.08 7.97
III 29.38 22.44 17.61 14.56 12.60 11.49 10.42 9.68
IV 17.88 15.00 12.99 11.31 11.22 10.17 9.63 9.08

FIG. 5. �Color online� The ratio Re��N� /Re��2� as a function of network
size N for a fixed probability p=0.003 �a�, and the probability p for a fixed
size N=500 �b�. Yellow line ���: type I networks; green line ���: type II
networks; blue line ���: type III networks; red line ���: type IV networks;
black dashed line: the maximal ratio Re��N� /Re��2� in the region R. The
parameters are K=4, 
=0.002, T=1 s, �=0.001. All the estimates are aver-
aged over 20 realizations of networks.
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ity region R �Fig. 4�a��. Hence the ratio Re��N� /Re��2� in-
dicates the synchronizability in networks. In order to show
the enhanced synchronizability in NW networks, we com-
pare the synchronizability in the unweighted network �5�
�type I network: Wij

0 =1�, the degree based weighted network
�5� �type II network: Wij

0 =1 /ki�, network �5� with adaptive
couplings by the Zhou–Kurths method �type III network�,
and network �5� with the coupling matrix being designed by
network �1� with undelayed couplings �type IV networks�.

We find that for a fixed small probability p �such as p
=0.003� for adding long-range connections, the synchroniz-
ability in type III networks is better than that in type I net-
works, but it is worse than that in type II networks, no matter
how large the size N of the networks is �Fig. 5�a�, Table I�.
However, we find that type IV networks have a better syn-
chronizability than both type II networks and type III net-
works when the size is not too large. Of course, the smaller
the probability p, the larger the size of type IV networks with

better synchronizability than both type II networks and type
III networks. For the fixed size N=500, we observe similar
results in a certain range of the probability p �Fig. 5�b�, Table
II�. From Fig. 5 and Tables I and II, we see that the synchro-
nizability in type IV networks is better than those in type II
networks and type III networks in some cases. It is reason-
able that type IV networks have better synchronizability than
type III networks. This is because the DO mechanism en-
sures uniform intensities of all oscillators in type IV net-
works. Now we further analyze the reason why type IV net-
works have better synchronizability than type II networks in
a certain range of the probability p.

In order to do so, we slightly modify NW networks. The
initial network is a K-nearest-neighbor coupled network con-
sisting of N oscillators arranged in a ring, with each oscilla-
tor xi being adjacent to its K neighbor oscillators
xi�1 , . . . ,xi�K/2, and with K being even. Then one adds with
probability p a long-range connection between a pair of os-

TABLE II. The ratio Re��N� / Re��2� as a function of the probability p for a fixed size N=500.

Type

p

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

I 38.04 26.53 18.98 15.25 13.52 11.38 10.63 9.88 9.01
II 24.98 16.45 11.32 9.16 7.85 6.78 6.03 5.50 5.07
III 27.52 17.77 12.92 10.61 9.22 8.02 7.23 6.80 6.18
IV 17.37 13.33 10.26 8.96 8.06 7.55 6.79 6.22 6.19

FIG. 6. The dependence of �Wm on m in �a�, �d�, and �g� of �Lm on m in �b�, �e�, and �h�, and the relationship between �Wm and �Lm in �c�, �f�, and �i�,
respectively. n1=0, n2=30 ��a�, �b�, and �c��; n1=60, n2=90 ��d�, �e�, and �f��; n1=120, n2=150 ��g�, �h�, and �i��. The parameters in type V networks are
N=300, K=4, p=0.2, T=1 s, �=0.001.
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cillators with indices satisfying n1�min
�i− j� ,N− �i− j��
�n2, where 0�n1, n2�N /2 are two positive integers. This
kind of network is called type V networks. Based on type V
networks, we adjust the coupling strengths by the DO
mechanism. After the adaptation, we define the average cou-
pling strength �Wm over the kW links having the same m
=min
�i− j� ,N− �i− j��,

�Wm =
1

kW
� Gij . �7�

Further, for the unweighted type V networks, the average
load �Lm over the kL links having the same m is given by

�Lm =
1

kL
� Lij , �8�

where the load Lij of the link connecting oscillators xi and x j

quantifies the traffic of the shortest paths passing that link.
Here the size of type V networks is N=300 and the probabil-
ity p=0.2. For different n1 and n2, we plot the relationship
between �Wm and m �Figs. 6�a�, 6�d�, and 6�g��, and the
relationship between �Lm and m �Figs. 6�b�, 6�e�, and 6�h��,
respectively. From these subfigures, we conclude that �Wm
has a similar dependence on m as �Lm, which is further
verified by the relationship �Wm��Lm �Figs. 6�c�, 6�f�, and
6�i��. This implies that the adaptation due to the DO mecha-
nism may lead to a similar synchronizability as the load
based weighted networks. This may in part explain why type
IV networks have a better synchronizability than type II net-
works in a certain range of the probability p for adding long-
range connections.

IV. CONCLUSION

This paper considers complete synchronization in small-
world networks of identical Rössler oscillators. Differing
from the exiting dynamical mechanism, we apply a simple
but effective DO mechanism to networks with undelayed or
delayed couplings. We realize complete synchronization in
networks, as well as ensure that all oscillators have uniform
intensities during the transition to synchronization. The uni-
formity of the intensities is consistent with the necessary
condition for the optimal synchronizability in the static
mechanism. Further, we design a coupling matrix with much
better synchronizability in a certain range of the probability
p for adding long-range connections.

The DO mechanism can also be applied to the phase
synchronization in SWNs with nonidentical oscillators. For
example, we consider the phase synchronization in the Kura-
moto model.22,23,30,31 In this case, xi=�i, F�xi�=wi, wi are
frequencies uniformly distributed in the interval �−� , � �
with ��0, H�x j ,xi�=sin�� j −�i� for the undelayed cou-
plings and H�x j ,xi�=sin�� j�t−��−�i� for the delayed cou-
plings, the error function ��xi ,x j�=1−rn�i , j� with
rn�i , j�e��n�i,j�= �e��j +e��i� /2 and �2=−1, where 0�rn�i , j�

�1 measures the extent of the synchronization of oscillators
i , j, and �n�i , j� stands for an average phase. Hence ��xi ,x j�
are non-negative oscillators xi ,x j are not synchronized, and
��xi ,x j�=0 if oscillators xi ,x j are synchronized. Of course,
our mechanism can be applicable to the synchronization in
networks with nonidentical chaotic oscillators �such as
Rössler oscillator� provided that the term of “phase” in net-
works is well-defined.8
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a b s t r a c t

The response of scale-free networks with community structure to external stimuli is
studied. By disturbing some nodes with different strategies, it is shown that the robustness
of this kind of network can be enhanced due to the existence of communities in
the networks. Some of the response patterns are found to coincide with topological
communities. We show that such phenomena also occur in the cat brain network which
is an example of a scale-free like network with community structure. Our results provide
insights into the relationship between network topology and the functional organization
in complex networks from another viewpoint.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many natural systems are found, on one hand, to be able to react to small selected stimuli with large alterations,
whereas, on the other hand, they can withstand large environmental variations (sometimes even unpredictable ones) with
minimal changes or loss of functionality. This implies two complementary attributes of dynamical systems: sensitivity and
robustness. Sensitivity implies the possibility of a large response to small stimuli and robustness implies the possibility of
a small response to large stimuli. Not only biological systems but also several man-made complex systems, such as power
grids or communication systems require this combination of traits to optimize the system’s performance. Recently, the focus
on understanding the interplay between dynamical behavior and their topologies has attracted a lot of interest [1–7]. Recent
research [8] shows that the observed network topologies which are often scale-free or scale-free like [9] are not necessarily
optimal in their connectivity and connectivity-related attributes. Moreover, it is manifest [10] that scale-free networks are
fragile to intentional attack but resilient to random failures, in the face of node removal. We ask why so many networks
found in nature have a scale-free (like) architecture with a lack of optimal network connectivity? In this paper, we study the
properties which determine the efficiency of networks by analyzing the response of such systems to external perturbations.
To describe a complex system, one can take the units of response as nodes and the interactions between them as edges

and then generate a networkmodel. It is well known that many complex networks exhibit not only short average distances,
but also a high clustering coefficient, the ‘small-world’ property [11]. Moreover, several of them can be approximated well
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by a power-law degree distribution, P(k) ∼ k−γ , the ‘scale-free’ property [9]. Many real-world networks exhibit not only the
‘small-world’ and ‘scale-free’ property, but also have a community structure which is defined as collections of nodes within
which the connections are dense, but between the communities the connections are sparse. Community structures are
supposed to play an important role inmany real networks. For example, communities in a citation networkmight represent
related papers on a single topic [12]; communities on the webmight represent pages on related topics [13]; communities in
a biochemical network or neuronal system might correspond to special functional units [14,15]. Therefore, it is important
to study the response of a scale-free network with community structure.
In this paper, we use the dynamical model presented by Bar-Yam and Epstein [16] to study the response of scale-free

networks with community structure to external stimuli. Our investigation reveals that the community characteristic of
the networks is crucial to enhance its robustness. Some of the response patterns are found to coincide with the topology
communities. As an example of scale-free like networks with community structure, such phenomena also occur in mammal
brain networks.
This paper is organized as follows: In Section 2, themodel of the network is introduced. The dynamical attractor network

model is presented in Section 3. Numerical simulations and a detailed analysis are presented in Section 4. In Section 5, we
study the response of the cat brain network to stimuli as an example. Finally, our conclusions are given in Section 6.

2. The model of the network

In order to create a scale-free networkwith community structure,we use amodified procedure of the algorithmproposed
in [17]. We assume that there areM(M ≥ 2) communities in the network. This model is defined by the following scheme:
Step 1: Initialization: Start from a small number m0(m0 > 1) of fully connected nodes in each community. There are n

random links between every two communities.
Step 2: Growth: At each time step, a new node is added to the network. We assume that the probability P(I) of which

community I the new node is added to depends on the number of nodes in the communities nI , i.e.:

P(I) =
nI∑
I
nI
. (1)

The new node will be connected tom (m0 ≥ m ≥ 1) nodes inside the same community I through m intra-community links
(defined as the links that connect nodes in the same community), and with probability α connected to n (m ≥ n ≥ 1) nodes
(none with probability 1 − α) to the other M − 1 communities through inter-community links (defined as the links that
connect nodes among different communities). We assume that the probability P(i, I) that a new node will be connected
to node i in community I which is selected before depends on the inner-degree siI (define as the number of intra-links
connected to node i) of that node, i.e.:

P(i, I) =
siI∑
k
skI
. (2)

We also assume that the probability P(j, K) that a new node will be connected to node i in community K(K 6= I) depends
on the inter-degree ljK (defined as the number of inter-links connected to the node), i.e.:

P(j, K) =
ljK∑

m,N,N 6=K
lmN

. (3)

We call this network a community-scale-free (CSF) network (compare with scale-free network (SF)). It is shown in Fig. 1
that such a CSF network has also a power-law degree distribution P(k) ∼ k−γ .

3. The dynamic model

To investigate the response of CSF networks, we choose a conventionalmulti-attractor networkmodel; which describes a
dynamical system. The node states si = ±1, i ∈ 1, 2, . . . ,N are binary. The states of the network system are then composed
by the set of the node states si. The dynamical attractor system evolves as follows:

si(t + 1) = sign

(
N∑
j=1

Aijsj(t)

)
(4)

where A = (Aij)N×N is the connection matrix whose elements Aij are positive if there is a link going from node i to node j
with i 6= j and zero otherwise (Aii = 0) (A is symmetric if the network has no weights and no directions). This model can
also be interpreted as social opinion models of binary states, such as yes (+1) or no (−1). It is known [18] that there are
multiple attractors generated by this model. Any attractor with a non-empty attracting basin is stable to perturbation and
thus can represent a functional state of the system.
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Fig. 1. The degree distribution of CSF. N = 1000,M = 5, n = 6,m = 1, α = 1, γ = 3.

Fig. 2. Size of the basin of attraction (fraction of total nodes, b) as a function of the average degree 〈k〉, * CSF network and random stimulus, ◦ SF network
and random stimulus, • CSF network and directed stimulus, � SF network and directed stimulus, 〈k〉 = m in SF, 〈k〉 = m+ αn in CSF, N = 1000,M = 4.

External stimuli aremodeled by flipping the signs of a specified set of nodes.When the states of some nodes are changed,
the system either evolves back to its initial state or switches to other attractors. The response of the network system is
described as a process of switching between the attractors. The size of the basin of attraction, i.e., the number of nodeswhose
states can be changed before the dynamics of the network fails to bring the systems back to its original states, indicates the
degree of stability of the system. The system is said to be sensitive to a certain disturbance if it changes its current state
to another one, and vice versa. We calculate the size of the basin of attraction in different cases of stimuli to reveal the
sensitivity and robustness of the network [19,20].

4. Numerical simulations and analysis

We study the CSF networks mentioned in Section 2 and the Barabási–Albert model of SF networks. Without loss of
generality, we can randomly choose two states to represent the functional states of the system. To ensure that these
states are stable, we adopt the Hebbing imprinting rule Jij =

∑
α s

α
i s
α
j to construct the desired attractors. For sufficiently

many links and for a broad range of network topologies, this form of non-zero links will make the pre-selecting functional
states into stable attractors of the network dynamics [18]. For the sake of convenience, we consider two attractors S1 and
S2 (S1 = (+1,+1, . . . ,+1), S2 = (−1,−1, . . . ,−1)) as the stable states between which the system can switch. Initially,
all the nodes are set to be in the state+1, that is, si = +1, i = 1, 2, . . . ,N . We suppose, at some time t , such environment
changes or new information arises, which induce the states of some nodes being selected to flip to the opposite state
ski = −1, i = 1, 2, . . . , rs, where rs is the number of the nodes whose states are flipped. Then after a period of transient
time, the system evolves into a stable state which is either its original state or another attractor. To explore the changes of
the system state, 100 simulations are performed for each different average degrees.
We find (Fig. 2) that for the two basic types of stimuli: direct stimuli (changes are made to the most highly connected

nodes, the hubs) and random stimuli (changes are made to randomly chosen nodes), CSF networks are more robust than SF
networks. Therefore, the community structure enhances the robustness of the networks. In order to see how the community
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Fig. 3. CSF networks: N = 1000,M = 4. (a) The probability P that the system evolves into S1, S2 or other steady states under different disturbances rs: o
all the nodes were in status+1, i.e. the system evolves back to its initial state.+ some of the nodes were in status+1, others were in status−1, · all the
nodes were in status−1, i.e. all the nodes were influenced. (b) The average number of influenced nodes B in the long-time behavior for different rs .

Fig. 4. Connection matrix A of the CSF network, · Aij = 1, blank: Aij = 0. The parameters of the CSF network N = 100,M = 4,m = 6, n = 1.

structure influences the robustness of the network, we randomly chose a CSF network to investigate the probability P that
the system evolves into S1, S2 or other steady states under different random disturbances.
It is shown in Fig. 3 that the CSF network maintains the original states under a small perturbation, which illustrates its

robustness to some extent, until the strength of perturbation (numbers of flips rs) exceeds a critical value. For intermediate
stimuli, the system converges to mixed steady states in which some node states are+1 but the others are−1. By increasing
the stimuli continuously, all of the nodes are influenced and the system evolves into an all−1 state (S2), which is an extreme
response. It should be noted that there are two phase transition points in the process of response. The first one corresponds
to the transition of the system from a normal state to partial destruction. The second one corresponds to the transition from
partial destruction to complete destruction.
It is interesting to ask: why is the response of a CSF network different from a SF network without modular structure,

though the degree distribution of the CSF is also scale-free? In the following, we explore the response patterns for rs in the
intermediate region i.e. in the region between both phase transitions. We randomly choose some nodes to be flipped and
identify whose states are changed in the network as the system evolves into a steady state, which illustrates the response
to stimuli. To describe the response patterns, a new variable is defined as follows:

Rij =

{
−1, if Aij > 0 and si = −1, sj = −1
+1, if Aij > 0 and si, sj are not in status-1 at the same time
0, if Aij = 0.

(5)

R indicates which part of the network was influenced. In order to see the patterns clearly, we use a small size network
here as an example.The connection matrix is shown in the Fig. 4. We have also found similar results in much larger CSF
networks and smaller networks. It is shown in Fig. 5 that for a certain rs in the intermediate region, some patterns of R
appear with large probability, which almost correspond to the topological communities. Clearly, the community structure
plays a crucial role in response to the stimuli. When some segments of the network are destroyed, the community structure
canprevent the damage fromspreading to other segments. A similar impact of clustering has been also found inRef. [21]. This
phenomenon can be explained by the underlying structure of communities which has a high density of connections inside
the communities and sparse connections with the outside nodes. Therefore, those nodes which connect two communities
can hardly be affected by the negative nodes with respect to our majority opinion-like model. In this sense, the network
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Fig. 5. The pattern of R with different initial conditions: o Rij = −1, · Rij = 1, blank: Rij = 0. The parameters of the CSF network N = 100,M = 4,m =
6, n = 1, α = 1. rs = 48.

Fig. 6. Connection matrix A of the cortical network of cat brain. The different symbols represent different connection weights: 1 (o sparse),
2 (. intermediate), 3 (* dense).

structure coincides well with the dynamical pattern. By detecting some special patterns appearing with high probability,
our results are expected to provide a new approach for community detection.

5. Response of cat brain networks to stimuli

As an example, the response of cat brain networks to stimuli is analyzed here. The cerebral cortex of a cat can be
parcellated into 53 areas, linked by about 830 fibres of different densities into a weighted complex network as shown in
Fig. 6 [22]. This network displays a heterogeneous structure, where some nodes have only 2 links while others have up to 35
connections. It is clear that the size of the network is too small to claim that the degree distribution is scale-free. Nevertheless,
the distribution is very close to that of networks of the same size and density generated by scale-free models. Moreover, the
cortical network of cats exhibits a hierarchically clustered organization. There exists a small number of topological clusters
that broadly agreewith four functional cortical sub-divisions: visual cortex (V,16 areas), auditory (A, 7 areas), somato-motor
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Fig. 7. Cat brain network (a) Probability P that the system evolves into S1, S2 or other steady states under different disturbances rs: o all the nodes were
in status+1, i.e. the system evolves back to its initial states.+ some of the nodes were in status+1, others were in status−1, · all the nodes were in status
−1, i.e. all the nodes were influence. (b) The average number of influenced nodes B in the long-time behavior for different rs .

Fig. 8. Cat brain network. The pattern of Rwith different initial conditions: o Rij = −1, · Rij = 1, blank: Rij = 0. rs = 25.

(SM,16 areas) and fronto-limbic (FL,14 areas). In addition, this network also displays typical small-world properties, i.e. short
average path length and high clustering coefficient [23–26].
We perform simulations on this network by applying the same dynamics as in our CSFmodel (Section 3). The responsivity

under different external perturbations can be found in Figs. 7 and 8, which is similar to the case of our network model. It
can provide insights into the relationship between network topology and functional organization of the cat brain networks
from another viewpoint [27]. Furthermore, wemake the stimuli acting on large-intensity nodes or on small-intensity nodes
(directed stimuli) other than random stimuli and then see the response pattern of the network. We define the intensity ci
of node i as follows:

ci =
N∑

j=1,j6=i

Aij. (6)

In particular, for unweighted networks, the intensity of a node is the degree of this node. It is known that scale-free networks
are more robust to random attacks, while more sensitive to directed disturbance to the large-degree nodes. As shown in
Fig. 8, the brain network can be partially disturbed when 30 > rs > 16 directed stimuli are acting on small-degree nodes
(shown in Fig. 9(b)). On the other hand, the system can be entirely disturbed when rs > 24 for large-node perturbation
(shown in Fig. 9(a)). It is manifest that the robustness for directed stimuli acting on large-degree nodes is stronger than the
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Fig. 9. The number of nodes (B) whose states are changed in long-time behavior for different stimuli. (a) The responses for directed stimuli acting on
large-degree nodes. (b) The responses for directed stimuli acting on small-degree nodes.

case for directed stimuli on small-degree nodes. This enhanced robustness is also better than the case for random stimuli,
which is different from the result in Refs. [16,28] for scale-free networks.
Compared with the robustness of the classical scale-free network model, a complex brain network is likely to be more

robust for direct stimuli. It should be noted that the brain network displays not only heterogeneity on the degree distribution
but also hierarchical clustering characteristic. These special propertiesmay play an important role in the response to stimuli.
However, more evidence should be presented in future studies.

6. Conclusion

In this letter, we investigate the relationship between dynamics of complex networks and their topology properties
by studying the response of the whole system. An adaptive system should be robust for large stimuli, which makes the
system stable. Additionally, it also should be sensitive for small stimuli, which makes the system react rapidly on the new
external changes. According to the analysis of the response of scale-free networks with community structure, we find that
the hierarchical characteristic of the networks enhances their robustness to external stimuli. Switching patterns are found
to coincide with the topology communities. We verify our results in a real-world -cat brain network which has similar
topological properties as our model. We show that the robustness for directed stimuli acting on large-degree nodes is better
than in the case of directed stimuli on small-degree nodes, which is different from the response in the scale-free networks.
Our results provide new insights into the relationship between network topology and the functional organization of the cat
brain networks from another viewpoint.
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